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Abstract: Environmental and genetic factors contribute to the etiology of autism spectrum disor-
der (ASD), but their interaction is less well understood. Mothers that are genetically more stress-
susceptible have been found to be at increased risk of having a child with ASD after exposure to stress
during pregnancy. Additionally, the presence of maternal antibodies for the fetal brain is associated
with a diagnosis of ASD in children. However, the relationship between prenatal stress exposure and
maternal antibodies in the mothers of children diagnosed with ASD has not yet been addressed. This
exploratory study examined the association of maternal antibody response with prenatal stress and a
diagnosis of ASD in children. Blood samples from 53 mothers with at least one child diagnosed with
ASD were examined by ELISA. Maternal antibody presence, perceived stress levels during pregnancy
(high or low), and maternal 5-HTTLPR polymorphisms were examined for their interrelationship in
ASD. While high incidences of prenatal stress and maternal antibodies were found in the sample,
they were not associated with each other (p = 0.709, Cramér’s V = 0.051). Furthermore, the results
revealed no significant association between maternal antibody presence and the interaction between
5-HTTLPR genotype and stress (p = 0.729, Cramér’s V = 0.157). Prenatal stress was not found to
be associated with the presence of maternal antibodies in the context of ASD, at least in this initial
exploratory sample. Despite the known relationship between stress and changes in immune function,
these results suggest that prenatal stress and immune dysregulation are independently associated
with a diagnosis of ASD in this study population, rather than acting through a convergent mechanism.
However, this would need to be confirmed in a larger sample.

Keywords: autism spectrum disorder; gene expression; stress; immune system; 5-HTTLPR

1. Introduction

The developmental origins of health and disease (DOHaD) hypothesis proposes that
the environment during in utero development impacts the health of offspring [1]. Recent
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studies have provided support for this theory, demonstrating that environmental factors
during the prenatal period affect neurobiological developments, including those that are
associated with autism spectrum disorder (ASD; [2]). Genetics is widely recognized as
a critical factor in the development of ASD [3,4]. While more research has clarified the
genetic factors associated with ASD, prenatal environmental factors and the interaction
between genetic and environmental factors are less understood [5].

Exposure to prenatal stress in mothers during pregnancy impacts behavioral and
developmental outcomes in their children. For example, schizophrenia and emotional
disturbances have been associated with maternal stress [6,7]. Recent evidence also sup-
ports the theory that maternal stress exposure is a factor in the development of ASD [8,9].
Larger epidemiological studies also support the relationship between prenatal stress and
ASD [10,11]. Although a large Danish national registry study reported no association be-
tween maternal bereavement and ASD [12], an association was observed between maternal
bereavement and ASD in this study prior to accounting for covariates such as maternal
psychiatric conditions [12]. Other reports examining data from a Danish national registry
study found that maternal psychiatric conditions were one of the strongest prenatal risk
factors for ASD [13]. Reports examining data from a Swedish registry study have also
revealed a relationship between 3rd-trimester maternal stress exposure and the risk of
ASD [14]. Furthermore, reports examining data from the Nurses’ Health Study revealed
that maternal exposure to partner abuse during pregnancy is strongly associated with ASD,
although the timing of exposure with the strongest association with ASD was found to
be earlier in gestation [9]. Finally, a recent meta-analysis has supported an association be-
tween prenatal maternal stress and the risk of ASD [15], and a subsequent large-population
study in China also confirmed an association between prenatal stress exposure and the
development of autistic-like behaviors [16].

The timing of maternal psychosocial stressors associated with major life events that
occur during pregnancy appears to be an important risk factor in the development of ASD.
For example, one study found a higher overall incidence of stressors among mothers of
children with ASD at the end of the second to the beginning of the third trimester [8]. A
relationship between the incidence and severity of tropical storms, which serve as naturally
occurring environmental stressors, and the incidence of the birth of children with ASD
has also been shown, with the association found to be strongest at a similar point in
gestation [17].

However, psychological stress during pregnancy and a child’s exposure to maternal
stress in utero does not always lead to a diagnosis of ASD in the fetus. In fact, a significant
portion of mothers who experience stressful events throughout pregnancy have neurotypi-
cal children. A gene × environment (G × E) interaction may explain why some mothers
that undergo stressful events have children with ASD and some do not. The serotonin reup-
take transporter gene (SLC6A4) is known to have a role in stress reactivity [11]. The SLC6A4
gene encodes the SERT protein and contains its associated promoter region 5-HTTLPR.
SERT transports extracellular serotonin back into the neuron [18]. The promoter, 5-HTTLPR,
has either a long (L) or a short (S) allele [18]. The presence of the S-allele has been linked to
many psychological outcomes [19,20]. Serotonin transporter polymorphisms are associated
with major depressive disorder, social phobia, and agoraphobia, and have also been associ-
ated with substance use disorders [21]. Subsequent research revealed that the presence of
at least one copy of the S-allele may be a genetic risk factor for increased maternal stress
response, leading to the development of ASD in children [22].

