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in the'modified orbital model, where D,

. P01ncare invariant subspace of space-time.
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ABSTRACT
By changing the boundary condltlons of the relatlv;stég °t§1ng
' -0
in extra d;mens1ons, the 1ntercept q(O) is lowered to 1 - m

is the dimensicnality of the

In the modified model of
10 - DO

1
the spinning string, the boson intercept becomes T

The projective invariance of the

while

the fermion 1ntercept stays at zero.
ground state is broken, giving the "photon" mass by 'a Higgs-like
mechanism. iUnfortunately, the strings have a negative "G-paripyﬁ, S0

the usual, uhshifted strings appear as intermediate states in the scat-

' Also, some of the amplitudes are not dual.
1)

tering amplitudes.

I. INTRODUCTION
The two major problems of dudl models are the restrictions gf

the interceptz) and d1mens1ona11ty to unphys1cal values.

the "extra" dimensions are treated as internal degrees of freedom in

such a way as to lower the intercept: One end of the strlng is fixed

in the extra-dimensions, while both ends are left free, as usual, in-

- - } . . . r} s - ntz
physical spacg—tlme. Quantizing in the light cone gauge, Lore I

a(0) =

. - : . . 1 . . ' » I“S
invariance in the DO "ordinary dlmen519ns reguire 7

V*Research suppdrtea by the .Energy Research and Development Administra-

tion.

In this paper

0

a three-strlng vertex requires that one strlng be unshifted.

—2-

and Do +Dp = 26 in the modified orbital model; here D_ is the

E

number of "extraordinary" dimensions in which one end of the string is

fixed. By modifying the spinning string in the same way, one finds

10 - D
a{0) = %—— p for the bosons and a(O) 0 for the fermions,
with D0 + DE-= 10 . In these new models, the "photon" has been given

mass by a Higgs-like mechanism: Tis longitudinal mode is-created by

“the (Do—dimensional Lorentz group) scalar operators of -the extra dimen-

sions.

In the simplest interacting—stfing picture,,ccntinuity of the
boundary conditions requires the number of 1ntercept—sh1fted strlngs at

a vertex to be even ("G—parlty" conservatlon) Therefore, the use of

Though

_unsatlsfactory as it stands, the model is at least not equivalent to

any old model. Caleculation of the four-point funétions with this vertex

gives the amplitude for scattering of a shifted and an unshifted ground-

state string as Veneziano's Beta-function amplitude, with as(s) = s.+ 1
26 - D

- ——

d t) =t + 1,
3 and a.(t) 1

However, the ampli‘_cude for shifted-

shifted scattering turns out to be non~dual.

“1I. FREE STRINGS WITH SHIFTED INTERCEPT
The results of this section (concerning the modified orbital

model) were previously derived by M. B. HalpernB), and are. given here

for completeness.

‘A. The classical string.

The ulmplest way to modify the dynamlcs of the free string is

: to change the boundary conditions without changlng the equations of

motion. With &x not necessarily arbitrary, the variaticnal principlé

for the relativistic string is



._3__ .

r (2'.1-)"

. (ddmt-:o‘B = dan where n is the unit vector nofmal to the boundary. )
Allowing 6x to be arbltrary 1nside the string, the usual field equa-
-tions follow from setting the second term equal to zero. The first
_t_erm‘ can be made zero by a combination of two types of (local) boundary
conditions: At either end, we can either allow - 6x 1o be ai‘b’itrary
(free end), which requiresv. x' =0, or we can use the constreirnt‘

x = constant (fixed end); In order to have Po‘incar.é‘invariance in the _
f‘irs‘o 'DO of_the D dimensions R vw;'e choose both ends to be free in
these dimensions.' In the remaining DE dimensions we have four ,

» choices- The flrst choice is to.have both ends free (the standard

string model) Secondly ; we may choose to fix both ends at the same

point, again g1v1ng essentlally the standard strmg model (the zero mode

UL

is eliminated, but we will choose p" =0 for u= D0 in any case).

If they are fixed at different points, we have the massive string of

4)

Chodos and Thorn The last cholce is to fix one .end, leaving the

o_ther free:

.,xl'l(oo, 0) = 0; ?‘ﬂ("o’“) =0 for u<D., xu(oo,ﬁ) =0 for W 2p.

