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The Use of Alternative Specific Constants in Choice Modeling 

by 

Timothy J. Tardiff, Assistant Professor 

University of California, Davis 

ABSTRACT 

A specification issue which has been handled differently in various 

empirical applications is whether or not to include alternative specific 

constants in models of choice behavior. Some applications have excluded 

constants, others have included a full set of constants, and a third class 

of examples uses unique constants for some alternatives, but not all. 

In logit models in which each individual has the same set of alterna

tives, the exclusion of constants in the estimation of models when the 

correct model actually has alternative specific effects leads to inconsis

tent estimates of the coefficients of the remaining independent variables. 

However, the inclusion of constants when no such effects exist does not 

affect the consistency of the estimates of the coefficients. These results 

are illustrated by simple hypothetical examples and by empirical examples. 

When nonratio scale variables are used in logit models, the coeffi

cients of the independent variables are not invariant under arbitrary scale 

shifts when alternative specific constants are excluded. 

Finally, the use of models to predict the response to new alternatives 

and the transferability of models which might or might not include alterna

tive specific effects is discussed. 

The major conclusion is that ·the inclusion .. of a full set of alternative 

specific constants in logit models estimated with large samples is generally 

preferred over the exclusion of one or more alternative specific constants. 
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Introduction 

The examination of transporation decisions at the individual level and 

the development of appropriate statistical techniques for these choice prob

lems have been the subject of extensive research effort. The key require

ments for this type of modeling are the selection of an appropriate set of 

independent variables upon which people are assumed to base their choices and 

an appropriate function relating these independent variables to choice proba

bilities. The former task is mainly a theoretical and empirical one, while 

the latter requirement also deals with statistical estimation considerations. 

In this regard, considerable progress has been made in the development of 

appropriate techniques for both binary and multinominal choice problems. In 

recent years binary and multinominal logit models (McFadden, 1973; Domencich 

and McFadden, 1975) have received the most empirical use in transportation appli

cation and therefore, the present discussion will focus on the logit approach. 

Although logit analysis can be applied to problems in which there are 

repeated observations for each individual in the sample, only the case in 

which there is only one observation per individual will be considered. Here, 

the task becomes the estimation of the coefficients of the independent vari

ables, usually by maximum likelihood methods, for the following probability 

function 
x.e 

e 1 
P(i) = -

l xje 
. Ce JE 



where P(i) is the probability that the ; th alternative is selected, 

X; is a vector of variables or functions of variables describing the ; th 

alternative and x. is the corresponding vector for the j th alternative. 
J 

e is the vector of coefficients, and C denotes the set of alternatives. 

In general, the selection of the appropriate set of independent vari

ables is a theoretical concern. It is obvious that the quality of the result

ing model is highly dependent upon this selection process. Among the variables 

which might or might not be included in the vector of independent variables 

are alternative specific constants. These are variables which have the value 

l for one alternative and O for all others. Mathematically, it is possible 

to have an many as one fewer alternative specific constants than there are 

alternatives. Although it might appear that such constants do not have the 

theoretical or policy significance of variables which in some sense describe 

the alternatives, the purpose of the paper is to demonstrate that the use or 

nonuse of constants is very important in the proper estimation of the coeffi

cients of logit models. In an earlier paper, it was shown that the use or 

nonuse of constants also has implications for the interpretation of some good

ness of fit measures (Tardiff, 1976). 

The specification issues related to the use of alternative specific con

stants are special cases of the general specification problem, i.e., the con

sequences of estimating a model which does not include all of the correct inde

pendent variables. The general case is also of interest and is discussed else

where (Tardiff, 1978). The special case developed in this paper is of partic

ular interest because, unlike the general case, the researcher always has the 

option of whether to include constants. Data limitations are not a factor. 

Consequently, the findings with respect to constants are of immediate practical 

as well as theoretical usefulness. 
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An examination of the transportation literature indicates that there have 

been alternative strategies of using constants. First, it is possible to com

pletely exclude constants. Models using this strategy include the studies of 

Hauser (1976), Recker and Stevens (1976), Liou and Talvitie (1974), Watson 

(1974), Recker and Golob (1976), and the shopping trip frequency model of 

Domencich and McFadden (1975). The usual justification of this strategy is 

that .either the set of independent variables adequately describes each alterna

tive or that the excluded effects are similar for all alternatives. 

