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Abstract

Systematic Mutagenesis of MS2 Virus-Like Particles for Engineered Properties and
Computational Models of Assembly

by

Daniel Brauer

Doctor of Philosophy in Chemistry

University of California, Berkeley

Professor Matthew B. Francis, Chair

Virus-like particles (VLPs) are nanoscale proteinaceous materials that show promise
as scaffolds for a plethora of applications, including vaccine development, targeted
drug delivery, and nanoreactor production. These self-assembling structures are
based on viral architectures, but lack genetic material to cause infection. Though
theoretically particle features may be finely tailored via genetic manipulation, the
phenotypic consequences of mutations to self-assembling proteins remains hard to
predict. Throughout this work, advancements in both the functional engineering of
VLPs and the fundamental understanding of VLP design constraints are described.
A method for selection of chemically modifiable capsids was developed and applied to
a systematic library of N-terminally extended bacteriophage MS2 VLPs, resulting in
highly reactive capsids for site-specific bioconjugation. The one-dimensional fitness
landscape of a non-native MS2 assembly configuration was also constructed and
used to develop machine learning models for assembly state prediction. This work
highlights the utility of fitness landscaping in producing materials with applications-
driven properties and explores the possibilities of in silico modeling for targeted
engineering of VLPs. Furthermore, efforts to assess and improve the equity of the
Chemistry academic community for marginalized populations are discussed. An
annual survey framework was developed for generating quantitative understanding
of departmental climate over time, and longitudinal improvements in departmental
inclusivity were observed. This method was also used to critically assess how academic
values of underrepresented graduate students are not well represented in faculty modes
of evaluation. The developed framework is readily adaptable to other institutions
aiming to improve the inclusion of historically minoritized groups in STEM.
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Chapter 1

Introduction

1.1 Self-assembling protein nanomaterials
Proteins not only perform a wide array of functions as individual folded structures,
but also self-assemble into a myriad of complex superstructures. These assemblies
range from complicated molecular machinery such as the ribosome to key structural
complexes of the cytoskeleton. Closed-shell protein assemblies, such as those that
form the capsids of viruses, have become increasingly attractive as candidates for
biotechnological applications. These nanoscale particles are well-suited for use as drug
delivery vehicles, imaging agents, bioreactors, and vaccine scaffolds. While nature has
provided valuable initial templates for such purposes, these materials must be tailored
to fit each particular use case. In principle, genetic manipulation of the constituent
proteins of a protein assembly enables fine tuning of the properties and molecular
features of an assembled material. In practice, however, the phenotypic consequences
of amino acid mutations, insertions, and deletions in self-assembled materials are
difficult to predict.

This work aimed to build up understanding of the design constraints of protein
nanocages using new high-throughput methodology for assessing self-assembly. We
not only employ these tools to improve fundamental understanding of a self-assembled
system, but also construct and implement new functional selections for self-assembled
materials with various improved properties, such as thermostability and chemical
reactivity. We further extend our exploration beyond the scope of the natural assembly
geometry of a protein nanocage to evaluate the comparative mutational landscape
of a non-native assembly phenotype. Lastly, we utilize the generated empirical
assembly fitness information to benchmark in silico tools for modeling the energetic
consequences of missense mutations in proteins. This information in tandem with our
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experimental mutational information then serves as the basis for training of machine
learning models for predicting the assembly state of mutated protein capsids.

1.1.1 Virus-like particles

Derived from viral structures, virus-like particles (VLPs) represent a class of protein-
based nanomaterials that have attracted considerable attention as biotechnological
platforms. First isolated from hepatitis patient sera in 1968, these structures self-
assemble from components of viral structural proteins, but lack viral genetic material
and are thus non-infectious.1 To date, over 110 VLPs from 35 viral families have
been identified, with sizes ranging from 10-200 nm.2 VLPs encompass many levels of
structural complexity: human papillomavirus (HPV) VLPs form readily from a single
capsid protein, VP1,3 while poliovirus VLPs require three structural proteins to form
a closed-shell.4 The incorporation of non-proteinaceous elements such as an outer
lipid envelope present in Zika virus VLPs adds another layer of complexity.5 Further,
the structural diversity of viruses are reflected in VLPs, with spherical, polyhedral,
and rod-like geometries observed (Figure 1.1)6

1.1.2 Biomedical Applications of VLPs

VLPs have many attractive features that lend themselves to emerging biotechnologies
as well. As protein-based materials, VLPs are naturally biodegradable. They are
relatively inexpensive to produce, and their homogenous size distribution allows
for consistent quality control.7 Many VLPs are patterned with nanoscale surface
pores, enabling diffusion of small molecules to the interior lumen of the particles. In
some cases, VLPs can be disassembled under particular pH or ionic strength and
reassembled around proteinaceous, genetic, or even polymeric cargoes.

1.1.2.1 VLPs as vaccine scaffolds

The structural similarity of VLPs to active virions naturally sparked the pursuit of their
use as improved vaccines over classical inactivated or live attenuated pathogens.8 As
they maintain a similar antigenic conformation to their parent viruses, VLPs represent
a vaccine scaffold that may be produced safely in heterologous hosts. VLPs have been
successfully expressed and purified from bacteria, yeast, insect, plant, and mammalian
systems at high titers. They have been shown to engage dendritic cells through
binding to surface pattern recognition receptors, resulting in high immunogenicity.9
The first approved VLP vaccine, Recombivax HB for hepatitis B virus, was licensed
for human use in 1986.10 Recombivax HB is produced recombinantly via expression
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Figure 1.1: A sampling of structural geometries virus-like particles can adopt. HPV16 (PDB:
3J6R), cpTMV (PDB: 6X0R), calicivirus VP1 (PDB: 4PB6), O3-33 (PDB: 6FDB), and TMV (PDB:
3J06) are shown.

of the hepatitis B surface antigen (HBsAg) in Saccharomyces cerevisiae, drastically
improving production over previous methods that relied on purification of HBsAg
particles from human plasma. Several VLP vaccines have since been approved for
clinical use, including Gardasil-9 for HPV and Hecolin for HEV.11 These more recent
examples offer protection against multiple pathogenic genotypes simultaneously by
utilizing multiple antigenic subunits in a single vaccine formulation.

Several VLP platforms that aim to immunize against non-infectious vaccination
targets are in clinical trial phases. These technologies utilize either genetic fusion or
chemical bioconjugation to install antigens on the exterior surface of a core VLP. Using
a bifunctional succinimate linker to covalently modify exposed lysine residues, chimeric
VLPs based on the bacteriophage Qβ VLPs have been decorated with antigens for
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Alzheimer’s disease,12 type 2 diabetes,13 allergies,14 and nicotine.15 These modified
VLPs present roughly 300-600 copies of their small molecule or peptide epitopes on
their surface and exhibit robust humoral immune responses to their respective targets.

1.1.2.2 VLPs as nanoreactors

The porous, well-defined structure of VLPs has led to their exploration as nanoscale
reactors for spatially confined catalysis. Handa and coworkers first demonstrated the
encapsulation of a heterologous enzyme in 45 nm SV40 VLPs.16 They fused EGFP to
VP2, the minor capsid protein of SV40 VLPs and co-assembled the fusions with VP1,
the major capsid protein. They determined via anti-GFP antibody immunoblotting
that the GFP fusion was oriented to the interior of the capsid. They employed this
strategy to encapsulate yeast cytosine deaminase (yCD), which converts cytosine
to uracil, in SV40 capsids. yCD can also act as a potential prodrug-converting
enzyme in gene therapy by converting 5-fluorocytosine to 5-fluorouracil, which leads
to cell death by thymidylate synthase inhibition. SV40-yCD VLPs not only retained
enzymatic activity, but also enabled delivery of functional yCD to CV-1 by protecting
the encapsulated enzyme from protease degradation.

