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single timeline in (c). The gray line indicates the initial position of the
timeline. In (d) and (e), the rip current is highlighted in the center of
the frame. The region on the right side of the frame with lower right di-
rectional flow indicates this rip may circles back to the shore. (f) shows
that the rip is highlighted by the single timeline. . . . . . . . . . . . . 24

2.7 Visualizing Sediment Plumes: This example showcases a rip with no
breaking waves but which has a sediment plume. The existing machine
learning methods fail in this type of data sets where there is no break-
ing wave features that they used for training their models. However, the
optical flow methods perform well on this data set. The filtered arrow
glyphs show there is a strong and obvious rip in the center. The feeder
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2.8 Timeline Example: This example showcases the performance of the
timeline method when the flow in the rip is weak. Due to the lack of
wave textures in the rip region as well as the quality of the video, the
optical flow method detected very low velocity in the leftward flowing
rip. We can only see a a few arrow glyphs since most of them were
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The second timeline showed a fairly significant bump showing where
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Abstract

Deep Learning for Flow Feature Detection

by

Akila de Silva

The visualization community uses deep learning in two main ways: to explain the

inner workings of deep learning models and to incorporate deep learning into visual-

ization pipelines. In this dissertation, we focus on the latter, with a specific emphasis

on feature detection within flow visualization pipelines. This dissertation underscores

the efficacy of deep learning for feature detection, particularly in visualizing complex

flow phenomena like rip currents and vortices. First, we explore the use of conven-

tional flow visualization methods, such as vector clustering and timelines, to visualize

rip currents. Then, we investigate the use of the appearance of the flow field for rip

current detection. Subsequently, we propose a hybrid feature detection method that

combines conventional flow analysis with deep learning to find rip currents by learning

their behavior from short sequences of pathlines. Finally, we introduce a multimodal

deep learning approach to find vortex boundaries that learn from the shape and other

physical properties of pathlines or streamlines.
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Chapter 1

Introduction

In the modern world data has become abundant due to easily accessible, low-cost

acquisition devices like web cameras and mobile phones [4]. Effective visualization of

these data and processes can reveal trends, relationships, outliers, and hidden insights

that might not be apparent when examining raw data alone, making it a valuable tool

for both researchers and the general public.[5].

In order to create effective visualizations, the visualization community has been

engaging with deep learning methods in two main ways. The first is to explain the

inner works of a deep learning model and to gain insight into the decision making

process of these often considered black box models. The second is introduce machine

learning into a visualization pipelines. This dissertation focuses on the latter.

In this dissertation, we introduce deep learning into flow visualization pipelines.
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In flow visualization pipelines, an essential component is feature detection. Feature

detection involves identifying and extracting specific patterns or characteristics in the

flow field that are interesting for analysis. This dissertation focuses on using deep

learning to find interesting flow features. We focus our work on two applications: rip

currents, a natural flow pattern found in nearshore oceans and vortices.

In this dissertation, I accomplish the following,

1. A study of traditional flow visualization methods for visualizing rip currents.

2. A deep learning method that uses appearance to find rip currents.

3. A deep Learning method that uses sequence of pathlines to visualize rip currents

4. A deep learning method that uses flowlines to visualize vortices.

The rest of this dissertation is organized as follows. In chapter 02 , I will discuss

how rip current features can be found by using its appearance. In chapter 03, I will

discuss how transitional flow visualization methods such as timelines can be used for rip

current detection. In chapter 04, I will discuss how we can use machine learning to learn

from pathlines to find rip currents. In Chapter 05, I will discuss how streamlines and

pathlines can be used to find vortices. In Chapter 06, I will conclude my dissertation.
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Chapter 2

Conventional Flow Analysis for Rip

Current Detection.

2.1 Introduction

Rip currents are dangerous and can be deadly. The majority of the population does

not know how to identify them. Detecting rip currents in webcam video can inform

users of potential hazards in near real-time and be utilized to support ongoing efforts at

rip current prediction. Previously proposed methods detect some types of rip currents

but not others. While image processing and machine learning methods perform well

on specific types of rip currents, they are not applicable in all scenarios. This paper

proposes and investigates a more general approach based on flow analysis and adapting
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flow visualization methods to detect rip currents.

Beaches around populated urban areas attract many beach goers and other recre-

ational users. However, the beach can pose a grave danger to the unwary public in the

form of rip currents [6]. People who unknowingly enter a rip current may be carried out

to the sea if the current is strong enough. Globally there are thousands of drownings

each year due to rip currents [7][8]. It is estimated that around 82% of rescues on the

beaches in the United States are due to rip currents [9]. Year-to-year statistics collected

by the U.S. National Oceanic and Atmospheric Administration (NOAA) [10] indicate

that there has been no significant decline in the number of drowning fatalities due to

rip currents [11] despite the proliferation of signage, videos and other public safety

messaging warning of the potential dangers rip currents pose.

Even people with some knowledge about beach safety can have difficulty in prop-

erly identifying rip currents. In a 2008 study, researchers found that almost 80% of sur-

veyed Australian beach goers were aware of common rip safety advice such as “swim

parallel to the beach.” However, only 40% could identify a rip current when shown a

picture of one, even though 80% thought they could [12]. In fact, even professional

lifeguards cannot always accurately identify the presence of rip currents [9]. The real-

ity is that rip currents are often not readily or easily identifiable to the average beach

goer [13]. Furthermore, the most vulnerable ones are the occasional beach goers and

weak swimmers [14]. While there are options for in-situ measurements to identify rip
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currents, they are generally expensive and require extensive setup. In this sense, there

is currently no robust location-independent means of rip current identification.

This paper investigates the potential for using flow visualization methods as a means

for identifying rip currents from short video clips. It has the potential for identifying rip

currents based on the behavior of water movement rather than simply the appearance of

the water state. The analysis and visualization pipeline starts with video pre-processing,

including image stabilization and applying optical flow computation to obtain a time-

dependent flow field. We investigate multiple flow visualization methods, including

color maps, pathlines, arrow glyphs, and timelines, to detect and visualize the presence

of rip currents. Examples of two of these methods on scenes with and without rip

currents are shown in Figure 2.1. After describing the methods, we evaluate them on

various data sets and compare them against other existing methods as well as human-

annotated data to showcase their performance in challenging cases.

Contributions of this chapter are:

• Our investigation of flow visualization methods for detecting rip currents found

that standard visualization methods performed poorly when applied directly. How-

ever, with appropriate modifications driven by wave behavior, flow visualization

methods can detect rip currents in scenarios where existing state-of-the-art rip

detection methods fail.

• We performed comparisons between the proposed flow based methods against
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current best practices (classification based on Timex images) and other machine

learning based methods. Our flow based methods also improved human labels

that relied on Timex images alone.

(a) Scenario 1: Filtered Arrow Glyph (b) Scenario 1: Timelines

(c) Scenario 2: Filtered Arrow Glyph (d) Scenario 2: Timelines

Figure 2.1: Examples of two recommended visualization methods for detecting rip cur-
rents: The filtered arrow glyph method highlights rip current and potential feeder current with
arrows, and the timelines method deforms in the presence of a rip current. In Scenario 1, the
original video contains green dye as a visual aid to the rip current present in the middle of the
screen. The dye does not impact resulting visualizations. In (a) the Filtered Arrow Glyph high-
lights the body of the rip in red and the potential feeder current in yellow. The timelines in (b)
clearly shows the presence of the seaward flow caused by the rip. On the other hand, Scenario
2 shows our visualizations in the case there is no rip current. In (c), no arrows are shown, in-
dicating that there is no rip current. In (d), the timeline is relatively straight, indicating that the
flow filed is mostly uniform, hence the absence of a rip current.
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2.2 Background and Related Work

Rip currents: Rip currents are a well-studied ocean phenomenon [15][16][14]. Many

factors contribute to the formation of rip currents, such as bathymetry, wave charac-

teristics, and natural and man-made structures along the beach. As a result, there are

different types of rip currents, including bathymetry-controlled rips, structural rips, cir-

culating rips, and others [17]. Rips may either be transient, potentially moving along

the beach and lasting only seconds to minutes, or persistent, holding a near-constant po-

sition for hours or days at a time. Rips that are frequently found at the same location are

usually indicative of a structural feature such as jetties or piers, rocky outcrops, reefs, or

persistent sandbars which lead to variations in breaking wave heights alongshore. Re-

gions of larger breaking waves lead to higher water levels, which then flow alongshore

to regions of smaller breaking waves and lower water levels and then offshore as a rip

current. On sandy beaches, regions of smaller breaking waves are often characterized

by deeper channels, which are often indications of rip current presence. Rip currents

may pulse, gaining strength when there is a wave set and weakening in between sets.

In terms of appearance, some rips may be identified by water discoloration as beach

sediment is carried by the rip past the surf zone (region where waves are breaking). In

other cases, rips may be identified by a darker region of water that is flanked on either

side by breaking waves. The movement of foam or other debris on the water surface

can also provide clues of rip current locations. Rip currents are quite varied, dynamic,
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and pose a challenge to detect robustly.

Rip Forecasting: Models that incorporate the dominant factors contributing to rip for-

mation have been proposed to predict future rip current occurrence e.g. [18][19]. In

fact, NOAA recently announced an operational rip current forecast for the United States

coastline [20]. Note that these models differ from efforts in this paper and other meth-

ods described in this section in that the latter focus on detection rather than forecasting.

The forecast models will benefit from advances in rip detection to validate and improve

rip current predictions.

Lifeguards: Lifeguards rely on visual cues and experience to identify rips, which

requires training and familiarity with the locale. However, most drownings occur on

beaches without trained personnel [21][22]. Posted signs can provide some information

regarding what to do if caught in a rip current, but there is evidence that many people

do not find existing signs helpful in identifying rip currents [23].

In-situ measurements: In-situ measurements such as acoustic doppler current profilers

(ADCP), wave sensors, and acoustic velocimeters provide water column flow informa-

tion [24][25][26][27][28]. However, these are expensive and challenging to deploy in

the surf zone, and they only provide data for one location at a time. Fluorescein dye is

commonly released into the ocean and the dispersion observed [29][30][31][32]. Float-

ing drifters with embedded GPS units have also been used to measure currents [33][17][34].

However, these methods require some idea of where a rip might exist in the first place.
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They are also a research endeavor and not designed for use by the general public. In

addition, they are impractical for detecting flash rips that are more transient in nature.

Time-exposure images: Experts at the National Oceanic and Atmospheric Administra-

tion (NOAA) use images and video to gather statistics about rip currents [35]. These

data support the validation of a rip current forecast model to alert people to potential

hazards [18]. One method that has promise for visually detecting rip currents is the use

of “time exposure” or Timex images [36][37][38][39]. These are obtained by simply

averaging frames of a video clip, usually over a period of 10 minute intervals. This ap-

proach works well for rips that are characterized by a darker region of water flanked by

breaking waves since places with consistent breaking waves will appear blurred white,

while the location of a rip will appear darker. However, its main weakness is that it

can only identify rips with these visual characteristics. Furthermore, because the time-

averaging window is over many wave periods, it may lead to an incorrect classification

e.g. for non-stationary rip currents. While Timex images are most commonly viewed

by human experts, Maryan et al. [40] trained a machine learning model to determine

whether a Timex image contains a rip channel or not. They reported a detection rate of

85% for various beach locations. Nelko also used time-averaged images and noted that

prediction schemes developed at one beach location might not be directly applicable

to another [41]. Nonetheless, the main weakness of any methods which rely on Timex

images is their limitations on the type of rips they can identify – limited to bathymetry-
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controlled rips.

Segmentation: Another method for detecting rip currents is to find discoloration due to

sediment transport. Liu and Wu [28] reported that imagery captured from a stationary

webcam can be segmented based on hue. Possible rips are identified if the sediment

plume extends beyond some distance from the shoreline. Together with environmental

monitoring equipment for wind speed, wind direction, wave height, and wave period,

they have an automated system that issues alerts of flash rip dangers to beach goers.

However, this method is specific to only certain locales with sediment plumes, and as

with Timex images, limited to rips that exhibit sediment plumes.

Neural Networks: De Silva et al. [42] trained a neural network model to identify

rip currents from a sequence of images. They reported a detection rate of 98.4% for

their test set consisting of videos with and without rip currents. However, their model

can only detect rips with consistent breaking waves since they use single-frame, RGB-

based images of rip currents characterized by a gap in breaking waves to train their

model. Like the approaches based on Timex, their implementation is currently limited

to bathymetry-controlled rips until training data are collected for other types of rips and

their model retrained.

Optical flow: Dense optical flow [43][44] can be used to detect rip currents in a video.

This method is attractive since optical flow fields can be directly compared against

ground truth flow fields obtained from in-situ measurements [45]. Philip and Pang [1]
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identified rip currents by looking at the distribution of detected flow velocities which

might include motions due to wave action, possible rip, and motion in the background

scenery. They assumed the rip current to be in a single seaward direction, with rip

regions above a certain velocity threshold and region size. Unfortunately, rip currents

do not necessarily flow in a straight line, leading to false-negative results. Also, rip

currents often have feeder currents that travel alongshore, bringing water that feeds the

rip current’s main body. The work reported in this paper builds upon [1] to detect non-

linear rip currents and feeder currents, and also include comparisons with alternative

detection methods.

More recently, Anderson et al. [46] introduced WAMFlow (wave-average movies)

where they pre-filter the video source prior to obtaining the optical flow field. The

pre-filtering aims to remove the dominant signal due to incident waves while leaving

the signal due to foam or water turbidity features that might indicate the presence of

rip currents and non-stationary circulation cells. In contrast, the work presented here

applies the filtering on the optical flow field derived from raw video, while achieving

real-time processing for the proposed pipeline. Furthermore, the focus of this paper

is on adapting flow visualization methods to detect and visualize the presence of rip

currents.
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2.3 Data and Pre-processing

2.3.1 Data Sets

The data set used for our investigation is composed of 27 video clips collected from

the web, photographed by the authors, or obtained from collaborators. The collection

includes cases with rip currents, no rip currents, and possible weak rip currents. Those

that contain rip currents include different types of rips: rips with curvature, sediment

plume, a dark channel between breaking waves, and structural rips. The data set also

contains cases with swash (water movement on the shallow part of the beach after a

wave has broken all the way to the high water mark where a wave can run up the beach)

and reflection waves (or backwash off a rocky shoreline). We exclude some video from

consideration because they are not suitable for flow-based analyses e.g. unstable/shaky

video, contains camera pans/rotations, poor video quality e.g. blurry, duration is too

short for time averaging. The videos ranged in size from 320x400 to 1920×1080, and

ranged in length from 11 seconds to 60 seconds, recorded at 30 fps. In this paper we

downsampled large videos to 720-pixels height and the corresponding width to keep

their aspect ratio.
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2.3.2 Data Requirements

In an ideal scenario, the video is taken from a stabilized mount, at as high an ele-

vation as possible, with some beach in the foreground, on a sunny day, with sufficient

duration and resolution. Webcams around the world, especially surf cams where there

is a higher chance of finding rip currents, offer a rich potential for videos. However,

most of them are not configured for rip current detection.

Flow analysis requires sufficient pixels imaging the rip current. With the settings

of the optical flow method we used, the minimal width of rip current that the estimated

flow field can correctly represent was roughly 80 pixels. For most of the videos obtained

from a webcam that is sufficiently close to the beach, we found that image resolution of

at least 640x480 is required. When the relevant section of the ocean uses only a small

part of the frame, increased resolution is needed. The increased resolution does increase

the computational requirements. Therefore, videos that are larger than 1080x720 are

either scaled down to a height of 720 while maintaining the aspect ratio, or cropped to

the region of interest.

The camera should be steady or fixed and not contain panning, rotations, zooms

since frame to frame correspondence is needed to obtain the optical flow field. Small

camera vibrations or drifts can be compensated by video stabilization, but excessive

shaking will also make the video unsuitable.

Sufficient duration is needed to observe a rip current, usually at least one minute
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or at least three wave periods. The justification is that rip speed is related to breaking

wave height, which in turn varies with infra-gravity wave motion, commonly called

wave “sets”. A wave set typically varies on the order of minutes, and we find that

around one minute of video is sufficient. However, a longer video would be preferable

especially for longer period waves.

2.3.3 Video Pre-processing

Video must be stabilized prior to extracting the optical flow field. Videos sources

from webcams can omit this step, while videos from drone or hand-held cameras can

benefit from this step. Optical flow estimates motion based on differences of local

neighborhood pixel values in consecutive video frames, and camera motion will pro-

duce a confounding flow field. Many video stabilization methods exist [47] [48] [49]

[50], and robust automatic stabilization is possible. In this work, we simply use the

Warp Stabilizer feature of Adobe After Effects. The Warp Stabilizer tracks selected

static objects in the scene (e.g. a pier, rocks) and stabilizes the video using them as

fiducials. We supplement with manual adjustment as needed, typically when the video

contains insufficient rigid landmarks.
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2.4 Flow-based analysis

In this paper, flow-based analysis refers to the analysis and visualization of a vector

field derived from optical flow of video clips, with the goal of finding rip currents. We

investigate Color Maps and Pathlines as standard baseline flow visualization methods

and find them lacking. We then investigate the enhanced methods of Filtered Arrow

Glyphs and Timelines and find that they perform well.

2.4.1 Optical Flow Map

Optical flow map refers to the velocity of pixels in an image derived from motion

of neighboring pixels in consecutive frames from a video. Several optical flow algo-

rithms and surveys exist [51] [52] [53] [54], and produce a flow field describing where

each pixel moves from one frame to the next. Our implementation uses the OpenCV

library [55] for computation. Dense optical flow is calculated at every pixel using

Farneback’s method [51], and used for visualizations methods that require it, such as

pseudo-coloring and flow difference. To save computational cost, sparse optical flow is

calculated using Lucas-Kanade [52], and used as input to the remainder of the visual-

ization methods.
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Figure 2.2: The Color Wheel Used to Map Flow Vector to Color: The flow directions are
mapped to hues, while the relative magnitudes are mapped to value (darker indicating smaller
magnitudes). For example, red indicates a flow towards the right.

(a) Original Frame (b) Single Frame Color Map

Figure 2.3: Single frame color map is not usable: The original frame with a rip current is
shown in (a), and the corresponding single frame color map is shown in (b). Notice that the rip
current traced using the green dye in (a) corresponds to the dark spot in the center of the color
map in (b). Usually, rip currents are much slower than incoming waves, and its relatively weak
signals are not easily observed in a single frame color map. This baseline visualization method
is difficult to interpret and thus not directly usable.
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2.4.2 Baseline Visualization Methods

2.4.2.1 Color Map

The most basic method of visualizing a scalar field is pseudo-coloring or color map-

ping. In the case of a vector field such as the vector field obtained from the optical flow

across frames in a video, direction and magnitudes are mapped separately to differ-

ent color properties. Specifically, we use an HSV color model where flow direction is

mapped to hue (what is normally referred to as color), while flow magnitude is mapped

to value (brighter or darker shade of the color). Saturation is set to one. Figure 2.2

shows the color wheel that we use to map the flow direction and magnitude to hue

(color) and value (darker towards the center of the color wheel) respectively. For exam-

ple, brighter red indicates a strong flow towards the right, while a darker red indicates

a weaker flow towards the right.

Color mapping vector fields involve first converting vector information from Carte-

sian to polar coordinates to obtain angles and magnitudes from the 2D vector compo-

nents. The magnitudes are normalized so that they range from 0..1. Angles are then

mapped to hue while normalized magnitudes are mapped linearly to value. In Fig-

ure 2.3, the green fluorescent dye on the left image indicates the location of the rip

current. On the right, is the corresponding color mapped image. The bright green re-

gions on the right indicate a strong flow direction towards the bottom left of the image.

The darker regions of the right image correspond to regions with weak to no movement.
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Notice that these regions correspond to the beach and areas past the surf zone, as well

as the rip itself. Since the video has been stabilized, the darker color where the rip is

located indicates that the speed of the rip is much slower relative to the rest of the surf

zone. While this visualization allowed us to see velocity information, it was confusing

to general viewers and is not usable by itself for alerting viewers to the presence of rip

currents.

Figure 2.4: Pathline Visualization of Rip Currents: A visualization of the flow field obtained
by optical flow is shown using the baseline method of pathlines. While they somewhat capture
the signal of rip currents, the visualizations are not very clear.

2.4.2.2 Pathlines

Pathlines record the trajectory of a massless particle in a time-varying vector field

[56]. The optical flow field derived from video analysis is a time-varying vector field

v⃗(p⃗, t) where the velocity v⃗ is known for each location p⃗ at time t. The pathline is
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obtained by integrating d p⃗
dt = v⃗(p⃗, t) We use an explicit fixed step 4th order Runge-

Kutta integration. If a seed point is placed in the vicinity of a rip current, we expect it

to be drawn into the rip, and leave a trace of its path from the seed point towards the rip

in the process. On the other hand, those seeded outside a rip zone would not be affected

and would likely just be washed ashore by the incoming surf. Aside from the trajectory

itself, a pathline can be colored to show some other properties such as: (a) age of the

particle, which is useful to see if the trajectory is progressing seaward or not; (b) length

of trajectory, which is useful to gauge relative speeds; and (c) distance from starting

point, which is useful to see if a particle takes a circuitous/cyclic path or a more direct

route.

To test this method, we seeded a regularly spaced 9 x 9 sampling grid. Figure 2.4

shows the 81 pathlines. Pathlines are colored by age, starting with red and getting

cooler over time. Unlike Figure 2.3, this figure shows the cumulative effects of the

flow field on the 81 seed particles, rather than an instantaneous snapshot of where the

81 particles are located. Here, we see that the trajectories are erratic (even after video

stabilization). Nevertheless, one can see that pathlines are indeed headed out in the rip,

and even further beyond the outer boundary of the green tracer dye. For this method

to be a rip detector, one would have to filter out the pathlines that are not in the rip.