0

-integral modes

~ the only nori—tri_vial calculation the commutators of the Lorentz genera

-f-

This choice differs from the others in that it gives the string half-

5) for u 2 DO.‘ Explicitly:

1

n

Y < DO:xu qu + 20L'puoo + y2a! Z % cos nol(an_ue-_lno -c.c.)
: n=1l .

[(2.3)

o
. , o
2 p.xt = /ogT Z %cos ng (a e -ino —-C.C.) .

n=%

B. Canonical quantization;
In the rest of this section we discuss only the string with one

end fixed in the extra dimensions. The comutation_. relations of p“, _qu,

anu, and an'm(p < DO “for p and q) have the usual form in both the
. D. -1 ) .
covariant and light-cone gauges (x+ = xo + X 0 ). The easiest way

to determine the intercept and dimension of the string is to prove the

(Do-dimensional) covariance of the light-cone gauge. This involves as

s _ s - +
tors M (1 < Dy)- ‘M'” has the usual form in terms of qi, qQ,P,

i
8", .a(O), and hn, but now

e Dy . v © p-r - ) _

1 ii 1 Z R

] Z Z fnem P T 2 : 8 %nem (2.4)
e 421 e =D,
mez m+ieF

The commutator is calculated to 'be6)

Bﬂi,MJ:I 1ala‘]—a,‘]‘ai).'
G.P"

nl

. | o Do
d2 (=2 _4) 4 laoy - (Rp2.——0
feaz ) o (5258 o



5-
Since (Do—dimensional) Lorentz covariance requires thisvcommutator
equal 2ero, we have
' , 26 - Do
= 26,. a(0) =1 - N - -. . (2.6)

Therefore, depending on the choice of DO, the intercept can vary by

steps of 1/16 from the usual 1 ‘down to _3/8-(DO = 4 to keep

" physical space-time Poincaré covariant).

We now study the way in which the "photon" becomes massive - -
(Db < 26) by examining the operators which create its states.

. : : i
the states we calculate (u, v, 0, T = O""’DO - 1; choose p = O)

wl = 1 VO
; we .= (2 EUVOTM p)
. D2 _
1 J J i 2
w=r (Ly - «(0)) Z Z = (a_, -a_“a’) +
i,j=1] n=1
DO -2 o 2
1 E: E: i_, 1 = M (2.7
7T N N L (2.7)
i=1 | n=1 )
" 2.z . )
where M? —T-(L -a(O))'is,the (mass) and S the spin. From this
we find the "photon s" states are the usual a_li|Q>(i =1,...,D - 2) -
55 v .
) 2: i i - .
and the new state - (a_,")|0> ~ L |0> ~ a_;7|0>. " The latter,
© i=p. . "* - -
0

longitudinal state could also be found by noting that it is the only -

other state of that mass which is a singlet under the internal-symmetiry

group of the string: the O(DE) of the Dy dimensions where one end
of the string is fixed.  This i1s analogous to the Higgs mechenism in

that the vector boson has gained mass by aequiring a lengitudinal mode

in the extra dimensions.

To find .

half-integral (bosons),

leadlng trajectory is the rho with intercept 1 -

: ' i > c s . R .
from scalar operators (a Ll for 1= DO); projective invariance of
. e ‘

the ground state is broken because L_l|0> # 0.
C. The modified spiﬁning string.

The same choices of boundery conditions for x are possible
for the spinning string; we again study the case where one end is fixed
The requirement that the model have thg same
number of subsidiary conditions as when DE =0 (sp ﬁhat the systém is

not o#erdetérmlned) gives the following boundary conditions for the

It Slu(co,ﬂ) - Szu(oo,w) for u <D

spin density at the fixed end: 0

(fér fermions or bosons, respectively, as in the conventional modél),
. o , R \
= *-Szu(oA,n) for u f DO,

have either all indices integrél (fermions) or all indices

then Slu(oo,n) This means that the opera-
tors Gn
Covariance in the light-éone gauge requires

10 - D
for bosons., (2.8)