Douglas and coworkers recently have extended this concept to form a two-step
biosynthetic pathway within a single VLP.17 Using large (58 nm diameter) icosahedral
P22 VLPs as a scaffold, they encapsulated the components to produce the cellular
antioxidant tripeptide glutathione from its amino acid precursors. Glutamate cysteine
ligase and glutathione synthetase were fused to the scaffolding proteins of P22 and
co-assembled with the P22 coat protein (CP). The encapsulated enzymes maintained
catalytic activity and kinetics comparable to free enzymes, but had an increased
thermostability. Although no rate enhancement was observed due to the confined
intermolecular proximity of the enzymes, such a phenomenon has been reported for
P22 encapsulated EcHyd-1 hydrogenase.18

1.1.2.3 VLPs as drug delivery vehicles

The morphology and repeat subunit patterning of VLPs also makes them ideal
candidates as drug-carrier systems. Therapeutic payloads may diffuse through the
open pores of VLPs and be covalently attached to residues on the interior surface space
of the capsid. This can both concentrate and protect a therapeutic from degradation.
The multivalent exterior surface of VLPs can also be used for attachment of targeting
ligands to enhance specificity of delivery and reduce off-target effects. Although no
VLP delivery systems have been clinically approved thus far, many have entered
preclinical development stages.
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Steinmetz and coworkers have utilized the plant-derived Cowpea chlorotic mottle
virus (CCMV) VLP as a platform for delivery.19 CCMV VLPs disassemble at physio-
logical pH or high ionic strength, releasing their encapsidated RNA. Buffer exchange
and addition of a negatively-charged substrate triggers capsid reassembly. Using this
method, they demonstrated the encapsulation of CpG oligodeoxynucleotides (ODNs),
which have been investigated as immunoadjuvants for cancer therapy. Roughly 50
CpG-ODNs could be packaged per CCMV particle, and CCMV-ODN VLPs showed
improved macrophage activation and antitumor activity in vitro. Evaluation of ef-
ficacy in vivo using CT26 colon cancer mice models showed decreased tumor size
and prolonged survival. With Fast Track designation being recently granted to
vidutolimod, a VLP vehicle for the treatment of metastatic melanoma, the advent of
VLP-based therapeutics appears to be on the horizon.20

1.1.3 Bacteriophage MS2 VLPs

Bacteriophage MS2 is one of the most well-known and well-studied viral particles
over the past sixty years. The MS2 bacteriophage was first characterized as an RNA
phage in 1961, natively infecting male specific Escherichia coli (F+, F’ or HFr).21
The MS2 genome was the first complete genome to be sequenced and remains one of
the smallest described genomes to date at 3,569 nucleotides.22 Its genome encodes
four proteins in total: coat, maturation, replicase, and lysis. The infectious virion is
only composed of two of these proteins: 178 copies of the CP and a single maturation
protein that binds to bacterial pili during infection.23

Recombinant expression of the MS2 CP results in the spontaneous self-assembly
of 180 CPs into a non-infectious VLP devoid of the maturation protein. MS2 VLP
production is robust, and has been demonstrated in bacterial,24 yeast,25 and cell-free
expression systems.26 The assembled MS2 VLP can tolerate harsh conditions – capsids
do not denature upon exposure to temperatures up to 68 ºC and pH values ranging
from 2-12.

The structures of both the complete MS2 virion and the MS2 VLP have been
characterized via x-ray crystallography as well as cryogenic electron microscopy.27–29
MS2 particles assemble into 27 nm closed shell icosahedra. As dictated by Casper
and Klug’s seminal work describing the geometric rules for viral structural organi-
zation, MS2 capsids must undergo minor distortions to their symmetry in order to
accommodate more than 60 CP subunits.30,31

The resultant MS2 VLPs may be described as T=3 icosahedra with three CP
monomer conformations (termed A, B, and C) that exhibit quasi-equivalence.
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Figure 1.2: Bacteriophage MS2 VLP structure.
(a) The MS2 VLP is depicted with its A, B, and
C conformers shown in blue, red, and green, re-
spectively. 5- and quasi-6-fold symmetry axes are
indicated by a red pentagon and blue triangle, re-
spectively. (b) C/C and (c) A/B dimers of the
MS2 (CP) are shown bound to the TR-RNA de-
picted in purple. Conformational shift of the FG
loop is circled.

A consequence of this geometry is the
patterning of pentavalent and hexavalent
positions across the icosahedral lattice,
which form the basis for 32 pores of 2
nm diameter patterned along the surface
of MS2. Structurally, the monomeric CP
of MS2 is notable because it does not
adopt the jelly roll fold that is found in
16 distinct families of RNA and DNA
viruses. The MS2 CP consists primar-
ily of β-sheets, with an α-helix and the
C-terminal region of its 129 amino acid
length. Evidence suggests that MS2 ex-
ists as an obligate dimer that is locked
into place via interdigitation of the α-
helices of adjacent CP monomers.32 In
the assembly process, the MS2 CP dimer
takes on two quasi-equivalent confor-
mations, known as the A/B and C/C
dimers. Transition from the symmet-
ric C/C dimer to the asymmetric A/B
dimer is mediated by binding to the 19
nucleotide RNA translational repressor
(TR) of the MS2 genome.33 TR-RNA
binding results in a cis/trans isomeriza-
tion of the proline residue at position 78,
which in turn folds back the pore-forming
FG loop region of the capsid. The high-
affinity of MS2 to this TR-RNA stem-
loop continues to be used as an purifica-
tion tag for RNA-protein complexes and
as a tool for studying RNA localization
in cellulo.34 Binding to non-specific ge-
netic material or other negatively charged
molecules appears to be sufficient to me-
diate this switch, as MS2 VLPs have been
shown to assemble around DNA cargo,
anionic polymers, and proteins with neg-
atively charged tags.35
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1.2 Protein engineering
The broad range of protein functions, particularly the ability of enzymes to catalyze
chemical reactions with exquisite selectivity, has motivated scientists to pursue the
use of proteins as laboratory and industrial tools. Proteins however are highly evolved
for their natural substrates, thus the scope of their applications are limited. As a
result, the field of protein engineering has emerged as to attempt to remodel native
proteins to fit desired uses. Discussed here are the historical successes of protein
engineering and advances in methodology to modern techniques.

1.2.1 Site-directed mutagenesis

Advances in molecular biology in the 1980s, particularly methods for oligonucleotide
synthesis, polymerase chain reaction (PCR), and site-specific molecular cloning
enabled the deliberate substitution of amino acid residues in recombinantly expressed
proteins.36 Thus, it became possible to interrogate the role of individual amino acids in
the structure and function of proteins, leading to hypothesis-driven attempts to alter
native enzyme activity.37 The first major breakthrough in this arena was published
by the Wells lab in 1985.38 They used site-directed mutagenesis to substitute Met222,
a residue implicated as the primary site for oxidative inactivation of the enzyme, with
all 19 other natural amino acids. They found that although enzyme activity was
diminished, mutants bearing nonoxidizable amino acids were resistant to inactivation
by 1 M H2O2. This landmark work established the foundation for modulating the
stability and activity of proteins rationally guided by crystallographic information.

1.2.2 Directed evolution

While site-directed mutagenesis strategies can effectively produce improved proteins
in cases where key residues are known from structural information, oftentimes the
pathway to a desired protein function is incredibly complex and can involve many
mutations. Researchers have used Darwinian evolution as inspiration as for "directed
evolution" by which evolution for a chosen feature is accelerated in a laboratory
setting. Directed evolution evolution hinges upon two steps that can be repeatedly
cycled: 1) diversification of the coding sequence for a parent protein and 2) selection
of protein variants with improved fitness. Iteration of these processes acts as an
accelerated search algorithm for protein evolution.39
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1.2.2.1 Mutagenic library generation

Widespread diversification of a target gene was first accomplished by Caldwell and
Joyce in 1992 using a modified PCR protocol, now known as error-prone PCR (ep-
PCR).40 This method employs a low fidelity DNA polymerase to introduce variations
in a protein coding sequence during DNA amplification. This method produces
millions of unique variants of a given protein an average of 2-3 base pair substitutions
per mutagenized gene. While this method generates a vast diversity of sequences,
the probability that beneficial amino acid substitutions are discovered can be low,
as improvements to protein function can be obscured by simultaneous neutral or
deleterious amino acid changes. The introduction of DNA shuffling by Stemmer and
coworkers overcomes some of the drawbacks of epPCR.41,42 This method involves
fragmentation of target genes after an initial round of epPCR and selection into
oligonucleotides. Fragments are then reassembled via homologous recombination al-
lowing lateral sharing of beneficial mutations and elimination of deleterious mutations.
DNA shuffling and selection of TEM-1 β-lactamase resulted in a 32,000-fold increase
in antibiotic resistance of TEM-1 containing E. coli while epPCR alone resulted in a
16-fold increase.

1.2.2.2 Functional protein selection

Effective acquisition of a new or optimized protein trait depends upon careful analysis
of protein variant phenotypes. Two fundamental rules apply to effective analysis
of a protein library: 1) there must be a link between a library member’s genotype
and its phenotype and 2) "you get what you select for".43 The most common
and straightforward method of establishing a genotype-to-phenotype link is via
transformation of a mutated DNA library into an expression host. Each host cell
maintains a single library variant, and screening of individual colonies or cellular
sorting methods enables evaluation of a given property. Using this method requires
a functional assay that can be performed in the host cell without interference from
endogenous proteins.

