
UC Berkeley
UC Berkeley Electronic Theses and Dissertations

Title
Simulation-Based Testing, Validation, and Training with Probabilistic Programming

Permalink
https://escholarship.org/uc/item/5j61g7dt

Author
Kim, Edward

Publication Date
2023

Peer reviewed|Thesis/dissertation

eScholarship.org Powered by the California Digital Library
University of California

https://escholarship.org/uc/item/5j61g7dt
https://escholarship.org
http://www.cdlib.org/

Simulation-Based Testing, Validation, and Training with Probabilistic Programming

by

Edward Kim

A dissertation submitted in partial satisfaction of the

requirements for the degree of

Doctor of Philosophy

in

Engineering - Electrical Engineering and Computer Sciences

in the

Graduate Division

of the

University of California, Berkeley

Committee in charge:

Professor Sanjit A. Seshia, Co-chair
Professor Alberto Sangiovanni-Vincentelli, Co-chair

Professor Stuart Russell
Professor Daniel J. Fremont

Summer 2023

Simulation-Based Testing, Validation, and Training with Probabilistic Programming

Copyright 2023
by

Edward Kim

1

Abstract

Simulation-Based Testing, Validation, and Training with Probabilistic Programming

by

Edward Kim

Doctor of Philosophy in Engineering - Electrical Engineering and Computer Sciences

University of California, Berkeley

Professor Sanjit A. Seshia, Co-chair

Professor Alberto Sangiovanni-Vincentelli, Co-chair

Cyber-physical systems (CPS) are increasingly becoming autonomous. Self-driving cars, for
example, need to navigate through bustling streets of San Francisco. To avoid the risk of
injuries, simulation provides a safe setting to extensively test these systems prior to their
deployment. However, as these autonomous systems operate in more complex environments,
this poses a challenge as to how to formally model and generate these environments in
simulation. In this dissertation, we argue that a domain-specific probabilistic programming
language (PPL) can be an adequate formalism to naturally capture the stochasticity and the
constraints deriving from physical interactions of these systems with their environments.

The contribution of this thesis is to show how a domain-specific PPL can be effectively used
as an environment modeling formalism to test, validate, and train autonomous systems.
First, we formalize a machinery to scalably test a system of multi-objectives in parallel sim-
ulations with distributions of environments, and summarize the likely causes of those failures
in an interpretable manner. Second, we validate whether the identified system failures in
simulation transfer to reality, with probabilistic programs as consistent environment models
across both simulation and reality. Informed by the validated system failures, we develop
algorithms to train components of autonomous systems to be robust against those failures.
Furthermore, we devise a personalized algorithm to also train human-CPS (h-CPS), cyber-
physical systems that operate in concert with human operators, via simulations in augmented
and virtual reality.

i

Soli Deo Gloria

ii

Contents

Contents ii

List of Figures v

List of Tables viii

1 Introduction 1
1.1 Thesis Preview . 2
1.2 Contributions . 7
1.3 Thesis Outline . 8
1.4 Bibliographic Notes . 9

2 Background 11
2.1 Scenic: Probabilistic Scenario Modeling Language 11
2.2 VerifAI Toolkit . 15

I Scalable and Interpretable Testing 18

3 Parallel and Multi-Objective Falsification 19
3.1 Methodology . 19
3.2 Experiment . 24
3.3 Bibliographic Notes . 27
3.4 Chapter Summary . 27

4 Programmatic and Semantic System Debugging 28
4.1 Problem Statement . 28
4.2 Methodology . 29
4.3 Experiment . 32
4.4 Bibliographic Notes . 40
4.5 Chapter Summary . 41

iii

II Sim-to-Real Validation of System Performance 42

5 Formal Scenario-Based Track Testing 43
5.1 Problem Statement . 44
5.2 Methodology . 45
5.3 Experiment . 46
5.4 Bibliographic Notes . 55
5.5 Chapter Summary . 56

6 Querying Sensor Data with Scenario Programs 57
6.1 Assumptions about the Dataset for Querying 58
6.2 Background: Satisfiability Modulo Theories 59
6.3 Problem Statement . 59
6.4 Methodology . 61
6.5 Experiment . 67
6.6 Bibliographic Notes . 71
6.7 Chapter Summary . 73

III Failure-Informed Targeted Training 74

7 Programmatic Training for Reinforcement Learning 75
7.1 Scenario Specification Language for RL . 75
7.2 Methodology . 77
7.3 Experiment . 80
7.4 Bibliographic Notes . 84
7.5 Chapter Summary . 85

8 Personalized Human Training in Extended Reality 86
8.1 Background: Bayesian Knowledge Tracing 87
8.2 Methodology . 88
8.3 Experiment . 92
8.4 Bibliographic Notes . 102
8.5 Chapter Summary . 103

9 Final Words 104
9.1 Future Work . 104
9.2 Bibliographic Notes . 106

Bibliography 107

A Appendix for Chapter 3 125

iv

B Appendix for Chapter 4 127

C Appendix for Chapter 6 131
C.1 SMT Encoding . 131
C.2 Proof of Theorem 1 . 134

D Appendix for Chapter 7 139
D.1 Description of Proposed Scenarios and Policies 139
D.2 On Our Scenic Libraries . 146
D.3 Details on Experimental Setup and Training 147
D.4 Interface details and Reproducibility . 148
D.5 Performance . 148

E Appendix for Chapter 8 150
E.1 Participant Background . 150
E.2 Details of Our Experiment Design . 150
E.3 Pre-determined Exclusion Criteria for the Experiment 153
E.4 Skills & Corresponding Training/ Evaluation Task Distributions 153

v

List of Figures

1.1 Overview of this thesis. 2

2.1 Examples of various application domains and simulators Scenic is interfaced to 11
2.2 A snippet of an example Scenic program . 13
2.3 Scenes generated from the Scenic program in Fig. 2.2 14
2.4 Overview of interactions between Scenic and a simulator 14
2.5 VerifAI Architecture . 16

3.1 Parallelized pipeline for falsification using VerifAI. 20
3.2 Examples of Multi-Objective Specification in VerifAI 21
3.3 Effectiveness of the parallelized falsification in VerifAI 25
3.4 Comparison of different scenario samplers in VerifAI 26

4.1 Overview of our approach to synthesize interpretable success/failure scenarios . 29
4.2 Overview of Methodology . 30
4.3 An example Scenic program modeling Scenario 1 32
4.4 Four different scenarios used in the experiment 33
4.5 Examples of correct or incorrect detection inducing sensor data 37
4.6 The cumulative ratio of incorrectly detected images generated from refined Scenic

programs . 39

5.1 The discrepancy in perception behaviors on a synthetic versus a real sensor data 43
5.2 Overview of our approach to synthesize failure inducing test cases for track testing 45
5.3 A bird’s-eye view of the scenario used for the experiment 47
5.4 Visualization of falsification results in simulation 48
5.5 The autonomous vehicle and pedestrian dummy used for track testing. 50
5.6 Comparison of trajectories from track tests versus from simulations 53

6.1 An envisioned use case of our Scenic query algorithm 58
6.2 Visualization of a benefit of Scenic query formulation 60
6.3 An overview of Scenic query algorithm . 61
6.4 An example Scenic program . 62
6.5 An example partial expression forest for the Scenic program in Fig. 6.4 62

vi

6.6 An example Scenic program with an intermediate variable 66
6.7 Examples of queried images from the experiment 68
6.8 A plot on the scalability experiment using Scenic program in Fig. 6.10 70
6.9 A plot on the scalability experiment using Scenic program in Fig. 6.11 71
6.10 A Scenic program modeling bumper-to-bumper traffic, scaling by the number

of cars. 72
6.11 A Scenic program modeling a parade scenario, scaling by the number of pedes-

trians. 72

7.1 Comparison of Google Research Football simulator versus Scenic’s scenario models 76
7.2 Visual examples of new benchmark scenarios we modeled with Scenic 77
7.3 A snippet of a Scenic program specifying behaviors for players Fig. 7.2b 78
7.4 Interface Architecture between Scenic and an RL Simulator 79
7.5 Average Goal Difference of PPO agents on our mini-game scenario benchmark.

The error bars represent 95% bootstrapped confidence intervals 81
7.6 The benchmark results of the generalization of trained PPO agents 82
7.7 The effect of pre-training with offline demonstration data generated using Scenic 83

8.1 Overview of our personalization approach . 89
8.2 An example of a knowledge state model . 92
8.3 Comparison in the average learning gains between the control and the experimen-

tal conditions . 95
8.4 A comparison in curricula between the control and the experimental conditions. 97
8.5 Comparison in the user experience between the control and the experimental

conditions . 98

B.1 The Scenic program for Scenario #2 . 127
B.2 An RGB image rendered using the program B.1 and GTA-V simulator 128
B.3 The Scenic program for Scenario #3 . 128
B.4 An RGB image rendered using the program B.3 and GTA-V simulator 129
B.5 The Scenic program for Scenario #4 . 129
B.6 An RGB image rendered using the program B.5 and GTA-V simulator 130

C.1 Notation used to define the SMT encoding of Scenic syntax. 132
C.2 Encoding of Scenic distributions, where z is the SMT variable representing the

value sampled from the distribution. 132
C.3 Encoding of region-containment (Part I) . 133
C.4 Encoding of region-containment (Part II) . 134
C.5 Scenario #1 in the Human Experiment . 136
C.6 Scenario #2 in the Human Experiment . 137
C.7 Scenario #3 in the Human Experiment . 137
C.8 Scenario #4 in the Human Experiment . 137

vii

C.9 Scenario #5 in the Human Experiment . 138

D.1 New offense benchmark scenarios (Part I) . 140
D.2 New offense benchmark scenarios (Part II) . 141
D.3 New defense benchmark scenarios (Part I) . 143
D.4 New defense benchmark scenarios (Part II) . 144
D.5 New defense benchmark scenarios (Part III) . 145
D.6 Google Research Football environment’s scenarios for which we wrote semi-expert

RL policies . 146

viii

List of Tables

1.1 Comparison between existing formalisms to model and generate sensor data in
different environments. 3

3.1 The speedup factor and confidence interval width ratio metrics for the 7 scenarios. 25

4.1 Environment features and their ranges in GTA-V 31
4.2 A summary of the identified best correct detection inducing rules 35
4.3 The precision of incorrect detection inducing rules from data generated from

refined Scenic programs . 36
4.4 A summary of the identified worst incorrect detection inducing rules 37
4.5 F1 score of correct rules on testset . 38
4.6 Precision of correct rules on the testset . 38
4.7 Support for correct and incorrect decision patterns 39

5.1 Track Test Cases Selected from Simulation . 49
5.2 Comparison of autopilot behavior in simulation versus at a track 51
5.3 The average distances between track/resimulated AV trajectories. 54
5.4 Hypothesized causes of the observed unsafe behavior. 55

6.1 For several scenarios, the number of images identified by 3 human subjects (unan-
imously) and our algorithm. 69

A.1 Descriptions of Seven Scenarios Selected for Experiment in Ch. 3 (Part I) 125
A.2 Descriptions of Seven Scenarios Selected for Experiment in Ch. 3 (Part II) . . . 126

D.1 Training Parameters for PPO. 148
D.2 Training Parameters for Imitation Learning. 148

E.1 Control Condition . 151
E.2 Experimental Condition . 152

ix

Acknowledgments

First and foremost, I thank my advisors, Sanjit A. Seshia and Alberto Sangiovanni-Vincentelli,
for teaching the principles that I treasure and abide by. After all his achievements, Alberto
has taught me that the most important thing in life is to just simply do what one enjoys do-
ing. This principle has encouraged me to reflect and eagerly search for and pursue research
direction that fulfill the values I treasure. By his actions, Sanjit has taught me to listen
first before I speak. In fact, whenever he and I spoke simultaneously by accident during a
discussion, Sanjit would always let me speak first. His principle of listening offered me the
space to pitch ideas and be creative.

I thank Prof. Stuart Russell from UC Berkeley and Prof. Daniel Fremont from UC Santa
Cruz, for serving in my thesis and qualifying exam committees. I thank Prof. Alvin Cheung
for serving in my qualifying exam committee. I would also like to thank Prof. Bjoern
Hartmann and Prof. Zachary Pardos for helping me expand the scope of my research to
human-computer interaction. I would also like to thank the National Science Foundation
(NSF) graduate fellowship for providing me the freedom to shape and pursue my passion.

I thank my collaborators from NASA AMES research center, Corina Pasareanu and Divya
Gopinath. My summer internship at NASA in my second year of PhD was fundamental for
shaping this thesis. I am also grateful for the privilege of collaborating with industry which
exposed me to practical research problems. In particular, it was an eye opening experience
to physically experience by skin the process of track testing with American Automobile
Association (AAA) and LG Electronics. One of the perks of attending UC Berkeley was to
commute to South Bay and discuss research on autonomous systems with developers at the
frontier in person. I would like to especially thank Eunsu Ryu, a former principal engineer
at Cruise autonomous, for his thoughtful comments as I shape my thesis directions.

Furthermore, I am grateful for colleagues who I had the pleasure to collaborate or interact
with. I especially thank my colleagues, Kevin Cheang, Akhil Shetty, and Dayeol Lee, who
started and persevered through this PhD program together with me. I would like to also
thank Kimin Lee, Abdus Salam Azad, Marcell Vazquez-Chanlatte, Jeongseok Son, Richard
Liaw, Shromona Ghosh, Hazem Torfah, Yash Pant, Sebastian Junges, Tommaso Dreossi,
Hussein Sibai, Hadi Ravanbakhsh, Markus Rabe, Ankush Desai, Eric Kim, and Ben Caulfield
for their kind advice and company. Additionally, I would like to acknowledge my wonderful
undergraduates and master students who I advised for over a year: Alton Sturgis, James
Hu, Daniel He, Jay Shenoy, Mark Wu, and Kesav Viswanadha.

Lastly, but most importantly, I thank my family. I am deeply grateful to my wife, Yuri
Cho, who has encouraged, motivated, and inspired me to shape and pursue my vision since
undergraduate years. To my parents, it has been my privilege to be raised by a mother and
a father with a strong emphasis on education and faith in God. I am deeply grateful for
their unconditional sacrifices. I dedicate this thesis to my family.

1

Chapter 1

Introduction

Over the past decade, machine learning (ML) [6] driven by deep neural networks (DNNs) has
contributed to unprecedented advances in cyber-physical systems (CPS). Most prominently,
DNNs have enabled these systems to perceive the physical world remarkably well in some
cases. This significant advance in perception, combined with control theory, equipped these
CPS with increasing autonomy. These autonomous systems operate in complex environments
often physically interacting with humans. To name a few, we observe fleets of self-driving cars
transporting people in San Francisco [141], navigator bots at airports escorting passengers
to their gates [169], bots serving food at restaurants [28], and indoor cleaner bots navigating
homes to vacuum and mop floors [122].

In contrast, we witness the rising concern over these growing use of DNNs. Despite their
high performance, DNNs have been repeatedly shown to be surprisingly brittle to even im-
perceptibly small changes in sensor data [81]. In fact, it is very difficult for researchers to
understand why they are so brittle [4]. The sheer sizes of these DNNs, consisting of large
numbers of nodes and weights, have made it extremely challenging to interpret what these
models have learned, let alone check their validity. Consequently, we are left in an uncomfort-
able situation where developers of autonomous systems are uncertain when their DNNs may
fail and how their system would behave then. Most concerning is that these DNNs are op-
erating in safety-critical systems like self-driving cars, in which certain important properties
like safety must be guaranteed. For instance, in 2022, automakers reported approximately
400 crashes of vehicles with partially automated driver-assist capabilities [93]. These high
performing systems, yet with lack of safety guarantees, have raised public safety concerns.
This motivates the needs for formal methods to assure the safety of artificial intelligence
(AI) and ML-based autonomous systems [156].

Given the urgency of this safety issue, in this thesis, we propose formal techniques to
design and analyze autonomous systems or their DNN components in simulation to conform
to desired properties. First and foremost, we base our techniques in simulation because
there is no risk of physical injury to endanger public safety. And, we can flexibly control
environments to examine systems in diverse situations, especially in ones that are rarely
encountered in reality to stress test them. Additionally, it is much more cost-effective to

CHAPTER 1. INTRODUCTION 2

reconstruct environments in simulation than via manual physical labor. These cost benefits
allow us to scalably and extensively examine DNNs or systems in simulation. On the other
hand, in practice, system design and analysis solely based on simulation is problematic due to
potential discrepancies between simulation and reality. In particular, synthetically generated
sensor data in simulation may result in system failures that are not reproducible with real
sensor data captured in reality. Worse, the system may perform without error in simulation
but not in reality. Hence, the motivating research questions for this dissertation are:

1. How should we formally search for failures of autonomous systems or their DNN com-
ponents in simulation and analyze their causes in an interpretable manner?

2. What are efficient ways to validate whether identified failures in simulation transfer to
reality?

3. Guided by the results of 1 and 2, how should we effectively (re-)design these systems?

1.1 Thesis Preview
Reflecting the three research questions, this dissertation spans a cycle of system design and
analysis as visualized in Fig. 1.1. It formalizes and devises machinery to (i) formally evaluate
a system or its components in simulation and intuitively understand likely causes of failures,
(ii) efficiently validate whether identified failures in simulation are reproducible in reality,
and (iii) update or re-design the failing components of the system via targeted training
informed by the results of (i) and (ii).

Figure 1.1: Overview of this thesis.

To formulate the problems and
provide algorithmic solutions, we
integrate theories and ideas from
disparate research fields from for-
mal methods [33] to probabilistic
programming language (PPL) [68].
In particular, an underlying chal-
lenge in our cycle of system de-
sign and analysis is to realistically
model the increasingly complex en-
vironments where autonomous sys-
tems like self-driving cars operate.
A unique angle of this thesis is to
investigate an existing, adequate formalism to model such environments and address the
challenges in utilizing the formalism to evaluate, validate, and train a system.

1.1.1 Challenges of Modeling Environments of CPS
Autonomous systems like self-driving cars and indoor bots physically interact with humans
both outdoors and indoors. These settings incur complexities that are difficult to model

CHAPTER 1. INTRODUCTION 3

Formalism Controllable Dynamic Reactive Stochastic Spatio-Temporal
Constraints

Scene Graphs ✓ ✓ X X ✓
GANs, Diffusion △ ✓ X ✓ ✓

LLMs
Domain-Specific ✓ ✓ ✓ ✓ ✓

PPLs

Table 1.1: Comparison between existing formalisms to model and generate sensor data in
different environments. GANs stand for Generative Adversarial Networks. LLMs stand for
Large Language Models. The ✓ indicates satisfaction of a property, whereas X represents
non-satisfaction, and △ an incomplete satisfaction.

for several reasons [156]. First, the interactions with humans naturally incur variations, or
stochasticity, both in spatial and temporal aspects. For example, when encountering an
autonomous vacuum cleaner bot, people may avoid the bot in various ways. Some may
walk to the left or right of the bot, another may stop and yield, and others may even step
over the bot. These are temporal constraints on how humans may interact with the bot in
time, in contrast to any random sequences of actions. Also, prior to the collision avoidance
interaction, the initial states (e.g. positions and orientations) of the human and the bot
may vary. They may be approaching from a perpendicular or straight head-on directions.
These are spatial constraints over the space of random directions and positions. Even for
this simple case of collision avoidance with the bot, humans exhibit stochasticity which needs
to be modeled. Second, the interactions of these autonomous systems in the physical world
naturally abide by physical spatio-temporal constraints. Trivially, the initial positions of
the objects cannot be physically intersecting with each other, which is unrealistic. This is
a spatial constraint. Also, for the collision avoidance example, the human and the bot need
to be on a collision path such that collision is bound to occur if no action is taken on either
side. This is a temporal constraint. Hence, to model the complex operating environments of
autonomous systems, we need to model stochasticity and constraints over spatio-temporal
relations among physical objects.

1.1.2 Existing Environment Modeling Formalisms
Table 1.1 compares the pros and the cons of existing formalisms to model and generate either
desired environments in simulation or contents of sensor data. In particular, we compare
whether formalisms can precisely model dynamic and reactive behaviors of objects, and
control, or generate, environments. Specifically, the reactive behaviors refer to being able
to interact with a blackbox autonomous system provided for an evaluation, whose behavior
is unknown a priori. Also, we compare whether these formalisms can model and generate
stochastic, or distributions of, environments with spatio-temporal constraints over the initial
states and behaviors.

CHAPTER 1. INTRODUCTION 4

Scene graph [31] is a popular graphical formalism to model and generate environments. Its
nodes represent objects (e.g. pedestrian, car) and edges represent spatial relations between
the connected objects (e.g. a pedestrian is in front of a car). In conjunction with a simulator,
scene graphs can generate static sensor data in desired environments. Various extensions of
scene graphs have been introduced to also model and generate time series data [31]. However,
scene graphs or their extensions cannot model either distributions of environments or reactive
behaviors of objects in response to a given blackbox system.

Natural languages like English have been increasingly popularly used to generate sen-
sor data through the advances in text-to-image and text-to-video algorithms backed by
generative adversarial networks (GANs) [110], diffusion [109], and large language models
(LLMs) [5]. Instead of relying on a simulator, these generative models can directly render
time series sensor data with environments specified using natural languages, with which we
can model and generate dynamic and stochastic behaviors with spatio-temporal constraints.
However, it is often difficult to generate sensor data with desired environments using these
generative models, requiring extensive prompt engineering. Furthermore, the generated sen-
sor data are not reactive because these algorithms do not take into account the actions of
a blackbox autonomous system under evaluation when generating sensor data. Although
the dynamics of these autonomous systems and their policies may be modelled using neural
networks, the cost of training such networks and the uncertainties in their outputs stand as
practical challenges.

The existing general probabilistic programming languages such as PROB [68], Church [66],
and BLOG [119] do not provide domain-specific supports necessary to model and generate
complex physical environments. These languages primarily focus on inference rather than
generation for testing purpose. In particular, it is challenging to model spatio-temporal
constraints over distributions with these languages, let alone correctly sampling from the
distributions to satisfy such constraints. In contrast, domain-specific PPLs [60, 115, 54] do
support all five functionalities in Table 1.1 that are necessary to model and generate complex
physical environments in a simulator.

1.1.3 Environment Modeling with Domain-Specific PPLs
Note that we emphasize the “domain-specific” aspects of PPLs. To model and generate phys-
ical environments, the environment formalism should support domain-specific functionalities
to (i) model pertinent spatio-temporal constraints and (ii) correctly sample an environment
from a distribution with such constraints. If we merely specify distributions with no spatio-
temporal constraint, then we may generate unrealistic environments where, for example, two
vehicles are instantiated physically intersecting with each other. Hence, PPLs with these
domain-specific supports are desirable for modeling the operating environments of CPS.

Various domain-specific probabilistic programming languages have been employed to de-
fine generative models for objects and scenes, such as Quicksand [100] and Picture [99].
However, they do not provide dedicated syntax or semantics to model geometry or dynamic
behaviors. Note, for instance, Picture was solely used for inverse rendering and not data

CHAPTER 1. INTRODUCTION 5

generation. In this thesis, we use a domain-specific PPL called Scenic [60, 59], whose syn-
tax and semantics are designed to model geometric and dynamic behaviors. We will explain
its details later in the Background (Sec. 2). The primary advantage of Scenic over these
languages lies in its domain-specific syntax and semantics. This permits concise represen-
tation of complex environments and enables specialized sampling techniques with emphasis
on the generation of scenarios.

1.1.4 Challenges of Testing, Validation, and Training of CPS with
Probabilistic Programming

It takes a strong discipline to rigorously test, validate, and train or design a system to satisfy
certain properties, i.e. requirements. In this thesis, we build upon the discipline of formal
methods [33], but the challenges arise from incorporating the PPL formalism to techniques
in formal methods. Before we expand on the challenges, we justify our choice of discipline.
Formal methods is a promising approach to rigorously design, analyze, and verify certain
properties like safety based on mathematical reasoning. This rigor starts with specification,
i.e. the process of encoding unambiguous properties, which the system must abide by, into
a machine-readable formalism. Given the specification and the models of both the system
and its operating environment, formal methods provides techniques to prove that the system
satisfies the specification or, if not, provide a counterexample. The identified counterexamples
can be used to better design the system. Note that to design, analyze, and verify properties
of a system, formal methods require a model of its environment.

The challenges we address in this thesis arise from incorporating a PPL formalism to
model environments while devising machinery that are compatible with formal methods.
Although this effort has previously been initiated [58], there are still many open questions
to be resolved which we expand on in the following.

Testing

We focus on the challenges pertaining to the scalability and the interpretability of system
testing. In regards to scalability, Although there have been prior work which develop mech-
anisms to incorporate Scenic domain-specific PPL to formal methods [60, 46, 115], their
support for scalable testing has been limited. First, they do not provide a formalism to spec-
ify multiple system properties with differing priorities, with a partial order. For example,
a self-driving car should not only transport a passenger to a destination but also abide by
traffic rules, and, most importantly, avoid collision. Second, given a distribution of scenarios
modelled with Scenic, how to intelligently search, or sample, the distribution to identify
any counterexamples with respect to scaled system properties with varying priorities is not
addressed. Finally, the machinery to scale, or speed up, the testing with parallel simula-
tion to support the intelligent search of counterexamples for the scaled number of system
properties is also missing.

CHAPTER 1. INTRODUCTION 6

In addition to identifying system failures, it is crucial to analyze and understand why
the failures occur in order to accurately debug the system. For example, it would be helpful
to understand that a self-driving car tends to crash when taking an unprotected left turn
under a rainy weather due to a perception failure. How can we devise an algorithm which
automates the analysis and succinctly outputs its summary in an interpretable manner? In
particular, we focus on using the Scenic formalism as a means to symbolically summarize
the causes of failures.

Validation

Once we identify system failures via testing in simulation, another relevant problem is to
validate whether the failures transfer to, or are reproducible, in reality. For brevity, we
use sim-to-real validation to denote this problem of validating system performance from
simulation to reality. The necessity for this sim-to-real validation derives from a number
of discrepancies between simulation and reality. To list a few, for instance, in autonomous
driving domain, the dynamics models of vehicles in simulation may not represent all the
physical variables (e.g. tire friction, air drag) that affect the dynamics in reality. The
modeled behaviors of vehicles and pedestrians in simulation may not be representative of
the behaviors observed in reality. Also, the synthetics sensor data (e.g. RGB images, LiDAR
point cloud) from simulation may differ from the real data collected with sensors in reality,
which may induce system behaviors and, therefore, invalidating the results of testing in
simulation.

An approach for sim-to-real validation is to physically reconstruct failure environments in
the real world to validate the system performance. In autonomous driving domain, for exam-
ple, track testing [61] is a well-established means for sim-to-real validation. The strength of
this approach is that it takes into account many of the aforementioned discrepancies between
simulation and reality, simultaneously. Yet, its scalability, in terms of the number of envi-
ronments that can be physically reconstructed, is severely limited due to the labor-intensive
nature. Hence, it is crucial to carefully select which test environments to reconstruct. Can
we effectively leverage simulation, with Scenic as an environment formalism, to generate
test environments for track testing such that they reproduce system failures in reality? This
is one of the two challenges relating to sim-to-real validation we focus on in this thesis.

Although track testing jointly considers different sources of discrepancies between sim-
ulation and reality, its scalability is severely restricted. To scale the validation process, we
restrict our attention to a single dimension of the discrepancies and focus on relaxing the
need for physical reconstruction of environments. In particular, we focus on sim-to-real vali-
dation for sensor data discrepancy with application to validating performances of DNN-based
perception. The challenge here is to algorithmically compare the contents of environments
represented in synthetic versus real sensor data. For example, suppose we identify in simu-
lation that an autopilot fails to perceive another vehicle abruptly cutting into its lane. If we
can identify a set of real sensor data with the same contents of such cut-in behaviors, then
we can test the perception model on those real data for sim-to-real validation, without hav-

CHAPTER 1. INTRODUCTION 7

ing to physically reconstruct such environments. Given that massive amounts of real sensor
data are collected and labelled [41, 32], the challenge is to use Scenic as an environment
formalism to query the labelled dataset to output a subset of real sensor data with contents
of interest.

Training

After we identify and validate environments which result in system failures, we need to de-
bug the components of the ML/AI-based CPS. These failure-inducing environments can be
encoded as probabilistic programs. Previous literature have utilized these probabilistic pro-
grams as generative models of sensor data for training data augmentation, with application
to DNN-based perception [45, 57]. Yet, there is an insufficient debugging technique for other
potentially ML-based components of autonomous systems, given Scenic as an environment
formalism. Hence, we focus on debugging deep reinforcement learning (RL) [165] algorithms
which are increasingly utilized for planning and control. Specifically, we investigate how to
use Scenic to effectively and efficiently fine-tune these RL algorithms in either online or
offline.

Furthermore, leveraging the techniques we develop in this thesis, we also focus on training
human cyber physical systems (h-CPS), which refer to autonomous systems with human in
the control loop. For example, a fork truck maneuvered by a human driver, a drone whose
trajectories are designated by a human, or a soldier on a battle field wearing a helmet
with a display which visualizes real-time information of surroundings are h-CPS. In addition
to AI/ML-based components, the performances of these h-CPS depend on the abilities of
humans who may have varying degrees of control. We focus on training the humans to
better control the systems to better achieve tasks. To safely train humans, we use immersive
augmented and virtual reality (AR/VR) [123]. The challenge is to personalize the training
environments, modelled with Scenic, to each human’s learning speeds to maximize one’s
learning.

1.2 Contributions
This thesis contributes a collection of algorithms, which incorporates a domain-specific PPL
as an environment modeling formalism, in order to (i) scalably test and analyze the causes of
system failures in an interpretable manner, (ii) efficiently validate the simulation test results
in reality, and (iii) systematically train these systems informed by the test and validation
results.

1.2.1 Scalable and Interpretable Testing
We propose two complementary algorithms. First, in the context of adversarial ML [81]
and formal methods [33], we develop a toolkit which formally specifies multiple system

CHAPTER 1. INTRODUCTION 8

properties with varying priorities [183]. It efficiently searches, or samples, from distributions
of environments modeled with Scenic to identify environments that violate the system
properties with parallel simulations. Second, in the context of explainable AI [4], we devise
a system-level debugging algorithm which analyzes system failures and makes a novel use of
Scenic to succinctly summarizes the causes [89].

1.2.2 Sim-to-Real Validation of System Performance
We contribute two algorithms for sim-to-real validation. The first algorithm can validate a
full scale system with limited scalability, while the second algorithm validates a DNN-based
perception models in a scalable way. The first algorithm generates effective test environments
for track testing [61]. This algorithm extensively tests an autonomous system in simulation
with distributions of environments modeled using Scenic and selects environments which
would likely induce system failures in reality. Given a big, labelled real sensor dataset, the
second algorithm uses Scenic as a query language to model environments and retrieve sensor
data which matches the environment description [91].

1.2.3 Failure-Informed Targeted Training
Using the generative aspects of Scenic, we develop online and offline training techniques for
RL algorithms which are increasingly adopted for CPS [13]. Furthermore, we contribute a
personalized algorithm in augmented and virtual reality (AR/VR) [123] to train h-CPS [90].
In particular, this h-CPS training algorithm focuses on training skills to humans so they can
better control the systems and more efficiently achieve tasks. Given a set of skills to train
and a corresponding set of probabilistic programs modeling training environments, the algo-
rithm models the human’s knowledge state and personalizes, or individually adapts, training
environments in AR/VR accordingly to maximize learning. This algorithm contributes to
computational interaction [187], an intersection of formal methods [33] and human-computer
interaction (HCI) [77].

1.3 Thesis Outline
This thesis is divided into three major parts mirroring the contributions.

1.3.1 Preliminaries
We explain the background necessary to fully appreciate the thesis in Ch. 2. Specifically,
we introduce Scenic which is utilized throughout this dissertation, as well as VerifAI [46]
which is a toolkit for design and analysis of AI/ML-based CPS and supports Scenic as an
environment formalism.

CHAPTER 1. INTRODUCTION 9

1.3.2 Part I: Scalable and Interpretable Testing
Chapter 3 describes our toolkit which enables scalable testing of an autonomous system.
Chapter 4 explains our algorithm which analyzes system failures and summarizes their causes
as probabilistic programs.

1.3.3 Part II: Sim-to-Real Validation of System Performance
Chapter 5 focuses on effective test case generation for track testing to validate autonomous
systems in reality. Chapter 6 describes our algorithm, which uses Scenic as a query lan-
guage, to retrieve real sensor data provided a big, labelled dataset to validate DNN-based
perception models.

1.3.4 Part III: Failure-Informed Targeted Training
Chapter 7 expands on our techniques to train, or fine tune, deep RL algorithms in either
online or offline. Chapter 8 describes our h-CPS training algorithm in AR/VR.

1.4 Bibliographic Notes
The purpose of bibliographic notes is to provide historical contexts, or related literature, for
each chapter of this thesis. For this bibliographic note, however, is slightly different in that
we acknowledge our collaborators and funding organizations that contributed to the works.
We acknowledge that texts, figures, and tables from joint papers with our collaborators are
used or adapted for this thesis. We would like to thank the National Science Foundation
(NSF) Graduate Fellowship program. It provided us the freedom to pursue our interest and
passion.

1.4.1 Part I
The idea to devise a machinery for scalable testing (Ch. 3) is inspired by the VeHICal NSF
Cyber-Physical Systems (CPS) Frontier project [155] – in particular, in our interactions with
Kesav Viswanadha, Francis Indaheng, Tommaso Dreossi, Daniel Fremont, Shromona Ghosh,
and Xiangyu Yue. We would also like to thank Prof. Pravin Varaiya, Alex Kurzhanskiy,
Akhil Shetty, and Mengqiao Yu from UC Berkeley for sharing their insights, which helped us
shape our research. The subsequent work (Ch. 4) on an interpretable analysis of system fail-
ures is an outcome of a summer internship at NASA AMES Research center in collaboration
with Corina Pasareanu and Divya Gopinath.

CHAPTER 1. INTRODUCTION 10

1.4.2 Part II
Our work on test case generation for track testing (Ch. 5) is the result of industrial collabora-
tion with American Automobile Association1 (AAA) and LG Electronics. We acknowledge
our contributors from Daniel Fremont and Yash Pant from UC Berkeley, Atul Acharya,
Xantha Bruso, and Paul Wells from AAA, and Steve Lemke, Qiang Lu, and Shalin Mehta
from LG Electronics. Our experience of track testing has informed us the labor intensive
aspect of track testing which served as a motivation for Ch. 6. We thank Eunsu Ryu, a
former principal engineer at Cruise, who advised us to leverage labelled, massive data that
AV companies have been collecting. This influenced us to formulate sim-to-real validation
problem as a data query problem. We acknowledge the contributions from our collaborators,
Jay Shenoy, Sebastian Junges, and Daniel Fremont from UC Berkeley for Ch. 6.

1.4.3 Part III
The case study on the application of a PPL to train reinforcement learning agent (Ch. 7) is
in collaboration with Abdus Salam Azad and Kimin Lee from UC Berkeley. The subsequent
work on training humans for psychomotor skills with PPL (Ch. 8) spawned from interactions
with Prof. Zachary Pardos in the education department and Prof. Bjoern Hartmann in
the electrical engineering and computer sciences (EECS) department at UC Berkeley. We
also thank the contributions from undergraduates from UC Berkeley’s extended reality club,
Alton Sturgis and James Hu, who helped implementing the training system in virtual reality.

1Specifically, we collaborated with AAA’s Northern California, Nevada and Utah (NCNU) division

11

Chapter 2

Background

2.1 Scenic: Probabilistic Scenario Modeling Language
Scenic [60, 59] is a domain-specific probabilistic programming language to model environ-
ments and to generate the environments of CPS in simulation. The language provides the
following key features that make it applicable across domains as shown in Fig 2.1: (a) mod-
eling distributions of environments with physical constraints, and (b) sampling from the
distributions with the physical constraints.

Figure 2.1: Examples of various application domains and simulators Scenic is interfaced to

CHAPTER 2. BACKGROUND 12

2.1.1 Definition of Scenarios
So, what is an environment? In this thesis, we denote an environment as an abstract scenario,
which is a distribution of concrete scenarios. An abstract scenario consists of (i) objects,
(ii) a distribution of initial states, and (iii) a distribution of behaviors. The objects may
represent either physical objects, e.g. autonomous systems or humans. The state is defined
using semantic features of these objects, e.g. positions, orientations, and colors of physical
objects and weather conditions and time. An abstract scenario consists of a distribution of
initial states, e.g. time may vary uniformly randomly from 8am to 12pm. A distribution
of a behavior is defined as a mapping from a history of states to a distribution of actions,
where an action is an instantaneous operation executed by an object like setting a throttle
or a steering angle. A behavior, therefore, can maintain a memory. A concrete scenario is an
instantiation of an abstract scenario, with concrete values assigned to the initial state and
the behaviors mapping a history of actions to a concrete action. In the rest of the thesis, we
will simply denote concrete scenarios as scenarios.

2.1.2 Intuitive, Probabilistic Modeling with Physical Constraints
Scenic is a programming language embedded in Python, one of the most popular program-
ming languages. Its intuitive and probabilistic syntax blends Python syntax with simple
keywords in English to help users, even non-programmers, to easily model, interpret, mod-
ify, and communicate complex scenarios with others. First, Scenic’s concise notation based
on English makes it easy to learn, write, and interpret Scenic programs. Second, the prob-
abilistic language helps users efficiently model the stochasticity and uncertainty in the real
world. For example, there are various ways a lane change behavior on a road can occur.
Rather than writing a scenario program for each variation, Scenic helps users to model and
generate a distribution of scenarios with a single Scenic program with realistic physical con-
straints. To concretely demonstrate the intuitive and probabilistic aspects of the language
for example in the autonomous driving domain, we refer to an example Scenic program in
Fig. 2.2 modeling a distribution of scenarios, where a badly parked car pulls into a road as
another car, which we denote by ego, approaches from behind as visualized in Fig. 2.3.

First, note the intuitive syntax highlighted in yellow that resembles the natural English.
This syntax helps users model the geometric spatial relations among objects in the initial
state. In line 9, ego is uniformly randomly placed on a lane. This lane refers to any lanes
in the map of the simulated world. In line 12-15, we model a distribution of initial states of
the badly parked car. In line 14, the parkedCar is positioned left of a spot by 0.5 meter.
This spot, in line 12, is uniformly randomly sampled from a visible curb, i.e. intersection
of a curb and the ego’s view cone. In line 15, the orientation of the parkedCar is perturbed
by badAngle with respect to the traffic flow direction at the parkedCar’s position. This
badAngle is uniformly randomly sampled from a range of 10 to 20 degrees with either positive
or negative sign (i.e. right or left orientation). Furthermore, we can model declarative
constraints over spatio-temporal constraints in Scenic. In line 18, we specify a spatial

CHAPTER 2. BACKGROUND 13

Figure 2.2: A snippet of an example Scenic program modeling a distribution of badly
parked car scenarios.

constraint over the initial state that distance from ego to parkedCar is less than 20 meters.
In line 19, we model a temporal constraint that ego must be able to see the otherCar during
the scenario at all time.

Scenic further provides syntax and semantics for users to specify the interactive behav-
iors of objects. egoBehavior assigned to ego is defined in line 1-7, using Scenic’s try/inter-
rupt block. The egoBehavior by default uses FollowLaneBehavior in the try block. Note
that the do syntax is used to invoke a behavior. However, if the interrupt condition in line 4
is satisfied, then Scenic pauses the default behavior in the try block and simultaneously ex-
ecutes both the actions which disengages the throttle and applies full brake. The interrupt
condition is defined using a pre-defined helper function, withinDistanceToObjInLane(),
which checks whether there is another object within the given safety distance on the self’s
lane. Here, self refers to the object that is executing the behavior, which is ego in this
case. Once the interrupt condition no longer satisfies, then the paused default behavior in
the try block resumes.

Note that there can be multiple interrupt conditions to assign different priorities over
interaction conditions. If there are multiple interrupt conditions, then the conditions stated
lower have higher priorities. Hence, the second interrupt condition in line 6 has a higher
priority than the one in line 4. This means that if both interrupt conditions are satisfied,
the behavior or action(s) of the higher priority condition will be executed. Finally, Scenic

CHAPTER 2. BACKGROUND 14

Figure 2.3: Scenes generated from the Scenic program in Fig. 2.2 in GTA-V [63] (top
images) and in CARLA [44] (bottom images) simulators

Figure 2.4: Overview of interactions between Scenic and a given simulator

provides a syntax, terminate to end the simulation. In line 6-7, the simulation is to terminate
when a collision occurs.

2.1.3 Sampling from Distributions with Constraints
In order to generate scenarios in simulation, Scenic provides domain-specific support to
correctly sample scenarios from a distribution with physical constraints, such that the sam-
ples satisfy the constraints. To efficiently sample scenarios, Scenic uses internal pruning
heuristics based on an analysis of the constraints (refer to [60]). The architecture of how
Scenic interacts with a given simulator to generate reactive scenarios is shown in Fig. 2.4.
First, the Scenic program and the simulator forms a server-client relation to initiate com-

CHAPTER 2. BACKGROUND 15

munication. Scenic program samples a scene, i.e. initial state, which contains information
such as initial position, orientation, and color of objects, as well as weather condition, time
of day, etc. The sampled scene is sent to the simulator which instantiates the scene, as
visualized in Fig. 2.4 with a dotted line. The simulator updates the state of the world (at
this point, the world state is the same as the initial state) and sends it to the Scenic pro-
gram. Given the world state, the Scenic program samples action(s) per object to simulate
for 1 simulation timestep and send them to the simulator. Users can flexibly determine the
duration of this timestep. The simulator simulates the action(s) per object for 1 simulation
timestep, updates the state of the world, and sends the world state back to the Scenic
program. This cycle of communication continues either until the scenario completes.

2.2 VerifAI Toolkit
Scenic provides a modeling language with the ability to generate concrete scenarios. How-
ever, the design and verification of AI based systems requires many more algorithmic com-
ponents. These are implemented in VerifAI toolkit [46]. The architecture of VerifAI is
shown in Fig. 2.5. VerifAI takes as inputs the (i) system model, (ii) environment model,
and (iii) property. A property is a requirement that the system should satisfy. For the
system model, an implementation of the system is used, e.g. autopilot software. The envi-
ronment model can be specified as a Scenic program. And, the property of the system can
be flexibly encoded using an objective function or temporal logic [103]. In the following we
explain each component (highlighted with colors) in VerifAI.