= 10; a(O) 0 for fermicns, ? -

Here o{0) for bosons ig the 1ntercept of the pion traaectory, the

10 - DO
The rho

intercept can thus take values from 1 to 1/4. For the rest of the
}artiéle; we consider only strings without spin.
III. INTERACTING STRINGS
A. Path-integral qﬁantization7).
For studying the interactioﬁs of strings, path-integral quanii-
zation‘is more convenient than canonical quantization. In this formal-

ism the choice of boundary copd-v*ons follows from the functional

-'integratlpn, Whlch leaves the amplitude in terms of only the volume

element and the Green's functicn. The definition of the Green's func-

tion which allows this reduction is equivalent to the field eguaticns



e

~of x derived in the canonical quantization. This is accompliched by
the standard path-integral change of'variables (We now work in Fuclidean
= 1; the index on o%

M) + Mo) - 1 Idz_d'G“v(o,'é_'-’);i"(o");- o | |

oafspace by Wick:rotating 00; o! is dropped):

'u.:. .“'v.vo.;o p = .
J (o). = }E::Pr (o' )8(o U.lr)’Guv’ Gquu(not summed ),

L (3.1)

r

2 | 1 = (2) . -
3 Guv(c,c ) 2w6uv6 (0 -0').

J

P is the momentum density of the rth * < 0 for outgoing

- string (pr

strings), and oolf = 00i or cof when the r'} string is incoming or
outgéing, respectively. This changes the exponent of-the functiona1 
integral8)

Jd ol + iZIdc'P (o) oy, ,o ) = Id c[—-(a SN 1Jlx_i]1

T a

—>Jd20[- = xi)zj| -z-szodz 'Ji(o)ci(o,ovmi(o'); , (3.2)

%F § dqagas[%iasfdzo'Gi(o,of)Ji(o') + % aS(Idzg'Gi(c’q')Ji(ol)?{}

(Sum over i =1,. ’DO - 2, ;25 ), The first and seéond terms

OJ
give the volume element and Green's-function dependence, as usual. The
last term (surface integral) can be made zero again by two kinds of

choices of boundary conditions: '3%;'01(0,0') = 0;

constant,.

or Gi(c,of) =
with the constraint xi(o) = These are the tﬁo'siandard
choices for boundary conaitions in.solving Laplace's equation (the
equation of motion of the striné for Wick-rotated co): The former

‘choice is the Neumann boundary condition used in the ordinary string

(for p < D )

8-
model, the latter is Dirichlet. The boundary conditions on x are the

same as those on G due to

2

(o) - 5 §ac B3 Bietor,0) +iId a'6i(o',00 N0, (3.3)

where the surface.term must be made zero. For scattering amplitudes

We can use the more general condition 5;— G (c,0") =r (0) (Tor

, arbitrary f (o‘)) due to momentum conservation szo Ju Z p =0

Correspondlng to (2.2), we choose the Neumann condition’

for Gi when i < Dy and the Dnrlchlet conditlon when i 2 D..

0

B;_ Evaluating the Green's;function7’9).

In general Gi(c;o') for i 2 D. is difficult to evaluate:

z Dy
One'needs to solve Laplace's é@uation in two dimensions with & combina-
tion of Neumann and Dirichlet boundary conditions. When calculating the
N-string scattering amplitude, G can be found for N <8 by the usual
Schwartz-Chrisotffel transformation of the string to thé upper;half
Z~p1ane, followed ﬁy another transformation to the interior of a regular
N- or (N - 1)-gon for N even or ‘odd, respectively; (We define a
2-gon as a quadrant.) The sides of thé polygoﬁ alfernate between
Neumann .and Dirichlef bouhdary conditions, The map to the QUadrant and
the‘dreen'é—fuﬁcfion in it can be expressea in terms of eiementary
functions, the square needs elliptic functions, and the hexagon requires
functions which have no cloéed form (calculation of the Green's-function
in the last case is achieQed by dividing up the plane into hexagons und

using the method of images). We will avoid these computational prob-

lems by calculatlng only the three-string Green's—functlon This gives
the three—°tr1ng vertex, from which all amplltudes can be found by use

of the operator formalism. (The question of ghosts in changing from



" Figure 1). The Green's function (i = Do suppressed) is then given by:

- in the standard way:)

. plane to the upper-half z-plane is the usual o =’a1£n(z - 1)+ a,

=9-

the light-cone gauge of the inleracting-string picture to the covariant
gaﬁge of the operator formalism is no prcblem, since the ghosis afe due

to operators in the Poincaré-invariant subspace, and so can be treated

The map from the three-string diagram in the p (= o0+ io')—

¢n z,

and the map to the upper-right quadrant of the x-plane is simply x = zé

(strings 2 and 3 have shifted intercepts, so continuity of boundary .

 conditions requires string 1 to be an ordinary unshifted string: see
>

3 6(x,x") = Gy(x,x") = Gy(x, -x'), Go(x,x') = fnlx - x'| + fn]x - x*].

o

(3.4)

. The Green's function G ‘is found by the method of images: from the

Green's function GO of the'upper~ha1f plane used in the standard -

" string model. .

