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ABSTRACT OF THE THESIS

Diverse Patient Heart Rate Monitoring Using Consumer Camera Systems

by

Pradyumna Venkatesh Chari

Master of Science in Electrical and Computer Engineering

University of California, Los Angeles, 2021

Professor Achuta Kadambi, Chair

Real world scenes and objects have diverse visual appearance. Such diversity stems from the

fundamental physics in how light interacts with matter, across different weather conditions,

object types, and even people. These appearance variations mesmerize human beings, but

puzzle artificial vision systems, which cannot generalize to such diversity. Through this the-

sis, we look at one such case of biased performance over diversity- camera based remote heart

rate (HR) estimation. HR is an essential clinical measure for the assessment of cardiores-

piratory instability. The growing telemedicine market opens up the urgent requirement for

scalable yet affordable remote HR estimation. However, existing computer vision methods

that estimate HR from facial videos exhibit biased performance against dark skin tones.

This is a major concern, since communities of color are disproportionately affected by both

COVID-19 and cardiovascular disease. We identify and model the origin of this bias and

present a novel physics-driven algorithm that boosts performance on darker skin tones in

our reported data. We assess the performance of our method through the creation of the

first telemedicine-focused remote vital signs dataset, the VITAL dataset. 432 videos ( 864

minutes) of 54 subjects with diverse skin tones are recorded under realistic scene conditions
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with corresponding vital sign data. Our method mitigates errors due environmental condi-

tions and imparts unbiased performance gains across skin tones, setting the stage for making

non-contact HR sensing technologies a viable reality for patients across skin tones.
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CHAPTER 1

Introduction

Heart rate (HR) is an important clinical measure in the evaluation of cardiorespiratory and

hemodynamic stability. Conventional HR assessment is performed in-person at a clinic or

hospital using specialized monitoring equipment. However, the COVID-19 pandemic has

accelerated the adoption of healthcare delivery to a remote model that uses telemedicine

and mobile health (mHealth) technologies for patient evaluations [2, 3, 4] in order to protect

patients and healthcare workers from infectious exposure in a pandemic setting. The assess-

ment of HR in patients with suspected COVID-19 is particularly important as COVID-19

has been associated with pre-existing cardiovascular disease [5]. Given the clinical relevance

of HR in triage decisions, diagnosis, prognosis, and as a criterion for transfer to higher-level

medical care, there is a pressing need to develop HR sensing solutions that can facilitate the

rapidly growing domain of telemedicine-based care and remote patient monitoring.

Presently, HR sensing solutions for telemedicine and remote patient monitoring have

relied on the adoption of wearable sensors to make plethysmographic or electrocardiographic

measurements [6, 7]. Although such wearable technologies have seen major advances in

the past decade [8, 9], they still require major expenditure on production and distribution

of hardware. This expense can create a barrier to adoption of mHealth technologies that

disproportionately affects rural and socioeconomically burdened communities [10].

In contrast to wearable sensors, recent methods have proposed using camera-based hard-

ware present on modern-day smartphones to estimate key vitals including HR. Contact-based

methods, where the finger is typically placed overtop the camera module, have already seen
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widespread applications in major smartphones [11, 12]. Despite such methods showing good

performance, their long-term practicality for telemedicine video-conferencing visits is poten-

tially limited as the camera module is covered during measurement. This prevents continuous

monitoring of patient HR, visual well-being, and collection of other vitals such as respiratory

rate and spatial blood perfusion maps.

Contactless methods have also been proposed, in which computer vision algorithms and

artificial intelligence (AI) tools are used to remotely extract a blood volume pulse (BVP)

signal and corresponding HR estimate from facial videos [11, 13, 14]. Of these methods,

remote photoplethysmography (r-PPG) is one of the most promising.

Early work conducted by Verkruysse et al. [15] showed that plethysmographic signals

could be measured using ambient light and a consumer-grade digital camera. In order to

accurately isolate and extract the correct BVP signal corresponding to the HR, several

R-PPG algorithms have been proposed, including blind source separation (BSS) [13, 16,

17], model-based [18, 19, 20, 21], unsupervised data-driven [22, 23], and supervised deep

learning [24, 25, 26, 27, 28, 29] methods. Unfortunately, the performance of existing R-PPG

algorithms fluctuates with changes in illumination condition [30], subject motion [31, 21, 32],

and skin tone [33]. We are specifically interested in the notion of skin tone dependent

performance bias in r-PPG. Figure 1.1 shows the worldwide distribution of skin color among

indigenous populations. This further establishes the fraction of worldwide populations that

are inconvenienced and disadvantaged as a result of inequitable technology.

Moreover, assessment of these algorithms has typically been done on computer vision

datasets that are not focused on telemedicine applications. Consequently, these datasets

do not represent characteristics that are important for clinical translation such as a large

population with diverse skin tone and gender representation and video data collection on

end-user devices such as smartphones.

Through this thesis, we provide the first steps at telemedicine translation of contactless

camera-based HR sensing technologies for smartphone deployment. We propose a novel r-
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Skin Tone No data

Skin tone world map for indigenous people

Figure 1.1: A map of indigenous skin tone distribution across the world. Any viable

sensing technology must be able to work at comparable accuracy for the entire spectrum of

skin tones.

PPG algorithm that specifically addresses mitigating bias for skin tone. In contrast to prior

approaches, this work first establishes a theoretical framework to understand the unique

physics that underlies the inconsistency in r-PPG measurement. We establish that the bias

is due to imaging noise, and appropriately propose r-PPG denoising methods to alleviate

performance losses. To assess the performance of the proposed method, we collect the first

remote vital signs detection dataset focused on telemedicine applications that is demograph-

ically diverse.
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CHAPTER 2

Theory

2.1 Light Transport for R-PPG

Plethysmographic estimation methods are enabled through the sensing of blood perfusion in

the face. Specifically, the presence of varying volumes of blood under the skin manifest as

minute changes in reflection properties of the overall skin system, as viewed by a camera. It

is by identifying these changes that relevant physiological properties may be estimated.

In order to set up a novel light transport theory for r-PPG, we utilize existing biorealistic

graphical rendering models [34] and extend them for r-PPG signal generation. Figure 2.1

shows the skin model assumed for our computations, similar to [35]. Specifically, a two layer

skin model is assumed. The incident light undergoes attenuation while passing through the

epidermis, while it undergoes scattering driven reflection at the dermis.

We start with describing the epidermal transmission. Following the Beer-Lambert Law,

Tepi(λ) = e−µa,epi(λ), (2.1)

Where µa,epi(λ) is the absorption coefficient of the epidermis. Typically, this is modelled as

a convex combination of skin tissue and melanin absorption,

µa,epi(λ) = fmelµa,mel(λ) + (1− fmel)µa,ski(λ). (2.2)

µa,ski(λ), the skin tissue absorption coefficient, is a biological parameters which is known.

µa,mel(λ) may be defined as,

µa,mel(λ) = feumµa,eum(λ) + (1− feum)µa,phm(λ), (2.3)
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Figure 2.1: A two-layer skin model used in prior biorealistic rendering works is

used to develop the light transport theory for R-PPG. The incident light ray attenu-

ates through the epidermis. Following dermal reflection and another epidermal attenuation,

the resultant ray properties are dependent on human physiological quantities.