2.2.1 Semantic Feature Space
A semantic feature space consists of a set of features and their ranges. In VerifAI, one
can either directly define the semantic feature space or use Scenic to do so. If a Scenic
program is given, VerifAI analyzes the structure of the program and extracts a semantic
feature space (colored in green in Fig. 2.5). For example, the Scenic program may specify
distributions over features such as positions, orientations, and colors of objects as well as
weather conditions and time of day. These feature distributions can often be dependent on
others.

2.2.2 Search (Sampling)
The goal of this search component (colored in blue) is to intelligently search for system
failures by efficiently sampling from the semantic feature space. VerifAI supports both
active and passive samplers. The active samplers sample a scenario based on the history of
sampled scenarios and the corresponding system evaluation results. In contrast, the passive
samplers sample a scenario regardless of this history. For passive samplers, VerifAI imple-
ments uniform random and Halton [74] samplers. For active samplers, VerifAI implements

CHAPTER 2. BACKGROUND 16

Figure 2.5: VerifAI Architecture

cross-entropy [148], simulated annealing [92], bayesian optimization [55] samplers. When
using Scenic with VerifAI, users can designate feature variables in the Scenic program
as external parameters to be sampled by VerifAI. Also, in VerifAI, users can select a
sampler of their choice or import their own samplers. Once the sampler samples a scenario,
it is sent to the simulator which tests the system in the sampled scenario as shown in Fig. 2.5.

2.2.3 Monitor
During scenario generation in the simulator, the monitor (colored in yellow) records the
system trace and the sampled scenario. After the scenario completes, the monitor evaluates
the system using the input property. The monitor shares the information on (a) the sampled
scenario and (b) the system evaluation result in the scenario to the sampler (blue) and the
error table (red).

2.2.4 Error Table Analysis
The error table (colored in red) records the list of sampled scenarios and corresponding
system evaluation results. The error table provides algorithms to support analysis, such as
principal component analysis (PCA) [20] and k-means clustering [160] algorithms. These
algorithms can be used to identify any patterns among the semantic features, which likely
induce system failures, to better understand and debug the system.

CHAPTER 2. BACKGROUND 17

2.2.5 Use Cases
VerifAI serves multiple use cases which are shown on the right side of Fig. 2.5. First use case
is falsification which is to search for scenario(s) which violate a given property [183]. Second
use case is data augmentation [45, 57]. We can collect sensor data from the failure scenarios
with the correct labels from the simulator. This way, we can systematically augment training
data to help train a system to be more robust to the identified failures. Leveraging the
generative aspect of Scenic, VerifAI can also generate variations of scenarios to fuzz test
a system to output system traces [46]. As mentioned in above in the error table analysis
section, VerifAI can analyze any similarities or patterns in the scenarios which induce
system failures, or counterexamples in short, to more systematically debug a system [89].
And, VerifAI can also be used to generate system monitors which can detect system failures
in runtime [152].

18

Part I

Scalable and Interpretable Testing

19

Chapter 3

Parallel and Multi-Objective Falsification

There are multiple interrelated challenges when conducting system-level testing of autonomous
systems. First and foremost, we need to formally specify potentially multiple objectives of
these autonomous systems with different priorities. For example, a self-driving car should
not only transport people from one location to another, but also abide by traffic rules and,
most importantly, avoid collision. This formalism should effectively guide the falsification
with respect to stochastic operating environments of autonomous systems. Furthermore, an
efficient search (sampling) algorithm is necessary to explore distributions of environments
and find diverse scenarios where the systems violate various priorities of objectives. Finally,
it is unclear how to integrate the solutions for the aforementioned interrelated challenges
with parallelized simulations to expedite falsification.

In this chapter, we jointly address these challenges to devise a machinery for scalable
system-level testing of autonomous systems, with parallel falsification of multi-objectives.
Specifically, we extend the VerifAI toolkit to (i) formally specify multi-objective speci-
fication with priority ordering, (ii) efficiently search a distribution of scenarios modelled
as a Scenic program using a multi-armed bandit (MAB) algorithm, and (iii) parallelize
falsification, running multiple simulations in parallel, to expedite the process [183].

3.1 Methodology

3.1.1 Parallel Falsification
A bottleneck of simulation-based testing is the generation of the simulation trajectory in the
simulator. A simulation trajectory is a sequence of timestamped states which may include
information such as positions and orientations of objects at every timestep. Depending on
the complexity of the scenario description and the computation required by the simulator,
it may take more than a minute to simulate each scenario. This bottleneck affects the
scalability of testing in simulation, limiting the number of scenarios to test per day.

We present an improvement on this pipeline by parallelizing it using the Python library

CHAPTER 3. PARALLEL AND MULTI-OBJECTIVE FALSIFICATION 20

VerifAI Falsifier Scenic Server
Simulator

Simulator

Monitor

Monitor

... trajectories

Figure 3.1: Parallelized pipeline for falsification using VerifAI.

Ray [120], which encapsulates process-level parallelism optimized for distributed execution
of compute-intensive tasks. Fig. 3.1 illustrates the new setup. We instantiate multiple
instances of the simulator and open multiple Scenic server connections from VerifAI to
the those instances. The Scenic server sends a sampled scenario to each simulator instance
for simulation. The simulation trajectory collected from each simulation instance is evaluated
using the monitor in VerifAI. The simulation result is then sent back to VerifAI’s falsifier,
or the sampler, to update its internal sample space. We aggregate the results of these
simulations into a single error table documenting all the safe and failure scenarios found
during falsification.

Our improved pipeline also includes modifications to the existing sampling mechanism
in VerifAI. Previously, VerifAI invokes its nextSample API to sample the next scenario,
which is incompatible with parallel falsification. The reason is that this API, which consists
of both scenario sampling and internal sample space update, forces all simulations in parallel
to complete first in order to update its internal sample space. Note that this internal update
is necessary for active samplers which take into account the history of sampled scenarios
and their simulation results. In our improvement, we replace the nextSample API with
getSample and update APIs. This decomposition relaxes the previous bottleneck to enable
parallel falsification.

3.1.2 Multi-Objective Falsification
There are typically many different metrics of interest for evaluating autonomous systems. For
example, there are many well-known metrics used in the autonomous driving community to
measure safety: no collisions, obeying traffic laws, and maintaining a minimum safe distance
from other objects, among others [191]. It is also natural to assert priority, for example, that
it is more important to avoid collisions than to follow traffic laws. The existing VerifAI
toolkit only allows specifying a single objective or property which makes it difficult to express
multi-objectives with a priority order. We now discuss how to specify these metrics and their
relative priorities.

Specification of Multiple Objectives Using Rulebooks

We adopt an existing rulebook formalism Censi et al. [29] to model multiple objectives, or
properties, with different priorities. First, a property defines a requirement that a system
should satisfy. Formally, let ρ be a function mapping a simulation trajectory, x, generated

CHAPTER 3. PARALLEL AND MULTI-OBJECTIVE FALSIFICATION 21

ρ1����

ρ3����

ρ4����
ρ2����

ρ5����

ρ6����
@
@R

�
�	

@
@R

�
�	

?

?

ρ1����

ρ4����

ρ5����
ρ3����

ρ2����
?

@
@R

�
�	

?

Figure 3.2: Left: example rulebook over functions ρ1 . . . ρ6 [29]. Right: graph G used in
experiments.

by Scenic or VerifAI to a vector of concrete values, where ρpxq is the application of ρ to x
and ρjpxq is defined as the value of the j-th property. For this value, note that a real number
can be used, for instance, with robust semantics of signal temporal logic (STL) [116]. Censi
et al. [29] have developed a way to specify preferences over these metrics using a rulebook
denoted by R – a directed acyclic graph (DAG) where the nodes are the metrics and a
directed edge from node i to node j means ρipxq is more important than ρjpxq. We denote
this using the ąR operator, e.g. ρi ąR ρj, which is used in [29].

The left DAG in Fig. 3.2 shows an example of a rulebook over six metrics ρ1, . . . , ρ6. In
this example, we can make several inferences, such as ρ1 is more important than ρ3, ρ3 is
more important than ρ4, and ρ5 is more important than ρ3. However, there are also many
pairs of objective components that cannot be compared; for example ρ1 and ρ5. Never-
theless, we would like to have a way to order objective vectors to know which values are
maximally violating the specification during active sampling. Therefore, the rulebook R
allows a preorder, ą, over the objective vectors. Censi et al. defines the preorder as follows.

ρpx1q ą ρpx2q fi @i.
`

pρipx1q ă ρipx2qq ùñ Dj.ppρj ąR ρiq ^ pρjpx1q ą ρjpx2qqq
˘

Multi-Objective Active Sampling

Given a rulebook R and a preorder ą, the goal of falsification is to search for the worst
counterexample scenario by sampling scenarios, ideally violating all the properties. When
performing active sampling (refer to Ch. 2.2) to search for unsafe test inputs, we need a
specialized sampler to support having multiple objectives to guide the search process. The
samplers previously available in VerifAI focus either on exploration of the search space or
entirely on exploitation of a subset of the search space to find unsafe inputs. We present
a sampler that balances these and builds up increasingly-violating counterexamples in the
multi-objective case.

The Multi-Armed Bandit Sampler. We implement a multi-armed bandit (MAB) sam-
pler by adapting the algorithm from Carpentier et al. [24] to our falsification setting; the
idea of this sampler is to balance the trade-off between exploitation and exploration. To

CHAPTER 3. PARALLEL AND MULTI-OBJECTIVE FALSIFICATION 22

understand the motivation for the sampler, we first look at the formulation of the MAB
problem [98]. Consider a bandit which has multiple lotteries, or “arms", to choose from,
each being a random variable offering a probabilistic reward. The bandit does not know
ahead of time which arm gives the highest expected reward. In this setting, the objective is
to efficiently sample the arms while maximizing the average earned reward during the sam-
pling process. In other words, one needs to explore different arms to identify their associated
expected rewards while exploiting this knowledge to earn higher average reward.

Carpentier et al. [24] present the Upper Confidence Bound (UCB) algorithm that achieves
this goal. To briefly explain, the algorithm samples the arm, j, that maximizes a quantity,
Qj, which is defined as:

Qj “ µ̂j `

d

2

Tjpt´ 1q
ln

ˆ

1

δ

˙

(3.1)

where t is the trial number, Tjpt ´ 1q is the number of times the jth arm is sampled until
pt´ 1qth trial, δ is a confidence parameter, and µ̂j is the observed reward of arm, j.

Qualitatively, this formulation balances between exploitation of the reward distribution
learned so far (the first term) and exploration of seldom-sampled arms (the second term).
We adapt this algorithm to our falsification setting. Suppose a rulebook R, its preorder ą,
a system, and a simulator are provided. We discretize the scenario space into N number of
buckets which we equate to the notion of arms in the MAB problem. By selecting a bucket,
we (a) uniformly randomly sample a scenario from the bucket, (b) test the system under
the scenario in the simulator to collect a simulation trajectory x, and (c) compute ρpxq. We
equate this ρpxq to the reward in the MAB problem. The goal of falsification is to search
for scenarios which results in the worst ρpxq value according to the preorder relation, ideally
violating all the properties in the rulebook.

In the following, we describe our adaptation of the Upper Confidence Bound (UCB) al-
gorithm developed by Carpentier et al. [24] to our falsification setting. Before we do, we
first define relevant terminologies for a succinct explanation. Recall from the Background
(Ch. 2.1) that a scenario space is equivalent to a semantic feature space. We denote a seman-
tic feature space consisting of k number of features to be D “ D1

Ś

D2

Ś

...
Ś

Dk, where Di

is the domain of the ith feature. We formalize a sampled scenario as f “ rf1, f2, ..., fns P D,
where fi represents a concrete value for the i feature. With these denotations, we explain
our adaptation below.

Setup
1. Evenly split the domain of each feature, Di, into N number of domains for all k features.
2. Initialize matrix T of size kˆN to keep track of the number of trials that each bucket is

selected, where its column index corresponds to features and row index to the features’
N buckets. Tij element records the number of trials that the ith feature selects its jth
bucket.

3. Initialize a dictionary, d, to keep track of which buckets result in high rewards. First,
we abstract a vector-valued ρ reward to a boolean vector reward, b. We convert non-

CHAPTER 3. PARALLEL AND MULTI-OBJECTIVE FALSIFICATION 23

boolean values in the reward vector to booleans by thresholding the values1. The
dictionary, d, maps the abstracted worst boolean reward, b, to a matrix Mb of size
kˆN . Mb,ij records the number of trials where the ith feature selecting its jth bucket
yields the reward, b. Note that there can be multiple worst counterexamples due to the
preorder relation. As we will see in the Sampling stage below, the boolean abstraction
of the reward helps us better bookkeep which buckets yield desired rewards. Otherwise,
the original reward with non-boolean values (e.g. real numbers) may be too specific to
be obtained again such that Mb,ij would likely to be at most 1 for all i and j.

4. Sample from each bucket once initially, updating d and T according to the update
algorithm described below. The purpose of this is to avoid division by zero when
computing Q, as Tjpt´ 1q “ 0 at initialization.

5. Initialize the time, t, to zero along with the allotted time for falsification. Start the
time.

Sampling
1. Compute a matrix µ̂ of size k ˆ N where µ̂ij approximates the observed reward from

sampling the jth bucket for the ith feature by computing
ř

bMb,ij.
2. Compute a matrix Q based on Eq. 3.1 above. For the confidence parameter, we use a

time-dependent value of 1
δ
“ t to reflect the increasing knowledge of buckets’ rewards

over time.
3. To sample a scenario, we sample a bucket for each feature. For each ith feature, select

the jth bucket with the highest Q value by computing j˚ “ argmaxj Qij. Break ties
uniformly at random. This is a key step in the sampling process as it is frequently the
case initially that several buckets may have the exact same Qj value. We break ties
this way to avoid bias towards any specific bucket. Sample uniformly randomly within
the domain that the bucket j˚ represents.

Updating Internal State
1. Given the reward vector ρ, we compute our vector of booleans b as described in the

Setup stage.
2. If b does not exist in the dictionary d and is among the set of worst boolean rewards

found so far, i.e. @b1 P d. b1 č b, then add b as a key to the dictionary d and initialize
its value as 0kˆN .

3. For any b1 P d such that b ą b1, remove b1 from d.
4. Increment the count Mb at each position Mb,ij for the jth bucket sampled from the ith

feature.
5. After the update, increment the time, t, by 1. If t is greater than the afforded time for

falsification, abort. Otherwise, return to the Sampling stage.
1For example, if the ith property is that a self-driving car maintains a safety euclidean distance of 5

meters with respect to a pedestrian. Suppose ρi computes the negation of the distance. To convert this
property’s non-boolean value to a boolean, we may threshold such that the value becomes true if the distance
is greater than -5 meters, otherwise, false.

CHAPTER 3. PARALLEL AND MULTI-OBJECTIVE FALSIFICATION 24

3.2 Experiment
We conduct two experiments to evaluate (i) the time efficiency gained from parallelization;
(ii) the effectiveness of the multi-armed bandit (MAB) sampler in balancing exploration and
exploitation; and (iii) the effectiveness of VerifAI to falsify multiple objectives. We have
developed a library of Scenic scripts based on the list of pre-crash scenarios described by the
National Highway Traffic Safety Administration (NHTSA) [127]. These scripts cover a wide
variety of common driving situations, such as driving through intersections, bypassing vehi-
cles, and accounting for pedestrians. For our experiments, we selected 7 of these scenarios2,
running the VerifAI falsifier on each one in CARLA [44] for 30 minutes, with individual
simulations limited to 300 time steps („30 seconds). All parallelized experiments were run
using 5 worker processes to perform simulation. We compare the MAB sampler with the ex-
isting passive and active samplers in VerifAI, which are Halton [74] and cross-entropy [148]
samplers, respectively.

3.2.1 Time Efficiency of Parallelization
In our first experiment, we investigate the time efficiency gains from parallel falsification. For
this experiment, we use a single objective specifying that the centers of the ego vehicle and
other vehicles must stay at least 5 meters apart at all times. This specification means that
counterexamples (i.e. scenarios in which the ego vehicle violates the objective) approximately
correspond to collisions or near-collisions. Across the seven scenarios, we compare the number
of simulations completed using serial versus parallel simulation with Halton, cross-entropy,
an multi-armed bandit samplers. Also, we compare the number of counterexamples identified
in each case.

The bar chart in Fig. 3.3 summarizes the results. For each scenario on the x-axis, the
number of counterexamples (orange) and the number of total completed simulations are
highlighted with different color bars. We observe that parallel simulations notably identify
more counterexamples and completes more simulations than serial simulations. To quantify
the observed time efficiency from parallel simulation, we use speedup factor metric, which is
the ratio of the number of sampled scenarios in parallel over serial falsification. The speedup
factor results in Table 3.1 show that we gain 3-5x speedup in the number of simulations
using 5 parallel simulation processes. The variation in the number of samples generated can
be attributed to termination conditions set in Scenic, which terminate simulations early if
specific conditions are met. For some of these scenarios, termination occurred much sooner
on average than other scenarios, leading to more simulations completing in 30 minutes.
In regards counterexamples, we observe that cross-entropy sampler tends to find the most
number of counterexamples, followed by MAB sampler and then the Halton sampler with
the lowest performance.

2Refer to Appendix A for the descriptions of these 7 scenarios

CHAPTER 3. PARALLEL AND MULTI-OBJECTIVE FALSIFICATION 25

1 2 3 4 5 6 7
Scenario #

0

200

400

600

800

1000

1200

N
um

be
r o

f S
am

pl
es

Halton (Serial)
Cross-Entropy (Serial)
Halton (Parallel)
Cross-Entropy (Parallel)
Multi-Armed Bandit (Parallel)

Figure 3.3: Comparison of (i) the serial and parallel versions of the falsifier for cross-entropy
and Halton sampling and (ii) the multi-armed bandit sampler with the cross-entropy and
Halton samplers all in parallel. The orange part of the bars represent the number of coun-
terexamples found out of the total number of samples.

Scenario # 1 2 3 4 5 6 7
Speedup Factor 3.96 4.27 3.87 4.27 2.73 3.26 5.04

Table 3.1: The speedup factor and confidence interval width ratio metrics for the 7 scenarios.

3.2.2 Effectiveness of MAB Sampler: Exploration vs. Exploitation
In this section, we further analyze the results of the first experiment to validate whether
the MAB sampler adequately balances the exploration and the exploitation of the scenario
sample space. Fig. 3.4 summarizes the comparison by visualizing a scatter plot per sampler.
The scattered dots in each plot represent the simulated scenarios per sampler. The colors of
the dots represent the outcome of each simulation: orange (counterexample) and blue (safe
example) based on the objective we use. The x, y, and z axes of the plot represent three
different semantic features with continuous uniformly random distributions (i.e. intervals
over real numbers). We observe noticeable patterns emerge from the scatter plots of the
three samplers. The cross-entropy tend to exploit the smallest subset of the scenario sample
space. Although cross-entropy sampler finds the highest number of counterexamples, this
analysis reveals that the diversity of counterexamples as well the overall simulations are

CHAPTER 3. PARALLEL AND MULTI-OBJECTIVE FALSIFICATION 26

Ego Vehicle Speed

10
12

14
16

18
20 Dist

an
ce

to
Int

ers
ect

ion

20
18

16
14

12
10

He
sit

at
io

n
Ti

m
e

0

2

4

6

8

10

Cross-Entropy
Counterexample
Safe Example

Ego Vehicle Speed

10
12

14
16

18
20 Dist

an
ce

to
Int

ers
ect

ion

20
18

16
14

12
10

He
sit

at
io

n
Ti

m
e

0

2

4

6

8

10

Multi-Armed Bandit
Counterexample
Safe Example

Ego Vehicle Speed

10
12

14
16

18
20 Dist

an
ce

to
Int

ers
ect

ion

20
18

16
14

12
10

He
sit

at
io

n
Ti

m
e

0

2

4

6

8

10

Halton
Counterexample
Safe Example

Figure 3.4: Comparison of points sampled for cross-entropy, MAB, and Halton samplers.

biased to specific subset of the sample space.
In contrast, Halton sampler explores the sampling space the most, but in trade-off per-

forms the worst in finding counterexamples. Meanwhile, Fig. 3.3 visually shows that the
MAB sampler balances the two extreme sampling patterns of the active sampler (cross-
entropy) and the passive sampler (Halton). MAB sampler explores the sampling space
better than the cross-entropy while less so than Halton. Yet, it exploits more than Halton
to find more counterexamples. We observe these three patterns across the seven scenarios
we experiment with.

3.2.3 Effectiveness of Falsifying Multi-Objective
For this experiment, we investigate the effectiveness of the MAB sampler in falsifying multiple
objectives. We compare the falsification performances of the Halton, cross-entropy, and MAB
samplers in serial versus parallel simulation cases, with respect to three distinct rulebooks
with the same five properties but different preorder relations: (a) a completely disconnected
graph representing no preference ordering, (b) a linked list structure L fi ρ1 ąR ρ2 ąR

... ąR ρ5 representing a total ordering, and (c) the graph G on the right in Fig. 3.2, which
is the mixture of (a) and (b) in structure. We use a Scenic program that instantiates the
ego vehicle, along with 5 adversarial vehicles at random positions with respect to a 4-way
intersection and has all of them drive towards the intersection and either go straight or make
a turn. The multi-objectives specify metric components ρj which say the ego vehicle must
stay at least 5 meters away from vehicle j for all j P t1, 2, 3, 4, 5u.

We find that when using L or G rulebooks, all three samplers falsify 4 of the 5 objectives
with serial falsification, and all 5 objectives with parallel simulation in 30 minutes. When
having no preference ordering, the three samplers falsify 3 of the 5 objectives with serial
falsification, and 4 of the 5 objectives in the parallel case. As a case study, we have utilized the
multi-objective falsification method in experiments with the LGSVL simulator [144]. Using
a multi-objective specification with a variety of common driving situations, we were able to
generate a wide range of test cases that cover much of the space of possible scenarios. These

CHAPTER 3. PARALLEL AND MULTI-OBJECTIVE FALSIFICATION 27

experiments were run with Apollo, an open-source autonomous driving software stack [10].
We discovered a number of bugs in Apollo using these new capabilities of VerifAI and
Scenic [182]. For example, in multiple runs of scenarios involving intersections, Apollo gets
“stuck” at stop signs and does not complete turns. We also noticed that Apollo sometimes
stops far beyond the white entrance line at an intersection, potential hazardous scenarios in
reality.

3.3 Bibliographic Notes
Previous literature individually address different aspects of falsification. There have been
related work on falsification or, conversely, optimization of multiple objectives [27, 11, 12,
202, 135]. There are other tools that address simulation-based parallel testing of CPS [8,
133, 2]. However, these methods and tools do not provide support to model complex and
reactive environments of autonomous CPS. We extend VerifAI as it provides an intuitive
formalism, Scenic, to model and generate such environments. Building on to this benefit,
we integrate prior techniques related to multi-objective falsification and parallel simulation
to VerifAI for effective and scalable falsification.

3.4 Chapter Summary
The increasing autonomy of CPS has equipped these systems to operate in complex environ-
ments with stochastic, dynamic, and reactive physical agents. Although many simulation-
based falsification tools have been proposed, they rarely provide adequate support to model
and generate the operating environments of these autonomous systems in simulation. We
extend VerifAI as it provides such support with Scenic. In particular, we enable Ver-
ifAI to (i) formally specify multi-objectives of a system using rulebooks, (ii) implement a
multi-arm bandit sampler to effectively falsify a system, and (iii) parallelize simulations. Our
experiment results show that these extensions could effectively scale the testing of AI/ML-
based autonomous CPS in simulation. There are interesting directions for future work. In
practice, it may not be straight forward how to order priorities over various properties of
CPS. Hence, it may be interesting to investigate the effectiveness of randomizing the topo-
logical structure of rulebooks on falsification. Furthermore, it would be helpful to compare
the strengths of other competing active and passive samplers.

28

Chapter 4

Programmatic and Semantic System
Debugging

In Chapter 3, we focus on searching for system-level failures. Yet, these failures do not
explain why these failures occur. Hence, in this chapter, we focus on system-level debugging.
Even as deep neural networks (DNN) have become very effective for tasks in perception,
it remains difficult to explain and debug their behavior. We present a programmatic and
semantic approach to explaining, understanding, and debugging the correct and incorrect
behaviors of a neural network-based perception system [89]. Our approach is semantic in
that it employs a high-level representation of the distribution of environment scenarios that
the detector is intended to work on. It is programmatic in that a scenario representation
is a program in a domain-specific probabilistic programming language which can be used
to generate synthetic data to test a given perception module. Our framework assesses the
performance of a perception module to identify correct and incorrect detections, extracts
rules from those results that semantically characterize the correct and incorrect scenarios, and
then specializes the probabilistic program with those rules in order to more precisely describe
the scenarios in which the perception module operates correctly or not. We demonstrate
our results using the Scenic probabilistic programming language and a neural network-
based object detector. We demonstrate that our approach is effective, producing rules and
refined programs that significantly increase the correct detection rate (from 65.3% to 89.4%)
and incorrect detection rate (from 34.7% to 87.2%) of the network and can thus help with
understanding, debugging and retraining the network.

4.1 Problem Statement
The key idea of our approach is to leverage the high-level semantic features formally encoded
in a Scenic program to derive rules (sufficient conditions) that explain the behavior of a
detection module in terms of those features. Our hypothesis is that since these features
describe the important characteristics that should be present in an image and furthermore

CHAPTER 4. PROGRAMMATIC AND SEMANTIC SYSTEM DEBUGGING 29

Figure 4.1: Overview of our approach. The green and red bounding boxes in the images are
ground truth and prediction, respectively.

they are much fewer than the raw, low-level pixels, they should lead to small, compact rules
that have a clear meaning for the developer.

The problem that our technique aims to address can be formalized as follows. Suppose
a function g defines a sensor renderer in a simulator, which maps from a semantic feature
vector, rf1, f2, ..., fns P D1

Ś

D2

Ś

...
Ś

Dn, to synthetic sensor data s P S, where each
Di represents the domain of the semantic feature fi, and S is the domain of s. Let func-
tion m denote the given perception module. Finally, let e be an evaluation function which
compares the perception module’s prediction to the ground truths, and outputs a boolean
class (correct or incorrect) based on a certain performance threshold. We assume that the
necessary ground truth labels for the sensor data are collected in the simulator in use. Given
a Scenic program, according to its feature dependencies and hard and soft constraints, the
feature space, D1

Ś

D2

Ś

...
Ś

Dn, is defined. The problem is to find a subset feature space,
d1

Ś

d2
Ś

...
Ś

dn Ď D1

Ś

D2

Ś

...
Ś

Dn such that when we sample a certain number of
features rf1, f2, ..., fns P d1

Ś

d2
Ś

...
Ś

dn, the probability that epmpgprf1, f2, ..., fnsqqq is
equal to a target class (correct or incorrect) is maximized, while finding the most succinct
rule that maximizes the probability. This trade-off is necessary to avoid the identified subset
trivially containing a single element.

4.2 Methodology
A high-level overview of our analysis pipeline is illustrated in Figure 4.2. We start with
a Scenic program that encodes constraints (and distributions) over high-level semantic
features that are relevant for a particular application domain, in our case object detection

CHAPTER 4. PROGRAMMATIC AND SEMANTIC SYSTEM DEBUGGING 30

Figure 4.2: Analysis Pipeline

for autonomous driving. Intuitively, the program (henceforth called scenario) encodes the
environments that the user wants to focus on in order to test the module. Based on this
scenario, we take step (1) as shown in Figure 4.2, where Scenic samples a set of semantic
feature vectors with concrete values (as highlighted in green boxes in Figure 4.2) by sampling
from the specified distributions. An example of semantic features and their associated ranges
of discrete or continuous values are shown in Table 4.1, and an example Scenic program
modeling a distribution of scenes using these semantic features are shown in Figure 4.3. A
set of sampled concrete semantic feature vectors are inputted to a simulator to render a set
of realistic, synthetic sensor data based on those semantic features, as shown in step (2) and
(3) of the figure.

Next, as in step (4), the sensor data are inputted to the learning-based model under
evaluation. Each sensor data is assigned a binary tag, correct or incorrect, based on the
performance of the perception model on the sensor data. The tags obtained for the sensor
data are mapped back to the semantic feature vectors, i.e. scenes, that led to the generation
of the respective sensor data. The result is a labeled data set that maps each high-level
semantic feature vector to the the respective tag. As shown in step (5), these labeled dataset
and associated tags are inputted to rule extraction algorithms.

We then use off-the-shelf methods to extract rules from this data set as in step (6). The
rule extraction is described in more detail in Sec. 4.2.1. The result is a set of rules encoding
the conditions on high-level features that lead to likely correct or incorrect performance. As
in step (7), these rules are then encoded into the original Scenic program to further refine
its distribution.

4.2.1 Rule Extraction
Methods: In principle, any off-the-shelf classification algorithm can be used. We employ
and compare two different methods, decision tree (DT) learning for classification [134] and
anchors [139], to extract rules capturing the subspace of the semantic feature space defined
in the given Scenic program. Decision tree learning is commonly used to extract rules
explaining the global behavior of a complex system, while the anchors method is a state-of-

CHAPTER 4. PROGRAMMATIC AND SEMANTIC SYSTEM DEBUGGING 31

Feature Range
Weather Neutral, Clear, Extrasunny, Smog, Clouds,

Overcast, Rain, Thunder, Clearing, Xmas,
Foggy,Snowlight, Blizzard, Snow

Time [00:00, 24:00)
Car Model Blista, Bus, Ninef, Asea, Baller, Bison, Buf-

falo, Bobcatxl, Dominator, Granger, Jackal,
Oracle, Patriot, Pranger

Car Color R = [0, 255], G = [0, 255], B =[0, 255]
Car Heading [0, 360) deg
Car Position Anywhere on a road on GTA-V’s map

Table 4.1: Environment features and their ranges in GTA-V

the art technique for extracting explanation rules that are locally faithful.
A decision tree intuitively encodes decisions in a tree-like structure, starting from a root

node branching out to subsequent nodes below according to different conditions. They are
highly interpretable, provided that the trees are short. One can easily extract rules for ex-
plaining different outcomes, by simply following the paths through the trees and conjuncting
the decisions encoded in the tree nodes.

The anchor method is a state-of-the art technique, back in 2019, that aims to explain the
behavior of complex ML models with high-precision rules called anchors, representing local,
sufficient conditions for predictions. The system can efficiently compute these explanations
for any black-box model with high-probability guarantees. We extract anchors over the
high-level semantic features.

Blackbox vs Whitebox Analysis: So far we explain how we can obtain rules when
treating the detection module as a black box. We also investigate a white-box analysis, to
determine whether we can exploit the information about the internal workings of the module
to improve the rule inference. The white-box analysis is one of our novel contributions.
We leverage recent work [67] which aims to infer likely properties of neural networks. The
properties are in terms of on/off activation patterns at different internal layers that lead to the
same predictions. These invariant patterns are computed by applying decision-tree learning
over the activations observed during the execution of the neural network on a training or test
dataset. For example, an invariant pattern, if triggered, always result in incorrect detection
with respect to the dataset.

However, the support of the invariant activation patterns may be low. In other words,
it is possible that these invariant activation patterns may represent the given perception
model’s responses to a small proportion of the overall incorrectly detected sensor data in the
provided dataset. Yet, we hypothesize that these invariant patterns capture more focused
properties (or rules) among sensor belonging to a target class. Hence, using these invariant
patterns, we augment the binary (e.g. correct vs incorrect detection) target class to provide

CHAPTER 4. PROGRAMMATIC AND SEMANTIC SYSTEM DEBUGGING 32

Figure 4.3: An example Scenic program modeling Scenario 1 (refer to Sec. 4.3.1)

more signals for the rule extraction algorithms to better identify rules, in the following way.
For example, using an invariant pattern for the correct class, we created two sub-classes for
the existing “correct” target class. By feeding in only sensor that are previously correctly
detected by the perception module, the sensor data that trigger the invariant pattern is
re-labelled as "correct-by-invariant-pattern," otherwise, "correct-unlabelled." Likewise, we
apply the same augmentation for the “incorrect target” class.

Rule Selection Criteria: Once we extract rules with either DT or anchors, we select the
best rule using following criteria. To best achieve our objective, first, we choose the rule
with highest precision on a held-out testset of feature vectors. If there are more than one
rule with equal high precision, then we choose the rule with the highest coverage (i.e. the
number of feature vectors satisfying the rules). Finally, if there is still more than one rule
left, then we break the tie by choosing the most compact rule which has the least number of
features. The last two criteria are established to select the most general high-precision rule.

In this section we report on our experiments with the approach on the deep neural
network-based object detector. We investigate whether we can synthesize rules that are
effective in generating test inputs that increase the probability of correct/incorrect detection,
thus explaining the correct/incorrect behavior of the analyzed module. We evaluate the
techniques along the following dimensions: decision tree (DT) vs anchor, black-box (BB) vs
white-box (WB).

4.3 Experiment

4.3.1 Study Design
We use a pre-trained SqueezeDet [194] object detector model that is already trained on
10,000 RGB images rendered in GTA-V game simulator [63], involving one to four cars in
various locations of the map with diverse backgrounds. The perception task is to detect
vehicles on road with two-dimensional bounding boxes.

CHAPTER 4. PROGRAMMATIC AND SEMANTIC SYSTEM DEBUGGING 33

Figure 4.4: From top-left one-car image, each image corresponds to scenario 1, 2, 3, and 4
in a clockwise manner. The scenario number is the number of cars

Training and Test Sensor Data Generation with Scenic Programs

Using our domain knowledge of driving, we modeled four different distributions of scenarios
as four Scenic programs1. The scenes, i.e. concrete values of environment semantic features,
are sampled from the the programs. These scenes are rendered as RGB images by the GTA-
V simulator, along with the corresponding ground truth two-dimensional bounding boxes.
Sensor data generated from these scenarios are shown in Figure 4.4. Using each Scenic
program, we generated 950 images as a train set and another 950 new images as a test set.

1. Scenario 1 describes the situation where a car is illegally intruding over a white striped
traffic island at the entrance of an elevated highway. A Scenic program modeling
Scenario 1 is shown in Fig. 4.3.

2. Scenario 2 describes two-car scenario where one car occludes the ego car’s view of
another car at a T-junction intersection on an elevated road.

3. Scenario 3 describes scenes where other cars are merging into ego car’s lane. The
location in this scenario is carefully chosen such that the sun rises in front of ego car,
causing a glare.

4. Scenario 4 describes a set of scenes when nearest car is abruptly switching into ego
car’s lane while another car on the opposite traffic direction lane is slightly intruding
over the middle yellow line into ego car’s lane.

1Please refer to Appendix B for Scenic programs of scenario 2,3, and 4.

CHAPTER 4. PROGRAMMATIC AND SEMANTIC SYSTEM DEBUGGING 34

Evaluation Metric

We assign binary target class to each RGB image based on the object detector’s correctness,
which we define using the F1 score metric (harmonic mean of the precision and recall) [101].
This metric is commonly used in statistical analysis of binary classification. The F1 score
is computed in the following way. For each image, the true positive (TP) is the number
of ground truth bounding boxes correctly predicted by the detection module. Correctly
predicted here means intersection-over-union (IoU for object detection) is greater than 0.5.
The false positive (FP) is the number of predicted bounding boxes that falsely predicted
ground truths. This false prediction includes duplicate predictions on one ground truth box.
The false negative (FN) is the number of ground truth boxes that is not detected correctly.
We compute the F1 score for each image, and if it is greater than a threshold, we assigned
correct label; if not, incorrect. The threshold used in our experiments was 0.8.

Blackbox and Whitebox Setup

We use off-the-shelf algorithms for rule extraction. For decision tree classification algorithm,
we use the rpart [170] package in R software, which implements corresponding algorithm in
[19], with default parameters. Also, we use the anchor algorithm with its code from [138]
with the default parameters.

We analyze the architecture of the SqueezeDet network and determine that there are
three maxpool layers which provide a natural decomposition of the network. Furthermore,
these layers have relatively low dimensionality making them good targets for property infer-
ence. We consider activation patterns over maxpool neurons based on whether the neuron
output is greater or equal to zero. A decision tree can then be learned over these patterns
to fit the prediction labels. For our experiments we select patterns from the maxpool layer
5, which turn out to be highly correlated to images that lead to correct/incorrect predic-
tions. Using the training dataset, we augment the target class corresponding to the Squeeze
maxpool layer 5 decision pattern as p5c(correct) and p5_ic(incorrect) and the remaining as
correct_unlabelled and incorrect_unlabelled, respectively.

From the train set, we extracted rules to predict each target class based on the feature
vectors. These rules were evaluated on the test set based on precision, recall, and F1 score
metrics. For DT learning we adjusted the label weight to account for the uneven ratio among
labels for both black-box and white-box labels. For the anchor method, we applied it on each
instance of the training set until we had covered a maximum of 50 instances for every label
(correct, incorrect for Black Box, and p5c, p5_ic, correct_unlabelled, incorrect_unlabelled
for White Box). The best anchor rule for every label is selected based on the rule selection
criteria mentioned in section 4.2.1.

Semantic Feature Augmentation

We augmented the feature vector with some extra features that are not part of the feature
values provided by the simulator but are used in Scenic programs. The reason is that the

CHAPTER 4. PROGRAMMATIC AND SEMANTIC SYSTEM DEBUGGING 35

Scenario # Correct Detection Inducing Rules
(BaselineÑRule Precision)

Scenario 1 x coordinate ě -198.1
(65.3%Ñ 89.4%)

hour ě 7.5 ^
weather = all except neutral ^

Scenario 2 car0 distance from ego ě 11.3m ^

(72.3%Ñ 82.3%) car0 model = {Asea, Bison, Blista, Buffalo,
Dominator, Jackal, Ninef, Oracle}

Scenario 3 car0 red color ě 74.5 ^
(61.7%Ñ 79.4%) car0 heading ě 220.3 deg

car0 model = {Asea, Baller, Blista,
Scenario 4 Buffal, Dominator, Jackal, Ninef,

(89.6%Ñ 96.2%) Oracle}

Table 4.2: The identified rules that induce correct detection for the four scenarios explained
in Sec. 4.3.1, respectively. These results summarize the best outcomes shown in Table 4.6.

set of feature values provided by the simulator may be too sparse to find any rules among
them. Also, Scenic can utilize the relations among the features, whose values are not
provided by the simulator. For example, in Scenario 1 (shown in Fig. 4.3), the distance from
ego to otherCar is not part of the feature values provided by GTA-V but used in line 10
of the program. However, it can be computed with Euclidean distance metric using (x,y)
location coordinates of ego and otherCar. Also, the difference in heading angle between ego
and otherCar is also added as extra feature to represent badAngle variable in line 7 of the
program. We find this augmentation to be helpful. For instance, in Table 4.4, for Scenario
1, the failure inducing rule with the highest precision includes the distance feature which we
augmented.

4.3.2 Results
Tables 4.2 and 4.4 show the best rules (wrt. precision) extracted with our framework, along
with the baseline correct/incorrect detection rate for each given scenario and the detection
rate for the generated rules. This precision is computed using our test dataset. Hence, of the
950 concrete semantic feature vectors per Scenic program for testing (refer to Sec. 4.3.1),
we retrieve the vectors that satisfy the identified rule. The Rule Precision in Table 4.2
and 4.4 is defined as the proportion (in percentage) of the retrieved vectors that result in
either correct or incorrect detection. On the other hand, Baseline in Table 4.2 and 4.4
represents the proportion of overall 950 vectors per Scenic program which result in correct
or incorrect detection. The results indicate that indeed our framework can generate rules that
significantly increase the correct and incorrect detection rate of the module. Furthermore,
the generated rules are compact and interpretable.

CHAPTER 4. PROGRAMMATIC AND SEMANTIC SYSTEM DEBUGGING 36

Scenario # 1 2 3 4

Original Program 0.347 0.277 0.383 0.104
BB Decision Tree 0.703 0.418 0.506 0.375
WB Decision Tree 0.73 0.449 0.494 0.099

BB Anchor 0.872 0.357 0.834 0.573
WB Anchor 0.674 0.422 0.365 0.176

Table 4.3: The precision of incorrect detection inducing rules over 500 new sensor data
generated from refined Scenic programs, respectively. The justification for specifically using
500 sensor data is provided in Figure 4.6.

Our programmatic approach which outputs correct (or incorrect) performance inducing
rules using interpretable semantic features enable intuitive debugging of a learning-based
model, without having to manually look through a large corpus of sensor data. For example,
in Scenario 1, from the rules found using our approach, we identify a counter-intuitive char-
acteristic of the pre-trained perception model used in this study. As shown in Table 4.2, the
correct detection inducing rule for Scenario 1 is "x coordinate ě ´198.1." In GTA-V, given
that ego car’s location is fixed, the condition on the otherCar’s x-coordinate is equivalent
to the otherCar’s distance from ego being greater than 11m. Note that the RGB camera is
mounted on the ego car, and the otherCar is defined in the Scenic program of Scenario 1
in Figure 4.3. On the other hand, as shown in Table 4.4, the incorrect detection inducing
rule for Scenario 1 states that the otherCar to be within 8.84m and its car model to be
PRANGER. In short, the pre-trained model actually performs worse when the other vehicle
of a specific model is closer, and better when further away. We validate this finding by
testing the pre-trained model on such scenes, which are visualized in Figure 4.5.

Results for Correct Behavior: Tables 4.5 and 4.6 summarize the results for the rules
explaining correct behavior. The results indicate that there are clear signals in the heavily
abstracted feature space and they can be used effectively for scenario characterization via
the generated high-precision rules.

Also, the results show that DT learning extracts rules with better F1 scores for all
scenarios as compared to anchors. This could be attributed to the difference in the nature
of the techniques. The anchor approach aims to construct rules that have high precision in
the locality of a given instance. Decision-trees on the other hand aim to construct global
rules that discriminate one label from another. Given that a large proportion of instances
are detected correctly by the analyzed module, the decision tree is able to build rules with
high precision and coverage for correct behavior.