Stress can have a sizeable impact on immune function [23,24], and a perturbation in the
maternal immune system during gestation, such as that resulting from a severe infection,
has been thought to increase the risk of ASD in children [25,26]. Under normal conditions,
the maternal immune system maintains a minimum of pathogens, while minimizing the
inflammatory environment for the developing fetus [27,28]. Disruptions to gestational
immune regulation, including the production of autoantibodies, can have adverse devel-
opmental effects on the fetus. Research has found an association between maternal fever



Metabolites 2023, 13, 663 3 of 11

and infection around the time of pregnancy and an increased risk of neurodevelopmental
disorders, including ASD [26,29–31]. The diversity of maternal infections associated with
neurodevelopmental disorders suggests that the maternal immune response may be a link
between sickness in the mother and altered neurodevelopment in the child [10,32]. The
production of cytokines is a key driver of the maternal immune response to pathogens
responsible for the signaling immune and other cells to respond to infection. Cytokines are
involved in a plethora of aspects of neurodevelopment, and some maternal cytokines can
cross the placenta or act on placental cells to stimulate the production of immune mediators
in the fetal compartment. Dramatic fluctuations in cytokine and chemokine levels can
alter neurodevelopment, potentially resulting in an ASD diagnosis [10,33]. Specifically, it
has been shown that elevation in mid-gestational levels of pro-inflammatory cytokines is
associated with an increased risk of ASD diagnosis in children [34,35].

The maternal autoantibody response is also a factor thought to play a role in the
development of ASD. In utero, children are supplied with maternal antibodies, which are
essential for protecting the fetus [36]. Previous studies have hypothesized that the placental
transfer of maternal antibodies could interfere with brain development and potentially
lead to an increased risk of ASD [37,38]. Maternal autoantibodies reactive towards fetal
brain proteins have been observed in nearly one-fourth of mothers of children with ASD,
compared to less than 1% in mothers of unaffected children [39–41]. Specifically, lactate
dehydrogenase A and B (LDH-A, LDH-B), collapsin response mediator proteins 1 and
2 (CRMP1, CRMP2), Y-box binding protein 1 (YBX1), stress-induced phosophoprotein 1
(STIP1), and guanine deaminase (GDA) have been identified as specific autoantibodies
that are reactive towards the fetal brain and that are associated with an outcome of ASD in
children (termed maternal autoantibody-related or MAR autism [42–44]).

While it is known that stress impacts immune function [23], to our knowledge, no
studies have examined how prenatal stress, 5-HTLLPR genotypes, and their interaction
are associated with the maternal immune response in the context of an ASD diagnosis.
It is important to understand if environmental factors such as stress may interact with
immune function and, in tandem with genetic factors, contribute to ASD risk. The present
exploratory study examined whether an ASD-directed maternal autoantibody response
was related to prenatal stress in their respective associations with ASD. Additionally, the
study explored whether the interaction between prenatal stress and the presence of at
least one copy of the S allele on 5-HTTLPR genotyping is associated with the maternal
autoantibody response.