Cellular surface-display systems levy host membrane proteins as fusion partners
to transport protein cargo to the cell surfaces, broadening the scope of functional
assays to include ligand affinity. Another significant method for enzyme evaluation
pioneered by Griffiths and Tawfik is in vitro compartmentalization. This method
involves dispersion of a substrate-linked gene library in water-in-oil emulsion droplets
with interior volumes close to that of E. coli. Transcription and translation factors
are added to the suspension to produce proteins of interest, which convert their linked
substrate if they are active. Enrichment for the desired product linked to the coding
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Figure 1.3: Protein engineering methodology. Protein gene of interest is diversified, then fitness of
library variants is assessed. Screening methods evaluate variants individually through a designed
assay (i.e. colorimetric product of enzyme activity). Selection methods isolate fit variants from unfit
variants in bulk (i.e. protein function is tied to bacterial antibiotic resistance.)

gene gives a readout of functional variants.
Careful experimental evaluation of protein function is key to selecting variants

that perform in the desired manner. Functional evaluation of protein variants fall
into two categories: 1) selections, in which more fit variants out-compete less fit
variants in bulk, and 2) screens, which assess the performance of a each protein
individually. Common engineering targets include improved thermal stability, higher
tolerance to organic solvents, modified pH sensitivity, and altered substrate specificity
or enantioselectivity.

1.2.2.3 Protein selection strategies

Selection strategies either hinge upon linkage of a protein’s activity with survival of a
host organism or on physical separation of library members by their fitness. While
careful planning is required to design assays that effectively link a protein function
to survival, extremely large (1010) variant libraries can be evaluated simultaneously
via selections. The most common method for linking fitness to survival is the use
of antibiotic resistance as a selection marker. Many studies have evolved enzymes
that neutralize antibiotics in this way; however elegant design can produce assays for
evolution of proteins typically unrelated to antibiotic resistance.44 Work by Shultz and
co-workers developed a selection for aminoacyl tRNA synthetases that aminoacylate
suppressor tRNAs with non-canonical amino acids.45 By inserting a stop codon with
the chloramphenical efflux pump gene, they linked successful aminoacylation with
chloramphenicol resistance.
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1.2.2.4 Protein screening strategies

Screening offers more precise control over assay conditions and readout at the cost of
decreased throughput. Single-cell screening methods such as fluorescence-activated
cell sorting (FACS) can expand the number of screened variants up to 106 if a
fluorescent indicator can be used. Non-fluorescent substrates meanwhile may be
readily screened with moderate throughput as individual colonies if they present a
readily visible phenotype. Chromatographic or mass spectrometry readouts may be
used as screening methods, albeit with considerably reduced throughput.

1.2.3 Comprehensive Protein fitness landscapes

Figure 1.4: Visualization of protein fitness land-
scapes. The mutable landscape of a protein may
be visualized as (a) a heatmap in which every cell
represents the quantitative fitness score of a pro-
tein variant or (b) a 2D topological map where all
possible sequences are spread across a surface and
the fitness peaks are mapped to color saturation.

Advances in DNA synthesis technolo-
gies and multiplexed DNA sequencing
have enabled high-throughput evalua-
tion of comprehensive sets of mutated
proteins.46 While targeted protein mu-
tations or random mutagenesis explore
small or sporadic pockets of the possi-
ble mutational space of a given protein,
deep mutational scanning generates ex-
haustive understanding of the mutabil-
ity of the target protein. Deep muta-
tional scanning introduces all possible
amino acid substitutions of a protein at
all possible positions using cassette-based
cloning methods.47 The comprehensive
knowledge generated by this methodol-
ogy illuminates what is known as the
fitness landscape of a protein.

The concept of a protein fitness
landscape is founded in John Maynard
Smith’s conception of protein evolution
as a walk from one functional protein
to another in the space of all possible
protein sequences.48 By understanding
the fitness of each protein sequence, one
can visualize the space as a landscape
where mountainous peaks represent fit-
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ness maxima and non-functional sequences lie along the valley floor. Understanding
the fitness landscape of a protein not only identify protein variants with improved
properties, but also can shed light on the evolutionary trajectory of proteins. Fitness
landscapes generated via deep mutational scanning simultaneously access all amino
acid substitutions of a given position—a feat that cannot be achieved by natural
evolution, as the genetic code constrains a single nucleotide mutagenic step to 6 of
the 20 amino acids on average.

In recent years, the experimental fitness landscapes of various proteins have been
generated through deep mutational scanning. The first demonstration of a complete
protein fitness landscape was generated by Bolon and coworkers in 2011.49 They
generated all possible point mutations of the entire yeast ubiquitin gene. Using
engineered yeast strains that contained a copy of ubiquitin under tight regulation of
a galactose promoter. This allowed yeast to grow normally in galactose media, but
depend upon the function of the ubiquitin library variant when exchanged to dextrose
media. Thus ubiquitin function was effectively linked to yeast growth. The full fitness
landscape yielded information about the faces of regions of ubiquitin highly tolerant
and highly sensitive to amino acid substitution, and confirmed the conservation of
residues critical for proteasome recognition in a single experiment.

Fitness landscaping of viruses has also attracted significant attention over the past
decade as understanding the mutability of a virus can generate information about
potential evolutionary trajectories to immune evasion. Bloom and coworkers generated
the fitness landscape of hemagglutinin (HA), an influenza surface protein that aids in
viral binding and infectivity.50 They diversified the the HA gene, produced mutant
viruses by reverse genetics, and passaged viruses in tissue culture to select for viability.
Their results shed light on the high frequency of antigenic mutations that necessitate
frequent reformulation of flu vaccines. While host-binding site mutations were
poorly tolerated in HA, regions of antigenic recognition were extremely mutationally
flexible. This flexibility is unique to HA; other influenza proteins such as the influenza
nucleoprotein do not permit mutation to their epitope sites without a loss of fitness.

While the wealth of information to be gleaned from protein fitness landscapes is
apparent for a variety of protein archetypes, performing a deep mutational scan (all
amino acid substitutions) only captures a single dimension of a protein’s mutational
space. The expansive nature of the protein landscape becomes apparent when
simultaneous mutations are sampled. A 100 amino acid protein has 2000 possible
variants. The double mutant space of the same protein meanwhile contains 2 million
possibilities. Although fully elucidating the effects of simultaneous mutations rapidly
becomes infeasible (a 300 amino acid protein has 20300 possible combinations, more
than the number of atoms in the universe),51 complex libraries have demonstrated
the surprising effects multiple mutations can have on protein fitness.
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1.2.4 Epistasis in fitness landscapes

In natural evolutionary patterns, accessible mutations are heavily constrained by the
mutational path between variants. As beneficial mutations are propagated with high
frequency, neutral and deleterious mutations drop out of the variant pool rapidly.
Thus, the effect of combined mutations along the path of an evolutionary walk, also
known as epistasis, has significant impact on the possibility of protein evolution.

The impact of two mutations to a given protein on resultant fitness can manifest
in a number of ways. In an additive case in which no epistasis occurs, the fitness of
a protein double-mutant is merely the simple sum of both single mutants’ fitness.
In cases known as magnitude epistasis, a double mutant produces a larger fitness
effect than the sum of its corresponding single mutations (e.g. single mutants with
positive effects on fitness results in a greater-than-additive increase in fitness when
combined). The most drastic effects on a fitness landscape occur due to sign and
reciprocal sign epistasis. Sign epistasis occurs when one mutation has the opposite
effect in the presence of a second mutation (e.g. a deleterious mutation on its own
enhances the positive effect of a beneficial second mutation). Most confounding is
reciprocal sign epistasis, where two mutations with the same type of fitness effect
alone result in the opposite fitness effect in tandem (e.g. two deleterious mutations
together result in a fitness benefit).

Figure 1.5: Epistatic outcomes of protein mutation. Mutations with positive and negative effects
on protein fitness are depicted in green and red, respectively.

A number of studies have used deep mutational scanning methods to elucidate
the epistatic effects in protein fitness landscapes. These works tend to focus on
exploring the multi-residue mutational space of functional domains within a protein
of interest. Groundbreaking work by Weinreich and coworkers demonstrated how
sign epistasis constrains the evolutionary trajectory of TEM β-lactamase in its
accumulation of antibiotic resistance activity. Only five mutations are required to
increase the antibiotic resistance of bacteria to cefotaxime by a factor of 100,000.
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In order to acquire these five mutations, TEM must traverse one of 120 possible
mutational trajectories. By generating individual combinations of mutants along
the possible mutational trajectories, they found that only 18 of the trajectories are
accessible as the majority of possible pathways result in unfit mutants. However, sign
epistasis along allowed trajectories enables fixing of mutations with deleterious effects.
For example, the G238S mutation enhances hydrolysis but increases aggregation,
while the M182T mutation increases stability at the cost of hydrolysis. M182T alone
is selected against, but if the G238S mutation is first fixed, then the M182T/G238S
mutant shows a net fitness improvement.