The results also highlight the benefit of using white-box information to extract rules
for correct behavior. Table 4.7 shows the support for the decision pattern is significant
(greater than 65% on average for all scenarios). The support is defined as a correlation of

CHAPTER 4. PROGRAMMATIC AND SEMANTIC SYSTEM DEBUGGING 37

Scenario # Failure Detection Inducing Rules
(BaselineÑRule Precision)

x coordinate ď -200.76 ^
Scenario 1 distance ď 8.84 ^

(34.7%Ñ 87.2%) car model = PRANGER
hour ě 7.5 ^

Scenario 2 weather = all except Neutral ^
(27.7%Ñ 44.9%) car0 distance from ego ă 11.3

weather = neutral ^
Scenario 3 agent0 heading = ď 218.08 deg ^

(38.3%Ñ 83.4%) hour ď 8.00 ^
car2 red color ď 95.00
car0 model = PATRIOT ^

car1 model = NINEF ^
Scenario 4 car2 model = BALLER ^

(10.4%Ñ 57.3%) 92.25 ă car0 green color ď 158 ^
car0 blue color ď 84.25 ^
178.00 ă car2 red color ď 224

Table 4.4: Rules for incorrect behaviors of detection module with the highest incorrect
precision from Table 4.3

Figure 4.5: The top (or bottom) three images are generated using the refined Scenic pro-
gram with the correct (or incorrect) detection inducing rule shown in Table 4.2 (or Table 4.4)
for Scenario 1. The green boxes are the ground truth bounding boxes for the detection task,
and red boxes are the predictions of the pre-trained perception model used in this study.

CHAPTER 4. PROGRAMMATIC AND SEMANTIC SYSTEM DEBUGGING 38

Scenario # 1 2 3 4

BB Decision Tree 0.723 0.342 0.631 0.622
WB Decision Tree 0.727 0.696 0.601 0.778

BB Anchor 0.361 0.457 0.302 0.438
WB Anchor 0.520 0.188 0.149 0.438

Table 4.5: F1 score of correct rules on testset

Scenario # 1 2 3 4

Original Program 0.653 0.723 0.617 0.896
BB Decision Tree 0.843 0.778 0.787 0.950
WB Decision Tree 0.826 0.823 0.788 0.962

BB Anchor 0.727 0.811 0.652 0.928
WB Anchor 0.894 0.817 0.794 0.928

Table 4.6: Precision of correct rules on the testset

the decision pattern to a specific label. Using this information to augment the labels of the
dataset helped to improve the precision and F1 score of the rules (w.r.t. Scenic features)
for both DT learning and anchor method.

Results for Incorrect Behavior: Tables 4.3 and 4.4 summarize the results for the rules
explaining incorrect behavior. Rule derivation for incorrect behavior is more challenging
than for correct behavior due to the low percentage of inputs that lead to the incorrect
detection for a well trained network. In fact the F1 scores (computed on the test set) for
rules predicting incorrect behavior are too low due to very low (in some cases 0) recall values.

To properly validate the efficacy of the generated rules, we refine the Scenic programs
by encoding the rules as constraints and generate 500 new images. We then evaluated our
module’s performance on these new datasets. Figure 4.6 justifies our choice of 500 as the
number of new images that we generate for evaluation.

All four methods contribute to more precisely identifying the subset features spaces in
which the module performs worse. Specifically, Table 4.3 illustrates that the black-box anchor
method enhances the generation rate of incorrectly detected images by 48% on average in
Scenarios 1, 3, and 4 compare to the baseline. This is a significant increase in the ratio of
incorrectly labelled images generated from the program, providing evidence that the refined
programs are more precisely characterizing the failure scenarios.

We also note that the anchor method outperforms DT learning. This is expected, be-
cause the anchor method extracts rules that are highly precise within a local feature space.
The exception is Scenario 2. We conjecture that the reason that the anchor method does
not perform better than DT learning is due to uncontrollable non-determinism in GTA-
V, which generate pedestrians in close vicinity to the camera of ego car even though its

CHAPTER 4. PROGRAMMATIC AND SEMANTIC SYSTEM DEBUGGING 39

Scenario # 1 2 3 4

Correct DP 0.626 0.651 0.514 0.824
Incorrect DP 0.276 0.175 0.234 0.212

Table 4.7: Support for correct and incorrect decision patterns

Figure 4.6: The cumulative ratio of incorrectly detected images generated from refined
Scenic programs (using incorrect rules) stabilizes over 500 samples. Each color has four
graphs representing four different rule extraction methods

Scenic program did not have any pedestrian. GTA-V non-deterministically instantiates
these pedestrians, and this changes in the background may have affected perception. This
is an issue with the GTA-V which originally is not built for data generation purpose. GTA-
V does not allow users to control or eliminate these pedestrians and it does not provide
features related to pedestrians during data collection process. In future work, we plan to
incorporate simulators that allows a deterministic control (such as CARLA [44]) for further
experimentation.

Unlike the results for correct behavior, the whitebox approach tends to perform worse
than blackbox when focusing on incorrect behavior. This outcome can be attributed to very
low support for decision patterns computed for incorrect behavior, with maximum of 27.6%
among the four scenarios as shown in Table 4.7. However, we do observe that the white-box
approach for both DT learning and anchors does, in general, enhance the ratio of incorrectly
detected images as shown in Table 4.3, compared to those of the original programs.

Limitations: Our technique relies on abstracting an image with a high resolution (for
instance 1920 x 1200 in our example) to a vector of a small set of semantic features. In our
experiments we are able to derive compact rules with high precision and coverage. However,
we do note that in other application domains, other than autonomous driving, the abstraction

CHAPTER 4. PROGRAMMATIC AND SEMANTIC SYSTEM DEBUGGING 40

may lead to under-determined representation, which may not yield any noticeable patterns.
Therefore, appropriate selection of a subset of essential features for a given application
domain (facilitated by an appropriate definition using Scenic), is essential.

We also note that all the Scenic programs we experiment with contain only uniform
distributions. Also, for each of the scenario programs that we analyzed, we fix the location
and heading angle of the camera. We impose such restriction to prevent too much variations,
or noises, from the signals to extract rules. Our methodology can apply to more general
setting with variations in camera locations and angles. However, increase in variations may
require higher number of images to better reflect the joint distribution of all dimensions of
variations, from which rules can be adequately extracted.

4.4 Bibliographic Notes
Most techniques that aim to provide explainability and interpretability for deep neural net-
works (DNNs) in the field of computer vision focus on attributing the network’s decisions
to portions of the input images([113, 132, 158, 164, 201]). GradCAM [153] is a popular
approach for interpreting CNN models that visualizes how parts of the image affect the
neural network’s output by looking into class activation maps (CAM). Other techniques fo-
cus on understanding the internal layers by visualizing their activation patterns [26]. Our
approach, on the other hand, aims to provide characterizations at a higher level than raw
image pixels, namely at the level of abstract features defined in a Scenic program.

Recent work aims to explain the decisions of DNNs in terms of higher-level concepts.
The technique in [88] introduces the idea of concept activation vectors, which provide an
interpretation of a neural network’s internal state in terms of human-friendly concepts. Fea-
ture Guided Exploration [188] aims to analyze the robustness of networks used in computer
vision applications by applying perturbations over high-level input features extracted from
raw images. They use object detection techniques (such as SIFT – Scale Invariant Feature
Transform) to extract the features from an image. In contrast to these techniques we directly
leverage Scenic which defines the high-level features in a way that is already understandable
for humans. Existing approaches typically use classification networks whose output directly
corresponds to the decision being made and rely on the derivative of the output with re-
spect to the input to calculate importance. In our application, there is no direct correlation
between the output of the object detector network and the validity of the bounding boxes.
Furthermore, unlike all previous work, we can use the synthesized rules to automatically
generate more input instances, by refining the original Scenic program and then using it to
generate data. These instances can be used to test, debug and retrain the network.

CHAPTER 4. PROGRAMMATIC AND SEMANTIC SYSTEM DEBUGGING 41

4.5 Chapter Summary
We present a semantic and programmatic algorithm for characterizing success and failure
scenarios of a provided DNN-based perception model in the form of probabilistic programs.
We use Scenic to represent operating environments of a system using semantic features.
Also, we utilize Scenic as a generative model to generate sensor data with a simulator. The
combination of Scenic’s semantic representation and its generative capability allows us to
associate high-dimensional sensor data with low-dimensional vectors of concrete semantic
feature values. We leverage this benefit to abstract sensor data as semantic feature vectors
and then analyze which set of features are highly correlated with correct or incorrect behav-
iors of the perception model. Our analysis identifies conditions, or rules, over the features.
These rules are used to refine the input Scenic program to characterize success and failure
scenarios of the perception model. Our experiment results show that the identified rules ef-
fectively identifies conditions over a set of semantic features which highly correlate to either
the perception’s correct or incorrect behaviors. Furthermore, our results demonstrate that
with the refined Scenic programs we can systematically generate sensor data which likely
induce the perception model to succeed or fail. These data can be potentially useful to sys-
tematically augment training dataset for fine-tuning. For future work, we plan on extending
this approach to dynamic scenarios involving interactive behaviors among the agents in a
scenario.

42

Part II

Sim-to-Real Validation of System
Performance

43

Chapter 5

Formal Scenario-Based Track Testing

Part I focuses on identifying system failures and understanding why those failures occur
at component level in simulation using synthetic sensor data. Part II is motivated by a
skepticism towards the identified failures in simulation. Specifically, how can we validate
that the component or system failures identified in simulation also transfer to reality? The
reason for this validation is that there are known discrepancies between synthetic versus real
sensor data. Some of these differences can be perceivable to human eyes when comparing
real and synthetic RGB images. Meanwhile, other discrepancies are subtle like the ways how
rays from LiDAR or radar reflect from various textures and shapes of physical objects in
simulation versus reality. These discrepancies could result in different behaviors of NN-based
models as shown in Fig. 5.1. This is not a conjecture, but a valid concern which led to the
emergence of a new field called domain adaptation [184] within computer vision.

Track testing is a typical approach to test autonomous system in reality. It is an interme-
diate step between testing in simulation and on public roads. This form of testing has much

Figure 5.1: The discrepancy in the behaviors of a neural network-based perception model
on the synthetic (left) versus the real (right) RGB camera images are shown. The contents
of the two images are similar, where a single vehicle approaches from the opposite traffic.
However, the perception on the synthetic image results in a false detection of a non-existent
vehicle. The green boxes represent the ground truths, and the blue represent detections by
the neural network.

CHAPTER 5. FORMAL SCENARIO-BASED TRACK TESTING 44

lower risk of injury than testing on public roads. It involves a reasonable degree of control
over the other agents around the AV, such as pedestrian dummies and inflatable cars to use
for crash testing.

However, physically reconstructing these conditions, or scenarios, for track testing can
be very expensive, labor-intensive, and time-consuming. Thus, it is necessary to carefully
select test scenarios for track testing, which will prove most effective at identifying failures or
strange behavior, uncovering bugs, and increasing assurance in the safety of the AVs. Hence,
in this chapter, we take step towards addressing the following two questions:

1. Can formal simulation aid in designing effective road tests for AVs? By formal simu-
lation we mean simulation-based testing that is guided by the use of formal models of
test scenarios and formal specification of safety properties and metrics. More specifi-
cally, do unsafe (safe) runs in simulation produce unsafe (safe) runs on the track How
should one select tests from simulation to run on the track?

2. How well can simulation match track testing of AVs? We aim to quantitatively and
qualitatively compare simulation and track testing data, for a test scenario that has
been formally specified and implemented in both simulation and track testing.

We conduct a study at track testing site with a real self-driving car, which operate
with the same autopilot as tested in simulation with a replica of the map of the track in
reality [61]. From extensive simulations, we select test cases for track testing regarding a
distribution of scenarios modeling a pedestrian crossing and the self-driving having to yield to
the pedestrian. Our results indicate that our formal simulation-based approach is effective
at synthesizing test cases that transfer well to the track: 62.5% of unsafe simulated test
cases resulted in unsafe behavior on the track, including a collision; 93.3% of safe simulated
test cases resulted in safe behavior on the track (and no collisions). Our results also shed
light on potential causes for AV failure in perception, prediction, and planning. While AV
and pedestrian trajectories obtained in simulation and real-world testing for the same test
were qualitatively similar (e.g., see Fig 5.6), we also noted differences as quantified using
time-series metrics [65, 40] and with metrics such as minimum distance between the AV
and pedestrian. Variations exist even amongst simulations of the same test case due to
non-deterministic behavior of the AV stack, although these are smaller.

5.1 Problem Statement
Let M be the simulation model, including the full software stack and vehicle dynamics model
of the AV, and its environment, including models of all other objects and agents in the
simulated world. This model can be configured through a vector of parameters π⃗, typically
supplied through a configuration file or suitable API to the simulator. Each valuation of π⃗
defines a test case x. We assume, for this section, that each test case x produces a unique

CHAPTER 5. FORMAL SCENARIO-BASED TRACK TESTING 45

Create
Simulated

World

Specify
Scenario

Specify Safety
Properties/

Metrics

Temporal
Logic

Falsification in
VerifAI

Test Case
Selection

Test
Execution
on Track

Data
Analysis

Test
cases

(safe /
unsafe)

Test
cases

(for
track)

Test
data

Results,
Insights

Scenic
Program

Model

Figure 5.2: Overview of our approach to synthesize failure inducing test cases for track
testing

simulation run.1 The time series data generated by the simulation run is referred to as a
trace τ . Each test case x is designed so as to also be implementable on the real AV on the
track, although such implementation can be non-trivial as we describe later. On the track,
the environment is less controllable than in the simulator, and therefore a single test case xi

can produce multiple test runs ri,1, ri,2,
A key aspect of our method is to formally specify a set of test cases along with an

associated probability distribution over them. We refer to this distribution of test cases as
a scenario S, which is defined by a Scenic program PS . Typically, a subset of simulation
parameters π⃗ are modeled in PS , while the others are left fixed for the experiment.

5.2 Methodology
Our overall methodology is depicted in Fig. 5.2, and involves the following steps.
Create Simulation Model: First, the initial step involves generating a simulation envi-
ronment that is photorealistic and incorporates dynamical models for various agents that
can be utilized on the test track. This process includes creating high-definition (HD) maps,
gathering sensor data, employing the collected data to develop a detailed three-dimensional
(3D) mesh, uploading the mesh into the simulator, noting specific details of drivable areas in
the simulator, and combining the resulting 3D world model with vehicle and agent dynamics
models.
Formalize Test Scenario: The next step is to formalize the test scenario(s) to execute on
the track. We take a formal methods approach, specifying test scenarios in Scenic.
Formalize Safety Property/Metric: In addition to the formal specification of a scenario,
it is also necessary to define one or more properties that accurately reflect the conditions in
which an autonomous vehicle (AV) can be considered to be operating safely. In the context of

1Note, however, that some industrial simulators and AV stacks tend to be non-deterministic in that the
configurable parameters may not define a unique simulation run. We will discuss later the impact of such
non-determinism on our results.

CHAPTER 5. FORMAL SCENARIO-BASED TRACK TESTING 46

formal methods, safety properties that pertain to traces are typically expressed using logical
notation, such as temporal logics. If these properties have a quantitative aspect, they are
referred to as safety metrics.
Identify Safe/Unsafe Test Cases: Once the above three steps are complete, the simu-
lation model, test scenario, and safety properties are fed into the VerifAI tool to perform
falsification. The Scenic scenario PS defines a distribution over the parameters π⃗. We con-
figured VerifAI to sample from this distribution, simulating each corresponding test case
and monitoring the safety properties on the resulting trace. VerifAI stores the sampled
values of π⃗ in safe or error tables depending on whether the test satisfies or violates the spec-
ification. Moreover, VerifAI uses the robust semantics of metric temporal logic (MTL) [48]
to compute a quantitative satisfaction value ρ for the specification φ which indicates how
strongly it is satisfied: ρ ą 0 implies φ is satisfied, and larger values of ρ mean that larger
modifications to the trace would be necessary for φ to instead be falsified. The resulting test
cases are fed to the next step.
Select Test Cases for Track Testing: VerifAI offers various methods, including Princi-
pal Component Analysis and clustering, to automatically examine the safe and error tables
and identify patterns. When working with low-dimensional spaces, direct visualization can
also be utilized to pinpoint clusters of safe or unsafe tests. By employing either of these
methods, diverse modes of behavior can be identified, and representative test cases can be
selected for execution on the track.
Implement Selected Test Cases on Track: After identifying test cases in simulation, the
next step is to execute them on the track. This process requires controlling dynamic agents,
such as environment vehicles, pedestrians, and bicyclists, using parameters that are specified
in the Scenic program and are synthesized into a test case, such as the starting location,
time to begin motion, velocities, and other relevant factors. In addition, it is important to
ensure that the hardware used for track testing can accurately replicate the synthesized tests
in simulation, taking into account any limitations that the hardware may have, even if it is
state-of-the-art.
Record Results and Perform Data Analysis: At the final stage of the process, during
track testing, we collect several types of data such as videos of the AV in motion, data on
the AV which includes sensor and log data from the AV software stack, and information
from the test track hardware like GPS beacons and the hardware used to control dynamic
agents such as a pedestrian dummy. Afterward, this data is analyzed to assess the efficacy of
the selected test cases obtained through formal simulation, to compare the simulation traces
with those obtained from track experiments, and to determine potential reasons behind any
unsafe or intriguing behaviors exhibited by the AV.

5.3 Experiment
We conducted a case study at a track testing site at GoMentum [159] which is AAA’s track
testing site located in Concord, California.

CHAPTER 5. FORMAL SCENARIO-BASED TRACK TESTING 47

Pedestrian
start point

Pedestrian
end point

Pedestrian
hesitates

AV start point

AV end point

The AV’s path

Region where AV is
expected to yield

1 st Street

Pearl Street

Figure 5.3: A bird’s-eye view of the scenario S (left) and the (simplified) Scenic program
PS encoding our test scenario.

Simulation Model Creation: First, we created a digital simulation environment that closely
mimics the real-world testing area for autonomous vehicles (AVs) called "Urban A" at Go-
Mentum. The creation process involved collecting various data while driving around the
site, including LiDAR point cloud data, camera images, and location data. The collected
data was then processed and converted into a 3D mesh that represents every detail of the
road surface and surrounding objects such as buildings, curbs, sidewalks, signs, and more.
Textures were applied to the mesh using tens of thousands of captured images. Details of the
drivable areas, including lane lines, driving directions, road speeds, crosswalks, intersections,
and traffic signs, were annotated in the LGSVL Simulator [144]. The annotated, textured
mesh was then compiled into a loadable simulation environment along with HD maps that
were used both in simulation and in the AV for real-world testing. This process created
a photorealistic simulation environment, which is a digital replica of the real-world testing
area.
Test Scenario and Safety Properties: We chose a specific situation for the AV to navigate,
which involves making a right turn at an intersection where a pedestrian hesitates while
crossing a road. The scenario is illustrated in Fig. 5.3. To facilitate execution of this scenario
on the test track, we established predetermined starting positions and orientations for both
the AV and the pedestrian. We also described the pedestrian’s movement as a straight line
with three parameters.2.

• the delay tstart after which the pedestrian starts crossing (with a fixed speed of 1 m/s);

• the distance dwalk the pedestrian walks before hesitating;

• the amount of time thesitate the pedestrian hesitates.
2Other parametrizations are possible. Our choice here corresponds most directly to what we could

implement on the test track

CHAPTER 5. FORMAL SCENARIO-BASED TRACK TESTING 48

We encoded this scenario as the Scenic program shown in Fig. 5.3. On lines 7–10 we
specify the parameters above to have uniform distributions over appropriate ranges (e.g.,
tstart P p7, 15q). The functions DriveTo and Hesitate on lines 3 and 6 specify the dynamic
behavior of the AV and the pedestrian, using API calls to Apollo and the LGSVL simulator
to command the AV to drive through the intersection and the pedestrian to walk as described
above.
Finally, we defined specifications for VerifAI to monitor during execution of our test cases.
The most important safety specification is the following: “the AV never comes close to
colliding with the pedestrian.” We can formalize this in Metric Temporal Logic (MTL) [94]
as φsafe “ Gpdist ą 2.5 mq where dist represents the distance between the AV and the
pedestrian (which we can record using the LGSVL Simulator API), and G is the MTL
operator “globally,” which asserts that a condition holds at every time point. We chose a
threshold of 2.5 m because we measured dist as the distance from the center of the AV to
the center of the pedestrian3: the distance from the center of the AV to its front bumper is
2.1 m and to its side is 0.95 m.

Figure 5.4: Satisfaction value ρ of φsafe (i.e. the
minimum distance from the AV to the pedes-
trian, minus 2.5 m) as a function of tstart and
dwalk. The selected test cases used in the ex-
periment are pointed out with arrows. The
arrow colors represent test cases that induce
failure (red), marginally safe (cyan), and safe
(green) system behaviors.

Identifying Safe and Unsafe Test Cases:
Having defined the Scenic program PS
above, we used VerifAI to perform falsifi-
cation, sampling parameter values from the
distribution S, running the corresponding
tests in the LGSVL Simulator, and monitor-
ing for violations of our specification φsafe.
We generated 1294 test cases, of which 2%
violated φsafe. VerifAI’s error table stored
the parameter values for all such cases, along
with the quantitative satisfaction value ρ of
the specification; for φsafe, this is simply the
minimum distance between the AV and the
pedestrian over the course of the test, mi-
nus 2.5 m. We configured VerifAI to store
the safe runs as well to distinguish robustly-
safe runs from near-accident runs. The ρ val-
ues help to identify marginal regions that are
good candidates for testing. Fig. 5.4 shows ρ
as a function of the start delay tstart and the
walk distance dwalk. The darker the points,
the smaller the values of ρ, i.e. the closer
they are to a collision. We can see that there
is no simple relation between parameter val-

3In future work we plan to improve the simulator interface to measure the distance from the surface of
the AV to the surface of the pedestrian.

CHAPTER 5. FORMAL SCENARIO-BASED TRACK TESTING 49

Hesitate Walk Start Minimum
Test Case Time (s) Distance (m) Delay (s) Distance (m)

F1 2.67 4.50 10.54 2.23
F2 2.93 4.24 11.53 1.91
M1 2.13 4.23 8.50 4.05
M2 1.96 5.02 8.77 4.78
M3 1.03 4.92 9.97 5.85
S1 2.85 6.88 7.64 5.45
S2 2.50 6.33 8.39 5.95

Table 5.1: Track Test Cases Selected from Simulation

ues and collisions that could be determined with a few manually-selected tests: systematic
falsification was crucial for test generation.
Test Case Selection: In our experiments, the parameter vector π⃗ was low-dimensional enough
for direct visualization (there being only 3 parameters). We observe in Fig. 5.4 that there is
one main cluster of unsafe runs, in the bottom-left, and other unsafe runs towards the right
for large values of tstart; however, the latter were harder to implement due to limitations of
track equipment. Using Fig. 5.4 and similar plots for the hesitate time thesitate, we selected
values of π⃗ corresponding to three kinds of tests: failure/unsafe (F), marginally safe (M), and
robustly safe/success (S). The success cases were selected from the upper-left quadrant of
Fig. 5.4 and have a neighborhood of safe tests. The failure and marginal cases were selected
from the bottom-left quadrant. The marginal cases are those that satisfy φsafe, but lie close
to other failure cases; hence, implementing these cases in the real world may result in failure
due to imprecision in implementing π⃗ on real hardware. We thereby obtained 7 test cases
to execute on the track as shown in Table 5.1.

5.3.1 Experimental Setup
Test AV: The test vehicle is a 2018 Lincoln MKZ Hybrid (shown in Fig. 5.5) enhanced
with DataSpeed drive-by-wire functionality and several sensors including a Velodyne VLS-
128 LiDAR, three Leopard Imaging AR023ZWDR USB cameras, and a Novatel PwrPak7
dual-antenna GPS/IMU with RTK correction for „2 cm position accuracy. The tests were
performed using the open-source Apollo 3.54 self-driving software [10] installed on an x86
Industrial PC with an NVIDIA GTX-1080 GPU. Apollo’s perception processes data from the
LiDAR sensor using GPU-accelerated deep neural networks to identify perceived obstacles.
Pedestrian Dummy and Associated Hardware: To implement the pedestrian at GoMentum,
we used a pulley-based 4Active surfboard platform (SB) [1]. The battery powered system
drives a motor unit that pulls a drivable platform upon which a “soft target”, i.e., an articu-
lated pedestrian dummy [1], is mounted. The dummy is designed to have a sensor signature

4This was the most recent Apollo version supported by the Lincoln MKZ vehicle.

CHAPTER 5. FORMAL SCENARIO-BASED TRACK TESTING 50

similar to real pedestrians. The SB can be programmed for various types of motions, includ-
ing the “hesitating pedestrian” trajectory used in our scenario.
Triggering Mechanisms: The trigger mechanism of the SB initiates the movement of the
pedestrian. For repeatability of scenario testing, it is critical that the same trigger mechanism
is implemented both in simulation and in real world. We originally attempted to configure
the SB to trigger automatically when a desired distance dstart between the AV and the
pedestrian is met.

Figure 5.5: The autonomous vehicle and
pedestrian dummy used for track testing. The
picture shows the AV hitting the pedestrian
during testing (test F1 Run 1, https://youtu.
be/PehgLCGHF5U), see Section 5.3.1 for de-
tails.

However, the SB manufacturer confirmed
that the SB does not support triggering
based on distance threshold, and we exper-
imentally confirmed that manual triggering
based on an estimate of dstart is not accurate.
Therefore, we reparametrized our scenario
in terms of a threshold delay tstart measured
as the time elapsed from when the AV be-
gins to move to when the pedestrian begins
to move. Although the SB hardware does
not support automatic triggering based on a
time delay either, we were able to implement
more accurate triggering by starting a count-
down timer when the AV begins to move and
manually triggering the SB when the timer
expired.

Setting up track tests was a tedious and
time-consuming effort: it took about 8 peo-
ple half a day (4 hours) to simply set up the
scenario and calibrate the AV and equipment, and then another half a day to go through
around 25 test runs, with each run taking 10-15 minutes.

5.3.2 Test Results
We executed the 7 test cases whose parameters are shown in Table 5.1 at GoMentum. We
performed several runs of each test scenario, obtaining 23 runs in total; these are summarized
in Table 5.2. The highlighted rows in the table are runs which violated φsafe (i.e., have ρ ă 0),
while the white rows satisfied φsafe. The colors of the highlighted rows indicate the degree of
unsafe behavior of the AV: red represents a collision (see Fig. 5.5), orange represents what
we visually classified as a near-collision, and yellow violates φsafe but is not a near-collision.
This coloring scheme brings out distinctions that are not obvious from the Table 5.2 column
values. In particular, when φsafe is violated, the pedestrian can be approaching the car from
its side or from the front: since the car is much longer than it is wide, a violation of φsafe from
a side approach is not always a (near-)collision, resulting in the yellow rows in Table 5.2.

https://youtu.be/PehgLCGHF5U
https://youtu.be/PehgLCGHF5U

CHAPTER 5. FORMAL SCENARIO-BASED TRACK TESTING 51

Table 5.2: Test cases selected from simulation, with corresponding runs at GoMentum. Runs
violating φsafe are highlighted, classified into collisions (red), near-collisions (orange), or runs
which were unsafe but with a larger margin (yellow).

Test Run Minimum TTC (sec) Minimum Distance (m) ρ

F1 Simulation – 2.23 -0.27
F1 Run1 2.10 2.06 -0.44
F1 Run2 1.27 2.24 -0.26
F1 Run3 2.97 4.02 1.52
F1 Run4 5.05 6.19 3.69

F2 Simulation – 1.91 -0.59
F2 Run1 0.94 2.44 -0.06
F2 Run2 2.70 3.24 0.74
F2 Run3 1.20 1.58 -0.92
F2 Run4 1.05 2.24 -0.26

M1 Simulation – 4.05 1.55
M1 Run1 6.07 7.20 4.70
M1 Run2 7.16 7.89 5.39

M2 Simulation – 4.78 2.28
M2 Run1 3.24 3.40 0.90
M2 Run2 6.16 8.01 5.51
M2 Run3 9.10 14.38 11.88
M2 Run4 6.80 8.05 5.55
M2 Run5 7.69 8.48 5.98

M3 Simulation – 5.85 3.35
M3 Run1 0.75 1.94 -0.56
M3 Run2 6.00 6.36 3.86
M3 Run3 4.27 5.73 3.23

S1 Simulation – 5.45 2.95
S1 Run1 1.32 2.79 0.29
S1 Run2 9.72 8.50 6.00
S1 Run3 9.35 7.85 5.35

S2 Simulation – 5.95 3.45
S2 Run1 3.13 6.36 3.86
S2 Run2 8.66 9.00 6.50

CHAPTER 5. FORMAL SCENARIO-BASED TRACK TESTING 52

Both in the simulator and at GoMentum, the minimum distance is computed from the
center of the AV to the pedestrian. Hence, the minimum distance is greater than zero
even though a collision occurred in F1 Run1 in Table 5.2. The time-to-collision (TTC)
is approximated by dividing the distance between the AV and the pedestrian by the AV’s
relative speed at every timestamp until either the pedestrian fully crossed the lane or the AV
intersected the pedestrian path before it crossed the lane. Videos of all our tests are available
at http://bit.ly/GoM_Videos, with a visualization of Apollo’s perception and planning at
http://bit.ly/DRV_Videos. We will discuss the causes of these failure cases in Sec. 5.3.5.

5.3.3 Analysis
We first consider whether formal simulation was effective at designing track tests that re-
vealed unsafe behaviors of the AV. From Table 5.2, we can see that this was in fact the case:
out of 8 runs of the two failure tests that were identified in simulation, 5 violated φsafe in
reality, including one actual collision. For example, in test F1 Run1, the AV initially braked,
before repeatedly inching forward while the pedestrian hesitated, ultimately colliding with
it as shown in Fig. 5.5. More noticeably, in 93.3% of all (marginally) safe runs, AV satisfied
φsafe in reality. As expected, a violation case occurred in a marginally safe test, but none in
safe tests. While the number of runs is small due to limited time and resources, they clearly
demonstrate how simulation can be efficiently used to identify real-world failures.

On the other hand, Table 5.2 also shows that the results of a test on the track can deviate
significantly from results in simulation. For example, our first run of test case M3, which
was safe in simulation, yielded a very near miss, with a minimum distance of 1.94 m (vs.
5.85 m in simulation). The track test results also have significant variability, with test case
M2 for example having minimum distances ranging widely from 3–14 m in different runs. In
the next section, we look at these discrepancies in more detail.

5.3.4 The Gap Between Simulation and Reality
There are a variety of possible sources of such discrepancies between simulation and track
runs, including:

• mismatch in the initial conditions of the test (e.g. the AV starting at a different location
due to GPS error);

• mismatch in the dynamics of the AV or pedestrian (e.g. incompletely-modeled physics
in the simulator or imprecision in the mechanism triggering the SB);

• mismatch in the AV’s sensory input (e.g.reduced LiDAR point cloud density in simu-
lation, or synthetic image rendering);

• timing differences due to Apollo running on different hardware in the AV and our
simulation setup.

http://bit.ly/GoM_Videos
http://bit.ly/DRV_Videos

CHAPTER 5. FORMAL SCENARIO-BASED TRACK TESTING 53

Figure 5.6: Trajectories from a track test and 5 re-simulations respectively for the AV
(green/blue) and the pedestrian (orange/yellow). Color darkness indicates time. Scenarios:
S1 Run 2 (left), F1 Run 1 (right).

Some of these sources of variation could be eliminated with improvements to the experi-
mental setup which were not possible here given resource and time constraints, e.g., hardware
that permits automating triggering based on tstart or dstart can reduce error in implementing
π⃗. However, other potential sources of error are hard to quantify: even small details of ren-
dering, for example, could potentially change the behavior of the perception components in
Apollo. To measure the sim-to-real gap resulting from such sources, we used traces recorded
from several tests to extract implemented π⃗ on the track. We then ran a new simulation
using these π⃗, which would ideally reproduce the same trace as the track test; in fact, we
ran 5 identical simulations per test to assess the nondeterminism of the hardware and AV
stack.

The resulting trajectories for 2 test cases are shown in Fig. 5.6. The simulated and real
trajectories show considerable overlap but also differ: for example, although we intended
the simulated AV to start from the same position as the real one, Apollo refused to drive
from that position and we had to adjust it slightly. More interestingly, the simulated AV
turns more sharply than the real one, possibly due to imprecise modeling in the simulator of
the effects of driving slightly uphill. Finally, the 5 simulations are tightly-clustered but not
identical, showing that even a single test case can yield a range of different simulated traces.

To quantify these discrepancies, taking into account not only the shape of the trajectories
but also their evolution over time, we used the Skorokhod metric, which measures the worst-
case deviation of two timed traces and can be used to prove conformance: a bound on how far
simulated traces can be from real ones in the Skorokhod metric allows transferring temporal

CHAPTER 5. FORMAL SCENARIO-BASED TRACK TESTING 54

Track Test Real-to-Sim Sim-to-Sim
Run Skorokhod DTW Skorokhod DTW

S1 Run2 5.85 1.09 1.11 0.17
S3 Run3 5.05 0.91 2.83 0.24
F1 Run1 10.88 1.39 3.67 0.37
F1 Run3 5.08 0.90 3.29 0.26

Table 5.3: The average distances between track/resimulated AV trajectories. Measures use
the L2 norm with units of meters and seconds.

logic guarantees from simulation to reality [40]. To illustrate the metric, two otherwise-
identical trajectories which differ at one point by 1 m or are globally shifted by 1 s would
have a Skorokhod distance of 1. We also use the (normalized) Dynamic Time Warping
(DTW) distance [65] to give a measure of similarity averaged over the entire trajectory
rather than at the worst point. For example, two trajectories differing by 1 m at a single
point (out of many) would have a normalized DTW distance of approximately 0, vs. 1 for
trajectories differing everywhere by 1 m.

Table 5.3 shows these measures for the 4 track tests where we successfully logged accurate
GPS trajectories. The “Real-to-Sim” column shows the average distance between the real
trajectory and the 5 corresponding simulations, while the “Sim-to-Sim” column shows the
average distance among the 5 simulations. The Skorokhod distance between the real and
simulated trajectories is large, indicating deviations on the order of 5–11 meters or seconds.
This suggests that while our simulation environment was faithful enough to reality to produce
qualitatively similar runs, it is not yet accurate enough to enable deriving guarantees on the
real system purely through simulation.

Although the simulations are much closer to each other than to the original track test,
they still show substantial variation (e.g., the resimulations of F1 Run 1 have large Skorokhod
distance). As the LGSVL Simulator is deterministic, this shows that either the asynchronous
interface to Apollo or nondeterminism within Apollo itself can produce significantly different
behavior on identical test cases. Our methodology could likely be improved by taking this
nondeterminism into account: tests with lower variance are more likely to be reproducible
on the track, while tests with high variance may indicate undesirable sensitivity of the AV
stack.

5.3.5 Why Did the Autonomous Vehicle Fail?
Finally, by replaying our track data in Dreamview, a tool to visualize Apollo’s perception,
prediction, and planning, we identified several types of failures that led to unsafe behavior,
summarized in Table 5.4. The simplest type was a perception failure, where Apollo failed
to detect the pedestrian for at least 1 s: this was responsible for the crash in Fig. 5.5. The
most common failure was unsafe planning, where Apollo alternated between yielding and

CHAPTER 5. FORMAL SCENARIO-BASED TRACK TESTING 55

Test Case Perception Fail. Prediction Fail. Planning Fail.
F1 Run1 ✓ – –
F1 Run2 – – ✓

F2 Run1 – ✓ –
F2 Run3 – – ✓
F2 Run4 – – ✓

M3 Run1 – – ✓

Table 5.4: Hypothesized causes of the observed unsafe behavior.

overtaking the pedestrian. Most interestingly, we also observed a case of prediction failure,
where the AV incorrectly predicted that the pedestrian would walk around the AV and that
moving forward was, therefore, safe. While our goal is not to find fault with Apollo (recall
also that we could only run version 3.5 from January 2019 on our hardware), our results
illustrate how our methodology can help to find and debug failure cases.

5.4 Bibliographic Notes
Scenario-based testing of AVs is a well-studied area. One approach is to construct tests from
scenarios created from crash data analysis ([125, 25]) and naturalistic driving data (NDD)
analysis ([95, 143]), which leverage human driving data to generate test scenarios. Similarly,
the PEGASUS project [190] focuses on (i) bench-marking human driving performance using
a comprehensive dataset comprising crash reports, NDD, etc., and (ii) characterizing the
requirements that AVs should satisfy to ensure the traffic quality is at least unaffected by
their presence. Our work differs from these in the use of formal methods for specifying
scenarios and safety properties, as well as in automated synthesis of test cases.

Recent work on the test scenario library generation (TSLG) problem ([52, 51]) mathe-
matically describes a scenario, defines a relevant metric, and generates a test scenario library.
A critical step in TSLG is to construct a surrogate model of an autonomous vehicle. The
authors construct this based on human driving data, which, while useful, may not capture
the subtleties in complex ML/AI-based autonomous vehicle stacks. Additionally, the work
presents only simulation results, whereas our work reports on both simulation and track test-
ing with a real AV. Abbas et al. [3] present a test harness for testing an AV’s perception and
control stack in a simulated environment and searching for unsafe scenarios. However, in the
absence of a formal scenario description language, representing an operational design domain
(ODD) becomes tedious manual labor and challenging as the number of traffic participants
scales up.

Researchers have considered the gap between simulation and road/track testing. A
methodology for testing AVs in a closed track, as well as in simulation and mixed-reality
settings, is explored in [9]. The main aim there is to evaluate the AV’s performance across
the different settings using standard tests [39], rather than use computational techniques to

CHAPTER 5. FORMAL SCENARIO-BASED TRACK TESTING 56

generate tests based on formally-specified scenarios and outcomes, as we aim to do. A recent
SAE EDGE research report [16] dives deeper into unsettled issues in determining appropri-
ate modeling fidelity for automated driving systems. While it raises important questions, it
does not address formal methods for evaluation as we do.

Hence, to the best of our knowledge, this work is the first to apply a formal methods-
based approach to evaluating the safety of ML-based autonomous vehicles spanning formal
specification of scenarios and safety properties, formal simulation-based test generation and
selection for track testing, as well as evaluation of the methodology in both simulation and
the real world, including systematically measuring the gap between simulation and track
testing.

5.5 Chapter Summary
We presented a formal methods approach to scenario-based test generation for autonomous
vehicles in simulation, and to the selection and execution of road tests, leveraging the Scenic
language and the VerifAI toolkit. We demonstrated that a formal simulation approach can
be effective at identifying relevant tests for track testing with a real AV. We also compared
time-series data recorded in simulation and on the track, both quantitatively and qualita-
tively. There are several directions for future work, including evaluating our methodology on
more complex higher-dimensional scenarios, performing more detailed automated analysis
of failures in perception, planning, or prediction, bridging the sim-to-real gap with further
improvements to simulation technology, and developing more sophisticated track test equip-
ment that can better match simulation.

57

Chapter 6

Querying Sensor Data with Scenario
Programs

Although track testing jointly considers different sources of discrepancies between simulation
and reality, it is not scalable due to its labor intensive aspect. To enhance the scalability
of sim-to-real validation, we restrict our attention to a single dimension of the discrepancies
and focus on relaxing the need for physical reconstruction of environments. In particular,
we focus on sim-to-real validation for sensor data discrepancy with application to validating
performances of DNN-based perception. The challenge here is to algorithmically compare
the contents of environments represented in synthetic versus real sensor data. For example,
suppose we identify in simulation that an autopilot fails to perceive another vehicle abruptly
cutting into its lane. If we can identify a set of real sensor data with the same contents of
such cut-in behaviors, then we can test the perception model on those real data for sim-
to-real validation. This data-driven approach does not require physical reconstruction of
scenarios as in track testing. Given that massive amounts of real sensor data are collected
and labelled [32, 41], the challenge is to use Scenic as an environment formalism to query
the labelled dataset to output a subset of real sensor data with contents of interest.

Hence, in this chapter, we develop a scalable sim-to-real validation algorithm for percep-
tion models of CPS. The algorithm uses Scenic as a query language to model environments
and retrieve sensor data from a provided big, labelled real sensor dataset that matches the
scenario description. An envisioned use case of this algorithm is visualized in Fig. 6.1. De-
velopers could encode system failure scenarios identified in simulation as a Scenic program.
Using our algorithm, they can query a given labelled real sensor dataset to identify a subset
of the real data and test the perception model on the queried subset for validation. If the
query returns an empty subset, then we have identified a rare scenario not present in our
corpus. Hence, our work enables simulation-based testing to guide both real-road testing
and data collection by identifying which rare scenarios to focus on. We first explain our
assumptions of the dataset and then explain the details of the algorithm.

CHAPTER 6. QUERYING SENSOR DATA WITH SCENARIO PROGRAMS 58

Figure 6.1: Using our query algorithm to validate whether a failure of an AV’s perception
system previously identified in simulation persists in reality.

6.1 Assumptions about the Dataset for Querying
We leverage two technological trends in the AV domain. First, both in academia and indus-
try, there are active community efforts to collect and share large amounts of real sensor data
with high quality labels [197, 118, 185, 163]. Second, AV companies are mapping road infras-
tructure, gathering detailed geometric information about intersections, lanes, sidewalks, etc.
Several such efforts have produced open-source datasets where real sensor data is synchro-
nized with map information, such as nuScenes [22] and Argoverse [30]. Given these trends,
we assume we have access to a large set of labelled real sensor data and the corresponding
map information.

To use our methodology in the context of validating perception behaviors over synthetic
and real sensor data, the sensor data must be adequately labelled. Specifically, at mini-
mum the labels must contain information about the position, orientation, and type (e.g.
pedestrian, car, bicycle) of each object. Furthermore, the label information needs to be
aligned with the map information (i.e. share the same coordinate system and global orien-
tation). Labels may also include more diverse global or object-specific semantic features,
allowing more expressive descriptions of scenes. For example, global semantic features could
include weather and time of day (which determines the location of the sun and, therefore,
of shadows). Object semantic features could include color and physical dimensions.

To query AV scenarios involving road geometry, we require corresponding map informa-
tion: specifically, polygons for regions such as lanes, roads, and intersections, as well as the
traffic flow directions within those regions. This information is needed to interpret Scenic
constructs such as on road, seen in our example above. More detailed information may be
needed depending on the scenes one may model. For example, if one wishes to model scenes

CHAPTER 6. QUERYING SENSOR DATA WITH SCENARIO PROGRAMS 59

involving cyclists on a bicycle lane in a Scenic program, a polygonal region and traffic flow
direction for bicycle lanes in the map must be provided. For more details, see Sec. 2.1.

The above two assumptions are needed for querying labels. However, for our motivating
application of validating a failure scenario of a perception model, the real labelled dataset
should also contain relevant ground truth labels to evaluate the perception task (e.g. seg-
mentation, detection). For example, if the task is 3D detection, the 3D bounding boxes
should be included in the label. Then, once we retrieve a matching subset of real data, the
perception model can be evaluated on this subset with the relevant ground truth labels.