2. Methods

Families with a child diagnosed with ASD under the age of ten years old from the
University of Missouri Thompson Center for Autism & Neurodevelopmental Disorders
database were contacted. All participants with a child with ASD without a known genetic
cause who were willing to participate were recruited. The children of the families were all
below ten years of age (average age = 6.8 ± 1.8) to maximize the parents’ ability to recall
information from the prenatal period. Families were invited to provide samples for genetic
analysis and complete a questionnaire regarding the prenatal period. Previously collected
blood samples from fifty-three mothers who had at least one child diagnosed with ASD
were included in the study [22]. All ASD diagnoses were confirmed via Autism Diagnostic
Interview-Revised (ADI-R, [45]) and/or Autism Diagnostic Observation Scale (ADOS, [46])
scores. The study was conducted according to the guidelines of the Declaration of Helsinki
and approval was sought from the University of Missouri Health Sciences Review Board
(Project # 1106357). Informed consent was obtained from all participants involved in the
study. Data will be made available in a de-identified manner upon request. Raw data will
not be publicly available for privacy reasons. The procedure for the current study was
similar to that of previously cited work [22]. At the time of the appointment with the ex-
perimenter, the mothers completed questionnaires regarding their child with ASD and the
gestational period of that child, which were derived from previous work [8]. Survey ques-
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tions obtained information on the child’s birth date and the pregnancy length, in addition to
the occurrence and subjective severity of major stressful events during or within one year of
the pregnancy [22]. A list of common stressors [47] was provided to the subjects to facilitate
the recall of events that may have occurred during the pregnancy. The stressors included
psychosocial stressors such as divorce, death in the family, or loss of a job [22,47]. Blood was
drawn via a standard venipuncture from the median cubital vein of the arm. If blood was
unable to be drawn, buccal swabs were collected from the subject’s cheek. Genomic DNA
was obtained from either subjects’ whole blood (Flexigene kit; Qiagen, Hilden, Germany) or
cheek swabs (QIAamp kit; Qiagen, Hilden, Germany) according to the manufacturer’s in-
structions. PCR was performed as previously described [22]. Briefly, the promoter region of
the serotonin transporter gene was amplified using the Qiagen PCR kit from 25 ng genomic
DNA using the following primers: 5′-TCCTCCGCTTTGGCGCCTCTTCC-3′ (Forward) and
5′-TGGGGGTTGCAGGGGAGATCCTG-3′ to identify the L and S alleles of 5-HTTLPR.
Cycling conditions were as follows: 95C for 15 min followed by 35 cycles of 94C for 30 s,
65.5C for 90 s, and 72C for 60 s, with a final extension step of 72C for 10 min. PCR products
were then loaded onto a 3.5% agarose gel and run for 1 h at 160 V. Bands were visualized
with SYBR-safe DNA gel staining (Invitrogen), with 469 bp and 512 bp identifying the short
and long alleles, respectively, as described previously [22].

The MAR IgG antibody reactivity of plasma samples against each antigen was deter-
mined by ELISA (enzyme-linked immunosorbent assay) using commercially available pro-
teins, and the assay conditions were optimized for each protein as previously described [44].
Briefly, the autoantibody reactivity of the plasma samples against protein antigens was de-
termined by Enzyme-Linked Immunosorbent Assay (ELISA) and corroborated by Western
Blot (WB) using commercially available proteins, as described previously [44]. The protein
concentration and plasma sample dilutions were optimized for each antigen for both assays.
Microplates were coated with 100 µL of antigen (1.5–3 µg/µL) in a carbonate coating buffer
pH 9.6, incubated overnight at 4 ◦C, washed four times with Phosphate Buffered Saline
Tween-20 (PBST) 0.05%, and blocked with 2% Super Block (Thermo Scientific, Rockford,
IL, USA) for 1 h at RT. The plasma samples were then diluted 1:250–1:1000 (depending on
which antigen was being tested) and run in duplicate. Following dilution, 100 µL of the
diluted sample was then added to each well, incubated for 1.5 h, washed four times in PBST
0.05% and then four times with (PBST) 0.05%, and then incubated with goat anti-human
IgG-HRP IgG (Kirkegaard & Perry Laboratories, Inc., Gaithersburg, MA, USA) diluted
1:10,000 for 1 h. The plates were then washed four times with (PBST) 0.05%, and detection
was performed by adding 100 µL of BD optEIA liquid substrate for ELISA (BD Biosciences,
San Jose, CA, USA). After 4 min, the reaction was then stopped with 50 µL of 2N HCl. The
absorbance was measured at 490–450 nm using an iMark Microplate Absorbance Reader
(Biorad, Hercules, CA, USA).

After plate-plate normalization, a positive cut-off was established for each antigen
using a ROC curve and Youden’s index as previously described. The positive control
samples used to create the ROC were not included in the analysis.

3. Statistical Analyses

Statistical analyses were conducted to determine whether prenatal stress was associ-
ated with the presence of maternal autoantibodies and whether the interaction of prenatal
stress and the 5-HTTLPR genotype was associated with maternal autoantibody presence
via a Chi-squared test for independence. In the case of a significant interaction, simple
slopes were examined to further understand the effect (i.e., S/S vs. S/L genotype). For
prenatal stress, groups were broken into high (3+ stressors) and low (2 > stressors) prenatal
stress. This approach to categorizing stress exposure has been successful in previous work
demonstrating the miRNA profiles of prenatal stress exposure in ASD [48]. For the presence
of maternal autoantibodies, groups were divided into the presence or absence of specific
sets of antibodies previously found to be associated with ASD in approximately 20% of
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cases [11]. Additionally, groups were divided based on 5-HTTLPR genotypes and prenatal
stress levels, as shown in Table 1.