To find the Fourier coefficients, we first find the coeffi-

-clents of ‘M= (3/600 + 3/80Q')G. The partial derivatives .are expres-

‘sed in terms of x by

3 _1x1-x) 3 _a., .8 (3.5)
. 2, Lo ,
P2 oy * G3x2 * a® P 8"

which, after some algebra, gives

M = 2a1l:_36(zn|x + 1] - fnx - 11{‘[_37 (%n]xt + 1|~ fnlx' - 1@.
90 ' . 90 _ (T6)

Therefore, we only need to find the .Fourier coefficients of

-10-

_ cos nEr
Grlgl + ZE:'Arn{Sinlnnre + constant,
J -

n>0 (3.7)

AMx) = fn)x + 1]-fnlx - 1] =

_ - 1 In n
X Sno * nhy) = 8 r6Smnno E; ' (E; ' a;)G

! ' :
o o (=60 * mAy, (3.8)

rsm’

(Because of the boundary conditions, in (3.7) the cosine is used for

r = 1, 2, the sine for r = 3; n- is integral for r =1, half-integral
for r = 2,3.) The coefficients
2' L sin -
A T — ngr.
™. T fo d {-cos} m.e A(x) (3.9)
. ' 10) : R crs :
can ‘be evaluated by use of the identities-
\
.. N 20 /a -n
sin on, = % eng'l'{[?x2 1) 2 %J -c.c.} ,
.. n i n&/2 a1/2051-n
sinzn, = e E_z/ {Ec(l - x2,) 1 2:] -c.c.} ,
: } (3.10)

.-n ng./2([ o, /20710
sin‘%n3=l‘2—e 3 {!}(l-yz)l 3] -c.c.} (y=§).

These follow from the definitions of n. and gr and the expression

7

for p .in terms of x. Using the (anti) symmetry of A(x) under

* .
x <+ x* and X +> -x, (3.9) becomes an integral cver a closed contour
fn(x *+ 1)

in the x-plane. Integration by parts then eliminaies the

factors. The n(x* + 1) terms vanish by identities such as

20./a.1-1 -~ -2g 2a./
Bx’?-l)x 2 1:] = e l(x*.z-l)x* 2% .

We are then left with integrals like



-11_

/2a2—l n-1

-na, /20 -na h s
. - 0'1 ) 1 _ 2yl d
§ ax x {(1 - x) (1 +x) CTo-1): T el
o . dx
. ‘_n(x /2(1 —nd /20. ~1
. (l - x) 2(1 +x) T2

These can be expressed as Jacobi polynomials by Rddrigues' formulall)‘

'(il'ﬁ [(1 - X)a(l. + x){]‘ = (-'é)n(l - Xja-n(l + i)b—nP (a—n,b-n')(x).
dx ‘ . | n

(3,11)
The final result is
-2n (-n[2a,/a, + 1],-20-D) )
A'_Ln:-gﬁ'—'Pn ‘ ‘20’1 o ©(3),
il (-anfeg/20, + ) 41, (/20 +1])
_ 2 17572 3 R ) )
Aon = =5 Fona | : o (0), t (3.12)

A3n = (_1)(21’1-1)/2.(A2n with a2 —b‘a}),

mlth the Green s- functlon Fourier coeff1c1ents G given by (3. 8),’
. For calculatlng the- four- point functions we only. need the

special case of the above Green's function for o, = 0, since it only

2
contributes to the volume elemeﬁt and not to the momentum dependence '
(pu 0 for yp 2 DO). We alsc only need string 2 in the ground

_staﬁe. In this special case we have

. _ 1_.nn'{" _ln_l. _In+n ' |
tog = = HAPCE = 30705 0 = BB a A (na0). (5.13)

rsm

These are also the Green's-function coefficients for the two-string

mixing vertex (Figure 2), which will be discussed in the conclusions.

