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STRINGS WITH DIMENSION-DEPE."!DENT INTERCEPT 

Warren Siegel* 

Lawrence Berkeley Laboratory 
University of California 

Berkeley, California 94720 

January 28, 1976 

ABSTRACT 

LBL-4661 

By changing the bouniary conditions of the relativistic string 
26 - D

0 in extra dimensions, the intercept a(O) is lowered to 1 - ----
16 

in the modified orbital model, where D0 is the dimensionality of the 

Poincare-invariant subspace of space-time. In the modified model of 

the spinning string, the boson 1 10 - D0 intercept becomes 2 -
8 

while 

the fermion intercept stays at zero. The projective invariance of the 

ground state is broken, giving the "photon" mass by-a Higgs-like 

mechanism. Unfortunately, the strings have a negative "G-parity", so 

the usual, unshifted strings appear as intermediate states in the scat-

tering amplitudes. Also, some of the amplitudes are not dt1al. 

I. INTRODUCTIONl) 

The two major problems of dual models are the restrictions of 

the intercept2 ) and dimensionality to unphysical values. In this paper 

the "extra" dimensions are treated as internal degrees of freedom in 

such a way as to lower the intercept: One end of the string is fixed 

in the extra di!!_ensions, while both ends are left free, as usual, in 

physical space-time. Quantizing in the light-cone gauge, Lorentz 
26 - D0 

invariance in the D0 "ordinary" dimensions requin:·s a( 0) = 1 - ----
16 

*Research stcpported by the Energy Research and Development Administra-

tion. 
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and D0 + DE = 26 in the modified orbital model; here DE is the 

number of "extraordinary" dimensions in which one end of the string iG 

fixed. 

a( 0) 

with 

By modifying 

1 10 - D0 
2- 8 

D0 + DE = 10 

the spinning string in the same way, one finds 

for the bosons and a(O) = 0 for the fermions, 

In these new models, the "photon" has been given 

mass bya Riggs-like mechanism: Its longitudinal mode is created by 

-the (D0-dimensional Lorentz group) ~operators of the extra dimen­

sions. 

In the simplest interacting-string picture, continuity of the 

boundary conditions requires the number of intercept-shifted strings at 

a vertex to be even ("G-parity" conservation). Therefore, the use of 

a three-string vertex requires that one string be unshifted. Though 

unsatisfactory as it stands, the model is at least not equivalent to 

any old model. Calculation of the four-point functions with this vertex 

gives the amplitude for scattering of a shifted and an unshifted gro~~d-

Veneziano's Beta-function amplitude, with a (s) = s + 1 
s 

state string as 
26 - D0 

16 and at(t) = t + 1. However, the amplitude for shifted-

shifted scattering turns out to be non-dual. 

II. FREE STRINGS V!ITH SHIFTED INTERCEPT 

The results of this section (concerning the modified orbitaJ 

model) were previously derived by M. B. Halpern3), and are.given here 

for completeness. 

"A. The classical string. 

The simplest vmy to modify the dynamics of the free string is 

to change the boundary conditions without changing the equations of 

motion. With ox not necessarily arbitrary, the variational principle 

for the relativistic string is 
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( 2.1) 

(a,i3 0,1; ~ 0, ••• ,D- 1; Eai3 

where n is the unit vector normal to the boundary. ) 

Allowing ox to be arbitrary inside the string, the usual field equa­

tions follow from setting the second term equal to zero. The first 

term can be made zero by a combination of two types of ( ).ocal) boundary 

conditions: At either end, we can either allow ox to be arbitrary 

(free end), which requires x' = 0 , or we can use the constraint 

x = constant (fixed end). In order to have Poincar~ in variance in the 

first -D
0 

of the D dimensions, we choose both ends to be free in 

these dimensions. In the remaining DE dimensions, we have four_ 

choices: The first .:boice is to.have both endf,l .free (the standard 

string model). Secondly; we may choose to fix both ends at the same 

point, again giving essentially the standard string model (the zero mode 

is eliminated, but we will choose p~ = 0 for > ~ = D
0 

in any case). 

If they are fixed at different points, we have the massive string of 

Chodos and Thorn4 ). The last choice is to fix one end, leaving the 

other free: 

•cr:P o) X~ ' 

> . 
0 for ~ = D

0
. 