Subsequent fitness landscaping work has described epistasis in a variety of systems
including GFP, RNA binding proteins, and various viruses. Full accounting of all
double mutants of protein G domain 1 found that roughly 30% of mutant pairs
experience weak epistasis, while roughly 5% display strong deviations from additivity.
Further research is needed to establish the prevalence of epistasis in protein systems
as well as determine how epistatic effects can be used to access mutational outcomes
of proteins that may be disallowed in nature.

1.3 Conclusion and Outlook
Deep mutational scanning and fitness landscaping are powerful tools for studying the
fundamental mutability of proteins, as well as for engineering new features based on se-
lective pressures or screening conditions. This work utilized a recently-developed tool
for generating fitness landscapes of virus-like particles, called Systematic Mutation
and Assembled Particle Selection (SyMAPS) to engineer new properties in bacterio-
phage MS2 VLPs, as well as understand fundamental constraints on self-assembly of
proteinaceous systems. The method uses particle assembly as a measure for fitness,
allowing than previous landscaping studies of viruses, which rely on infectivity, as
a measure of fitness. This allows for functional assessment of assembly in isolation
when compared to the features necessary for viral viability (i.e. assembly, attachment,
and replication).

The comprehensive landscape of N-terminal MS2 extensions was first generated
with the intent to install site-specific reactive handles on the surface of MS2 VLPs.
It was found that capsid CP extension is largely deleterious to assembly, but identify
sequences that enable VLP formation. We further design selection strategies that use
site-selective bioconjugation as a fitness parameter, ultimately producing engineered
capsids with high reactivity.

Next, the epistatic landscape of MS2 VLPs with a point mutation that fixes an
alternative assembly geometry to the wildtype T=3 icosahedra was constructed. This
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point mutation, S37P, results in a homogenous geometry shift to T=1 icosahedral
particles without drastically altering the secondary structure of the MS2 CP or the
dimeric subunit of MS2. Thus, the S37P landscape uniquely enables separation of
folding constraints on assembly from those that arise due to intersubunit interactions
at MS2’s symmetry axes. Surprisingly, this non-native assembly phenotype permits
access to more mutations than wildtype MS2 despite being an inaccessible mutation
in viral MS2. Further, these comprehensive landscape datasets are used to benchmark
the performance of in silico mutational tools that predict the energetic effects of
protein mutation. Finding that predicted shifts in folding free energy poorly correlate
to VLP assembly competency, results are used to train machine learning models that
predict assembly state of mutated VLPs.

Lastly, this work reports on grassroots efforts to improve the equity and inclusion
of the UC Berkeley Department of Chemistry. Longitudinal outcomes from three
years of departmental climate surveys and cooperative meetings between graduate
students and faculty are discussed. Happily, respondents report improvements in sense
of value and inclusion within the department of the course of survey administration.
The survey framework is also used to generate primary data on how metrics of success
are applied to chemistry graduate students. We report that the success metrics
prioritized by advisors align less with the metrics valued by students from historically
marginalized groups than those from well-represented backgrounds. Methods to
ameliorate such issues are discussed, such as explicit goal-setting with graduate
mentees. Prescriptions as to how academic practices can be shifted to improve
equitable access to chemistry for people from all backgrounds are also offered.
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Chapter 2

Systematic Engineering of a Protein
Nanocage for High-Yield,
Site-Specific Modification

The following is adapted from Brauer, Hartman, Bader, Merz, Tullman-Ercek, and
Francis; J. Am. Chem. Soc., 2019 with permission.

2.1 Abstract
Site-specific protein modification is a widely used strategy to attach drugs, imaging
agents, or other useful small molecules to protein carriers. N-terminal modification
is particularly useful as a high-yielding, site-selective modification strategy that can
be compatible with a wide array of proteins. However, this modification strategy is
incompatible with proteins with buried or sterically hindered N termini, such as virus-
like particles (VLPs) composed of the well-studied MS2 bacteriophage coat protein.
To assess VLPs with improved compatibility with these techniques, we generated
a targeted library based on the MS2-derived protein cage with N-terminal proline
residues followed by three variable positions. We subjected the library to assembly,
heat, and chemical selections, and we identified variants that were modified in high
yield with no reduction in thermostability. Positive charge adjacent to the native
N terminus is surprisingly beneficial for successful extension, and over 50% of the
highest performing variants contained positive charge at this position. Taken together,
these studies described nonintuitive design rules governing N-terminal extensions and
identified successful extensions with high modification potential.
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2.2 Introduction
Site-specific bioconjugation techniques are widely used to produce useful conjugate
biomaterials. Many recently developed N-terminal modification strategies are of
particular interest, as these reactions are high-yielding, can proceed under mild
reaction conditions, and have the capacity to be site-selective.1–9 Because nearly all
proteins contain a single instance of an N terminus, these reactions are useful in a
wide variety of contexts,10 including the loading of cargo onto protein carriers11 or the
development of new biomaterials.12,13 However, such reactions require free N-terminal
residues that are uninvolved in secondary structure, limiting their usefulness on
proteins with sterically hindered N termini. One such case is the MS2 bacteriophage,
a well-studied protein nanocage that is being actively explored for applications in
drug delivery,14–16 disease imaging,17 vaccines,18,19 and biomaterials.20–22 Limited
genetic manipulations can be made to the MS2 coat protein (CP) without disrupting
the assembly state,23 and many inter- and intrasubunit contacts make mutability
challenging to predict.24 Additionally, the native N terminus is sterically hindered,
and efforts to extend the N terminus have had limited success.25 As such, currently
developed N-terminal modification strategies are not compatible with the MS2 CP.
Instead, the attachment of targeting groups to the exterior of the MS2 CP either relies
on nonspecific chemistry, such as lysine modification, or requires the incorporation of
nonstandard amino acids, lowering expression yields and complicating protocols.26,27
The usefulness of the MS2 scaffold would be expanded substantially by enabling
N-terminal modification of the CP in a manner that yields stable, easy-to-produce,
and modifiable virus-like particles (VLPs).

Here, we combine a systematically generated library with direct functional selec-
tions to identify N-terminally extended variants of the MS2 CP that are well-assembled,
thermostable, and amenable to chemical modification (Figure 2.1). In addition to
identifying highly useful extensions that can be modified to >99% by oxidative
couplings between the N terminus and oxidized catechols, we also uncovered surpris-
ing design rules governing which extensions are compatible with particle assembly.
Of 8000 possible combinations of N-terminal extensions, merely 3% of the library
remained assembled through stringent chemical and thermal selections. In addition
to identifying useful VLP variants for biomedical applications, this study represents
the first time that chemical modification conditions have been used as a selection for
protein fitness. This approach could be adapted to study the modification efficiency
for other reactions or protein substrates and could provide rich information about
the effects of amino acid sequence on reactivity.
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Figure 2.1: Scheme to isolate N-terminally extended VLPs with desired properties. (a) Three-codon
NNK extensions at the N terminus generated a library of 8,000 variants. Assembly, thermostability,
and chemical modification challenges were used to identify HiPerX variants, or high-performing
N-terminal extensions with desirable properties, indicated in blue. (b) Oxidative coupling reactions
can be used to modify N-terminal proline residues.

2.3 Results and Discussion

2.3.1 Characterization of a Comprehensive N-Terminally
Extended MS2 Bacteriophage Library

The MS2 VLP is a 27 nm icosahedral particle that is composed of 180 copies of a
protein monomer. Three N termini of these quasi-equivalent proteins are clustered
together, forming a triangle with lengths of 11.7, 12.8, and 7.9 Å(Figure 2.2a).28
This sterically confined local environment suggests that few N-terminal extensions
would be compatible with particle assembly. As such, we sought to use Systematic
Mutagenesis and Assembled Particle Selection (SyMAPS), a technique developed
previously in our laboratories,23 to evaluate all possible proline-terminated extensions
of the MS2 CP with the pattern P-X-X-X-MS2, where X represents all amino acids.
When expressed in E. coli, assembly-competent variants of the MS2 CP encapsulate
available negative charge, including mRNA. SyMAPS capitalizes on this property,
using the encapsulated nucleic acid as a convenient genotype-to-phenotype link. Well-
assembled VLPs copurify with a snapshot of cellular nucleic acid, including variant
mRNA, while mRNA from poorly assembled VLPs is lost.
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Figure 2.2: N termini of the MS2 capsid coat
protein (MS2 CP) monomers. (a) Each quasi-
equivalent form and N terminus is indicated with
a shade of gray or color, respectively. The N termi-
nus of the A form (dark gray) is shown in red; the
N terminus of the B form (white) is shown in blue;
and the N terminus of the C form (gray) is shown
in green. (b) Hydrogen bonding interactions are
shown for the native N terminus. Hydrogen bonds
are shown in blue. (c) The –1 (cyan), –2 (purple),
–3 (orange), and –4 (proline, yellow) positions are
indicated in relation to the native N terminus (ala-
nine) of the MS2 CP.