However, we cannot simply remove pathlines that are seaward, assuming one knows

which direction is seaward in any given video source, because of the erratic trajectories
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but more importantly rips may have a circulating pattern. Because of these reasons,

coupled with the clutter evident even with just a few pathines, we do not investigate

this further as a detection method.

2.4.3 Modified visualization methods

Straightforward application of visualization methods such as the two mentioned in

the previous section cannot detect rip currents. Here, we describe how domain knowl-

edge coupled with modifications to visualization methods are necessary to arrive at

effective detection and visualization of rips.

2.4.3.1 Filtered Arrow Glyphs

This is an extension of an arrow plot where an arrow is present only when a potential

rip current is detected. Feeder currents that can bring material into the main rip are also

included. An example of this method is shown in Figure 2.1 (a). Because glyphs can

quickly clutter the display, we need to balance the amount of information versus the

amount of clutter. Here, each frame is represented by a grid of velocities with 20-pixel

spacing to ensure sufficient representation of the flow field. The idea is to alert the

user to areas that might potentially be dangerous while leaving the rest of the imagery

untouched.

The optical flow map detects movements across frames. Movements of clouds as
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well as people or pets walking on the beach are also detected. Such movements are

irrelevant to rip detection so we apply a mask to ignore sky and beach regions while

passing the ocean region for further processing. Because of the nature of wave motion

where the predominantly observed motion is that of the incoming waves, we found that

there was insufficient signal to detect rips when analyzing the flow field on individual

frames. To remedy, we construct a time-averaged vector field over three wave periods.

In conditions where the sea state can induce rip currents this ranges from 15-45 seconds

and covers short period wind chops to longer period swells. The motivation for time-

averaging is that while water may get pushed in with each wave, they also recede back

to the ocean. However, the region where a rip current is situated often times have less

breaking waves and hence the outward flow from a rip is more persistent and easier to

detect from the time-averaged flow field.

Figure 2.5 shows the time-averaged flow fields for the duration of 1 and 3 wave

periods. The scene contains a rip current that flows from the left and to the upper

right. The corresponding color maps, described earlier, of the time-averaged flow field

highlights this rip current in purple, indicating its direction. In this figure, the primary

focus is to highlight flow direction and not on flow magnitude. Hence, we temporarily

set all the magnitudes to 1.

Notice that the color map of the one wave period averaging has another purple re-

gion in the right bottom corner of the surf zone. These false positives can be caused by
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transient receding water in swash zones. However, with the three wave period averag-

ing, the false positive disappears.

Simply displaying all directional arrows produces a cluttered and confusing image.

It is necessary to filter the data so that only the relevant information is shown i.e. the

regions of a rip current. To achieve this, once the time-averaged vector field is con-

structed at each arrow position, all arrows are grouped into six bins, each representing

a range of 60 degrees. The bin with the highest frequency represents the predominant

flow direction, which we assume to be that of the incoming waves. The opposite direc-

tion is then assumed to be the rip direction. Vectors in this bin are represented by red

arrows, while vectors in the neighboring bins on either side are represented by yellow

arrows. The yellow arrows can potentially show feeder currents. They are also useful

when the rip current direction extends beyond the bin that represents the rip direction

e.g. for rips with high curvatures. In short, filtered arrow glyphs involve both masking

out regions of a frame that is not part of the body of water, and only displaying arrow

glyphs of time averaged vectors that are in the rip and feeder directions.

While this assumption of reverse flow in a rip current is simplistic, cases where

the rip is quite obvious can be highlighted using this technique as in Figure 2.1 (a).

Notice that the region with rip current is obviously marked, in contrast to Figure 2.1 (c)

showing an ocean scene with no rip current, and no annotation.

A caveat of this method is that the direction of some rips are not necessarily opposite
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(a) Original frame (b) 1 wave period (c) 3 wave periods

Figure 2.5: Averaged Flow Field Comparison: Comparison of the averaged flow field color
map for the duration of 1 and 3 wave periods. Original frame is shown in (a). Images in (b) and
(c) are the color map of the obtained flow field, where direction is mapped to hue. In (b) and
(c), the purple regions on the left correspond to rip current, indicating that there is a seaward
directional flow there. Notice that the false positive in the right bottom corner disappears after
averaging for 3 wave period.

the incoming wave direction e.g. when waves arrive at an oblique angle to the shoreline,

the rip may be as little as 90 degrees from the predominant wave direction. To be able to

visualize such cases and any potential feeder current, we experimentally chose 6 bins.

With 8 bins, feeder currents tend to be ignored more often, and with 4 bins, it produces

much more false positives.

The filtered color map, such as the ones shown in Figure 2.6(b) and (e), is gener-

ated in a similar fashion as the filtered arrow glyph. Rip direction and feeder current

directions are first determined using the grid of velocities with 20-pixel spacing and

the binning strategy. The optical flow for all pixels is computed, time-averaged, and

mapped to color as described in section 2.4.2.1. Parts of the color map image is then

masked out if they are not in the rip or feeder current directions. Finally, this image is

blended with the corresponding frame of the video. Note that regions with lower flow

magnitude (low value) will contribute correspondingly less color to the blended image.
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(a) Scene 1: Filtered Arrow

Glyph

(b) Scene 1: Filtered Color

Map

(c) Scene 1: Timelines

(d) Scene 2: Filtered Arrow

Glyph

(e) Scene 2: Filtered Color

Map

(f) Scene 2: Timelines

Figure 2.6: Evaluations of The Methods: These evaluation videos show a prominent rip which
can be easily seen on the left side of the frame in Scene 1 and on the center of the frame in Scene
2. In both scenes, all visualization methods clearly show where rip current is located. In (a), the
arrows covers the body of the rip. In (b), the rip is highlighted in pink, indicating its direction.
There is another region to the right where the flow direction is close to that of the rip direction
and is highlighted in yellow. However, we can safely rule this out as it’s not connected to the
main rip and is mainly alongshore. The rip is also highlighted by the single timeline in (c). The
gray line indicates the initial position of the timeline. In (d) and (e), the rip current is highlighted
in the center of the frame. The region on the right side of the frame with lower right directional
flow indicates this rip may circles back to the shore. (f) shows that the rip is highlighted by the
single timeline.

2.4.3.2 Timelines

Timelines is another flow visualization technique for analyzing time-varying flow

fields. An example of this method is shown in Figure 2.1 (b) In the context of rip

current detection, it represents a chain of virtual buoys tethered together by a massless
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and stretchable rope. When placed in the surf zone close to and along the shoreline, we

would expect virtual buoys in the rip to be pulled out to sea, and those nearby will be

pulled by feeder currents towards the main rip and eventually out to sea. The rest of the

virtual buoys will likely be washed ashore. We introduce a new timeline in the surf zone

every 30 seconds in order to track any new currents that may lead to the identification of

pulsing rip currents. Virtual buoys along the timeline are initially spaced out at regular

intervals. Over time, the relative spacing between adjacent buoys provide additional

information if there is a large velocity gradient. Figure 2.1 (b) illustrates a case where a

rip is detected. The timeline is clearly deformed and extends out along the rip channel.

Contrast this with Figure 2.1 (d) for which no rip current is present and therefore the

timeline is relatively undeformed. A grey line indicates the initial placement of the

timeline in both cases. When waves are pronounced and the incident angle of the waves

is perpendicular to the shoreline, the optimal placement of the timeline is parallel to the

beach and in the middle of the surf zone because the rip current direction will likely

have a direct seaward heading. However, when waves are weak or the incident angle

of the waves is oblique to the shoreline, the rip current direction may not be directly

seaward but also at an oblique angle. In such cases, we place an additional timeline

perpendicular to the shoreline to better see rips that may form at an angle from the

shoreline.

The process of calculating and generating the timeline is similar to that of pathline
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tracing. Each virtual buoy on a timeline is treated as a seed point of a pathline and

its trajectory is calculated using RK4 integration. However, rather than tracing the

evolution of each seed point independently, a timeline is drawn by connecting the points

from all the virtual buoys, in the same order, to form a curve. As time progresses, the

timeline is thus animated.

How fast a timeline moves depend on the local flow velocity. A fast moving wave

could potentially push a timeline all the way to the shoreline. Such large displacements

are not conducive to detecting rip currents. Simply reducing the integration step size

will just increase computation cost without addressing the underlying problem. Just as

we saw in Figure 2.5, averaging the flow field for at least three wave periods is crucial.

Therefore, the timelines need to move slower than the actual speed of the waves to

allow extraction of rip currents. For this reason, we multiply the optical flow field in

each frame by an adjustment factor α. The α is calculated as α = d/(δ · f ). d is the

pixel-wise distance between the initial placement of the timeline and the shoreline, δ

is the pixel-wise velocity of the incoming waves, and f is the total number of frames.

For the videos that are longer than three minutes, we cap f to the number of frames

that corresponds to three minutes in order to correctly capture transient rips. With

the adjustment factor α, the timeline reaches the shoreline at the end of the specified

number of frames. These slower moving timelines provide stable results.
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2.5 Results

In this section, we first evaluate the two modified flow visualization/detection meth-

ods, and then compare their performance against other methods from literature.

2.5.1 Evaluation of Proposed Methods

We tested the two modified methods on different data set including visually obvi-

ous cases containing strong rip currents, a rip with sediment plume, and less visually

apparent cases with weaker rip currents. We then applied the both methods on human

labelled data set to confirm or challenge previously annotated results by rip current

experts.

Strong rip currents: Figure 2.6 shows two examples of strong rip currents of the type

that prior methods can also detect. The filtered arrow glyph visualizations in (a) and

(d) are consistent in showing regions of flow against the predominant incoming wave

direction. The arrows in the neighboring bins are also displayed in yellow, showing

how water may feed in and out of the rip.

As noted in section 2.4.2, applying color maps on the flow field on a per frame

basis does not help in detecting rips. We modified that method in a similar fashion as

the filtered arrow glyphs, by time-averaging prior to color mapping, then filtering out

non-interesting regions. This modification is illustrated in Figure 2.6(b) and (e). Rip

currents can also be seen in one quick glance. It does require one to look at the color
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(a) Filtered Arrow Glyph (b) Timelines

Figure 2.7: Visualizing Sediment Plumes: This example showcases a rip with no breaking
waves but which has a sediment plume. The existing machine learning methods fail in this type
of data sets where there is no breaking wave features that they used for training their models.
However, the optical flow methods perform well on this data set. The filtered arrow glyphs show
there is a strong and obvious rip in the center. The feeder current on the both sides of the rip is
also highlighted, providing additional information of the rip. The deformation of the timeline
coincides well with the rip channel.

28



wheel to confirm the flow direction, whereas this step is not necessary with the filtered

arrow glyph. Hence, we omit this method from further consideration.

The timeline visualizations in (c) and (f) also succeeded at showing the rip based

on their protrusion or deformation. The astute reader may notice that the timeline

protrusion in (f), as well as the position of the arrow glyphs and colored regions in

(d) and (e) are on the right region of the darker channel in the surf zone, this indicates

the region within the rip zone with strongest velocities.

Sediment Plumes: Figure 2.7 shows an example of a rip where the predominant visual

signature is an obvious sediment plume. The filtered arrow glyph and the filtered color

map clearly show the seaward flow caused by the strong rip. Furthermore, feeder cur-

rents from both sides of the rip are highlighted when this method is applied. Swimmers

in a feeder current may eventually end up in a rip and swept away. Therefore, it is

crucial to visualize these regions as well.

Weak rip currents: Figure 2.8 shows a harder case. Even though the visual signature

indicates an obvious rip where one sees the darker channel between breaking waves, the

velocities are quite low. Hence, Figure 2.8(a) and Figure 2.8(b) do not provide much

indication of a rip current. The slight differences in velocities at the rip channel and the

other incoming wave regions are however enough to deform the timeline, indicating the

presence of the rip at the center of the frame. The timeline method is more sensitive

because it can accumulate the small deformations from weak velocities.
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(a) Filtered Arrow Glyph (b) Timelines

Figure 2.8: Timeline Example: This example showcases the performance of the timeline
method when the flow in the rip is weak. Due to the lack of wave textures in the rip region
as well as the quality of the video, the optical flow method detected very low velocity in the
leftward flowing rip. We can only see a a few arrow glyphs since most of them were filtered
out. However, in (b), the ability of timelines to capture cumulative movement effects shows
shows a deformation. While most of the timeline has washed in past the gray line, the defor-
mation of the timeline in the darker region indicates a rip, albeit pretty weak and not exceeding
much past the original gray line.

Figure 2.9 showcases another difficult case with no obvious surf zone and just shore

break. In this scenario, the placement of an additional timeline perpendicular to the

shoreline is helpful in visualizing the signal of a rip current that was present. Here, the

deformation of the blue timeline indicates a stronger longshore component compared

to the green timeline showing seaward component.

2.5.2 Comparison with Human Labelled Data Set

Rip current researchers at NOAA have approximately a year’s worth of labelled

Timex images (from 10 minute video segments) collected from the 40th Street Miami

Beach webcam. This particular webcam is part of a larger network of webcams (SEC-

OORA) for coastal monitoring which includes beach erosion and rip current forecasting
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Figure 2.9: Timeline Example: This example shows a rip that is not detectable using filtered
arrow glyphs nor filtered color maps (and therefore omitted). We do see an seaward movement
of the green timeline that is placed parallel to shore, but do not see any deformation to indicate a
particular region that may be moving out faster than the rest. Placing another timeline, colored
blue, perpendicular to shore, we can see a more pronounced deformation indicating a strong
longshore current.

[57].

Each Timex image represents a 10 minute video segment, and were labelled by hu-

man experts as definite yes, maybe yes, maybe no, and definite no with regards

to the presence of rip currents. Figure 2.10 shows typical views from this webcam. We

note a few positive and negative aspects about this particular data set. There is minimal

camera movement since the camera is on a fixed mount. Camera placement is pretty

high but has a wide view. While the wide field of view is good for monitoring coastal

erosion, it is less than ideal for monitoring rip currents. About 70% of the frame con-

tains non-interesting parts i.e. sky, vegetation, sandy beach. Furthermore, due to the
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Figure 2.10: A comparison of timeline visualization with Timex images commonly used
for human labelling. The top row shows timelines. A new timeline was released in the surf
zone every 10 seconds and tracked for the next 20 seconds. In general, timelines were pushed
onto the shore by incoming waves except for regions of potential rips. The bottom row shows
Timex. In example (a), the Timex was originally labelled as Maybe yes to contain rip currents
but after consulting our visualization and the complete video, the label was changed to Maybe
no. Note that this frame of the video did show some changes in spacing of the points along
the first timeline. It indicated velocity changes running parallel to the beach or a longshore
current. This behavior would not have been detected using the Timex image since it was inside
the region of breaking waves and not visually apparent. In example (b), the label was changed
from Definite yes to Maybe yes. There were slight bumps noticeable on both timelines but
not considered significant. These slight bumps indicated possibly some weak rip currents. In
example (c), the label was revised dramatically from Definite no to Definite yes. The sec-
ond timeline showed a fairly significant bump showing where the rip was located. Examples (a)
and (b) both had the Timex characteristic darker region in between lighter regions of breaking
waves. In (c) the Timex darker region was not present due to stronger surf conditions during
that period, which was why the initial human label relying only on the Timex gave incorrect
labels.

severe perspective distortion, only the portion of the water closest to the camera have

sufficient spatial resolution (distance/pixel) to obtain a meaningful optical flow field.

The camera aside, the Miami beach itself is a long sandy beach with a shallow gradual

sloping bottom which does not lead to large breaking waves and is geographically pro-

tected from large swells by the Bahamas. Hence, the rip currents that do form here are
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typically weak.

We applied the two modified techniques (filtered arrow glyphs and timelines) on

the 10 minute video clips for a random sample of labelled Timex data set. We quickly

dismissed the utility of the filtered arrow glyphs and filtered color maps for this data set

because of the distant camera set up which made the velocities very low. Coupled with

the relatively slow wave propagation, this meant little changes in neighboring pixel

values and therefore decreased signal to noise. However, because the displacement

of timelines captures the cumulative effects of the flow field, even those from weaker

rips, we were able to confirm the human labels on most of the cases that we looked

at. We did find instances, such as those shown in Figure 2.10, where the timelines

suggest a different label than the human labels. We presented these to the experts who

originally labelled the data set and asked them to view the video associated with the

Timex images to make a more careful determination. In these instances, the experts

changed their labels after reviewing the video. Note that the label of maybe yes seem

to be used for cases where the rip is considered weak or the rip signal is not conclusive.

While rip detection using Timex images is less time consuming than watching video

clips, and the signature pattern of rip currents in Timex images are easier to discern than

looking at raw video by humans, solely relying on them can lead to incorrect classifica-

tions. Our small study demonstrates the utility of timelines for more accurate labelling

compared to Timex images alone. The human experts indicated that the visualizations
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were valuable and contained cues which did not exist in Timex visualizations. For

study locations with fixed camera mounts, accompanying Timex images with our vi-

sualization output can help improve labelling accuracy. This is an important process

in collecting good training data for building automated classification models using ma-

chine learning methods such as those reported in [40][42].

2.5.3 Comparison Across Methods

We compared how the different published methods detected rip currents in the video

clips shown in Figures 1, 6, 7, 8, 9, and 10. The following video clips contain rip cur-

rents: Figures 1(row 1), 6, 7, 8, 9, 10(column b), and 10(column c). The following

video clips do not contain rips: Figures 1(row 2) and 10(column a). Table 2.1 sum-

marizes the results. A yes entry means the method correctly detected the rip if present

(true positive), or correctly marked the video as not containing a rip (true negative). A

no entry means the method gave a false positive or false negative result.

2.5.3.1 Comparison with Machine Learning Methods

Currently, there are two rip detection methods that utilize machine learning meth-

ods. Maryan et al. [40] employ a Viola-Jones framework [58] to train their model to

detect rips from Timex images (see Timex column in Table 2.1), while de Silva et al.

[42] used a modified deep learning technique Faster RCNN [59] with an accumulation
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(a) Rip detection using Timex of Figure

1(row 1).

(b) Rip detection using Timex of Figure

6(row 1).

Figure 2.11: Rip Detection Using Timex Figures: Two examples where rip detection using
Timex images failed even when the visual signature of the rips are very strong.

buffer to aggregate frames across time to improve prediction. That model was trained

to detect rips from images and video clips (see the Faster RCNN column in Table 2.1).

Rip detection that relies on Timex images are inherently limited to bathymetry con-

trolled rips where the visual signature is a darker channel in between breaking waves.

The model described in [42] is also limited to bathymetry controlled rips. However,

that limitation is not inherent to the deep learning technique they used but rather the

training data they used to train their model. Given these considerations, we would ex-

pect both detectors to do well in detecting bathymetry controlled rips and not well with

other types of rips.

The Timex and Faster RCNN columns in Table 2.1 show how the machine learning

methods fare in classifying and detecting rip currents . Our expectation is that Timex

should perform well on all but Figures 7 (sediment plume) and 9 (no visual signature).
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Looking at the actual tests, we see that Timex performed poorly. Figure 2.11 shows

two rips with strong visual signatures where the method based on Timex images failed.

When we reran the data but fed individual frames to the model that learned to classify

Timex images, the results improved slightly. There were 69% of the frames from Figure

6(1) that were correctly labelled. Hence, we marked Figure 6(1) as a yes in the Timex

column.

2.5.3.2 Comparison with Previous Flow Based Method

The flow-based method described in [1] also analyzed the optical flow field derived

from the video. However, it did not account for wave pulsing and used simple statistics

to guess the seaward rip direction. While this may work in the typical bathymetry con-

trolled rips, the assumption that rip direction is always straight also makes this method

less flexible. Furthermore, the visualization of the detected rip is a simple reddish re-

gion to warn presence of rip and does not impart any velocity information. Figure 12

shows the output of this method on the data set shown in Figure 6(2). The highlighted

regions corresponds well with the red arrows in Figure 6(d) and the pink regions in

Figure 6(e). Somewhat surprising, it failed on both Figure 6(1) and Figure 8. Upon

reviewing those two videos, the speed of the rip is very slow. So, even while there are

strong visual cues in both cases, the per frame velocities at the rip regions were low

and appeared spurious and therefore did not pass the threshold set by the method. This
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Table 2.1: Method Comparison: Comparison of Filtered Color Maps, Filtered Arrow Glyphs,
and Timeline methods against other published methods that analyze images and/or videos. A
yes indicates a (mostly) correct detection. The last row indicates the ratio of # correct to total.
Notice that none of the existing methods is able to provide correct detections in all of the videos.
In contrast Timelines provides correct detections in all eight videos.

method also failed in Figures 9 and 10. As mentioned earlier, the velocities in Figure 9

are also very low and per frame velocity analyses fail. In Figure 10, because the cam-

era is so far away, each pixel covers a much larger area and therefore less sensitive to

velocity changes.
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Figure 2.12: Optical flow method failed: The same frame as Figure 6(2) but using the method
from [1].

2.5.3.3 Comparison with Image Processing Method

The image processing method for rip detection described in [28] detects transient

rips in video feeds from a fixed webcam. Rips at this location are characterized by

discoloration in the water that extends some distance from shore. Based on the camera

orientation, the authors rectified the frames and set a threshold line some distance from

shore where any discoloration beyond that line is considered a rip. Given that this

method is designed to detect rips with sediment plumes, we expect that it should do

well with Figure 7, assuming that a threshold line has been set up as well. Indeed, this

is what we observe with this approach in Table 2.1. However, this method is specialize

to detect only this type of rip and does not detect other types of rips.

We provide Table 2.1 summarizing the performance of our methods and published

methods on the 8 rip current videos shown in this paper. We find that the published
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methods are each limited to a specific class of rip currents and none of the existing

methods are able to correctly label all videos. In contrast, all of the flow based visu-

alization methods work at least as well as the best alternate method, and Timelines in

particular is able to correctly identify the presence of rip currents in all 8 of the videos.