( 2.2) 
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This choice differs from the others in that it gives the string half-

, 5) > 
integral modes for ~ = D0.- Explicitly: 

()() 

o ~ i 1 ~ -ino
0 

J.l < Do:x~ qj.l + 2a'p~o + /2a' L n cos no (an e -c.c.) 

n=l 
( 2. 3) 

P>:T ~ i 1( ~. -incr0 ) 
v2a- L n cos ncr an e -c.c. 

n=l 

B. Canonical quantization. 

In the rest of this section we discuss only the string ~~th one 

end fixed in the extra dimensions. The corranutation relations of pJ.l, q~, 

anJ.l' and ~t~(J.l < D
0 

for p and q) ~ve the usual form in_both the 
+ - o Do - 1 

covariant and light-cone gauges ( x = x + x ) • The easiest way 

to determine the intercept and dimension of the string is to prove the 

(D
0
-dimensional) covariance of the light-cone gauge. This involves as 

the only non-trivial calculation the corranutators of the Lorentz genera-

tors 
. i i - + 

.C-:"( i < D
0

). l~ - has the usual form in terms of q , q , p , 

i an , a(O), and Ln' but now 

00 
n

0
-2 

00 D-1 
- 1 I L i i 1 I 2: i i ( 2.4) L - 2 a a + 2 a a 

n m n-m m n-m 
m=-oo i=l m=-oo i=Do 
mEZ m+ie::Z 

The commutator is calculated to-be6 ) 
00 

~~-, Mj-l = 1 _ \ 2:. (a i a j- a j a i). L J ~ L n -n n -n - n 
a'p+ n=l 

(Q..:3.- ~\]} (2.5) 
\ 24 16 1 · 

.-
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Since (D
0

-dimensional) Lorentz covariance requires this commutator 

equal zero, we have 

D 
26 - n

0 26, et.( 0) = 1 - 16 
( 2.6) 

Therefore, depending on the choice of DO' the intercept can vary by 

steps of 1/16 from the usual 1 down to > -3/8 (D = 4 to keep . 0 

physical space-time Poincare covariant). 

We now study the way in which :the "photon" becomes massive 

(DO < 26) by examining the operators which create its states. To find 

i 
the states we calculate (11, V, a, T = O, ..• ,D0 -1; choose p = Q·) 

· 2~ 1 ( L
0 

- a( o ) ) 
0 00 

\ \.!.(a i 
L L n -n 

D -2 [ 

i,j=l n=l 

i a - a 

a j - a j 
n -n 

2 
i ! (L 

n -n n -n Ln~ 

• ] 2 an 1) ·. . +. 

_if82 ' (2.7) 

where ~~- = ~ ( 10 -a( 0)) is the (mass )2 and S the spin. From this 

we find the "photon's" states are the·usual a_1
1 1o>(i = l, ... ,D0 - 2) 

25 
" . 2 and the new. state L. (a_ 1_

1
) IO>- L_

1
IO>- a_1-IO>. The latter, 

i=Do 2 

longitudinal state could also be found by noting that it is the only 

other state of that mass which is a singlet under the internal-sy!T'.•netry 

group of the string: the O(DE) of the DE dimensions where one end 

• of the string ic fixed. This is analogOus to ·the Higgs mechanism in 

that the vector boson has gained mass by acquiring a. lcmgi tudinaJ. r:.ode 

'-6-

from scalar operators 
i 

(a ;_ > . ) for i = n0 ; projective invariance of 
-z 

the ground state is broken because L_
1

IO> :f 0. 

c. The modified spinning string. 

The same choices of boundary conditions for x are possible 

for the spinning string; we again study the case where one end is fixed 

in the ~xtra dimensions. The requirement that the model have the same 

number of subsidiary conditions as when DE = 0 (so that the system is 

not overdetermined) gives the following boundary conditions for the 

spin density at the fixed end: If s1
11(a0 ,1T) = ± s

2
ll(a0 ,rr) for 11 < D

0 

(for ferrnions or bosons, respectively, as in the conventional model), 

t..'len s
1
ll(a0 ,1T) = " s

2
ll(a0 ,1T) for 11 .~ D

0
• This means that the opera-

tors G have either all indices integral (fermions) or all indices n 

half-integral (bosons). Covariance in the light-cone gauge requires 

D = 10; a(O) = 0 for fermicns, 1 
~- for bosons. ( 2.8) 