Where µa,eum(λ) is the absorption coefficient of eumelanin and µa,phm(λ) is the absorption

coefficient of pheomelanin, all biophysical known parameters. By combining Equations 2.1,

2.2 and 2.3, the epidermal transmission may be accurately modelled.

We move towards describing the dermal reflection. This model follows the Kubelka-Munk

theory for scattering-dependent reflection. Specifically, the fraction of reflected light, as a

function of wavelength, is given by,

Rd(λ) =
(1− β(λ))2(eK(λ)dder − e−K(λ)dder)

(1 + β(λ))2eK(λ)dder − (1− β(λ))2e−K(λ)dder
(2.4)

Here, β(λ) and K(λ) are deterministically related to µa,der(λ) (dermal absorption coeffi-

cient) and µs,der(λ) (reduced dermal scattering coefficient, known [36]). Similar to previ-

ously, the dermal absorption coefficient and the blood absorption coefficient are understood
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as convex combinations shown below:

µa,der(λ) = fbldµa,bld(λ) + (1− fbld)µa,ski(λ) (2.5)

µa,bld(λ) = foxyµoxy(λ) + (1− foxy)µdox(λ) (2.6)

Here, various factors include blood reflection, skin baseline reflection, oxygenated blood

reflection and deoxygenated blood reflection respectively.

Given the expressions for epidermal transmission and dermal reflection, the expression

for overall reflection is given by,

R(λ) = T2
epi.Rd(λ). (2.7)

Then, the overall intensity captured in channel c of the camera is given by,

Ic =

∫
λ

E(λ)Sc(λ)R(λ)dλ, (2.8)

Where E(λ) is the source spectral distribution and Sc(λ) is the camera spectral response

for channel c.

2.2 R-PPG Signal Strength

The R-PPG signal arises out of a variation in the blood volume fraction, fbl under the skin.

Our interest is in the signal strength across camera channels, Σc, which can be defined as

the maximum variation in the captured intensity. Mathematically,

Σc = ∆Ic ≈
∣∣∣ ∂Ic

∂fbl

∣∣∣ ·∆fbl (2.9)

Since R(λ) is the only term dependent on fbl,

Σc ≈
∣∣∣∫

λ

E(λ)Sc(λ)
∂R

∂fbl

∣∣∣∣∣
fbl

dλ
∣∣∣ ·∆fbl, (2.10)
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Figure 2.2: The R-PPG signal strength is critically related to skin melanin fraction

as well as scene lighting. As opposed to previously accepted fact, the three channels may

contain differing amounts of signal information, depending on regime of operation.

Where fbl is the average blood volume fraction, typically around 0.05. This approximation

holds true since fbl only varies by a small amount, typically around 0.05.

This plethysmographic signal rides on top of the average skin tone color, given by

Γc =

∫
λ

E(λ)Sc(λ)R(λ)
∣∣∣
fbl

dλ. (2.11)

Since, Σc and Γc are both dependent on fmel, as a result of the dependence of R(·) on

the same, we refer to these as Σ(fmel) and Γ(fmel) subsequently.

Figure 2.2 shows the signal strength plots for the three camera color channels, across light-

ing conditions. We use average camera response functions Sc(λ) to identify responsiveness of

each of the channels to incident light. We also generate signal strength across common light

source characteristics. These plots provide incisive detail: the overall signal strength decays

with increasing skin melanin fraction. Additionally, while previous works [15, 18, 19] have

empirically determined that the green channel holds maximum R-PPG signal information,

we show for the first time that this in-fact heavily depends on melanin fraction and scene

lighting. While the green channel is dominant for light skin tones, for darker skin tones, the

channel-wise signal strength depends significantly on lighting conditions and skin tone.
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Figure 2.3: The R-PPG SNR drastically worsens with increasing skin melanin

fraction. As expected, the R-PPG SNR reduces by orders of magnitude as the skin melanin

fraction increases. Therefore, mitigating the skin tone bias present in R-PPG will require

strategies that emphasize capturing more signal and reducing noise.

2.3 Effect of Imaging Noise on R-PPG

The goal of this subsection is to understand the relationship between imaging noise and R-

PPG algorithm estimation. Imaging noise refers to the inherent noise that arises due to the

image capture process in a commercial camera. This arises due to various effects related to

photon arrival processes, thermal noise in electronics and the quantization noise associated

with digitally capturing images [37]. For pixels below the saturation level, the noise can be

modelled as follows:

σ2
pixel =

Φt

g2
+
σ2
r

g2
+ σ2

q (2.12)

where Φ is the radiant power of light collect, t is the exposure time, g is the sensor gain (a

constant for a given image), and σr and σq are camera noie parameters (also constant).

Using this noise model, we can the estimate the entire R-PPG signal to noise ratio (SNR)

for a pixel of a particular intensity and color channel c as follows:

SNRc =
Σct√

Γct
g2

+ σ2
r

g2
+ σ2

q

(2.13)

Here, we assume that the radiant power of light collected Φ is equal to the average skin tone

color.
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Figure 2.3 shows the R-PPG SNR plots for the three camera color channels, across

lighting conditions. These observations are similar to those of the R-PPG signal strength,

namely that the SNR decays with increasing skin melanin fraction. This leads us to the

following inferences:

(i) Imaging noise creates skin tone bias (and lighting bias): The performance gap

across skin tones, as well as across lighting differences, can be understood in terms

of imaging noise. Darker skin regions have lower signal strength that manifest as

lower pixel value changes in the video. This results in poorer SNRs. Note that this

inference also holds true for shadowed regions, thereby extending this analysis towards

understanding lighting bias.

(ii) Imaging noise and specular reflections degrade the r-PPG signal: Imaging

noise, coupled with specular highlights due to lighting, are the major contributing fac-

tors to signal degradation. The corruption due to imaging noise depends on signal

intensity. The corruption due to specular highlights depends on lighting conditions-

regions with strong specular highlights have relatively lower PPG signal information.

Combating the highlighted biases in existing r-PPG would therefore involve a princi-

pled approach towards reduction of the above highlighted imaging noise and specular

highlight removal. Note that specular highlight removal, in addition to reducing light-

ing related biases, also indirectly affects skin tone bias: darker skin subjects are worse

affected by these interferences, since the intensity difference between the signal and the

highlight is much more.

We conclude that addressing this low-level light transport bias must occur in order to

drastically mitigate the skin tone bias present in R-PPG. Biases higher up the chain of

biases, such as algorithmic or dataset bias, must also be addressed, but may not necessarily

overcome this fundamental physics-based problem. Therefore, image and signal processing

strategies to increase signal capture and reduce noise may drastically improve performance
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for darker skin tone subjects as opposed to modifications to signal inference algorithms. With

the inferences from this chapter in mind, we motivate our novel R-PPG algorithm outlined

in the following Methods section.
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CHAPTER 3

Methods

3.1 The typical R-PPG pipeline

There are four components to a typical r-PPG pipeline: (a) detection, which identifies facial

regions of interest in the video frame, (b) combination, which condenses the information

from regions of interest into a RGB time series signal, (c) signal inference, which uses the

time series signal to estimate the pulse volume waveform, and (d) HR estimation, which

estimates the HR from the pulse volume signal. This is visually described in Fig. 3.1.