2.6 Implementation Notes

We implemented the methods above with C++ along with OpenCV library. We used

Alienware m3 R15 with RTX 2070 Super for computation, and it consumes roughly

1GB of memory. We used GPU acceleration mainly for optical flow computation,

and with a dedicated GPU, our method ran in real-time with 30 FPS on 1080x720

resolution.

2.7 Summary and Conclusion

We investigated rip currents detection using optical flow analysis on video clips.

This is complicated because rip currents are amorphous without well defined bound-

aries and ephemeral without well defined temporal bounds. The problem is further

complicated by the presence of a dominant quasi-periodic signal from wave motion. We

found that the straight-forward application of flow visualization methods did not yield

good results. The main contributions of this paper are the modifications to standard
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flow visualization methods in order to equip them with rip current detection capability

without which the detection is difficult or impossible. The modifications significantly

improved upon earlier flow based method both in terms of ability to detect subtle rips

and clarity in visualization. Our study also shows that our proposed flow based visual-

ization results in improved human judgements versus the existing dominant method of

viewing Timex images.

Flow-based approach is a valuable tool to have in our arsenal of rip detection meth-

ods. It is best suited for situations where a stable platform for a camera is available

e.g. surf cams. In such settings, site specific customizations e.g. placement of time-

lines can be employed to make the approach fully automated. The work presented here

has shown sufficient success that it will be deployed on the SECOORA network of

webcams.

The flow visualization techniques such as timelines, show great promise in visualiz-

ing rip currents. One of the things that we noticed in rip current videos is the appearance

of the rip current is very unique, compared to the other parts of the ocean. In Chapter

03, we look at a deep learning method that can find rip currents by using its appearance

as a method of learning.
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Chapter 3

Using Machine Learning to Detect Rip

Currents by Appearance

3.1 Introduction

Rip currents are the most significant safety risk to swimmers along the coastlines

of oceans, seas, and large lakes. [60, 6, 61]. The majority of beach goers do not know

how to identify rip currents, and there is no robust and reliable location-independent

method to identify them. Globally there are thousands of drownings each year due

to rip currents [7, 8]. A 20 year study by the US Lifesaving Association reports that

81.9% of the 37,000 beach rescues each year are due to rip currents [60]. Lifeguards

are often trained to identify rip currents. However the majority of drownings occur
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on beaches without trained personnel [21, 22]. Posted signs can provide a warning,

but there is evidence that most people do not find existing signs helpful in actually

identifying rip currents [23]. There has been no decline in the number of associated

drowning fatalities, despite warning signs and educational material.

Rip currents are a well-studied ocean phenomenon [15, 16, 14]. They are defined

as strong and narrow channels of fast-moving water that flow towards the sea from

beaches. When waves break, they form a “setup” or an increase in mean water level.

This setup can vary along a shoreline depending on the amount or height of breaking

waves. Rip currents form as water tends to flow alongshore from regions of high setup

(larger waves) to regions of lower setup (smaller waves) where currents converge to

form a seaward flowing rip. Furthermore, macrovortices, induced by alongshore un-

even wave breaking, may also be a contributing factor for rip current formation and

evolution. [62, 63, 64, 65]. The speed of seaward rips can be quite strong reaching 2

m/s, faster than an Olympic swimmer. There are multiple factors that determine the

location and strength of rips, such as bathymetry, wave height and direction, tide, and

beach shape. Rip currents may either be transient or persistent in space and time. Rips

that are frequently found at the same location are usually indicative of a fairly stable

bathymetric feature such as a sand bar or reef, or a hard structure such as rocky out-

crop, jetty or pier. These bathymetric features results in variations in wave breaking

and setup leading to channelized rip current flow. Transient or flash rips are indepen-
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dent of bathymetry and may move up or down the beach, and may appear or disappear.

Transient rips are best understood with respect to vorticity due to short-crested wave

breaking and the subsequent eddy coalescence [66, 67].

The Southeast Coastal Ocean Observing Regional Association (SECOORA) in part-

nership with the National Oceanic and Atmospheric Administration (NOAA) maintains

a network of coastal web cameras for different applications such as montoring wave

runup, human use of natural resources, and spotting rip currents [35]. These data are

supporting the validation of a rip current forecast model to alert people to potential haz-

ards [18]. The most commonly used method to visualize rip currents from video is time

averaging, summarizing a video as a single image [37]. However these time averages

when manually assessed can be misinterpreted. Furthermore, they are not readily avail-

able nor interpretable by the average beachgoers, and the process of averaging removes

available information.

In recent years the coastal engineering community has successfully used deep neu-

ral networks to solve many problems. Classification problems such as classifying wave

breaking in infrared imagery [68], beach scene and other landscape classification [69],

automated plankton image classification [70] and ocean front recognition [71] were for-

mulated as deep learning problems using convolutional neural networks. Furthermore,

some regression problems such as optical wave gauging [72], tracking remotely sensed

waves [73], typhoon forecasting [74] were also solved using deep neural networks. In
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addition, generative adversarial networks, a type of deep neural networks, were used to

improve the quality of downscaling of ocean remote sensing data [75].

Object detection with deep neural networks is well studied in the computer vision

community. However most benchmarks and research focus on detecting physical ob-

jects with boundaries between what is and is not an object [76, 77, 78]. Rip currents are

ephemeral “objects” which are not observable in every frame, and amorphous without

clearly defined boundaries even when observable. It is not clear whether existing meth-

ods are applicable. Figure 3.1 provides a set of examples, illustrating the difficulty of

the problem. In some of the images rip currents are clearly visible while in some it is

difficult for a layperson to recognize the presence of a rip current.

Our work is aimed at introducing this problem to the coastal engineering commu-

nity, and showing that object detection methods are applicable. We gathered training

data of rip currents and labelled those with bounding boxes indicating the location of

the rip current with a co-author who is a rip current researcher at NOAA. We use Faster

R-CNN [79] with a custom temporal aggregation stage that allowed us to achieve detec-

tion accuracy that is higher than both humans and other methods of rip current detection

previously reported in the literature.

The remainder of the paper is organized as follows. All the related work is sum-

marized in Section 3.2. We discuss how the data was collected in Section 3.3. Our

method is discussed in 3.4. Results are discussed in 3.5. Limitations and discussion are
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Figure 3.1: Beach Scenes: A collection of beach scenes, some of which contain rip currents.
Unfortunately these rip current “objects” do not have clear shape, and most people find them
hard to identify.

in Section 3.6. In Section 3.7 we conclude our paper. And in Appendix 3.8 we provide

the link to the supplementary materials.

3.2 Related Work

Rip currents can be observed using both in situ and remote sensing methods. Among

the in situ methods, wave sensors, acoustic velocimeters, or current profilers can be de-

ployed at specific locations [25, 26, 27, 80]. Floating drifters with embedded GPS units

have also been used to measure currents [33, 61, 34]. These methods are costly, time

consuming, require technical expertise and are generally only applicable to highly lo-

calized instances in time and space. These limitations severely hinder the applicability

of such approaches to both public warnings and model validation. In comparison, re-
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mote sensing technologies such as satellite, air-borne, and ground-based imaging as

well as radar imaging provide more coverage and less expensive (e.g. web cameras)

alternatives [81, 82]. A hybrid approach of adding fluorescein dye into the water and

observing its dispersion using aerial video provides dramatic visualization of rip cur-

rents [29, 30, 31, 32].

Time averaged images are a routine method for analyzing video in oceanic research,

with 10 minutes being a common integration period [36, 37, 38, 83]. This method

is popular because averages often make identification of rip channels easier for the

human eye. While these images are usually intended for human interpretation, Maryan

et. al. apply shallow machine learning to recognize rip channels in time averaged

images [3]. Nelko also used time averaged images and noted that prediction schemes

developed at one beach location may not be directly applicable to another without some

modifications [41]. Haller introduced wave averaging to enhance the detection of rip

currents in microwave data; an approach which could also be applied to imagery data

[81].

Dense optical flow [43, 44] has been used to detect rip currents in video [84]. This

method is attractive since optical flow fields can be directly compared against ground

truth flow fields obtained from in situ measurements [45]. Unfortunately these meth-

ods are sensitive to camera perturbation, and have difficulty in areas lacking textural

information.
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Figure 3.2: Training Data: Examples drawn from the 2440 images we collected and labeled to
build a training data set. Ground truth bounding boxes are shown in red.

Certain kinds of rip currents are characterized by visible sediment plumes. These

can be segmented based on changes in coloration. For example, Liu et al., use thresh-

olding in HSV color space to detect rip currents [80]. Unfortunately, not all rip currents

contain sediment plumes, and thus this method is not applicable to our data sets.

Object detection in images is well studied in the computer vision literature [85, 86,

87, 88, 89]. These methods have been extended to detect objects in videos [90, 91, 92].

However, with the exception of Maryan et al. [3] which performs detection based on

time averaged images, and Liu et al. [80] which performs detection based on color

segmentation, they have not been applied to crisp images or videos for the purpose of

rip current detection.

47



3.3 Data sets

3.3.1 Training Data

Since rip currents are a new problem domain for computer vision, we did not find

any existing public databases of rip current images. Therefore, we assembled a train-

ing data set of rip current images and non-rip current images from scratch. Our pri-

mary source for the database was Google EarthT M, which allowed us to extract high-

resolution aerial images of rip currents and non-rip currents. In total, the database

contains 1740 images of rip currents and 700 images of similar beach scenes without

rip currents. The images range in size from 1086 × 916 pixels to 234 × 234 pixels.

We annotated ground truth in the rip current images with axis-aligned bounding boxes:

where the x axis and y axis of the bounding box is aligned with the x axis and y axis

of the image. Some examples of the training data set are shown in Figure 3.2. Note

that this data set contains unambiguous easy examples. We used this training data for

training models described in Section 3.4.

3.3.2 Test Data

We also collected a data set of 23 video clips consisting of 18042 frames in total.

Of those, there are a total of 9053 frames with and 8989 frames without rip currents.

Image size varies from 1280 × 720 pixels to 1080 × 920 pixels. We used the bounding
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boxes labelled on each image as the ground truth. Figure 3.1 contains both positive and

negative example frames, as well as a few frames from the training set that might be

mistaken as containing a rip current. Note that this set contains more difficult cases.

The frames of this video data set were used for testing. Note that the static images in

the training set were taken from high elevation while the videos used to test the model

were taken from a lower perspective. Even so, the trained model performed well on the

test frames from the video collection.

3.4 Method

3.4.1 Deep Learning

Deep learning methods have recently been used in many computer vision tasks.

These methods have taken over many traditional shallow machine learning methods

such as support vector machines, random forests, etc. [93, 94, 95, 96, 97, 98]. How-

ever, deep learning models require careful tuning of hyperparameters, which determine

the deep learning model architecture. Multiple sensitivity analysis experiments are of-

ten needed to optimize hyperparameters for a particular model and task. Also, deep

learning models are costly to train, usually taking days and many dedicated computa-

tion resources such as GPUs (Graphis Processing Units) or TPUs (Tensor Processing

Units).

49



Classification

Regression

1: rip
0: no rip

x
y
h
w

rip

w

h

(x,y)

Feature 
MapCNN Fully Connected 

LayerInput Image Output Image

Figure 3.3: Architecture of Faster R-CNN: Classification and Regression branch. CNN rep-
resents the convolutional neural network.

Unlike deep learning methods, traditional machine learning methods require a fair

amount of human feature engineering by a domain expert, such as the features created

by Maryan et al. [3] for the rip current detection task. Features engineered by humans

may not be the most optimal. In deep learning, the algorithm learns the most optimal

features through gradient decent that are necessary for the given task.

Even with a high computation cost of training, deep learning models learn a large

number of parameters compared to traditional machine learning models, resulting in a

higher accuracy in complex vision problems. Deep learning methods such as region

based convolutional neural networks have out-performed traditional machine learning

methods in many vision tasks, such as object detection [99, 3, 100]

3.4.2 Static Image Detector: Faster R-CNN

Region-based convolutional neural networks have achieved great success in object

detection problems. These object detection models usually consist of separate clas-
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sification and localization networks with a shared feature extraction network. In the

computer vision community, Faster R-CNN is generally considered as the most accu-

rate object detector [101]. Many critical applications such as fire detectors [102] and

pedestrian detectors [103], successfully use Faster R-CNN. Also, many medical appli-

cations such as detecting cervical spinal cord injury and disc degeneration detection

[104], breast cancer detection [105], malaria cell detection [106] use Faster R-CNN

as their underlying object detector. Therefore, we choose Faster R-CNN as our single

image detector.

The first is the deep convolutional neural network that proposes regions. The second

is the Fast R-CNN detector [107]. Faster R-CNN follows the traditional object detection

pipeline. It first generates region proposals, and then categorizes each proposal as either

rip current or background. Secondly, the classified bounding boxes are further refined.

Essentially, the model learns a mapping from the generated regions to the actual ground

truth with a regression network. The model then uses this mapping “function” during

testing to refine the generated region. These refined bounding boxes can be anywhere

in a frame as features are translation invariant [79]. If there is more than one bounding

box detected in a frame, we only keep track of the largest one and ignore any additional

boxes.

As shown in Figure 3.3 the convolutional neural network (CNN) consists of five

hierarchical blocks. Each block consists of convolutional layers followed by a max
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pooling layer. The convolutional layers generate features by applying filters to the

input. After which the output is fed into a max pooling layer where the feature map is

down-sampled by only keeping the maximum values within a region. These two steps

are repeated in the five blocks of the CNN, resulting in the final feature map.

Multiple regions from the input image are then projected onto the feature map.

These regions are generated as a rectangle with predefined proportions and positions.

These regions have a predefined area of 642 pixels, 1282 pixels and 2562 pixels. Each

region is generated as an rectangle with three different aspect ratios for length and

width: 1 : 1 , 1 : 2 , 2 : 1, resulting in nine different regions. These regions are then

positioned on a regular grid by generating the nine regions centering round each grid

point. The regions that fall beyond the boundary of the image are ignored. The asso-

ciated features for these regions are then fed into the fully connected layers where the

decisions are made. The classification branch predicts if the region is a rip current or

not. If the classification branch classifies the region as a rip current then the regression

branch further refines the position and the size of the detected rip current.

We trained the Faster R-CNN model with the training data discussed in section

3.3.1. Before training, each image was augmented by rotating 90◦ degrees clockwise

and counter clockwise, producing a training data set three times the size of the original

training data set. All the training data was resized to 300 × 300 pixels before training

to save computation time. We used bi-cubic interpolation to resize the images.
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3.4.3 Frame Aggregation

Static object detection models only consider the information in the frame currently

being processed. However, rip currents are natural ocean phenomena, with shape and

texture change depending on many external factors such as weather, wind speed, wave

field characteristics, water flow speed, floating debris, and dirt sediments. The exact

boundaries of a rip current are not well defined. This is different than objects with

well-defined edges such as pedestrians or vehicles. Applying detection algorithms to

objects with amorphous boundaries such as rip currents produces bounding boxes with

variable sizes and locations in adjacent video frames. In Figure 3.4 we illustrate this

variability by drawing all correctly detected bounding boxes from one video sequence

onto a single frame.

This variability affects overall accuracy, and would not instill confidence in the

results if these bounding boxes were presented to a user as a video overlay. Thus we

investigate temporal smoothing and aggregation to improve the results.

We find the overlapping regions of the detected bounding boxes by using an accu-

mulation buffer with the same size as the input frame and initialized as a zero matrix.

We consider a temporal window of N frames to build the accumulation buffer. In the

first N−1 frames, the accumulation buffer is incremented by 1 for each region within a

detection bounding box. Starting with frame N, the area covered by a detection bound-

ing box is incremented by 1 and capped at a maximum of N. Regions not covered by a
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Figure 3.4: Bouding boxes: The bounding boxes marking the boundaries of detected rip cur-
rents from individual frames of a video segment are superimposed onto the most recent frame.
Note how the bounding boxes from individual frames may move and/or change shape

Figure 3.5: Frame aggregation for a window of length N. First row shows the input frame
sequence. Second row shows the detections from Faster R-CNN. Third row shows the accumu-
lation buffer.
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Figure 3.6: Accumulation Buffer: A visualization of the resulting accumulation buffer values.
Regions with a higher value are shown in more opaque red. The resulting bounding box around
thresholded values is shown in solid dark red. The full video can be seen in the supplementary
material in appendix 3.8

Figure 3.7: Frame aggregation stabilizes the video: Plots showing the differences in area and
center of bounding boxes in consecutive frames. Without frame aggregation (in red) there are
much higher differences in bounding box sizes and positions than there is after frame aggrega-
tion (in blue).
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detection bounding box are decremented by 1, but retains a minimum of 0 in the accu-

mulation buffer. In effect, the accumulation buffer keeps track of the bounding boxes

using a sliding window of N frames. The process of building the accumulation buffer

is illustrated in Figure 3.5, where areas with higher values are displayed as darker re-

gions in the accumulation buffer. For purposes of identifying a single bounding box

over the collection of bounding boxes across N frames, we consider only the regions

of the accumulation buffer where the value is at least T , and draw the tightest possible

axis-aligned bounding box around this region (see Figure 3.6). This is the aggregated

detection. In our implementation we use N=60 and T=30.

Before frame aggregation, large variations in bounding box size occur in almost all

consecutive frames, shown in Figure 3.7 top. After frame aggregation, the average size

change is much smaller, with most frames having zero change in size from the prior

frame. The variation in position of the bounding boxes is similarly reduced by frame

aggregation, as seen in Figure 3.7 bottom. This improved temporal coherence provides

a smoother and more consistent portrayal of the rip current location when shown as an

overlay on the video.

When analyzing video clips, our method analyzes individual frames and places a

bounding box around detected rip currents. Since analysis is on a per frame basis, the

bounding boxes may move from frame to frame. In addition, it’s possible that a rip

current may not be detected in a particular frame. However, with our proposed frame
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Figure 3.8: Detections: Rip current detections on some of the frames from the test data set.
Red bounding boxes show the correctly detected rip currents. Blue bounding boxes show the
ground truth. Frames without bounding boxes do not contain any rip currents.

aggregation strategy, instances when a few frames where the rip is not detected (false

negative), or when there’s a sudden change in the location or size of the bounding box

(false positive) are both handled gracefully.
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. Human Philip [84] Maryan [3] Maryan F-RCNN F-RCNN+FA

[modified] [ours] [ours]

rip 01.mp4 0.976 0.895 0.358 0.460 0.966 1.000

rip 02.mp4 0.700 0.098 0.698 0.135 0.776 0.860

rip 03.mp4 0.231 0.347 0.194 0.540 0.831 0.950

rip 04.mp4 0.757 0.800 0.487 0.780 0.939 0.970

rip 05.mp4 0.883 0.280 0.736 0.450 0.834 0.957

rip 06.mp4 0.881 0.000 0.167 0.470 0.753 0.890

rip 08.mp4 0.492 0.063 0.328 0.730 0.860 0.850

rip 11.mp4 0.824 0.000 0.563 0.940 0.930 0.951

rip 12.mp4 1.000 0.000 0.734 1.000 1.000 1.000

rip 15.mp4 0.967 0.137 0.315 0.390 0.760 0.870

rip 16.mp4 0.614 0.073 0.468 0.640 0.820 0.920

rip 17.mp4 1.000 0.321 0.064 0.750 0.980 1.000

rip 18.mp4 0.563 0.218 0.250 0.240 0.790 0.890

rip 21.mp4 0.901 0.543 0.486 0.180 0.940 1.000

rip 22.mp4 0.583 0.000 0.479 0.395 0.880 0.974

no rip 01.mp4 0.986 0.169 0.000 0.972 0.813 1.000

no rip 02.mp4 1.000 0.789 0.000 0.985 0.807 1.000

no rip 03.mp4 0.919 0.000 0.000 0.981 0.984 1.000

no rip 04.mp4 0.952 0.000 0.000 0.974 0.835 1.000

no rip 05.mp4 0.903 0.000 0.000 0.986 0.833 1.000

no rip 06.mp4 1.000 0.246 0.000 0.986 0.875 1.000

no rip 07.mp4 0.983 0.525 0.000 0.982 0.875 1.000

no rip 11.mp4 0.988 0.198 0.000 0.964 0.924 1.000

average accuracy 0.760 0.307 0.210 0.729 0.884 0.984

Table 3.1: Accuracy for each video in the test set. Column 3: Maryan[3] is trained on their
training data. Column 4: Maryan [modified] is trained on our training data. The F-RCNN
method has higher overall accuracy than humans or any of the prior methods tested. Frame
aggregation does contribute to improvement in accuracy.
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3.5 Results

We compared the accuracy of our method with human observers as well as two prior

methods. We also compared our own method with and without temporal aggregation.

Comparison metric. All methods were tested using the video data set. Frames

were labeled as correctly classified if the detected bounding boxes have an Intersec-

tion over Union (IoU) [108] score versus ground truth above 0.3. IoU is calculated

as area o f intersection/area o f union of the ground truth and the detected bounding

boxes. Accuracy of the video was computed as correct labels/total f rames, and Ta-

ble 3.1 provides the results for all methods. Since rip currents do not have a well-defined

boundary the scale of ground truth bounding boxes has some uncertainty. Therefore, the

predicted bounding box does not need to closely match with the ground truth bound-

ing box for a detection to be marked as correct. Because of this we choose a lower

IoU threshold than detecting objects with well defined boundaries such as cars or tanks

[79]. We visually verified that even with a lower IoU threshold the detected bounding

box shows the location of the rip current. Also, we used this IoU threshold across all

methods in Table 3.1.

Humans. One of the primary reasons for an automated method of rip current de-

tection is that most people are not good at identifying rip currents [23]. To measure

human accuracy of identifying rip currents, annotators were asked to draw bounding

boxes around places they believe to have rip currents. We sampled every tenth frame
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from our video test set and randomized presentation order across all positive and nega-

tive examples. Human annotators were not carefully trained, instead they were provided

three positive and three negative examples, roughly the amount of information which

might fit on a sign at the beach. Annotators were acquired using Mechanical Turk, an

online market where jobs are posted for workers [109, 110], with basic screening for

reliable workers, and paid $0.10 per image.