Another strategy is the inclusion of the full set of alternative specific 

constants. Examples include the models developed by Koppelman (1976), Train 

and McFadden (1975), and most binary mode choice models. This strategy is con

sistent with the assumption that the effects of excluded variables might be 

different for different alternatives. 

Finally, it is possible to have a mixed strategy in which some alterna

tives share the same constant (Ben-Akiva and Richards, 1976; Recker and Kosty

niuk, 1977). Here, it can be assumed that there are groups of alternatives 

for which the effects of excluded variables are similar within groups, but 

different across groups. 

The decision to include less than a full set of constants appears to be 

based upon either a priori assumptions or on tests of statistical signifi

cance which result in the exclusion of insignificant constants. The analysis 

and empirical examples presented in this paper will indicate that both 

approaches can lead to inconsistency and bias problems and/or differences in 

interpretation of the coefficients of the model. 

It is interesting to contrast the situation of logit analysis to that of 

regression analysis. In regression analysis, there is very seldom a question 

of whether or not a constant is used. In fact, the proper covariance proper

ties of the residual with each independent variable requires the presence of 
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a constant (Rao and Miller, 1971). Further, many standard computer programs 

do not allow a decision on whether a constant will be used; it is automatic

ally included. The burden of proof is on the modeler to show why a constant 

should not be used. 

This analogy to regression analysis is appropriate because the exclusion 

of the alternative specific constants is similar to the effect of excluding 

the constant in regression analysis. That is both situations involve the esti

mation of a model which might not have the full set of correct independent 

variables. The fact that the present results parallel similar well known re

sults regarding the more widely used linear models is consistent with the fact 

that many features of the two methods are analogous. 

There has been some dis.cussion of the desirability of including alternative 

specific constants in the transportation literature. (Stopher, 1974 and 1976; 

Ben-Akiva and Richards, 1976). Most of the discussion has been qualitative and 

has been motivated by considerations of full or perfect specification. While 

full or perfect specification is certainly a sufficient condition for exclud

ing constants, it is not necessary. The analyses in the next section show 

that when the effects of excluded variables are the same for all alternatives, 

constants can be excluded. 

Despite the similarities to linear models and the brief discussions of 

previous authors, it appears that the specification issues involving alterna

tive specific constants are not widely recognized by many transportation re

searchers. The existence of alternative strategies for including or not in

cluding constants seems to confirm this observation. Further, it appears that 

models without constants are being developed for practical planning applica

tions. For example, Spear (1977) reports that a set of multinomial logit 

modal choice models developed for the Twin Cities Metropolitan Council expli

citly excluded constants. Therefore, there appears to be a definite need 
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for a thorough discussion of the role of alternative specific constants in 

logit models. 

The remainder of this paper will develop and illustrate some conclusions 

involving the consequences of use or nonuse of constants on the estimates of 

the coefficients of the remaining independent variables. First, some general 

results will be stated on the inconsistency and asymptotic bias of models 

which a) exclude constants when the effects are, in fact, present, and b) 

include constants when there are no effects. These conclusions will be 

illustrated by use of a very simple hypothetical choice situation, and obser

vation of some empirical results. Next, the effects of the use of indepen

dent variables which do not have ratio scale properties, e.g., a dichotomous 

variable describing occupation, on the estimate of the coefficients when 

constants are not used will be discussed. The possible consequences of the 

use of constants on the transferability of models and the use of models to 

predict the response to new alternatives will be mentioned. Finally, the 

implications of these results on research strategies will be discussed. 

Consistency and Asymptotic Bias Results 

The key mathematical results assume that each individual faces the same 

choice set. The results can be considered in two cases. The first case 

occurs when the correct model contains alternative specific constants which 

are not included in the hypothetical (or calibrated) model. Using analyses 

similar to those reported by Manski and Lerman (1976) it is possible to prove 

that, in general, the coefficients of the remaining independent variables 

estimated by maximizing the likelihood function are inconsistent. The 

coefficients will be consistent, however, if the alternative specific effects 

for the alternative without constants are equal for all alternatives in the 
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correct model. 