The video is first passed through a neural network-based face detector [38], in order

to identify the face region in the frame. Using feature point detectors [39], the eye and

mouth regions are identified and explicitly removed from the videos (since these regions do

not contribute to the pulsatile signal). This is the detection step. The next steps, namely

combination, inference and HR step, are carried out for smaller video-windows of 10 seconds

length with an overlap of 5 seconds.

For each video frame, the skin pixels are combined to get one RGB sample for that time

instance (the methods for this combination vary across papers and is the crux of this work’s

novelty). Across all frames, after this combination, we obtain a time series RGB signal. This

is the combination step.

These RGB signals are then put through an existing signal inference technique. In this

paper, we use the CHROM algorithm [18] due to its versatility, as well as its easy access

from openly available code [40]. The output obtained from this step results in a pulsatile
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waveform estimate for each window. This is the inference step.

The obtained pulsatile waveform is then processed to arrive at the final HR. This is

the heart rate step. We first filter the waveform using a Butterworth bandpass filter with

pass band frequencies of [0.7, 3.5] Hz. The power spectral density (PSD) is then computed.

Temporal frequency artifacts were empirically observed in the original video as a result of

aggressive compression, likely due to the unchanging green background. These erroneous

peaks were appropriately removed. Next, the five highest peaks in the PSD are chosen. The

peak with the highest combined fundamental and second harmonic power is chosen as the

one corresponding to the HR. The final HR for the video is estimated as the average of the

HR estimates for each 10 second window.

3.2 Analysis of existing methods

In order to understand the origin of the performance bias, for the first time, we theoretically

analyze the r-PPG measurement process and the role of imaging noise using biophysical

first principles (see Supplementary Materials for details). From this, we note three key

observations: (i) Imaging noise creates skin tone bias (and lighting bias), (ii) imaging noise

and specular reflections degrade the r-PPG signal, and (iii) denoising is to be done before

signal inference.

This sets the stage for understanding how existing algorithms improve the noise perfor-

mance in the combination step. The most straightforward approach is to simply average all

face pixels in a frame to arrive at time samples of the RGB signal. We refer to this as facial

aggregation [13, 18, 22, 19, 17, 21]. To improve upon this, previous approaches have sought

to modify this averaging process. We describe the best performing result amongst these

on the VITAL dataset. The face is gridded into smaller rectangular regions. Pixels within

each region are averaged to arrive at individual time series for each region. Each of these

gridded temporal signals is passed through the inference step, to obtain the corresponding
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blood volume signal estimate. Approaches use measures such as SNR at peak frequency of

this blood volume signal to characterize the ‘goodness’ of each signal [18, 41, 42, 43, 44],

with higher weights being assigned for better signals. As mentioned previously, in this paper

we use the two harmonic SNR estimate, which was found to be more robust. That is, for a

signal s (frequency domain S) with a HR p, the SNR at the HR frequency is given by:

SNR =

∫ p+w
p−w |S(f)|2df +

∫ 2(p+w)

2(p−w) |S(f)|2∫∞
−∞ |S(f)|2df −

∫ p+w
p−w |S(f)|2df −

∫ 2(p+w)

2(p−w) |S(f)|2
(3.1)

where w is the peak window size for estimation (for this work’s experiments, we use

w = 0.1Hz). This resultant signal is passed to the HR step. We call this method SNR

weighting [41, 42, 43, 44]. Finally, these weights are used to average the blood volume

signals together.

A few key issues arise with the SNR weighting method. Firstly, we empirically observe

that the weight maps from previous methods (based on region-based SNR estimates) have the

tendency to be sparse, especially for darker skin tones. Therefore, the expected improvements

due to weighted averaging are lost to noise corruption for darker skin tone subjects since

much lesser signal is being aggregated. This poorer denoising for darker skin subjects results

in worse SNRs, thereby degrading performance. Datasets on which these previous methods

were tested were not as diverse across skin tones: these performance caveats were therefore

missed. Secondly, the previous method of SNR weighting may also fall prey to specular

highlights. With these, the signal contains no information of the pulsatile signal, which gets

buried in the light from the source. This is a considerable factor when looking at scene

conditions, such as camera angle, lighting direction, lighting color and intensity, as well as

skin tone. Previous weighting approaches do not explicitly take this into account and use the

gridded weighting method to implicitly combat these highlights. However, since the nature

of this gridding itself degrades for darker skin tones, we observe that specular effects must

be directly addressed. Finally, the SNR weighting performs denoising after signal inference,

13



Figure 3.1: The proposed heart rate estimation algorithm consists of four steps.

The proposed novelty in the combination step of the pipeline incorporates skin diffuse in-

formation weighting, in addition to SNR weighting in RGB space, to achieve robust r-PPG

performance across skin tones. Written consent was obtained from the subject for using

their image in the publication.

as opposed to before. Given that the inference method (CHROM [18]) is non-linear, such a

weighting regime may not be the most optimal.

3.3 Novel modifications

Having identified the reasons for poor performance of existing methods, we propose novelties

to be incorporated in the combination step, that look to achieve a performance gain in a
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manner that is fair across skin tones. We focus our novelties to this step since the origin of

the performance bias is the image SNR. In order to move towards debiasing, it is critical that

major modifications are applied during combination, so that the effect of noise during infer-

ence is minimized. This also allows for the proposed modifications to be applied independent

of the inference algorithm, thereby making the modifications more generally applicable.

Specifically, we propose two major novelties: (i) weighting in RGB space, rather than

blood volume signal space and (ii) skin diffuse component weighting.

• RGB-space weighting: Existing spatial averaging methods estimate weights for each

grid region, based on the blood volume signal quality [41, 42, 43, 44]. Instead of

using these estimated weights to average the blood volume signals, as done in previous

methods, we propose using these weights to average in RGB space. As a result, we

obtain one consolidated SNR weighted RGB signal, which is again passed through the

inference step to obtain the final blood volume signal.

The motivation for this can be understood in the context of noise. Averaging the RGB

signal results in a less noisy signal passing through the inference step, enabling the

inference method to provide better estimates, as compared to when noisier signals are

passed through the method, to be averaged later. If the inference method is non-linear

(such as CHROM [18]), a pre-weighting would lead to additional noise performance

gain.

• Skin diffuse component weighting: An image can be split into two constituent compo-

nents: the diffuse component, that arises out of transmission and reflection through

the skin, and a specular component, that arises from mirror-like surface reflections.

Since the diffuse component contains the signal of interest for us, we utilize gridded

diffuse components as additional weights. For each frame, the diffuse component is

estimated [45]. It is then gridded and averaged across the grid dimensions and time,

in order to arrive at weights for each grid element.
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The diffuse weights play two key roles in improving bias in performance as well as

overall performance: first, they can remove specular affected regions from the average

explicitly. Second, they combat the sparsity issue observed in traditional SNR weights,

since the diffuse component is continuous and non-sparse. The SNR weights and the

novel diffuse weights are multiplied together and renormalized to arrive at the final

spatial weights for the gridded video.

The overall pipeline, therefore, involves using the novel weights together, to arrive at

efficiently weighted RGB signals. These are averaged together and passed through the

estimation step and HR step. This pipeline is visually highlighted as such in Fig. 3.1.