Table 1. Comparison Groups.

Prenatal Stress 5-HTTLPR Genotype N

High S/S + S/L 17
LONG 7

Low S/S + S/L 17
LONG 12

Samples were divided into 4 groups based on 5-HTTPLPR genotype presence and prenatal stress levels.

4. Results
Participant Characteristics

The average number of stressors reported was 2.03. There were 24 mothers who
experienced 3 or more stressors, of whom 17 had at least one copy of the S allele. There
were 11 mothers who were MAR-positive (Tables 1 and 2). The specific ASD-associated
autoantibody patterns [42–44] identified were as follows:

Table 2. Characteristics of study populations. Average ± standard deviation.

N = 53

Maternal Age (years) 34.8 ± 6.4

Age of Child (years) 6.8 ± 1.8

Male gender (%) 89.8%
Maternal 5-HTTLPR genotype:

S/S 12 (22.6%)
S/L 22 (41.5%)
L/L 19 (35.8%)

Number of Reported Stressors:
Low (0–2) 29
High (3+) 24

Maternal autoantibody 11 (21%)

Three participants had the ASD-associated neuron-specific enolase (NSE) + STIP1
pattern;

Two had the CRMP2 + GDA pattern;
One had the CRMP1 + STIP1 pattern;
One had the CRMP1 + GDA pattern;
One had the CRMP1 + YBX1 pattern;
Three had multiple ASD-associated patterns (one with the CRMP2 + GDA and CRMP2

+ STIP1 patterns, one with the CRMP1 + CRMP2, CRMP1 + GDA, and CRMP2 + GDA
patterns, and one with the CRMP2 + GDA, CRMP2 + STIP1, GDA + YBOX1, STIP1 + NSE,
LDHA + YBOX1, and LDHB + YBOX1 patterns).

The distribution of the number of reported stressors, maternal genotypes, and the
presence of any maternal autoantibody patterns associated with ASD indicated that the
association between the presence of maternal autoantibodies and prenatal stress groups
was not significant (p = 0.709, Cramér’s V = 0.051, see Figure 1a). Furthermore, the results
revealed no association between the presence of MAR and stress groups, and the association
between the 5-HTTLPR genotype and stress groups was also not significant (p = 0.729,
Cramér’s V = 0.157, see Figure 1b).
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Figure 1. (a). Number of mothers with high and low prenatal stress exposure among mothers with or
without maternal autoantibodies (b). Number of mothers with high and low prenatal stress exposure
and the presence and absence of the HTTPLR S-allele among mothers with or without maternal
autoantibodies.

5. Discussion

Considering that stress affects immunity and the antibody response [23,49] and that
MAR autoantibodies show an increased ASD risk [42], the present study examined whether
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prenatal stress was associated with the maternal autoantibody response. While the inci-
dence of MAR autoantibody patterns (see above) and prenatal stress in the presence of
the S-allele was high, the results revealed that prenatal stress was not associated with the
presence of MAR autism, at least in this exploratory sample. Additionally, the interaction
between the 5-HTTLPR polymorphism and prenatal stress was not associated with the pres-
ence of maternal autoantibodies in their association with ASD in this exploratory sample.
Therefore, despite the interrelationships between prenatal stress, 5-HTTLPR polymorphism,
and immune dysregulation [10], these factors do not appear to be related in their association
with ASD in this exploratory sample.

These results begin to suggest that prenatal stress and maternal autoantibodies to
fetal brain proteins are independently related to ASD with independent pathogenic path-
ways. As described above, previous studies have found prenatal stress to affect behavioral
and neurodevelopmental outcomes in humans, including ASD diagnosis [11]. Addition-
ally, past research has revealed that susceptibility to stress (via SLC6A4, specifically the
5-HTTLPR region) interacts with prenatal stress, shows an increased risk of ASD [22], and
is associated with a distinct miRNA profile [48]. Other G × E interactions with stress
have been observed in a range of neuropsychiatric conditions [5]. With respect to the
ASD-specific maternal autoantibodies associated with an increased risk of ASD [42], recent
evidence has revealed important information regarding their effects on regional brain vol-
ume and metabolites [50], and salient maternal antibodies to the fetal brain have recently
been identified in samples from the Simons Simplex Collection [51], the association between
maternal autoantibodies to the fetal brain and prenatal stress exposure is not known. We
hypothesized that prenatal stress and maternal antibody response might be related due to
the known relationship between stress and immune function [23]. Our findings suggest that
prenatal stress, and its interaction with the 5-HTTLPR genotype, appears to be independent
of maternal autoantibody response with respect to an ASD diagnosis. It is possible that the
ASD-related maternal autoantibodies are in place prior to prenatal stress exposures and,
therefore, the subsequent stress would not have the same impact on the formation of these
autoantibodies.