C. The four-point functions.

The four-point amplitude (Figure 3) can be written as

1 -2p,"P - -2psP ; t . teat
T = JO gz[- 17 2(1 2) 2 %] <O|eéaGaz.a aeéa Ga lo>.

0,00) + 0,(0)-ap, (0) _
1 I]T '(B.li)

Jor séchaﬁnel eXéhance;‘plusvtheecoiresponding integralifor the

t-channel exchange. ' The factor in brackets is the usual momentum-

dependent contribution for u <'DO. The vacuum expéctetion value is

the contributicn for yu = Do (with all indices suppressed). The final

factor comes from the propagator

o 1 L. - o (0)
. -1 _ dz o] INT _
(Ly - agg(oN? = fo' gz, -

t n
Jl dz "8y @ ’2P1Ié +q (0) +q (O) - aINT(O)

o —Z ) . B (3.15)

Evaluating the vacuum expectation value, (3.14) becomes:
1 ~(s+ ar(0))-1 —t-o, (0)-a (0) _ “JeD./2
~ - TINT 3 e T E
T = Iodz o . (1-9 | det(l OUTGIN) Ly

&ms@%z<m+n)/z . | ' ' (3.16)

'Gmn are the Fourier coefficients of the Green's function between the

internal string and string 1 or 4 for G or G..,., respectively.

_ IN ouTt’
(Strings 2 and 3 have infinitesimal width.) The coefficients are

given by (3.13) between a shifted and an unshifted string, and are zero
between two strings of the same type (as in the standard orbital model).

ol
The only two non-irivial determinants to be evaluated arelL’IB)



e . ) o -13-

det(l - G112) =1 - )1/" K(/‘), det(1 - & 2) (1 - z)}/‘v, (3.17)

with Gyypn  20d 653 ' as>in (3. 13) The latter determlndnt gives
the shlfted—unshlfted elastic scatterlng amplitude as

”_‘(;sw(o)),. TR EE B(a(s),cr(t))

Tsy = I

e
L4

('a(O)'-=-_ 1- T), ~ ‘(3.18)

‘The contribution from t -channel exchange equals that from s-channel

However, the amplitude for.

exchange, as. . 1n “the usual orbital model

- shlfted-shifted scatterlng_ls_ )
N A | 1) D/2 L
’ 1 —(s + l)— 1 ~(t + 1 - X
Y Tss §(J dz (1-2) K(/') e ﬁt).
(3.19)

Not only are the s-channel and the t-chammel contributions different,

s

‘but the s-channel-exchange resonances do not generate t-channel poles

Lﬁ?_
e (except, of course, for DE = 0), due to the ln(l - 2) behavior of
oy ~the complete elllptlc 1ntegral of the first kind K(/_) 'The s—channelb

1? B poles generate branch—p01nt 51ngu1ar1t1es in the t-channel for DE -1
oy or 2, and no singularities for DE > 2. Consequently the amplltude )
ﬁ)eb is ﬁot Regge-behaved.

- IV. CONCLUSIONS
We'haVe,shown how to construct a simple generalization of the
. : free stfing which lowers the boson trajectories. It thus gives mass

to the "photon" by breaking the projecfive invariance»of the ground

state. Thls indicates tha t the method of boundary constralntg may be

" are required.

introducing aeshiftedfunshifted two—sfring interaction.

<14~

related to the problem of spontanecous symmetry'breakdown in dual models.
In the interacting-string picture, ordinary.u;shifted strings.

It may be poesible to shift the unshifted‘stfings by

» It would be

'interesting to see.what'effect this dynamical symmetry breaking has on

the model (e.g., are trajectories'stiil linear?).
The nan-dual behavior of one of the four-p01nt functlons is

-s1milar to the behav1or of the fermion-fermion chtterlng amplitude in

a dual model of Schwarzlé). An operator similar to the three-string

vertex also occurs in a recent model for off-mass-shell dual amplitudes

) 5).

and by Corrlgan and Fairlie Whether there is some

by Schwarzl2
deeper signlflcance to these relatlonshlps is unknown.
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FIGURE CAPTIONS

-Three-string vertex.

Two;string vértexf"

Four-point function.
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their employees, nor any of their contractors, subcontractors, or
their employees, makes any warranty, express or implied, or assumes
any legal liability or responsibility for the accuracy, completeness
or usefulness of any information, apparatus, product or process
disclosed, or represents that its use would not infringe privately
owned rights.
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