3.4 VITAL Dataset

To validate the performance of camera-based vital sign detectors, we construct the Vital-

sign Imaging for Telemedicine AppLications (VITAL) dataset. The focus of this dataset

is to represent diversity in factors that are relevant to telemedicine setups, including: (i)

smartphone deployment, (ii) camera view angle, (iii) recording condition (lighting variation

and talking), and (iv) patient demographic diversity. We address each of these aspects

individually:

(i) Smartphone deployment: The ubiquity of smartphones globally has led to the

development of patient portals, many of which can be accessed via smartphone ap-

plications that can be downloaded by patients [46, 47, 48]. Such applications have

been used for hosting telemedicine appointments. A deployable remote HR estimation

solution with a focus on telemedicine must be able to work efficiently on smartphone

cameras by considering factors including video compression [26, 49, 50] and algorithmic

complexity. Moreover, the solution must achieve success independent of camera type.

Hence, the VITAL dataset uses different smartphone cameras for each view angle. The

use of more than one smartphone imager inspires the development of algorithms that
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Figure 3.2: Constructing a diverse remote vital sign monitoring dataset with a

focus on telemedicine applications. (a) Cartoon schematic depicting the telemedicine

application for the proposed camera-based heart rate estimation. (b) Telemedicine video–

conferencing applications can be integrated with a software toolkit to display patient BVP

and HR. (c) Experimental setup employed during the construction of the VITAL dataset.

Two bi-color LEDs are used for controlled illumination of the subject, and laboratory tube

LEDs are used for ambient illumination. The Philips IntelliVue MX800 patient monitor is

utilized for ground truth vital sign monitoring. Two smartphone cameras at differing view-

ing angles capture video of the subject. (d) Example frame from video captured by the

smartphone camera. The subject wears a blood pressure cuff, 5-ECG leads, and a finger

pulse oximeter, which is connected to the MX800 unit. Written consent was obtained from

the subject for using their image in the publication.
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can scale to a variety of device-agnostic telemedicine conditions.

(ii) Camera view angle: In a telemedicine setting, there can also be a variety of camera

angles that the algorithm must work on. In order to facilitate this verification, the

VITAL dataset consists of two camera view angles for all the videos of each subject

(as seen in Figure 3.2).

(iii) Recording condition: Another essential factor involves testing algorithms across

a range of recording conditions, to promote the development of algorithms that can

operate in the “wild”. The dataset consists of four recording conditions: (1) controlled

lighting at 5600K (“cool” lighting) with the subject remaining stationary, (2) controlled

lighting at 3200K (“warm” lighting) with the subject remaining stationary, (3) ambient

room lighting- distributed white lighting- with the subject remaining stationary, and

(4) ambient room lighting with the subject speaking. Additionally, a green screen

backdrop is kept to potentially enable digital modification of background scenery.

(iv) Patient demographic diversity: The VITAL dataset consists of 54 subjects spread

across skin tone, age, gender, race, and ethnic backgrounds. Subject characteristics

(gender, age, height, weight, body mass index, race, and ethnicity) are summarized in

Table 4.1 using mean (SD), median (IQR), or frequency (%), unless otherwise noted.

For the purpose of this study, we split the subjects into three skin tone categories based

on the Fitzpatrick (FP) skin type scale [51]: light, consisting of skin tones in the FP

1 and 2 scales, medium, consisting of skin tones in the FP 3 and 4 scales, and dark,

consisting of skin tones in the FP 5 and 6 scales. This aggregation allows for more

relevant trends, since any two consecutive FP scale categories are reasonably close.

The human study protocol was approved by the UCLA Institutional Review Board

(IRB#20-001025-AM-00001), and participants provided written informed consent to take

part in the study. Figure 3.2 shows the data collection setup. Each subject is made to sit on

a height-adjustable chair, in the field of view of two cell-phone cameras (with different view
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angles): one camera (Samsung Galaxy S10) is perfectly front-on, while the other (Samsung

Galaxy A51) is directly in front of the face, at a dip (lower) of 15 degrees. The front-on

camera is placed approximately 130 cm from the subject, and the lower camera at a dip

is approximately 90 cm from the subject. The height of the chair is chosen so that the

subject is centered in the front-on frame. The controlled lights are set up on either side of

the front-on camera, with a baseline of 100 centimeters between them.

As aforementioned, we record subjects using these cameras under four different scene

conditions: (1) controlled lighting at 5600K (“cool” lighting) with the subject remaining

stationary, (2) controlled lighting at 3200K (“warm” lighting) with the subject remaining

stationary, (3) ambient room lighting (distributed white LED lighting) with the subject

remaining stationary, and (4) ambient room lighting with the subject speaking. Controlled

lighting is enabled by a pair of professional bi-color LED photography lights (Neewer Bi-Color

480 LED). The controlled lighting recording conditions were enabled with the room lights off,

allowing for fine-tuned control over the illumination spectral properties. As incorporating

controlled lighting only enables a front-facing illumination angle, two recording conditions in

ambient room lighting were captured where the subject was lit more completely from several

angles. The final recording condition involved variations in the subject, including talking,

natural head movements, and facial expressions. Each scene recording session lasts for 2

minutes, for a total of 16 minutes of video footage across 8 videos.

During data collection, volunteers are fitted with standard anesthesiology cardiopul-

monary monitors: pulse oximeter (Red DCI, Masimo), blood pressure cuff (Comfort Care,

Philips), and 5-lead electrocardiogram (Philips IntelliVue). To collect vital sign data, we

utilize the Philips IntelliVue MX800 patient monitor to perform real time monitoring of

four vital signs- HR, respiratory rate, oxygen saturation, and non-invasive continuous blood

pressure- of which three waveforms are collected (ECG, PPG and respiration). We use the

open source tool VSCapture [52] to collect data onto a computer using the MX800’s local

area network communication protocol. The MX800’s estimated numeric values for the vital
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signs are sampled every 1 second, while the waveforms are sampled at variable frequencies.

The ECG signal is sampled between 400-600 Hz, the PPG signal between 100-150Hz and the

respiration between 40-60Hz. Continuous non-invasive blood pressure estimates occur when

the blood pressure cuff is activated, which is approximately once every 30 seconds.

3.5 Benchmark methods and techniques

To benchmark the performance of the proposed method, we compare the proposed method

against previous remote HR estimation algorithms. All methods and techniques used are

outlined in detail in the Materials and Methods section. We choose the CHROM [18] signal

extraction method due to its versatility and open availability of code [40]. We compare with

the two most common categories of algorithmic processing steps, which we refer to as facial

aggregation [13, 18, 22, 19, 17, 21] and SNR weighting [41, 42, 43, 44]. We believe that these

two processing steps regimes encapsulate the major processing philosophies used in existing

r-PPG methods.

To ensure a fair comparison with the benchmark methods, we implement identical testing

conditions across techniques. For each method, the input video is passed through the same

face detection algorithm (convolutional neural network-based detector [38]), following which

the eyes and mouth are cropped out using facial feature points [39]. Some methods also use

skin segmentation algorithms [32, 53, 54], but we empirically found this to perform slightly

worse on the VITAL dataset. We also use a consistent HR selection technique for each

method.