As shown in Figure 2.1a, an NNK-
based strategy was used to encode all
variants while minimizing biases due to
genetic code redundancies.23 Following
expression, the N-terminal methionine of
wild-type MS2 CP is cleaved, yielding
an alanine in position 1. In the library,
extensions were appended directly before
alanine 1, starting with a –1 position.
With this numbering, the N-terminal pro-
line is located at the –4 position (Figure
2.2b). Proline also is compatible with effi-
cient methionine cleavage, leading to a li-
brary with four total extended residues.29
The invariant N-terminal proline was cho-
sen because these residues were shown
to modify to high conversion via an ox-
idative coupling bioconjugation reaction
(Figure 2.1b).1,30 While this modification
strategy is mild, fast, and efficient, the
wild-type MS2 CP was observed to mod-
ify in less than 5% yield.

Using SyMAPS, we characterized the
assembly competency of each variant in
the P-X-X-X-MS2 library, generating an
apparent fitness landscape (AFL). We
calculated the assembly score for every
mutant in the targeted library by com-
paring the relative log% abundance of
each variant before and after an assembly
selection with size exclusion chromatog-
raphy (SEC), identifying the subset of
extensions competent for VLP assem-
bly (Figure 2.3, Additional Figure 2.9).
In addition, we generated a non-proline-
terminated library, X-X-X-MS2, to dis-
tinguish which assembly trends were gen-
eral and which were specific to a proline
at position –4 (Additional Figure 2.10).
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Figure 2.3: Apparent fitness landscape of P-X-X-X-MS2 N-terminal extensions. Extensions are
labeled as the distance from the native N terminus (alanine), and the –1 position is indicated in
the upper left corner of each quadrant. Blue indicates enriched variants and red indicates enriched
combinations. Dark red indicates variants that were present in the plasmid library but absent in
the VLP library. Missing values are shown in green. The unaveraged AFS is reported for variants
with a missing value in a single replicate and is indicated by hatching. The nonsense mutations are
marked with asterisks.
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Figure 2.4: Effect of positive charge at the –1
position in N-terminal extensions. (a) Assembly
competency differs by –1 amino acid. Arginine
and lysine at the –1 position permit 77% and 61%
of extensions. Arginine and lysine at position –1
result in a higher percent of positive AFS values
(b) compared with all other AFS values or (c)
compared to positive charge at –2 or –3. (d) The
assembly scores of all P-X-X-R-MS2 extensions
are shown when arginine is at the –1 position.

Of the 8000 variants, around 92%
were observed in the starting plasmid
library, consistent with coverage of pre-
vious SyMAPS libraries.23,24 Of these,
48% were absent in the VLP library after
the assembly selection, indicating that
these extensions likely did not permit as-
sembly. These low-scoring variants could
be a result of mutations that are assem-
bly incompetent, poorly expressed, or
unstable to protein expression.23 Around
24% of the variants scored apparent fit-
ness score (AFS) values greater than 0.2,
indicating that assembly occurred read-
ily.23 Variants with a nonsense mutation
had an average AFS value of –3.0 with
a standard deviation of 1.5, indicating
that these sequences were depleted from
the population of selected VLPs by 1000-
fold.

We observed striking trends in the
AFL when the data were grouped by
the identity of the –1 position (or the
position nearest to the native N termi-
nus) (Figure 2.3). We evaluated the num-
ber of variants with P-X-X-Z-MS2 that
were compatible with assembly (Figure
2.4a), where Z is the amino acid at the
–1 position. Positive charge was particu-
larly well-tolerated at this position and
enabled a wide variety of extensions with
the pattern P-X-X-[R/K]-MS2 (Figure
2.3, Figure 2.4a). This was surprising
given the sterically hindered environment
of the N terminus in the MS2 CP. Nearly
80% of extensions with the pattern P-X-
X-R-MS2 assembled (AFS value >0.2),
and over 60% of extensions with P-X-X-
K-MS2 assembled, compared to merely
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12% of P-X-X-D-MS2 and 8% of P-X-X-E-MS2. These results suggest that the
beneficial effect is due specifically to positive charges rather than any charge at all.

Glycine and alanine, both common choices for rational N-terminal extensions,
performed worse than expected compared to other amino acids, with 23% and 18%
extensions permitted, respectively (Figure 2.4a). More intuitively, bulky residues
such as tryptophan, phenylalanine, or leucine were poorly tolerated at the –1 position.
In contrast, polar residues that can act as hydrogen donor and acceptors, such as
serine, threonine, or asparagine, performed well. Asparagine was better tolerated
than glutamine, indicating that side chain length may contribute to mutability of this
position. Interestingly, histidine was also relatively well-tolerated and was the fifth
most permitted amino acid at this position; however, only 40% of extensions with the
pattern P-X-X-H-MS2 assembled, which is far lower than either arginine or lysine.

To visualize this effect, we plotted a histogram of AFS values with arginine or
lysine at the –1 position compared to all other AFS values (Figure 2.4b). These
residues in this position shift the average AFS values to be more positive, indicating
that a higher percent of variants was compatible with self-assembly. Additionally,
a histogram of arginine or lysine in the –1 position was compared with arginine or
lysine at the –2 or –3 position to evaluate whether this effect was location specific.
In this case, a notable shift to more positive AFS values was found with arginine
or lysine only at the –1 position, suggesting the charge effect is indeed specific to
this location (Figure 2.4c). A larger version of the data for arginine in position –1
appears in Figure 2.4d.

Finally, we confirmed that these trends were similar to N-terminal extensions in
the absence of proline in the –4 position (Additional Figure 2.10). In this library,
X-X-[K/R]-MS2 also resulted in a disproportionately high number of assembled
particles compared to other amino acids at the –1 position, indicating that this trend
is likely general for N-terminal extensions of the MS2 CP rather than specific to those
starting with proline.

In order to evaluate the potential interactions responsible for this favorable
effect, we performed a conformational search of a hexameric unit of P-A-A-R-MS2
(Additional Figure 2.3a). Most notably, a new salt bridge is formed in the in silico
study between the N-terminal proline of B chain monomer and Asp17 of the C
chain (Additional Figure 2.11b). In addition, hydrogen bonding is observed between
arginine at the –1 position and Gln6 of the C chain in the minimized structure. We
hypothesize that these hydrogen bonds are beneficial for assembly, as many extension
combinations with a hydrogen bond donor residue at the –1 position are permitted.
In a conformational search of P-A-A-A-MS2 and P-A-R-A-MS2, both the hydrogen
bond and salt bridge were not observed in either extension. These variants have lower
AFL scores and lack a hydrogen bond donor side chain at the –1 position.
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Finally, we analyzed P-A-R-R-MS2, a relatively poorly performing variant, via
structure minimization. We found that while the –1 arginine formed the presumably
beneficial salt bridge, multiple van der Waals clashing interactions were also found
between arginine residues of the A and C chains (Additional Figure 2.11c). The
stringent positional specificity of these interactions highlights the remarkable level of
detail offered by a comprehensive mutational strategy such as SyMAPS.

2.3.2 Interpreting the Apparent Fitness Landscape

We evaluated the consistency of the data by plotting the two biological replicates of
the P-X-X-X-MS2 data set as a scatterplot (Additional Figure 2.12a). In addition, we
plotted the three biological replicates of the X-X-X-MS2 data set (Additional Figure
2.12b–d). In general, we find that the data sets do correlate, though the R2 values
are relatively low (0.42–0.59). We hypothesize that this variability may arise from a
number of sources, including technical differences between assembly selections: for
example, bacterial growth rates or expression levels are both variables that are not
controlled that may affect the selections beyond assembly competency. Correlations
between the two chemical modification selections are even lower (0.37, Additional
Figure 2.12e), suggesting that significant variability may exist between replicates of
the same challenge.

Interestingly, correlations within a replicate are somewhat higher, even when
comparing chemical modification and assembly selections. While several extensions
are positive in the assembly selection and negative in the chemical modification
selection (as is to be expected for additional selective pressure), very few of the
opposite are seen. Correlations for these are 0.52 and 0.67 for replicates 1 and 2,
respectively (Additional Figure 2.12f,g). We find that the heat selection correlates well
with the chemical selection for replicate one, yielding an R2 of 0.75 and few off-axis
data points (Additional Figure 2.12h). From these analyses, we hypothesize that
replicate variability likely arises from growth or expression rather than the selections
themselves.