The proof of this result is as follows. The logarithm of the likelihood 

function for the estimated model is 

(2) l L* = -
N 

N 
I 

n=l 
I 

ie:C 

x. e 
e in 

f. log ----0 ,n \ x. 
l e Jn 

je:C 

where f. = l if alternative i is selected and O otherwise. As N ,n 

approaches infinity, the likelihood function converges to 

(3) L* = J l log 
X ie:C 

x. e l x. e*+a. * e l e l l 

\ x.e \ x.e*+aJ.* 
L e J .L e J 

j e:C J e:C 

p(X) dX 

Where e* and ai* are true coefficients and alternative specific constants, 

respectively. The analysis is essentially based upon the argument that the 

x.e 
e l 

samp 1 e mean of log ----1 \ x.e 
l e J 

je:C 

in Equation (2) converges to the population 

mean in Equation (3). The integration is over the space defined by the varia

bles in the vector of independent variables X. p(X) is the density function 

for the vector X and the logit function evaluated at the true coefficients 
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is the conditional probability of observing the choice of alternative 

i given the vector X. Therefore, the product of p{X) and this logit 

function is the joint density function. 

If the maximum likelihood estimators are consistent, then the derivative 

of Equation 3) with respect to e evaluated at e* will be the zero vector. 

But 

(4) 

where 

= f I 
Jx i EC 

\' x.e*+a.* 

x.e*+a.* 
e , 1 

·e*+ * \' x. (l. 
p{X) dX 

e*.L e J J 
JEC 

x.e*+a.* e , , 

'° x.e*+a.* 
l e' J J. 

j e:C 

\' x.e*+a.* 
l e J 1 

jEC 
\' x.e*+a.* 
l e J J 

jEC 

p(X) dX 
e* 

p{X) dX 

p{X) dX 

l e J 1 
w - ,,,_j_EC __ ~~ 

i - '° x.e*+a.* 
l e J J 

jEC 
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Equation (4) is equivalent to the results of demonstrating that choice-based 

samples yield inconsistent estimates of the coefficients when the standard 

maximum likelihood procedure is used. The results of Manski and Lerman show 

that Equation (4) is zero when all W; are equal to l. In general, this 

will happen only when all a.* are equal, i.e., when all alternatives have 
J 

the same alternative specific effects. When the Wi are not all equal to l, 

Manski and Lerman show that Equation (4) is not equal to zero for almost every 

set of weights. This means that the logarithm of the likelihood function 

coverages to its maximum at a point other than the true values of the coeffi

cients, thus proving inconsistency. 

The nature of the inconsistency, i.e., the asymptotic bias, can be 

examined by observing the logarithm of the likelihood function and its first 

and second order derivatives (Manski and Lerman, 1976; McFadden and Manski, 

1976). Maximizing L* of Equation (2) with respect to the coefficients, 

e, yields estimates for these coefficients, 

The deviation of eN from e* , the correct coefficients, can be approximated 

by using a Taylor series expansion of the first derivative of the logarithm of 

the likelihood function with respect to e •: 

Since eN maximizes L*, the term on the left hand side is zero. By 

rearranging the remaining terms, the approximation of the asymptotic bias 

becomes 

eN-e* "' ( a2L* )-1 ( al*} 
aeae--J e* - Te) e* 
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As N goes to infinity, the first term on the right hand side converges in 

probability to the inverse of the matrix of the expectations of the second 

derivatives evaluated at the true values of the coefficient~af ·the independent 

variables>and the second term is the negative of the gradient vector, again 

evaluated at the true values. Since eN is inconsistent, as N approaches 

infinity the gradient has a nonzero value at e*, leading to the asymptotic 

bias. 