3.6 Statistical analysis tools

To quantitatively assess the performance of the proposed method, the following statistical

metrics are used: (i) Mean Absolute Error (MAE), (ii) Standard deviation of the error (SE)
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and the correlation coefficient (r) between the estimated r-PPG average HR and the ground

truth PPG average HR for the entire video. We also employ Bland-Altman (B&A) plots [55]

to compare differences in the benchmark and proposed method’s HR estimates and MX800

PPG HR measurements. These plots are labelled with the corresponding mean difference

(m) that shows the systematic bias, and the limits of agreement (LoA) within which 95%

of the differences are expected to lie, estimated as LoA = m ± 1.96 σ, assuming a normal

distribution.
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CHAPTER 4

Results

Table 4.1 describes the distribution of subjects across various demographic metrics. Over-

all, remote HR estimation performance was compared across 54 subjects, across 4 scene

conditions and 2 camera angles, resulting in a total of 432 videos with an average length

of 2 minutes. HR estimation is carried out for windows of duration 10 seconds, with an

overlap of 5 seconds. The overall HR for the subject is then estimated by averaging these

window-estimated HR. Table 4.2 contains a performance summary across all statistical met-

rics employed- namely the Mean Absolute Error (MAE), Standard deviation of the error

(SE) and the correlation coefficient (r) (details in the Methods section). In addition, Ta-

ble 4.3 contains information about improvement in the Mean Absolute Error (MAE) metric

for the SNR weighting and proposed methods, over the facial aggregation method.

The experiments highlight that the proposed method: (i) shows an overall performance

increase on the skin tone diverse VITAL dataset, (ii) shows debiased performance gain across

skin tones, which is shown to not be the case with existing methods, (iii) is robust to recording

conditions such as lighting and talking, and (iv) is robust to camera placement with respect

to the subject. Secondary observations include the nature of bias in existing methods, the

accuracy under best performing conditions, and the nature of performance differentials across

scene conditions and camera angles.
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Table 4.1: Demographic characteristics of volunteers in the VITAL dataset.
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Table 4.2: Performance of proposed method as compared to benchmark methods.

The table shows the performance comparison of the proposed method and the chosen bench-

mark methods. The metrics shown are Mean Absolute Error (MAE), Standard Deviation of

Error (SE) and correlation coefficient (r). Both MAE and SE are given in beats per minute.

The best results across methods have been bolded for each skin type, recording condition,

and camera viewpoint.
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Figure 4.1: The proposed method qualitatively recovers the pulsatile signal in a

more stable manner compared to prior methods. (A) Example pulsatile waveforms,

including the ground truth PPG, facial aggregation r-PPG, previous method’s (SNR weight-

ing) r-PPG, and the proposed method’s (novel weighting) r-PPG waveform (labelled from

top to bottom). The dashed red windows show noisy regions where the r-PPG signal dete-

riorates. The proposed method maintains pulsatile signal shape, with pulsatile peaks seen

more clearly and distinctly. (B) Beat-to-beat heart rate numerics over time are captured

by the proposed method in a more stable manner, consistently staying within 5 bpm of the

ground truth PPG.
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Table 4.3: Performance improvement with respect to facial aggregation bench-

mark of the previous (SNR weighting) method and the proposed method. The

metric shown is the Mean Absolute Error (MAE) improvement, in beats per minute.

4.1 Overall performance

Fig. 4.1 shows the qualitative performance of the proposed method in comparison to the

ground truth PPG and benchmark methods. The estimated pulse volume signal for the pro-

posed method is found to visually contain peaks at the same frequency as the ground truth

PPG signal. In some instances, the dicrotic notch is also present, although less prominent.

Particularly noisy regions of the video are highlighted by the dashed red lines in Fig. 4.1A.

In these time windows, the proposed method is found to visually recover peaks more dis-

tinctly with less high frequency artifacts in comparison to the benchmark r-PPG methods.

Additionally, Fig. 4.1B shows the beat-to-beat time evolution of the HR estimate, across the

10 second windows. Both the estimates from the ground truth signal and the output of the

proposed method follow similar trends, consistently staying within 5 beats per minute (bpm)

of each other. However, because of the high frequency noise artifacts in existing methods,

the estimated HR suffers from large errors in localized regions, worsening the overall HR

estimate across the 2-minute video. Such qualitative improvements also translate quantita-

tively, where the proposed method shows a sub-6 beats per minute MAE for all skin tones,

with an overall average MAE of 4.17 beats per minute.
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Figure 4.2: Scatter and Bland Altman plots for benchmark and proposed heart

rate recovery methods. The label shows a marker for each skin type. (A-C) Scatter plots

for different methods. The proposed method shows strong correlation with respect to ground

truth heart rates from the Philips IntelliVue MX800, denoted by the Pearson Correlation

Coefficient r. (D-F) Bland-Altman plots for different methods. The bias (m) is shown by

the middle solid red line, and the limits of agreement (LoA = m ± 1.96 σ) by the upper and

lower dotted blue lines.
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Fig. 4.2 shows the corresponding scatter and B&A plots for the proposed method, facial

aggregation method and SNR weighting methods across all collected videos. The proposed

method shows a higher correlation (r = 0.79) in comparison to the benchmark facial aggre-

gation (r = 0.74) and SNR weighting (r = 0.70) methods. The B&A plots show a less than

1 bpm bias across all methods. The proposed method shows the best limits of agreement

with almost all videos falling within 10 bpm of the ground truth HR.

4.2 Skin tone performance

For all three methods, performance degrades from light to dark skin. The facial aggregation

approach obtains a MAE of 3.94, 4.14 and 6.20 bpm for light, medium and dark skin tone

subjects, resulting in an overall average performance of 4.49 bpm. When comparing the

facial aggregation results to the SNR weighting approach, a MAE improvement of +0.08

bpm is obtained for light skin tones, and a successive MAE degradation of -0.31 bpm and

-1.04 bpm is obtained for medium and dark skin tones respectively. Hence, on a skin tone

diverse dataset such as VITAL, this leads to a comparative decrease in overall performance

of -0.32 bpm. In contrast, the proposed method shows significant improvement across all

skin tones when compared to the facial aggregation method, with a MAE improvement of

+0.20 bpm, +0.31 bpm and +0.55 bpm obtained for light, medium and dark skin tones

respectively. Consequently, the overall performance of the proposed method on the VITAL

dataset improves by +0.32 bpm.

Fig. B.1A-C highlights the high correlation between the proposed method’s r-PPG HR

estimates and ground truth PPG HR for light (r = 0.83) and medium skin tones (r = 0.85),

and moderate correlation for dark skin tones (r = 0.52). The B&A plots in Fig. B.1D-F show

a less than 2 bpm bias across all skin tones, and that all the proposed method’s r-PPG HR

estimates are mostly within 10 bpm of the ground truth. These correlation metrics are an

improvement to the benchmark methods of facial aggregation and SNR weighting. Fig. B.2
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and Fig. B.3 show the corresponding scatter and B&A plots for the facial aggregation and

SNR weighting methods respectively.

4.3 Recording condition performance

Each of the three methods performs similarly across the three lighting conditions. The facial

aggregation method shows an average MAE of 4.05 bpm across the lighting conditions, while

the SNR weighting method shows an average performance of 4.46 bpm. In contrast to this,

the proposed method shows an average performance of 3.81 bpm across the three lighting

conditions, representing an improvement of +0.24 bpm MAE.