Finally, we evaluated whether low abundances in the plasmid library contributed
to the low correlation. Requiring at least two reads in both replicates for the P-X-
X-X-MS2 data set did increase the correlation of the replicates to 0.52 from 0.42
(Additional Figure 2.12i), and further requiring at least 10 reads in both replicates
increased the R2 to 0.67. While increased stringency does improve correlation, our
interpretation of this result is that factors beyond read abundances, such as biological
noise, contribute to differences between the replicates.

To reduce the impact of stochastic variation on our data set and highlight variants
with higher certainty in their determined fitness scores, we developed two additional
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methods for data processing. The first method filters out variants with low plasmid
read counts (<4), as these are more prone to error. Though this reduces the coverage
of our P-X-X-X library, we were pleased to find that many trends remain apparent in
the filtered heatmaps (Additional Figures 2.13–2.15). For example, the stark favorable
effect of positive charge at the –1 position on assembly competency was retained, as
over half (54%) of all assembling variants bear a lysine or arginine at this position.

The second method of data processing aimed to remove all variants with am-
biguous assembly competency and simplify the output to a binary “assembling” and
“nonassembling” value. All variants with an AFS near 0 or an AFS that changed
sign between replicants were removed from analysis. Variants with consistent high or
low fitness scores were marked as “assembling” or “nonassembling” mutants, respec-
tively (Additional Figures 2.16–2.18). This method of processing precludes detailed
comparison of variant scores but allows for rapid selection of N-terminally extended
MS2 variants with a clear assembly phenotype. While many of the trends discussed
above are replicated in all methods of data analysis, we recommend using either of
the high stringency methods to select individual extensions for further experiment.
These supplementary processing methods serve as complementary approaches to
interpreting SyMAPS data sets.

2.3.3 Direct Functional Selections for HiPerX Variants

The chemical modification of VLPs imposes a number of challenges to self-assembly,
and any useful variant must tolerate reaction conditions as well as strain introduced
by the covalent attachment of new functionality. As such, we designed a selec-
tion for tolerance to chemical modification conditions to identify variants that are
well-suited for use as protein scaffolds. We used an N-terminal oxidative coupling
reaction for this challenge.1 The oxidative coupling uses a mild metal oxidant to
convert methoxyphenols,31 aminophenols,1 and catechols32 to ortho-quinone and
ortho-iminoquinone intermediates that react selectively with anilines,27 reduced cys-
teines,33 and N-terminal amines of proteins or peptides.1 In this study, we used
aminophenols and catechols as ortho-quinone precursors, as both can be rapidly
oxidized via K3Fe(CN)6 (Figure 2.1b).

The library was chemically coupled to DNA oligomers bearing o-aminophenol
handles, simultaneously exposing the library to chemical modification conditions
and to the strain of coupling large biomolecules to the VLP surfaces (Figure 2.5a).
Variants that remained assembled under these conditions were enriched through
HPLC SEC and sequenced. As with the assembly-selected AFL, we compared percent
abundance of the library after the selection to the plasmid library to generate a
quantitative score of chemical modification compatibility. As a complement, we also
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evaluated the thermostability of all variants, subjecting the library to 50 °C for 10 min
to differentiate between wild-type-like variants and those with reduced thermostability.
As a comparison, the wild-type VLPs are stable up to 65 °C. Variants that remained
assembled after this challenge were also purified by HPLC SEC, sequenced, and
processed to generate a heat-selected AFL.

Figure 2.5: Combined fitness landscape of the P-X-X-X-MS2 N-terminal extensions. (a) The
chemical modification-based selection of the variant library employs bioconjugation to a 25 bp DNA
strand. (b) A color key is provided for the combined AFL data. (+++) indicates a score greater than
1.0 in the selection, and HiPerX, or high performing extensions, are indicated in blue. (–) indicates
a score less than 1.0 in the selection. Combined AFLs are displayed for extensions c) P-X-X-R-MS2
and d) P-X-X-K-MS2. The full combined fitness landscape can be found in Additional Figure 7.

Surprisingly, the chemical modification selection was more stringent than the
thermal selection: only 16% of the mutants were assembled following exposure to
chemical modification conditions, while 22% of the mutants tolerated 50 °C for 10 min.
In addition, chemical modification and thermostability scores showed stark differences
in trends when compared to assembly-selected AFS values. While variants with
multiple positive charges expressed and assembled far better than the library average
(61% compared to 24%), these VLPs were almost universally sensitive to chemical
and thermal challenges, suggesting that these types of extensions are unstable and
therefore undesirable. Histidine behaved similarly in these challenges, and histidine
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at the –1 position when combined with positive charge at the –2 or –3 position was
sensitive to thermal or chemical challenges. AFLs following thermal (Additional
Figure 2.19) or chemical modification (Additional Figure 2.20) challenges present
this phenomenon as distinct red bands within plots in which lysine and arginine are
grouped by the –1 position. These data exhibit why functional challenges to variant
libraries are crucial to disentangle subtle changes to VLP properties.

We next sought to generate insight into the variants performing well across
all selections, which included assembly, thermal stability, and oxidative coupling
selections. We generated an aggregate AFL that incorporated the results of each
enrichment, in which a stringent threshold score for each parameter was used to isolate
the most promising and useful variants. This aggregate AFL identified 238 thermally
stable, chemically modifiable N-terminal extensions of the MS2 CP, indicated in blue
(Figure 2.5b, Additional Figure 2.21) and termed high-performing extended (HiPerX)
variants. Consistent with the findings above, 129 of these 238 variants possessed
lysine or arginine at the –1 position, accounting for 54% of the HiPerX variants
(Figure 2.5c,d). With a stringent score of 10-fold enrichment in all selections, most
amino acids at the –1 position resulted in few or no HiPerX variants. Interestingly,
unsuccessful sequences included glycine, which is commonly used in rational design
to engineer extensions or linkers between protein domains.34,35 Branched amino
acids were also poorly tolerated at the –1 position: a comparison between serine and
threonine at the –1 position revealed that threonine performed far worse than serine.
Proline was better tolerated and outperformed glycine, even though these extensions
have at least two proline residues in the first four amino acids.

We also found many nonintuitive results that diverged from common protein
engineering assumptions. For example, tyrosine at the –2 or –3 position, when
combined with arginine at the –1 position, was observed in many HiPerX variants.
Combinations with multiple charges (P-D-H-R-MS2) or multiple large amino acids
(P-S-Y-R-MS2) are also assembly competent, thermostable, and highly modifiable
extensions. In particular, P-D-X-R-MS2 folded well across a broad range of X
identities, such as when X was a small residue like serine, a hydrophobic residue
such as isoleucine, or a polar, bulky residue like tyrosine. These results underscore
the importance of experimental efforts to describe the mutability of large protein
assemblies.

Bulky residues were tolerated at the –2 and –3 position in combination with
arginine at the –1 position; however, by this metric, multiple positive charges were
still detrimental to VLP stability. Even negative charge could not rescue stability
in nearly all of these cases. The only extensions with multiple positive charges with
any increased stability are P-D-K-[K/R]-MS2, which are thermally stable but do not
tolerate chemical modification. Additionally, glycine was only tolerated at the –3
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position and, even then, only when there is a positively charged residue at the –1
position. These trends, where multiply charged or bulky combinations of residues
are permitted, are difficult to reconcile with the structure of the N terminus of the
MS2 CP. For example, the close proximity of the monomer N termini means that an
extension like P-S-Y-R-MS2 positions multiple large and/or charged residues within 9
to 12 Å. These results also contrast with most rational N-terminal extensions, which
rely on small residues such as serine or glycine to disrupt the local protein folding
environment minimally.34,35

We hypothesize that many of these mutations may enhance the critical charge in-
teractions that make lysine and arginine desirable variants. For example, hydrophobic
residues at the –2 position could create a more hydrophobic environment, reducing the
local dielectric constant.36,37 This in turn could strengthen the interactions involved
in the proposed salt bridges. Alternatively, nonpolar residues in the –2 or –3 position
could interact through hydrophobic effects. Regardless of the cause, in the absence of
a systematic library approach and direct functional selections, these many nonintuitive
yet critical findings would almost certainly have been missed. Ultimately, only 3%
of the 8000 possible P-X-X-X-MS2 extensions were identified as HiPerX variants,
enriched in assembly, thermal stability, and chemical modification.