The logit models yields specific formulae for the two matrices on the 

right hand side (8). If x. is the vector of independent variables for Jn 
respondent n on alternative j , P. the predicted probability from the Jn 
logit model, without constants, i.e., 

P. = Jn 

X. 0 
e Jn 
\' x,~ e 
le r,n 

kE:C 

and f. equals 1 if alternative j is chosen and O otherwise, the Jn 
matrix of second derivatives evaluated at e* is 

and the vector of first derivatives 

N 
aL* 1 

(-;-0 1 e*==- Bi., = -N I I ( f. -P. ) x. 
o n n=l JeC Jn Jn Jn 
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where P. is evaluated at e* for all j. Therefore we can rewrite the 
Jn 

asymptotic bias approximation as 

(5) 

As the samp 1 e size, 

asymptotic bias. 

N , goes to infinity, the above expression approximates the 

In interpreting the expression for the asymptotic bias, it is necessary to 
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realize that it is only an approximation, even when the sample size becames indef

initely large. This is the case because, unlike the situation in which consistent 

estimators are obtained, there is no guarantee that the higher order terms in the 

Taylor series expansion are small compared to the first order term for large 

samples. 

The approximation given in Equation (5) can be used as an indication of the 

nature of the asymptotic bias. For each. coefficient, the bias approximation 

is a linear combination of the negative of the components of the gradient for 

all of the coefficients. Each of these gradient components is multiplied by the 

corresponding partial derivative of the gradient component of the coefficient 

of interest with respect to each coefficient and added. Consequently, the bias 

of a given coefficient depends on the magnitude of each component of the gradient 

and on the rate of change of the given component of the gradient with respect to 

all coefficients. Therefore, it is impossible to state a priori whether the bias 

will be in the direction towards or away from zero for any of the coefficients. 

It turns out that this inconsistency result also applies to the case in 

which groups of alternatives are constrained to have the same constant within 

groups, but perhaps different constants across groups when the correct model has 

unique constants for alternatives. This occurs because the essential cause of 

inconsistency in both this and the previous case is the constraining of certain 



const1rt1-to have values not equal to their true value. The proof of this 

case involves ·a slight modification of the proof for the previous case. 

The next case to consider is one in which the correct model does not have 

alternative specific effects (or these effects are identical for each alterna

tive) and the hypothesized model allows such effects. By using a proof very 

similar to McFadden's proof that only the constants are inconsistent for a multi

nomial logit model with a full set of alternative specific constants when 

unweighted maximum likelihood estimates are calibrated with choice-based samples 

(Manski and Lermen, 1976), it can be shown that the coefficients of the indepen

dnet variables are consistent. The same result holds when the correct model has 

sets of identical alternative specific constants. 

The proof of this result involves a modification of the previous proof. 

The expression for the expectation of the likelihood function is 

(6) 

therefore 

(7) 

L* = f x I log 
ic::C 

x.e+a. I x.e* e , , e , 
-----:-\ x.e+a. \ x.e* p(X) dX 

l e J J L eJ 
jc::C ic::C 

x .e*+a. 

l 
_IC e J J 

Jc:: 
x.e*+a. e , , 

e* 

x.e* 
e , 

--x-.e-,-* p(X) dX 
I e J 

jc::C 

The maximum of Equation (6) is obtained when Equation (7) equals zero. When 

ai = 0 for all i , then 

(8) 0 = &.L* 
.ae l a*,•r=o for all i 

p(X) dX 
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Equation (8) follows from the fact 

x.e+a.. 
(9) 

e , 1 

I = 1 
X. e+a.. ieC I e J J 

jeC 
Therefore, 

x.e+a.. [ x.a+a. 
.a I 

e 1 1 la: e,, l = _§_ (1, = 0 = .a.e ieC l x.e+a. . . c~e I x.e+a. ae 
e J J , e e J J 

jeC jeC 

Equation (8) shows that the maximum likelihood estimators converge to 

e* for the coefficients of the independent variables and to zero for the 

coefficients of the alternative specific constants. A slight modification of 

this proof can show that the coefficients of the independent variables are con

sistent when the correct model has sets of identical alternative specific effects. 

A more intuitive way to view this result is to think of the constants of 

the correct model as not being absent or constrained, but actually present with 

specific values. In this case, the values just happen to be zero, or perhaps 

equal for some groups of alternatives. Including the full set of constants in 

the hypothesized model is then simply an attempt at estimating the true value of 

the constants. 