The performance on the ‘talking’ activity is worse as compared to that on other scene

conditions for all three methods. Similar to other trends, the SNR weighting method shows

a performance reduction of -0.05 bpm over the facial aggregation benchmark. However, the

proposed method shows a large improvement of +0.57 bpm when compared to the facial

aggregation benchmark.

Fig. B.4A-D highlights the high correlation between the proposed method’s r-PPG HR

estimates and ground truth PPG HR across the various recording conditions. The dark skin

tone markers across all recording conditions make up the majority of outlying data. The

B&A plots in Fig. B.4E-G show a bias of less than 1 bpm across the three lighting conditions,

and Fig. B.4H shows a bias of less than 2 bpm during subject talking. These figures also

show that the proposed method’s r-PPG heart estimates are mostly within 10 bpm of the

ground truth across all recording conditions. These correlation metrics are an improvement

to the benchmark methods of facial aggregation and SNR weighting. Fig. B.5 and Fig. B.6

show the corresponding scatter and B&A plots for the facial aggregation and SNR weighting

methods respectively.
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4.4 Camera viewpoint performance

For all three methods, the bottom camera viewpoint performs the best. The facial aggrega-

tion method shows a MAE of 5.24 bpm for the front setting, and 3.74 bpm for the bottom

setting. The SNR weighting method on the other hand shows MAE of 5.38 bpm and 4.24

bpm, while the proposed method shows a MAE of 4.89 bpm and 3.44 bpm. Fig. B.7, B.8,

and B.9 show the corresponding scatter and B&A plots for the proposed method, facial aggre-

gation method and SNR weighting method respectively. The correlation between estimated

and ground truth HR seen by the proposed method for the front and bottom viewpoints

(0.75 and 0.83) is a clear improvement over the same for the facial aggregation (0.68 and

0.80) and the SNR weighting (0.66 and 0.74) methods.

4.5 Best performance

The best performing camera viewpoint and recording condition on the VITAL dataset is

using the bottom camera angle with lighting at 5600K, where the label “best performing”

is chosen with respect to both overall performance and skin tone bias. Fig. 4.3 highlights

that the proposed method achieves a MAE performance of below 3 bpm across all skin tone

categories. Specifically, a MAE of 1.97, 2.86 and 3.01 bpm, and correlation of 0.93, 0.91, and

0.87, is achieved for the light, medium and dark skin tones respectively. This is a significant

improvement over the two existing methods with regards to both overall performance and

skin tone bias. The facial averaging method shows an MAE of 2.40, 3.47 and 4.09 bpm, and

correlation of 0.89, 0.84, and 0.75, while the SNR weighting method shows an MAE of 1.48,

3.30 and 5.66 bpm, and correlation of 0.98, 0.85, and 0.58, for the same respective skin tone

categories.
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Figure 4.3: Bar plot highlighting algorithmic comparison for the best-performing

scene configuration. It is seen that the proposed method shows increasing performance

gains over both the facial aggregation and the SNR weighting methods. Specifically, for the

best-performing scene configuration using the bottom camera angle viewpoint with 5600K

lighting the proposed method is the only method able to have a close to 3 or below 3 bpm

MAE performance in the best case, thereby establishing its capability towards medically

relevant HR measurements.
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CHAPTER 5

Conclusions

In this work, we propose a novel r-PPG algorithm to estimate subject HR in a contactless

manner using only a smartphone camera. Several r-PPG algorithms have been proposed to

extract the BVP signal from videos. However, these algorithms exhibit a performance gap,

and therefore a bias, for certain types of skin tones [33], subject motions [31, 21, 32], and

illumination conditions [30]. Addressing these biases is essential for successful deployment

of r-PPG technology in telemedicine applications, yet it remains a challenge. For example,

dark skin, which contains higher amounts of melanin, fundamentally reduces the signal to

noise ratio of all existing r-PPG algorithms. The important work of Nowara et al. [33]

highlights this reduction, thereby conclusively determining that current r-PPG algorithms

have markedly worse performance on darker skin tones. The work also highlights the issue of

biased skin tone and gender representation in computer vision datasets, which is especially

true for the comparatively small datasets used in r-PPG analyses. This dataset bias further

prevents underlying algorithmic biases, such as skin tone bias, from being addressed. Should

contactless HR sensing using video be implemented in a clinical setting, the development of

r-PPG computer vision algorithms and datasets that improve the accuracy and reduce the

bias of HR measurements for patients of all skin tones (especially the darker skin tones) is

critically necessary for high-quality telemedicine care.

A key contribution of this work is the creation of the VITAL dataset, which is a first effort

towards collecting a demographically diverse video vital sign database for telemedicine appli-

cations. While societal demographics are skewed largely towards light skin tone persons, it
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is essential to have diversely represented computer vision healthcare datasets to understand

performance limitations that may otherwise be masked within biased data [56]. Although

the VITAL dataset is not entirely unbiased itself, it achieves a much higher degree of skin

tone diversity as compared to existing datasets. Moreover, the VITAL dataset records fa-

cial videos using smartphone cameras, which introduces significant video compression and

imaging noise artifacts. Typically, r-PPG methods are developed and tested using uncom-

pressed videos. However, deployment of r-PPG technology for telemedicine will ultimately

require a robustness to video compression noise artifacts. Therefore, the VITAL dataset

enables a more realistic evaluation of remote video-based vital sign monitoring methods for

telemedicine translation, which contrasts from previous works. Finally, the VITAL dataset

captures four ground truth vital signs: HR, respiratory rate, oxygen saturation, and non-

invasive continuous blood pressure, of which three waveforms are collected: ECG, PPG and

respiration. Although this work only utilizes the HR obtained from the PPG waveform for

testing, we anticipate future work capturing all four vital signs simultaneously from the facial

videos. Overall, we envision the VITAL dataset to be an essential resource for upcoming

related research and, in addition, to set the tone for future data collection endeavors for

similar interdisciplinary clinical cum technological applications.

With respect to algorithmic development, this work addresses the aforementioned biases

in skin-tone, illumination conditions, and subject motions using physics-rooted knowledge

and camera noise analysis. From our theory, we derive 3 key conclusions: (i) imaging noise

creates skin tone bias (and lighting bias), (ii) imaging noise and specular reflections degrade

the r-PPG signal, and (iii) denoising is to be done before signal inference. Therefore, we

primarily focus our attention to signal processing strategies as opposed to signal extraction

modifications. The first attempted work to reduce r-PPG skin tone bias was done by Kumar

et al. (DistancePPG) [43], in which a weighted average of BVP signals from various facial

regions-of-interest (ROI). However, to the best of the authors’ knowledge, no work yet has

continued development of r-PPG algorithms that tackle the important issue of performance
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bias on darker skin tones. The proposed r-PPG algorithm draws from existing r-PPG de-

noising methods that use a similar weighted ROI philosophy as in DistancePPG [41, 42, 44].

Specifically, it modifies the strategy by weighting in RGB space rather than blood volume

signal space, and by introducing a skin diffuse component weighting. This enables the pro-

posed algorithm to mitigate performance losses for subjects with darker skin tones, subjects

in varying illumination conditions, and subjects who may be moving their face such as when

they are talking.