Although human performance was relatively poor with only 76% of frames labeled

correctly, it was higher than we expected based on past studies [23]. We hypothesize

that the sample images showing both locations of rip currents and absence of rip cur-

rents are more effective than warning signs alone.

Time averaged images. Maryan et al. [3] perform detection on time averaged im-

ages using a boosted cascade of simple Haar like features [89]. We used Maryan’s time

averaged data for training since our training data set consists of only static frames. Test-

ing was performed by first computing time averaged images on each video in our test

data set. This method did not perform well. In order to determine if the cause was the

images available for training or the model itself, we repeated the experiment with new

data. We replaced the relatively small number of low resolution time-averaged images

from [3] with the static images from our training data set. Testing this time was against

single frames in our test data . This modification is called Maryan[modified] in Table

3.1. When using our training data the model accuracy improved considerably, leading
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us to conclude that appropriate training data is critical to good results. Furthermore, it

suggests further investigation on whether using crisp images, rather than time averaged

images, to train a model might produce more accurate results.

In our test images/videos the beach is always located at the bottom half of the im-

age/video. However, the training data used by [3] was cropped from images where

the beach is located in the top half of the image. Therefore, we were concerned that

the difference of orientation between the training data and the test data contributed to

the low accuracy of the model. However, when we retrained the model with vertically

flipped training data we did not see any significant difference in accuracy on our test im-

ages/videos. We hypothesize that the reason for this is that the cropped training images

contain insignificant amount of beach pixels.

Optical flow. Philip et al. [84] compute optical flow on video sequences and make

the simplifying assumption that rip currents can be identified by regions with the second

most predominant flow direction, after that of the primary incoming wave direction, and

that they flow in a single seaward direction. This results in regions of actual rip cur-

rents, but also picks up swash regions where water is washed up the beach and back out

to sea with the passing of each wave. This method was introduced with the primary in-

tention of providing visualizations to users, rather than automated detection. To allow

comparison, we modify the method to return a bounding box around the largest de-

tected region, ignoring smaller regions which are less likely to be correct. This method
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performed poorly on our test data. We noticed that in videos where there is not enough

textural information on the rip current, the optical flow field generated was weak, lead-

ing to either missed detections or detection in other regions of the video with stronger

texture.

Frame aggregation. We implemented frame aggregation as a post process to Faster

R-CNN initially to temporally stabilize detections, driven by a need for user inter-

pretable visualization of rip current location.

In order to understand whether temporal smoothing also increased accuracy we an-

alyzed our implementation both with and without frame aggregation. We found that

temporal aggregation leads to higher accuracy than using Faster R-CNN alone. Exam-

ple detection results are shown in Figure 3.8. Numerical comparison of humans, prior

methods, and our model are provided in Table 3.1. Faster R-CNN with frame aggrega-

tion had the highest accuracy in nearly all cases, and the highest overall (last column of

Table 3.1). For visual comparisons we have added all the results in the supplementary

materials at appendix 3.8.

3.6 Discussion and Future Work

As with all machine learning models, our implementation can fail when used with

images that do not resemble the training data set. Our data sets included primarily rip

currents characterized by a gap in breaking waves, the most common visual indicator
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Figure 3.9: Example failure cases. The false positives on the beach scene (right) are not easily
explainable. The false positive on the left scene happens only on spurious frames, which is then
corrected by frame aggregation.

for bathymetry controlled rip currents. Thus we would expect to miss rip currents with

other visual indicators like sediment plumes. We also expect to fail when presented

with new imagery, and occasionally for no apparent reason at all, as seen in Figure 3.9.

Sensitivity Analysis. Sensitivity analysis experiments were conducted to determine

the optimal values for parameters N and T used in frame aggregation (Section 3.4.3),

training data and number of training iterations. Figure 3.10 shows the average accura-

cies of rip current detection from our test data using different values of N and T . The

smallest N(= 60) and T (= 30) with the highest accuracy was chosen as the optimal N

and T . By choosing the smallest N and T we are able to save on computation time as

well.

Further experiments were conducted to determine the optimal amount of data needed

to train the model. The model was trained with 25%, 50% and 100% of the training

data. At each stage, the accuracy on the test data was recorded. Training the model
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Figure 3.10: Sensitivity Analysis: Heatmap of accuracy values for parameters N frames and
threshold T.

with the full training data set lead to the highest accuracy as shown in Figure 3.11. Ex-

periments were also conducted on when to stop training our model. The accuracy of

the model on the test data was recorded at different training epochs. The training was

stopped at epoch 60 when the accuracy plateaued as shown in Figure 3.12.

We did not conduct a sensitivity analysis of the hyperparameters of the network.

We relied on the sensitivity analysis conducted by the authors of Faster R-CNN [79] to

determine the network’s optimal hyperparameters.

With frame aggregation the accuracy for test data without rip currents was high

compared to the accuracy for test data with rip currents. Since frame aggregation takes

into account the prior N detections, we can easily filter out spurious detections, leading
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Figure 3.12: Optimal training epochs: Accuracy for testing data on each training epoch

65



to a higher accuracy for test data without rip currents.

We noticed that for one video, rip 08.mp4, frame aggregation did not improve the

accuracy. For rip 08.mp4, the placement of bounding boxes identifying the rip cur-

rent from individual frames by F-RCNN is more spread out. This leads to smaller over

lapping regions of bounding boxes. When used with frame aggregation, the resulting

bounding box is smaller than the bounding box without frame aggregation. This pro-

duces a more conservative estimate of the size of of the rip but similar “confidence” of

its location using the same IOU threshold.

The frame aggregation method discussed in Section 3.4.3 works well when the rip

current is fairly stationary relative to the camera. Specifically, with N = 60 frames

and a frame rate of 30 frames per second, we are assuming that the rip current is in

the same location over a 2 second interval of the video. This assumption is generally

true for video captured from stationary cameras such as CCTV or web cameras. If the

video were captured using mobile devices such as smartphones or drones where the rip

current moves a significant amount within the frame, additional information such as the

camera’s accelerometer and GPS can possibly be incorporated in the processing. This

is a subject for future work.

We are aware that there is an array of single image object detectors in computer

vision literature that we did not train our model on. Due to the time (usually 3-6 days)

and GPU resources required to train the model, it is infeasible to train our model us-
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ing many different types of object detection approaches. Therefore we relied on prior

work on similar critical applications to determine what our single image object detector

should be. We have cited those prior applications in section 3.4.2.

It is challenging to explain why a particular deep learning system produces a certain

result. A whole academic field has been formed around explainability in deep learning

and AI systems. For instance, why the model fails to detect a rip current even though

there is a visible rip current to the human observer in the frame?. We attempt to explain

the variability in the model’s accuracy values by visualizing the input image in the

feature space similar to the works of [111] and [112]. As an example, we choose frames

0 and 833 of rip 21.mp4. For both frames, there is a visible rip current observable to

the human expert. For frame 0, the model detects a rip current (true positive), but for

frame 833, it fails to detect a rip current (false negative). By observing the input images

in the feature space as shown in Figure 3.13, we can see that for frame 0, the features

resemble a rip current, and for frame 833, the features do not resemble a rip current.

We attribute the true positive detection for frame 0 to the strong signal generated by the

features. Similarly, we can attribute the false negative of frame 833 to the weak signal

generated by its features.

We also noticed that Maryan et al. [3] did not perform well in non-rip current cases

as shown in Maryan[3] column in Table 3.1. After further study we realized that the

test set they used contained almost entirely of images with rip currents. We think that
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Figure 3.13: Explainable rip detector: Visualization of frame 0 and frame 833 of rip 21.mp4
in feature space
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the model proposed by Maryan was not extensively tested on non-rip current images,

which accounted for its poor performance for such conditions.

We did not do transfer learning to train our model. Transfer learning is a machine

learning technique where the parameters and weights learned in one problem are used as

the initial values for training another model on a different problem [113]. This strategy

can significantly reduce training time and is useful when the two problems belong to

similar domains e.g. detecting cars vs detecting tanks. We were not able to exploit this

strategy in training our models as we could not find a deep learning model that was

trained on a domain somewhat similar to detecting rip currents. Note that the method

proposed by Maryan et al. [3] is not a deep learning method and hence not applicable

here.

We found it difficult to compare our method with prior work and verify that our

model performs well in all conditions previously researched, due to a lack of public

data sets on which to verify our results. In order to ensure that future work has a

baseline from which to compare, our data sets with thousands of labeled frames are

available as part of the supplementary material. Nevertheless our data sets are still

limited. The accuracy numbers presented in this paper are correct on this limited data,

but almost certainly overstate probable outcomes in real world deployment. We expect

that future work will need to collect more examples including less common rip current

visual presentation, a greater variety of scales, and a wider array of beach distractors.
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Lastly, our work can benefit from a re-examination of the IoU metric employed by

our algorithm. Certainly IoU, true positive rate, mean average precision (mAP), and the

like are common in computer vision research, but these are usually used in the context

of detection based on appearance rather than on behavior. It would be interesting to

study how deep learning methods can be trained to recognize rip current behavior using

a metric that incorporates a temporal dimension.

3.7 Conclusion

In this chapter we presented a machine learning approach for identifying rip currents

automatically. We use Faster R-CNN and a custom temporal aggregation stage to make

detections from still images or videos with higher measured accuracy than both humans

and other methods of rip current detection previously reported in the literature.

Although, using apperance shows great promise in finding rip currents, some rip

currents are not governed by apperance. In such instances our method fails to detect

rip currents. Therefore, in Chapter 4, we explore the use of pathlines in an machine

learning method to find rip currents.
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3.8 Appendix

In order to encourage progress in this domain, both training and test data sets will be

made available to the public. Supplementary material including the results to this article

can be found online at https://sites.google.com/view/ripcurrentdetection/

home
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Chapter 4

RipViz: Finding Rip Currents by

Learning Pathline Behavior

4.1 Introduction

Figure 4.1: Rip currents are deadly but remain invisible to many: We propose a feature de-
tection method, RipViz, to make these invisible rip currents visible. RipViz highlights locations
of rip currents as a red region. This region is determined by finding seed points that produce
pathline sequences deviating from normal ocean flow. Non-experts and experts alike can use
RipViz to visualize rip currents.
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Rip currents are powerful, narrow channels of fast-moving water flowing towards

the sea from the nearshore [15, 61, 114, 115]. The speed of seaward rips can be very

strong, reaching two meters per second, faster than an Olympic swimmer. They are

a dangerous beach hazard that most people do not recognize. As a result, there are

thousands of drownings each year due to rip currents globally [116, 117]. The goal

of this work is to improve public safety by helping the beachgoers see the rip currents

when they are present.

The mechanism for rip currents is an increase in the mean water level, referred to as

setup, which occurs when waves break against the shore. This setup can vary along a

shoreline depending on the amount of water or height of breaking waves. Rip currents

form as water tends to flow from regions of high setup (larger waves) to regions of

lower setup (smaller waves), where currents converge to form a seaward flowing rip.

Detecting rip currents with machine learning (ML) is challenging because there

are different types of rips, each with a different appearance. The three major factors

that lead to different types of rips are the shape of the shoreline, the bathymetry, and

hydrodynamic factors (e.g., wave height and direction, tides). The combination of these

lead to rip currents with different visual signatures. Rips may also either be transient or

persistent in space and time. Detecting rip currents pose unique challenges compared to

detecting other objects such as cars, or people, etc. Rips are amorphous without a well

defined shape or boundary, and are ephemeral without well defined temporal bounds.
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Using an object detector, such as those included in a recent survey [118], would

require a substantial training dataset for each type of rip current. To date, there are only

two publicly available training datasets for rip detection: individually labeled frames

[119] and time averaged images [3], both of the same type of rip current. There are no

existing training dataset for other types of rip.

By nature, rips always eventually flow seaward regardless of their visual appear-

ance. Therefore, we propose a novel hybrid approach that incorporates flow analysis

with ML for rip detection, rather than relying on image colors. We also propose encod-

ing rips as locations with anomalous flow behavior, transforming the detection task into

differentiating normal from anomalous behavior. This greatly simplifies the collection

of training data since only a single dataset is needed.

There are two existing approaches to detecting rip currents from stationary videos.

The first approach uses the appearance of rip currents to detect them. This includes

human experts analyzing time-averaged (Timex) video or running automated object

detectors [119, 3, 120, 121] to detect rip currents. The second approach relies on flow

analysis, where the flow behavior of ocean waves is analyzed to detect rip currents.

Direction-based clustering of flow vectors [122, 123] and timelines [123] placed paral-

lel to the beach are used in this approach. While able to detect weaker rip currents or

those where the appearance is not obvious, timelines require user input to specify their

initial placement.
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In this paper, we introduce RipViz, a fully automated, hybrid of deep learning and

flow analysis, feature detection method to find rip currents, as shown in Figure 4.1. We

first obtain the time varying flow field from a stationary video using optical flow. We

use pathline sequences to capture the flow behavior. One could simply seed pathlines

at every point and trace each of them for the duration of the video. However, due to the

quasi-periodic nature of wave activity, this simple approach produces too much clutter

to be of much use as shown in Figure 4.2. Furthermore, pathlines integrated over the

full length of the video accumulate more error, especially in noisy real world datasets.

Instead, we generate sequence of shorter pathlines for each seed point. By staggering

the initiation of pathlines, our expectation is that pathline sequences outside the rip zone

will behave differently. For example, pathlines seeded in the surf zone where the waves

are breaking will have large variations in their trajectories. Pathlines seeded further out

to sea, on the beach, and sky would be fairly still. Pathlines seeded within the rip zone

will have less variations in their trajectories yet will be different from the stationary

ones.

In RipViz, we frame detecting rip currents as a flow anomaly detection problem.

An LSTM autoencoder with a custom weighted loss function is used to learn the spa-

tiotemporal features of pathline sequences for normal ocean flow (i.e. not rip currents).

The trained LSTM autoencoder can predict anomalous pathline sequences (i.e. rip cur-

rents) during test time. The origination points of anomalous pathlines are identified and
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Figure 4.2: Long pathlines get cluttered making it difficult for ML to learn: Left pane shows
longer pathlines integrated over the entire length of the video. Shorter pathlines, integrated over
900 time steps are shown in the right pane. Longer pathlines are much more cluttered and noisy,
making it difficult for ML algorithms to learn its behavior. Notice the relatively large amount of
noisy pathlines in the sky and the beach of the left pane. The pathlines are colored by age with
yellow representing most recent.

highlighted as a means of visualizing the rip zone. Our target users are general public

who are not familiar with rip current dynamics nor visual analytic systems. Hence, our

design for the visualization output is to make it as simple and unambiguous as possible.

The main contribution of this chapter is:

• A hybrid feature detection method that combines machine learning and flow anal-

ysis techniques to automatically find and visualize dangerous rip currents.

In order to realize this, the following innovations are necessary:

• For flow fields with a quasi-periodic behavior, such as ocean flow, working with
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a sequence of shorter pathlines is better than a single long pathline.

• A weighted binary cross entropy, unlike the unweighted binary cross entropy

used in previous works, is more effective when learning from sparsely distributed

pathlines generated from ocean flow.

4.2 Related Work

Streamline Selection: Streamline selection and seed placement are well studied in

flow visualization. Sane et al. [124] provide a survey of the body of work over the last

two decades. These works share overlapping goals with research on streamline cluster-

ing [125], and flow simplification [126]. Each aims to produce an uncluttered presen-

tation of the flow field while still capturing the essential flow features and behaviors.

For example, Marchesin et al. [127] proposed dynamically selecting a set of stream-

lines that leads to intelligible and uncluttered streamline selection. Ma et al. [128] used

an importance-driven approach to view-dependent streamline selection that guarantees

coherent streamline update when the view changes gradually. Yu et al. [129] proposed

hierarchical streamline bundles by producing streamlines near critical points without

enforcing dense seeding throughout the volume. They grouped the streamlines to form

a hierarchy from which they extracted streamline bundles at different levels of detail.

Tao et al.[130] proposed two interrelated channels between candidate streamlines and
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sample viewpoints. They selected streamlines by taking into account their contribu-

tion to all sample viewpoints. However, the methods mentioned above use handcrafted

features to define the feature representation of streamlines. Handcrafting features to

represent pathlines in complex unsteady flow fields, such as ocean flow fields, is a chal-

lenging task. In contrast, the method presented in this paper learns complex feature

representations without the need for handcrafted features.

Deep Learning for Flow Visualization: In recent years, the visualization community

has worked with ML in two ways: visualization to understand the ML model, and use

of ML in visualization tasks. On the latter, particularly for flow visualization tasks,

Berenjkoub et al.[131] used U-net, a deep learning neural network, to identify vortex

boundaries. Kim and Günther [132] used a neural network to extract a steady reference

frame from an unsteady vector field. Han et al. [133] used an autoencoder-based deep

learning model, FlowNet, to learn feature representations of streamlines in 3D steady

flow fields which are then used to cluster the streamlines. They used longer streamlines

that were integrated through the entire extent of the data. Furthermore, they used one

streamline per seed point. The work presented in this paper uses a sequence of pathlines

per seed point to learn the flow behavior from noisy unsteady 2D flow fields. This

work uses an LSTM autoencoder to detect anomalous pathline sequences from noisy

unsteady 2D flow fields.

Rip Current Detection: Traditional rip current detection generally involves in-situ
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instrumentation such as GPS-equipped drifters and current meters [134, 115]. Remote

sensing of rip currents is also possible with aerial imaging of the spread of fluorescein

dye in the rip zone captured by drones, and the use of marine radar [135, 134]. These

require expensive equipment or a team of observers which makes them impractical

for rip current monitoring or detection purposes. However, with simple optical video

capture such as from surf webcams, it is possible to detect certain rip currents using

a time-space (timestack) display or a simulated long time exposure images (timex)

display [136]. Timex images reveal rip locations as darker regions in the image that

correspond to deeper channels in the bathymetry where water may flow seaward. In

contrast, incoming water associated with the breaking waves in the surf zone appear

much brighter in timex images. This type of rip is referred to as bathymetry controlled

rips and are characterized by a quiet region in the rip channel that is flanked by breaking

waves on either side. Interpreting timex images require some domain expertise. Maryan

et al. [3] used a Viola-Jones framework to train their model on timex images, and

indicate the location of the rips via bounding boxes. Likewise, Rashid et al. [120, 121]

also used timex images but utilized a modified version of the Tiny-Yolo V3 architecture.

Similarly, Ellis and McGill [137] used timex images in conjunction with environmental

information such as tides, wave height, and period to cluster offshore movements to rip

currents. However, their method produced false positives in situations where non-water

objects such as surfers, paddle boarders, etc., are also moving offshore. Rather than
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Figure 4.3: RipViz pipeline: First, an optical flow field was generated from the input video
(magnitude and direction of velocities are mapped to value and hue, respectively.) Then pathline
sequences were generated for each seed point in non-rip regions (only three seed points are
shown) where a new pathline is seeded at every frame. Finally, an LSTM autoencoder was
trained with these pathline sequences generated from non-rip regions. For rip detection, the
trained LSTM autoencoder is used to detect anomalous pathline sequences by regularly seeding
the video frame. We then applied a region growing algorithm to the anomalous points to find
the anomalous region, while filtering out singleton seeds.

working with timex images, de Silva et al. [119] trained a Faster R-CNN model with

a accumulation buffer to detect bathymetry rips using individual frames of the video.

All of these methods detect bathymetry rips based on the appearance of the sea state.

However, in instances where appearance is different or weak, these methods fail to

detect rip currents.

An alternative approach is to detect rips based on the observed behavior. Philip

and Pang [122] obtained an unsteady flow field from the video and hypothesized that

the rip current is directly opposite the dominant flow in the vector field due to the
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incoming wave motion. They grouped vectors based on the direction and magnitude

to visualize the rip current. Mori et al.[123] used a similar approach to group vectors

and improved the visualization of the rip current by mapping direction to color and

magnitude to hue. In the same work, Mori et al.[123] also used timelines to visualize

rip currents. They placed timelines parallel to the beach and observed its shape as it

gets dragged by the rip current. The work presented in this paper also uses optical

video of the sea state to detect rip currents. The underlying approach is also based on

the flow behavior, and hence not constrained to detecting bathymetry rips. However,

the presented methodology in this paper is the first to propose combining ML and flow

analysis to detect different types of rip currents. Because detection is based on treating

flow behavior in rip currents as anomalous, the task of collecting and labeling training

data for an ML model is unified and simplified. In contrast, a standard ML rip detection

model would require a training data set for each type of rip current – a costly and time

consuming process.

Autoencoders: Autoencoders are a type of neural network that can learn object rep-

resentations without any supervision [138, 139]. Autoencoders are trained with a loss

function that compares the input and reconstructed output by using a reconstruction

error. Long short term memory (LSTM) autoencoders are a specialized type of autoen-

coder that can learn from sequential data. These types of autoencoders are equipped

with LSTM layers that can learn how data is temporally related. Furthermore, autoen-
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coders are also used as anomaly detectors[140]. For anomaly detection, autoencoders

are first trained with normal data. When presented with anomalous data, the trained

autoencoder will produce a high reconstruction error. We exploit this property to detect

anomalous flow behavior.

The flow visualization community has used autoencoders to find feature repre-

sentations of objects that then can be used for clustering. In their work, Han et al.

[133] proposed to learn feature representation of streamlines and stream surfaces of

3D steady flow fields by using an autoencoder with a binary cross-entropy function.

They then further reduced the dimensionality of the features and used those to generate

clusters. However, their method does not learn how pathlines are temporally related.

Additionally, their unweighted binary cross entropy loss function does not account for

sparsely distributed pathlines. In our work, we use an LSTM autoencoder with a cus-

tom weighted binary cross-entropy loss function, to learn spatiotemporal behavior of

sparsely distributed pathline sequences from ocean scenes.