These results can be summarized quite simply. For sufficiently large samples 

(since consistency is a large sample property), excluding or constraining constants 

incorrectly leads to incorrect results. On the other hand, failure to constrain 

or exclude constants does not result in inconsistent estimates. In fact, the 

only effect would be the discovery that some constants were zero or equal for 

groups of alternatives. Therefore, just like in the regression analysis case, 

it seems that a full set of constants should be included unless there are strong 

a priori reasons for excluding them. That is, the burden of proof should be on 

excluding constants and the usual strategy should be the use of the full set. 



Some Examples of the Use and Nonuse of Constants 

The conclusions of the previous section can be illustrated by specific 

examples. First, consider an extremely simple hypothetical model in which 

there is one binary independent variable with 0, l values and a binary 

dependent variable. The observed data can be completely described by a 2 by 

2 table. Let x be the independent variable and y the dependent variable. 

Then the data yield 

x=O x=l 
y = 0 

y = l 

Consider two alternative binary logit models 

a+bx 
P(l) = e 

( 1 +ea+bx) 
and 

P(l) = 
eBx 

(l+eBx) 

That is, one model uses a constant and the other does not. In this case, the 

maximum likelihood estimates of the coefficients have a convenient closed form 

solution. For the first model, 

and - a 

The second model yields 

For this simple example, the nature of the inconsistency is clear; the coeffi

cients of the independent variable for the two models differ by a, the constant 
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of the first model. This effect can be further illustrated by supplying actual 

numbers. The categoric independent variable will be assumed to be sex with 

males= 0 and females= 1 and the dependent variable will be bus use (0 = no; 

1 = yes). 

In the first case suppose we have the following 

no 
yes 

men women 
.45 
.05 

.45 

.05 

The cell frequencies are converted to proportions under the assumption that 

the sample size is large enough so that these proportions reasonably approximate 

the population proportions. 

Inspection of the table reveals that sex has no effect on transit usage, 

i.e., men and women are users in the same proportions. Calculating the logit 

model with a constant yields this result. That is, 

b = 0 and a= -2.2 

However, the use of the logit model without the constant would yield 

B = -2.2 

indicating an apparent influence of sex on transit usage. 

The difficulty can go the other way, also. A second hypothetical test 

area yielded the following table 

no 
yes 

men women 
.25 
.25 

The proper conclusion in this case would be that sex does appear to influence 

transit usage, since women are more frequent transit users. Again, calibration 
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of the model with a constant leads to the proper conclusion since 

b = l. 39 and a = -1. 39 

However, exclusion of the constant leads to B = 0. 

It is also informative to look at some actual empirical results. In a 

previous study (Tardiff, 1975), a modified mode choice model was developed. 

The data were gathered in the Santa Monica-West Los Angeles area in late 1973. 

A probability sample of 223 respondents was selected. Because of the heavy 

automobile orientation of the area, there were not enough bus choosers for the 

work trip to estimate the usual mode choice model for the work trip. Similar 

data deficiencies existed with respect to nonwork mode choice. However, there 

was a variable indicating whether the respondent used the bus in the month pre

ceding the interview. This variable was used as the dependent variable in a 

binary logit model. 

The independent variables included variables describing the trip maker and 

variables describing the transportation systems available, i.e. bus and car. 

Since the dependent variable is not trip specific, the latter type of independent 

variables was also not trip specific. Rather, the variables indicated the 

general availability of the competing modes. They were distance from the respon

dent's home to the closest bus line (BOIS), in blocks and the ratio of cars to 

licensed drivers in the household (C/DL). The former variable is a general des

cription of transit resources and the latter refers to automobile resources. 

The variables describing the tripmaker include the fairly standard demographic 

variables of sex (SEX), age (AGE), and socioeconomic status. The first of these 

is scaled with males as l and females as 2 and the second is measured on a 

seven point age scale (1 = 18-24; 2 = 25-34; 3 = 35~44; 4 = 45-54; 5 = 55-64; 

6 = 65-74; 7 = 75 and older). The indicator of socioeconomic status is the 
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occupation of the household head (OCC) which is measured using Hollingshead's 

seven point occupation scale. The scale is designed so that as occupational 

status decreases, the scale value increases. After cases with missing values 

were eliminated, 2)7 cases were left for analysis. 