The proposed method achieves the best overall average MAE performance across the

VITAL dataset of 4.17 bpm, as opposed to 4.49 bpm by the facial aggregation method [13, 18,

22, 19, 17, 21] and 4.81 bpm for the SNR weighting method [41, 42, 43, 44]. This achievement

can be attributed to the performance gains seen across all skin tones in comparison to the

facial aggregation method. The SNR weighting method shows performance gain only for

the light skin tone subjects (+0.08 bpm) and a performance drop for the medium and

dark skin tones (-0.31 and -1.04 bpm respectively), thereby actually increasing the skin

tone performance bias. Consequently, the method’s overall performance suffers on a more

diversely represented dataset such as VITAL. This illustrates the importance for the need of

a truly diverse dataset when developing r-PPG technology.

Nevertheless, as with previous methods, the performance of the proposed method still ex-

hibits a skin-tone bias. However, we highlight that the proposed method achieves the largest

MAE improvements over the facial aggregation method of +0.55 bpm for the traditionally

worse performing dark skin tone in comparison with the light (+0.20 bpm) and medium

(+0.31 bpm) skin tones. This outcome attests to the fairness of the method. The proposed

method is the only method able to perform with an overall MAE less than 6 bpm across all

skin tones. For the best performing setting (bottom camera viewpoint with 5600K lighting),

the proposed method obtains a less than 3 bpm MAE across all skin tones. This establishes

the viability and performance accuracy of the proposed method for medically relevant HR

estimation. These inferences are further enforced by the largest increase in the correlation
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coefficient and largest decrease in the SE for dark skin tones by the proposed method, as

opposed to the SNR weighting method which sees performance reduction for medium and

dark skin tones. Hence, in addition to the overall improvement in performance across all

skin tones, the proposed method successfully steps towards reducing the performance bias

that exists between skin tones. If the VITAL dataset were to have even more equal represen-

tation in terms of skin tone, the overall average performance measures are further expected

to improve.

Large improvements in performance of the proposed method are also observed for the

talking activity over the facial aggregation benchmark, as compared to the SNR weighting

method which shows an overall performance drop. This technology may one day allow for

real-time continuous contact-less HR monitoring during a telemedicine visit, which would

provide greater information to outpatient clinicians. This advance may also be relevant for

in-hospital continuous contactless monitoring in ICU settings or hospital floor care.

Improvements in performance are also observed across camera viewpoints. The pro-

posed method shows considerable improvements for the front and bottom angles. A typi-

cal telemedicine visit, through a cell phone platform, may involve the patient holding the

camera at varying angles with respect to the face. The shown robustness and performance

improvement of the proposed method therefore makes it increasingly amenable to such tasks.

Interestingly, for all methods tested (existing and novel), the bottom angle shows improved

performance as compared to the front angle. This could be because interfering factors such

as hair, spectacles and so on occupy a smaller portion of the usable frame in the bottom

angle, as well as differing face scales in the two angles.

In relation to the clinical significance of this work, remote vital sign monitoring has risen

in prominence over recent years, with an acceleration in clinical development due to the

COVID-19 pandemic. In response to the pandemic, health systems across the country im-

plemented a large-scale restriction of non-urgent in-person appointments [57], transitioned

many outpatient services to telemedicine visits [4], and developed remote monitoring care
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Figure 5.1: Projected cost of deploying finger pulse oximeters for telemedicine ap-

plication. HR sensing solutions for telemedicine and remote patient monitoring have relied

on the adoption of wearable sensors. Currently, the most viable and inexpensive existing

wearable solution to assess patient HR and oxygen saturation are finger pulse oximeters. For

the scales at which telemedicine is projected to grow, such a solution would involve a deploy-

ment cost in excess of $700 million in the US alone. In contrast, a smartphone camera-based

method offers a purely algorithmic solution that can be integrated into existing healthcare

system telemedicine video-conferencing applications.

36



pathways [2] in order to facilitate social distancing yet maintain continuity of care. To

remotely monitor COVID-19 patients, many health systems shipped home vital sign equip-

ment to patients in order to obtain quantitative physiological data that could facilitate high

quality remote management via telemedicine. At a population level, however, supplying and

shipping vital sign monitoring devices to patients is expensive and not scalable, making such

a solution nonviable. Fig. 5.1 shows the projected cost of deploying finger pulse oximeters for

telemedicine application, the most viable and inexpensive existing solution to assess patient

HR and oxygen saturation. For the scales at which telemedicine is projected to grow, even

this solution would involve a deployment cost in excess of $700 million in the US alone (see

Appendix A for calculation details). Given the high penetration of mobile phone technology

globally, there is great interest in transforming smartphones into low-cost portable HR, respi-

ratory rate, and pulse oximeter monitors, thereby increasing accessibility to vital monitoring

equipment and alleviating healthcare inequity. Using in-built camera modules and computer

vision algorithms to obtain quantitative vital sign data remotely offers a purely algorithmic

solution with potentially zero marginal cost.

Outside of a pandemic situation, knowledge of vital signs is also important informa-

tion for clinicians who are managing medical conditions that require such data for health

management, and remotely obtaining vital signs may allow care teams to perform remote

surveillance and home monitoring of patients with greater confidence. Notably, several mi-

nority and lower socioeconomic status patient populations may benefit from more remote

care, especially as it has been established that the COVID-19 pandemic has disproportion-

ately affected such communities, both nationally and in states the most affected by the

pandemic [58, 59]. In New York City and Michigan, African American and Latino residents

have the highest age-adjusted rates of hospitalized and non-hospitalized COVID-19, and

age-adjusted death rates for African Americans are more than twice those for white and

Asian residents [60, 61]. African American communities have also been found to have higher

prevalence of cardiovascular and related complications, when compared with traditionally
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light skin toned people [62]. These patient populations may therefore stand to benefit the

most from skin tone robust contactless vital sign (specifically heart rate) sensing technologies

that facilitate high-quality remote care pathways. Finally, we believe contactless vital sign

sensing technology would be useful at the start of in-person clinic or hospital encounters or

for continuous patient monitoring in a hospital floor or ICU setting. Cameras, as opposed

to hospital staff, may one day obtain key vital signs without contact, thereby reducing ex-

posure of patients to staff, enabling improved infection control, and freeing up hospital staff

to attend to other important patient care needs.

With regards to limitations and future work, while our method has been tested on an

adult population, additional work is needed to enable clinical adoption. Further research

investigating HR estimation using our proposed method is still needed in pediatric and

geriatric populations and patient populations with known cardiopulmonary disease. Future

work must also focus on improving computer vision methods to detect extremes of HR and

discern heart arrhythmias. Additionally, the proposed method does not obviate skin tone

bias but rather is the first work that can be demonstrated to mitigate skin tone bias in the

VITAL dataset. Therefore, research must be undertaken to further reduce bias and assure

fairness by building upon our work, as well as to continue improving overall performance on

subjects and videos in real life scenarios.