4.3 RipViz

Identifying rip currents in complex and chaotic ocean flow is challenging. We first

reconstructed a 2D unsteady flow field using optical flow from ocean videos. Our

method captured the ocean flow characteristics by using short pathline sequences which

are then represented as stacks of binary images. We used an LSTM autoencoder to
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learn spatiotemporal features of these pathline sequences. We trained our model with

pathline sequences of normal ocean flow using a custom weighted binary cross-entropy

function, suited for learning pathline sequences of ocean flow. We then used this trained

LSTM autoencoder to identify pathline sequences of abnormal ocean flow or rip cur-

rents. We visualized the rip currents by projecting the seed points of these abnormal

pathline sequences back onto the video frame and growing a transparent red region

around these points.

4.3.1 Flow Field Reconstruction

An unsteady 2D flow field is obtained from the stationary video using optical flow.

Many optical flow algorithms use the relative motion of neighboring pixels between

consecutive frames in the video to calculate the local flow. We use Lucas-Kanade [52]

sparse optical flow function in the OpenCV library [55] to trace pathlines. We verified

each integration step by comparing the forward and backward integration of the flow

field.

4.3.2 Sequence of Pathlines

Each pathline is represented by a 1D vector, p = {x1,y1, · · · ,xn,yn}, where (xi,yi)

is a point in the coordinate system of the video frame and n is the length of the pathline.

For the LSTM autoencoder to learn about the pathlines, we transformed these pathlines
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into their own 2D pathline-centric coordinate system. To do this, each pathline is repre-

sented by an L×L binary image I, where each point in p is translated to center the seed

point in the binary image. For longer pathlines that extend beyond L×L, we increased

the size of the binary image to accommodate these longer pathlines. We then resized

all of these larger binary images down to L× L. The reason why all pathlines were

not simply centered then resized to L×L is that we need to differentiate pathlines that

barely moved from their initial seed position versus those that actually travelled beyond

L×L. Also note that by centering, the 2D representation of the pathlines are now lo-

cation agnostic. This combination allows us to compare pathlines from different parts

of the video to identify those with similar behavior. As noted earlier, tracing pathlines

over the entire length of a video of quasi-periodic motion derived from noisy optical

flow calculations result in unusable cluttered flow representations. Instead, we reseeded

pathlines at the same seed point over regular time intervals to generate pathline series

of length S. We represented each pathline sequence as a stack of binary images of size

S×L×L associated with each seed point.

4.3.3 LSTM Autoencoder

We used an LSTM autoencoder to learn from the pathline sequences. The LSTM

autoencoder consisted of two components, an encoder, and a decoder, as shown in

Figure 4.3. The encoder learns the spatiotemporal features of the pathline sequence.
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The decoder reconstructs the pathline sequence by using the learned spatiotemporal

feature representation.

We specify the input layer of the LSTM autoencoder to expect pathline sequences of

shape S×L×L. The first and second layers of the encoder are time-distributed 2D con-

volutional layers. These layers consist of 128 and 64 convolutional filters, respectively.

These layers process each pathline of the sequence separately and learn the spatial fea-

tures of each pathline. The third and fourth layers are 2D convolutional LSTM layers.

Each layer consists of 64 and 32 convolutional filters, respectively. These convolutional

LSTM layers process the sequence of pathlines together and learn the temporal features

of the pathline sequences. The first layer of the decoder is a convolutional LSTM layer

with 64 convolutional filters. The second and third layers of the decoder are time-

distributed deconvolutional layers with 64, and 128 respectively. The last layer of the

LSTM autoencoder is a time-distributed convolutional layer with 1 convolutional filter.

Each layer, except for the input and the output layers, is followed by a normalization

layer [141]. The input volume has no padding; therefore, we set the stride of all layers

to 1. The autoencoder outputs a sequence of pathlines of shape S×L×L. For the hid-

den layers, we use the ReLU activation [142]. For the output layer, we use the sigmoid

activation.

In comparison to recent autoencoder based stream line selection methods, our method

not only learns the spatial features of each pathline but also learns how each pathline
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is temporally related to other pathlines in the same pathline sequence. Learning these

spatio-temporal features allows our method to better learn about the quasi-periodic na-

ture of the chaotic ocean flow.

4.3.4 Weighted Loss Function

We trained the LSTM autoencoder by minimizing the difference between each

training sample against the corresponding model prediction. The loss function used

to compute this difference is a weighted binary cross-entropy loss function. Since each

training sample is a pathline sequence represented as a stack of binary images of size

S× L× L, we treat each sample as a binary volume where pi is 1 when the pathline

crosses that voxel and 0 otherwise. p̂i is the corresponding value from the predicted

volume. The loss is calculated over all voxels (i.e., N = S×L×L ).

L =− 1
N

N

∑
i=1

[w1 · pi log p̂i +w0 · (1− pi) log(1− p̂i)] (4.1)

w1 is weight assigned to voxels when pi = 1. w0 is weight assigned to voxels when

pi = 0. In contrast, previous autoencoder based neural network architectures used in

flow visualization tasks used an unweighted version of the same loss function (i.e.,

w1 = w0 = 1 ). We found that a weighted binary cross-entropy function is better suited

for our application domain for reasons discussed in Section 4.4.2.
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4.3.5 Detecting and Visualizing Rip Currents

During inference/test time, we calculated the reconstruction error for each pathline

sequence by using the loss function defined earlier. If the error is larger than threshold

T , we labeled those pathline sequences as anomalous (i.e., rip currents). Otherwise, we

labeled the sequences as belonging to normal flow. We discuss how T was selected in

Section 4.4.2. Once the anomalous pathline sequences were found, the corresponding

seed points were connected by using a region growth algorithm to generate a region.

Isolated seeds without neighbors are discarded. To visualize the rip zone, We projected

this region the seed points of anomalous pathline sequences back onto the frames in the

video as shown in Figure 4.1.

4.3.6 Network Training

We implemented our neural network in Tensorflow by using the Keras application

programming interface (API)[143]. We trained the network using an NVIDIA Tesla

A100 graphical processing unit (GPU). In the training process, we initialized param-

eters in all layers of the neural network using a normal distribution N (µ,σ2), where

mean µ = 0 and variance σ2 = 0.01. We applied the Adam optimizer [38] to update the

parameters with a learning rate of 10−6. We used the minibatch size of 10 and trained

our model with 100 epochs.
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4.4 Results and Discussion

We describe our dataset, provide an analysis of the components and parameters used

in RipViz, and present comparisons with other methods.

4.4.1 Dataset

Our dataset consists of 55 stationary videos. Each video is 1.5 to 4 minutes long and

of size 1920×1080 pixels. We collected the data from Salinas, Marina, and Davenport

beaches in California in winter of 2022. We used either a tripod-mounted Canon EOS

Rebel T7 DSLR camera or a Samsung Android phone to acquire the data. We chose 4

videos to generate 16000 non-rip pathline sequences for training our model by using the

seeding strategy discussed in Section 4.4.2. Our validation dataset consists of 12000

pathlines generated from three videos. The remaining videos were used for testing.

Note that our training data does not include examples of each of the many types of

rip currents, only examples of normal ocean flow. This greatly simplifies collection

of training data. Each video was labeled under the guidance of the rip current expert.

Pathlines seeded in the rip current area were labeled as “rip” and others as “non-rip”.

The framing of these videos, which includes the distance of camera to the water and

the focal length or zoom factor of the lens, is meant to be representative of surf webcams

(e.g. surfline.com) that might be useful for rip current detection. Parameters such as

integration length n and binary image size L are based on such framing. Sensitivity of
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Figure 4.4: Sparsely distributed pathlines in binary image: This figure shows a collection of
pathlines from our data. Notice the imbalance in 0s (white) and 1s (black) in the binary images.
The weighted loss function, as described in Equation 4.1 allows the autoencoder to learn with
imbalanced data.

these parameters on different framings are discussed in Section 4.4.2.

Note that we assume a stable video source and hence did not perform any video

stabilization. Wind can cause slight movements of the camera, but also movements of

grass, clouds, etc. Also, video processing seldom work with raw video but rather on

compressed video. Deriving the optical flow field on compressed video may also intro-

duce some motion artifacts especially in highly compressed regions such as the sky or

empty sandy beaches. RipViz handles these type of motion artifacts better than existing

methods for our dataset.
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4.4.2 Analysis of RipViz components

The RipViz method contains two important changes from prior methods: the use of

a weighted loss function, and the use of a sequences of pathlines rather than a single

pathline. Without these changes we found the ML fails to learn ocean flow. In addition,

the method has parameters like detection threshold, T , and binary image size L which

are likely dependent on our specific application domain. In this section we analyze each

of these factors, showing that our changes are necessary, and providing the method by

which we determined parameters.

Threshold T : Threshold T is used to filter anomalous pathlines (i.e, rip currents) based

on the reconstruction error as discussed in Section 4.3.5. In order to find the optimal

threshold T we calculated F1 score at varying threshold values in a subset of our data.

F1 score is defined as,

F1 =
2

1
recall +

1
precision

=
2

FNs+T Ps
T Ps + FPs+T Ps

T Ps
(4.2)

If a detected pathline falls within the expert annotated boundary of the rip current, then

it’s counted as a TPs (true positive). Otherwise, it’s considered an FP (false positive).

Suppose a pathline originating within the rip current is not detected, then it’s an FN

(false negative). The range of the F1 score is between 0 and 1. If most pathlines fall

within the rip current boundary, the score will be closer to 1, otherwise closer to 0. We

found that threshold, T = 1.0 produced the highest F1 score , and was used as T for the
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experiments in this paper.

Weights of the loss function w0 and w1: We reconstructed the flow field from videos

using optical flow. As discussed in Section 4.3.2, all pathlines are represented in a bi-

nary image I. We observed that some pathlines are short and do not extend far from

the seed point, while other pathlines are longer and travel farther from the seed point,

as shown in Figure 4.4. We needed the model to learn the distribution of these shorter

and longer pathlines because it allowed the model to learn the normal flow behavior

in an ocean scene. However, this leads to an imbalance in the number of voxels with

1s and 0s, especially for shorter pathlines. For the deep learning model to learn effec-

tively about these small features/pathlines, we needed to increase the weight of the loss

function when the target probability (pi) is 1. The loss function, as described in Section

4.3.4, penalizes the model more for making mistakes when predicting pixels with the

target probability 1 in the training process. Using the weighted binary cross-entropy

function made the model better learn the distribution of shorter from longer pathlines.

In contrast, in FlowNet [133], the streamlines were well spread out across their input

volumes, making the use of a weighted loss function unnecessary.

To find the optimal w0 and w1 for our application domain, we randomly choose

a small subset of pathline sequences, some short and some long, to train models at

different combinations of w0 and w1. We trained each model for 100 epochs, using

the same training conditions specified in Section 4.3.6. For each trained model, we
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Figure 4.5: F1 Scores for different combinations of w0 and w1: Notice that the method does
not converge when w0 and w1 are balanced. The highest F1 score of 0.70 is achieved when w0
is set to 1 and w1 is set to 40.

observed how many voxels were correctly recreated. If the predicted probability for

a voxel with target probability of 1 is greater than 0.7, we marked that voxel as TP;

otherwise, it is considered to be FN. If the model predicted pathline voxels in areas

with no pathline, we marked that as FP. We calculated the F1 score for each model

with different weight combinations using equation 4.2. We observed that non-uniform

weighting is necessary, with the highest F1 score generated when w0 = 1 and w1 = 40

as shown in Figure 4.5. Note that using unweighted cross-entropy, as in previous work,

is the equivalent of setting w0 = w1 = 1. In this condition we found that the model

completely fails to learn ocean flow.

In some instances where the model did not converge, TPs were 0, which resulted in

an undefined F1 score. In such instances, we followed the default reporting convention

of Scikit-learn python library [144] and reported those F1s as 0.00.

Pathline Length n and Sequence Length S: In RipViz, we use pathline sequences

to learn flow behavior. In order to find the optimal pathline length, n, and sequence
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Figure 4.6: Pathline length (n) vs sequence length (S): F1 scores for different combinations
of n nd S. The first column represents traditional pathlines, while subsequent columns are for
sequence of pathlines. Notice that increasing the pathline length resulted in higher accuracy up
to an optimal length; beyond this, the accuracy decreased. Also notice that using a sequence of
pathlines over a single pathline per seed point produced even more accurate results. We found
that n = 900 and S = 100 were optimal for our data set.

length, S, for our application domain, we trained multiple models while changing n and

S, and observed the F1 score as shown in Figure 4.6. We noticed two patterns from

this experiment. First, increasing the pathline length resulted in a higher accuracy up

to an optimal length; beyond this, the accuracy decreased. Second, using a sequence of

pathlines instead of a single pathline per seed point produces more accurate results. We

93



1 10 20 40 60 80 100 120 140
Sequence Length S

5x5

32x32

64X64

128X128

Bi
na

ry
 Im

ag
e 

Si
ze

 L
XL 0.16 0.17 0.23 0.15 0.19 0.24 0.20 0.18 0.17

0.31 0.32 0.38 0.30 0.34 0.39 0.35 0.33 0.32

0.78 0.80 0.81 0.81 0.84 0.85 0.86 0.84 0.86

0.65 0.66 0.64 0.67 0.69 0.72 0.75 0.72 0.75

Figure 4.7: Binary image size (L×L): Notice that a binary image size of 64×64 produced the
highest F1 score with least amount of computation.

found that n = 900 and S = 100 were optimal for our data set.

Size of binary image I = L×L: We represented each pathline in a binary image as

discussed in 4.3.2. We trained several models with our training dataset where binary

images were of different sizes as shown in Figure 4.7. We compared each model by

calculating the F1 score, similar to how F1 score was calculated for tuning Threshold T .

Our experiments indicated that small binary images (L×L = 5×5) cannot sufficiently

capture the variations of pathline movements, resulting in a lower F1 score. We also

found that larger binary images (L×L = 128×128) also resulted in a slightly lower F1

score. Furthermore, larger binary images resulted in a high memory usage and a longer

training time. We found that L×L = 64×64 is sufficient at capturing the variations of

pathlines resulting in a high F1 score. In our experiments we used L×L = 64× 64 as

the size of the binary image I.
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Seeding strategy: Various seeding strategies attempt to optimize different goals such

as aesthetics, clutter reduction, capturing flow features, etc [124]. In this paper, the

primary consideration for pathline seeding take into account where one can have the

highest return in informational value regarding the water movement. Because most of

our training data and random beach images that one can find on the web are taken in

landscape mode, seeds are distributed uniformly along the horizontal axis. Conversely,

the water body is usually in the middle, with the sky on top and the beach on the

bottom halves of the framing. We therefore use a Gaussian distribution of seeds along

the vertical axis. This is a form of importance sampling [145]. During the training

process, we use importance seeding to maximize pathlines that track water movement,

and reduce irrelevant information such as the beach or cloud movement in the sky.

During the testing process, we use regular sampling since there is no guarantee that the

test data will also be in landscape mode.

(a) Regular grid seeding (b) Importance seeding

Figure 4.8: Seeding strategies: We used regular grid to seed pathlines when testing. For
training we used importance seeding.
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Figure 4.9: Comparison with FlowNet and different pathline parameters: The Video Frame
column shows a representative frame of the video clip while the Ground Truth column shows the
expert’s ground truth estimate. Notice that FlowNet without modifications (FlowNet Column)
incorrectly clusters all seed points into a single group. Both modified Flownet and RipViz when
trained with longer pathlines were not able to detect the rip current. When modified FlowNet
was trained on single shorter pathlines (n = 900), we were able to find a cluster representing
the rip current but not as definitive. RipViz trained with shorter pathline sequences was able to
detect the rip currents more precisely. Best viewed in color.
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4.4.3 Comparison with FlowNet using Single Long and Sequences

of Short Pathlines

We compared RipViz with FlowNet [133], a deep learning based streamline clus-

tering method. In FlowNet, 3D streamline features were learned by an autoencoder.

These 3D streamlines were traced across the full extent of the data. Additionally, they

traced one streamline per seed point. The trained autoencoder was used to generate 1D

representations of 3D streamlines. The dimensionality of these 1D representations is

further reduced by t-distributed stochastic neighbor embedding (t-SNE) [146]. The re-

sulting low dimensional vectors are then clustered by using DBSCAN [147]. An inter-

active user interface was used to find the desired clustering by changing the maximum

distance between two feature descriptors (eps) and the minimum number of samples

in each cluster (ms).The autoencoder in FlowNet is trained with a unweighted binary

cross-entropy function (i.e., w0 = w1 = 1).

In order to compare with FlowNet, we transformed our long 2D pathlines to 3D

by adding a time axis as the z axis [148]. However, since our pathlines are sparsely

distributed in the 3D binary volume, we found that the FlowNet model with the un-

weighted binary cross entropy did not learn to differentiate the pathlines. Resulting in

a single cluster for all the pathlines. We show the clustering result in Figure 4.9. Addi-

tionally, the training time was relatively long. A proper comparison requires modifica-

tion of FlowNet to work with our application domain. The modifications are discussed
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in Appendix A.

We trained the modified FlowNet model with long pathlines, integrated across the

entirety of the video, and with single short pathlines (n = 900). The output of the

modified FlowNet is shown in Figure 4.9. The first column shows a representative frame

of each video. We see that without modifications, FlowNet lumps all the pathlines into

one cluster. Both the modified FlowNet and RipViz, when fed with single pathlines

that run the entirety of the video, also fail to identify the rips. When fed with shorter

pathlines (n = 900), modified FlowNet start to show signs of rip currents but includes

significant FPs as well. Only, when sequence of pathlines as used in RipViz do we see

the rip currents clearly.

In order to obtain a quantitative comparison between modified FlowNet with shorter

pathlines and RipViz, we calculated their F1 scores. If a seed point is flagged as as a

rip by either method is within the expert annotated rip current boundary then we mark

it as TP, otherwise we mark it as FP. If seed points within the rip are not selected then

we mark those points FN. We found that the F1 score for modified FlowNet was 0.32

compared to the F1 score of 0.85 for RipViz as shown in Table 4.2. We hypothesize the

low F1 score for the modified FlowNet was due to its high FP rate.

Furthermore, we found tuning the two hyperparamters eps and ms for the clustering

step was crucial in finding the appropriate clusters. We noticed having some domain

knowledge was helpful for the user when exploring these two hyperparameters to find
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the ideal clustering. In contrast, RipViz is automated and does not require any user

input during run time.

Both modified FlowNet and RipViz are based on autoencoders. However, RipViz

learns how each pathline of the same seed point was related in time by learning spa-

tiotemporal features of pathline sequences. This allows RipViz to learn ocean flow

behavior more effectively. On the other hand, modified FlowNet does not learn how

pathlines are related in time. Therefore, we hypothesize that using pathline sequences

is better for learning quasi-periodic behavior, such as in ocean flow.

4.4.4 Comparison with existing rip detection methods

We compared RipViz with existing rip current detection methods as shown in Figure

4.10. The first and second columns of Figure 4.10 show a representative frame of the

video and the expert drawn ground truth. The remaining columns show the output of

the object detector [119], RipViz, filtered arrow glyphs [123], filtered color maps [123],

and timelines [123], respectively.

4.4.4.1 Comparison with behavior based methods

Timelines: Mori et al. [123] proposed to use timelines to detect and visualize rip cur-

rents. They placed timelines parallel to the beach and traced the points on the timeline

using optical flow to update its position. They observed the shape of the timeline as it
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gets dragged by the rip current. Timelines get deformed and extend to the rip channel

above its initial position, as shown in Figure 4.10.

However, the initial placement of the timeline is a major contributing factor for

timelines to be successful. All the timelines indicated in Figure 4.10 are placed opti-

mally. To compare the timeline method with RipViz, we calculated the F1 score. If

the timeline was able to visualize the rip current in a video, then we counted it as TP,

otherwise it is counted as FN. We found that properly placed timelines can visualize rip

currents in most cases. However, the user has to specify the good initial placement for

each video. In contrast, RipViz is automated, and no user input was needed during run

time, as shown in Table 4.2.

Direction based clustering: Philip and Pang [122] hypothesized that the rip current

is directly opposite the dominant flow in the vector field, which corresponds to the

incoming wave direction. Places where the vectors were opposing the majority flow

are potential rip zones. Areas with sufficiently large clusters of such vectors and large

enough magnitude were highlighted as rip zones.

Mori et al. [123] used a similar approach and mapped direction to color and mag-

nitude to hue for better visualization. As shown Filtered Color Map column of Figure

4.10, the method can detect the location of the rip current. However, this method also

highlighted the swash zone, the shallow part of the beach, as evident in examples 1-3.

We found that while the rip current was highlighted in most cases, the number of false

100



positive pixels tend to be high. In order to compare with RipViz, we calculated the F1

score. As shown in Table 4.2 filtered color map resulted in a F1 score of 0.28, due to its

high false positive rate.

Mori et al. [123] also proposed arrow glyphs to visualize rip currents. The output of

this method is shown in Arrow Glyph column of Figure 4.10. We noticed that the arrow

glyph method is more susceptible to noise in the flow field compared to other methods

and RipViz. This is evident by the arrows projected on the sky and the beach although

there is a little movement on those parts of the video. Although arrow glyph method

highlighted the rip current in the majority of the videos, there were also a large number

of false positive detections. Similarly we calculated the F1 score. As indicated in Table

4.2, filtered arrow glyph had a F1 score of 0.16 due is relatively high false positive rate.

4.4.4.2 Comparison with appearance based methods

Object Detectors: de Silva et al. [119] used object detectors to detect rip currents.