6.2 Background: Satisfiability Modulo Theories
The satisfiability problem is the question of whether a propositional formula has a solu-
tion, i.e., whether there is an assignment to the Boolean variables that makes the formula
evaluate to true. Over the last three decades, satisfiability solvers have made tremendous
progress despite the theoretical hardness of the problem, scaling to formulas with billions of
variables [117].

To support problems that involve, e.g., arithmetic, SMT solvers ask for a given a first-
order formula φ over a set of variables and a background theory1 whether there is an assign-
ment to the variables that makes the formula evaluate to true [14]. We use a fragment of the
theory of quantifier-free nonlinear real arithmetic, with formulas generated by the following
grammar:

e ::“ x | a | e` e | eˆ e | ´e | sinpeq

c ::“ e ă 0 | e ď 0 | c^ c | c_ c | ␣c

Here, x is a real-valued variable, a a real-valued constant, and all operators have their
standard meanings. The satisfiability problem for such formulas is undecidable in general
(due to the presence of trigonometric functions) [140]. However, solvers such as dReal [64]
can either prove unsatisfiability or return a variable assignment which approximately satisfies
the formula (in a suitable formal sense; see [64] for details). Thus, we do not consider the
question of decidability further.

6.3 Problem Statement
Let a label l consist of (1) a set of objects O, (2) a set of semantic features F , and (3) a
function s : O ˆ F Ñ V which maps an object’s semantic features to concrete values. The
domain of values V can include real numbers, integers, categorical values (for examples,
see Sec. 6.4.1) and the special value K, which indicates that the object does not have the

1A theory fixes the interpretation of the operators, e.g. ` meaning addition and |x| denoting the absolute
value of x.

CHAPTER 6. QUERYING SENSOR DATA WITH SCENARIO PROGRAMS 60

Figure 6.2: A benefit of querying a label is that we can retrieve corresponding sensor data of
multiple types. Here, our algorithm finds both an RGB image and a segmented 3D LiDAR
point cloud corresponding to a single label.

corresponding semantic feature. Let JP K denote the support of a Scenic program P , i.e.,
the set of labels that can be generated by P . Then, the problem to solve could be:

Problem P0: Given a Scenic program P and a label l, is l P JP K?, i.e., is the probability
(density) of l under the distribution defined by P greater than 0? However, the above
problem statement is too strict for our purposes. In particular, it may answer "no" for a
label l “ pO,F, sq which is not in JP K even if an essentially equivalent label l1 “ pO1, F 1, s1q

is in JP K. This can happen in two ways: (1) The semantic feature spaces of l and l1 may
differ, i.e., F ‰ F 1. For instance, a car’s color and model might be included in F but not in
F 1. In such cases, we will only consider features in F X F 1 as being relevant to our query.
(2) More importantly, l may contain multiple objects, and the correspondence between O
and O1 is unknown; in fact, we may want to consider l as matching P even if it contains
additional objects not having any counterpart in P (for example, we may want a program
for “two perpendicular cars” to match whenever two such cars exist, even if there is a third
car in the vicinity).

Therefore, we generalize P0 as follows.
Problem P1: Let a label l match a program P if there exists l1 “ pO1, F 1, s1q P JP K and

an injective2 function C : O1 Ñ O such that @o1 P O1, @f P F X F 1, s1po1, fq “ spCpo1q, fq.
Here the function C, which we call the object correspondence, maps each object in P to a
distinct object in l. Then, Given program P and label l, determine whether l matches P .
This definition supports matching noisy labels: simply modify the Scenic program to add
bounded perturbations or noise models to any semantic features that might be noisy.

Our problem formulation can be applied to validate the behaviors of models for different
perception tasks using various sensor types (e.g. LiDAR segmentation, RGB detection)
across synthetic and real data. Because we query the labels, our problem formulation broadly
applies to querying various labelled sensor types such as 2D RGB, radar, 3D LiDAR point

2If we want to require an exact match in the sense that l does not contain any objects beyond those
defined in P , we can also require C to be surjective. Our algorithm extends to this case with only trivial
changes.

CHAPTER 6. QUERYING SENSOR DATA WITH SCENARIO PROGRAMS 61

Figure 6.3: An overview of our algorithm to determine if a label matches a Scenic program.

clouds, etc. For example, it is possible that for the same label, data from multiple sensors
exists. Fig. 6.2 shows 2D RGB image and 3D LiDAR point cloud data that corresponds
to the same label. As we query labels rather than the raw sensor data, we can query both
sensor types.

6.4 Methodology
Prior to explaining our scenario query algorithm, we provide an overview first to facilitate
understanding.

6.4.1 Overview
Suppose we wish to query a label against the simple Scenic program in Fig. 6.4. The
program describes, for some fixed map with information about roads and intersections, a
scenario where there is a car ahead of the ego vehicle but not in an intersection. A label
consists of semantic features such as time of day, weather conditions, and positions and
orientations of vehicles. For this particular example, assume that our (simplified) label l
consists of features lex , ley , leh , lecl denoting the xy-coordinates, heading, and object class
(e.g. car or pedestrian) of the ego car respectively, and, likewise, features lcx , lcy , lch , lccl for
the other car.

When we query a label against this program, we want to answer the question: is the
situation specified by the label an instance of the scenario in Fig. 6.4? More precisely, we
ask whether the label can be obtained by instantiating the random variables in the scenario
(i.e. for some choice of the weather, time, ego’s position “on road”, and a distance between
4–10 meters).

Our approach to this problem is summarized in Fig. 6.3. Before we go into details, let us
clarify that in a nutshell, the approach is to translate the Scenic program and the label into
constraints represented as a Satisfiability Modulo Theory (SMT) formula (see Sec. 6.2 for

CHAPTER 6. QUERYING SENSOR DATA WITH SCENARIO PROGRAMS 62

Figure 6.4: A Scenic program describing a car ahead of the ego car by 4–10 meters and
which is not in an intersection.

Figure 6.5: A partial expression forest for the Scenic program in Fig. 6.4. The 4 top nodes
represent the semantic features, and the blue arrows show dependencies among them.

an overview of SMT). The resulting formula will be satisfiable if and only if the given label
matches the program. While the problem can be captured by a single (monolithic) SMT
formula, the size of this formula increases linearly with the size of the scenario, and for even
relatively simple scenarios can exceed the capabilities of state-of-the-art SMT solvers. To
alleviate the scalability problem, we take advantage of the structure of the Scenic program
to decompose it into several SMT formulas, determining incrementally whether parts of the
label match the program. Below, we discuss the key stages of Fig. 6.3 in more detail.

Expression forest To enable the decomposition process, we operate on the internal repre-
sentation of a Scenic program. The Scenic compiler converts a program into an expression
forest : a simplified forest for the program in Fig. 6.4 is shown in Fig. 6.5. The expression
forest is made up of a set of expression trees, each of which essentially corresponds to the
syntax used to define the distribution of one of the semantic features. For example, the
leftmost tree in Fig. 6.5 shows that the ego’s position is defined to be a uniformly random
point in the road region of the map.

CHAPTER 6. QUERYING SENSOR DATA WITH SCENARIO PROGRAMS 63

Dependency analysis Expression trees can have dependency relations with each other,
as shown by the bold blue arrows in Fig. 6.5. Such dependencies naturally occur in scenario
modeling. For example, to compute the otherCar’s position (which is ahead of the ego
car), we need to first know the ego’s position and heading. Our dependency analysis uses
the Scenic expression forest to sort the list of semantic features in dependency order: in
Fig. 6.5, the ego’s position is first since it depends on no other features, while the otherCar’s
heading is last.

Modular translation Next, we modularly translate each expression tree and incremen-
tally check its consistency with the label in dependency order. In our example, we start
with the ego’s position, symbolically representing its coordinates by variables ex and ey. We
encode its definition given by the leftmost expression tree in Fig. 6.5 with the constraint
OnpRoadRegion, ex, eyq, where On is a predicate requiring that the point pex, eyq is contained
in the polygon that defines the RoadRegion. We can then check whether the value of this fea-
ture given in the label is in fact possible in the Scenic program by checking the satisfiability
of the SMT formula

φ1 “ OnpRoadRegion, ex, eyq ^ pex “ lexq ^ pey “ leyq

where as above lex and ley are the label’s concrete values for ex and ey, and ^ represents a
logical AND.

Incremental validation If the formula is unsatisfiable, the observed label cannot be gen-
erated by the Scenic program, and so does not match the scenario. If the formula is
satisfiable, then this first semantic feature is consistent with the scenario and we can move
on. To avoid reasoning about this feature again, we condition the ego position expression
tree by replacing it with the actual position value from the label. This conditioning will
apply when we proceed to check the consistency of the next feature in our order, namely the
ego’s heading. Translating the second expression tree to SMT yields the formula

ex“lex ^ ey“ley ^ peh“roadDirpex, eyqq ^ peh“lehq

which we call φ2|φ1 to indicate the conditioning. Note that the ego position’s expression
tree, involving the On predicate, is no longer present, simplifying the formula: this is the
essence of our incremental approach. We then solve the new SMT formula, and repeat this
modular feature translation and incremental validation process until either all the features
in the label are validated, or a feature is invalidated. If all the features are valid, then as
a final step we condition all the features as in the label and check whether all the explicit
constraints in the Scenic program (e.g. the require statement in Fig. 6.4) are satisfied. If
so, the label matches the scenario; otherwise, it does not.

CHAPTER 6. QUERYING SENSOR DATA WITH SCENARIO PROGRAMS 64

6.4.2 Our Scenario Query Algorithm
Given a label and a Scenic program, the key idea behind our approach is to translate the
program to an SMT formula that is satisfied if and only if the label matches the program.

Monolithic Approach

The basic set-up of the SMT formula defines variables for all objects and semantic features
in the intersection of program and the label. There are three aspects to the SMT formula;
the first aspect of the formula maps objects in the label with objects in the program (which
we referred to as correspondence in Sec. 6.3), the second aspect describes the constraints
over all the semantic features in the program as dictated by the semantics of Scenic, and
the third aspect asserts that the semantic feature values observed in the label satisfies those
corresponding constraints in the program.

The Scenic compiler represents a compiled Scenic program as an expression forest.
Each semantic feature is the root node of an expression tree appearing in the forest, which
captures the semantics of how the feature’s value is derived from the values of other features
and random parameters. To encode the semantics of the Scenic program, we walk the
expression forest, generating SMT equivalents of each of the nodes. For example, the On
node in Fig. 6.5 is encoded by a set of constraints enforcing that the variable representing
the ego’s position must lie in the road region3. All Scenic constructs4 can be encoded
as real arithmetic constraints fairly easily, following the Scenic semantics outlined in [60].
The details of our SMT encoding and the fragment of Scenic we support are explained in
Appendix C.1. This method yields a sizeable SMT formula, which is difficult to solve beyond
toy examples. Therefore, we consider a modular approach outlined below.

Modular and Incremental Approach

Our approach is formalized as Algorithm 1. The input to the algorithm is a Scenic program
P and a label l, and the output is whether l matches P . The algorithm has three main
steps: (1) dependency analysis of objects and their features, (2) incremental translation and
validation of the program to a series of SMT formulas, and (3) validation of hard constraints.
We now discuss each step in detail.

Object/Feature Dependency Analysis

A key feature of our approach is to exploit dependency structure in the Scenic program,
specifically its compiled expression forest, to split the monolithic SMT query into smaller
parts. We define two types of dependencies in the expression forest: dependent and jointly

3This is done by triangulating the region, and using a disjunction of linear inequalities to assert that the
position lies in one of the triangles. See Appendix C.1 for more details.

4Our implementation handles a large fragment of Scenic, supporting its built-in operators and functions.
However, it does not support the inclusion of arbitrary Python code, which Scenic allows in some contexts.

CHAPTER 6. QUERYING SENSOR DATA WITH SCENARIO PROGRAMS 65

Algorithm 1 Determining if Scenic program P matches label l
1: EF Ð CompilepP q // get expression forest
2: SortedFeatures Ð AnalyzeDependenciespEF, lq
3: badOCs ÐH // partial correspondences that don’t work
4: for all possible object correspondences C do
5: if C extends a correspondence in badOCs then
6: continue; // skip this correspondence
7: failed Ð false
8: for nextFeatures P SortedFeatures do
9: φÐ TranslateSMT (nextFeatures, l, C, EF)

10: if Satisfiable(φ) then
11: Condition(nextFeatures, l, C, EF)
12: else
13: failed Ð true
14: UnconditionpEFq // reset forest
15: add the used part of C to badOCs
16: break
17: if (not failed) and SatisfiesHardConstraint(l) then
18: return Yes
19: return No

dependent. If an expression tree of a feature, X, has a reference to another feature, Y , then X
is dependent on Y . Such dependencies are acyclic because a feature that is specified first in
Scenic cannot reference an object defined afterwards. If two or more feature expression trees
share internal nodes which are not features, then those features are jointly dependent. These
shared node(s) are intermediate (i.e., unobserved) variables which are not part of the scene.
Therefore, to check whether there exists a feasible value for the intermediate variables, jointly
dependent features must be considered in the same SMT query. For example, Fig. 6.6 shows
a Scenic program describing a distribution of scenes with two cars positioned in parallel,
adjacent to a spot uniformly randomly selected from a curb region. In this case, the ego
and side car’s position features are jointly dependent on the intermediate variable, spot.
Note that spot is an internal variable of the Scenic program and would not appear in a
label. Hence, we need to encode both cars into the SMT query to check if there exists a
value of spot which satisfies the constraints given their labelled positions. Note that for the
following dependency analysis among semantic features, as we stated in Sec. 6.3, we are only
analyzing semantic features that exist both in the Scenic program and the label. Hence, this
dependency analysis takes as input both the expression forest of the given Scenic program
and the label (line 1 of Alg. 1).

Once we identify these dependency relations across all object features, we sort the features
in dependency order, giving jointly dependent features the same rank in the order (line 2 in
Alg. 1). For example, analyzing the expression forest in Fig. 6.5, with no jointly dependent

CHAPTER 6. QUERYING SENSOR DATA WITH SCENARIO PROGRAMS 66

spot = OrientedPoint on curb

ego = Car at (spot offset by (Range(2,4), Range(5,10)))

sideCar = Car left of spot by Range(1,3)

<latexit sha1_base64="vX/AqDVbWTC04DSxhMHl/AqbHN4=">AAANYHichVZfc9vGEafSNHXYKInbt+YFqUcdK7lqSFqKnZkgY9kdJ2mdSLGkKDMS6x6BBXHR4Q65O4hmMeiH6qdpH5vPkYf+DgAJiWJkDDg87J+73d/u7e4kl8K6weC/G2/86s1fv/WbO2/3f/vO5rvvvX/3d99ZXZiITiIttfl+wi1JoejECSfp+9wQzyaSTicXTz3/9JKMFVodu3lO44xPlUhExB1IL+9u/G3rfEJToUppnT9PqGl1popsAqVQaUXj/hZNdRAGT7kJtAqM5nF/S7uUjKc0dJ4SjwOdBF50Mg9ecDWl+7tsONjubxn6sRCGAqVdcH+pKBReh1Mo8qZA7pxUfNWMfv+1ptkce4bBgRGEveJDjS29kVFhJv3ObI6Da1GdJJact/B+Y+KI7W6z1tw9b+72dt+KmDrXJCVeL6j1l64N2YPt/qrBL9+/N9gZ1E9wczFsF/d67XP48m7/5/NYR0UG6yPJrT0bDnI3LrlxIpJU9c8LSzmPLviUzrBUPCM7LuuwV8EWKHGQaIMf3K6pVzVKnlk7zyaQzLhL7SrPE9fxzgqXPBqXQuWFIxU1ByWFDJwOfA4FMaIZOTnHgkdGwNYgSrnhkQ/nWptZfCly25r/qrU/uCaaGx21Ai2e9pr/HmheOD3Vk4mHpn8OAoJZ9gM8uAMism4uKTx3LuGZkHNWc3BYkSkbwgGZSHoloN1wut1CZ4qWKBHeAseF+dylWjXERdL5XGgoWy2J8nCUZdekGiMSrR0Snqz4Z7vzK6+dcYOMDkeULazLfPBbJeFsynM6rwEqp4bPq0bMpnpmnfGgAA6CN1zadt9MG4pRADIk7Jmw47NWfSIBXDUu/1XhbUURarIRjmidFYgYdxRu+c+PykFVluVSvaBqUFXVsBYth6u8YccbrfJGHe/BKu9Bx9td5e12vL1V3l7H+2SV90nHe7jKe9jxHq3yHnW8T1d5n3peg9MFUd4A33wDbnJ0QfOZNrENcVUYYs24ipk2TNhqrdjZaFwmQgJyJkm1MnU97Hb6mP2ZfcQ+Z5+xz0P2Wcg+DFkYssdVF+pOFvWNTSjllwKHogUkzPELYnVVNUXu2CwlxWLNCuWEZHyijYNcpFVsmXVwiVmRFbJuBayt0ozLGZ9bRpdIy4JLXKMZF45lWgmHc9Bd/Aai1hHqkhvBlWMaTcagbjKcnQmFnGI2wt03QuNIV+QMmZ5r682DLpcsSrX/tGmR4Fpif6DFssJ51RzFJKsW2Df+NjekiQ88BrLV7fnfCo3Lv1d4O9lFocHGAHFp5cLBBaKtxrIsXT3/KZlCEl/EsC7dTWsJh+sidQoET3wQnkrv8/6lFvEhjPZXmit2RO6JQej2607oP49Tox2aeUt5pqXUs+dc0ZNFvBtSvROqwsEExREdw7K/GHFJ7BAGgbyUxiCAooqtagWuImLepmfaHBueYBx4LqapW4ofF0Y9R7VaEupdIb1/mgoE68jp/DrvVLgUnTHWmedZ9jWZKX2lnGZfwDkUogOsX2B0gGlI9xidlX3NcW+Wn4eozzB5308SB0nrHwhHiwB1ICy8Xnpl2fFMe04H6lINaB45ItNCubT2qIhjUjXubD9HmHmU7qt44Xrt436CdD4WGTz56sqswl5QXAP2olAKt/mvfD7j8oLMLSl7S8qM2FaA8Bnf8wKu6orQCKxJJQ/cldSpJx52bf5hB5MfYOctthxIYPCFIVpnzYN1CXwJmH3fDGZAjmHCYpipWD0bscB4KEBMGOYjFiQ8giOsnbVAozkKhv9Phf+vZ0WILQIMSo4LDwfk/BajnyAw7sD46es1F/+q5Lj8U4X3ppu769ysZzv2jTYZCtQJ5mSs2LEpFMZlilv6L5RoFiEclojFmF7qG4bkz7l1LKYpqqvlWQ4EuwbArncNQ74Q4+4u28c6FODxa7z3EuPyHxXem17vrfP62A8/z+qB4htM1becXvfFm7sOkMBwENWT/IwYU8IL6RqRQCT1cRjJIZAJW3cbu7Oz0/fz8nB1Or65+G60M9zd2ft2dO/xk3ZyvtP7oPfH3v3esPew97j3Ze+wd9KLNv698Z+N/2389M5Pm3c239u824i+sdHq/L537dn8w/8BxKOnqA==</latexit>

Figure 6.6: A Scenic program with an intermediate variable, spot, shared between position
features of ego and sideCar objects.

features, yields the order [{ego position}, {ego heading}, {otherCar position}, {otherCar
heading}]. For the Scenic program in Fig. 6.6 with jointly dependent features, our analysis
outputs [{ego position, sideCar position}, {ego heading}, {sideCar heading}].

Modular and Incremental SMT Translation

Given the sorted feature dependency list obtained as above, we translate only one feature
expression tree (or multiple trees, if jointly dependent) at a time, in the order of dependency
(lines 8-9 in Alg. 1). Checking the resulting SMT query, if the formula is unsatisfiable then
it is impossible for the current features to take on their observed values and so the label does
not match the program (lines 12-13). If instead the formula is satisfiable, then the observed
values are feasible given the semantics of the program, and we need not consider the current
features further: we condition the expression forest on their observed values, substituting
the values in for their expression trees (lines 10-11). Then we move on to the next feature(s)
in the dependency order and repeat. If a previously-checked feature is referenced by a later
expression tree, we do not need to encode it again, since it now has a constant value. This
modular approach can significantly simplify the generated SMT queries: for example in
Fig. 6.5, instead of one query encoding the entire forest, we have one query for each of the
4 top nodes encoding only the nodes directly below it in the order of dependency (refer to
Sec. 6.4.1 for more detail).

We remark that our modular translation requires fixing the correspondence of label and
program objects a priori. As seen in the outermost loop of Alg. 1 (line 4), we currently
brute-force enumerate all possible combinations, with one refinement: if a partial correspon-
dence is already enough to make the SMT query unsatisfiable, we can exclude all further
correspondences extending it. In particular, when a feature of object O fails the SMT check
under correspondence C, the part of C consisting of all objects up to and including O (in
dependency order) will also yield unsatisfiability. So we maintain a set of partial correspon-
dences known to fail (line 15) and skip any correspondence which extends one of them (line
6). Our experiments show that this approach scales to a reasonable number of objects.

A further note is that encoding polygonal regions of the map (e.g. lanes, roads, intersec-
tions) can yield large formulas. For example, nuScenes, the dataset used for our experiments,
provides a map of the city of Boston. Encoding the entire road network of Boston would be
impractical; however, since we are only interested in the scene around the ego vehicle, which
determines the reference viewpoint of sensors (e.g. camera, LiDAR), it suffices to encode
only a neighborhood of the ego. We can extract bounds on the visible distance from the
Scenic program and only encode the region of the map within that radius.

CHAPTER 6. QUERYING SENSOR DATA WITH SCENARIO PROGRAMS 67

Hard Constraint Validation

Finally, if the Scenic program contains any require statements encoding hard constraints
(see Sec. 2.1), we need to check that these are satisfied by the label. After all features
have been validated and conditioned on their observed values, we simply check that the
require constraints all evaluate to true. Note that if any require constraints were jointly
dependent (see Sec. 6.4.2) with any feature, for soundness we would have to encode the
constraints into the SMT query for that feature. Since the Scenic compiler currently does
not generate expression trees for requirements, we instead assume that the program does
not have any such joint dependencies (restricting our Scenic fragment; see Appendix C.1).
This assumption holds for the vast majority of the scenarios in the Scenic distribution [60].
Our query algorithm is sound as stated in Theorem 1 (see Appendix C.2 for the proof).

Theorem 1. Given a label and a Scenic program, the Scenic query algorithm outputs Yes
if and only if the label matches the program as defined in Sec. 6.3; otherwise, it outputs No
(assuming the underlying SMT solver correctly answers all queries).

6.5 Experiment
Recall that we motivated the query problem with the application of validating failure scenar-
ios. Once our algorithm queries a labelled, real dataset with a scenario encoded in Scenic
and retrieves a matching subset, then validating a perception model’s behavior on that sub-
set is straightforward (assuming the dataset also contains the relevant ground truth labels for
the perception task: see Sec. 6.1). In fact, the most time-consuming aspect in this validation
process is executing the query. Thus, to evaluate how useful our algorithm is, we ask the
following questions:

1. Given a Scenic program and a real labelled dataset, does the algorithm efficiently find
the matching data points?

2. Does the output of the algorithm correspond with the intuitive notion of scenario
matching?

3. How does the algorithm scale with scenario complexity, in terms of number of agents
and program structure?

The second question is important to address since it directly relates to the interpretability of
the scenario validation process, which is crucial for debugging. Therefore, we need to check
whether our algorithm operates in a manner intuitive to humans.

To answer these questions, we conducted two different experiments. First, our efficacy
experiment answers the first two questions. In a nutshell, it demonstrates that the formal
querying problem we define and solve corresponds well to our intuition of what it means
to match an image against a high-level scenario and is efficient in comparison to manual
querying. Our second experiment demonstrates that our approach remains feasible even on
fairly large scenarios. In both experiments, we used the dReal SMT solver [64] with its

CHAPTER 6. QUERYING SENSOR DATA WITH SCENARIO PROGRAMS 68

Figure 6.7: Matching images for Scenarios 1 through 4 (left to right), queried using our
algorithm.

default parameter settings. For the first experiment, we set the ego visible distance to 50
meters; for the second, we set it to 200 meters to accommodate the larger number of agents.

6.5.1 Efficacy Experiment
Setup There is no baseline or benchmark to which we can compare our algorithm since
there are no existing algorithms for the problem of querying with a formal scenario de-
scription, or open-source autonomous driving image datasets that provide detailed formal
scenario descriptions with which to test our algorithm. Hence, we asked 3 human partici-
pants to manually query a set of images with 5 different scenarios and then compared their
results with the outputs of our algorithm. We asked each participant to select 5 subsets
of images matching more detailed versions of the natural language descriptions of our test
scenarios below. To acquire the most accurate queried subsets, we kept only the images
which all 3 humans agreed matched for each scenario. We then compared these subsets with
those returned by our algorithm.

Scenarios We used five scenarios, involving 2–4 agents and a variety of realistic traffic
situations. Here we provide natural language descriptions; the Scenic encodings are shown
in Figs. C.5–C.9 in Appendix C. Several example matching images are shown in Fig. 6.7.

1. A pedestrian in an intersection facing nearly perpendicularly or towards the ego.

CHAPTER 6. QUERYING SENSOR DATA WITH SCENARIO PROGRAMS 69

Scenario # 1 2 3 4 5

Matching images (humans) 42 5 0 2 0
Matching images (our algorithm) 58 7 2 2 0

Table 6.1: For several scenarios, the number of images identified by 3 human subjects (unan-
imously) and our algorithm.

2. Two vehicles in an intersection, travelling perpendicular to the ego.
3. A rare, hazardous situation, where the ego vehicle is driving against traffic and another

vehicle is visible within 10 meters.
4. Four vehicles in a typical situation on a two-lane road, with two vehicles going in each

direction.
5. A cut-in scenario where a car in the adjacent lane to the right cuts in front of the ego.

Data We use a selection of RGB images from nuScenes [22]. nuScenes provides the map
of Boston where the images were collected; our scenarios used map information about in-
tersection and lane regions as well as traffic flow directions. nuScenes labels contain three
semantic features per object: its position, heading, and class. The object classes include
vehicles, pedestrians, and static objects such as traffic cones. nuScenes also defines a special
object class, “ego vehicle”, indicating the reference viewpoint, meaning the camera for image
collection is mounted on it. As we will describe below, our experiment required humans to
identify matches between programs and labelled images; to avoid objects being missed by the
humans due to visual occlusion, we filtered out images containing more than 4 objects. After
filtering, we randomly selected 700 images from the subset, which we believe is a reasonably
large dataset for human participants to manually query.

Note that the semantic features in the label and the program determines the matching
real data. In our experiment, we limited our query to use only semantic features included in
the nuScenes labels, namely position, heading, and type for each object.

Results Our results, summarized in Table 6.1, show that our algorithm corresponds to the
intuitive notion of scenario matching. For all 5 scenarios, our algorithm correctly returned all
images identified by the human participants, and, in some cases, found additional matching
images that they missed. For Scenarios 2 and 3, our algorithm found 4 additional images
that our participants missed by mistake. An example missed image for Scenario 3 is shown
in Fig. 6.7. For Scenario 1, our algorithm identified 16 more images than the participants;
however, upon visual inspection, 8 of these did not match the scenario description and
the remaining were missed by our participants. Investigating further, we found that these
errors were caused by inaccurate labels in nuScenes, e.g. a pedestrian’s position being in
an intersection according to the label but being on a sidewalk near an intersection in the
image. Our algorithm correctly identified such labels as matching Scenario 1, even though
the sensor data disagreed. This illustrates a limitation of our approach in that it hinges on

CHAPTER 6. QUERYING SENSOR DATA WITH SCENARIO PROGRAMS 70

Figure 6.8: Runtime results for scaling number of agents in the Scenic program shown
in Fig. 6.10. Two runtimes represent cases when the object correspondence between the
program and the label is known versus unknown.

the accuracy of the provided labels. Finally, for Scenario 5, both the human participants
and the algorithm agreed that there are no matching scenes in the given real dataset. This
shows the strength of our algorithm in identifying "rare" scenarios with respect to a given
dataset. If an AV perception model fails on such rare scenarios in simulation, this finding
can guide the real-world data collection process to systematically gather more examples of
such scenarios.

The algorithm’s runtime over all 700 labels ranged from 7 minutes (Scenario 1) to 40
minutes (Scenario 5) depending on the complexity of scenarios. The human participants took
on average about 1 hour to complete their manual queries on the five provided scenarios. This
result demonstrates that our algorithm can replace the arduous task of manually querying
matching real sensor data for scenario validation with higher accuracy, provided that the
labels are accurate.

6.5.2 Scalability Experiment
To test the scalability of our algorithm, we used two additional syntactically-rich Scenic
programs, shown in Fig. 6.10 and 6.11. We increased the scenario complexity by scaling
the number of agents while maintaining the same program structure. For evaluation, we
generated 10 labels from each Scenic program for a range of numbers of agents (from 1 to
31).

Figures 6.8 and 6.9 show the average runtimes for querying these 10 labels with our
algorithm for each number of agents (with a 10-second timeout). In each plot, we give

CHAPTER 6. QUERYING SENSOR DATA WITH SCENARIO PROGRAMS 71

Figure 6.9: Runtime results for scaling number of agents in the Scenic program shown
in Fig. 6.11. Two runtimes represent cases when the object correspondence between the
program and the label is known versus unknown.

separate runtimes for the cases where the correspondence between the objects in the Scenic
program and the label is known and unknown respectively. For the unknown case, we
randomly shuffled the ordering of the objects in the labels.

We observe a consistent behavior from these two plots. When the correspondence is un-
known, the runtime increases exponentially in the number of agents due to the combinatorial
object correspondence matching process in our algorithm (refer to Sec. 6.4.2). On the other
hand, when the object correspondence is known, we consistently observed that the runtime
of the query algorithm increases approximately linearly in the number of agents, and scales
to a sizeable number.

6.6 Bibliographic Notes
The most related study to ours is [61], where failure scenarios of an autopilot in simula-
tion were validated by physically reconstructing them at a track testing facility. However,
this manual validation approach is labor-intensive and not scalable. Our approach aims to
automate such validation in a data-driven manner.

Domain adaptation [184] aims to reduce the sim-to-real gap in the context of training :
the objective is primarily to obtain good performance of a perception model for a particular
task (e.g. segmentation, detection, localization) on real sensor data despite only training
on simulated sensor data [85, 131, 200, 124]. Generative adversarial networks (GANs) [37]
have been a key technique employed to adapt, or convert, synthetic data to more realistic
data of various types such as RGB images, 3D LiDAR point cloud, etc. These data are used

CHAPTER 6. QUERYING SENSOR DATA WITH SCENARIO PROGRAMS 72

Figure 6.10: A Scenic program used for our scalability experiment, modeling bumper-to-
bumper traffic. The number of vehicles in the scenario is scaled by increasing numCars.

Figure 6.11: A Scenic program used for our scalability experiment, modeling a parade
scenario where pedestrians are walking on a street. The number of pedestrians in the scenario
is scaled by increasing numPeds.

for training. On the contrary, our work aims to reduce the gap in the context of testing,
investigating for a pre-trained model whether it behaves differently in the same scenario
across two different domains: simulated and real data.

Visual question answering (VQA) [70, 196] considers answering questions about static im-
ages phrased in natural language. The VQA area combines approaches common in captioning
with a large natural language processing component: part of the challenge is to understand
the question. Much like VQA, we decide whether an image matches a given query. However,
our queries are expressed using a formal probabilistic programming language and we query
the label, not the sensor data. This allows us to formulate a well-defined querying problem
and develop an algorithm which is guaranteed to be sound: the returned subset of images

CHAPTER 6. QUERYING SENSOR DATA WITH SCENARIO PROGRAMS 73

are exactly those which match the scenario program, if the labels are accurate.
Our approach can be seen as a specialised form of inference in probabilistic programming

languages (PPLs). Scenic allows making probabilistic assertions of propositional state-
ments, e.g., ‘the car is within the visible region’. Such declarative hard constraints make
scenario modeling much easier and more intuitive. Some PPLs, e.g. Angluin, actively pre-
vent specifying hard constraints to prevent programmers from ‘accidentally’ posing NP-hard
questions [192]. PPLs such as Pyro [17] and Edward [172] use Bayesian inference schemes
that require tracking derivatives [79, 189, 96, 97]. Some PPLs allow hard constraints and non-
continuity, but either have (significant) restrictions or limited efficiency [129, 72, 80], putting
trigonometry and continuous domains out of reach. Moreover, the typical inference task is
to compute posterior distributions relative to a prior, whereas we are primarily interested
in filtering using a Boolean membership query. Finally, we note that while sampling-based
approaches may do well in answering membership queries positively, they are not well suited
for providing negative answers.

6.7 Chapter Summary
We developed an algorithm to query a labeled dataset using a scenario program encoded in
the Scenic language. This algorithm can be used to shrink the gap between simulation-based
and real-world testing by identifying counterparts of simulated scenarios in real data, which
can then be used to validate the fidelity of the simulations. More broadly, our algorithm
enables a principled way to explore and understand the range of scenarios present in a dataset
by expressing scenarios of interest in a formal language. In future work, we plan to explore
using program analysis and other techniques to alleviate the combinatorial explosion when
the object correspondence is unknown, and to generalize our algorithm to support dynamic
scenarios, as well as probabilistic queries that take the likelihood of labels into account.

74

Part III

Failure-Informed Targeted Training

75

Chapter 7

Programmatic Training for
Reinforcement Learning

In Part I and II, we identify failures of autonomous systems or their components in simula-
tion, and then validate them on real sensor data. Now, informed by these failures, how can
we actually fix the systems to be robust to them? Previously, there have been work proposed
to augment data using domain-specific PPLs as environment modeling formalism to further
train and fine-tune DNN-based components, particularly perception [45, 57]. However, the
methodology to utilize PPL to efficiently train reinforcement learning (RL) algorithms in
online or offline manner has not been investigated. Meanwhile, RL algorithms are widely
used in autonomous systems, especially for planning and control of robotics, in increasingly
more complex environments. Yet, a PPL has not been used to model and generate stochastic
and reactive multi-agent scenarios in RL. In this chapter, we devise methodologies to train
RL algorithms in either online or offline manner using a PPL [13].

7.1 Scenario Specification Language for RL
The objective of this chapter is to introduce the benefits of the use of a scenario specification
language for modeling and generating scenarios, specifically for real-time strategy (RTS)
environments for RL. These RTS environments are characterized by unique characteristics
that require special support for modeling. The environments involve intelligent entities/non-
RL agents co-operating and competing with the RL agents with large state and action spaces
over a long horizon. This opens up extremely diverse strategies consisting of numerous
interactive behaviors. Yet, most of the existing simulators rely on randomly generating the
environments based on predefined settings/layouts and offer limited flexibility and control
to the researchers over the environment dynamics to generate diverse realistic scenarios.
As a result, RL research face at least two fundamental challenges: (i) the lack of diverse
and realistic training data often leads to lack of generalization [35, 34, 106, 107], and (ii)
the lack of flexibility and control over the environment dynamics makes it hard to generate

CHAPTER 7. PROGRAMMATIC TRAINING FOR REINFORCEMENT LEARNING76

(a) a bird-eye view
of the scenario

(b) a snapshot of
GRF environment

(c) GRF’s scenario program

(d) Scenic program of generalized pass-and-shoot scenario with dis-
tribution over players’ initial condition and behaviors

Figure 7.1: Comparison of Google Research Football simulator versus Scenic’s models of
pass-and-shoot scenarios

realistic evaluation scenarios to comprehensively test generalization in these complex RTS
environments.

Using a scenario specification language whose syntax and semantics are carefully designed
to intuitively model scenarios has the following benefits:

1. Easily Model Interactive Environments on User-demand to Train and Test
RL Agents: The intuitive syntax and semantics, which abstracts away the imple-
mentation details and allows users to reason solely at high-level semantics, makes it
easy to model complex spatial relations among multiple agents, their behaviors and
conditions on how these behaviors should interact. It should be noted that, it requires
a considerable amount of research and engineering effort to design and implement a
formal scenario modeling language and its compiler from scratch.

2. Program Stochastic Policies: These programmed agents can serve two purposes:
(i) allow developers to incorporate domain knowledge, e.g., generate demonstration
data for offline training and (ii) provide performance baseline for trained RL agents.

CHAPTER 7. PROGRAMMATIC TRAINING FOR REINFORCEMENT LEARNING77

(a) generalization test
scenario for the sce-
nario in Fig. 7.1a

(b) 3 vs 3 left mid-
fielder crosses to either
player in penalty box

(c) 11 vs 11 open
player scenario

(d) mirrored Fig. 6.1
scenario

Figure 7.2: Examples of a new defense scenarios with specific assigned behaviors (a), a
test scenario to assess generalization (b), and two full game scenarios (c,d) we used for
training and testing. The RL team is yellow and the opponent, blue. The assigned opponent
behaviors are highlighted with light blue arrows. Uniformly random distribution is assigned
over a specific region for each player. These regions are highlighted boxes.

3. Interpretability and Transparency: The intuitive syntax and semantics make sce-
nario programs interpretable and transparent. Therefore, users can reason about the
difference/similarity of train and test environments by comparing their scenario pro-
grams.

4. Reusability of Existing Scenarios: The interpretability of scenario programs facil-
itates easy modification or re-use of existing Scenic programs, models, and behaviors
to quickly model new scenarios. This facilitates building a community around designing
and sharing scenario programs, by building upon each other’s scenarios.

7.2 Methodology
A scenario is a Markov Decision Process (MDPs) [165] defined as a tuple pS,A, p, r, ρ0q, with
S denoting the state space, A the action space, p ps1|s, aq the transition dynamic, r ps, aq the
reward function, and ρ0 the initial state distribution. Given the state and action spaces as
defined by the GRF environment, a Scenic program defines (i) the initial state distribution,
(ii) the transition dynamics (specifically players’ behaviors), and (iii) the reward function.
Hence, users can exercise extensive control over the environment with Scenic.

7.2.1 Modeling Initial State Distribution
Users can intuitively specify initial state distributions with Scenic’s high-level syntax that
resembles natural English. For example, refer to the full Scenic program in Fig. 7.1(d)

CHAPTER 7. PROGRAMMATIC TRAINING FOR REINFORCEMENT LEARNING78

Figure 7.3: A snippet of a Scenic program specifying behaviors for players Fig. 7.2b

which describes a more generalized version of GRF’s Pass and Shoot scenario as visualized
in Fig. 7.1(a,b). In line 12-22, the initial state distribution is specified. The Scenic syntax
for modeling spatial relations among players are highlighted in yellow. In addition, Scenic
supports about 20 different syntax to support modeling complex spatial relations [60]. Rather
than having to hand-code positions for a concrete scenario as in the GRF’s scenario 7.1(c),
users can much more intuitively and concisely model a distribution of initial states. Here,
Left represents the yellow team, Right the blue, and the two following abbreviated capital
letters indicate the player role.

7.2.2 Modeling Transition Dynamics
One can flexibly modify transition dynamics of the environment by specifying the behaviors
of non-RL players using Scenic. Take the same example Scenic program in Fig. 7.1(d) as
above. Line 1-10 models two new behaviors. A behavior can invoke another behavior(s) with
syntax do, succinctly modeling a behavior in a hierarchical manner. Users can assign distri-
bution over behaviors as in line 2. The interactive conditions are specified using try/interrupt
block as in line 5-10. Semantically, the behavior specified in the try block is executed by
default. However, if any interrupt condition is satisfied, then the default behavior is paused
and the behavior in the interrupt block is executed until completion and then the default
behavior resumes. These interrupts can be nested with interrupt below has higher priority.
In such case, the same semantics is consistently applied.

7.2.3 Rewards
Scenic has a construct called monitor, which can be used to specify reward functions. The
reward conditions in the monitor is checked at every simulation step and updates the reward
accordingly.

CHAPTER 7. PROGRAMMATIC TRAINING FOR REINFORCEMENT LEARNING79

Figure 7.4: Interface Architecture between Scenic and an RL Simulator

7.2.4 Termination Conditions
Users can also specify termination conditions which are monitored at every simulation time
step.

7.2.5 On Interfacing Scenic to a Simulator
Interfacing Scenic to other simulators is straight-forward. In fact, Scenic is already inter-
faced with five other simulators [62] in domains such as autonomous driving, aviation, and
robotics. To interface Scenic with a simulator, one needs define the model, action, and
behavior libraries. These libraries expedites modeling complex scenarios by helping users
re-use the set of models, actions, and behaviors in the libraries, rather than having to write
a scenario from scratch.

The model library defines the state space. It defines players with distribution over their
initial state according to their roles and GRF’s AI bot is assigned by default to all player
behavior. These prior distribution over the initial state and behavior can be overwritten
in the Scenic program. The model library also defines region objects such as goal and
penalty box regions as well as directional objects in compass directions. The action library
defines the action space as determined by the GRF simulator. These action space consists
of movement actions in eight compass directions, long/short/high pass, shoot, slide, dribble,
and sprint.

The behavior library consists of behaviors and helper functions that represent widely
used basic skills in soccer. These behaviors include give-and-go, evasive zigzag dribble to
avoid an opponent’s ball interception, dribbling to a designated point and shooting, shooting
towards the left or right corner of the goal, etc. Additionally, the behavior library also include
useful helper functions such as identifying nearest opponent or teammate, whether there is
an opponent near the running direction of a dribbler, etc.

7.2.6 Interface Architecture
Figure 7.4 shows an overview of our overall architecture. The architecture can be divided into
two parts: i) RL interface, through which the RL algorithms interact with Scenic and ii) the
Scenic Server, which executes a Scenic program and governs the simulation by interacting
with the underlying simulator. We follow the widely used OpenAI Gym API [21] as our

CHAPTER 7. PROGRAMMATIC TRAINING FOR REINFORCEMENT LEARNING80

interface, which allows our interface to be used seamlessly with all the existing standard RL
frameworks.

For each simulation/episode, the Scenic server first samples an initial state from the
Scenic program to start a new scenario in the GRF simulator and updates its internal model
of the world (e.g., player and ball positions). From then on, a round of communication occur
between the RL algorithm and Scenic server, with the RL interface at the middle. At each
timestep, the gym interface takes in the action(s) for the RL agent and passes them to the
Scenic server. The Scenic server in turn computes actions for all the remaining non-RL
players—the players not controlled by the RL agent—and then executes all these actions (of
both the RL and non-RL players) in the simulator. The Scenic server then receives the
observation and reward from the simulator, updates the internal world state, and then passes
them back to the RL algorithm. This interaction goes on till any terminating conditions as
specified in the scenario script is satisfied.