From an algorithmic perspective, we believe that one of the most important factors

towards large scale deployment of such methods for clinical use is the inherent fairness of the

algorithm. As healthcare increasingly accelerates towards a digitally connected and virtual

future, early consideration must be given to developing equitable health technology that

does not exacerbate healthcare disparities or create new disparities. Ultimately, we hope

this work motivates the community towards exciting and essential research avenues looking

into inherent system biases associated with r-PPG. By reducing biases, we move a step closer

towards deploying high-quality, medically inclusive non-contact vital sensing techniques that

can aid clinicians in delivering remote patient care, during times of peace and pandemic alike.

38



At a broader level, such research into both algorithmic and hardware bias holds a lot

of relevance moving forward. Understanding existing and potential biases in widely used

technologies is key towards equitable deployment and performance. Additionally, fixing

biases in performance may not only lead to better performance for the biased class, but

potentially move towards across the board improved performance. We therefore hope to use

this work as a starting point as we delve into better understanding the origins of bias in

vision and imaging based technologies and elegant fixes to address these biases.
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APPENDIX A

Deployment Cost Projections for Telemedicine

In order to calculate the estimated average deployment cost for the cheapest existing method

(finger pulse oximeters), we use the following methodology:

1. We identify the estimated user base numbers for telemedicine in the US using the

numbers from [63] and extend these up to 2027 using the compound annual growth

rate (CAGR) of 15.8% as suggested in [64].

2. We make the conservative assumption that all members of a given family would be

active users of telemedicine services. Therefore, an estimate of the number of families

using telemedicine services is given by:

No. of Families =
Number of Telemedicine Users

Avg. Family Size in the US
(A.1)

We use the average family size of 3.15 from the U.S. Census Bureau’s Current Popu-

lation Survey [65].

3. Assuming that one pulse oximeter costs $20 (as observed from a survey of available

units in the market), and assuming conservatively that one pulse oximeter has to be

deployed per family, the cost of deployment is given by:

Cost of Deployment = No. of Families × Cost per Pulse Oximeter Unit (A.2)
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APPENDIX B

Additional Bland-Altman Plots

For the sake of completeness, this appendix highlights various Bland-Altman plots that

analyze the performance of the proposed as well as baseline methods across various factors

and scene parameters. These are referenced at various places in the thesis.
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Figure B.1: Scatter and Bland Altman plots for proposed method, varied across

skin tone categories. The label shows a marker for each video recording condition. (A-C)

Scatter plots for different skin types highlighting the correlation between estimated and

ground truth heart rate, denoted by the Pearson Correlation Coefficient r. (D-F) Bland-Alt-

man plots for different skin types. The bias (m) is shown by the middle solid red line, and

the limits of agreement (LoA = m ± 1.96 σ) by the upper and lower dotted blue lines.
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Figure B.2: Scatter and Bland Altman plots for facial aggregation method, var-

ied across skin tone categories. The label shows a marker for each video recording

condition. (A-C) Scatter plots for different skin types highlighting the correlation between

estimated and ground truth heart rate, denoted by the Pearson Correlation Coefficient r.

(D-F) Bland-Altman plots for different skin types. The bias (m) is shown by the middle solid

red line, and the limits of agreement (LoA = m ± 1.96 σ) by the upper and lower dotted

blue lines.
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Figure B.3: Scatter and Bland Altman plots for SNR weighting method, var-

ied across skin tone categories. The label shows a marker for each video recording

condition. (A-C) Scatter plots for different skin types highlighting the correlation between

estimated and ground truth heart rate, denoted by the Pearson Correlation Coefficient r.

(D-F) Bland-Altman plots for different skin types. The bias (m) is shown by the middle solid

red line, and the limits of agreement (LoA = m ± 1.96 σ) by the upper and lower dotted

blue lines.
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Figure B.4: Scatter and Bland Altman plots for proposed method, varied across

scene condition categories. The label shows a marker for each skin type. (A-D) Scatter

plots for different recording conditions highlighting the correlation between estimated and

ground truth heart rate, denoted by the Pearson Correlation Coefficient r. (E-H). Bland-Alt-

man plots for different recording conditions. The bias (m) is shown by the middle solid red

line, and the limits of agreement (LoA = m ± 1.96 σ) by the upper and lower dotted blue

lines.
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Figure B.5: Scatter and Bland Altman plots for facial aggregation method, var-

ied across scene condition categories. The label shows a marker for each skin type.

(A-D) Scatter plots for different recording conditions highlighting the correlation between

estimated and ground truth heart rate, denoted by the Pearson Correlation Coefficient r.

(E-H) Bland-Altman plots for different recording conditions. The bias (m) is shown by the

middle solid red line, and the limits of agreement (LoA = m ± 1.96 σ) by the upper and

lower dotted blue lines.
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Figure B.6: Scatter and Bland Altman plots for SNR weighting method, var-

ied across scene condition categories. The label shows a marker for each skin type.

(A-D) Scatter plots for different recording conditions highlighting the correlation between

estimated and ground truth heart rate, denoted by the Pearson Correlation Coefficient r.

(E-H) Bland-Altman plots for different recording conditions. The bias (m) is shown by the

middle solid red line, and the limits of agreement (LoA = m ± 1.96 σ) by the upper and

lower dotted blue lines.
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Figure B.7: Scatter and Bland Altman plots for proposed method’s dependence

on camera angle, varied across skin tone categories and recording conditions.

(A-B) Scatter plots for the lower camera angle, varying across skin tone categories and

recording conditions, respectively. (C-D) Scatter plots for the front camera angle, varying

across skin tone categories and recording conditions, respectively. (E-F) Bland Altman plots

for the lower camera angle, varying across skin tone categories and recording conditions,

respectively. (G-H) Bland Altman plots for the front camera angle, varying across skin tone

categories and recording conditions, respectively. For all Bland Altman plots, the bias (m)

is shown by the middle solid red line, and the limits of agreement (LoA = m ± 1.96 σ) by

the upper and lower dotted blue lines.
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Figure B.8: Scatter and Bland Altman plots for the facial aggregation method’s

dependence on camera angle, varied across skin tone categories and recording

conditions. (A-B) Scatter plots for the lower camera angle, varying across skin tone cate-

gories and recording conditions, respectively. (C-D) Scatter plots for the front camera angle,

varying across skin tone categories and recording conditions, respectively. (E-F) Bland Alt-

man plots for the lower camera angle, varying across skin tone categories and recording

conditions, respectively. (G-H) Bland Altman plots for the front camera angle, varying

across skin tone categories and recording conditions, respectively. For all Bland Altman

plots, the bias (m) is shown by the middle solid red line, and the limits of agreement (LoA

= m ± 1.96 σ) by the upper and lower dotted blue lines.
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Figure B.9: Scatter and Bland Altman plots for the SNR weighting method’s

dependence on camera angle, varied across skin tone categories and recording

conditions. (A-B) Scatter plots for the lower camera angle, varying across skin tone cate-

gories and recording conditions, respectively. (C-D) Scatter plots for the front camera angle,

varying across skin tone categories and recording conditions, respectively. (E-F) Bland Alt-

man plots for the lower camera angle, varying across skin tone categories and recording

conditions, respectively. (G-H) Bland Altman plots for the front camera angle, varying

across skin tone categories and recording conditions, respectively. For all Bland Altman

plots, the bias (m) is shown by the middle solid red line, and the limits of agreement (LoA

= m ± 1.96 σ) by the upper and lower dotted blue lines.
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