Here a(O) for bosons is the intercept of the pion trajectory; the 
10 - D

0 
· 

leading trajectory is the rho with intercept l - The rho 
8 

intercept can thus take values from 1 to l/4. For the rest of the 

article, we consider only strings without spin. · 

III. INTERACTING STRINGS 

A. Path-integral quantization7 >. 

For studying the interactions of strings, path-integral qu&r.~.i-

zation is more convenient than canonical quantization. In this forr,al-

ism the choice of boundary conditions follows from the functional 

integration, which leaves the ar..pli tude in term3 of only the volume 

element and the Green's function. The definition of the Green's func-

tion which allov:s this reduction is equivalent to the field equaticr,s 
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of x derived in the canoni.cal quantization. This is accompl:i~;hcrl by 

the standard path-integral chtlilge of variables (we now work in Euclidean 

oa -space by Wick rotating cr0 ; a 1 = 1; the index on oa is dropped): 

xll(o) + xll(o) - i Jd2o•Gllv(o,cr• )J"(o'); 

P ~(a' )o(o0 - o0
1 ),G 

r . r ~" 

a 2G (o,o') 
0 lJ\1 

o G. (not SWTIIIled ) , 
~\} ~ 

th t . .j. P is the momentum density of the r s r1ng (p < 0 r r for outgoing 

0 0 0 th . 
strings), and o lr =a i or a f when the r string is incoming or 

outgoing, respectively. This changes the exponent of the functional 

integral8 ): 

Jd
2
o£ + i [Jdo'P/(o• )xi(oir

0
,o•) = Jia£ k<aa.i)

2 
+ iJixiJ 

r 

+fd2o [ ~a i )2l + 
1Jd2od2o 1 Ji( 0 )Gi( 0 0 1 )Ji( 0 1 ) + 

[ ~ a J ~ , ( 3.2) 

(Sum over i 1, ... , D0 - 2, D
0

, ••• ,25. ) The first and second tem.s 

give the volume element and Green's-function dependence, as usual. The 

last term (surface integral) can be made zero again by two kinds of 
a . . 

choices of boundary conditions: ana G1(o,o') = 0; or G
1
(o,o•) = 0, 

with the constraint xi(o) = constant. These are the two· standard 

choices for boundary conditions in solving Laplace's equation (the 

equation of motion of the string for Wick-rotated o0 ): The former 

choice is the Neumi1Ill1 boundary condition used in the ordinary string 
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model, the latter is Dirichlet. The boundary conditions on x are the 

same as those on G due to 

i 1 1 aS i( +>-· i f 2 i i 
X (o) = 21T Jdo~e: X o' )aBG (o',o) + i d o'G (a' ,o)J (o 1 

), ( 3. 3) 

where the surface term must be made zero. For scattering amplitudes 

we can use the more general condition ~ Gi(o,o') = fi(o) (for 
=a . 

arbitrary fi( o)), due to mo':!entum conservation f d2o J~ = L pr~ = 0 
r 

(for ll < D
0

). Corresponding to (2.2), we choose the Neumann condition 
i . 

for G when i < D
0 

and the Dirichlet condition when i ~ D
0

• 

B. Evaluating the Green•s~function7•9). 

In general Gi(o,o') for i ~ Do is difficult to evaluate: 

One needs to solve Laplace's equation in two dimensions with a combina-

tion of Neumann and Dirichlet boundary conditions. When calculating the 

N-string scattering amplitude, G can be found for N < 8 by the usual 

Schwartz-Chrisotffel transfo~ation of the string to the upper-half 

z-plane, followed by another transformation to the interior of a regular 

N- or (N- 1)-gon for N even or odd, respectively. (We define a 

2-gon as a quadrant.) The sides of the polygon alternate between 

Neumann and Dirichlet boundary conditions·. The map to the quadrant and 

the Green 1s-function in it can be expressed in terms of elementary 

functions, the square needs elliptic functions, and the hexagon requires 

functions which have no closed form (calculation of the Green'::-function 

in the last case is achieved by dividing up the plane into hexagons and 

using the method of images). We wi.ll avoid these computational prob-

lems.by calculating only the three-string Green's~function: This gives 

the three-string vertex, from which all amplitudes. con be found by usc 

of the operator formalism. (The question of ghosts in chancing from 



a 
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the light-cone gauge of the interacting-fJtring picture to the covariant 

gauge of the operator formalism is no problem, since the: ghosts are due 

to operators in the Poincare-invariant subspace, and so can be treated 

in the standard way. ) 

The map from the three-string diagram in the p ( = a0 
+ ia 1 

)-

plane to the upper-half z-plane is the usual p = a
1 

in( z - 1) + a
2

l1.n z, 

and the map to the upper-right quadrant of the x-plane is simply x = zt 

(strings 2 and 3 have shifted intercepts, so continuity of boundary 

conditions requires s~ring 1 to be an ordinary unshifted strir~: see 

- Figure 1). The Green 1 s function ( i ~ D
0 

suppressed) is then given by: 

G(x,x') = G0(x,x 1
)- G0(x, -x 1

), G0(x,x 1
)- tn!x- x'l + tn!x- x•*l. 