7.3 Experiment
In this section, we demonstrate four use cases of Scenic in RL. First, we present and
benchmark a set of 13 realistic mini-game scenarios encoded in Scenic with a varying level
of difficulty. Second, we test the generalization capabilities of the trained RL agents on
unseen, yet intuitively similar scenarios. Next, we show how developers can “debug" their
agents for failure scenarios of interest. At last, we show how probabilistic Scenic policies
can be used to generate offline data and endow domain knowledge into the learning process
for faster training, which we believe to be very important for applying RL in practice.

7.3.1 Experimental Setup
We run PPO [150] on a single GPU machine (NVIDIA T4) with 16 parallel workers on
Amazon AWS. Unless otherwise specified, all the PPO training are run for 5M timesteps
and repeated for 10 different seeds. All the evaluation has been done for 10000 timesteps.
For all the experiments, we use the stacked Super Mini Map representation for observations
—a 4 x 72 x 96 binary matrix representing positions of players from both team, the ball,
and the active player—and the scores as rewards, i.e., `1 when scoring a goal and ´1 upon
conceding, from [102]. Similar to the academy scenarios from [102], we also terminate a
game when one of the following happens: either of the team scores, ball goes out of the field,
or, the ball possession changes. For further details, including hyperparameters and network
architecture, we refer readers to Appendix D.3.

7.3.2 Google Research Football Simulator
The Google Research Football (GRF) simulator [102] provides a realistic soccer environment
to train and test RL agents. The setting, the rules, and the objective of the environment

CHAPTER 7. PROGRAMMATIC TRAINING FOR REINFORCEMENT LEARNING81

Figure 7.5: Average Goal Difference of PPO agents on our mini-game scenario benchmark.
The error bars represent 95% bootstrapped confidence intervals

are the same as defined by Fédération Internationale de Football Association [53]. The
environment setup is as the following. All the players on the field are controlled by (1) GRF’s
built-in, rule-based AI bots and (2) RL agents. The simulator dynamically determines which
of the RL team players are to be controlled by RL agents based on their vicinity to the ball.
GRF provides 11 offense scenarios to train and test RL agent performance and it provides
trained RL agent checkpoints for a subset of its scenarios.

7.3.3 Mini-game Scenario Benchmark
Training an RL agent to solve a full soccer game involving 22 players is very challenging and
may take days even with distributed algorithms. For example, [102] showed even the easy
version of GRF’s 11 vs 11 game cannot be solved with 50M samples. To allow researchers
to iterate their ideas with a reasonable amount of time and compute, we present a set of 13
mini-game scenarios. All these scenarios are inspired from common situations occurring in
real soccer games but involves fewer number of players to make them amenable to be faster
training.

Nine of our mini-game scenarios are defense scenarios, which are nice complement to
GRF’s offense-only scenarios (refer to Sec. 7.3.2), along with four new offense scenarios.
Most of these scenarios are initialized from a distribution, rather than fixed locations. By
default all the opponent players are controlled by GRF’s built-in AI bot (refer to Sec. 7.3.2).
However, for the scenarios where the AI bot does not exhibit our desired behavior, we model
the opponent behaviors using Scenic. For example, in the 3vs3 cross scenario as shown in
Fig. 7.2b, the opponent AI bots tried to pass the ball around instead of crossing. Therefore,

CHAPTER 7. PROGRAMMATIC TRAINING FOR REINFORCEMENT LEARNING82

we modelled and assigned behaviors such that the blue player on the leftmost side of the
field would run up the field and cross the ball. Meanwhile, the two blue players in the center
run into the penalty box area to receive the cross and shoot. These modelled behaviors are
shown in Fig. 7.3.

We benchmark our mini-game scenarios by training agents with PPO. Figure 7.5 shows
the average goal differences for all the scenarios. For these mini-game scenarios, we end the
game if one of the teams score. Hence, the goal difference can range between -1 to +1. For the
offense scenarios, a well trained agent is supposed to score consistently achieving an average
goal difference close to +1. On the other hand, a well-trained agent should achieve a goal
difference close to 0 for successfully defending the opponents in the defense scenarios. From
the graph it can be seen that the scenarios offer a varied levels of difficulties. For example,
PPO consistently achieves goal difference of around 0.5 for the Easy Crossing scenario,
but barely learns anything for Hard Crossing. In case of the defense scenarios, the results
also show a varied range of difficulty, GK vs Opponent scenario being be easiest.

7.3.4 Testing for Generalization

(a) Offense and select GRF academy scenarios

(b) Defense scenarios

Figure 7.6: Evaluation of PPO agents’ generalization against varying initial conditions. For
most of the academy and offense scenarios we observe a significant drop in performance.
However, for several defense scenarios the difference in train and test scenarios is not that
significant.

CHAPTER 7. PROGRAMMATIC TRAINING FOR REINFORCEMENT LEARNING83

We provide scripts to test generalization of all of our 13 new benchmark scenarios along
with 5 scenarios provided by GRF. We changed the distribution over the initial state while
keeping the formation of players and their behaviors in each scenario intact. For example, for
testing generalization of an RL agent trained in the Pass and Shoot scenario (Fig. 7.1a), we
instantiated the yellow and the blue players on the symmetric right side of the field instead
of the left and kept the other initial state distribution the same (Figure 7.2a).

Fig. 7.6 compares the trained agents’ performance in training and test scenarios. As
expected, we observe a noticeable drop of performance in most of the GRF’s academy and
offense scenarios (Fig. 7.6a). For example, the Pass and Shoot scenario (Figure 7.1a), which
achieved around 0.6 in training, failed to generalize for the test scenario. However, for the
defense scenarios, the drop in performance was not as noticeable. We conjecture that this
distinction comes from the differences in the offense and defense training scenarios, where the
defense scenarios tend to contain larger distribution over the initial state than those of the of-
fense scenarios (refer to Appendix D). Consequently, larger variations of scenarios introduced
during training may have contributed to better generalization for defense scenarios.

Figure 7.7: Performance comparison of PPO agents trained with and without any demonstra-
tion data from Scenic, along with the performance of corresponding behavior-cloned and
Scenic policies. We see significantly better performance on three of the scenarios, while
the rest two achieves comparable performance, highlighting the usefulness of the Scenic
policies.

7.3.5 Debugging Agents on 11v11 Failure Scenario
For this experiment, we evaluate and debug an RL checkpoint provided by GRF, which was
trained on their 11 vs 11 easy stochastic scenario, i.e., easy version of their full-game scenario.
This agent achieves an impressive average goal difference of 6.99 per full-game1, scoring up
to 14 goals in the training scenario during our experiments. We modelled a scenario, as

1Evaluated on 100K timesteps

CHAPTER 7. PROGRAMMATIC TRAINING FOR REINFORCEMENT LEARNING84

visualized in Figure 6.1, to test the agent’s ability to quickly perceive open teammates near
the opponent goal to advance the ball forward and score—a crucial skill for soccer. When
we assigned GRF’s built-in AI bots to control the open players on the left side of the field,
the players ran straight toward the ball, instead of taking advantage of the closeness to the
opponent goal without being marked. Hence, we modelled a behavior for open players in
Scenic so that they would stay close to the goal while abiding by the offside rule.

Although obvious to humans, the trained checkpoint performs poorly in this scenario
with an average goal difference of 0.1. To ‘debug’ the agent, we then fine-tune the agent on
a ‘mirrored’ scenario, as shown in Figure 7.2d, with PPO for 5M timesteps. The fine-tuned
agent improved noticeably on the original scenario, achieving an average goal difference of
0.67. This showcases the usefulness of Scenic to easily model and generate scenarios of
interest using one’s domain knowledge, which may have been difficult with blackbox agents
(e.g. built-in AI bots, or trained RL agents), to test and debug certain capabilities of an RL
agent.

7.3.6 Facilitating Training with Probabilistic Scenic Policies
In the section, we show how RL practitioners can incorporate their domain knowledge by
writing probabilistic Scenic policies for faster training. Using domain knowledge, we en-
coded RL policies in Scenic for five different scenarios, where the agent suffers to learn,
and generated 8K samples of demonstration data for per scenario. To facilitate training on
those scenarios, we first pre-train an agent via behavior cloning with the generated offline
data and then fine-tune the agent using PPO for 5M timesteps. All the experiments were
repeated for three different seeds. Figure 7.7 compares the training performance of these
agents against the agents that were trained with PPO only. We notice that, even with such
a low volume of demonstration data, we can train much better agents and can solve scenar-
ios which were otherwise unsolved. The experimental results thus suggests, with stochastic
Scenic policies we can generate rich quality demonstration data to substantially enhance
training performance, which can be particularly useful in practice for environments like GRF
which requires a heavy compute resource.

7.4 Bibliographic Notes
In literature, several techniques have been adopted to generate a rich variation of learning
scenarios, primarily to promote or, ensure generalization. Techniques such as changing
background with natural videos [199], introducing sticky actions [114] have been attempted,
but are not robust enough. To ensure generalization, [107] and [154] generated training and
testing scenarios by randomly sampling from different regions of parameter space. Similar
to supervised learning, the use of separate train and test sets have also been adopted [128,
34, 35, 87], typically using techniques such as Procedural Content Generation [78], which
has traditionally been used to automatically generate levels in video games. However, most

CHAPTER 7. PROGRAMMATIC TRAINING FOR REINFORCEMENT LEARNING85

of these focus on discrete domain, typically the dataset generation process is opaque, and
it can be difficult to quantify or, reason about how different (or, similar) these train and
test sets are, because the generation process often use random numbers to generate different
configurations.

On the contrary, a few manually scripted scenario benchmarks are proposed with respect
to a few RTS RL environments with limitations. For StarCraft [181], only two benchmark
scenarios [177, 147] have been proposed. Both of these model different initial states but leave
the behavior generation to either a learned RL agent or AI bots that are provided by the
StarCraft environment, which are considered as blackbox agents. As a result, a sophisticated
modeling and control over the behaviors of non-RL agents to create specific types of scenarios
is not possible, severely restricting the diversity of the scenarios. For soccer domain, [161]
presented one benchmark scenario on keepaway tactical scenario and later extended to more
general half-field offense scenario [76] and provided a library of APIs relating to behaviors
(e.g. mark player, defend goal) of players, which helps users to model scenarios. However,
Scenic provides further benefits that are not covered in this work. Scenic provides high-
level syntax and semantics to (i) easily write spatial relations for intutively modeling initial
states, (ii) assign distributions over both initial states and behaviors to generate variations
of environments for robust training and testing generalization, and (iii) specify priorities
over interaction conditions over behaviors to model more sophisticated types of higher level
behavior (refer to Sec. 2.1).

7.5 Chapter Summary
We introduced and demonstrated the benefits of adopting a scenario specification language
to train RL agents and test their generalization capabilities in various realistic scenarios
generated by Scenic programs, which succinctly capture distributions of initial states and
behaviors. We also showcased modeling domain knowledge via stochastic Scenic policies by
generating demonstration data to facilitate training in GRF, a complex real-time strategy
environment. We believe that more advanced scenario modeling and generation support is
necessary for the RL community to model dynamic physical interactions. Our work shows
that a domain specific PPL like Scenic can.

86

Chapter 8

Personalized Human Training in
Extended Reality

Human cyber physical systems (h-CPS) refers to cyber-physical systems that operate in
concert with human operators [155]. To list a few examples, a fork truck maneuvered by a
human driver and a drone whose trajectories are designated by a human are h-CPS. Using
Scenic and VerifAI, we design and implement a personalized training algorithm to train
humans interacting with h-CPS using augmented and virtual reality (AR/VR), or extended
reality (XR) in short [90]. In our setting, a human wears an XR headset and fully controls the
joints of a humanoid robot in XR to solve a task. The virtual humanoid tracks and mimics
the human’s body movements using the sensors embedded on the headset. The objective is
to train each human a set of skills to control the humanoid in order to solve certain physical
tasks. In particular, our algorithm aims to train psychomotor skills to humans, which consists
of cognitive process and motor execution, and also assist humans to generalize the skills to
similar tasks unseen during training.

To induce generalization, we use distributions of training tasks formally modeled as
Scenic programs. In neuro-physiology, it is well-established that structured variability
in training tasks promotes generalization of psychomotor skills [195, 43, 171, 15]. More
intuitively, for example, to teach a sports player how to pass a ball to a running teammate,
coaches may vary the teammate’s running speeds and directions. These findings have been
empirically demonstrated in adaptive motor skill training systems in reality [176, 112, 175,
174] and in XR [18, 162, 130]. Our system formally models this structured task distribution
with Scenic and evaluate human performance with VerifAI.

A core contribution of this work is to develop a generic personalized training algorithm
in XR, which can easily be adapted to train psychomotor skills for various types of h-CPS.
Personalization in training is necessary because learning speeds and hand-eye coordinations
vary among humans. Hence, the XR system needs to adapt the training to each individual.
Our system is can easily be adapted for different domains because it solicit domain knowledge
from the experts or instructors. In particular, key aspects of this domain knowledge include
a set of skills to train and a corresponding set of training tasks which we formally model as

CHAPTER 8. PERSONALIZED HUMAN TRAINING IN EXTENDED REALITY 87

Scenic programs. Thus, each skill is associated with a Scenic program. Our algorithm
models a human knowledge state and adapts training tasks in XR, accordingly. Once it
selects a skill to train, the algorithm iteratively samples a task from the associated Scenic
program and generates it in XR until the human reaches a mastery of the skill. We derive
principles from learning sciences to algorithmically personalize training curriculum (i.e. the
order of probabilistic programs to train with) and training speed (i.e. the number of tasks
to sample per program to assist each user reach a skill mastery). In the rest of this section,
we will interchangeably use the term, humans and users, which are equivalent.

8.1 Background: Bayesian Knowledge Tracing
We use Bayesian Knowledge Tracing (BKT) [198] to algorithmically model whether a human
has mastered, or sufficiently learned, a skill. BKT has become the standard in education
research for modeling a student’s mastery of cognitive skills in domains such as algebra and
chemistry. In fact, BKT is used in intelligent tutoring systems (ITS) [167] which are person-
alized tutoring algorithms developed in education research [142]. In ITS, for each cognitive
skill (e.g. addition in algebra), there is a relevant question bank with solutions. ITS samples
a question from the question bank and a student’s performance is recorded as a boolean (i.e.
correct or incorrect). Based on this boolean result, ITS uses BKT to algorithmically update
the system’s belief over the student’s mastery of the skill. Similarly, in our setting, we have
a probabilistic program in lieu of the cognitive question bank, modeling a distribution of
psychomotor tasks. We use BKT as there is no literature on both adaptive and algorithmic
approach to estimate psychomotor skill mastery. We believe that BKT potentially can es-
timate mastery because psychomotor skills also encompass cognitive process. Investigating
the effectiveness of BKT is a key objective of this work.

Now, we explain the mechanism of BKT. A BKT model is tuned for each skill. Modeling
BKT comprise of two parts: (i) a domain expert’s analysis of training tasks designed to
train a particular skill (e.g. a question bank related to addition in algebra) and (ii) then
tuning BKT model’s four parameters using their mental model of students: the student’s
initial probability of having mastered the skill from prior knowledge before training (prior),
probability of the student mastering the previously not mastered skill after experiencing a
training task (learn), probability to make a mistake when applying an already mastered skill
(slip), and probability of correctly applying a skill that is not mastered yet (guess). For more
detail, please refer to [198].

For context, BKT assumes a binary knowledge state, meaning that the student is either in
the mastered or not mastered state with respect to each skill. It also assumes a binary-graded
response from a student’s attempt to solve a task (i.e. correct or incorrect). The underlying
statistical architecture of BKT is a hidden Markov model with observable nodes representing
the student’s history of binary responses obst to a sequence of training tasks indexed with
t, and hidden nodes representing students’ latent knowledge state after experiencing t-th

CHAPTER 8. PERSONALIZED HUMAN TRAINING IN EXTENDED REALITY 88

task. The mathematical definitions of these parameters and the Bayesian update rule is
formulated below.

prior “ P pL0q

learn “ P pT q “ P pLt`1 “ 1|Lt “ 0q

guess “ P pGq “ P pobst “ 1|Lt “ 0q

slip “ P pSq “ P pobst “ 0|Lt “ 1q

Note that while P pL0q denotes the BKT’s prior parameter, we also define P pLtq as the
probability that the student has mastered the skill after experiencing t-th task. BKT updates
P pLtq given an observed correct or incorrect response to calculate the posterior with:

P pLt|obst “ 1q “
P pLtqp1´ P pSqq

P pLtqp1´ P pSqq ` p1´ P pLtqqP pGq

P pLt|obst “ 0q “
P pLtqP pSq

P pLtqP pSq ` p1´ P pLtqqp1´ P pGqq

The updated prior for the following time step, which incorporates the probability of learning,
is defined by:

P pLt`1q “ P pLt|obstq ` p1´ P pLt|obstqqP pT q

8.2 Methodology
In this section, we present the design of our intelligent, personalized XR training system
to support users learn and generalize relevant psychomotor skills to engage in diverse XR
activities of interest. Our overall system design is visualized in Fig. 8.1. Because different
XR domains, or applications, often do not readily have offline training data to leverage
any data-driven machine learning techniques, we utilize domain expertise to compensate.
Although our design methodology is not particular to any specific XR domain, for ease of
explanation, we will use our interaction with VR esports experts as a running example.

8.2.1 Solicit and Implement Domain Knowledge
Once an XR domain for training is determined, we recruit the domain experts to gather
following information, which serves inputs to our system as shown in the leftmost part
of Fig. 8.1: (i) a set of skills to train, (ii) prerequisite relations among the skills, and (iii)
corresponding distributions of training and evaluation tasks for each skill with task evaluation
metrics, and (iv) BKT parameters for each skill (refer to Sec. 8.1).

CHAPTER 8. PERSONALIZED HUMAN TRAINING IN EXTENDED REALITY 89

Figure 8.1: Overview of our personalization approach

Identifying Skills to Train and the Inter-relations Among the Skills

First, we conduct to a joint meeting with experts to identify and represent the training skills
and their interrelation as a knowledge graph shown in Fig. 8.2. To facilitate the discussion,
we used a shared PowerPoint slide. We ask the experts to first brainstorm which psychomotor
skills are fundamental to engage in the chosen XR domain, and type the names of the skills
on the slide so others can see. Once a sufficient number of skills are written down, we
ask the experts to discuss and reach a consensus on which skill to train. Once the set of
training skills are determined, on the shared slide, we create a set of blocks, each with a
skill name inscribed as shown in Fig. 8.2 to facilitate the discussion on pre-requisite relations
among skills. We ask the experts to first identify blocks (i.e. skills) that do not have any
pre-requisite skills. Once identified, we re-arrange the identified blocks (e.g. T, GR, SP) to
form a top level in the shared slide as shown in Fig. 8.2. Then, we inquire the experts to
place the blocks, which immediately require the skills at the top level, right underneath the
top level and indicate the pre-requisite relation with directed arrows, where the skill pointed
at requires the skill pointed from. We iterate this process until all blocks are consumed,
forming a directed, acyclic, pre-order graph, i.e. in short, knowledge graph, for example, as
shown in Fig. 8.2.

Designing Task Distributions & BKT Tuning

Next, we solicit further domain knowledge on training and evaluation tasks and related BKT
parameters for the identified skills. In the video call, we share a shared Figma [50] document
for the experts to draw out the imagined training and evaluation tasks with variations.
For each skill, we ask the experts to collectively discuss and determine the tasks and their
evaluation metric by drawing them in the shared document. After they complete modeling a
training task distribution for each skill, we ask the experts to tune BKT parameters for the
skill based on their knowledge of the task distribution. For tuning, we specifically ask the
following questions in Likert 5-point scale [108], assuming that the user already mastered
the prerequisite skills.

CHAPTER 8. PERSONALIZED HUMAN TRAINING IN EXTENDED REALITY 90

1. There is a high chance a novice user will learn the skill after a single training exercise.
(learn)

2. A user is likely to solve the task in a training task without having mastered the nec-
essary skill. (guess)

3. Considering the complexity of the maneuvers that a novice user has to make to solve
for the training task, a user is likely to make a mistake and fail to solve a task in this
task even if they had already mastered the necessary skills. (slip)

These BKT parameters are probabilities ranging [0,1]. However, the Likert 5-point scale
may not directly map to [0,1] (e.g. BKT’s learn probability of 4 out of 5 points may not
necessarily map to 0.8 in probability). Hence, we further ask experts to provide their estimate
on the consecutive number of training tasks, N , a user needs to solve to reach a mastery.
This practice of enlisting experts to help hand set BKT parameters based on expected skill
learning trajectories, is not unique to our work. In the first few years of operation, this
was the practice established by the Cognitive Tutor [142], an intelligent tutoring system, for
setting their skill parameter values.

Implement Solicited Domain Expert Knowledge

We represent the interrelation among skills as a knowledge graph as shown in Fig. 8.1 under
“knowledge representation,” whose nodes are skills and directed edges, pre-requisite rela-
tions. Per skill, the associated training and evaluation task distributions are modeled as
two distinct probabilistic programs, respectively. The corresponding task evaluation metrics
are programmed with Python [145]. Finally, we implement a BKT model for each skill.
Traditionally, the standard use of BKT is that skill mastery is reached if BKT’s prediction
(in probability) is greater than 0.99. Regarding the “prior” parameter, we conservatively
uniformly set it to 0.05 across all skills since we do not have data a priori for estimation. For
the remaining three BKT parameters, for each skill, we find a mapping from the experts’
Likert 5-point scale to probability of [0,1] such that correctly solving N consecutive tasks
result in BKT’s output greater than 0.99. Recall that this number N varies across skills and
are provided by the experts (refer Sec. 8.2.1).

8.2.2 Personalized Curriculum Generation
Prior Knowledge Identification

To personalize the curriculum, the system needs to first identify the user’s prior knowledge
of skills. The user’s knowledge state, as visualized in Fig. 8.2, is defined as a colored knowl-
edge graph, whose binary colors represents mastered (green) or not mastered skill (red),
respectively. This binary knowledge state assumption derives from BKT (refer to Sec. 8.1).
Our goal is to efficiently color the uncolored knowledge graph as visualized in Fig. 8.1, under
“knowledge representation,” to fully colored knowledge state shown under “prior knowledge
identification.”

CHAPTER 8. PERSONALIZED HUMAN TRAINING IN EXTENDED REALITY 91

Without having to test a user with every skill, the system efficiently select a subset of
the skills to approximate prior knowledge leveraging the interrelation among skills. Once a
skill is selected for an evaluation, the system sample and generate evaluation tasks from its
corresponding probabilistic program for N number of tasks that experts provided to reach
mastery for the skill (refer to Sec. 8.2.1). If the user solves all the N tasks, indicating
mastery, then the system colors the node and its pre-requisite nodes in the knowledge graph
to be green and update the nodes’ associated BKT models’ prior parameter to be above
0.99. However, if the user has not master the skill, then the system colors the node and its
post-requisite nodes as red.

To efficiently sample the evaluation skills, the system uses the algorithm in Equation
(1). For each uncolored node in the knowledge graph, this algorithm computes the time
saved from evaluating a skill, s. Suppose the user has already mastered the skill, s, then the
system saves the time to evaluate its pre-requisite skills, which we denote t`

s and computed
by summing the task completion times of pre-requisite skills. Similarly, t´

s sums the task
completion times of post-requisite skills for the case when the user has not mastered the
skill, s. Hence, for each uncolored node, s, the worst saved time is min pt`

s , t
´
s q. The system

samples for the uncolored node, which maximizes the worst saved time, for a time-efficient
prior knowledge identification. We mathematically formulate the algorithm for sampling
skill for prior knowledge identification in Equation (1).

s˚
“ argmax

s is uncolored
min pt`

s , t
´
s q (8.1)

Adaptive Curriculum Generation

Zone of proximal development (ZPD) is a concept from psychology, which we adopt to
generate a personalized curriculum. ZPD defines the "boundary zone" of human knowledge,
which defines the zone that is not learned yet but has close relation with those already
learned. Previous literature shows that, with activities selected from ZPD, students can
learn on their own with little guidance from instructors [105, 111], and feel more engaged in
learning[38].

As highlighted in light blue in Fig. 8.1, under “Curriculum Generation,” we define the
ZPD to be a set of red color nodes that are either one edge away from the green nodes or red
nodes with no prerequisite skill. From the ZPD set, the system selects for the next skill to
train, which has the minimum number of prerequisites. If there are more than one such node,
the system chooses the one with a shorter time constraint for its training task. The system
uses these heuristics to expedite the training. Once the user masters the selected skill, then
the system updates the knowledge state and ZPD accordingly and sample another skill to
train. The system repeats this procedure until either all skills are mastered or training time
expires.

CHAPTER 8. PERSONALIZED HUMAN TRAINING IN EXTENDED REALITY 92

Figure 8.2: Our system represents a knowledge state as a colored, acyclic, directed, pre-order
graph as visualized in this figure. Each node represents a skill. The directed edges encode
prerequisite relations. The color represents mastery (green: mastered, red: not mastered).
The zone of proximal development (ZPD) highlighted in light blue is a set of not mastered
skills that are in proximity to mastered ones.

8.2.3 Personalized Training Speed
Once a skill is selected by our curriculum generator (refer to Sec. 8.2.2), the system searchs for
the skill’s probabilistic program, modeling training task distribution, and its task evaluation
metric. The system inputs these two to VerifAI toolkit. VerifAI samples a training
task from the probabilistic program, generate it XR, and evaluates the user (i.e. correctly or
incorrectly solved the task). This binary response, or evaluation result, is used to update the
associated BKT prediction. If the BKT does not predict mastery, then the knowledge state
and the ZPD set remains the same. Hence, more training tasks are sampled and generated
until BKT predicts mastery. This way, our system adapts the number of tasks, or practices,
for each user to reach mastery per skill.

8.3 Experiment
In this section, we conduct a between-subjects study to evaluate our system which uses BKT’s
predictions to personalize the curriculum (i.e. the order of skills to train) and the training
speed (i.e. the number of practices, or tasks, per skill to sample from each probabilistic
program modeled in Scenic to assist each user achieve mastery). The control condition
uses self-assessment in lieu of BKT to control the curriculum and training speed. We use
self-assessment for comparison as it is, to the best of our knowledge, currently the only
adaptive and scalable methodology to predict psychomotor skill mastery with respect to
task distributions (refer to Sec. 8.4).

The three hypotheses of our study are: (H1) our system is more effective than the self-
guided learning of psychomotor skills in terms of learning gains and subjective task load,
(H2) BKT is more accurate design component in predicting psychomotor skill mastery
with respect a task distribution, to personalize training speeds, and (H3) our system’s

CHAPTER 8. PERSONALIZED HUMAN TRAINING IN EXTENDED REALITY 93

personalized curriculum based on BKT predictions is more effective than the control’s in
terms of user experience and training efficiency.

8.3.1 Example Application Domain: Esports
Esports is an interesting application domain which require skills that encapsulate diverse
characteristics of psychomotor skills in general. It requires both fine (e.g. hand, feet) and
gross (e.g. arm, legs, waist) movements, while involving careful tactical cognitive planning.
Also, it involves physical coordination with other dynamic virtual agent(s). For these reasons,
we select Echo Arena, a zero gravity frisbee VR esports, as our example application domain
to conduct our study. We reconstruct Echo Arena in Unity [73] and interface Scenic to
model and generate the desired training and evaluation scenarios in VR.

8.3.2 Experts/Instructors Recruitment
We recruited four professional Echo Arena esports players via direct messaging on Dis-
cord [82]. They provide us with necessary inputs (refer Sec. 8.2) to our training system
through 2 hours of joint video call. Each professional is paid $50 for their time and inputs.
These professionals have achieved the top 10 in ranking over the last few years in the VR
Master League [104], which hosts the largest annual Echo Arena tournament. For context,
in the most recent tournament in 2022, nearly 8,000 people around the world joined the
competition [104]. These four experts also has experience in coaching novice or amateur
Echo Arena players.

8.3.3 Participants
We recruited participants through university online forums and mailing lists from a commu-
nity of VR users. We receive 25 responses of subjects with prerequisite dynamic VR game
experience. Out of the 25 respondents, we exclude 7 subjects according to our three pre-
determined exclusion criteria: 1) exhibiting motion sickness, 2) too much skill expertise (no
opportunity for learning), and 3) extreme lack of hand-eye coordination (unlikely to master
any skill during our short training session). The accepted 18 participants’ ages range from
19 - 25 years, with 4 females and 14 males. Eligibility criteria and a summary of partici-
pants’ backgrounds are listed in the supplemental material. Each participant is financially
compensated with $40 gift card for their 2 hours of participation. For the participants who
are excluded according to our pre-determined criteria, they are compensated for the time
they participate at $20 per hour rate.

8.3.4 Procedure
We conduct an IRB approved between subjects experiment to avoid learning and fatigue
effects. We randomly divide the accepted 18 participants into two disjoint groups, i.e. the

CHAPTER 8. PERSONALIZED HUMAN TRAINING IN EXTENDED REALITY 94

control and the experimental groups, with 9 participants in each condition. The study is
conducted individually, not in groups. The study consists of the following sessions: basic
tutorial (5 min), pre-test (15 min), advanced tutorial (10 min), training (25 min), post-test
(15 min), and exit questionnaire (5 min), with 10 min breaks in between sessions including
the half way through the training session. The details of each session is explained in the
supplement. We train and evaluate 10 different skills provided by our recruited experts.
The pre/post tests examine each of the 10 skills with a variable number of consecutive tasks,
which are sampled from its corresponding evaluation task distribution, modeled as a Scenic
program, and sequentially generated in XR. Recall when tuning BKT parameters for each
skill (refer to Sec. 8.2.1), we ask the recruited experts, per skill, how many consecutive tasks
a participant need to solve to demonstrate mastery. We use this information to set the
number of evaluation tasks per skill (refer to our supplement for these numbers).

Both conditions follow the exact same procedure as above, except for the training session.
During training, the experimental condition is trained with our system which automatically
adapts the training contents (i.e. the curriculum and the training speed) to each user using
BKT’s predictions. In contrast, the control condition manually adapts the training contents
using self-assessment of skill mastery after completing each task. In addition, the control
is provided with a default curriculum designed by our recruited experts, and are given the
freedom to modify it as they see fit. The control condition is informed that the default
curriculum is designed by experts. After completing each task, the control condition is asked
in XR for their (i) binary self-assessment (i.e. mastered/ not mastered) on the mastery of
the current skill, and (ii) whether to transition to another skill. Either until the participant
decides to transition (control) or BKT predicts mastery (experimental), tasks are iteratively
sampled from associated probabilistic program and generated in XR. Because the periodic
self-assessment takes up a small portion of training time, we also ask the experimental
condition to also self-assess after each task, even though it is not used. During training we
collect the following data. After subjects completes each task, we record the task name,
binary task evaluation result (i.e. correct/ incorrect), BKT’s prediction, and binary self-
assessment prediction, and time when the data are collected.

8.3.5 Measurements
Learning Gains A learning gain for a participant is computed by one’s score improvement
(i.e. post test - pre test scores), where the pre and post test scores are computed in the
following way:

řK
i“1p# of correctly solved tasks for skill iq / (total # of tasks used to eval-

uate skill i), where K is the number of skills to train. In this study, K=10, and each skill is
evaluated with a variable number of tasks (refer Sec. 8.3.4).
Statistical Significance Test We use Mann-Whitney’s U test using Python Scipy’s stats
package [86] for all the statistical significance tests reported in the Results Section. We
choose this test because the sample size is too limited to expect normal distributions to hold
for unpaired t-test.

CHAPTER 8. PERSONALIZED HUMAN TRAINING IN EXTENDED REALITY 95

Figure 8.3: The left box plots compare the average learning gains between the two conditions.
The right box plots compare the BKT and the self-assessment’s average errors in predicting
psychomotor skill mastery. The green dotted line in the box plot represents the average and
the orange line, the median.

User Experience Evaluation We use the NASA task load index (TLX) [75] to measure
a subject’s subjective mental workload for the skills we train, before and after the training
session. To measure the improvement in the subjective task load, we compute (TLX score
after training - TLX score before training). Furthermore, we conduct exit interviews to
qualitatively evaluate subjects’ training experience for both conditions. We ask for any
positive or negative experiences with the training. And, we inquire following three Likert
5-Point scale questions to evaluate user experience with the training curriculum.

1. The training session was engaging.
2. The training session was incrementally challenging.
3. The training has helped me learn new skills in virtual reality.
A table listing out the 5 point scale and their meanings, i.e. strongly disagree, disagree,

neutral, agree, strongly agree) was provided underneath each statement.
Approximating Mastered Skills in Pre/Post Tests In the evaluation session (i.e. pre/
post tests), a user is examined with a variable, consecutive number of tasks per skill (refer
to Sec 8.3.4). We approximate that the user has mastered a skill if one can solve all the
consecutive tasks for the skill in the evaluation.
Skill Mastery Prediction Error This error is computed using the difference between the
expected and the actual post test scores for the skills that are predicted to be mastered
by either BKT or self-assessment, i.e. M ´

řM
i“1p# of correctly solved tasks for skill iq /

p# of tasks used to evaluate skill iq where M represents both the number of mastered skills
and the expected score for each participant.

CHAPTER 8. PERSONALIZED HUMAN TRAINING IN EXTENDED REALITY 96

8.3.6 Results
Effectiveness in Learning Gains Prior to comparing the learning gains between the
two conditions, we check whether there is any imbalance in the prior skills between the
two conditions. The difference in the distributions of the pre-test scores is not statistically
significant (p-value ă 0.05). Regarding learning gains, the experimental group outperform
the control group on average with statistical significance (p-value ă 0.05) as shown in Fig. 8.3
with an effect size of 0.41. On average, the control group improves 22.96˘12.90% in learning
gains, whereas the experimental group improves 30.37˘5.97%. We observe that the standard
deviation of the experimental condition is reduced by 53.7% than the control’s.
User Experience Despite the higher average learning gains, the experimental condition
does not result in lower subject task load after training than the control. Recall that lower
TLX score is preferable because it means the subjective task load has decreased. The experi-
mental condition shows a mild average decrease in NASA TLX scores by 6.56˘16.00%, while
the control exhibits a medium average decrease by 17.56˘ 11.77%. However, the difference
in the distributions of TLX score improvements is not statistically significant (p-value 0.07).

After the post tests, we equally ask both conditions for their user experience with training
curriculum, using our Likert 5-point scale questionnaire related to engaging, incrementally
difficult, and helpfulness in learning new skills. Both conditions positively rate their training
experience as plotted in Fig. 8.5, averaging approximately 4.5 out 5 points for all three
aspects. Mann-Whitney U test show that the differences in distributions across conditions for
engagement, incremental difficulty, and helpfulness are not statistically significant, reporting
p-values of 0.86, 0.43, and 0.34, respectively.

During the verbal interview, we also ask both conditions for any negative experiences with
the training in general. While the control condition does not share any negative feedback,
four out of nine participants in the experimental condition (we denote participants as E1-E9)
report negative experiences particularly with the training speed. Some participants share
frustration from too many assigned practices for a specific skill:“I got frustrated towards the
end because I was stuck in a task” (E3) and “getting stuck in a task was a bit frustrating in
the beginning, but frustration went down as I saw myself improving” (E5). On the contrary,
some report premature transitions: “sometimes, the training algorithm transitioned you a bit
earlier than you expected” (E6) and “during the training, I thought I still needed some more
practice, but during evaluation I actually performed better than I expected” (E1).
Skill Mastery Estimation We compare the skill mastery prediction errors between the
two conditions. Our results show that BKT has lower average prediction error than self-
assessment, as visualized in Fig. 8.3 (right). BKT overestimates participants’ skill mastery
by 28.21˘ 13.06%, whereas the control overestimate by 34.81˘ 23.67%. However, these two
distributions of prediction errors is not statistically significant (p-value 0.46). We compute
the Pearson correlation [56] between participants’ actual scores to the corresponding expected
scores. The experimental condition has a noticeably higher correlation coefficient of 0.96 (p-
value ă 0.01) than the self assessment’s 0.59 (p-value 0.09).
Curriculum Generation Our results show that none of the control participant alters the

CHAPTER 8. PERSONALIZED HUMAN TRAINING IN EXTENDED REALITY 97

Figure 8.4: A comparison in curricula between the control and the experimental conditions.
The black circles represent skills to train and the arrows visualize different training curricula
(i.e. the order of skills). The control condition adhered to a single curriculum shown in
black arrows. In contrast, four different curricula emerged in the experimental conditions as
highlighted with purple, blue, orange, and red arrows.

default expert-designed curriculum, even though they have the freedom to do so as they see
fit. On the contrary, our system generates four unique personalized curricula according to
four different categories of identified prior knowledge in the experimental condition. The
comparison between the control’s uniform versus the experimental condition’s personalized
curricula is visualized in Fig. 8.4. In contrast to the control’s fixed curriculum (highlighted
in black arrows), our training system skips over skills (e.g. T, DP, SP_GR, DP_T) that
participants already master to focus the training on the skills yet mastered.
Training Efficiency In terms of the average number of skills that are predicted to be mas-
tered during training, both conditions achieve similar outcomes. In the control, participants
self-assess to have mastered 7.78 ˘ 1.98 skills on average during the training session. In
the experimental condition, BKT predicts that participants master on average 7.56 ˘ 2.51
skills in training. The difference between the two distributions is not statistically signifi-
cant (p-value ă 0.05). Furthermore, for the experimental condition, the average time to
complete prior knowledge identification is 6.49˘ 0.74 minutes, which is much more efficient
than testing each participant with all the skills as in the pre-test that takes 15 minutes. In
this context, our results show that the experimental condition spends nearly 1/3 of training
tasks on skill already mastered than the control, and efficiently focuses the training on not
mastered skills. The control spends on average 16.67% of training on skills they already
master (i.e. on average 11.67 ˘ 10.21 tasks out of 66.33 ˘ 14.53 total average number of
tasks completed in training). In comparison, the experimental condition spends 6.57% of
training on the skills they already master (i.e. on average 4.16˘4.53 tasks out of 63.33˘8.77
total average completed tasks). For fairness, we report time in terms of tasks, not minutes,
because each skill’s training task requires different average task completion time, ranging
from 6 to 20 seconds. As a result, a single task for a skill may worth 3 tasks for another skill
in terms of task completion time.

CHAPTER 8. PERSONALIZED HUMAN TRAINING IN EXTENDED REALITY 98

Figure 8.5: The bar plots compare the user experience on the training curriculum with
respect to engaging, incrementally difficult, and helpfulness in learning new skills across the
two conditions.

8.3.7 Discussion
In this section, we analyze our results in relation to our hypotheses (H1-H3) as stated in
Sec. 8.3. Based on observations of our study, we suggest directions to improve observed
shortcomings of BKT, which serves as the backbone of our system, in Sec. 8.3.7. Finally, we
share potential challenges as others may author our system in Sec. 8.3.7.

System Analysis

We analyze our study results in relation to our three hypotheses (H1-H3) (refer to Sec. 8.3).
H1: Effectiveness of the System As visualized in Fig. 8.3 (left), the users trained with
our system exhibits higher average learning gains than those train relying on self-assessment
(p-value ă 0.05), but with a mild effect size of 0.41. Much more noticeable is the consistent
learning outcome with the experimental condition, whose standard deviation of learning
gains (˘12.90%) is 53.7% lower than the control condition’s (˘5.97%). This shows that our
system considerably lowers fluctuations in the learning outcomes than the control, reducing
the chance of users falling behind. This is a necessary characteristic to support a wider user
base to learn relevant skills to engage in diverse XR activities of interest.

Counter-intuitively, despite higher average learning gains, the experimental condition
does not result in lower average subjective task load than than control after training. Recall
that it is desirable to lower subjective task load (i.e. lower NASA TLX score) through train-
ing. The control condition decreases in the NASA TLX score by 17.56˘ 11.77% on average,
whereas the experimental only decreases by 6.56 ˘ 16.00%. Although the difference is not
statistically significant, we observe the average leaning more favorably towards the control.

CHAPTER 8. PERSONALIZED HUMAN TRAINING IN EXTENDED REALITY 99

As pointed out in the verbal interview, this potential cause of this outcome derives from our
use of BKT to control training speeds. While the control group report no negative experi-
ence with training, nearly half of the experimental condition do, specifically concerning our
system’s training speed. The participants in the experimental condition (E3,E5) repeatedly
use the word “stuck” to share their frustration from not being able to stop excessive training
on a particular skill. Also, E1 and E6 complain that the system prematurely transition them
to training new skills even though they do not feel prepared to move on. This discrepancy in
the learning gains and subjective task load has been observed in academic learning setting
(e.g. [166]) as well, where the condition achieving the highest objective learning gains also
counter-intuitively result in the highest subjective task load, due to the training system’s
limited interaction with users.
H2: Accuracy of BKT vs. Self-Assessment The accuracy of the BKT and the self-
assessment directly affects the training speed. Recall, when training a skill, tasks are itera-
tively sampled from associated probabilistic program and generated in XR until either BKT
predicts mastery (experimental) or the participant self-assesses to transition to another skill
(control). The results show that the BKT’s skill mastery prediction error (28.21 ˘ 13.06%)
is lower on average than the self-assessment’s (34.81 ˘ 23.67%), but with no statistically
significant difference. However, BKT significantly lowers fluctuations in mastery prediction
errors as visualized in Fig. 8.3 (right). Due considerably lower variations in its prediction
errors, BKT’s predictions are 37% more highly correlated to skill mastery than the self-
assessment’s. We also note that BKT’s high correlation does not derive from consistent
underestimation of skill mastery, thereby providing over-practices to train a fewer number
of skills. The control and the experimental conditions completes on average 7.78˘ 1.98 and
7.56˘ 2.51 skills, respectively, out of 10 skills during 25 minutes of training session, with no
statistical difference. These findings explain why the experimental condition exhibits more
consistent learning outcomes and achieve higher average learning gains.

These disparity in the consistency of predictions becomes clearer as we contrast the
processes involved in the two methods. Recall, by our definition, a user who achieves mas-
tery of a skill can correctly solve all tasks in its associated training task distribution. For
self-assessment, this means that each user needs to: first, accurately approximate the task
distribution from experiencing sampled tasks. Second, the user needs to accurately assess
confidence in solving tasks with respect to one’s estimated mental model of the the task dis-
tribution. This approximation of the task distribution likely becomes challenging as task
complexity increases. Furthermore, it is well-established [49, 69] that self-assessment is in-
accurate during learning phase.