These findings may serve as preliminary evidence that prenatal stress and maternal
immune dysregulation are independently related to ASD diagnoses in offspring, but further
investigation is warranted. Given that the present study was cross-sectional, future studies
should monitor mothers during pregnancy to avoid the retrospective recall of stressors,
better examine other aspects of maternal immune dysfunction, and understand the causal
relationship between these biological events. Additionally, future studies should investigate
the different genotypes associated with stress reactivity and maternal autoantibodies to
determine if the interaction between prenatal stress and maternal autoantibodies is different
for different stress-associated genes. While the sample size was small, previous studies of a
similar size revealed miRNA results associated with prenatal stress in ASD [48]. However,
the small sample size limits the conclusions that can be drawn from these findings. Future
studies with larger samples would need to be performed to confirm this, and such larger
studies could also explore whether there might be an association between prenatal stress
and individual, specific MAR patterns. Additionally, larger studies would need to sample
a more diverse population, as the distribution of the polymorphisms varies considerably
across racial and ethnic groups [52].

The current study suggests that prenatal stress and the 5-HTTLPR genotype may be
independent of the presence of autoantibodies in their relationship to ASD. Although the
sample size was small and follow-up longitudinal studies should be conducted, this finding
is one step towards a better understanding of the interaction of the various risk factors
associated with ASD. Future studies will need to examine how other factors interact in their
impact on ASD. In addition to the previously discussed interactions between genes and the
environment, particularly for prenatal stress and neurodevelopment [5,22], recent evidence
has shown that prenatal stress exposure and environmental exposure to air pollution
interact in their impact on neurodevelopment [53]. Several other environmental factors
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that may occur during the prenatal period are associated with an increased incidence
of ASD; this could be explored in other studies, in addition to genetic factors. Maternal
exposure to pollutants, as mentioned above, has consistently been associated with ASD
specifically for maternal exposure to air pollutants [54–57], with additional evidence of
an interaction between air pollutant exposure and polymorphisms of the tyrosine kinase
MET receptor gene [54]. An increased risk of ASD has also been associated with exposure
to medication use in pregnancy, most notably for valproic acid [58]. Previous research
has also reported an increased risk of ASD in association with prenatal exposure to β2-
adrenergic agonists, commonly used to arrest premature labor, with an interaction between
drug exposure and maternal polymorphisms in the β2-adrenergic receptor [59]. Other
risk factors are being explored and identified including pesticides, endocrine-disrupting
chemicals such as phthalates and bisphenol A, and maternal dietary factors, including
a lack of folate supplementation during early pregnancy [60–62]. Increased parental age
and short intervals between pregnancies have also been associated with an increased
risk of ASD [63,64]. The interaction between individual risk factors will be important for
a better understanding of the epidemiology of ASD. Understanding these interactions
may also facilitate the determination of common and orthogonal mechanistic pathways,
which can, hopefully, eventually lead to meaningful clustering of individuals that might
respond to treatments targeting a common mechanism for a precision medicine approach for
optimizing the treatment of ASD. However, we must acknowledge the complicated nature
of the exploration of environmental factors, such as disentangling the effect of the medical
condition necessitating the administration of valproic acid in the relationship between
maternal valproic acid exposure and ASD, in addition to similarly potential confounding
factors for other medication, dietary, and putative risk factors. The findings described herein
suggesting that prenatal stress exposure and the presence of maternal autoantibodies are
independent could be of some importance, though, as each factor appears to be present in a
substantial proportion of ASD cases. Therefore, in aggregate, these factors may account for
a significant proportion of ASD. However, future studies will need to include control cases
without ASD in order to meaningfully determine the proportion of ASD associated with
these factors in aggregate. Additionally, further work will be critical to better understand
the downstream metabolic pathways mediating the effects of these factors impacting
neurodevelopment, allowing for the potential development of meaningful interventions.

6. Conclusions

Environmental and genetic factors have been shown to contribute to the development
of ASD, but how they might be interrelated is less well understood. Our results suggest
that prenatal stress and immune dysregulation, while independently associated with ASD,
are not interrelated in their association with ASD, at least based on this exploratory sample.
This suggests that prenatal stress and immune dysregulation are independently associated
with ASD, rather than acting through a common mechanism.
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