. ( 3.4) 

The Green's function G is found by the method of images from the 

Green's function G0 of the upper-half plane used in the standard 

string model. 

To find the Fourier coefficients, we first find the coeffi­

.cients of M:: (Cl/Clo0 + Cl/Cla0 •)G. The partial derivatives,are expres-

"~) sed in terms of x by 

a _ a + a 
aao - 1P ap* ' {3.5) 

which, after some algebra, gives 

Therefore, we only need to find the-Fourier coefficients of 

-10-

A( x) l1.n I x + li-J'.n I x - II -orl~l + LA (cos 1 n ent;r + constant' rnlsinf r 
l ) 

n>O 
( 3. 7) 

~ 
- < -o 0 + mA )( -o + nA ) _ 
aras m rm nO sn "' " " L + em n ) < u u u O - +- G .. 3.8) rs mn n ar ar as rsmn 

(Because of the boundary conditions, in (3.7) the cosine is used for 

r = 1, 2, the sine for r = 3; n .is integral fer r = 1, half-integral 

for r = 2,3.) The coefficients 

A =~In d {sin} nn e-nt;rA(x) rn nn 0 -cos r {3.9) 

can be evaluated10 ) by use of the identities· 

( 3.10) 

.-n nt; /2{[ a /2a~-n } 
sin~ n3 = T e 

3 
L(l -l) 1 J -c.c. {y = ~) 

These follow from the definitions of nr and t;r and the expression 

for P in terms of x. Using the (anti) symmetry of A(x) under 

x +-+ x* and x +-+- -x, (3.9) becomes an integral ever a closed contour 

in the x-plarie. Integration by parts then elirr~nates the R.n(x ± 1) 

factors. The £n(x* ± 1) terms vanish by identities such as 

rr 2 2a/all-l Lx - l)x J = 

VIe are then left with integrals like 
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These can be eXpressed as Jacobi polynomials by Rodrigues 1 formula11 ) 

h dn fcl- x)a(l + x)bl = (-2)n(l:.. x)a-n(l + x)b-np (a-n,b-n)(x). 
n. dxn ~ j n 

( 3.11) 

The final result is 

2-2n (-n[.2a2/~ + :g,-~-J.) 
~n = - -n- p n · · ( 3), 

22n.:..l 
A2n = -n- p 2n-l 

(-2n[a1/2a2 + jJ +l,-d1(.a/2a
2 

+l]). 
( 0 ), ( 3.12) 

A3n = (-1)(2n-l)/2.(A2n with a2 .... a3)' 

with the Green 1 s-function Fourier coefficients G . given by ( 3. 8). rsmn 

For calculating the four-point functions, we only. need the· 

special case of the above Green's function for a
2
. = 0, since it OI,ly 

contributes to the volume element and not to the momentum dependence 

(p" ;:; 0 for " ~ D
0 

). We alsc only need string 2 in the ground 

state. In this special case we have 

· 1 . . n n-i 1 n-1 m + n · 
A_ =-.:!:{-l)(n ),A

3 
=.:!:{nl);G =--A A (m,nfO). 

-~n n n n -::>: rsmn mn rm sn 
(3.13) 

These are also the Green 1 s-function coefficients for the two-string 

mixing vertex (Figure 2), which will be discussed in the conclusions. 
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C. The four-point functions. 

The four-point amplitude (Figure 3) can be writ ten as 

I
l . [ -2p. ·P. -2p ·p~ 1 t l t t 

T = 
0 
~zl . 1 2(l _ z) 2 J <Oie::;aGa2 a ae 2 a Ga lo>. 

•z a1(0) + et./0)-aiNT(O) 
( J .14) 

.for s...;channel exchance, plus the corresponding integral for the 

t-channel·exchange. The factor in brackets is the usual momentum-

dependent contribution for " < D0. The vacuum expectation value is 

> 
the contribution for " = D

0 
(with all indices suppressed). The final 

factor comes from the propagator 

{ L - ex ( 0) )-l = fl dz 
1

0 - aiNT( 
0

) 
0 INT .· -z 0 z 

t " 

J
l dz -all a -2PiP2 + a

1
(o) + a 2(o) -ex · (0) 

- z INT 
0 z 

(3.15) 

Evaluating the .vacuum expectation value, ( J.l4) becomes: 

T J
l -(s +a. (0))-1 -t-a (0)-a (0)~· 

dz z INT ( 1 - ~ 2 3 det( 1 
0 . 