On the contrary, for modeling BKT per skill, domain experts tunes BKT parameters (refer
to Sec. 8.1) using their accurate understanding of the task distribution that they designed for
training the skill and mental models of novice students’ learning processes. We conjecture
that the observed BKT’s prediction errors derive from its insufficient parametrization of
learning process, since BKT is traditionally developed for purely cognitive skills (e.g. algebra)
which does not involve physical movements. Furthermore, the errors may also stem from the
domain experts’ inaccuracy or bias in their mental models of students or in expressing their

CHAPTER 8. PERSONALIZED HUMAN TRAINING IN EXTENDED REALITY 100

knowledge as BKT parameters.
H3: Effectiveness of Personalized Curriculum We observe a stark difference in the gen-
erated curricula between the two conditions as visualized in Fig. 8.4. Our system generates
four unique personalized curricula according to four different categories of prior knowledge
identified in the experimental condition. In contrast, the control uniformly adheres to a
single expert-designed curriculum. We compare both conditions’ user experience on the
curriculum with our customized Likert 5-Point questionnaire. As shown in Fig. 8.5, both
conditions positively report that the training is engaging, incrementally difficult, and help-
ful for learning new skills, averaging around 4.5 out of 5 across all three aspects, with no
statistically significant difference. This shows that the effects of our system’s curricula on
the user experience with respect to the three aspects are not statistically different from the
expert-designed curriculum.

With the combined effect of personalized curricula and training speeds, the study results
show that our system has higher training efficiency. The prior identification phase of our
system takes on average 6.49 ˘ 0.74 minutes, which is 56.7% more efficient than the pre-
test that takes 15 minutes to test every skill. Instead, our system’s prior identification
algorithm selectively tests a subset of skills using their pre-requisite relations. Following
prior knowledge identification, our system spends only about 1/3 of time (measured with
the number of tasks) on the skills they already master compare to the control’s, and efficiently
focus on training not mastered skills. Our system efficiently skips over mastered skills and
more consistently predict skill mastery to adequately transition each user to train for skills
that are not mastered yet. These findings also explain the experimental condition’s higher
average learning gains than the control’s.

Our Suggestions to Improve BKT

The key insight to take away from our work is that BKT is more reliable design compo-
nent than self-assessment for psychomotor skill mastery prediction. This insight could be
incorporated to designing other adaptive training system which uses distributions of training
tasks for a generalizable training. In our system, we demonstrate the two use cases of BKT
to personalize the training curriculum and speed. However, our study results also reveals
BKT’s shortcomings concerning (a) the inaccuracy of BKT itself and (b) inadequate use of
BKT for personalizing training contents. We suggest directions to improve BKT’s accuracy
and its usage in this section.

To improve its accuracy, the canonical formulation of BKT needs to be extended with
more variables relating to influential physical factors such as fatigue. During pre- and post-
test phase of our study, we frequently observe participants failing to solve tasks in post-
tests, which they were able to solve correctly before in the pre-test. We conjecture that the
accumulation of visual fatigue from exposure to VR and physical fatigue from exertions may
have induced the outcomes we observed. However, further investigation is necessary.

Our study reveals two issues regarding our system’s use of BKT’s predictions to personal-
ize training contents: (a) premature transition before the users feel confident with a skill and

CHAPTER 8. PERSONALIZED HUMAN TRAINING IN EXTENDED REALITY 101

(b) frustration from excessive practices of a same skill. To prevent premature transitions, it
may be appropriate to probe and incorporate the user’s self-assessment of the current skill
after BKT predicts skill mastery. If the user is not confident, then more tasks should be
sampled and generated in XR until the user is confident. This way, we can align the BKT’s
prediction with the user’s subjective confidence. However, this comes at the risk of, in the
worst case, a consistent underestimation of skill mastery, resulting in redundant training
due to the user’s low confidence. For this reason, it may be reasonable to explore effective
ways to share the BKT’s estimate of skill mastery with the user during training (e.g. a bar
graph representing the skill mastery in [0,100]% range in XR). This way, users can align
their self-assessment with BKT’s prediction.

To lower users’ frustration from excessive practices, there are important factors to con-
sider. Recall that BKT parameters (refer Sec. 8.1) for each skill are tuned with the assumption
that its pre-requisite skills are already mastered. Hence, if the system carelessly transition
the user to a new skill that requires the current one to avoid frustration, this violates the
BKT’s assumption and, therefore, degrades its prediction accuracy. Furthermore, this tran-
sition would also likely overload the user to simultaneously learn the pre-requisite and new
skills, potentially incurring more frustration. To circumvent these issues, scaffolding [137] a
skill could help users master each skill before transitioning to the next skill, while lowering
frustration. This means to use domain knowledge to divide the associated task distribution
to the skill into different sections of according to difficulty, and sample from relatively easier
section to assist learning. However, this scaffolding may be labor intensive in trade-off.

Anticipated Challenges in Authoring Our System

There are a number of anticipated challenges as external researchers implement or adapt our
system for their purpose.

Learning Scenic Probabilistic Programming Language To author our system
using Scenic, the developer needs to be familiar with Python programming language be-
cause Scenic language is embedded in Python. This means that Scenic supports syntax
akin to Python such as for/while-loop, if-else statements, defining functions with def, etc.
Building on to Python, Scenic adds syntax that resembles natural English such as ahead
of, can see, visible to, behavior, etc. Hence, we expect developers with background
in Python and English be able to easily learn Scenic to model distributions of interactive
tasks, although this needs to be investigated through a separate study.

Interfacing Scenic to XR Simulator Scenic is simulator-independent, meaning it
is not specifically designed for a particular simulator. Hence, it can be flexibly interfaced to
other simulators. The generic code template and the instructions for interfacing is shared in
the Scenic documentation [62]. Using the template, Scenic has been interfaced to nearly
ten different simulators, including our interface Scenic to Unity in this study.

Limitations of Scenic Language Currently, Scenic does not support modeling hu-
man intent. This limits modeling sophisticated coordinated interactions between multiple
agents. For example, in Echo Arena VR esports we use for our study, it is difficult to model

CHAPTER 8. PERSONALIZED HUMAN TRAINING IN EXTENDED REALITY 102

2 vs 2 offense situation, where a user needs to collaborate with its virtual teammate in order
to score against the two opponent players. The two opponent defenders and the teammate
need to adapt their strategies, or coordinated behaviors, to the user’s strategy, which is
unknown a priori and needs to be inferred in real-time based on observations of the user’s
behavior. Simply assigning a distribution over behaviors over, for instance, the virtual team-
mate without inferring intent may frequently result in generating unrealistic coordination.
Yet, Scenic does not provide relevant syntax and semantics to model intent. Consequently,
in our study, the training tasks involve limited interaction with at most one virtual player.
One suggestion is to extend Scenic syntax to express gestures, which are commonly used
to explicitly communicate intent.

8.3.8 Limitations of the Study
There are a number of limitations in our study.

Too much variability degrades learning: Although introducing variability in training
tasks has been shown to induce better learning and generalization of psychomotor skills [195,
43, 171, 15], too much variability in training can actually impair learning [23]. In our
study, we assume that the instructors who design the task distributions would introduce
adequate amount of variations to train each skill. We do not have any mechanism in place
to measure and determine whether the size of variations in the provided task distribution
would negatively impact learning.

Extracting Tacit Knowledge: It can be challenging to extract tacit domain knowledge
from the experts to specify accurate evaluation metrics per task distribution. We do not
experience this issue in our study, but we foresee this may be an issue depending on the
skill to train. We have not investigated a methodological approach to cope with this difficult
problem.

Tangled Effects in Our Study: And, in our study, the effects of personalizing the
curriculum and the training speed are jointly taking place. To better evaluate the isolated
effect of the two independent variables, further ablation study is necessary.

8.4 Bibliographic Notes
Our work relates to three fields of study: adaptive training, intelligent tutoring systems,
and, more broadly, psychomotor skill training. Pertaining to adaptive training, previous
literature [176, 175, 174] explore adjusting the training environments, such as varying a
basketball hoop’s heights and sizes, to generate incrementally difficult training exercises.
Some have explored the gamification of training with pre-defined difficulty levels in VR [178,
71]. Others also investigated the personalization of a curriculum to increase the effectiveness
of training [126, 157]. However, these literature do not address how to systematically and
adaptively predict skill mastery with respect to a distribution of training tasks. Instead, they
employ ad hoc measures to predict mastery such as solving N fixed number of consecutive

CHAPTER 8. PERSONALIZED HUMAN TRAINING IN EXTENDED REALITY 103

training tasks, or allowing users to adaptively self-assess their skill after completing each
task. In our study, we compare BKT to self-assessment as it is, to the best of our knowledge,
currently the only adaptive and scalable methodology to predict skill mastery with respect
to task distributions.

The mechanism for skill mastery prediction is better addressed in the field of intelligent
tutoring systems (ITS) [167] from education research. ITS personalizes training contents,
such as curricula and training speeds, to each student’s needs. Also, it makes use of Bayesian
knowledge tracing (BKT) [198] to predict each student’s skill mastery. However, ITS and
BKT are traditionally designed to train purely cognitive skills like algebra, without involving
any motor skills. Nevertheless, because psychomotor skills consist of cognitive skills with
motor executions, our work is inspired by ITS. The design of our training system is built on
top of curriculum personalization framework introduced in [186, 121]. These work provide a
generic framework to assess skills and personalize curriculum without relying on any dataset
a priori. We adapt the curriculum generation aspect of this work to incorporate BKT to
estimate skill mastery to further adapt the training speeds.

There are numerous research directions in training psychomotor skills. Some focuses on
the construction of a high fidelity training simulators [83, 149]. Another investigates di-
verse forms of feedback to correct the users by exploring visual, tactile, and auditory haptic
feedback [193, 168, 36], developing new media like augmented mirror [7], or accounting for
social interactions [180] and cognitive science [84]. Others design new physical devices (e.g.
airRacket [173], tacTower [112]) to enhance sensory realism and engagement in training.
In comparison, our work assumes training in XR where an XR simulator and any feed-
back mechanisms are already provided. In this setting, we focus on how to personalize, or
individually adapt, the training contents, specifically the curriculum and the training speed.

8.5 Chapter Summary
We derive principles from learning sciences and neuro-physiology to develop a personalized
training algorithm for h-CPS in XR. In particular, we train psychomotor skills to humans
to better control systems and efficiently achieve tasks. A structured variations in training
tasks have been shown to promote generalization of skills in neuro-physiology. We use
Scenic to model and generate these variations of tasks in XR. To personalize the training,
we derive algorithms from intelligent tutoring systems in learning sciences to model human
knowledge. In particular, we model knowledge as a knowledge graph and uses BKT to
determine whether a user mastered each node, i.e. skill, in the graph. Given a set of skills
to train and a corresponding set of Scenic programs, it adaptively sequences the programs
to personalize the curriculum, and adjusts the number of tasks to sample per program to
personalize training speed. The experiment results show that our algorithm induces much
more consistent learning compared to self-guided learning.

104

Chapter 9

Final Words

In this thesis, we make a case that a domain-specific PPL, Scenic, is an adequate formalism
to model and generate increasingly complex operating scenarios of autonomous systems.
Indeed, we demonstrate the generality of this formalism across different domains. The crux
of this thesis is to address the challenges that are introduced by adopting Scenic as an
environment formalism.

In the context of simulation-based testing and analysis, we devise a machinery for system-
level testing that integrates multi-objective falsification with parallelized simulation to effi-
ciently explore distributions of scenarios modeled as probabilistic programs. Then, we zoom
into component-level analysis to synthesize probabilistic programs that intuitively explains
in which distributions of scenarios the DNN-based component fails.

For sim-to-real validation, Scenic serves as a consistent formalism across simulation and
reality, which models scenarios where a component or a system fails. With this formalism,
we first propose a formal scenario-based approach to select test scenarios for track testing to
robustly induce system failures in reality. To overcome the labor-intensive and non-scalable
shortcomings of track testing, we propose a data-driven algorithm to query labelled sensor
data with probabilistic programs.

Finally, we demonstrate that we can train autonomous systems in a targeted manner,
guided by their failures identified in simulation. In particular, we propose offline and online
training techniques for reinforcement learning agents using Scenic. Also, we introduce
personalized training algorithm to test and train psychomotor skills to humans in XR, which
is another media for simulation.

9.1 Future Work
This thesis is a prelude to exciting future research directions.

CHAPTER 9. FINAL WORDS 105

9.1.1 Understanding Training Data and Generating Missing Data
Nowadays, sensor data, such as RGB camera, LiDAR, or radar, are essential to develop au-
tonomous systems. As a result, massive amounts of sensor data are being collected, labelled,
and even open-sourced. Yet, previous literature have repeatedly shown that not only quan-
tity of sensor data but also the diversity of their contents greatly affect generalization [184,
136]. For example, suppose training data for a self-driving car does not contain any contents
of data pertaining to unprotected left turn scenario at an intersection. Then, this may be
potentially a hazardous scenario for the self-driving car to safely interact with other traffic
participants in. However, given the terabytes of data being collected and labelled, how can
we efficiently understand what contents (of reactive and dynamic scenarios) are currently
represented in the training data? Having humans to look through these data one by one
certainly is not a scalable and cost-effective approach to understand the contents of sensor
data, although this regrettably is the status quo.

The sensor data query algorithm we introduce in Ch. 6 provides a data-driven approach
to help developers or researchers better understand the contents of sensor data at scale.
Leveraging their domain knowledge, researchers can query the labelled sensor data to under-
stand how much of certain contents, or scenarios, are represented. This query with scenarios,
modelled as probabilistic programs, helps to abstract terabytes of sensor data to intuitive,
abstract scenarios which promotes better understanding of the data. To realize this practi-
cal benefit, first, our proposed sensor data query algorithm needs to be extended to query
dynamic scenarios with high efficiency. Then, this would open exciting research directions
toward human-computer interaction (HCI), specifically human-in-the-loop program synthe-
sis, where HCI algorithms collaborate with humans to efficiently abstract big sensor data to
understandable scenarios.

This enhanced understanding of data at scale can contribute to more robust autonomy.
By identifying which scenarios of data are not present in the data, we can guide data collec-
tion in reality. Or, a more cost-effective approach may be to encode those missing scenarios
as probabilistic programs to generate those contents in simulation. These generated syn-
thetic data can be adapted to be more realistic through domain adaptation techniques [184]
to enhance performance on real data.

9.1.2 Verifying Human Robot Interactions in XR
It is difficult to separate autonomy from interactions with humans. However, the current
standard development process for autonomous systems tend to initially overlook this process.
When developing from scratch, researchers and developers leverage simulation to design
and analyze these systems, where human behaviors are modelled and simulated. Once the
systems demonstrate a sufficient level of performance in simulation, the standard next step
is to physically implement the system, which incurs much time, labor, and cost. What is
missing in between this step is to validate whether assumed human models, which the robots
are designed for, are indeed correct. If the human models turn out to be not valid in reality,

CHAPTER 9. FINAL WORDS 106

then subsequent modification of already implemented systems may likely incur substantial
cost and labor. In this context, XR provides an important “intermediate” step or setting to
validate human models. In particular, in XR, we no longer need models of human behaviors
since actual humans will directly interact with robots. In short, XR relaxes the assumptions
of humans made during simulation-based system design process and helps examine their
validity. Being able to detect any mis-assumptions and iterate system repair early on, prior to
physical implementation, will likely lower the cost of developing robotics in general. Guided
by these identified mis-assumptions, formal methods can be used to design systems to more
safely interact with humans [146, 179]. Hence, the use of XR to detect any errors in the
models in early stages of development would be hugely beneficial. Note that domain-specific
PPLs can serve as consistent formalism to model and generate the same scenarios across
simulation to XR. Therefore, the techniques and algorithms proposed in this thesis could be
leveraged to test and train both autonomous systems and humans to efficiently and safely
interact with each other.

9.2 Bibliographic Notes
We would like to acknowledge and thank people, organizations, and funding sources that
influenced us to shape our future directions. Our future direction on understanding the
contents of big sensor data is motivated by our collaborations with American Automobile
Association (AAA) and LG Electronics. We thank our collaborators, Daniel Fremont and
Yash Pant, from UC Berkeley, Atul Acharya, Xantha Bruso, and Paul Wells from AAA,
and Steve Lemke, Qiang Lu, and Shalin Mehta from LG Electronics. We thank Eunsu
Ryu, a former principal engineer at Cruise, who shaped our thinking to understand the
importance of the contents of sensor data. We would like to also thank Prof. James Weimer
from Vanderbilt University to build upon our work in XR to effectively design and verify
human robot interactions in XR. Lastly, we are deeply grateful for the National Science
Foundation (NSF) graduate fellowship, NSF VehiCaL, Defense Advanced Research Projects
Agency (DARPA) Assured Autonomy, which provided us the freedom to pursue our passion.

107

Bibliography

[1] 4Active Systems. 4Active Surfboard Platform. 2020. url: http://www.4activesystems.
at/en/products/test-equipment/4activesb.html (cit. on p. 49).

[2] Houssam Abbas, Georgios Fainekos, Sriram Sankaranarayanan, Franjo Ivančić, and
Aarti Gupta. “Probabilistic Temporal Logic Falsification of Cyber-Physical Systems”.
In: ACM Trans. Embed. Comput. Syst. 12.2s (May 2013). issn: 1539-9087. doi: 10.
1145/2465787.2465797 (cit. on p. 27).

[3] Houssam Abbas, Matthew O’Kelly, Alena Rodionova, and Rahul Mangharam. “Safe
at any speed: A simulation-based test harness for autonomous vehicles”. In: Inter-
national Workshop on Design, Modeling, and Evaluation of Cyber Physical Systems.
Springer. 2017, pp. 94–106 (cit. on p. 55).

[4] Amina Adadi and Mohammed Berrada. “Peeking Inside the Black-Box: A Survey on
Explainable Artificial Intelligence (XAI)”. In: IEEE Access 6 (2018), pp. 52138–52160.
doi: 10.1109/ACCESS.2018.2870052 (cit. on pp. 1, 8).

[5] Jean-Baptiste Alayrac, Jeff Donahue, Pauline Luc, Antoine Miech, Iain Barr, Yana
Hasson, Karel Lenc, Arthur Mensch, Katie Millican, Malcolm Reynolds, Roman Ring,
Eliza Rutherford, Serkan Cabi, Tengda Han, Zhitao Gong, Sina Samangooei, Mari-
anne Monteiro, Jacob Menick, Sebastian Borgeaud, Aida Nematzadeh Andrew Brock,
Sahand Sharifzadeh, Mikolaj Binkowski, Ricardo Barreira, Oriol Vinyals, Andrew Zis-
serman, and Karen Simonyan. “Flamingo: A Visual Language Model for Few-Shot
Learning”. In: Neural Information Processing Systems (NeurIPS). 2022 (cit. on p. 4).

[6] Ethem Alpaydin. Introduction to Machine Learning. MIT Press, 2020 (cit. on p. 1).

[7] Fraser Anderson, Tovi Grossman, Justin Matejka, and George Fitzmaurice. “YouMove:
enhancing movement training with an augmented reality mirror”. In: Computer Hu-
man Interaction (CHI) Conference on Human Factors in Computing Systems. 2013
(cit. on p. 103).

[8] Yashwanth Annpureddy, Che Liu, Georgios Fainekos, and Sriram Sankaranarayanan.
“S-TaLiRo: A Tool for Temporal Logic Falsification for Hybrid Systems”. In: Tools
and Algorithms for the Construction and Analysis of Systems. Ed. by Parosh Aziz
Abdulla and K. Rustan M. Leino. Berlin, Heidelberg: Springer Berlin Heidelberg,
2011, pp. 254–257. isbn: 978-3-642-19835-9 (cit. on p. 27).

http://www.4activesystems.at/en/products/test-equipment/4activesb.html
http://www.4activesystems.at/en/products/test-equipment/4activesb.html
https://doi.org/10.1145/2465787.2465797
https://doi.org/10.1145/2465787.2465797
https://doi.org/10.1109/ACCESS.2018.2870052

BIBLIOGRAPHY 108

[9] Michał Antkiewicz, Maximilian Kahn, Michael Ala, Krzysztof Czarnecki, Paul Wells,
Atul Acharya, and Sven Beiker. “Modes of Automated Driving System Scenario Test-
ing: Experience Report and Recommendations”. In: WCX SAE World Congress Ex-
perience. SAE International, 2020 (cit. on p. 55).

[10] Apollo: Autonomous Driving Solution. http://apollo.auto/ (cit. on pp. 27, 49).
[11] Hugo Araujo, Gustavo Carvalho, Mohammad Reza Mousavi, and Augusto Sampaio.

“Multi-objective Search for Effective Testing of Cyber-Physical Systems”. In: Software
Engineering and Formal Methods. Ed. by Peter Csaba Ölveczky and Gwen Salaün.
Cham: Springer International Publishing, 2019, pp. 183–202. isbn: 978-3-030-30446-1
(cit. on p. 27).

[12] Aitor Arrieta, Shuai Wang, Urtzi Markiegi, Goiuria Sagardui, and Leire Etxeberria.
“Employing Multi-Objective Search to Enhance Reactive Test Case Generation and
Prioritization for Testing Industrial Cyber-Physical Systems”. In: IEEE Transactions
on Industrial Informatics 14.3 (2018), pp. 1055–1066. doi: 10.1109/TII.2017.2788019
(cit. on p. 27).

[13] Abdus Salam Azad, Edward Kim, Qiancheng Wu, Kimin Lee, Ion Stoica, Pieter
Abbeel, and Sanjit A Seshia. “Programmatic Modeling and Generation of Real-time
Strategic Soccer Environments for Reinforcement Learning”. In: The Association for
the Advancement of Artificial Intelligence (AAAI) (2021) (cit. on pp. 8, 75).

[14] Clark Barrett, Roberto Sebastiani, Sanjit A. Seshia, and Cesare Tinelli. “Satisfiability
Modulo Theories”. In: Handbook of Satisfiability. IOS Press, 2021. Chap. 33 (cit. on
p. 59).

[15] Daniel A. Barun, Ad Aertsen, Daniel M. Wolpert, and Carsten Mehring. “Motor
Task Variation Induces Structural Learning”. In: Current Biology 19 (4 2009) (cit. on
pp. 86, 102).

[16] S. Beiker. SAE EDGE Research Report: Unsettled Issues in Determining Appropri-
ate Modeling Fidelity for Automated Driving Systems Simulation. 2019. url: https:
/ /www. sae . org/publications/ technical - papers / content/ epr2019007/ (visited on
03/02/2020) (cit. on p. 56).

[17] Eli Bingham, Jonathan P. Chen, Martin Jankowiak, Fritz Obermeyer, Neeraj Prad-
han, Theofanis Karaletsos, Rohit Singh, Paul Szerlip, Paul Horsfall, and Noah D.
Goodman. “Pyro: Deep Universal Probabilistic Programming”. In: J. Mach. Learn.
Res. 20 (2019), 28:1–28:6 (cit. on p. 73).

[18] Ilse R. de Boer, Maxim D. Lagerweij, Paul R. Wesselink, and Johanna M. Vervoorn.
“The Effect of Variations in Force Feedback in a Virtual Reality Environment on the
Performance and Satisfaction of Dental Students”. In: Aviation, Space, and Environ-
mental Medicine. Vol. 76. 2005, pp. 352–356 (cit. on p. 86).

[19] L. Breiman, J. Friedman, R. Olshen, and C. Stone. Classification and Regression
Trees. Monterey, CA: Wadsworth and Brooks, 1984 (cit. on p. 34).

http://apollo.auto/
https://doi.org/10.1109/TII.2017.2788019
https://www.sae.org/publications/technical-papers/content/epr2019007/
https://www.sae.org/publications/technical-papers/content/epr2019007/

BIBLIOGRAPHY 109

[20] Rasmus Bro and Age K. Smilde. “Principal component analysis”. In: Analytical Meth-
ods (2014) (cit. on p. 16).

[21] Greg Brockman, Vicki Cheung, Ludwig Pettersson, Jonas Schneider, John Schulman,
Jie Tang, and Wojciech Zaremba. “Openai gym”. In: arXiv preprint arXiv:1606.01540
(2016) (cit. on pp. 79, 148).

[22] Holger Caesar, Varun Bankiti, Alex H. Lang, Sourabh Vora, Venice Erin Liong, Qiang
Xu, Anush Krishnan, Yu Pan, Giancarlo Baldan, and Oscar Beijbom. “nuScenes: A
multimodal dataset for autonomous driving”. In: arXiv arXiv:1903.11027 (2019) (cit.
on pp. 58, 69).

[23] Marco Cardis, Maura Casadio, and Rajiv Ranganathan. “High variability impairs
motor learning regardless of whether it affects task performance”. In: Journal of Neu-
rophysiology. 2018 (cit. on p. 102).

[24] Alexandra Carpentier, Alessandro Lazaric, Mohammad Ghavamzadeh, Remi Munos,
and Peter Auer. “Upper-Confidence-Bound Algorithms for Active Learning in Multi-
armed Bandits”. In: Algorithmic Learning Theory. Ed. by Jyrki Kivinen, Csaba Szepes-
vari, Esko Ukkonen, and Thomas Zeugmann. Berlin, Heidelberg: Springer Berlin Hei-
delberg, 2011, pp. 189–203. isbn: 978-3-642-24412-4 (cit. on pp. 21, 22).

[25] O. Carsten, N. Merat, V. Janssen, E. Johansson, M. Fowkes, and K. Brookhuis.
“Human machine interaction and safety of traffic in Europe”. In: HASTE Final Report
3 (2005) (cit. on p. 55).

[26] Shan Carter, Zan Armstrong, Ludwig Schubert, Ian Johnson, and Chris Olah. “Acti-
vation Atlas”. In: Distill (2019). doi: 10.23915/distill.00015 (cit. on p. 40).

[27] Luis I. Reyes Castro, Pratik Chaudhari, Jana Tumova, Sertac Karaman, Emilio Fraz-
zoli, and Daniela Rus. “Incremental Sampling-based Algorithm for Minimum-violation
Motion Planning”. In: CoRR abs/1305.1102 (2013). arXiv: 1305 . 1102. url: http :
//arxiv.org/abs/1305.1102 (cit. on p. 27).

[28] Money Watch from CBS. Are robot waiters the wave of the future? Some restaurants
say yes. 2023. url: https://www.cbsnews.com/news/robot-waiters- restaurants-
future/ (cit. on p. 1).

[29] Andrea Censi, Konstantin Slutsky, Tichakorn Wongpiromsarn, Dmitry S. Yershov,
Scott Pendleton, James Guo Ming Fu, and Emilio Frazzoli. “Liability, Ethics, and
Culture-Aware Behavior Specification using Rulebooks”. In: International Conference
on Robotics and Automation (ICRA) (2019) (cit. on pp. 20, 21).

[30] Ming-Fang Chang, John Lambert, Patsorn Sangkloy, Jagjeet Singh, Slawomir Bak,
Andrew Hartnett, De Wang, Peter Carr, Simon Lucey, Deva Ramanan, and James
Hays. “Argoverse: 3D Tracking and Forecasting with Rich Maps”. In: Conference on
Computer Vision and Pattern Recognition (CVPR). 2019 (cit. on p. 58).

https://doi.org/10.23915/distill.00015
https://arxiv.org/abs/1305.1102
http://arxiv.org/abs/1305.1102
http://arxiv.org/abs/1305.1102
https://www.cbsnews.com/news/robot-waiters-restaurants-future/
https://www.cbsnews.com/news/robot-waiters-restaurants-future/

BIBLIOGRAPHY 110

[31] X. Chang, P. Ren, P. Xu, Z. Li, X. Chen, and A. Hauptmann. “A Comprehensive
Survey of Scene Graphs: Generation and Application”. In: IEEE Transactions on
Pattern Analysis and Machine Intelligence. Vol. 45. 1. 2023 (cit. on p. 4).

[32] Xieyuanli Chen, Benedikt Mersch, Lucas Nunes, Rodrigo Marcuzzi, Ignacio Vizzo,
Jens Behley, and Cyrill Stachniss. “Automatic Labeling to Generate Training Data
for Online LiDAR-Based Moving Object Segmentation”. In: IEEE Robotics and Au-
tomation Letters 7.3 (2022), pp. 6107–6114. doi: 10.1109/LRA.2022.3166544 (cit. on
pp. 7, 57).

[33] E. Clarke and J. Wing. “Formal Methods: State of the Art and Future Directions”.
In: ACM Computing Surveys 28 (1996) (cit. on pp. 2, 5, 7, 8).

[34] Karl Cobbe, Chris Hesse, Jacob Hilton, and John Schulman. “Leveraging procedu-
ral generation to benchmark reinforcement learning”. In: International conference on
machine learning. 2020 (cit. on pp. 75, 84).

[35] Karl Cobbe, Oleg Klimov, Chris Hesse, Taehoon Kim, and John Schulman. “Quantify-
ing generalization in reinforcement learning”. In: International Conference on Machine
Learning. 2019 (cit. on pp. 75, 84).

[36] Nuno N. Correia, Raul Masu, William Primett, Stephan Jurgens, Jochen Feitsch, and
Hugo Placido da Silva. “Designing Interactive Visuals for Dance from Body Maps:
Machine Learning and Composite Animation Approach”. In: Designing Interactive
Systems (DIS). 2022 (cit. on p. 103).

[37] Antonia Creswell, Tom White, Vincent Dumoulin, Kai Arulkumaran, Biswa Sengupta,
and Anil A. Bharath. “Generative Adversarial Networks: An Overview”. In: IEEE
Signal Processing Magazine 35.1 (2018), pp. 53–65. doi: 10.1109/MSP.2017.2765202
(cit. on p. 71).

[38] M. Csikszentmihalyi and I. S. Csikszentmihalyi. Optimal experience: Psychological
studies of flow in consciousness. Cambridge University Press, 1988 (cit. on p. 91).

[39] Krzysztof Czarnecki. WISE Drive: Requirements Analysis Framework for Automated
Driving Systems. https://uwaterloo.ca/waterloo-intelligent-systems-engineering-lab/
projects/wise-drive-requirements-analysis-framework-automated-driving. Accessed:
2020-02-27. 2018 (cit. on p. 55).

[40] Jyotirmoy V. Deshmukh, Rupak Majumdar, and Vinayak S. Prabhu. “Quantifying
conformance using the Skorokhod metric”. In: Formal Methods in System Design 50.2-
3 (2017), pp. 168–206. doi: 10.1007/s10703-016-0261-8. url: https://doi.org/10.
1007/s10703-016-0261-8 (cit. on pp. 44, 54).

[41] Michael Desmond, Evelyn Duesterwald, Kristina Brimijoin, Michelle Brachman, and
Qian Pan. “Semi-Automated Data Labeling”. In: Proceedings of Machine Learning
Research (PMLR) (2021) (cit. on pp. 7, 57).

https://doi.org/10.1109/LRA.2022.3166544
https://doi.org/10.1109/MSP.2017.2765202
https://uwaterloo.ca/waterloo-intelligent-systems-engineering-lab/projects/wise-drive-requirements-analysis-framework-automated-driving
https://uwaterloo.ca/waterloo-intelligent-systems-engineering-lab/projects/wise-drive-requirements-analysis-framework-automated-driving
https://doi.org/10.1007/s10703-016-0261-8
https://doi.org/10.1007/s10703-016-0261-8
https://doi.org/10.1007/s10703-016-0261-8

BIBLIOGRAPHY 111

[42] Prafulla Dhariwal, Christopher Hesse, Oleg Klimov, Alex Nichol, Matthias Plappert,
Alec Radford, John Schulman, Szymon Sidor, Yuhuai Wu, and Peter Zhokhov. Ope-
nAI Baselines Code Repo. https://github.com/openai/baselines. 2017 (cit. on p. 147).

[43] A. K. Dhawale, Maurice A. Smith, and B. P. Olveczky. “The Role of Variability in
Motor Learning”. In: The Annual Review of Neuroscience 40 (2017), pp. 479–498 (cit.
on pp. 86, 102).

[44] Alexey Dosovitskiy, German Ros, Felipe Codevilla, Antonio Lopez, and Vladlen Koltun.
“CARLA: An Open Urban Driving Simulator”. In: Proceedings of the 1st Annual Con-
ference on Robot Learning. 2017, pp. 1–16 (cit. on pp. 14, 24, 39).

[45] T. Dreossi, S. Ghosh, X. Yue, K Keutzer, A. Sangiovanni-Vincentelli, and S. Seshia.
“Counterexample-guided data augmentation”. In: International Joint Conference on
Artificial Intelligence (2018) (cit. on pp. 7, 17, 75).

[46] Tommaso Dreossi, Daniel J. Fremont, Shromona Ghosh, Edward Kim, Hadi Ravan-
bakhsh, Marcell Vazquez-Chanlatte, and Sanjit A. Seshia. “VerifAI: A Toolkit for the
Formal Design and Analysis of Artificial Intelligence-Based Systems”. In: 31st Inter-
national Conference on Computer Aided Verification (CAV). 2019, pp. 432–442 (cit.
on pp. 5, 8, 15, 17).

[47] Lasse Espeholt, Hubert Soyer, Remi Munos, Karen Simonyan, Vlad Mnih, Tom Ward,
Yotam Doron, Vlad Firoiu, Tim Harley, Iain Dunning, et al. “Impala: Scalable dis-
tributed deep-rl with importance weighted actor-learner architectures”. In: Interna-
tional Conference on Machine Learning. PMLR. 2018, pp. 1407–1416 (cit. on p. 147).

[48] Georgios E. Fainekos and George J. Pappas. “Robustness of Temporal Logic Specifi-
cations”. In: Formal Approaches to Software Testing and Runtime Verification. Ed. by
Klaus Havelund, Manuel Núñez, Grigore Roşu, and Burkhart Wolff. Berlin, Heidel-
berg: Springer Berlin Heidelberg, 2006, pp. 178–192. isbn: 978-3-540-49703-5 (cit. on
p. 46).

[49] Nancy Falchikov and David Boud. “Student Self-Assessment in Higher Education: A
Meta-Analysis”. In: Review of Educational Research. Vol. 59. 4. 1989, pp. 395–430
(cit. on p. 99).

[50] Pedro Faria. figma: Web Client/Wrapper to the ’Figma API’. 2023. url: https://
www.figma.com/ (cit. on p. 89).

[51] Shuo Feng, Yiheng Feng, Haowei Sun, Shao Bao, Aditi Misra, Yi Zhang, and Henry X.
Liu. “Testing Scenario Library Generation for Connected and Automated Vehicles,
Part II: Case Studies”. In: CoRR abs/1905.03428 (2019). arXiv: 1905.03428. url:
http://arxiv.org/abs/1905.03428 (cit. on p. 55).

[52] Shuo Feng, Yiheng Feng, Chunhui Yu, Yi Zhang, and Henry X. Liu. “Testing Scenario
Library Generation for Connected and Automated Vehicles, Part I: Methodology”. In:
CoRR abs/1905.03419 (2019). arXiv: 1905.03419. url: http://arxiv.org/abs/1905.
03419 (cit. on p. 55).

https://github.com/openai/baselines
https://www.figma.com/
https://www.figma.com/
https://arxiv.org/abs/1905.03428
http://arxiv.org/abs/1905.03428
https://arxiv.org/abs/1905.03419
http://arxiv.org/abs/1905.03419
http://arxiv.org/abs/1905.03419

BIBLIOGRAPHY 112

[53] FIFA. Laws of the Game. https://ussoccer.app.box.com/s/xx3byxqgodqtl1h15865/
file/850765570638. Accessed: 2021-10-01. 2021 (cit. on p. 81).

[54] Foretellix. Measurable Scenario Description Language. https://www.foretellix.com/
open-language/. 2023 (cit. on p. 4).

[55] Peter I. Frazier. “A Tutorial on Bayesian Optimization”. In: IEEE transactions on
pattern analysis and machine intelligence (2018) (cit. on p. 16).

[56] David Freeman, Robert Pisani, and Roger Purves. “Statistics”. In: WW Norton &
Company (4th Edition) (2007) (cit. on p. 96).

[57] Daniel Fremont, Johnathan Chiu, Dragos D. Margineantu, Denis Osipychev, and
Sanjit A. Seshia. “Formal Analysis and Redesign of a Neural Network-Based Aircraft
Taxiing System with VerifAI”. In: Computer-Aided Verification (CAV) (2020) (cit. on
pp. 7, 17, 75).

[58] Daniel J. Fremont. “Algorithmic Improvisation”. In: University of California, Berke-
ley, Technical Report No. UCB/EECS-2019-133. 2019. url: https : //www2 . eecs .
berkeley.edu/Pubs/TechRpts/2019/EECS-2019-133.html (cit. on p. 5).

[59] Daniel J. Fremont, Tommaso Dreossi, Shromona Ghosh, Xiangyu Yue, Alberto L.
Sangiovanni-Vincentelli, and Sanjit A. Seshia. “Scenic: A Language for Scenario Spec-
ification and Scene Generation”. In: Proceedings of the 40th annual ACM SIGPLAN
conference on Programming Language Design and Implementation (PLDI). 2019 (cit.
on pp. 5, 11).

[60] Daniel J. Fremont, Edward Kim, Tommaso Dreossi, Shromona Ghosh, Xiangyu Yue,
Alberto L. Sangiovanni-Vincentelli, and Sanjit A. Seshia. “Scenic: a language for sce-
nario specification and data generation”. In: Machine Learning (2022). url: https:
//doi.org/10.1007/s10994-021-06120-5 (cit. on pp. 4, 5, 11, 14, 64, 67, 78, 132, 134).

[61] Daniel J. Fremont, Edward Kim, Yash Vardhan Pant, Sanjit A. Seshia, Atul Acharya,
Xantha Bruso, Paul Wells, Steve Lemke, Qiang Lu, and Shalin Mehta. “Formal
Scenario-Based Testing of Autonomous Vehicles: From Simulation to the Real World”.
In: 23rd IEEE International Conference on Intelligent Transportation Systems, ITSC
2020, Rhodes, Greece, September 20-23, 2020. IEEE, 2020, pp. 1–8. doi: 10.1109/
ITSC45102.2020.9294368. url: https://doi.org/10.1109/ITSC45102.2020.9294368
(cit. on pp. 6, 8, 44, 71).

[62] Daniel J. Fremont, Eric Vin, Edward Kim, Tommaso Dreossi, Shromona Ghosh, Xi-
angyu Yue, Alberto L. Sangiovanni-Vincentelli, and Sanjit A. Seshia. Scenic Doc-
umentation on the Interfaced Simulators. https://scenic- lang.readthedocs. io/en/
latest/. In the documentation, refer to the “Supported Simulators” tab underneath
“Libraries and Simulators”. 2021 (cit. on pp. 79, 101).

[63] Rockstar Games. Grand Theft Auto V. Windows PC version. 2015. url: https://
www.rockstargames.com/games/info/V (cit. on pp. 14, 32).

https://ussoccer.app.box.com/s/xx3byxqgodqtl1h15865/file/850765570638
https://ussoccer.app.box.com/s/xx3byxqgodqtl1h15865/file/850765570638
https://www.foretellix.com/open-language/
https://www.foretellix.com/open-language/
https://www2.eecs.berkeley.edu/Pubs/TechRpts/2019/EECS-2019-133.html
https://www2.eecs.berkeley.edu/Pubs/TechRpts/2019/EECS-2019-133.html
https://doi.org/10.1007/s10994-021-06120-5
https://doi.org/10.1007/s10994-021-06120-5
https://doi.org/10.1109/ITSC45102.2020.9294368
https://doi.org/10.1109/ITSC45102.2020.9294368
https://doi.org/10.1109/ITSC45102.2020.9294368
https://scenic-lang.readthedocs.io/en/latest/
https://scenic-lang.readthedocs.io/en/latest/
https://www.rockstargames.com/games/info/V
https://www.rockstargames.com/games/info/V

BIBLIOGRAPHY 113

[64] Sicun Gao, Soonho Kong, and Edmund Clarke. “dReal: an SMT solver for non-
linear theories over the reals”. In: International Conference on Automated Deduc-
tion(CADE). 2013 (cit. on pp. 59, 67).

[65] Toni Giorgino. “Computing and Visualizing Dynamic Time Warping Alignments in
R: The dtw Package”. In: Journal of Statistical Software 31.7 (2009), pp. 1–24. url:
https://doi.org/10.18637/jss.v031.i07 (cit. on pp. 44, 54).

[66] N. Goodman, V. K. Mansinghka, D. Roy, K. Bonawitz, and J. B. Tenenbaum. “Church:
A universal language for generative models”. In: Uncertainty in Artificial Intelligence
(2008), pp. 220–229 (cit. on p. 4).

[67] Divya Gopinath, Hayes Converse, Corina S. Pasareanu, and Ankur Taly. “Property
Inference for Neural Networks”. In: International Conference on Automated Software
Engineering (ASE) (2019). doi: https://doi.org/10.1109/ASE.2019.00079 (cit. on
p. 31).

[68] Andrew Gordon, T. Henzinger, A. Nori, and Sriram Rajamani. “Probabilistic Pro-
gramming”. In: Future of Software Engineering Proceedings. 2014, pp. 167–181 (cit. on
pp. 2, 4).

[69] Michael J. Gordon. “A review of the validity and accuracy of self-assessments in health
professions training”. In: Academic Medicine. Vol. 66. 12. 1991, pp. 762–769 (cit. on
p. 99).

[70] Yash Goyal, Tejas Khot, Douglas Summers-Stay, Dhruv Batra, and Devi Parikh.
“Making the V in VQA Matter: Elevating the Role of Image Understanding in Visual
Question Answering”. In: International Journal of Computer Vision 127.4 (2019),
pp. 398–414 (cit. on p. 72).

[71] M. Graafland, J. M. Schraagen, and M. P. Schijven. “Systematic review of seri-
ous games for medical education and surgical skills training”. In: British Journal
of Surgery. Vol. 99. 10. 2016, pp. 1322–1330 (cit. on p. 102).

[72] Bradley Gram-Hansen, Yuan Zhou, Tobias Kohn, Hongseok Yang, and Frank Wood.
“Discontinuous Hamiltonian Monte Carlo for Probabilistic Programs”. In: CoRR abs/
1804.03523 (2018) (cit. on p. 73).

[73] John K Haas. A history of the unity game engine. Last accessed August 10th, 2023.
2014. url: https://digital.wpi.edu/downloads/2f75r821k (cit. on p. 93).

[74] J. H. Halton. “On the efficiency of certain quasi-random sequences of points in eval-
uating multi-dimensional integrals”. In: Numerische Mathematik 2 (1960), pp. 84–90
(cit. on pp. 15, 24).