2.3.4 Characterization and Modification of HiPerX Variants

Based on the stringent selection conditions, HiPerX variants were expected to have
increased tolerance to chemical reaction conditions; however, it was not known whether
the N termini of these variants would be modified at higher rates than CP[WT]. As
such, we sought to validate trends identified in high-throughput sequencing and to
characterize the usefulness of HiPerX variants as protein scaffolds. To do so, five
randomly selected HiPerX variants with P-X-X-R-MS2 extensions were cloned and
evaluated individually. These variants were selected because this population showed
the largest enrichment across all challenges. All five variants expressed in high yield,
formed assembled VLPs, and tolerated the thermal challenge of 50 ºC for 10 min,
supporting the quality of the AFLs (Additional Figure 2.23).

We next evaluated whether the engineered extensions indeed enhanced reactiv-
ity to the N-terminal oxidative coupling reaction. We performed a reactivity test
to modify the VLP N termini with a small-molecule catechol derivative (Figure
2.6a). Gratifyingly, all tested variants showed a significant enhancement in reaction
conversion compared to the wild-type MS2 CP. HiPerX variants showed 36–87%
modification, compared to <5% modification in wild-type VLPs (Figure 2.6b). The
dramatic increase in conversion under these conditions is notable in and of itself;
additionally, as there are 180 MS2 CPs per VLP, these N-terminally extended vari-
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ants are capable of displaying up to 65–160 copies of the new functionality per
VLP, representing a substantial increase in targeting or drug-carrying capabilities.

Figure 2.6: Chemical modification of HiPerX
MS2 variants. (a) An oxidative coupling reaction
was evaluated for proline-terminated MS2 vari-
ants. (b) Mass spectra of chemically modified
HiPerX variants of the MS2 CP are shown. Per-
cent modification is determined by integration of
the unmodified (SM) vs modified (+1 mod) peaks.

HPLC SEC of modified samples con-
firmed that all of these VLPs remained
assembled after modification (Additional
Figure 2.25). This result shows that, for
the first time, SyMAPS can be combined
with a chemical modification enrichment
to identify highly modifiable variants. In
addition, given that all five randomly se-
lected variants modified at higher rates
than CP[WT]—and because we expect
the N-terminal prolines to be solvent ac-
cessible—we anticipate that many other
HiPerX variants will also be amenable to
modification.

We next sought to evaluate whether
these extensions were compatible with
other bioconjugation strategies (Figure
2.7a–c). One such N-terminal modifica-
tion strategy using 2-pyridinecarboxald-
ehyde (2PCA) modifies most N-terminal
residues to high yield in a single step
through a mechanism that is distinct
from oxidative coupling reactions (Fig-
ure 2.7b).2 These two chemistries do
not share common intermediates and
proceed under different reaction condi-
tions. To evaluate HiPerX variant per-
formance with 2PCA, extended variants
and CP[WT] were incubated with excess
reagent overnight at room temperature,

according to the published protocol.2 We observed that HiPerX variants resulted in
around 80% modification with 2PCA, compared to around 30% modification with
CP[WT], even though these extensions were optimized for the K3Fe(CN)6 oxidative
coupling reaction (Figure 2.7d). While the fold improvement was lower for this
reaction, an increase from 30% modification (CP[WT]) to 80% (CP[HiPerX]) modifi-
cation represents a useful increase in the number of functional groups installed on
the exterior, from 50 modifications to 140 modifications (Figure 2.7e).
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Figure 2.7: Conversion and fold improvement
of N-terminal modification strategies of HiPerX
MS2 variants. Reaction schemes are shown for
(a) potassium ferricyanide-mediated oxidative cou-
pling, (b) 2-pyridinecarboxaldehyde modification,
and (c) tyrosinase-mediated oxidative coupling.
(d) Percent modification and (e) fold improvement
of two HiPerX MS2 variants is shown in contrast
to wild-type MS2.

We also investigated a new tyrosinase-
mediated variant of the oxidative
coupling reaction (abTYR, tyrosinase
from Agariucus bisporus) that pro-
ceeds through a similar mechanism to
K3Fe(CN)6 oxidative coupling after the
ortho-quinone intermediate is produced
(Figure 2.7c).30 The enzymatic oxidation
is compatible with phenols as well as
catechols; thus, compatibility with ab-
TYR would widen the scope of poten-
tial small-molecule partners to include
many shelf-stable phenols. We found
that modification yields with catechols
increased from good (36-87%) to near-
quantitative (>99%) in all cases (Fig-
ure 2.7e). In addition, CP[PQYR] was
found to be compatible with installation
and modification of a reactive cysteine
in the interior cavity.38 Interior label-
ing was performed with an AlexaFluor-
488 maleimide dye, and modification
efficiency with this strategy was high
(>99%), as previously reported.16,38–40
More importantly, subsequent exterior
modification via abTYR-mediated oxida-
tive coupling also proceeded to over 99%
conversion, resulting in doubly modified
VLPs with 180 copies of both function-
alities (Additional Figure 2.24). Alto-
gether, these extensions are thermally
stable and highly modifiable and can
carry cargo, making them promising car-
riers with highly desirable properties for
a number of biomedical applications.
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2.3.5 Extensions Are Well-Assembled and Modified in
Combination with CP[S37P]

Figure 2.8: Chemical modification of HiPerX
miniMS2 variants (CP[HiPerX-S37P]. (a) Crystal
structures of CP[WT] and CP[S37P] are shown
with N termini highlighted in red and blue, respec-
tively. (b) Mass spectra of chemically modified
HiPerX variants of the MS2 CP are shown.

Previous work in our lab identified a vari-
ant of the MS2 VLP with altered qua-
ternary geometry.41 This CP[S37P] mu-
tation alters the global structure from a
27 nm wild-type-sized VLP to a smaller,
17 nm VLP (Figure 2.8a). This smaller-
sized variant retains similar thermosta-
bility and is a useful tool to probe the
effect of carrier size directly in appli-
cations such as drug delivery or imag-
ing.42 However, the N terminus of the
CP[S37P] is distinct from CP[WT], both
in minor structural differences and spa-
tial positioning. To date, the exterior
of CP[S37P] has not been modified, and
its N terminus is sterically unavailable,
similar to the parent CP[WT].24

We looked to determine whether
HiPerX sequences could be appended to
the CP[S37P] structure, enabling facile
modification without repeating the li-
brary generation and functional selec-
tions. Despite the differences in ge-
ometry and secondary structure, all
three N-terminally extended CP[HiPerX-
S37P] variants assembled into well-
formed VLPs. Each variant retained the
T = 1 geometry and smaller size, as con-
firmed by dynamic light scattering (Additional Figure 2.26a). Additionally, variants
tolerated 50 ºC for 10 min, indicating that thermostability was preserved in the new
genetic background (Additional Figure 2.26b).

We next modified the exterior of the N-terminally extended CP[S37P] variants
with the K3Fe(CN)6 oxidative coupling reaction, appending a catechol small molecule
to the N-terminus. We found that CP[HiPerX-S37P] variants modified equally as
well as the parent HiPerX variants, achieving >85% modification in all cases (Figure
2.8b). As a comparison, CP[S37P] modified <5%, indicating that the extensions are
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critical to achieve high modification rates. Despite changes to surface curvature and
quaternary structure geometry, the selected HiPerX variants performed remarkably
well as useful N-terminal extensions with CP[S37P]. Furthermore, this presents the
first successful exterior modification of MS2 CP[S37P], enabling future study of a 17
nm VLP variant as a targeted protein scaffold.

2.4 Conclusion
The site-specific modification of proteins is of fundamental importance for many
applications, including drug delivery, vaccines, and protein biomaterials. Here, we
combined a systematically generated library with a functional selection under chemical
modification conditions to identify variants of the MS2 CP that are highly compatible
with N-terminal modification. The fact that only 3% of the library were enriched
after the full set of challenges underscores the fact that the introduction of non-native
amino acids into proteins remains a nonintuitive process a priori. This is particularly
true in the case of self-assembling proteins, as single-point mutations lead to amplified
effects when propagated throughout the quaternary structure. In this study, an
unexpected charge interaction was uncovered that counters these effects and, in some
cases, was bolstered by additional hydrophobic interactions. The selection procedure
for bioconjugation conditions could be used with many future libraries to identify
new reactive sequences. Finally, the MS2 CP variants identified in this study can be
doubly modified to >99% yield on both the interior and exterior surfaces, providing
homogeneous carrier materials in two different sizes for a variety of drug delivery
applications.