Table l_gives the results of models estimated with and without an alterna

tive specific constant~- The linear functions are such that as a variable with 
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a positive coefficient increases, the probability of bus use increases. It 

appears that the constant in the first model is sufficiently large so that the 

estimates of the coefficients of the independent variables are affected when the 

constant is excluded. In the model with the constant both the automobile avail

ability ratio and occupation are statistically significant at least at the .05 

level and the sex variable has a positive sign. When the constant is excluded, 

the auto availability ratio grows larger and even more significant, the occupa

tion variable is reduced enough to lose significance, and the sex variable changes 

signs, although it is insignificant in both cases. Therefore, it is possible that 

whether or not the constant is included can affect the interpretation of the mag

nitude and significance of particular coefficients. 

It should be noted that the constant in the first model is not statistically 

significant at the .05 level with a two tail test. However, it is significant 

at the .10 level. Therefore the exclusion of constants which do not meet conven

tional levels of statistical significance can have important effects on the 

coefficients of the independent variables. In other words, statistical signifi

cance is not necessarily a reliable criterion in deciding whether or not constants 

should be included. 

This situation illustrates the need for clearly distinguishing between statis

tical significance and model interpretation. Although the latter involves con

siderations of the former, there is also an element of subjective interpretation. 



For example, although the constant is of only marginal significance in the 

first model and the likelihood ratio test comparing the first and second models 

is of very similar statistical significance, it is quite likely that most ana

lysts would interpret the two models as being quite different. 

It should be further noted that the overall goodness of fit of the two 

versions does not differ by very much. In effect, the independent variables 

partially absorb the effect of the constant. The implications of this is that 

small differences in overall goodness of fit should not be interpreted as indi

cating the constants have minimal effect. The consistency and asymptotic bias 

issue is separate from the overall goodness of fit consideration. 
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It is apparent that the direction of bias is towards zero for some coeffi

cients and away from zero for others. This finding is consistent with the earlier 

theoretical discussion. 

Finally, the results of the previous section show that if a model has a con

stant with estimated value close to zero, exclusion of this constant has minimal 

effects on the coefficients of the independent variables. This result has been 

observed empirically. However, since this result is totally expected and, hence, 

not very informative, it will not be described further. 

The Use of Constants with Nonratio Scale Independent Variables 

Variables whose scales can be shifted and still convey the same information 

pose problems when alternative specific constants are not used. The concern is 

for shifts in scale after the subtraction implicit in the logit formulation has 

taken place. That is, the problems arise for alternative specific variables, but 

not generic variables. The classic example of such variables are categoric inde

pendent variables which are entered as alternative specific variables. Examples 

of such variables which have appeared in transportation studies are sex, income 



scale variables, occupation scale variables, and variables indicating trip-pur

pose categories. Somecategoric variables are simplifications of variables which 

could be measured on higher order scales, others are inherently categoric. The 

essential feature of this type of variable is that scale values can be shifted 

in certain ways with the information content of the variable remaining the same. 

An example of such a categoric variable is the sex variable used in the 

empirical examples. The variable was coded with males as l and females as 
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2, but coding males as O and females as l would have conveyed the same infor

mation. Therefore, recalibrating the model with the rescaled variable should 

not effect the coefficients of the independent variables. 

The use of alternative specific constants assures invariance of the coeffi

cients of the independent variables under shifts in the variable scales. Only 

the values of the constants are changed. They, in effect, absorb the shift in 

scale. The result is not as benign when there is no constant to absorb the shift. 

An example of the change in coefficients can be obtained by referring to Table 1. 