[75] Sandra G. Hart and Lowell E. Staveland. “Development of NASA-TLX (Task Load
Index): Results of Empirical and Theoretical Research”. In: Human Mental Workload.
Ed. by Peter A. Hancock and Najmedin Meshkati. Vol. 52. Advances in Psychology.
North-Holland, 1988, pp. 139–183. doi: https://doi.org/10.1016/S0166-4115(08)
62386-9 (cit. on p. 95).

https://doi.org/10.18637/jss.v031.i07
https://doi.org/https://doi.org/10.1109/ASE.2019.00079
https://digital.wpi.edu/downloads/2f75r821k
https://doi.org/https://doi.org/10.1016/S0166-4115(08)62386-9
https://doi.org/https://doi.org/10.1016/S0166-4115(08)62386-9

BIBLIOGRAPHY 114

[76] Matthew Hausknecht and et al. “Half Field Offense: An Environment for Multia-
gent Learning and Ad Hoc Teamwork”. In: AAMAS Adaptive Learning Agents (ALA)
Workshop. Singapore, 2016 (cit. on p. 85).

[77] M.G. Helander. The Handbook of Human-Computer Interaction. Elsevier Science,
2014 (cit. on p. 8).

[78] Mark Hendrikx and et al. “Procedural content generation for games: A survey”. In:
ACM Transactions on Multimedia Computing, Communications, and Applications.
Vol. 9. 2013 (cit. on p. 84).

[79] Matthew D. Hoffman and Andrew Gelman. “The No-U-turn sampler: adaptively set-
ting path lengths in Hamiltonian Monte Carlo”. In: J. Mach. Learn. Res. 15.1 (2014),
pp. 1593–1623 (cit. on p. 73).

[80] Steven Holtzen, Guy Van den Broeck, and Todd D. Millstein. “Dice: Compiling Dis-
crete Probabilistic Programs for Scalable Inference”. In: Object-Oriented Program-
ming, Systems, Languages & Applications (OOPSLA) (2020) (cit. on p. 73).

[81] Ling Huang, Anthony D. Joseph, Blaine Nelson, Benjamin I.P. Rubinstein, and J. D.
Tygar. “Adversarial Machine Learning”. In: Proceedings of the 4th ACM Workshop on
Security and Artificial Intelligence. AISec ’11. Chicago, Illinois, USA: Association for
Computing Machinery, 2011, pp. 43–58. isbn: 9781450310031. doi: 10.1145/2046684.
2046692 (cit. on pp. 1, 7).

[82] Discord Inc. Discord. 2020. url: https://discord.com (cit. on p. 93).

[83] Ananya Ipsita, Levi Erickson, Yangzi Dong, Joey Huang, Alexa K Bushinski, Sraven
Saradhi, Ana M Villanueva, Kylie A Peppler, Thomas S Redick, and Karthik Ramani.
“Towards Modeling of Virtual Reality Welding Simulators to Promote Accessible and
Scalable Training”. In: Computer Human Interaction (CHI) Conference on Human
Factors in Computing Systems. 2022 (cit. on p. 103).

[84] Mads Moller Jensen, Majken K. Rasmussen, and Kaj Gronbaek. “Design Sensitivities
for Interactive Sport-Training Games”. In: Designing Interactive Systems (DIS). 2014
(cit. on p. 103).

[85] Matthew Johnson-Roberson, Charles Barto, Rounak Mehta, Sharath N. Sridhar, Karl
Rosaen, and Ram Vasudevan. “Driving in the Matrix: Can Virtual Worlds Replace
Human-Generated Annotations for Real World Tasks?” In: International Conference
on Robotics and Automation (ICRA) (2017) (cit. on p. 71).

[86] Eric Jones, Travis Oliphant, Pearu Peterson, and et al. SciPy: Open source scientific
tools for Python. 2001. url: http://www.scipy.org/ (cit. on p. 94).

[87] Niels Justesen, Ruben Rodriguez Torrado, Philip Bontrager, Ahmed Khalifa, Julian
Togelius, and Sebastian Risi. “Illuminating generalization in deep reinforcement learn-
ing through procedural level generation”. In: Neural Information Processing (NeuriPS)
Workshop on Deep Reinforcement Learning (2018) (cit. on p. 84).

https://doi.org/10.1145/2046684.2046692
https://doi.org/10.1145/2046684.2046692
https://discord.com
http://www.scipy.org/

BIBLIOGRAPHY 115

[88] Been Kim, Martin Wattenberg, Justin Gilmer, Carrie J. Cai, James Wexler, Fernanda
B. Viégas, and Rory Sayres. “Interpretability Beyond Feature Attribution: Quantita-
tive Testing with Concept Activation Vectors (TCAV).” In: ICML. Ed. by Jennifer G.
Dy and Andreas Krause. Vol. 80. Proceedings of Machine Learning Research. PMLR,
2018, pp. 2673–2682. url: http://dblp.uni-trier.de/db/conf/icml/icml2018.html#
KimWGCWVS18 (cit. on p. 40).

[89] Edward Kim, Divya Gopinath, Corina Pasareanu, and Sanjit Seshia. “A Program-
matic and Semantic Approach to Explaining and Debugging Neural Network Based
Object Detectors”. In: Conference on Computer Vision and Pattern Recognition.
IEEE, 2020, pp. 11125–11134. doi: 10.1109/CVPR42600.2020.01114 (cit. on pp. 8,
17, 28).

[90] Edward Kim, Zachary Pardos, Sanjit Seshia, and Bjoern Hartmann. “A principled
intelligent occupational training of psychomotor skills in virtual reality”. In: University
of California, Berkeley, Technical Report No. UCB/EECS-2023-17. 2023. url: https:
//www2.eecs.berkeley.edu/Pubs/TechRpts/2023/EECS-2023-17.html (cit. on pp. 8,
86).

[91] Edward Kim, Jay Shenoy, Sebastian Junges, Daniel J Fremont, Alberto Sangiovanni-
Vincentelli, and Sanjit A Seshia. “Querying Labelled Data with Scenario Programs
for Sim-to-Real Validation”. In: International Conference on Cyber Physical Systems
(ICCPS) (2022) (cit. on p. 8).

[92] S. Kirkpatrick, JR. C. D. Gelatt, and M. P. Vecchi. “Optimization by Simulated
Annealing”. In: Science (1983) (cit. on p. 16).

[93] LLC Kisling Nestico & Redick. Self-driving Car Accident Statistics. 2022. url: https:
//www.knrlegal.com/car-accident-lawyer/self-driving-car-accident-statistics/ (cit.
on p. 1).

[94] Ron Koymans. “Specifying real-time properties with metric temporal logic”. In: Real-
time systems 2.4 (1990), pp. 255–299 (cit. on p. 48).

[95] Friedrich Kruber, Jonas Wurst, and Michael Botsch. “An Unsupervised Random For-
est Clustering Technique for Automatic Traffic Scenario Categorization”. In: 21st In-
ternational Conference on Intelligent Transportation Systems (ITSC) (2018) (cit. on
p. 55).

[96] Alp Kucukelbir, Rajesh Ranganath, Andrew Gelman, and David M. Blei. “Automatic
Variational Inference in Stan”. In: Neural Information Processing Systems(NIPS).
2015 (cit. on p. 73).

[97] Alp Kucukelbir, Dustin Tran, Rajesh Ranganath, Andrew Gelman, and David M.
Blei. “Automatic Differentiation Variational Inference”. In: J. Mach. Learn. Res. 18
(2017), 14:1–14:45 (cit. on p. 73).

[98] Volodymyr Kuleshov and Doina Precup. “Algorithms for the multi-armed bandit
problem”. In: Journal of Machine Learning Research (2000) (cit. on p. 22).

http://dblp.uni-trier.de/db/conf/icml/icml2018.html#KimWGCWVS18
http://dblp.uni-trier.de/db/conf/icml/icml2018.html#KimWGCWVS18
https://doi.org/10.1109/CVPR42600.2020.01114
https://www2.eecs.berkeley.edu/Pubs/TechRpts/2023/EECS-2023-17.html
https://www2.eecs.berkeley.edu/Pubs/TechRpts/2023/EECS-2023-17.html
https://www.knrlegal.com/car-accident-lawyer/self-driving-car-accident-statistics/
https://www.knrlegal.com/car-accident-lawyer/self-driving-car-accident-statistics/

BIBLIOGRAPHY 116

[99] T. Kulkarni, P. Kohli, J. B. Tenenbaum, and V. K. Mansinghka. “Picture: A prob-
abilistic programming language for scene perception”. In: Conference on Computer
Vision and Pattern Recognition (CVPR) (2015), pp. 4390–4399 (cit. on p. 4).

[100] T. Kulkarni, P. Kohli, J. B. Tenenbaum, and V. K. Mansinghka. “Quicksand: A
lightweight embedding of probabilistic programming for procedural modeling and
design”. In: Neural Information Processing Systems (NeuriPS) Workshop on Proba-
bilistic Programming (2014) (cit. on p. 4).

[101] Rohit Kundu. F1 Score in Machine Learning: Intro and Calculation. 2022. url: https:
//www.v7labs.com/blog/f1-score-guide (cit. on p. 34).

[102] Karol Kurach, Anton Raichuk, Piotr Stańczyk, Michał Zając, Olivier Bachem, Lasse
Espeholt, Carlos Riquelme, Damien Vincent, Marcin Michalski, Olivier Bousquet, et
al. “Google research football: A novel reinforcement learning environment”. In: AAAI
Conference on Artificial Intelligence. 2020 (cit. on pp. 80, 81, 147).

[103] Leslie Lamport. “What Good is Temporal Logic?” In: Information Processing (1983)
(cit. on p. 15).

[104] Virtual Reality Master League. EchoArena VR Master League. Statistics on the num-
ber of participants can be found by clicking “Extra” tab and then “Statistics”. Last
Accessed August 10th, 2023. 2022. url: https ://vrmasterleague .com/EchoArena
(cit. on p. 93).

[105] Carol D. Lee. An Introduction to Vygotsky. London: Routledge, 2005. Chap. Signifying
in the zone of proximal development (cit. on p. 91).

[106] Kimin Lee, Kibok Lee, Jinwoo Shin, and Honglak Lee. “Network randomization: A
simple technique for generalization in deep reinforcement learning”. In: International
Conference on Learning Representations. 2020 (cit. on p. 75).

[107] Kimin Lee, Younggyo Seo, Seunghyun Lee, Honglak Lee, and Jinwoo Shin. “Context-
aware dynamics model for generalization in model-based reinforcement learning”. In:
International Conference on Machine Learning. 2020 (cit. on pp. 75, 84).

[108] R. Likert. “A technique for the measurement of attitudes”. In: Archives of Psychology
22.140 (1932) (cit. on p. 89).

[109] Ming-Yu Liu, Xun Huang, and Jiahui Yu. “Diffusion Models: A Comprehensive Survey
of Methods and Applications”. In: arxiv:2209.00796. 2023 (cit. on p. 4).

[110] Ming-Yu Liu, Xun Huang, and Jiahui Yu. “Generative Adversarial Networks for Image
and Video Synthesis: Algorithms and Applications”. In: Proceedings of the IEEE. 2021,
pp. 1–24 (cit. on p. 4).

[111] Rosemary Luckin. “Designing children’s software to ensure productive interactivity
through collaboration in the zone of proximal development (ZPD)”. In: Information
Technology in Childhood Education Annual 2001.1 (2001), pp. 57–85 (cit. on p. 91).

https://www.v7labs.com/blog/f1-score-guide
https://www.v7labs.com/blog/f1-score-guide
https://vrmasterleague.com/EchoArena

BIBLIOGRAPHY 117

[112] Martin Ludvigsen, Maiken Hillerup Fogtmann, and Kaj Gronbaek. “TacTowers: An
Interactive Training Equipment for Elite Athletes”. In: Designing Interactive Systems
(DIS). 2010 (cit. on pp. 86, 103).

[113] Scott M Lundberg and Su-In Lee. “A Unified Approach to Interpreting Model Predic-
tions”. In: Advances in Neural Information Processing Systems 30. Ed. by I. Guyon,
U. V. Luxburg, S. Bengio, H. Wallach, R. Fergus, S. Vishwanathan, and R. Garnett.
Curran Associates, Inc., 2017, pp. 4765–4774. url: http://papers.nips.cc/paper/
7062-a-unified-approach-to-interpreting-model-predictions.pdf (cit. on p. 40).

[114] Marlos Machado, Marc Bellemare, Erik Talvitie, Joel Veness, Matthew Hausknecht,
and Michael Bowling. “Revisiting the arcade learning environment: Evaluation pro-
tocols and open problems for general agents”. In: Journal of Artificial Intelligence
Research 61 (2018), pp. 523–562 (cit. on p. 84).

[115] Rupak Majumdar, Aman Mathur, Marcus Pirron, Laura Stegner, and Damien Zuf-
ferey. “PARACOSM: A Test Framework for Autonomous Driving Simulations”. In:
Fundamental Approaches to Software Engineering (2019) (cit. on pp. 4, 5).

[116] Oded Maler and Dejan Nickovic. “Monitoring temporal properties of continuous sig-
nals”. In: Proc. FORMATS. 2004 (cit. on p. 21).

[117] Sharad Malik and Lintao Zhang. “Boolean Satisfiability: From Theoretical Hardness
to Practical Success”. In: Communications of the ACM. Vol. 52. 2009, pp. 76–82 (cit.
on p. 59).

[118] Moritz Menze and Andreas Geiger. “Object Scene Flow for Autonomous Vehicles”.
In: Conference on Computer Vision and Pattern Recognition (CVPR). 2015 (cit. on
p. 58).

[119] B. Milch, B. Marthi, and S. Russell. “Blog: Relational modeling with unknown ob-
jects”. In: ICML workshop on statistical relational learning and its connections to
other fields (2004), pp. 67–73 (cit. on p. 4).

[120] Philipp Moritz, Robert Nishihara, Stephanie Wang, Alexey Tumanov, Richard Liaw,
Eric Liang, William Paul, Michael I. Jordan, and Ion Stoica. “Ray: A Distributed
Framework for Emerging AI Applications”. In: CoRR abs/1712.05889 (2017). arXiv:
1712.05889. url: http://arxiv.org/abs/1712.05889 (cit. on p. 20).

[121] Tong Mu, Shuhan Wang, Erik Andersen, and Emma Brunskill. “Automatic Adap-
tive Sequencing in a Webgame”. In: International Conference on Intelligent Tutoring
Systems (ITS). 2021 (cit. on p. 103).

[122] Multi-application robots usher in the future of how facilities are cleaned. 2021. url:
https ://www. ishn.com/articles/113139-multi - application- robots - usher - in - the-
future-of-how-facilities-are-cleaned (cit. on p. 1).

[123] Luis Munoz-Saavedra, Lourdes Miro-Amarante, and Manuel Dominguez-Morales. “Aug-
mented and Virtual Reality Evolution and Future Tendency”. In: Journal of Applied
Sciences. 2020 (cit. on pp. 7, 8).

http://papers.nips.cc/paper/7062-a-unified-approach-to-interpreting-model-predictions.pdf
http://papers.nips.cc/paper/7062-a-unified-approach-to-interpreting-model-predictions.pdf
https://arxiv.org/abs/1712.05889
http://arxiv.org/abs/1712.05889
https://www.ishn.com/articles/113139-multi-application-robots-usher-in-the-future-of-how-facilities-are-cleaned
https://www.ishn.com/articles/113139-multi-application-robots-usher-in-the-future-of-how-facilities-are-cleaned

BIBLIOGRAPHY 118

[124] Zak Murez, Soheil Kolouri, David Kriegman, Ravi Ramamoorthi, and Kyungnam
Kim. “Image to Image Translation for Domain Adaptation”. In: Computer Vision
and Pattern Recognition (CVPR) (2018) (cit. on p. 71).

[125] W. G. Najm, S. Toma, J. Brewer, et al. “Depiction of priority lightvehicle pre-crash
scenarios for safety applications based on vehicleto-vehicle communications”. In: Na-
tional Highway Traffic Safety Administration (NHTSA) (2013) (cit. on p. 55).

[126] Laurentiu-Marian Neagu, Eric Rigaud, Vincent Guarnieri, Mihai Dascalu, and Se-
bastien Travadel. “Selfit v2 – Challenges Encountered in Building a Psychomotor
Intelligent Tutoring System”. In: International Conference on Intelligent Tutoring
Systems (ITS). 2022 (cit. on p. 102).

[127] NHTSA. Automated Driving Systems. https://www.nhtsa.gov/vehicle-manufacturers/
automated-driving-systems. Accessed: 2021-09-02. 2021 (cit. on pp. 24, 125, 126).

[128] Alex Nichol, Vicki Pfau, Christopher Hesse, Oleg Klimov, and John Schulman. “Gotta
learn fast: A new benchmark for generalization in RL”. In: arXiv:1804.03720 (2018)
(cit. on p. 84).

[129] Aditya Nori, Chung-Kil Hur, Sriram Rajamani, and Selva Samuel. “R2: An Efficient
MCMC Sampler for Probabilistic Programs”. In: Association for the Advancement of
Artificial Intelligence (AAAI). AAAI Press, 2014, pp. 2476–2482 (cit. on p. 73).

[130] Hawkar Oagaz, Breawn Schoun, and Min-Hyung Choi. “Performance Improvement
and Skill Transfer in Table Tennis Through Training in Virtual Reality”. In: IEEE
Transactions on Visualization and Computer Graphics. Vol. 28. 12. 2022 (cit. on
p. 86).

[131] Xinlei Pan, Yurong You, Ziyan Wang, and Cewu Lu. “Virtual to Real Reinforcement
Learning for Autonomous Driving”. In: Proceedings of the British Machine Vision
Conference (BMVC) (2017) (cit. on p. 71).

[132] Zhongang Qi, Saeed Khorram, and Fuxin Li. “Visualizing Deep Networks by Opti-
mizing with Integrated Gradients”. In: The IEEE Conference on Computer Vision
and Pattern Recognition (CVPR) Workshops. 2019 (cit. on p. 40).

[133] Xin Qin, Nikos Aréchiga, Andrew Best, and Jyotirmoy V. Deshmukh. “Automatic
Testing and Falsification with Dynamically Constrained Reinforcement Learning”. In:
CoRR abs/1910.13645 (2019). arXiv: 1910.13645. url: http://arxiv.org/abs/1910.
13645 (cit. on p. 27).

[134] J. Ross Quinlan. “Induction of decision trees”. In: Machine learning 1.1 (1986), pp. 81–
106 (cit. on p. 30).

[135] Zahra Ramezani, Johan Lidén Eddeland, Koen Claessen, Martin Fabian, and Knut
Åkesson. “Multiple objective functions for falsification of cyber-physical systems”. In:
IFAC-PapersOnLine 53.4 (2020), pp. 417–422 (cit. on p. 27).

https://www.nhtsa.gov/vehicle-manufacturers/automated-driving-systems
https://www.nhtsa.gov/vehicle-manufacturers/automated-driving-systems
https://arxiv.org/abs/1910.13645
http://arxiv.org/abs/1910.13645
http://arxiv.org/abs/1910.13645

BIBLIOGRAPHY 119

[136] Benjamin Recht, Rebecca Roelofs, Ludwig Schmidt, and Vaishaal Shankar. “Do Ima-
geNet Classifiers Generalize to ImageNet?” In: International Conference on Machine
Learning (ICML) (2019) (cit. on p. 105).

[137] K. Ann Renninger and Alexandra List. “Scaffolding for Learning”. In: Encyclopedia
of the Sciences of Learning (2012), pp. 2922–2926 (cit. on p. 101).

[138] Marco Túlio Ribeiro, Sameer Singh, and Carlos Guestrin. Anchor Method Repository.
https://github.com/marcotcr/anchor (cit. on p. 34).

[139] Marco Túlio Ribeiro, Sameer Singh, and Carlos Guestrin. “Anchors: High-Precision
Model-Agnostic Explanations”. In: Proceedings of the Thirty-Second AAAI Confer-
ence on Artificial Intelligence, New Orleans, Louisiana, USA, February 2-7, 2018.
2018, pp. 1527–1535. url: https://www.aaai.org/ocs/index.php/AAAI/AAAI18/
paper/view/16982 (cit. on p. 30).

[140] Daniel Richardson. “Some Undecidable Problems Involving Elementary Functions of
a Real Variable”. In: J. Symb. Log. 33.4 (1968), pp. 514–520 (cit. on p. 59).

[141] Ride with Waymo One. https://waymo.com/waymo- one/. Last Accessed August
10th, 2023 (cit. on p. 1).

[142] Steven Ritter, John R. Anderson, Kenneth R. Koedinger, and Albert Corbett. “Cog-
nitive Tutor: Applied research in mathematics education”. In: Psychonomic Bulletin
and Review. Vol. 14. 2007, pp. 249–255 (cit. on pp. 87, 90).

[143] C. Roesener, F. Fahrenkrog, A. Uhlig, and L. Eckstein. “A scenario-based assessment
approach for automated driving by using time series classification of human-driving
behaviour”. In: IEEE 19th International Conference on Intelligent Transportation Sys-
tems (ITSC) (2016) (cit. on p. 55).

[144] Guodong Rong, Byung Hyun Shin, Hadi Tabatabaee, Qiang Lu, Steve Lemke, Mārtin, š
Možeiko, Eric Boise, Geehoon Uhm, Mark Gerow, Shalin Mehta, Eugene Agafonov,
Tae Hyung Kim, Eric Sterner, Keunhae Ushiroda, Michael Reyes, Dmitry Zelenkovsky,
and Seonman Kim. “LGSVL Simulator: A High Fidelity Simulator for Autonomous
Driving”. In: 2020 IEEE 23rd International Conference on Intelligent Transportation
Systems (ITSC). 2020, pp. 1–6. doi: 10.1109/ITSC45102.2020.9294422 (cit. on pp. 26,
47).

[145] G. Van Rossum and F. L. Drake. Python 3 Reference Manual. Scotts Valley, CA:
CreateSpace, 2009. isbn: 1441412697 (cit. on p. 90).

[146] Dorsa Sadigh. “Safe and Interactive Autonomy: Control, Learning, and Verification”.
In: University of California, Berkeley, Technical Report No. UCB/EECS-2017-143.
2017. url: http ://www2.eecs .berkeley.edu/Pubs/TechRpts/2017/EECS- 2017-
143.pdf (cit. on p. 106).

[147] Mikayel Samvelyan and et al. “The StarCraft Multi-Agent Challenge”. In: Workshop
on Deep Reinforcement Learning at the 33rd Conference on Neural Information Pro-
cessing Systems. 2019 (cit. on p. 85).

https://github.com/marcotcr/anchor
https://www.aaai.org/ocs/index.php/AAAI/AAAI18/paper/view/16982
https://www.aaai.org/ocs/index.php/AAAI/AAAI18/paper/view/16982
https://waymo.com/waymo-one/
https://doi.org/10.1109/ITSC45102.2020.9294422
http://www2.eecs.berkeley.edu/Pubs/TechRpts/2017/EECS-2017-143.pdf
http://www2.eecs.berkeley.edu/Pubs/TechRpts/2017/EECS-2017-143.pdf

BIBLIOGRAPHY 120

[148] Sriram Sankaranarayanan and Georgios Fainekos. “Falsification of Temporal Prop-
erties of Hybrid Systems Using the Cross-Entropy Method”. In: Proceedings of the
15th ACM International Conference on Hybrid Systems: Computation and Control.
HSCC ’12. Beijing, China: Association for Computing Machinery, 2012, pp. 125–134.
isbn: 9781450312202. doi: 10.1145/2185632.2185653. url: https://doi.org/10.1145/
2185632.2185653 (cit. on pp. 16, 24).

[149] M. Schijven and J. Jakimowicz. “Virtual reality surgical laparoscopic simulators”. In:
Surgical Endoscopy And Other Interventional Techniques. 2003 (cit. on p. 103).

[150] John Schulman, Filip Wolski, Prafulla Dhariwal, Alec Radford, and Oleg Klimov.
“Proximal policy optimization algorithms”. In: arXiv preprint arXiv:1707.06347 (2017)
(cit. on p. 80).

[151] Scratchapixel. Ray Tracing: Rendering a Triangle. https : / / www . scratchapixel .
com/ lessons/3d - basic - rendering/ ray - tracing - rendering - a - triangle /barycentric -
coordinates. Last Access: 2021-10-23. 2021 (cit. on p. 134).

[152] Hazem Torfah abd Sebastian Junges, Daniel J Fremont, and Sanjit A Seshia. “Formal
analysis of AI-based autonomy: from modeling to runtime assurance”. In: Interna-
tional Conference on Runtime Verification (2021) (cit. on p. 17).

[153] Ramprasaath R. Selvaraju, Michael Cogswell, Abhishek Das, Ramakrishna Vedan-
tam, Devi Parikh, and Dhruv Batra. “Grad-CAM: Visual Explanations from Deep
Networks via Gradient-Based Localization”. In: IEEE International Conference on
Computer Vision, ICCV 2017, Venice, Italy, October 22-29, 2017. 2017, pp. 618–626.
doi: 10.1109/ICCV.2017.74. url: https://doi.org/10.1109/ICCV.2017.74 (cit. on
p. 40).

[154] Younggyo Seo, Kimin Lee, Ignasi Clavera, Thanard Kurutach, Jinwoo Shin, and Pieter
Abbeel. “Trajectory-wise Multiple Choice Learning for Dynamics Generalization in
Reinforcement Learning”. In: Neural Information Processing Systems (2020) (cit. on
p. 84).

[155] Sanjit Seshia, Ruzena Bajcsy, Thomas Griffiths, Bjoern Hartmann, Shankar Sastry,
Richard Murray, Claire Tomlin, and Cynthia Sturton. VehiCal: Verified Human In-
terfaces, Control, and Learning for Semi-Autonomous Systems. https://vehical.org/.
Last Accessed August 11th, 2023 (cit. on pp. 9, 86).

[156] Sanjit A. Seshia, Dorsa Sadigh, and S. Shankar Sastry. “Toward Verified Artificial
Intelligence”. In: Communications of the ACM 65.7 (2022) (cit. on pp. 1, 3).

[157] Ka-Chun Siu, Bradley J. Best, Jong Wook Kim, Dmitry Oleynikov, and Frank E.
Ritter. “Adaptive Virtual Reality Training to Optimize Military Medical Skills Ac-
quisition and Retention”. In: Military Medicine. Vol. 181. 2016, pp. 214–220 (cit. on
p. 102).

https://doi.org/10.1145/2185632.2185653
https://doi.org/10.1145/2185632.2185653
https://doi.org/10.1145/2185632.2185653
https://www.scratchapixel.com/lessons/3d-basic-rendering/ray-tracing-rendering-a-triangle/barycentric-coordinates
https://www.scratchapixel.com/lessons/3d-basic-rendering/ray-tracing-rendering-a-triangle/barycentric-coordinates
https://www.scratchapixel.com/lessons/3d-basic-rendering/ray-tracing-rendering-a-triangle/barycentric-coordinates
https://doi.org/10.1109/ICCV.2017.74
https://doi.org/10.1109/ICCV.2017.74
https://vehical.org/

BIBLIOGRAPHY 121

[158] Daniel Smilkov, Nikhil Thorat, Been Kim, Fernanda B. Viégas, and Martin Watten-
berg. “SmoothGrad: removing noise by adding noise”. In: International Conference
on Machine Learning (ICML) Workshop on Visualization for Deep Learning (2017)
(cit. on p. 40).

[159] GoMentum Station. https://gomentumstation.net/. Last Accessed August 10th, 2023
(cit. on p. 46).

[160] Douglas. Steinley. “K-means clustering: A half-century synthesis”. In: British Journal
of Mathematical and Statistical Psychology (2010) (cit. on p. 16).

[161] Peter Stone and et al. “Keepaway Soccer: From Machine Learning Testbed to Bench-
mark”. In: RoboCup 2005: Robot Soccer World Cup IX. Berlin, Heidelberg: Springer
Berlin Heidelberg, 2006, pp. 93–105 (cit. on p. 85).

[162] Kenneth J. Stroud, Deborah L. Harm, and David M. Klaus. “Preflight Virtual Reality
Training as a Countermeasure for Space Motion Sickness and Disorientation”. In:
Aviation, Space, and Environmental Medicine. Vol. 76. 2005, pp. 352–356 (cit. on
p. 86).

[163] Pei Sun, Henrik Kretzschmar, Xerxes Dotiwalla, Aurelien Chouard, Vijaysai Patnaik,
Paul Tsui, James Guo, Yin Zhou, Yuning Chai, Benjamin Caine, Vijay Vasudevan,
Wei Han, Jiquan Ngiam, Hang Zhao, Aleksei Timofeev, Scott Ettinger, Maxim Kri-
vokon, Amy Gao, Aditya Joshi, Sheng Zhao, Shuyang Cheng, Yu Zhang, Jonathon
Shlens, Zhifeng Chen, and Dragomir Anguelov. “Scalability in Perception for Au-
tonomous Driving: Waymo Open Dataset”. In: Conference on Computer Vision and
Pattern Recognition (CVPR). 2020 (cit. on p. 58).

[164] Mukund Sundararajan, Ankur Taly, and Qiqi Yan. “Axiomatic Attribution for Deep
Networks”. In: International Conference on Machine Learning (ICML) (2017). url:
http://arxiv.org/abs/1703.01365 (cit. on p. 40).

[165] Richard S Sutton and Andrew G Barto. Reinforcement learning: An introduction.
MIT Press, 2018 (cit. on pp. 7, 77).

[166] Daniel Szafir and Bilge Mutlu. “ARTFuL: Adaptive Review Technology for Flipped
Learning”. In: Conference on Human Factors in Computing Systems (CHI). 2013 (cit.
on p. 99).

[167] Albert T.Corbett, Kenneth R.Koedinger, and John R.Anderson. “Intelligent Tutoring
Systems”. In: Handbook of Human-Computer Interaction (2nd Edition). 1997, pp. 849–
874 (cit. on pp. 87, 103).

[168] Richard Tang, Xing-Dong Yang, Scott Bateman, Joaquim Jorge, and Anthony Tang.
“Physio@Home: Exploring Visual Guidance and Feedback Techniques for Physiother-
apy Exercises”. In: Computer Human Interaction (CHI) Conference on Human Fac-
tors in Computing Systems. 2015 (cit. on p. 103).

https://gomentumstation.net/
http://arxiv.org/abs/1703.01365

BIBLIOGRAPHY 122

[169] Insider Tech. Robots Could Be Coming To An Airport Near You. https : / /www.
youtube.com/watch?v=CVqAPK9f3R4. Last Accessed August 10th, 2023. 2017 (cit.
on p. 1).

[170] Terry Therneau, Beth Atkinson, and Brian Ripley. rpart: Recursive Partitioning
and Regression Trees. Version 0.20.2. Feb. 19, 2010. url: https : / / github . com /
bethatkinson/rpart (cit. on p. 34).

[171] E. Thorp, K. Kording, and F. Mussa-Ivaldi. “Using noise to shape motor learning”.
In: Journal of Neurophysiology (2017) (cit. on pp. 86, 102).

[172] D. Tran, M. D. Hoffman, Rif A. Saurous, Eugene Brevdo, Kevin Murphy, and David
M. Blei. “Deep Probabilistic Programming”. In: International Conference on Learning
Representations(ICLR). 2017 (cit. on p. 73).

[173] Ching-Yi Tsai, I-Lun Tsai, Chao-Jung Lai, Derrek Chow, Lauren Wei, Lung-Pan
Cheng, and Mike Y. Chen. “AirRacket: Perceptual Design of Ungrounded, Directional
Force Feedback to Improve Virtual Racket Sports Experiences”. In: Computer Human
Interaction (CHI) Conference on Human Factors in Computing Systems. 2022 (cit. on
p. 103).

[174] Dishita Turakhia, Yini Qi, Lotta-Gili Blumberg, Andrew Wong, and Stefanie Mueller.
“Can Physical Tools that Adapt their Shape based on a Learner’s Performance Help in
Motor Skill Training?” In: Designing Interactive Systems (DIS). 2021 (cit. on pp. 86,
102).

[175] Dishita Turakhia, Andrew Wong, Yini Qi, Lotta-Gili Blumberg, Yoonji Kim, and
Stefanie Mueller. “Adapt2Learn: A Toolkit for Configuring the Learning Algorithm for
Adaptive Physical Tools for Motor-Skill Learning”. In: Designing Interactive Systems
(DIS). 2021 (cit. on pp. 86, 102).

[176] Dishita Turakhia, Andrew Wong, Yini Qi, Lotta-Gili Blumberg, Yoonji Kim, and Ste-
fanie Mueller. “Designing Adaptive Tools for Motor Skill Training”. In: User Interface
Software and Technology (UIST) Adjunct. 2021 (cit. on pp. 86, 102).

[177] Alberto Uriarte and Santiago Ontanon. “A Benchmark for StarCraft Intelligent Agents”.
In: Proceedings of the AAAI Conference on Artificial Intelligence and Interactive Dig-
ital Entertainment. Vol. 11. 2. 2021, pp. 22–28. url: https://ojs.aaai.org/index.php/
AIIDE/article/view/12810 (cit. on p. 85).

[178] Marijke Vandermasesen, Tom De Weyer, Peter Feys, Kris Luyten, and Karin Coninx.
“Integrating Serious Games and Tangible Objects for Functional Handgrip Training:
A User Study of Handly in Persons with Multiple Sclerosis”. In: Designing Interactive
Systems (DIS). 2016 (cit. on p. 102).

[179] Marcell Vazquez-Chanlatte. “Specifications from Demonstrations: Learning, Teach-
ing, and Control”. In: University of California, Berkeley, Technical Report No. UCB/
EECS-2022-107. 2022. url: http://www2.eecs.berkeley.edu/Pubs/TechRpts/2022/
EECS-2022-107.pdf (cit. on p. 106).

https://www.youtube.com/watch?v=CVqAPK9f3R4
https://www.youtube.com/watch?v=CVqAPK9f3R4
https://github.com/bethatkinson/rpart
https://github.com/bethatkinson/rpart
https://ojs.aaai.org/index.php/AIIDE/article/view/12810
https://ojs.aaai.org/index.php/AIIDE/article/view/12810
http://www2.eecs.berkeley.edu/Pubs/TechRpts/2022/EECS-2022-107.pdf
http://www2.eecs.berkeley.edu/Pubs/TechRpts/2022/EECS-2022-107.pdf

BIBLIOGRAPHY 123

[180] Laia Turmo Vidal, Elena Marquez Segura, and Annika Waern. “Movement Correc-
tion in Instructed Fitness Training: Design Recommendations and Opportunities”. In:
Designing Interactive Systems (DIS). 2018 (cit. on p. 103).

[181] Oriol Vinyals, Timo Ewalds, Sergey Bartunov, Petko Georgiev, Alexander Sasha
Vezhnevets, Michelle Yeo, Alireza Makhzani, Heinrich Küttler, John Agapiou, Julian
Schrittwieser, John Quan, Stephen Gaffney, Stig Petersen, Karen Simonyan, Tom
Schaul, Hado van Hasselt, David Silver, Timothy Lillicrap, Kevin Calderone, Paul
Keet, Anthony Brunasso, David Lawrence, Anders Ekermo, Jacob Repp, and Rod-
ney Tsing. StarCraft II: A New Challenge for Reinforcement Learning. 2017. arXiv:
1708.04782 (cit. on p. 85).

[182] Kesav Viswanadha, Francis Indaheng, Justin Wong, Edward Kim, Ellen Kalvan, Yash
Pant, Daniel J Fremont, and Sanjit A Seshia. “Addressing the IEEE AV Test Chal-
lenge with Scenic and VerifAI”. In: IEEE International Conference on Artificial In-
telligence Testing (cit. on p. 27).

[183] Kesav Viswanadha, Edward Kim, Francis Indaheng, Daniel J. Fremont, and Sanjit
A. Seshia. “Parallel and Multi-Objective Falsification with Scenic and VerifAI”. In:
International Conference on Runtime Verification (2021) (cit. on pp. 8, 17, 19).

[184] Mei Wang and Weihong Deng. “Deep visual domain adaptation: A survey”. In: Neu-
rocomputing 312 (2018), pp. 135–153. issn: 0925-2312. doi: https://doi.org/10.1016/
j.neucom.2018.05.083 (cit. on pp. 43, 71, 105).

[185] Peng Wang, Xinyu Huang, Xinjing Cheng, Dingfu Zhou, Qichuan Geng, and Ruigang
Yang. “The apolloscape open dataset for autonomous driving and its application”. In:
IEEE transactions on pattern analysis and machine intelligence (2019) (cit. on p. 58).

[186] Shuhan Wang, Fang He, and Erik Andersen. “A Unified Framework for Knowledge
Assessment and Progression Analysis and Design”. In: Computer Human Interactions
Conference on Human Factors in Computing Systems (CHI). 2017 (cit. on p. 103).

[187] Benjamin Weyers, Judy Bowen, Alan Dix, and Philippe Palanque. The Handbook of
Formal Methods in Human-Computer Interaction. Springer, 2017 (cit. on p. 8).

[188] Matthew Wicker, Xiaowei Huang, and Marta Kwiatkowska. “Feature-Guided Black-
Box Safety Testing of Deep Neural Networks”. In: Tools and Algorithms for the Con-
struction and Analysis of Systems (TACAS). 2018, pp. 408–426. doi: 10.1007/978-3-
319-89960-2_22 (cit. on p. 40).

[189] David Wingate and Theophane Weber. “Automated Variational Inference in Proba-
bilistic Programming”. In: CoRR abs/1301.1299 (2013). arXiv: 1301.1299. url: http:
//arxiv.org/abs/1301.1299 (cit. on p. 73).

[190] Hermann Winner, Karsten Lemmer, Thomas Form, and Jens Mazzega. “PEGASUS—
First Steps for the Safe Introduction of Automated Driving”. In: Road Vehicle Au-
tomation 5. Ed. by Gereon Meyer and Sven Beiker. Cham: Springer International
Publishing, 2019, pp. 185–195. isbn: 978-3-319-94896-6 (cit. on p. 55).

https://arxiv.org/abs/1708.04782
https://doi.org/https://doi.org/10.1016/j.neucom.2018.05.083
https://doi.org/https://doi.org/10.1016/j.neucom.2018.05.083
https://doi.org/10.1007/978-3-319-89960-2_22
https://doi.org/10.1007/978-3-319-89960-2_22
https://arxiv.org/abs/1301.1299
http://arxiv.org/abs/1301.1299
http://arxiv.org/abs/1301.1299

BIBLIOGRAPHY 124

[191] Jeffrey Wishart, Steven Como, Maria Elli, Brendan Russo, Jack Weast, Niraj Altekar,
and Emmanuel James. “Driving Safety Performance Assessment Metrics for ADS-
Equipped Vehicles”. In: Apr. 2020. doi: 10.4271/2020-01-1206 (cit. on p. 20).

[192] Frank Wood, Jan Willem van de Meent, and Vikash Mansinghka. “A New Approach
to Probabilistic Programming Inference”. In: AISTATS. Vol. 33. JMLR Workshop
and Conference Proceedings. JMLR.org, 2014, pp. 1024–1032 (cit. on p. 73).

[193] Mikołaj P. Woźniak, Julia Dominiak, Michał Pieprzowski, and et al. “Subtletee: Aug-
menting Posture Awareness for Beginner Golfers”. In: Computer Human Interaction
(CHI) Conference on Human Factors in Computing Systems. 2020 (cit. on p. 103).

[194] Bichen Wu, Forrest N. Iandola, Peter H. Jin, and Kurt Keutzer. “SqueezeDet: Uni-
fied, Small, Low Power Fully Convolutional Neural Networks for Real-Time Object
Detection for Autonomous Driving”. In: Conference on Computer Vision and Pattern
Recognition Workshops. 2017, pp. 446–454. doi: 10.1109/CVPRW.2017.60 (cit. on
p. 32).

[195] H. G. Wu, Y. Miyamoto, L. Castro, B Olveczky, and M. Smith. “Temporal structure
of motor variability is dynamically regulated and predicts motor learning ability”. In:
Nature Neuroscience 17 (2014), pp. 312–321 (cit. on pp. 86, 102).

[196] Huijuan Xu and Kate Saenko. “Ask, Attend and Answer: Exploring Question-Guided
Spatial Attention for Visual Question Answering”. In: ECCV (7). Vol. 9911. Lecture
Notes in Computer Science. Springer, 2016, pp. 451–466 (cit. on p. 72).

[197] Fisher Yu, Haofeng Chen, Xin Wang, Wenqi Xian, Yingying Chen, Fangchen Liu,
Vashisht Madhavan, and Trevor Darrell. “BDD100K: A Diverse Driving Dataset for
Heterogeneous Multitask Learning”. In: Computer Vision and Pattern Recognition.
2020 (cit. on p. 58).

[198] Michael V. Yudelson, Kenneth R. Koedinger, and Geoffrey J. Gordon. “Individual-
ized Bayesian Knowledge Tracing Models”. In: International Conference on Artificial
Intelligence in Education (AIED). 2013 (cit. on pp. 87, 103).

[199] Amy Zhang, Yuxin Wu, and Joelle Pineau. “Natural environment benchmarks for
reinforcement learning”. In: arXiv preprint arXiv:1811.06032 (2018) (cit. on p. 84).

[200] Sicheng Zhao, Bo Li, Xiangyu Yue, Yang Gu, Pengfei Xu, Runbo Hu, Hua Chai,
and Kurt Keutzer. “Multi-source Domain Adaptation for Semantic Segmentation”.
In: Conference on Neural Information Processing Systems (NeurIPS) (2019) (cit. on
p. 71).

[201] Bolei Zhou, David Bau, Aude Oliva, and Antonio Torralba. “Interpreting Deep Visual
Representations via Network Dissection”. In: IEEE Transactions on Pattern Analysis
and Machine Intelligence (2017) (cit. on p. 40).

[202] Xin Zhou, Xiaodong Gou, Tingting Huang, and Shunkun Yang. “Review on Test-
ing of Cyber Physical Systems: Methods and Testbeds”. In: IEEE Access 6 (2018),
pp. 52179–52194. doi: 10.1109/ACCESS.2018.2869834 (cit. on p. 27).

https://doi.org/10.4271/2020-01-1206
https://doi.org/10.1109/CVPRW.2017.60
https://doi.org/10.1109/ACCESS.2018.2869834

125

Appendix A

Appendix for Chapter 3

For the experiment in Ch. 3, we selected seven scenarios from the list of pre-crash scenar-
ios described by the National Highway Traffic Safety Administration (NHTSA) [127]. The
following table describes the seven scenarios.

Scenario # Scenario Description Related NHTSA Pre-Crash
Scenario(s) [127]

1

The ego vehicle drives straight at a
4-way intersection and must

suddenly stop to avoid collision
when an adversary vehicle from an
oncoming parallel lane makes an

unprotected left turn.