They trained a deep learning based object detector, Faster R-CNN [79], with images

of rip currents. The images they used had a clear visual signature for bathymetry con-

trolled rip currents with a darker region between breaking waves. Then they used the

model to predict the location of rip currents, by overlaying a bounding box on the rip

currents on videos. The output of the method is shown in the Object Detector column

of Figure 4.10.
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Figure 4.10: Comparison with prior rip current detection methods: The Video Frame and
Ground Truth columns show a representative frame of the video clip and the expert ground truth
estimate respectively. The remaining columns show object detector, timeline, colormap, arrow
glyph, and RipViz, respectively. Note that the timeline method requires user input to specify its
initial placement, and that Filtered Arrow Glyphs did not filter out erroneous glyphs from the
sky, beach, and non-rip area of the water. Best viewed in color.
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We noticed that the object detector can detect parts of rip currents as shown in

examples 2-5 in Figure 4.10. However, rip currents have different appearances [61].

As evident in example 1, it is possible for an objector detector to miss the actual rip

current location. In contrast, RipViz is trained on pathlines that capture the behavior

rather than appearance of rip currents. Hence, it was able to detect the rip current in all

the examples.

Furthermore, we noticed that bounding boxes only detects the general area of the

rip current. Sometimes the bounding boxes can cover parts of the beach or miss parts

of the rip especially with long elongated rips.

We also noticed that the information such as the curvature of the rip current cannot

be gleaned from bounding boxes alone.

In order to compare with RipViz, we calculated the F1 score. We counted how many

pixels were covered by the bounding box. Out of those, rip pixels are counted as TP, the

remaining pixels were counted as FP. If the object detector does not predict a bounding

box, then we counted the pixels within the boundary as FN. As shown in Table 4.2,

the bounding boxes resulted in a F1 score of 0.43 compared to 0.85 for RipViz. We

attribute this lower F1 score to the large number of false positives and false negatives

generated respectively by the non-rip areas of the bounding box and by part of the rip

current not being covered by the bounding box.

Additionally, we tested RipViz on other types of rip currents where currently there
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Method Automated? F1 Score

Object Detector [119] yes 0.43

Timelines [123] no 0.72

Filtered color map [123] yes 0.28

Filtered arrow glyph [123] yes 0.16

FlowNet[133] no 0.16

modified FlowNet [single long pathlines] no 0.19

modified FlowNet [single short pathlines] no 0.32

RipViz [single long pathlines] yes 0.08

RipViz [sequence of short pathlines] yes 0.85

Table 4.1: Results summary: Notice that RipViz has the highest F1 score, and does not rely on
user input at run time.

are no published object detector available. In Figure 4.11, we show a few examples

of such rip current types. Experts categorize the rip currents in the first and second

row as sediment and structural rips. However, as shown in Figure 4.11 RipViz could

detect these rip currents regardless of their appearance. More importantly, no additional

training data were needed for sediment and structural rips. Examples 3 and 4 illustrate

two rip currents where object detectors failed due to a lack of expected visual features.

In these two examples, RipViz detected the rip currents because it uses behavior rather

than appearance to detect rip currents.
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Figure 4.11: RipViz on novel rip current types: Examples 1 and 2 are sediment rip and
structural rip, respectively. Note that they have very different visual characteristics compared
to bathymetry rips. No published object detectors exist for these two types of rips. However,
notice that RipViz could detect rip currents regardless of their varying appearance. Examples 3
and 4 illustrate two rip currents where object detectors failed due to a lack of expected visual
features. In these two examples, RipViz can still detect the rip current because it uses behavior
rather than appearance to detect rip currents. Best viewed in color.

4.4.5 Discoveries made by Experts using RipViz

Rip current researchers use their expert knowledge to identify the boundary of rip

currents by observing the appearance of visual features such as gaps in breaking waves

or sediment plumes. However, sometimes parts of the rip current lack these visual
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features, making it challenging for the expert to identify the entire extent of the rip

current.

In contrast to appearance-based identification, RipViz uses the behavior of rip cur-

rents, not appearance, to detect rip currents. Experts can use RipViz as a visualization

tool to determine the entire boundary of the rip current when visual features are lacking.

In Figure 4.12, we demonstrate a few use cases where the rip current expert’s original

boundary estimate was updated after examining the visualization provided by RipViz.

The updated boundaries now include feeder currents near shore and what appears to

be a circulating pattern farther offshore in Discovery 1 and Discovery 3, as well as a

weaker neighboring rip that merged with the dominant rip in Discovery 2. Incidentally,

Discovery 1 and 3 both show circulating rips where the guidance from beach signage

to swim parallel to shore may not always work [115]. We offer the complete table of

discoveries made on our test data in the supplementary materials.

4.4.6 User Study

We conducted a user study to better understand how non-experts can use RipViz

as a tool to become more aware of rip currents. We grouped 400 non-experts into two

groups; one group was trained only with beach warning signs of rip currents, the other

group was trained with RipViz. We then showed each participant a randomly picked

video of a rip current and asked them if there was a rip current present. In the group
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Figure 4.12: Discoveries made by Experts using RipViz: Experts estimated the rip current
boundary (Original Boundary Column) by observing only the input video (Input Video Col-
umn). After examining the output of RipViz (RipViz Output column), the experts updated their
original rip current boundary estimate to include parts of the rip current that are not readily ob-
servable in the input video due to a lack of distinct visual features (Updated Boundary column).
In the supplementary materials, we included a complete table of discoveries made on our test
data.Best viewed in color.

trained with beach signs, 24% failed to recognize the existence of the rip current in

the video. In the group trained with RipViz, only 14% were unable to recognize the

presence of the rip current in the video.

We performed a second experiment to better understand if the participants could

locate the rip current within the video. Both groups were given multiple choices of rip

current boundary estimates and were asked to pick the correct one. In the group trained

with beach signs, only 34% could choose the correct boundary. In the group trained

with RipViz, 78% could select the correct boundary. The non-experts were acquired

using Mechanical Turk [109, 110], with basic screening for reliable workers, and paid
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$0.10-$0.20 per task.

4.4.7 Sensitivity to video framing

Some of the parameters are dependent on the camera framing which would include

distance of camera to the water and focal length or zoom factor of the lens. Alterna-

tively, we can think about the width of the beach that is visible in the frame. We base

our framing by examining a number of existing surf webcams (e.g. webcoos.com) and

planned webcam installations. We experimented on how sensitive our parameters are to

changes in camera framing. In the Figure 4.13, we show effects of varying the framing

while keeping our current set of parameters. Recall that during testing, we trace the

same number of seed points that are distributed in a regular grid. Based on the results

shown in Figure 4.13, we believe the parameters are still valid within 20-30% change

in camera framing. We found the F1 score to be 0.82±0.3 for all the examples, without

much deviation.

4.5 Summary and Remarks

As Ben Schneiderman succinctly captured in his quote: “The purpose of visualiza-

tion is insight, not pictures”, our goal is to make apparent what may not be visible to

the untrained eyes. The focus of this work is to first find the feature of interest (rip) and

then present them in a simple, easy to understand manner by highlighting their location
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Figure 4.13: RipViz is less sensitive to different video framing: We changed the scale of
the rip current feature by zooming in and out from the original video, while keeping the aspect
ratio of the video unchanged. Notice that for instances where the rip current feature is larger or
smaller than the training data (within reasonable bounds), RipViz was still able to detect the rip
current feature.

directly on the video. This capabality is encapsulated in RipViz, a hybrid feature detec-

tion method that combined ML and flow analysis to extract rip currents from stationary

videos. We used shorter pathline sequences to capture the flow behavior in a noisy

quasi-periodic flow field. Then we used an LSTM autoencoder to learn the behavior

of normal ocean pathline sequences. The trained model allowed us to label pathline

sequences belonging to rip currents as anomalous by comparing the reconstruction er-

ror. By framing the rip detection problem as an anomalous flow detection problem, the

onerous task of finding and labeling training datasets for each type of rip current is also

greatly reduced.

The Visualization community has used deep learning methods to learn flow behav-

ior from pathlines. In particular, existing literature uses autoencoders to learn from

flow data. The authors use single long pathlines/streamlines per seed point as input

to their deep learning models. However, straight-forward learning based on traditional
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pathlines did not work for our application due to the quasi-periodic flow fields such as

those found near the surf zone. Therefore, we adapted and innovated on the existing

deep learning methods to use a sequence of pathlines per seed point instead

The main contribution of this chapter is:

• A hybrid feature detection method that combines machine learning and flow anal-

ysis techniques to automatically find and visualize dangerous rip currents.

In order to realize this, the following innovations are necessary:

• For flow fields with a quasi-periodic behavior, such as ocean flow, working with

a sequence of shorter pathlines is better than a single long pathline.

• A weighted binary cross entropy, unlike the unweighted binary cross entropy

used in previous works, is more effective when learning from sparsely distributed

pathlines generated from ocean scenes.

A key assumption about the stationary videos is that the camera is sufficiently close

to the water in order for the optical flow algorithm to pick up measurable velocities. For

similar reasons, we assume that the camera is pointed mostly seaward and not parallel to

the beach. Pointing the camera down a long stretch of beach will create an optical flow

that is not representative especially for points farther away from the camera. Rectifying

the frames prior to optical flow calculations may extend the usable range a bit farther
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but does not justify the extra computational cost. For these reasons, RipViz works best

when the camera is close to the water and pointed mostly seaward.

Our training data were videos from mostly uncrowded beaches. We did study seed

points along the path of a jogger. Such seed points were not marked as anomalous.

This is likely due to the fact that the subsequent pathlines from the sequence marked

the initial seed point as mostly normal. We believe that seed points that are placed on

surfers or birds or other objects in the scene will likely be marked as normal as well.

We plan to study this further with more testing data.

Extensions and Future Works: Some of the contributions listed above are not specific

to rip current detection. We plan to investigate how pathline sequences of unsteady flow

fields coupled with the weighted cross-entropy loss function can be used to distinguish

between laminar and non-laminar flows, and possibly train a model to detect vortices

as anomalous behavior.

We surmise that analysis using pathline sequences may also benefit certain classes

of flow data aside from those in this paper. In fact, we are exploring that avenue and

plan to report on the results in a separate paper. In short, the particular needs of rip

current detection led us to develop the approach presented in this paper, and which also

provides another potential tool for the visualization community to study certain classes

of flow fields.

One of the obvious questions, we had about using pathlines is, can we use pathlines

111



to find other types of flow patterns. In Chapter 05, we explore the use of pathlines and

streamlines to find vortices. What are the other types of flow patterns we can find using

flowlines. We explore this by looking at vortices in the next chapter.

Appendix A: Modified FlowNet

Han et al. [133] proposed, FlowNet, a deep learning based method to cluster and

select streamlines. They first transformed each streamline into a 1D feature vector of

length 1024. Then they used the t-distributed stochastic neighbor embedding (t-SNE)

[146] to reduce the dimensionality of the 1D vector from 1024 to 2. The resulting vec-

tors are then clustered using DBSCAN[147], a density-based spatial clustering method

for applications with noise. The authors provided a user interface to vary the cluster-

ing by changing the maximum distance between two feature descriptors (eps) and the

minimum number of samples in each cluster (ms) in the DBSCAN algorithm.

We started with the FlowNet architecture for this work, but modified it according

to the requirements of our application. Their primary focus was to cluster streamlines

from 3D steady flow fields. Therefore, the authors designed the deep neural network

architecture to take in a 3D streamline as input. However, in our application domain,

the pathlines are 2D. In order to adapt FlowNet to our application domain, we changed

the architecture of FlowNet to take in a 2D pathlines as input. Likewise, we changed

the original neural network architecture by replacing 3D convolutional layers and 3D
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batch normalization layers, respectively, with 2D convolutional layers and 2D batch

normalization layers to accommodate 2D pathlines. We also updated the input size and

output size of the fully connected layers accordingly. We kept the same number of

layers, same activation functions, and the same number of convolutional filters as de-

fined in the FlowNet paper. We refer to the new neural network architecture as modified

FlowNet.

We also found that the unweighted binary cross-entropy function used in the FlowNet

paper was insufficient to learn the variations of pathlines of the ocean flow for reasons

discussed in Section 4.4.2. Therefore, we used the weighted binary cross-entropy loss

function defined in Section 4.3.4 when training the modified FlowNet. We trained the

modified FlowNet using the same approach as discussed in the FlowNet paper[133].

We used the trained modified FlowNet to find 1D representations of the pathlines

by extracting the latent feature descriptor from the autoencoder. We reduced the di-

mensionality of the 1D vector by using t-SNE to a vector with a length of 3. Then

we clustered the resulting vectors using DBSCAN, which requires the user to set the

maximum distance between two feature descriptors (eps) and the minimum number of

samples in each cluster (ms) before clustering. The cluster with the largest overlap with

the ground truth was selected.
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Appendix B: Making the Case for Shorter Pathlines in

Noisy Datasets.

We estimated the flow field from videos using optical flow. We assumed a small

error/noise associated with the optical flow estimate. Numerical integration, even well

designed higher order methods, are subject to accumulation of error. This problem is

aggravated when one is working with noisy datasets. For the case of pathline inte-

gration, we hypothesized that shorter sequence of pathlines will be more accurate in

capturing the flow behavior in noisy flow fields than a single longer pathline.

We used two synthetic datasets to indirectly verify our hypothesis: the 2D unsteady

Double Gyre dataset [149] and 2D Unsteady Four Rotating Centers dataset [150].

We added noise at 5%, 10%, and 20% levels to each vector component of each

dataset. We compared the similarity of pathlines originating from the same seed point.

We observed that shorter pathlines were more similar to those without any noise. To

quantify our observations, we randomly seeded 200 pathlines in each dataset and traced

those pathlines. We calculated mean squared error (MSE) for pathlines at varying

lengths as shown in Figure 4.14. We observed that longer pathlines have higher MSE

compared to shorter pathlines. Therefore, we anticipate that shorter pathlines will cap-

ture a more accurate representation of the flow behavior in reconstructed noisy flow

fields such as ours.
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Figure 4.14: Comparison of pathlines with and without noise: Mean Squared Error (MSE)
of pathlines calculated at varying lengths, averaged over 200 randomly seeded pathlines. Notice
that for both datasets longer pathlines have higher MSE compared to shorter pathlines.

Additionally, we visualized how pathline sequences accumulate errors due to noise

over longer integration times as shown in Figure 4.15. Here, we show two pathline

sequences, one seeded in the sky and the other on the beach. We expected these two

pathline sequences to be very short and remain closer to the seed point due to the lack of

motion around those seed points. However, as we integrate beyond 900 time steps, we

notice that the pathlines seem to travel far from the seed point even though we don’t see

any visible motion on the video. We attribute this to the accumulation of noise/error

when integrating over a more extended time. The noise can come from optical flow

estimation or video compression loss.
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Figure 4.15: Visualization of noise in our dataset: Here we visualize two pathline sequences,
one seeded in the sky (left panel) and the other on the beach (right panel). Each sequence con-
sists of 10 pathlines. We show the pathlines sequence at four integration time steps(n). We
expected these pathlines to be very short and remain closer to the seed point. However, as the
pathlines were integrated over a longer period (n), they traveled far from the seed point, contra-
dicting our expectation. We attribute this to the accumulation of noise/error when integrating
over a longer period in a noisy real world dataset.

Appendix C: Evaluation based on additional Metrics.

In addition to using the F1 score, we expanded our evaluation of RipViz to include

other types of metrics. The metrics we choose are the Jaccard Index(IoU), The Haus-

dorff Distance (HD) and Frobenius Norm (FN). Jaccard index compares how much

overlap the detection has with the ground truth. Values that are closer to one in the

Jaccard index are considered better. HD and FN computes a distance measure between

the ground truth and the detection. Lower values in these distance measures are con-

sidered better. We noticed that RipViz performed better in all the metrics. As shown in

Table 4.2, RipViz scored highest value in the Jaccard index, highest value in F1 score

and the lowest values in HD and FN. Since the correctness of the Timeline method is
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determined by a human expert, additional metrics are not applicable.

Method

au
to

m
at

ed
?

F
N
(e

5)

H
D

Io
U

F 1
sc

or
e

Object Detector [119] yes 1.0 29 0.29 0.43

Timelines [123] no – − − 0.72

Filtered color map [123] yes 1.0 26 0.15 0.28

Filtered arrow glyph [123] yes 2.5 34 0.09 0.16

FlowNet[133] no 3.5 43 0.09 0.16

modified FlowNet [longer pathlines] no 3.2 37 0.09 0.19

modified FlowNet [shorter pathlines] no 2.8 28 0.20 0.32

RipViz [longer Single Pathlines] yes 3.4 41 0.03 0.08

RipViz yes 0.4 17 0.72 0.85

Table 4.2: Additional Metrics: Note that RipViz has the highest F1 score, highest Jaccard
Index (IoU), lowest Hausdorff Distance (HD), lowest Frobenius Norm (FN) and does not rely
on user input at run time.

Appendix D: Additional Visualizations of Pathline Se-

quences.

In Figure 4.16, we visualized how pathline sequences seeded in the rip current differ

from pathline sequences from other parts of the flow field. The figure shows the expert

annotated boundary of the rip current in blue. Also, each pathline sequence is labeled
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with the corresponding seed point and starts from the center of the binary image.

Notice that pathline sequences in the rip current region generally show a net out-

ward water transport. In comparison, pathline sequences seeded in non-rip parts of the

ocean show a general inward movement, but also includes some outward movement.

Pathline sequences seeded in the beach or the sky are either still or can be longer. Also,

notice that while individual pathlines from different regions may demonstrate similar

behavior, pathline sequences are generally distinct.

4.6 Detailed view of the LSTM autoencoder.

In Figure 4.17, we provide a detailed view of the layers of the LSTM autoencoder

used in this paper.

4.7 Example Output Videos

We link some example videos here: https://sites.google.com/view/ripviz/home

4.8 Complete List of Discoveries by domain expert

Rip current researchers use their expert knowledge to identify the boundary of rip

currents by observing the appearance of visual features such as gaps in breaking waves

or sediment plumes. However, sometimes parts of the rip current lack these visual
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Figure 4.16: Visualization Pathline Sequences: We show a sequence of 10 pathlines per seed
point. Seed points are numbered and the location is shown in the figure. All pathlines start from
the center of the binary image. Notice how the pathline sequences seeded inside the rip current
are distinct from pathline sequences generated from other parts (sky, beach and non-rip ocean)
of the flow field. Also, note that the individual pathlines may look similar, but the sequences
are distinct.
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Time Distributed Convolutional Layers LSTM Convolutional Layers Time Distributed Deconvolutional Layers

Figure 4.17: Expanded view of the layers in the LSTM autoencoder: In this figure we show
a more detailed expanded view of the inner layers of the LSTM autoencoder. For each layer,
we show the size of the input and output for one pathline sequence.
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features, making it challenging for the expert to identify the entire extent of the rip

current.

In contrast to appearance-based identification, RipViz uses the behavior of rip cur-

rents, not appearance, to detect rip currents. Experts can use RipViz as a visualization

tool to determine the entire boundary of the rip current when visual features are lack-

ing. In Figure 4.18, we demonstrate a use case where the rip current expert’s original

boundary estimate was updated after examining the visualization provided by RipViz.

The updated boundaries now include feeder currents near shore and what appears to

be a circulating pattern farther offshore in Discovery 1 ,3, 4, 5, 6, 7, 9, and 10, as

well as a weaker neighboring rip that merged with the dominant rip in Discovery 2 and

Discovery 8.
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Figure 4.18: Discoveries made by the domain expert: Experts estimated the rip current
boundary (Original Boundary Column) by observing only the input video (Input Video Col-
umn). After examining the output of RipViz (RipViz Output column), the experts updated their
original rip current boundary estimate to include parts of the rip current that are not readily ob-
servable in the input video due to a lack of distinct visual features (Updated Boundary column).
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Chapter 5

Finding Vortex Boundary by Learning

from Streamlines.

5.1 Introduction

Vortices are extensively studied in numerous scientific disciplines to gain insight

into the behavior of fluid flows. In aerodynamics, researchers focus on studying vor-

tices that form in the wake of an aircraft, aiming to mitigate the creation of vortices with

long lifetimes; persistent vortices can potentially impede commercial aviation’s opera-

tional capacity [151, 152, 153]. Oceanographers, on the other hand, study mesoscale

eddies modeled as vortices, to understand the transportation of nutrients and heat in

ocean currents [154, 155, 156]. Additionally, astrophysicists examine the vortical struc-
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ture in black holes to understand the stability of extremal black holes via topological

explanations [157, 158, 159]. Vortices are also studied in high temperature supercon-

ductors, to better understand the dissipation of free-current [160, 161, 162]. While the

study of vortices transcends numerous scientific disciplines, visualization researchers

place particular emphasis on visualizing the vortex boundary to gain insight into fluid

flow behavior.

While there are many definitions of a vortex, it is generally agreed that “vortices

are regions of high vorticity” with “multitude of material particles rotating around a

common center” [163]. Analyzing vortex boundaries is essential for gaining insights

into fluid flow behavior, including phenomena such as flow separation, turbulence, and

vortex formation and dissipation [164]. Observing a distorted or irregular shape along

the vortex boundary can provide valuable clues about the potential occurrence of vortex

breakdown [131]. While vortex boundary extraction has been studied by visualization

researchers for many years [165], its precise mathematical definition may vary depend-

ing on the specific context [166]. In such cases where a formal definition is elusive,

deep learning techniques hold great promise in identifying and capturing relevant fea-

tures.

Supervised deep learning based methods, which rely on labeled datasets, have been

used to extract the vortex boundary [131, 167, 168, 169, 170]. These approaches pri-

marily rely on velocity fields represented by their U and V components (velocity com-
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INSIDE

OUTSIDE

Figure 5.1: Flowlines (pathlines and streamlines) Behave Differently Inside and Outside of
a Vortex: In this paper, we exploit this behavior difference and physical properties of the flow
field along the flowline to find vortex boundaries. (Two streamlines from [2] are shown with a
red cross indicating the seed point.)
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ponents along x and y axes, respectively) to learn about the vortex boundary. However,

we contend that learning solely from the velocity components is insufficient in accu-

rately capturing the vortex boundary. This limitation arises from the fact that the ve-

locity field, represented as u and v components fails to effectively capture the non-local

behavior of the flow field. To address this issue, we propose an alternative approach

in this paper, where we utilize flowlines (streamlines or pathlines) instead of velocity

fields to learn about the vortex boundary. By incorporating flowlines into the learn-

ing process, we aim to enhance the model’s ability to capture the rotational behavior

or the swirliness of the flow field, thereby improving the accuracy of vortex boundary

extraction.