Suppose the scale for the sex variable were shifted by the ratio of the constant 

in Equation (1) to the coefficient of the sex variable. This yields a value of 

-.55 for males and .45 for females. Recalibrating the model would result in a 

value of O for the constant and values for the coefficients of the independent 

variables the same as in Eqaation (1). Now if the old Equation (l) is recali

brated without the constant, Equation (2) results. However, if the same equation 

is recalibrated without a constant and with the shifted sex variable, none of the 

coefficients of the independent variables changes, since the constant is already 

equal to zero. Therefore, the completely arbitrary shifting of one categoric 

variable has led to different estimates for the coefficients of the independent 

variables. 

Another example of recent importance is the use of alternative specific 

attitudinal variables. When a variable such as the satisfaction with bus waiting 
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time is used, it is almost always measured with some psychological scale such 

as a seven point scale. Such scales are definitely not ratio scales; they are 

at best interval scales. An example of the use of such variables in choice 

models is the study of Recker and Golob (1976). The fact that alternative speci

fic constants were not used in most models reported in the study means that there 

would probably have been changes in the coefficients of the independent variables 

if the models were recalibrated with the attitudinal variables shifted. 

In the general case, the result is mathematically similar to the inconsis

tency result reported earlier. This can be seen by viewing the model with the 

shifted variable(s) as the 11 correct 11 model and the nonshifted case as the hypothe

sized model. Relative to the hypothesized model, the correct model has alterna

tive specific effects induced by the shift. Therefore, the coefficients of the 

hypothesized model will be 11 inconsistent 11 with respect to the shifted model. 

Similarly, the same treatment of 11 asymptotic bias 11 would apply. 

Prediction of the Effects of New Alternatives and Transferability 

Two ideal properties of the logit model are its potential usefulness in pre

dicting the response to new alternatives and the potential transferability of such 

models over time and/or geographic region. Both capabilities depend on the cor

rect specification of the model. The former issue :has been examined thoroughly 

by McFadden, et al. (1976) in a general discussion of the independence from 

irrelevant alternatives property of the logit model. 

Since the alternative specific constants capture the mean effects of unob

served variables, it has been argued that models to be used to predict new alter

natives and/or transferred over time or place should not have constants (Hausman 

and Wise, 1976; Hauser, 1976), because of the difficulty of assigning constants 

to new alternatives or to new areas. In this regard, it is useful to distinguish 



between ideal knowledge and current knowledge. In addition, model estimation 

for purposes of understanding choice behavior can be distinguished from model 

estimation for purposes of planning analysis. 

There is no question that the ideal model both for theoretical and practi

cal purposes would not contain constants. That is, if the choice theory with 

respect to the types of alternatives in question were sufficiently developed, 

there might not be any unobserved effects, therefore no constants. The reasons 

why a model without constants is also a practical ideal have already been men

tioned. 

It is useful to separate these ideal situations from the current situation 

in which knowledge is limited, i.e., separate the theoretical and empirical 
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issues (Domencich and McFadden, 1975, p. 118). The results of this paper indi

cate that the exclusion of alternative specific constants can lead to inconsistent 

estimates of the coefficients. If this problem is sufficiently severe, then one 

might question the value of using such a model in new situations. 

In developing better understanding of choice behavior, the alternative 

specific constants might be viewed as a diagnostic tool which indicates whether 

key_effects have not been identified. That is, the existence of strong alterna

tive specific effects is an indication that the hypothesized model describes 

response to some alternatives differently than others. Since, in theory, 

response should not depend on arbitrary labels for alternatives, the existence 

of such difference is an indication of the need for improved theory. That is, 

rather than assuming that the ideal situation of no alternative specific constants) 

exists, researchers could use constants as a tool in developing models which 

actually approach the ideal. 

The situation with respect to model application is somewhat different. Here 

the purpose of the application is relevant. That is, a model without constants 

may give sufficiently accurate predictions of the overall responses to alterna-



tives in either the new alternative or transfer case. Of course, such a model 

should be examined for its predictive abilities (Koppelman, 1976). 

On the other hand, if the application deals with the effects of policies 

affecting specific variables, e.g., transportation policies which change the 

cost of modes, then the inconsistency problems might be important. For example, 

inconsistent estimates of particular coefficients can affect the elasticity 

estimates. 