- ·~ D I .. G G )-:-E2 
OUT IN , 

Gmn = !mn Gmn z(m + n)/2 
( 3.16) 

G are the Fourier coefficients of the Green's function betv1een the 
mn 

internal string and string 1 ·Or 4 for GIN or GOUT' respectively. 

(Strings 2 and 3 have infinl tedmal width.) The coefficients are 

given by (3.13) between a shifted and an unshifted string, ar,d are 2ero 

between two strings of the same type (as in the standard orbital model). 

The only two non...;trivinl determinants to be evaluated are12 •l_1) 
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with Gllnm and GJJnm as in (3.13). The lq,ttcr determinant gives 

the shifted-unshifted elastic scattering amplitude as 

f
l .:.( s + a( 0) )- 1(.

1 
)-( t + 1 )- 1 

dz z - z · 

0 

( 3.18) 

The contribution from t-channel exchange equals that from s-channel 

exchange, as in the usual orbital model; However, the amplitude for 

shifted-shif.ted scattering is 

1 . . 
1 cf -(s + 1)- 1(1. )-(t + T = ~ dz z · - z SS G 

s+-+t). 

0 
( 3.19) 

Not only are the s-channel and the t-channel contributions different, 

',0 but the s-channel-exchange resonances ·do not generate t-channel poles 

-;;r (except, of course, for DE = 0), due to the R.n( 1 - z) behavior of 

'':~ the complete elliptic integral of the first kind K( IZ). The s-channel 

_,. 

poles generate branch-point singularities in the t-channel for DE= 1 

or 2, and no singularities for DE > 2. Consequently the amplitude 

is not Regge-behaved. 

IV. CONCLUSIONS 

We have shown hm1 to construct a simple generalbation of the 

free string which lo\':erc; the boson trajectories. It thus gives IJ'.as:; 

to the "photon" by breaking the projective invariance·of the ground 

state. This indicates that the m~thod of boundary constraints may be 

-14-

related to the problem of spontaneous symmetry breal:dO'Im in dual models. 

In the interacting-string picture, ordinarj' t:T.shifted ~trings 

are required. It may be possible to shift the unsP~fted strings by 

introducing a shifted-unshifted two-string interaction. It v:ould be 

interesting to see .what effect this dynamical symmetry breaking has on 

the model (e.g., are trajectories still linear?). 

The non-dual behavior of one of the four-point functions is 

similar to .the behavior of the fermion-fermion scattering arnpli tude in 

a dual model of Schwarz14 ). An operator similar to the three-string 

vertex also occurs in a recent model for off-mass-shell dual amplitudes 

by Schwarz
12

) and by Corrigan and Fairlie5 ). Vlliether there is some 

deeper significance to these relationships is unknown. 
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FIGURE CAPTIONS 

Figure 1: ·Three-Dtring vertex. 

Figure 2: Two-string vertex. 

• 
Figure 3: Four-.point function . 

;.~· 

0-

0 



-18-

,, 

(\) 

0 0 0 
II II II 

X ' ' X )( 



-19-

0 
II 

.~ 

X ~ -C'.J 
C'.J 

' C'.J 
1.0 
l'--· 

~ 
CXl 
~ 

-

0 0 
II II 

' ' X X 



f}, 

r 
. 

D 

~ 

~· 
. ~; 

ury 

·• ,. 

-20-

I-
z 

C\J 

'7' ...... 
C'J 
N . 
N 
<.D 
('... 

..J 
~ 
~ 

<"'\ . 
bD 

•r-1 
I%. 



., 
() u .J •. l !;) i.J 

~.;.. ~ ~ p 

v "'<; ~ 
.. .-.. - .. .. . "' ~ 

..---------LEGAL NOTICE---------~ 

This report was prepared as an account of work sponsored by the 
United States Government. Neither the United States nor the United 
States Energy Research and Development Administration, nor any of 
their employees, nor any of their contractors, subcontractors, or 
their employees, makes any warranty, express or implied, or assumes 
any legal liability or responsibility for the accuracy, completeness 
or usefulness of any information, apparatus, product or process 
disclosed, or represents that its use would not infringe privately 
owned rights. 

0 



. 
' -

•' 

.J,. 

TECHNICAL INFORMATION DIVISION 

LAWRENCE BERKELEY LABORATORY 

UNIVERSITY OF CALIFORNIA 

BERKELEY, CALIFORNIA 94720 