The main contribution of this chapter is,

• A novel deep learning methodology utilizing flowlines to learn and identify vor-

tex boundaries.

5.2 Related Work

5.2.1 Deep Learning for Flow Visualization

The visualization community has been actively engaged with deep learning in two pri-

mary ways: visualization to understand the inner workings of a deep learning models,

and use of deep learning in visualization tasks [171, 172, 173]. In the context of the lat-
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ter, particularly for flow visualization tasks, specific flow features for visualization have

been identified with the aid of deep learning. Some researchers utilized deep learning

to find rip currents, a flow pattern found in the near shore ocean [119, 123, 174]. Kim

and Günther [132] used a neural network to extract a steady reference frame from an

unsteady vector field. In [175], deep neural network based particle tracing method to

explore time-varying vector fields represented by Lagrangian flow maps. Numerous

studies have also leveraged deep learning to identify vortex boundaries from velocity

fields represented as velocity components [131, 167, 168, 169, 170]. In this paper, we

present an novel deep learning approach that learns to identify vortex boundaries by

utilizing information from flowlines (streamlines and pathlines), as opposed to relying

solely on velocity components.

5.2.2 Threshold-based Methods for Vortex Boundary Detection

Threshold-based vortex detection methods can be categorized into two types: local

and global methods. Local methods involve the computation of a local quantity at

each point within a flow field, resulting in a scalar field. Subsequently, these resulting

scalar fields undergo thresholding to identify the contours corresponding to vortices.

Most notable local methods are Q criterion [176], Ω criterion [177], λ2 criterion [178],

and ∆ criterion [179]. However, these methods may fail to detect obvious vortices

while erroneously detecting non-vortical structures. Sadarjoen et al. [180] argue that
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vortices are a regional phenomenon, and local methods such as the above criteria are

ill-equipped to identify them.

In contrast, global methods such as instantaneous vorticity deviation (IVD) [181]

and the winding angle method [180] use global flow information to find vortex bound-

aries. IVD is defined as the absolute value of the difference between the vorticity at

a point in the flow field and the spatially averaged vorticity of the global flow field.

There are two main post-processing methods that visualization researchers use to find

vortex boundaries using IVD. The first method involves applying a user-defined thresh-

old to the IVD field to detect vortex contours [131]. However, in certain scenarios,

such as when vortices are dissipating, varying thresholds might need to be set for each

individual vortex. On the other hand, other researchers [168, 167, 169] adopt a differ-

ent approach by identifying isocontours around vortex cores. Vortex cores are located

by identifying local maxima in the IVD field; isocontours satisfying pre-defined arc

length and convexity criteria are selected as the vortex boundaries. For this method, the

thresholds for local maxima, convexity, and arc length are set by users during runtime.

However, the substantial user input required at runtime for these IVD-based approaches

makes them less appealing for analyzing large datasets.

The winding angle method, introduced in [180], is centered around the identifica-

tion of streamlines that exhibit rotational behavior around a critical point. Researchers

initiate this approach by sparsely seeding streamlines across the flow field. For each
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streamline, they calculate the sum of signed angles between adjacent line segments. By

applying a threshold to this computed sum, streamlines associated with a vortex can be

discerned and visually presented to denote vortex locations. It is essential to emphasize

that the determination of the threshold value is left to the user and relies on the specific

dataset under analysis. Furthermore, it is worth noting that the winding angle method is

designed to reveal the locations of vortices by showcasing the streamlines, rather than

explicitly outlining the vortex boundary.

5.2.3 Deep Learning for Vortex Boundary Extraction

In recent years, supervised machine learning methods, dependent on labeled datasets,

have been increasingly applied to detect vortex boundaries. Originally developed within

the computer vision community to identify specific pixel patterns within images, these

methods have been adapted for finding vortices within flowfields. One notable network

architecture frequently employed is U-net [182], originally designed for medical im-

age segmentation but adapted to extract vortex boundaries through segmentation of the

flow field [131, 168]. Likewise, various convolutional neural network (CNN) variants

have also been tailored to identify vortices in flowfields [167, 169, 131]. Furthermore,

ResNet has been repurposed to detect vortices within flowfields as well [131].
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5.2.4 Deep Learning Methods with Flowlines

The flow visualization community has proposed deep learning methods that learn from

flowlines. Flowlines describe the trajectory of a massless particle of fluid. In steady

state flows (or a snapshot of a time varying flow) they’re referred to as streamlines and

otherwise referred to as pathlines. Han et al. [133] used an autoencoder-based deep

learning model, FlowNet, to learn feature representations of streamlines in 3D steady

flow fields which are then used to cluster the streamlines. Recently, de Silva et al. [174],

proposed a deep learning LSTM autoencoder methods, that learns about rip currents,

a naturally occurring flow pattern in the near shore ocean, by using short sequences of

pathlines. In both these works flowlines were encapsulated in binary volumes (for 3D

flowlines) or binary images (for 2D flowlines). In this work we use flowlines to find

vortex boundaries.

5.3 Method

VortexViz identifies points that are within a vortex boundary by combining flowline

patterns and information collected along the flowlines. This is encapsulated in the

pipeline shown in Figure 5.2. It consists of several steps. Section 5.3.1 discusses how

we generate flowlines. Section 5.3.2 discusses how we represent flowlines. Section

5.3.3 discusses our deep learning model.
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CNN

FCN

Vortex or Not?

Binary Image

Information Vector

Figure 5.2: VortexViz Pipeline: Each flowline is represented as a binary image and an informa-
tion vector. The binary image is processed by a convolutional Neural Network (CNN) and the
information vector is processed by a Fully Connected Neural Network (FCN). The intermediate
output layers of both these networks are merged. The merged layer is then used to predict if the
seed point that originated the flowline is classified as inside a vortex or not.

5.3.1 Flowline Generation

We generate flowlines from higher-order methods like the widely used fourth-order

Runge-Kutta integrator RK4 [183]. If a flowline travels beyond the domain of the flow

field then we stop the numerical integration.

5.3.2 Flowline Representation

Each flowline is a collection of ordered points as shown in equation 5.1 where (xi,yi)

is a point in the coordinate system of the flow field and n is the maximum number of

integration steps of the flowline, while (x1,y1) is the seed point.

flowline =
{
(x1,y1), · · · ,(xn,yn)

}
(5.1)

In order for the deep learning model to learn about flowlines, we need to encode
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Figure 5.3: Visualizing Binary Images and Information Vectors: The top half of the figure
shows binary image representations of flowlines. Notice that binary images exhibit notable
disparities for flowlines inside (IN) and outside (OUT) of a vortex. The lower half showcases
information vector representations of flowlines. These information vectors, presented as stacked
values in heatmap form, illustrate differences among vectors of equal length. The information
vectors initiate from the bottom of the heatmap, aligned with the hollow circle indicating the
seed point of the example flowline. Notice that each type of information vector is also different
for flowlines inside (IN) and outside (OUT) the vortex. These visual differences lead us to
believe these representations can be used to detect vortices.

the swirliness of flowlines. To do this, we represent each flowline as a binary image,

as discussed in Section 5.3.2.1, and as an information vector, as discussed in Section

5.3.2.2.

5.3.2.1 Binary Image

In the binary image, the seed point of each flowline is placed at the center, and the

trajectory rescaled to this flowline-centric coordinate system. To do this, each flowline

is represented by an L×L binary image I, where each point in equation 5.1 is translated

to center the seed point in the binary image. For longer flowlines that extend beyond
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L×L, we increased the size of the binary image to accommodate these longer flowlines.

We then resized all of these larger binary images down to L×L. The reason why all

flowlines were not simply centered then resized to L×L is that we need to differentiate

flowlines that barely moved from their initial seed position versus those that actually

travelled beyond L×L. Each point of the flowline is marked as 1 in the binary image,

while others are marked as 0. Some examples of binary images are shown in Figure

5.3.

5.3.2.2 Information Vector

In addition to using binary images, we hypothesize that physical quantities of the

flow field can also be used to capture the swirliness of the flow field. In particular

we observed that information such as curl and distance can be used to differentiate

flowlines originating within a vortex from others. We denote these vectors as informa-

tion vectors and stored as a 1D vector of length n, where n is the maximum number of

integration steps of the flowline.

We conducted experiments using four different information vectors derived from

curl, which gauges the rotational tendency of particles at specific points of the flow

field. These are curl, absolute curl and cumulative curl and cumulative absolute curl

respectively. The curl information vector consists of the curl calculated at each point

along the flowline, while absolute curl contains the absolute value of the curl at each
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point of the flowline. Additionally, cumulative curl contains the cumulative value of

the curl at each point of the flowline and cumulative absolute curl contains cumulative

value of the absolute curl at each point of the flowline. Mathematical expressions for

information vectors are shown in the supplementary materials.

In addition to information vectors based on curl, we also explored the use of infor-

mation vectors based on distance. We noticed that the flowlines seeded in vortices stay

a longer time within the domain while the other flowlines exit the domain relatively

quickly. Based on this observation, we encoded two types of information vectors,

namely distance, where distance between consecutive points of the flowline is used,

and cumulative distance, cumulative distance travelled upto a point of the flowline is

used. Additionally we observed that the due to the swirliness of flowlines seeded in

vortices, that the Euclidean distance between the seed point and any other point in the

flowline was subjected to a maximum value. Based on this observation, we used dis-

tance from seed point as another information vector. All mathematical expressions for

information vectors are shown in the supplementary materials.

In order to visualize how these information vectors are different for flowlines seeded

in and out of vortices, we visualize the values of stacks of information vectors of the

same length as a heatmap as shown in Figure 5.3. Notice that these information vec-

tors inside and outside vortices are visually different, leading us to believe they maybe

useful in detecting vortices.
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5.3.3 Deep Learning Model

The proposed deep learning model learns about each flowline by using two modal-

ities: binary image and information vector as shown in Figure 5.2. One branch of the

deep learning model learns from the binary image and the other branch learns from

the information vector. The binary image is processed through a convolutional neural

network (CNN). While the information vector is processed through a fully connected

neural network (FCN). The CNNs are used to generate features from 2D data, while

FCNs are used to generate features from 1D data. Then the resulting feature vectors are

combined. Finally for each seed point we make the decision if that seed point is in a

vortex or not. The loss function used in the method is binary cross entropy. We trained

the neural network model using TensorFlow Keras API [143]. The code and the trained

models will be provided in the supplementary materials once the paper is accepted for

publication.

5.3.4 Data Sets

We used five unsteady 2D datasets, namely 2D Unsteady DoubleGyre [184], 2D Un-

steady CylinderFlow [2], 2D Unsteady Cylinder Flow with von Karman Vortex Street

[185, 186], 2D Unsteady Beads Problem [187, 188], and 2D Unsteady Cylinder Flow

Around Corners [189, 190]. Training data was generated by partitioning 2D Unsteady

DoubleGyre, 2D Unsteady CylinderFlow and 2D Unsteady Cylinder Flow with von
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Karman Vortex Street into training and test datasets. 2D Unsteady Beads Problem, and

2D Unsteady Cylinder Flow Around Corners were exclusively used for testing.

While acknowledging the absence of an absolute “true” definition for a vortex

boundary, numerous prior studies [168, 131, 169] have commonly utilized the results

obtained from IVD (Instantaneous Vorticity Deviation) as a benchmark for compari-

son. Following the same convention, our study also relied on IVD to establish ground

truth for 2D datasets, particularly in cases where the IVD output distinctly delineated

contours representing vortex boundaries. Notably, within datasets such as 2D Unsteady

DoubleGyre, 2D Unsteady CylinderFlow, 2D Unsteady Cylinder Flow with von Kar-

man Vortex Street, we identified unambiguous contours through IVD.

However, for the remaining datasets, namely 2D Unsteady Beads Problem and 2D

Unsteady Cylinder Flow Around Corners, we observed that the output derived from

IVD did not align with the expected vortex structure as one can perceive from the LIC

images. Consequently, we lacked a ground truth for these particular datasets. We will

provide all data along with exact partition information in the supplementary materials

[once the paper is accepted for publication].

5.3.5 Comparison Metric

We use F1 score as the comparison matric as shown in equation 5.2. If a flowline seeded

within the vortex boundary is detected as a vortex, then it is counted as a true positive
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(TPs). Otherwise, it is considered a false positive (FPs). Suppose a flowline originating

within the vortex boundary is not detected, then it is a false negative (FNs). The range

of the F1 score is between 0 and 1. If most flowlines within the vortex boundary are

detected as a vortex, the score will be closer to 1, otherwise closer to 0.

F1 =
2

1
recall +

1
precision

=
2

FNs+T Ps
T Ps + FPs+T Ps

T Ps
(5.2)

5.4 Results and Discussion

5.4.1 Comparison with Existing Methods

We compare our method against threshold-based methods and deep learning methods

that learn from velocity components. Rows 2-5 of Figure 5.4 shows the results of

threshold -based methods and Rows 6-9 of Figure 5.4 shows the output of the deep

learning methods on 5 different datasets. Row 10 shows the output of our method and

last row shows the ground truth.

5.4.1.1 Comparison with threshold-based methods

First, we compared our method to threshold-based methods such as IVD [181], Q

criterion [176], Ω criterion [177] and ∆ criterion [179]. In particular for datasets 2D

Unsteady DoubleGyre, 2D Unsteady CylinderFlow and 2D Unsteady Cylinder Flow
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Figure 5.4: Qualitative Comparison with Other Methods. The first row displays the LIC
image. Rows 2-5 exhibit the output of IVD, Q, Ω, and ∆ criteria. Rows 6-9 showcase the output
of deep learning methods that learn from velocity components. The second-to-last row presents
the output of our method, while the last row depicts the ground truth. Notice that our method
can visualize vortices even where other methods fail.
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Table 5.1: Quantitative Comparison with Other Methods. We use three datasets where IVD
can produce an unambiguous ground truth for quantitative comparisons in this table. Notice that
our method has a higher F1 score compared to other methods. For the remaining two datasets
IVD did not produce reliable ground truth contours that represent vortices. Therefore we did
not include those in this table; however for a qualitative comparison on all datasets please refer
to Figure 5.4.

Method
2D Unsteady

DoubleGyre [184]
2D Unsteady

CylinderFlow [2]

2D Unsteady
Cylinder Flow

with
von Karman
Vortex Street

[185, 186]

Q criterion [176] 0.698 0.107 0.311

Ω criterion [177] 0.707 0.124 0.363

∆ criterion [179] 0.657 0.029 0.445

Vortex Net [167] 0.818 0.332 0.635

ResNet [131] 0.831 0.550 0.646

CNN [131] 0.567 0.090 0.360

Vortex Seg Net [169] 0.173 0.008 0.196

Ours 0.972 0.797 0.946
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with von Karman Vortex Street we were able to use IVD at dataset specific thresholds

that capture the locations of rotational behavior seen in the LIC images.. However,

for Q,Ω,∆ criteria, there was no single threshold that captured the rotational patterns

without introducing erroneous contours as well.

Moreover, we found that threshold-based methods could not find contours that rep-

resent the vortex boundary for some datasets such as 2D Unsteady Beads Problem. In

this particular dataset, the U component (velocity component along the x-axis) is con-

stant across each row; therefore, the partial derivative of the U components along the y-

axis, ∂u/∂y, is also constant for each row while ∂u/∂x is 0. Likewise, the V component

(velocity component along the y-axis) is constant across each column, and therefore

the partial derivative of the V component along the x-axis, ∂v/∂x, is also constant for

each column, while ∂v/∂y is 0. Therefore, mathematical expressions that rely on par-

tial derivatives of velocity components, such as curl, will also produce constant values

along rows and columns. Consequently, threshold-based methods, which are derived

from curl, produce linear (horizontal and vertical) features around vortex cores instead

of the usual circular contours. In comparison, since our method employs flowlines, we

can find the vortex.

Additionally, we found that for 2D Unsteady Cylinder Flow Around Corners, IVD

and ∆ criterion would highlight the boundary of the obstacle corners as vortices. In

contrast, our method does not highlight the corners as a vortex. Visual comparison
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of the output for each threshold based method is shown in Figure 5.4 and numerical

comparison is given in Table 5.1.

5.4.1.2 Comparison with deep learning based methods

Next, we compared our method to existing deep learning approaches that use veloc-

ity components such as VortexNet [167], ResNet [131], CNN [131] and VortexSegNet

[169]. In general, we found that these methods would predict vortices even in places of

the flow field where there are no vortices present, as shown in Figure 5.4. These models

learn about vortex formations primarily from velocity fields represented by their veloc-

ity components U and V. We hypothesize that learning from velocity components is

ineffective in learning the vortex boundary. In velocity components, the defining fea-

tures—regions of distinctive values—are often distributed away from the vortex core.

Understanding the interpretation of vortices by existing deep learning models trained

on velocity components is crucial in comprehending the limitations of these methods.

Since most existing deep learning techniques use convolutional layers, we can

employ explainable methodologies like Gradient-weighted Class Activation Mapping

(Grad-cam) [191] to gain insights into what convolutional layers perceive as vortices.

Grad-cam identifies parts of the input matrix that most impact the decision of the neural

network. In Figure 5.5, we showcase the application of Grad-cam, initially designed

for image analysis, to the context of velocity fields. The top row demonstrates how
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CNNs trained to identify object classes like goldfish and bear from images learn dis-

tinctive features. These features are highlighted by a heatmap, where warmer colors

indicating places in the image that contribute more to the decision of the convolutional

neural network. Notice that these features correspond directly to the appearances of the

goldfish and bear in the images. However, in the second row of Figure 5.5, we show

one counterclockwise votex and one clockwise vortex and what a CNN perceives as a

vortex using Grad-cam. Notice that the warmer parts of the heatmap is not aligned with

the vortex core. The convolutional operation in the neural network, originally designed

to detect edges in images, may not effectively capture the swirling nature of vortices

when applied to flow fields. It tends to focus on the prevalent values of the individual

components of the flow field rather than capturing the swirliness of vortices. In con-

trast, our approach differs from this since the model is not learning from the velocity

components directly. Instead our model is learning from the pattern and information

collected along flowlines. This representation captures the swirliness found in vortices

better than velocity components.

5.4.2 Performance Assessment on Noisy Data

In our evaluation, we tested the robustness of our method by subjecting the input data to

different noise levels, specifically at rates of 1%, 5%, and 10%, by introducing Gaussian

noise into the data sets. The primary aim was to gauge and compare the robustness of
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Goldfish Bear

Vortex Vortex

Figure 5.5: Understanding what Deep Learning Methods Learn from Velocity Components
using Grad-cam: In the first row, we display images of a goldfish and a bear. The warmer
sections within the overlaid heatmap depict the specific features learned by a CNN. Notably,
these features correspond directly to the appearances of the goldfish and bear in the images. In
the second row, we illustrate a counterclockwise and a clockwise vortex. The warmer regions
within the overlaid heatmap reveal the features interpreted by a CNN as indicative of a vortex.
It’s worth observing that these highlighted features do not align with the vortex core. This
observation leads us to hypothesize that what the CNN learns does not necessarily relate to the
vortex itself.
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our method with other methods across varying noise levels.

The outcomes, as depicted in Figure 5.7, on the double gyre dataset, highlight

the robustness of our method. Even amidst noisy conditions, our approach preserved

the circular shape of the vortex. Notably, our observations revealed the sensitivity of

threshold-based techniques, which produced deteriorating vortex shapes under a mere

1% of noise. Conversely, deep learning methods demonstrated robustness, maintaining

the vortex’s shape with minimal degradation at 1% noise. However, their F1 scores no-

tably declined when noise level is above 5%, marking a rapid deterioration in predicting

a circular vortex shape as shown in Figure 5.6.

We extended our evaluation to a real-world scenario by utilizing a dataset recon-

structed from dense optical flow extracted from a sequence of satellite imagery, specifi-

cally selecting the satellite video capturing Hurricane Dorian [192]. Within this context,

noise sources included video compression artifacts and errors in deriving the velocity

field using optical flow.

None of the methods, including ours, was optimized for a hurricane dataset. How-

ever, we discovered that our method can visualize the general area of the hurricane

vortex, further underscoring its robustness under noisy conditions, as shown in Figure

5.8

While the performance of our method on this dataset was surprising, we recognize

the need for further optimization to enhance our method’s precision in detecting the
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Figure 5.6: Quantitative Comparison of Performance on Noisy Data: When introducing
gaussian noise, we expect a decline in performance across all methods. However, notice that our
method (shown in black) exhibits the least decrease in F1 score compared to velocity component
based deep learning methods (shown in red) and threshold-based methods (shown in blue).

hurricane vortex. This outcome serves as a promising starting point, prompting us to

refine our approach for more accurate extraction of vortex boundaries in real-world

scenarios.

5.4.3 Sensitivity Analysis of VortexViz Components

5.4.3.1 Pairing of Information Vectors with Binary Images

We conducted experiments to determine the optimal pairing of information vectors and

binary images, outlined in Table 5.2. It became evident that relying solely on the shape
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Figure 5.7: Robust with Noisy Data: In Rows 1-5, the contours based on IVD, Q, ∆, Ω

and λ2 criteria are displayed. It is noticeable that as noise levels rise, the discernibility of
vortices within these contours diminishes. Similarly, ResNet, VortexNet and CNN (Rows 6-
8, respectively) exhibit reduced capability in detecting vortices as noise levels increase. In
contrast, our method, depicted in the last row, can maintain the shape of the vortex even amid
increased noise levels.