It should be noted that there have been applications of choice models in 
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new situations where .alternative specific constants have been used. For example, 

McFadden (1976) reports on the use of a model developed before BART was inaugurated 

to predict choice in the post-BART situation. It was assumed that the constants 

for the new rail modes were similar to those for the existing public transit modes. 

Therefore, the existence of constants may not present as large a difficulty as 

once believed in the application of choice models to new situations. If this is 

the case, then the case for the general use of constants is strengthened even 

further. 

Summary and Concluston 

The effects of alternative specific constants on model estimation have been 

examined. In interpreting the results, three qualifying features should be kept 

in mind. First, all of the consistency and asymptotic bias results apply only 

to the logit model. Similar results have not been derived for other probability 

functions at this time. Therefore, conclusions should not be generalized beyond 

the logit case although these models have been used extensively in transportation 

applications. 

Second, the results are large sample properties. As in other works refer

ring to maximum likelihood models, nothing has been demonstrated with respect to 



sma11 samples. As a result, although the inclusion of constants when no such 

effect exists may be inocuous in large samples, such a strategy may affect the 

efficiency and bias of estimates in smaller samples. Therefore, when sample 

size is limited, judicious exclusion of certain constants may sti11 be a pre

ferred strategy. 

Third, the mathematical proofs assumed that each individual faces the 

same choice set. Therefore, the case where individuals have different choice 

sets has not been covered rigorously. However, the intuitive arguments and 

examples seem to indicate that similar inconsistency and asymptotic bias re

sults would hold for this case. 

Most empirical destination choice models are examples of cases in which 

individuals are not assumed to face the same choice set. Further, the number 

of destinations in an urban area is usually too large to allow the use of 

unique constants for every destination (Ben-Akiva, 1974b). The usual practice 

has been to comp1ete1y exclude constants (Domencich and McFadden, 1975) or only 

to use constants for special destinations such as the CBD (Ben-Akiva, 1974a). 

The fact that such models have generally yielded poorer statistical fits than 

mode choice models suggests that the 1ack of constants may cause serious bias 

problems. A possible strategy for including constants wou1d be to classify 

destinations into a fairly smal1 number of groups, based upon assumed similar

ities in the average values of unobserved attribute;. Then each destination 

in a particular group would be assigned the same constant. Future research 

wou1d probably indicate that a finer classification than CBD and non CBD des

tinations is more appropriate for most destination choice problems. Such a 

classification strategy actua11y parallels the natural classification implic

itly present in mode choice modelling. For example, many different makes and 
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models of cars are all classified under the automobile mode. An approach 

similar to this was used in the grocery shopping destination choice model of 

Recker and Kostyniuk (1977), in which grocery stores were classified into 

five groups. 

Even ignoring some of the issues discussed in this paper, the exclusion 

of constants might be viewed as a less than optimal situation. Exclusion of 

constants is consistent with the hypothesis that effects not captured by the 

excluded independent variables have either zero mean value or constant mean 

value for all alternatives. A more cautious research approach would not 

impose this assumption but rather test it through the use of constants. 

Therefore, the dictates of a more cautious research approach as well as the 

conclusions of this paper seem to indicate that there generally should be a 

definite preference for including a full set of alternative specific constants 

in choice models. 
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Table 1. Modified Mode Choice Model 

(the standard errors for the logit coefficients are in parentheses) 

Equation 

CONSTANT -1.59 
(. 90) 

AGE -.084 
(. 11) 

SEX .35 
(.38) . 

OCCl . 24a 
(. 10) 

C/DL -1.43b 
(. 46) 

BOIS . 13 
(. 14) 

N 217 

L*(e) -99.41 

L*(O) -150. 41 

L*(constant) - 11 o. 77 

1 Equation 2 

- . 15 
(. 10) 

- . 071 
(.29) 

. 18 
(. 094) 

-l.89b 
(. 38) 

. 11 
(. 14) 

217 

-101. 04 

-150.41 

-110.77 

aLogit coefficient significant at p<.05 (two tail test) 

bLogit coefficient significant at p<.01 (two tail test) 

L* denotes the logarithm of the likelihood function evaluated at various 
points. 
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