Scenario 30: Left Turn Across Path,
Opposite Direction

2

The ego vehicle makes an
unprotected left turn at a 4-way

intersection and must suddenly stop
to avoid collision when an adversary
vehicle from an oncoming parallel

lane drives straight.

Scenario 30: Left Turn Across Path,
Opposite Direction

3
The ego vehicle performs a lane

change to bypass a leading vehicle
before returning to its original lane.

Scenario 14: Changing Lanes, Same
Direction

4
A trailing vehicle performs a lane
change to bypass the ego vehicle

before returning to its original lane.

Scenario 14: Changing Lanes, Same
Direction

Table A.1: Part I of Descriptions of 7 Scenarios Selected from NHTSA Pre-crash scenar-
ios [127] for the Experiments in Ch. 3

APPENDIX A. APPENDIX FOR CHAPTER 3 126

Scenario # Scenario Description Related NHTSA Pre-Crash
Scenario(s) [127]

5

The ego vehicle performs a lane
change to bypass a leading vehicle,
but cannot return to its original
lane because the leading vehicle

accelerates. The ego vehicle must
then slow down to avoid collision
with the leading vehicle in its new

lane.

Scenario 14: Changing Lanes, Same
Direction

Scenario 20: Rear-End, Striking
Maneuver

Scenario 22: Rear-End, Lead
Vehicle Moving

6
The ego vehicle must suddenly stop
to avoid collision when a pedestrian

crosses the road unexpectedly.

Scenario 10: Pedestrian, No
Maneuver

7

Both the ego vehicle and an
adversary vehicle must suddenly
stop to avoid collision when a
pedestrian crosses the road

unexpectedly.

Scenario 10: Pedestrian, No
Maneuver

Table A.2: Part II of Descriptions of 7 Scenarios Selected from NHTSA Pre-crash scenar-
ios [127] for the Experiments in Ch. 3

127

Appendix B

Appendix for Chapter 4

The following are the Scenic program # 2, 3, and 4 and RGB images rendered using the
programs.

Figure B.1: The Scenic program for Scenario #2

APPENDIX B. APPENDIX FOR CHAPTER 4 128

Figure B.2: An RGB image rendered using the program B.1 and GTA-V simulator

Figure B.3: The Scenic program for Scenario #3

APPENDIX B. APPENDIX FOR CHAPTER 4 129

Figure B.4: An RGB image rendered using the program B.3 and GTA-V simulator

Figure B.5: The Scenic program for Scenario #4

APPENDIX B. APPENDIX FOR CHAPTER 4 130

Figure B.6: An RGB image rendered using the program B.5 and GTA-V simulator

131

Appendix C

Appendix for Chapter 6

We support a large fragment of Scenic including 26 different position and heading specifiers
as well as a wide variety of operators, which together provide an expressive language to
flexibly model a diverse range of scenarios. Specifically, the Scenic fragment supported by
our SMT encoding, which enables our query algorithm, includes all (static) Scenic syntax
except for:

1. the operators following F [from V] for S,
angle [from X] to Y, and
apparent heading of X [from Y];

2. require statements referring to variables (i.e. semantic features) not present in the
label;

3. imports of external Python libraries.

C.1 SMT Encoding
To succinctly present our encoding, we first introduce some notations. First, we denote
Scenic semantics with double brackets, J¨K, and denote the encoding of an expression into
an SMT term as Ep¨q. For example, to access a position of a object O as we would in Scenic,
we write JO.positionK which is equivalent to the object’s xy-coordinates, xOx, Oyy. Scenic
employs an ego-centric syntax, meaning it requires that ego be defined and its syntax, by
default, assumes ego as a reference object if not otherwise specified. We will use O to
represent a Scenic object, heading as H, vector (i.e. position) as V. J denotes True. Basic
notations are shown in Fig. C.1.

A Scenic expression can be categorized into three types: (1) built-in functions, (2)
predicates, and (3) distributions. For each expression, we create a new SMT variable, encode
any constraints on its value implied by the Scenic semantics, and gather these variables
and encoded constraints throughout each incremental encoding process. For example, to
encode the expression Range(2,5), we create a new SMT variable range1 and add the

APPENDIX C. APPENDIX FOR CHAPTER 6 132

xx, yy “ point with the given XY coordinates
EpV q “ xEpVxq, EpVyqy

EpV1q ˘ EpV2q “ xEpV1,xq ˘ EpV2,xq, EpV1,yq ˘ EpV2,yqy

k ˚ pEpV1q ˘ EpV2qq “ xk ˚ pEpV1,xq ˘ EpV2,xqq, k ˚ pEpV1,yq ˘ EpV2,yqqy ,

where k P R
rotate pxx, yy , θq “ xEpxq cospEpθqq ´ Epyq sinpEpθqq,

Epxq sinpEpθqq ` Epyq cospEpθqqy

offsetLocal pO, vq “ JO.positionK` rotate pv, JO.headingKq
OPpV, θq “ OrientedPoint with position V and heading θ

Figure C.1: Notation used to define the SMT encoding of Scenic syntax.

Rangepl, uq “ Eplq ď z ď Epuq

Normalpm, sq “ J

Optionpa1, a2, ..., anq “ pz ““ Epa1qq _ ..._ pz ““ Epanqq

Figure C.2: Encoding of Scenic distributions, where z is the SMT variable representing the
value sampled from the distribution.

formula 2 ď range1 ď 5 to our set of constraints. The SMT constraints for Scenic’s built-in
distributions are shown in Fig. C.2.

Second, all the specifiers and operators in our Scenic fragment are built-in functions in
Scenic. Therefore, they can be abstractly represented in the following form: fpa1, ..., akq
where the function, f , represents the Scenic specifier or operator, and a1, ..., ak are input
arguments, where each input argument is a Scenic expression. We first encode the input
arguments to SMT terms and then encode the function according to the semantics of the
specifier or operator as defined in Appendices C.2–C.5 of the Scenic paper [60]. Formally,
the encoding is defined by the relation Epfpa1, ..., akqq “ JfKpEpa1q, ..., Epakqq. It is possible
that the arguments of f may themselves consist of specifiers and operators with additional
input arguments, creating a tree of syntax with its leaf nodes being constants and distribu-
tions. In such a case, we traverse down to the leaf nodes and recursively encode the tree
toward the root node.

For example, the SMT formula for the position of otherCar in the Scenic program in
Fig. 6.4 has the form: Jahead ofKpEpego.positionq, Epego.headingq, EpRangep4, 10qqq.
Here, Epego.positionq is evaluated as a pair of SMT variables xx, yy, which must satisfy the
constraint JOnKproad, xx, yyq. The semantics of the On predicate are in turn encoded into
constraints requiring that xx, yy actually lie within the road region (as we will see below).
Once all the arguments have been encoded as SMT terms (with associated constraints), we

APPENDIX C. APPENDIX FOR CHAPTER 6 133

maxX pV1, V2q “ max pEpV1,xq, EpV2,xqq;

maxY pV1, V2q defined likewise
minX pV1, V2q “ min pEpV1,xq, EpV2,xqq;

minY pV1, V2q defined likewise
rangeX pV1, V2q “ rminX pV1, V2q,maxX pV1, V2qs

rangeY pV1, V2q “ rminY pV1, V2q,maxY pV1, V2qs

slope pV1, V2q “ pEpV2,yq ´ EpV1,yqq{pEpV2,xq ´ EpV1,xqq

offset pV1, V2q “ EpV1,yq ´ slope pEpV1q, EpV2qq ˚ EpV1,xq

lineSeg pV1, V2, x, yq “ point xx, yy is on the line segment
py ““ slope pV1, V2q ˚ x` offset pV1, V2qq,

if x P rangeX pV1, V2q, y P rangeY pV1, V2q

leftLine pV1, V2, x, yq “ point xx, yy is to the left of the line
whose direction is V1 to V2

“ Dx ˚ Ty ´Dy ˚ Tx ą 0,

where D “ EpV2q ´ EpV1q, T “ xx, yy ´ EpV1q

Disc pc, r, x, yq “ point xx, yy is within a disc at c of radius r

“ ppx´ Epcxqq
2
` py ´ Epcyqq

2
ď Eprq2q

Sector pc, r, h, a, x, yq “ point xx, yy is in a sector of Disc pc, r, ¨, ¨q
with heading h and angle a
“ Disc pc, r, x, yq ^ rightLine pc, V1, x, yq

^ leftLine pc, V2, x, yq,

where V1 “ offsetLocal pOPpc, h´ a{2q, x0, ryq,

V2 “ offsetLocal pOPpc, h` a{2q, x0, ryq

Figure C.3: Part I of the encoding of region-containment, where xx, yy is the point con-
strained to lie in the region. Disc and Sector regions (which can have random parameters)
use the specialized formulas above; all other regions are fixed and use the generic encoding
for On at the bottom of the figure. This figure continues to Fig. C.4

APPENDIX C. APPENDIX FOR CHAPTER 6 134

visibleRegion pX, x, yq “

$

’

’

’

’

’

’

&

’

’

’

’

’

’

%

Sector pJX.positionK, JX.viewDistanceK,
JX.headingK, JX.viewAngleK, x, yq,

if X is OrientedPoint
Disc pJX.positionK, JX.viewDistanceK, x, yq,
if X is Point

tri pV0, V1, V2, x, yq “ point xx, yy is in the triangle defined
by points V0, V1, and V2

“ pxx, yy ““ EpV1q ` pEpV1q ´ EpV2qq ˚ s

` pEpV2q ´ EpV0qq ˚ tq,

where Ds, Dt, 0 ď s ď 1, 0 ď t ď 1, s` t ď 1,

using barycentric coordinate system [151]

JOnKpregion, xx, yyq “
n

ł

i“1

tri pV0, V1, V2, x, yq,

for all triangles pV0, V1, V2q in a triangulation
of the region

Figure C.4: Part II of the encoding of region-containment, where xx, yy is the point con-
strained to lie in the region. Disc and Sector regions (which can have random parameters)
use the specialized formulas above; all other regions are fixed and use the generic encoding
for On at the bottom of the figure.

substitute them into Jahead ofK to obtain the final term for the position of otherCar.
Finally, the SMT encoding for the On region-containment predicate and associated op-

erations on Scenic regions are shown in Fig. C.3. We encode containment within regions
which are fixed (or which become fixed after conditioning) by triangulating the region. For
non-fixed regions (discs and sectors), we generate constraints encoding the geometry of the
region.

C.2 Proof of Theorem 1
Lemma 1: Given a fixed object correspondence, the solutions for SMT formula encoding of
a Scenic program, according to Appendix C.1, are the values of features of the labels that
are in the support of the program.
Proof: The SMT encoding in Appendix C.1 are the encoding of the semantics of Scenic
operators, distributions, and regions as stated in [60]. Therefore, given a fixed object cor-
respondence, the requirements specified in a Scenic program and its SMT encoding are

APPENDIX C. APPENDIX FOR CHAPTER 6 135

equivalent. Hence, the solutions for the variables related to features in the SMT encoding
are the values of features of the labels that are in the support of the program.

Proposition 1: Given a fixed object correspondence, the monolithic encoding algorithm re-
turns Yes if and only if the label matches the program with that correspondence.
Proof: According to the object correspondence, the label provides values for the semantic
features of all the objects in the program. Since we disallow require statements referring
to variables not present in the label, evaluating the requirements with the observed feature
values in the label is well-defined. The monolithic encoding translates the Scenic program
into a set of requirements, which are mathematically defined as SMT formulas as shown in
Appendix C.1. If a requirement is violated, then, by definition, the label does not match the
program and, by Lemma 1, the algorithm correctly returns No. Otherwise, if all requirements
are satisfied, then the label matches the program and, by Lemma 1, the algorithm correctly
returns Yes.

Proposition 2: Given a fixed object correspondence, the incremental SMT encoding for a
Scenic program is equivalent to its monolithic encoding.
Proof: Suppose there are n semantic features s1, . . . , sn, in the label and the program. We
denote by ϕ1, . . . , ϕn the corresponding SMT encodings, respectively. For brevity, assume
that these SMT formulas include constraints asserting the equality of the observed seman-
tic features to their values in the label. Then the monolithic encoding of the program is
equivalent to ϕ1 ^ ¨ ¨ ¨ ^ ϕn (recalling that require statements are not included in the SMT
encoding).

For simplicity, let’s first consider a Scenic program with only dependent semantic fea-
tures, and no jointly dependent features. Suppose our dependency analysis step (refer to
Sec. 6.4.2) returns the order s1, . . . , sn. The dependency order implies a containment relation:
for example, if s2 is dependent on s1, this means that s2’s expression tree contains that of s1.
Then our incremental encoding is equivalent to ϕ1^ϕ2|ϕ1^ϕ3|pϕ2, ϕ1q^¨ ¨ ¨^ϕn|pϕn´1, . . . , ϕ1q

where the vertical bar, |, represents conditioning of the semantic features to the corresponding
observed values in the label (as discussed in Sec. 6.4.1). The SMT formula ϕi|pϕi´1, . . . , ϕ1q

results from substituting the expression trees of s1, . . . , si´1 where they occur in the expres-
sion tree of si with their corresponding observed values in the label, and then encoding si
using the resulting tree. Now because ϕ1 implies that s1 has its observed value, the sub-
stitution above means that ϕ1 ^ ϕ2 “ ϕ1 ^ ϕ2|ϕ1. Applying this rule iteratively, we obtain
ϕ1 ^ ¨ ¨ ¨ ^ ϕn “ ϕ1 ^ ϕ2|ϕ1 ^ ¨ ¨ ¨ ^ ϕn|pϕn´1, . . . , ϕ1q. Therefore, in this case, the incremental
SMT encoding of dependent semantic features is equivalent to the monolithic encoding of
the program.

This result extends to the case when semantic features are jointly dependent. Suppose
there is a single set of m ď n jointly-dependent semantic features: then for some i ě 1 the
features si, si`1, . . . , si`m´1 are jointly dependent. Then the incremental SMT encoding is:
ϕ1 ^ ϕ2|ϕ1 ^ ¨ ¨ ¨ ^ pϕi ^ ϕi`1 ^ ¨ ¨ ¨ ^ ϕi`m´1q|pϕi´1, . . . , ϕ1q

APPENDIX C. APPENDIX FOR CHAPTER 6 136

^ ϕi`m|pϕi`m´1, . . . , ϕ1q ^ ¨ ¨ ¨ ^ ϕn|pϕn´1, ϕn´2, . . . , ϕ1q

“ ϕ1 ^ ϕ2 ^ ¨ ¨ ¨ ^ ϕi´1 ^ pϕi ^ ϕi`1 ^ ¨ ¨ ¨ ^ ϕi`m´1q|pϕi´1, . . . , ϕ1q

^ ϕi`m|pϕi`m´1, . . . , ϕ1q ^ ¨ ¨ ¨ ^ ϕn|pϕn´1, ϕn´2, . . . , ϕ1q

“ ϕ1 ^ ϕ2 ^ ¨ ¨ ¨ ^ ϕi`m´1

^ ϕi`m|pϕi`m´1, . . . , ϕ1q ^ ¨ ¨ ¨ ^ ϕn|pϕn´1, ϕn´2, . . . , ϕ1q

“ ϕ1 ^ ϕ2 ^ ¨ ¨ ¨ ^ ϕn

by repeatedly applying the rule ϕ1 ^ ϕ2 “ ϕ1 ^ ϕ2|ϕ1. Finally, this result trivially extends
to the case where there is more than one set of jointly-dependent semantic features. There-
fore, the incremental SMT encoding is equivalent to the monolithic encoding of the Scenic
program.

Proof of Theorem 1: Consider an iteration of the main loop, in which the object cor-
respondence is fixed. As proven in Proposition 1, for a fixed object correspondence, our
algorithm correctly rejects labels which violate any requirements in the Scenic program.
Otherwise, by Proposition 2 the incremental SMT encoding is equivalent to the monolithic
one, and so by Proposition 1 the SMT queries will all be satisfiable if and only if the label
matches the program for the fixed object correspondence. If so, we return Yes; otherwise
we continue the main loop with a new object correspondence. Since we try all possible cor-
respondences (except for those which cannot work because at least one of their incremental
SMT formulas will be identical to one which was unsat in an earlier iteration), if there is any
correspondence under which the label matches, then the algorithm returns Yes. Otherwise,
it returns No. Hence, the algorithm returns Yes if and only if the label matches the program.

C.2.1 Scenic Programs used for the Efficacy Experiment
The following Fig. C.5 to Fig. C.9 are Scenic programs of Scenario #1-5 as described in
Ch. 6.5.1.

Figure C.5: Scenario #1 in the Human Experiment

APPENDIX C. APPENDIX FOR CHAPTER 6 137

Figure C.6: Scenario #2 in the Human Experiment

Figure C.7: Scenario #3 in the Human Experiment

Figure C.8: Scenario #4 in the Human Experiment

APPENDIX C. APPENDIX FOR CHAPTER 6 138

Figure C.9: Scenario #5 in the Human Experiment

139

Appendix D

Appendix for Chapter 7

D.1 Description of Proposed Scenarios and Policies
In this section we provide brief descriptions of all of the scenarios in our dataset. To see our
Scenic programs, please refer to our attached README pdf file for the pathways to our
scenarios.

D.1.1 On Mini and Full Game Scenarios
In general, all our scenarios have the following three termination conditions: (i) ball goes off
the field, (ii) change in ball possession across teams, (iii) one of the team scores. If any of
these conditions are satisfied, then the scenario will terminate in simulation.

Offense Scenarios

In all of our six offense scenarios as shown in Fig. D.1 and D.2, we explicitly modelled the ini-
tial state distribution in using Scenic and implicitly specified the behaviors to environment
players by assigning the rule-based AI bots provided by Google Research Football (GRF) to
control all non-RL players.

Hard Crossing: A very common scenario in real soccer games: 2 of our players along
are guarded by 3 of the opponent players, in an interleaved manner, along the line of the
penalty box. Another of our player at the edge of the field is attempting a cross.

11 vs GK: Our team, with a full lineup of eleven players in a traditional 4-4-2 formation,
needs to score against the opponent goalkeeper.

Avoid, Pass, and Shoot: Two of our players, one starting on the middle of the right
half and the other inside the penalty box, tries to score. One opponent defender starts
between our players to intercept direct pass.

Easy Crossing: An easy crossing scenario involving two of our players against opponent
defender and goalkeeper in the penalty box.

APPENDIX D. APPENDIX FOR CHAPTER 7 140

(a) Easy Crossing (b) Generalized Easy Crossing

(c) Hard Crossing (d) Generalized Hard Crossing

(e) 11 vs GK (f) Generalized 11 vs GK

Figure D.1: Part I of New offense benchmark scenarios (left images) and corresponding
generalized test scenarios (right images) in our dataset. The highlighted boxes represent
the regions over which players’ initial positions are uniformly randomly distributed. The
opponent is in blue and the RL team in yellow.

APPENDIX D. APPENDIX FOR CHAPTER 7 141

(a) Avoid, pass, and Shoot (b) Generalized Avoid, pass, and Shoot

(c) 11 vs 11 with Open Players (d) Generalized 11 vs 11 with Open Players

Figure D.2: Part II of New offense benchmark scenarios (left images) and corresponding
generalized test scenarios (right images) in our dataset. The highlighted boxes represent
the regions over which players’ initial positions are uniformly randomly distributed. The
opponent is in blue and the RL team in yellow.

11 vs 11 with Open Players: A full game scenario where there are two unmarked
players near the opponent goal. This is to test how wide "vision" an RL agent has in
identifying unmarked players near the oppnent goal.

Defense Scenarios

Like the offense scenarios, we assigned rule-based AI bots provided by GRF by default to
control non-RL players in many of our defense scenarios as shown in Fig. D.3, D.4, D.5.
However, if the AI bots do not exhibit expected behavior for our modelled scenarios, we
specified non-RL players’ behaviors in Scenic. For these scenarios with specified behaviors
in Scenic, their behaviors are highlighted with light blue arrows.

Goalkeeper vs Opponent: This scenario is designed to train an RL agent to be a
defensive goalkeeper when it has to face an opponent one-on-one.

Defender vs Opponent with Hesitant Dribble: The opponent dribbles, stop, then
dribbles again in a repeated manner.

Defender vs Opponent with Zigzag Dribble: This opponent aggressively evades the
defender with zigzag dribble towards the goal and shoots.

APPENDIX D. APPENDIX FOR CHAPTER 7 142

2 vs 2: Typical, 2 vs 2 setting where two defenders are already in place to fend off the
two opponents near the penalty area with the ball.

2 vs 2 Counterattack: An opponent attacking midfielder is already advanced deep into
the left side of the field. The opponent right midfielder behind either short passes the ball
to the attacking midfielder or dribbles up the field.

2 vs 2 High Pass Forward: An opponent attacking midfielder is already advanced
deep into the left side of the field. The opponent right midfielder quickly advances the ball
to the attacking midfielder via high pass.

3 vs 2 Counterattack: The defender near the penalty box is temporarily outnumbered
by the opponent players due to a sudden counterattack.

3 vs 3 Cross from Side: The opponent player on the side crosses the ball to either of
the teammates in the middle who are running towards the penalty box to receive the ball. 1

3 vs 3 Side Build Up Play: Instead of crossing, the opponent player on the side builds
up a play by short passing to its teammates.

D.1.2 Testing Generalization
For all the new benchmark scenarios in our dataset as well as for the selected five GRF’s
scenarios, we generalized those scenarios to test the generalizability of the trained RL agent.
Our test scenarios are juxtaposed to corresponding scenarios in Fig. D.1, D.3, D.4, D.5.
We modelled these test scenarios by either (i) adding distribution over the initial state or
(ii) creating a symmetric opposite formation.

D.1.3 Semi-Expert Stochastic Policies
We selected five scenarios from GRF’s and our benchmark scenarios. The selected GRF’s
scenarios are shown in Fig. D.6. The following are the brief descriptions of policies encoded
in Scenic for each scenario.

Pass and Shoot with a Goal Keeper: We randomly choose one of the two policies
for the RL agent. In the first policy, the player dribbles to the penalty area and shoots once
inside it. In the second policy, the player passes the ball to the teammate, who will then
dribble towards the goal and shoot.

Easy Counterattack: The first player will pass the ball to the right midfielder. Then,
the player with the ball will run into the penalty area, and if there is an opponent player on
the way, the player will pass the ball to the nearest teammate. The player will shoot at a
corner of the goal once inside the penalty area.

Run to Score with a Goal Keeper: The player with the ball will first sprint towards
the goal and turn slightly to either left or right randomly to evade the opponent goalkeeper’s

1The Defense 3vs3 with cross scenario doesn’t conclude a game upon a change in ball possession, unlike
other scenarios

APPENDIX D. APPENDIX FOR CHAPTER 7 143

(a) Goalkeeper vs Opponent (b) Generalized Goalkeeper vs Opponent

(c) Defender vs Opponent with Hesitant
Dribble

(d) Generalized Defender vs Opponent with
Hesitant Dribble

(e) Defender vs Opponent with Zigzag Drib-
ble

(f) Generalized Defender vs Opponent with
Zigzag Dribble

Figure D.3: Part I of New defense benchmark scenarios (left images) and corresponding
generalized test scenarios (right images) in our dataset.

APPENDIX D. APPENDIX FOR CHAPTER 7 144

(a) 2 vs 2 (b) Generalized 2 vs 2

(c) 2 vs 2 Counterattack (d) Generalized 2 vs 2 Counterattack

(e) 2 vs 2 with High Pass Forward
(f) Generalized 2 vs 2 with High Pass For-
ward

Figure D.4: Part II of New defense benchmark scenarios (left images) and corresponding
generalized test scenarios (right images) in our dataset. The highlighted boxes represent
the regions over which players’ initial positions are uniformly randomly distributed. The
opponent is in blue and the RL team in yellow.

APPENDIX D. APPENDIX FOR CHAPTER 7 145

(a) 3 vs 2 Counterattack (b) Generalized 3 vs 2 Counterattack

(c) 3 vs 3 Cross from side (d) Generalized 3 vs 3 Cross from side

(e) 3 vs 3 side build up play (f) Generalized 3 vs 3 side build up play

Figure D.5: Part III of New defense benchmark scenario (left images) and corresponding
generalized test scenarios (right images) in our dataset. The highlighted boxes represent
the regions over which players’ initial positions are uniformly randomly distributed. The
opponent is in blue and the RL team in yellow.

APPENDIX D. APPENDIX FOR CHAPTER 7 146

(a) Run to score with a goal keeper (b) Pass and Shoot with a Goal Keeper

(c) Easy counterattack

Figure D.6: Google Research Football environment’s scenarios for which we wrote semi-
expert RL policies

interception. Once the player bypasses the goalkeeper, or is inside the penalty area, the
player will shoot.

Avoid Pass and Shoot: The player decides to go towards 3 suitable regions of scoring:
left edge/ middle/ right edge of the right goal post, by keeping as much distance possible to
the opponent defender. At each time step it decides one of the three destination location. It
first predicts its next position for all the three suitable destinations and pick the direction
which keeps it farthest of the opponent. If the player comes near the defender it passes the
ball to its teammate and if it can successfully go near the goal post, it attempts shooting.

11 vs Goal Keeper: The player with the ball runs towards the right goalpost, if it
reaches near the goal post it attempts to shoot. If the opponent goal keeper comes near (i.e.
within seven meters) our player before it can reach near the right goal post, it stops running
and shoots immediately.

D.2 On Our Scenic Libraries
Users can quickly model scenarios by referencing models, actions, and behaviors from the
libraries that we open-sourced along with our interface. To see our library codes, please refer
to our attached README pdf file for the pathways to these libraries.

APPENDIX D. APPENDIX FOR CHAPTER 7 147

D.2.1 Model Library
The model library defines three categories of objects. First, it defines different regions of the
field such as penalty box area. Second, it defines the Ball. Lastly, it defines the Player.
There are two types of player objects which inherit this class Player: Left and Right
players. The left players represent the RL team, and the right, the opponent. Within each
team, the players are further classified into different roles. The naming convention is “the
team + role abbreviated in two letters." For example, the left team’s goalkeeper is defined
as textttLeftGK. Likewise, for the right team players.

D.2.2 Action Library
This library defines the action space of any players. It consists of twelve different actions
such as Pass, Shoot, Dribble, Sprint, Slide, etc. These actions can be referenced in the
Scenic script using the syntax, take. For example, to take sliding action, users can write
take Slide() in their programs.

D.2.3 Behavior Library
The behavior library consists of basic soccer skills that we modelled in Scenic. This library
consists of helper functions defined using the syntax, def, and behaviors, which reference
those helper functions, are defined with the syntax, behavior. For brevity, we refer the
reviewers to our annotated library code.

D.3 Details on Experimental Setup and Training
We use the OpenAI Baselines’ [42] implementation of PPO. The training was run for 5M
timesteps with 16 parallel workers. All of our experiments are run on g4dn.4xlarge instances
on Amazon AWS: a machine with a single NVIDIA T4 gpu, 16 virtual cores and 64GB RAM.

Network architecture & Hyperparameters For the PPO training, we first exper-
imented with the network architecture and hyperparameters from [102] and was able to
reproduce their result. [102] did an extensive search to select their hyperparameters and
hence we decided to use the same for our experiments. The architecture we used from [102]
is similar to the architecture introduced in [47], with the exception of using four big blocks
instead of three.

Table D.1 provides specific values of the hyperparameters used in the PPO experiments.
The parameters for behavior cloning is shown in Table D.2. For the GRF academy

scenarios the behavior cloning algorithm is run for 16 epochs while for the offense scenarios
it was run for 5 epochs.

APPENDIX D. APPENDIX FOR CHAPTER 7 148

Parameter Value
Action Repetitions 1
Clipping Range .115
Discount Factor (γ) 0.997
Entropy Coefficient 0.00155
GAE (λ) 0.95
Gradient Norm Clipping 0.76
Learning Rate 0.00011879
Number of Actors 16
Optimizer Adam
Training Epochs per Update 2
Training Min-batches per Update 4
Unroll Length/n-step 512
Value Function Coefficient 0.5

Table D.1: Training Parameters for PPO.

Parameter Value
Learning Rate 3e-4
Batch Size 256
Optimizer Adam
Epsilon(Adam) 1e-5

Table D.2: Training Parameters for Imitation Learning.

D.4 Interface details and Reproducibility
Our interface follows the widely used OpenAI Gym API [21]. For sample usage, we refer
readers to our code that is submitted along with this supplement. The code contains neces-
sary scripts, and the attached README pdf file contains detailed description of all our API
with examples and a link to a google drive which contains all our trained checkpoints and
training logs.

D.5 Performance
As we are adding an additional layer over the GRF simulator, we wanted to measure how
much overhead we are adding over the base GRF simulator. We selected five GRF academy
scenarios and ran a simulation of 20K timesteps with a random policy both in the GRF
simulator and in our interface. The simulation was ran sequentially, i.e., no parallelism
was used. Across the scenarios, the GRF simulator took an average of 74.28 seconds for
executing a simulation of 20K timesteps, while our interface took 222.07 seconds, showing a
2.99x drop in speed. Some of this overhead is inevitable however, we believe there are ways
to speed up . First, as we change the initial state every episode/simulation: we update the

APPENDIX D. APPENDIX FOR CHAPTER 7 149

Python scenario file used by the GRF simulator for each episode/simulation. We plan to
modify GRF interface to avoid such disk-access each simulation to speed up among other
performance improvements. The scenarios we used for the experiments are namely: i) Empty
Goal, ii) Empty Goal Close, iii) Pass and Shoot with Keeper, iv) Run, Pass, and Shoot with
Keeper, and v) Run to Score with Keeper.

150

Appendix E

Appendix for Chapter 8

E.1 Participant Background
The participants’ backgrounds for the control and the experimental conditions are summa-
rized in Table E.1 and Table E.2, respectively. In both conditions, all participants’ ages
range in 19 - 25 years old, and none of the participants has experience with Echo Arena
esports.

E.2 Details of Our Experiment Design
We record and share video recordings related to each session from a participant’s first per-
son view from our study in this hyperlink1. The control and the experimental conditions
experience the exact same procedure as below, except for the training session as explained in
Sec. 8.3.4. Immediately after the pre-test and the training sessions, we ask the participants
in both conditions to fill out the NASA TLX survey to measure changes in subjective task
load.

Basic Tutorial Session

Because all the participants have never played Echo Arena, we ask them to, first, watch a
short tutorial video that we prepared covering basic controls (e.g. thrusts for navigation,
grabbing an object, brake). Then, each participant is instructed to wear an Oculus Quest 2
VR headset and familiarize the controls in a few simple training scenarios we created.

Pre-Test Session

We test all ten skills during pre-test. We randomly shuffle the order of skills to lower the
chance of learning from sequentially related skills. For each skill, we sample variable number

1https://drive.google.com/drive/folders/1r0OzLk0_Ys0rnQpIgZt8MBDqhOlTp_TJ?usp=share_link

https://drive.google.com/drive/folders/1r0OzLk0_Ys0rnQpIgZt8MBDqhOlTp_TJ?usp=share_link
https://drive.google.com/drive/folders/1r0OzLk0_Ys0rnQpIgZt8MBDqhOlTp_TJ?usp=share_link

APPENDIX E. APPENDIX FOR CHAPTER 8 151

ID Dynamic VR Game Average Play Time
Play Frequency Per Game

C1 less than once a week 1-2 hours
C2 three times a week 2-3 hours
C3 less than once a week less than 1 hour
C4 less than once a week 1-2 hours
C5 less than once a week less than 1 hour
C6 less than once a week less than 1 hour
C7 twice a week 1-2 hour
C8 less than once a week less than 1 hour
C9 less than once a week 1-2 hours

Table E.1: Control Condition

of evaluation tasks from its corresponding probabilistic program, modeling a distribution of
evaluation tasks, and sequentially generate them in VR. This variable number of tasks per
skill to sample is set by the experts as explained in Sec. 8.3.4. In this study, coincidentally,
this number is three for all the skills. For each task, we display the objective of the task in
plain English. After the participant completes each task, we do not provide any feedback
as to how they do to avoid learning from the feedback (in contrast, we do provide feedback
during training).

Advanced Tutorial Session

Since the training time is limited to 25 minutes, we prepare another tutorial video providing
more tips and game intuition to facilitate learning for both conditions. This video provides
tips for each skill using training tasks.

Training Session

During training, the control condition, by default, trains with the expert-designed curriculum
and they are given the freedom to modify it as they see fit. Per skill, its training tasks
are sampled from its probabilistic program, modeling a distribution of training tasks, and
generated in VR. The task is displayed in plain English and its time limit for completion
is shown on the top right corner of VR display. After completing each task, a feedback is
displayed in plain English in VR as to whether the participant successfully solved the task,
and, if not, which aspects of the task they fail to solve. Following the feeback, the participants
need to respond to our system’s binary self-assessment question: “Did you master this skill?”
Participants can answer the question by tagging “Yes” or “No” button with a laser from the
hand controllers. As they answer this question, a white “Skip” button is displayed below the
“Yes” and “No” buttons. If the participant laser tags the “Skip” button, then the participant

APPENDIX E. APPENDIX FOR CHAPTER 8 152

ID Dynamic VR Game Average Play Time
Play Frequency Per Game

E1 less than once a week less than 1 hour
E2 less than once a week less than 1 hour
E3 less than once a week 2-3 hours
E4 less than once a week less than 1 hour
E5 twice a week 1-2 hours
E6 less than once a week 1-2 hour
E7 less than once a week less than 1 hour
E8 less than once a week less than 1 hour
E9 twice a week 1-2 hours

Table E.2: Experimental Condition

is immediately transitioned to another skill. Until the participant presses the “Skip” button,
regardless of their answer to the binary question, a new task will be sampled and generated
for the current skill from its probabilistic program. If participants wish to return to any of
the skills they transition from (thereby modifying the default curriculum), they can verbally
ask the experiment conductor at any time.

Likewise, for the experimental condition, the training tasks per skill are sampled from
their corresponding probabilistic programs, which are the same for both conditions. The
task and feedback are displayed in English in VR, just like the control case. Even though
unnecessary, the experimental condition is also asked for the same binary self-assessment
question as the control for fairness because self-assessment may consume a portion of train-
ing time. In contrast to the control, the experimental condition does not have any “Skip”
button to transition to another skill. Instead, until BKT predicts mastery for the current
skill, training tasks are iteratively sampled from its probabilistic program and sequentially
generated in VR. Also, unlike the control, the experimental condition cannot modify the
curriculum. Instead, the curriculum and the training speed are all automatically controlled
by our training system.

Post Test Session

The post test is exactly the same as the pre-test, except the evaluation tasks for each skill
are newly sampled from its corresponding probabilistic program, modeling a distribution of
evaluation tasks.

Exit Verbal Interview Session

Our questionnaire is included in the hyperlink provided above.

APPENDIX E. APPENDIX FOR CHAPTER 8 153

E.3 Pre-determined Exclusion Criteria for the
Experiment

Prior to conducting the study, we determined the following three criteria to exclude par-
ticipants. Participants who are excluded are financially compensated up to the time they
invested in the study at $20 per hour rate. We initially conduct the study with 25 partici-
pants, but we end up excluding 7 participants, leaving 18 participants for our study.
Exhibiting Motion Sickness: During any point in the study, if a participant feels any
physical discomfort, including commonly known symptoms like nausea or motion sickness,
then they are excluded from the study as these symptoms could affect the training or evalua-
tion. We drop 2 participants for this reason (1 from the experimental and 1 from the control
condition).
Too Much Skill Expertise: If participants score above 50% on the pre-test (refer to
metric in “Learning Gains” of Sec. 8.3.5), they are excluded from the study as their potential
learning gains is constricted and, therefore, there is less opportunity to learn new skills.
We drop 3 participants for this reason (1 from the experimental and 2 from the control
condition).
Extreme Lack of Hand-Eye Coordination: Due to our limited training session of
25 minutes, we exclude participants with extreme lack of hand-eye coordination, who may
require much longer time to learn. Prior to pre-test, all the participants equally go through
the same tutorial session to familiarize their control. During the pre-test, if participants
could not score above 50% on the three most fundamental skills (as shown in Fig. 8.2) that
do not have any pre-requisite skill, then we excluded them from the study. The same metric
as in “Learning Gains” of Sec. 8.3.5 is used, but only with respect to these three skills, i.e.
K = 3 instead of 10. These three skills are essential to learn the rest of the skills. We drop
2 participants for this reason (1 from the experimental and 1 from the control condition).

E.4 Skills & Corresponding Training/ Evaluation Task
Distributions

In this section, we explain the skills and corresponding training and evaluation task distribu-
tions used in our study. We train for ten different skills in our study. Each skill is associated
with a training task distribution and an evaluation task distribution. In our experiment, for
each skill, the training and the evaluation distributions are equivalent. In other words, the
training and the evaluation tasks are sampled from the same probabilistic program per skill.
Hence, in our study, each skill is associated with a distinct probabilistic program from which
either training or evaluation tasks are sampled.

Although the training and the evaluation task distributions can be different, our recruited
experts (refer to Sec. 5.2) suggest that they can be the same for our study since these
distributions all consist of wide ranges of continuous distributions. Consequently, the chance

APPENDIX E. APPENDIX FOR CHAPTER 8 154

of sampling the same task twice is very low, ensuring that the evaluation tasks still examine
for generalization of skills to similar yet different tasks from training. The following are brief
descriptions of each skill along with its training/evaluation task description. The naming
convention for the ten skills we train are shown in the knowledge graph in Fig. 8.2. The
video recordings of a participant’s first person view of each skill’s training/evaluation tasks
can be viewed in this hyperlink2. To show variations in tasks, for each skill, we share video
recordings from pre-test, training, and post-test sessions. All the training/evaluation tasks
contain continuous distributions.
Navigation via Thrust (T) Navigate to, brake, and stay within a cyan box whose position
is uniformly randomly changing over a pre-designated zone.
Navigation via Grab/Release (GR) Navigate to the goal post only by grabbing and
pushing off floating static objects in the zero-gravity space.
Pass to a Stationary Teammate (SP) Accurately pass the frisbee disc to a stationary
teammate whose position is uniformly randomly changing over a pre-designated zone.
Navigation via Thrust & Grab/Release (GR_T) Follow the white dotted path. On
the path, touch any green floating objects and fly through any yellow hoops. The positions
of the green objects and the yellow hoops are uniformly randomly changing while staying
within a certain vicinity to each other.
Navigate via Grab/Release to Static Pass (SP_GR) With thrusters disabled, only
use grab and release to navigate towards a stationary teammate who is occluded by a large
red sphere and then pass the disc. The position of the teammate and the red sphere are
uniformly randomly changing over a pre-designated zone. Also, the teammate is always ini-
tially positioned to be occluded from the participant.
Pass to a Dynamically Moving Teammate (DP) Accurately pass the disc to a dynami-
cally moving teammate without navigating. The teammate moves in front of the participant.
The teammate’s initial and destination positions to move from and to are uniformly randomly
changing, thereby varying the teammate’s directions and distances from the participant.
Navigate via Thrust to Pass to a Moving Teammate (DP_T) The disc is initially
placed a uniformly random distance away from the participant who needs to navigate to the
disc via thrust and pass it to a moving teammate (whose initial and destination positions
are also uniformly randomly varying).
Navigate via Grab/Release to Pass to a Moving Teammate (DP_GR) With
thrusters disabled, navigate towards a moving teammate and pass the disc accurately. Sim-
ilar to DP’s training/evaluation tasks, the teammate’s initial and destination positions are
uniformly randomly varying.
Navigate via Grab/Release with a Sudden Turn to Pass to a Moving Teammate
(DP_GR_ST) With thrusters disabled, the participant needs to navigate to a disc which
is instantiated uniformly randomly changing distances and directions, quickly turn, and pass
to moving player from behind.
Navigate via Thrust and Grab/Release with a Sudden Turn to Pass to a Moving

2https://drive.google.com/drive/folders/1senMSlCcIEkZ9qKHP9M3HGUadhkpHgAD?usp=share_link

https://drive.google.com/drive/folders/1senMSlCcIEkZ9qKHP9M3HGUadhkpHgAD?usp=share_link
https://drive.google.com/drive/folders/1senMSlCcIEkZ9qKHP9M3HGUadhkpHgAD?usp=share_link

APPENDIX E. APPENDIX FOR CHAPTER 8 155

Teammate (DP_T_GR_ST) Be able to use all the skills learned so far to follow the
white dotted path, grab the disc at the end, and pass to a moving teammate before it enters a
cyan box. Similar to T_GR, the positions of the green objects and yellow hoops are varying.
The distance of the disc from the green object at the end of the white path is varying. Also,
the teammate’s initial distance to the cyan box is also varying, thereby changing the timing
at which it reaches the cyan box.

	Contents
	List of Figures
	List of Tables
	Introduction
	Thesis Preview
	Contributions
	Thesis Outline
	Bibliographic Notes

	Background
	Scenic: Probabilistic Scenario Modeling Language
	VerifAI Toolkit

	Scalable and Interpretable Testing
	Parallel and Multi-Objective Falsification
	Methodology
	Experiment
	Bibliographic Notes
	Chapter Summary

	Programmatic and Semantic System Debugging
	Problem Statement
	Methodology
	Experiment
	Bibliographic Notes
	Chapter Summary

	Sim-to-Real Validation of System Performance
	Formal Scenario-Based Track Testing
	Problem Statement
	Methodology
	Experiment
	Bibliographic Notes
	Chapter Summary

	Querying Sensor Data with Scenario Programs
	Assumptions about the Dataset for Querying
	Background: Satisfiability Modulo Theories
	Problem Statement
	Methodology
	Experiment
	Bibliographic Notes
	Chapter Summary

	 Failure-Informed Targeted Training
	Programmatic Training for Reinforcement Learning
	Scenario Specification Language for RL
	Methodology
	Experiment
	Bibliographic Notes
	Chapter Summary

	Personalized Human Training in Extended Reality
	Background: Bayesian Knowledge Tracing
	Methodology
	Experiment
	Bibliographic Notes
	Chapter Summary

	Final Words
	Future Work
	Bibliographic Notes

	Bibliography
	Appendix for Chapter 3
	Appendix for Chapter 4
	Appendix for Chapter 6
	SMT Encoding
	Proof of Theorem 1

	Appendix for Chapter 7
	Description of Proposed Scenarios and Policies
	On Our Scenic Libraries
	Details on Experimental Setup and Training
	Interface details and Reproducibility
	Performance

	Appendix for Chapter 8
	Participant Background
	Details of Our Experiment Design
	Pre-determined Exclusion Criteria for the Experiment
	Skills & Corresponding Training/ Evaluation Task Distributions