146



VORTEX NET RESNET

IVD Q-criterion 𝝙-criterion 𝛀-criterion

VORTEX SEG NETCNN

OURS

GROUND 
TRUTH

Figure 5.8: Performance Showcase on Real-World Data (Hurricane Dorian, 2019) Despite
inherent noise in the reconstructed velocity field derived from video via optical flow, our method
stands out in indicating the approximate location of the vortex amidst the noise. While all meth-
ods struggle to identify the vortical structure of the hurricane, our approach excels in delineating
the general region of the vortex, even under noisy conditions.

of flowlines encapsulated within binary images did not yield satisfactory outcomes.

While using flowline shape within binary volumes [133] and binary images [174] has

proven successful in various flow visualization tasks, for precise vortex boundary de-

tection, depending solely on binary images, proved inadequate.

Moreover, our experiments involved pairing the binary image with different infor-

mation vectors. The initial set of information vectors is derived from flowline point

distances. Surprisingly, all distance-based information vectors—namely, Distance, Cu-

mulative Distance, and Distance from seed point—both in isolation and when paired

with a binary image, failed to perform as well as other parings.

The second set of information vectors were derived from curl such as Curl, Absolute

Curl, Cumulative Curl and Cumulative Absolute Curl. We noticed that these informa-

tion vectors had superior performance when used on their own and when paired with a

binary image. We attribute this performance superiority to the fact that curl along the
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flowline can capture the rotational behavior of a vortex. Remarkably, apart from Curl

alone, these vectors maintained robustness even under noisy conditions. Notably, the

combination of the binary image with Cumulative Absolute Curl emerged as the most

effective under these circumstances. This paring was used for the results presented in

this paper. Our approach quantifies the general consensus regarding vortices as concen-

trated regions of high vorticity [163].

5.4.3.2 Choosing Between Pathlines and Streamlines

We conducted experiments to find the optimal type of flowline for our method. Flow-

lines track the trajectory of a massless fluid particle, termed as streamlines in steady-

state flows or in snapshots of time-varying flows, and as pathlines in other cases. In our

investigation detailed in Table 5.3, we explored both pathlines and streamlines with our

approach. While streamlines performed consistently well, the effectiveness of pathlines

varied depending on the dataset.

We found both streamlines and pathlines effective when the vortex cores remain

fairly stationary such as in the 2D Unsteady DoubleGyre , 2D Unsteady CylinderFlow

or 2D Unsteady Beads Problem. However, in instances where vortices exhibit transla-

tional movement over time, as observed in the 2D Unsteady Cylinder Flow with von

Karman Vortex Street or 2D Unsteady Cylinder Flow Around Corners, streamlines ex-

clusively demonstrated effectiveness, whereas pathlines did not yield favorable results.
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Table 5.2: Sensitivity Analysis of Combinations of Information Vectors and Binary Images.
Notice that binary image + cumulative absolute curl has the hightest F1 score especially in noisy
data.

Method 0% noise 10% noise

Binary Image Only 0.814 0.726

Distance Only 0.034 0.004

Cumulative Distance Only 0.063 0.004

Distance from Seed Point Only 0.660 0.263

Curl Only 0.947 0.254

Absolute Curl Only 0.952 0.737

Cumulative Curl Only 0.961 0.721

Cumulative Absolute Curl Only 0.976 0.749

Binary Image + Distance 0.801 0.420

Binary Image + Distance from seed point 0.822 0.510

Binary Image + Cumulative Distance 0.799 0.718

Binary Image + Curl 0.962 0.686

Binary Image + Absolute Curl 0.954 0.711

Binary Image + Cumulative Curl 0.969 0.731

Binary Image + Cumulative Absolute Curl 0.972 0.781
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Table 5.3: Pathlines or Streamlines: While streamlines performed consistently higher F1
score, the effectiveness of pathlines varied depending on the dataset.

Dataset Streamlines Pathlines

2D Unsteady DoubleGyre [184] 0.972 0.972

2D Unsteady CylinderFlow [2] 0.797 0.795

2D Unsteady Cylinder Flow with
von Karman Vortex Street [185, 186] 0.946 0.391

Our findings suggest that the suitability of flowline type depends upon the dynamic

behavior of vortices, with streamlines exhibiting more consistent performance across

various scenarios compared to pathlines.

5.4.3.3 Optimal Flowline Length and Binary Image Size

Our experiments focused on determining our method’s ideal flowline length and

binary image size. Figure 5.9 illustrates a notable trend: longer flowlines showed a

decline in accuracy. We attribute this decrease to flowlines exiting the domain before

completing integration over an extended interval. Additionally, our observations indi-

cated that increasing binary image sizes did not notably improve the F1 score. For the

results presented in this work, we used binary images of size 16×16 and a flowline of

length 200.
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Figure 5.9: Exploring the Impact of Varying Flowline Lengths and Binary Image Sizes
on Binary Image + Cumulative Absolute Curl Pairing. Notice that longer flowlines tend to
perform poorly and scaling up binary image sizes did not significantly enhance the F1 score.

5.4.3.4 Comparison of Numerical Integration Methods for Flowline Generation

Traditionally, the flow visualization community favors higher order numerical in-

tegration methods for their superior accuracy [193]. However, in our experiments, we

examined both higher order (specifically, fourth order Runge Kutta) and lower order

(such as first order Euler) integration methods to explore their impact on deep learn-

ing’s understanding from flowlines.

Higher-order methods like the widely used fourth order Runge Kutta integrator em-

ploy more function evaluations per step to better capture the local behavior of integral

curves. Conversely, lower order methods like Euler integration are more straightfor-

ward but less accurate in capturing intricate flow behaviors.

Despite the community preference for higher order integration methods in flow vi-

sualization, our findings revealed that utilizing lower order integration methods for our
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Figure 5.10: Higher Order or Lower Order Numerical Integration Methods: Notice that
there is no significant improvement in using higher order numerical integration methods

machine learning model did not notably compromise its performance. This unexpected

observation suggests that while higher order methods excel in flow visualization tasks,

lower order methods can still effectively contribute to machine learning-based analysis

of flowlines without significantly impairing model performance. We followed the norm

of using RK4 but note that one can use Euler if limited computational resource is a

hindrance.

5.5 Conclusion

The visualization community has been using deep learning methods directly on velocity

components to find vortices. In this paper, we present a novel deep learning approach

that learns from flowlines to find vortex boundary. The main contribution of this paper

is a deep learning methodology utilizing flowlines to learn and identify vortex bound-

aries.
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Hyperparameters of VortexViz were found based on the datasets tested in this pa-

per. It is possible that further adjustments may be needed if a new dataset is markedly

different from those used in this paper.

For each comparison paper, we used our best judgement to infer and reproduce the

deep learning models associated with each proposed method. Our inference is based

on the technical information provided by each paper. For most of the comparison pa-

pers the complete code, trained model weights, test and training data are not publicly

available. Therefore, we do not claim that we have perfectly captured the authors’ in-

tentions. In order to make it easier for other researchers to improve upon our findings,

the code for VortexViz will be available in the supplementary materials after the paper

is accepted for publication.

5.6 Supplementary Material

5.6.1 Mathematical Expressions of Information Vectors

The first set of information vectors are derived from curl at each point of the flow-

line. For each point in the flowline, we calculated the curl as shown in equation 5.3

where u represents the velocity component along the x axis and v represents the veloc-

ity component along the y axis. curl measures the tendency at a given point for particles

to rotate.
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curl =

{
∂v
∂x

− ∂u
∂y

∣∣∣∣x=x1
y=y1

, · · · , ∂v
∂x

− ∂u
∂y

∣∣∣∣x=xn
y=yn

}
(5.3)

From curl, we derive additional information vectors. As shown in equation 5.4 we

calculate the absolute value of curl at each point of the flowline. absolute curl allows

us to encode rotation at each point of the flowline without encoding direction.

absolute curl =
{
|curl[1]|, · · · , |curl[n]|

}
(5.4)

In addition to curl and absolute curl, where physical quantities are calculated at

each point of the flowline, we also calculate the cumulative quantities along the flow-

line. As shown in 5.5 and 5.6 we calculate the cumulative curl and cummulative abso-

lute curl respectively. We hypothesize that flowlines originating from within vortices

have higher cumulative curl and cumulative absolute curl than flowlines originating

from laminar flow regions.

cumulative

curl
=

{
1

∑
i=1

curl[i], · · · ,
n

∑
i=1

curl[i]

}
(5.5)

cumulative

absolute

curl

=

{
1

∑
i=1

| curl[i] |, · · · ,
n

∑
i=1

| curl[i] |

}
(5.6)
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In addition to the vectors derived from curl, we also derived information vectors

from the Euclidean distance between successive points of the flowline as shown in

equation 5.7. We hypothesize that the distance traveled by a particle traced from inside

a vortex would be different from a particle outside the vortex.

distance =
{

0,∥(x1,y1),(x2,y2)∥, · · · ,

∥(xn−1,yn−1),(xn,yn)∥
} (5.7)

We also calculated the Euclidean distance between each point of the flowline from

the seed point (x1,y1) as shown in equation 5.8. We supposed that the distance from the

seed point would not exceed some maximum value for particles traced in the vortex.

distance f rom

seed point
=
{

0,∥(x1,y1),(x2,y2)∥, · · · ,

∥(x1,y1),(xn,yn)∥
} (5.8)

With equation 5.7, we calculate the cumulative distance up to each point in the

flowline as shown in equation 5.9

cumulative

distance
=
{ 1

∑
i=1

distance[i], · · · ,

n

∑
i=1

distance[i]
} (5.9)
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5.6.2 Training and Testing Data

We will provide a link to download training data, test data and code after publication

5.6.3 More Grad-cam Images

Figure 5.11: Explaining what a CNN learns using Grad-cam: We illustrate two vortices.
The warmer regions within the overlaid heatmap reveal the features interpreted by a CNN as
indicative of a vortex. It’s worth observing that these highlighted features do not align with
the vortex core. This observation leads us to hypothesize that what the CNN learns does not
necessarily relate to the vortex itself but learns where higher values (red) are concentrated in the
velocity components (two center columns).
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Chapter 6

Conclusion

6.1 Summary

In this dissertation, we explored the integration of deep learning within flow visu-

alization pipelines with a specific emphasis on feature detection. We demonstrated the

use of deep learning for feature detection, specifically within the context of visualizing

rip currents and vortices.

First, we explored using conventional flow visualization methods, such as vector

clustering and timelines, to visualize rip currents. We found that by clustering the vector

field derived from near-shore ocean videos based on direction, we could effectively

visualize rip currents. Additionally, we used arrow glyphs and color maps to enhance

the visibility of the rip current. Furthermore, We found that carefully placing timelines
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along the beach and observing its deformation can be used to visualize rip currents.

Second, we noticed a unique appearance corresponding to the rip current. In par-

ticular, for bathymetry-controlled rip currents, we found that there is a visible gap in

the breaking waves, signifying the location of the rip current. Therefore, we explored

using deep learning methods that can detect this pattern from near-shore ocean videos.

Assuming stationary videos, we further refined our detection by using an accumulation

buffer to filter out false positives and fill in false negatives.

Third, we explored the use of deep learning to learn about the behavior of rip cur-

rents without relying on appearance. One of the limitations of relying solely on appear-

ance is the large amount of data that is needed to capture the varying appearances of

rip currents. Additionally, some rip currents do not have a distinguishable appearance,

making appearance-based methods even more challenging. Nevertheless, our obser-

vations revealed a consistent behavioral pattern in rip currents, characterized by their

outward motion into the sea across various types of rips. In this work, we introduce a

novel approach to learning about rip current behavior by using pathline sequences.

Finally, we delved into extending the use of flowlines (streamlines and pathlines)

to find vortices. In previous work, when using flowlines in deep learning methods,

flowlines were encapsulated in binary images before using in deep learning methods.

However, we found that using the binary image alone is not sufficient for finding vor-

tices. In this current work, we introduce a novel approach, adopting a multimodal
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framework, where, in addition to the binary image representation, we incorporate ad-

ditional information extracted along the flowline trajectory, such as cumulative curl, to

find vortices.

In conclusion, this dissertation explored approaches to utilize deep learning in flow

visualization, showcasing its potential in advancing our understanding and visualization

of complex fluid dynamics. It underscored the importance of combining conventional

and novel methods to tackle the challenges posed in visualizing complex flow patterns.

6.2 Future Work

The work discussed in this dissertation has several promising avenues for future

research and expansion. Two such directions stand out.

The first opportunity lies in the extension of the application of flowlines, including

pathlines and streamlines, to identify and characterize additional complex flow patterns

such as saddles and separatrices. In existing work, the application of deep learning to

find other types of flow patterns is limited. This expansion could provide invaluable in-

sights into the intricate dynamics of fluid systems and further expand our understanding

of flow behavior.

Secondly, addressing the analysis of uncertainty associated with deep learning mod-

els used in flow visualization pipelines is another essential area for future exploration.

In particular exploring the quantification and visualization of uncertainty would make
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flow visualization robust and reliable, especially in critical applications like environ-

mental and ocean sciences.

These potential research directions not only contribute to the advancement of flow

visualization and deep learning but also underscore the robustness and reliability of

flow visualization pipelines.
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and Matti Pietikäinen. Deep learning for generic object detection: A survey.
arXiv preprint arXiv:1809.02165, 2018.

[87] Constantine P. Papageorgiou, Michael Oren, and Tomaso Poggio. A general
framework for object detection. In Proceedings of the Sixth International Con-
ference on Computer Vision, ICCV ’98, pages 555–562, Washington, DC, USA,
1998. IEEE Computer Society.

[88] Joseph Redmon, Santosh Divvala, Ross Girshick, and Ali Farhadi. You Only
Look Once: Unified, real-time object detection. In The IEEE Conference on
Computer Vision and Pattern Recognition (CVPR), page 0, June 2016.

[89] Paul Viola and Michael J. Jones. Robust real-time face detection. International
Journal of Computer Vision, 57(2):137–154, May 2004.

168



[90] Wei Han, Pooya Khorrami, Tom Le Paine, Prajit Ramachandran, Mohammad
Babaeizadeh, Honghui Shi, Jianan Li, Shuicheng Yan, and Thomas S. Huang.
Seq-NMS for video object detection. CoRR, abs/1602.08465, 2016.

[91] Kai Kang, Wanli Ouyang, Hongsheng Li, and Xiaogang Wang. Object detection
from video tubelets with convolutional neural networks. In 2016 IEEE Confer-
ence on Computer Vision and Pattern Recognition (CVPR), pages 817–825, Las
Vegas, NV, USA, June 2016. IEEE.

[92] Xizhou Zhu, Yujie Wang, Jifeng Dai, Lu Yuan, and Yichen Wei. Flow-guided
feature aggregation for video object detection. In Proceedings of the IEEE In-
ternational Conference on Computer Vision, pages 408–417, 2017.

[93] MV Athira and Diliya M Khan. Recent trends on object detection and image
classification: A review. In 2020 International Conference on Computational
Performance Evaluation (ComPE), pages 427–435. IEEE, 2020.

[94] Sushma Jaiswal and Tarun Jaiswal. Deep learning approaches for object detec-
tion. Artificial Intelligence Evolution, pages 122–144, 2020.

[95] Cannannore Nidhi Kamath, Syed Saqib Bukhari, and Andreas Dengel. Compar-
ative study between traditional machine learning and deep learning approaches
for text classification. In Proceedings of the ACM Symposium on Document En-
gineering 2018, pages 1–11, 2018.

[96] Athanasios Voulodimos, Nikolaos Doulamis, Anastasios Doulamis, and Efty-
chios Protopapadakis. Deep learning for computer vision: A brief review. Com-
putational intelligence and neuroscience, 2018, 2018.

[97] Xiongwei Wu, Doyen Sahoo, and Steven CH Hoi. Recent advances in deep
learning for object detection. Neurocomputing, 2020.

[98] Zhengxia Zou, Zhenwei Shi, Yuhong Guo, and Jieping Ye. Object detection in
20 years: A survey. arXiv preprint arXiv:1905.05055, 2019.

[99] Sumit Gupta. Deep learning performance breakthrough, January 2018. Library
Catalog: www.ibm.com.

[100] Gregory Perrier. Automated rip current detection system, December 8 2005. US
Patent App. 11/203,771.

[101] Anamika Dhillon and Gyanendra K Verma. Convolutional neural network: a
review of models, methodologies and applications to object detection. Progress
in Artificial Intelligence, 9(2):85–112, 2020.

169



[102] Panagiotis Barmpoutis, Kosmas Dimitropoulos, Kyriaki Kaza, and Nikos Gram-
malidis. Fire detection from images using faster r-cnn and multidimensional tex-
ture analysis. In ICASSP 2019-2019 IEEE International Conference on Acous-
tics, Speech and Signal Processing (ICASSP), pages 8301–8305. IEEE, 2019.

[103] Jong Hyun Kim, Ganbayar Batchuluun, and Kang Ryoung Park. Pedestrian
detection based on faster r-cnn in nighttime by fusing deep convolutional features
of successive images. Expert Systems with Applications, 114:15–33, 2018.

[104] Shaolong Ma, Yang Huang, Xiangjiu Che, and Rui Gu. Faster rcnn-based de-
tection of cervical spinal cord injury and disc degeneration. Journal of Applied
Clinical Medical Physics, 21(9):235–243, 2020.

[105] Tahir Mahmood, Muhammad Arsalan, Muhammad Owais, Min Beom Lee, and
Kang Ryoung Park. Artificial intelligence-based mitosis detection in breast can-
cer histopathology images using faster r-cnn and deep cnns. Journal of Clinical
Medicine, 9(3):749, 2020.

[106] Jane Hung and Anne Carpenter. Applying faster r-cnn for object detection on
malaria images. In Proceedings of the IEEE Conference on Computer Vision
and Pattern Recognition (CVPR) Workshops, July 2017.

[107] Ross Girshick. Fast R-CNN. In Proceedings of the IEEE international confer-
ence on computer vision, pages 1440–1448, 2015.

[108] Hamid Rezatofighi, Nathan Tsoi, JunYoung Gwak, Amir Sadeghian, Ian Reid,
and Silvio Savarese. Generalized intersection over union: A metric and a loss
for bounding box regression. In Proceedings of the IEEE/CVF Conference on
Computer Vision and Pattern Recognition (CVPR), June 2019.

[109] Gabriele Paolacci, Jesse Chandler, and Panagiotis G Ipeirotis. Running experi-
ments on amazon mechanical turk. Judgment and Decision making, 5(5):411–
419, 2010.

[110] Jenny J Chen, Natala J Menezes, Adam D Bradley, and T North. Opportunities
for crowdsourcing research on amazon mechanical turk. Interfaces, 5(3):1, 2011.

[111] Xizhou Zhu, Yujie Wang, Jifeng Dai, Lu Yuan, and Yichen Wei. Flow-guided
feature aggregation for video object detection. In Proceedings of the IEEE In-
ternational Conference on Computer Vision, pages 408–417, 2017.

[112] Xizhou Zhu, Yuwen Xiong, Jifeng Dai, Lu Yuan, and Yichen Wei. Deep feature
flow for video recognition. In Proceedings of the IEEE conference on computer
vision and pattern recognition, pages 2349–2358, 2017.

170



[113] Chuanqi Tan, Fuchun Sun, Tao Kong, Wenchang Zhang, Chao Yang, and Chun-
fang Liu. A survey on deep transfer learning. In International conference on
artificial neural networks, pages 270–279. Springer, 2018.

[114] S. Leatherman and J. Fletemeyer, editors. Rip Currents: Beach Safety, Physical
Oceanography, and Wave Modeling (1st ed.). CRC Press, 2011.

[115] Jamie MacMahan, Ad Reniers, Jenna Brown, Rob Brander, Ed Thornton, Tim
Stanton, Jeff Brown, and Wendy Carey. An Introduction to Rip Currents Based
on Field Observations. Journal of Coastal Research, 27(4), 2011.

[116] A. H. da F. Klein, G. G. Santana, F. L. Diehl, and J. T. de Menezes. Analysis
of hazards associated with sea bathing: Results of five years work in oceanic
beaches of Santa Catarina state, Southern Brazil. Journal of Coastal Research,
pages 107–116, 2003.

[117] James B. Lushine. A study of rip current drownings and related weather factors.
National Weather Digest, pages 13–19, 1991.

[118] Li Liu, Wanli Ouyang, Xiaogang Wang, Paul Fieguth, Jie Chen, Xinwang Liu,
and Matti Pietikäinen. Deep learning for generic object detection: A survey.
International Journal of Computer Vision, 128(2):261–318, 2020.

[119] Akila de Silva, Issei Mori, Gregory Dusek, James Davis, and Alex Pang. Au-
tomated rip current detection with region based convolutional neural networks.
Coastal Engineering, 166:103859, 2021.

[120] Ashraf Haroon Rashid, Imran Razzak, M. Tanveer, and Antonio Robles-Kelly.
RipNet: A lightweight one-class deep neural network for the identification of
RIP currents. In Communications in Computer and Information Science, pages
172–179. Springer International Publishing, 2020.

[121] Ashraf Haroon Rashid, Imran Razzak, M. Tanveer, and Antonio Robles-Kelly.
RipDet: A fast and lightweight deep neural network for rip currents detection.
In 2021 International Joint Conference on Neural Networks (IJCNN). IEEE, jul
2021.

[122] Shweta Philip and Alex Pang. Detecting and visualizing rip current using optical
flow. In EuroVis (Short Papers), pages 19–23, 2016.

[123] Issei Mori, Akila De Silva, Gregory Dusek, James Davis, and Alex Pang. Flow-
based rip current detection and visualization. IEEE Access, 2022.

171



[124] Sudhanshu Sane, Roxana Bujack, Christoph Garth, and Hank Childs. A sur-
vey of seed placement and streamline selection techniques. Computer Graphics
Forum, 39(3):785–809, 2020.

[125] Bernardo S. Carmo, Y. H. Pauline Ng, Adam Prügel-Bennett, and Guang-Zhong
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