2.5 Materials and Methods

2.5.1 Library generation

To generate libraries of N-terminal extensions, we modified a library generation
and selection strategy used previously in our lab, called SyMAPS.23 SyMAPS uses
the EMPIRIC cloning developed in the Bolon lab.43 In EMPIRIC cloning, a plas-
mid contains a self-encoded removable fragment (SERF) flanked by inverted BsaI
recognition sites. Thus, BsaI digestion simultaneously removes the SERF and BsaI
sites. This plasmid, referred to as an entry vector, was one of several previously
used to generate all one amino acid mutations of the MS2 CP. Two single-stranded
DNA primers with (NNK)3 extensions, either with or without an N-terminal proline,
were purchased, resuspended, and diluted to final concentrations of 50 ng/µL. The
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reverse strand was completed by overlap extension PCR with a corresponding reverse
primer. Subsequently, the double-stranded DNA was purified by PCR clean-up
(Promega, Cat #A9282), diluted to 1-5 ng/µL, then cloned into the entry vector
using Golden Gate cloning. Ligated plasmids were incubated on desalting membranes
(Millipore Sigma, Cat #VSWP02500) for 20 min, followed by transformation into
store-bought electrocompetent DH10B E. coli cells (Invitrogen, Cat #18290015) for
the P(NNK)3 extension, or homemade electrocompetent DH10B E. coli cells for the
(NNK)3 extension. Following electroporation and recovery, cells were plated onto two
LB-A plates (VWR, Cat #82050-600) containing 32 µg/mL chloramphenicol. Cells
were grown overnight at 37 °C. Colony number varied, but every transformation
produced at least 3x the library size. The protocol was repeated in full for three (for
(NNK)3 extensions) or two (for P(NNK)3 extensions) total biological replicates that
are entirely independent from library generation through selection.

2.5.2 Assembly selection

Colonies were harvested by scraping plates into LB-M and growing the mixture for
2 h. Each library was subcultured 1:100 into 1 L of 2xYT (Teknova, Cat #Y0210)
and grown to an OD of 0.6, then induced with 0.1% arabinose. Variant libraries were
expressed overnight at 37 °C. Cells were harvested by centrifugation and lysed by
sonication. Libraries were subjected to two rounds of ammonium sulfate precipitation
(50% saturation), followed by FPLC size exclusion chromatography purification to
select for well-assembled VLPs.

2.5.3 Heat selection

Assembly-selected libraries were subjected to 50 °C for 10 min. Precipitated VLPs were
pelleted via centrifugation, and assembled VLPs were isolated via semi-preparative
HPLC size exclusion chromatography. Fractions containing assembled VLPs (at the
characteristic elution time of 11.2 min) were combined, subjected to RNA extraction,
barcoded, and identified via high-throughput sequencing.

2.5.4 Chemical modification selection

P(NNK)3 libraries (final concentration 200 µM) were added to a solution of aminophenol-
DNA (final concentration 1 mM) in 10 mM phosphate buffer, pH 7.2. K3Fe(CN)6
in Milli-Q water was added (final concentration 5 mM) and the solution was in-
cubated at room temperature for 30 min. The reaction was quenched with tris(2-
carboxyethyl)phosphine (TCEP, final concentration 50 mM) and excess oxidant and
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DNA were removed using a 100 kDa MWCO filter spin filter (EMD Millipore, Burling-
ton, MA). Well-formed VLPs were isolated by semi-preparative HPLC SEC, sample
preparation, and high-throughput sequencing as described.

2.5.5 Sample prep for high-throughput sequencing

Plasmid DNA was isolated prior to expressions using Zyppy Plasmid Miniprep Kit
(Zymo, Cat #D4036). RNA was extracted from the assembly-selected libraries using
previously published protocols.23,44 Briefly, homogenization was carried out with
TRIzol (Thermo Fisher Cat #15596026), followed by chloroform addition. The sample
was centrifuged to separate into aqueous, interphase, and organic layers. The aqueous
layer, containing RNA, was isolated, and the RNA was precipitated with isopropanol
and washed with 70% ethanol. RNA was dried and resuspended in RNAse free water.
cDNA was synthesized with the Superscript III first strand cDNA synthesis kit from
Life (Cat #18080051, polyT primer). PolyT primers have historically been used
with success for SyMAPS projects,23,24 likely because a small percent of the E. coli
transcriptome is known to be polyadenylated in small amounts45,46. A head-to-head
comparison of random hexamer primers with polyT primers shows that both success-
fully produce cDNA that can be used for downstream high-throughput sequencing
steps (Additional Figure 2.22). Though unusual, this low level of polyadenylation,
coupled with high expression levels achieved in the library generation stage, has led
to the successful use of polyT primers. Future work will further compare polyT vs.
random hexamer primers in this system. cDNA and plasmids were both barcoded for
high-throughput sequencing. Both types of samples were amplified with two rounds
of PCR (10 cycles, followed by 8 cycles) to add barcodes and Illumina sequencing
handles, following Illumina 16S Metagenomic Sequencing Library Preparation rec-
ommendations. Libraries were quantified with Qubit and combined in equal molar
ratio. Libraries were analyzed by 150 PE MiSeq in collaboration with the UC Davis
Sequencing Facilities. A total of 18 million reads passed filter, and had an overall
Q30 > 85%.

2.5.6 Individual variant cloning

Individual variants were cloned through a variation of the methods described above.
Briefly, overlap extension PCR was used to produce double-stranded fragment that
spanned the length of the missing 26-codon region in the entry vector. Each fragment
was cloned into the entry vector using standard Golden Gate cloning techniques.47
Plasmids were then transformed into chemically competent DH10B cells. Plasmid
identities were confirmed by Sanger sequencing prior to expression. Variants with
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multiple mutations (i.e. CP[HiPerX–S37P] and CP[HiPerX–N87C]) were cloned into
a similar Entry Vector bearing the desired mutation at position 37 or 87, which was
installed via site-directed mutagenesis.48

2.5.7 Individual variant expression

Selected variants were expressed individually in 5 or 50 mL cultures of 2xYT. Expres-
sions were lysed by sonication and precipitated twice with 50% ammonium sulfate.
Variants were evaluated for assembly by HPLC SEC and thermostability by native
gel.

2.5.8 Oxidative coupling of HiPerX MS2 variants

To a solution of HiPerX MS2 (final concentration 10 µM, 1 eq.) in 10 mM sodium
phosphate buffer at pH 7.2 was added 4-methylcatechol in DMF (final concentration
100 µM, 10 eq.). To initiate oxidation, K3Fe(CN)6 in Milli-Q water was added (final
concentration 1 mM, 100 eq.) and the solution was incubated at room temperature
for 30 min. The reaction was quenched with tris(2-carboxyethyl)phosphine (TCEP,
final concentration 10 mM) and excess oxidant and DNA were removed using a 100
kDa MWCO filter spin filter. Percent conversion was analyzed by ESI-TOF-LC/MS
analysis and VLP integrity was confirmed by HPLC SEC.

2.5.9 Enzyme-catalyzed oxidative coupling of HiPerX MS2
variants

A solution of HiPerX MS2 (final concentration 10 µM, 1 eq.) in 50 mM sodium
phosphate buffer at pH 6.5 was supplied with 4-methylcatechol in DMF (final con-
centration 100 µM, 10 eq.). To initiate the oxidative coupling reaction, tyrosinase
enzyme (final concentration 0.5 µM) was added to the reaction mixture. After 2 h
of incubation at room temperature, the reaction was quenched with a solution of
tropolone and TCEP (final concentration 2.1 mM tropolone and 2.1 mM TCEP).
Excess 4-methylcatechol was removed using a 100 kDa MWCO filter spin filter. The
percent conversion was determined using ESI-TOF-LC/MS analysis and VLP integrity
was confirmed by HPLC SEC.

2.5.10 2PCA modification of HiPerX MS2 variants

A 10 mM solution of 2-pyridiencarboxaldehyde (2PCA) in water was added to a
solution of HiPerX MS2 (final concentrations: 50 µM MS2 CP, 12.5 mM 2PCA) in 10



CHAPTER 2. SYSTEMATIC ENGINEERING OF A PROTEIN NANOCAGE
FOR HIGH-YIELD, SITE-SPECIFIC MODIFICATION 37

mM sodium phosphate buffer, pH 7.2 with 100 mM NaCl. The reaction was allowed
to proceed for 18 h at room temperature. Excess 2-pyridinecarboxaldehyde was
removed using a 100 kDa MWCO filter spin filter. Percent conversion was analyzed
by ESI-TOF-LC/MS, and VLP assembly was assessed by HPLC SEC.

2.5.11 MS2-fluorophore labeling

P-X-X-R/N87C MS2 (final concentration 100 µM) was mixed with Alexa Fluor 488-
Maleimide (stock solution 10 mM in DMSO, final concentration 100 µM, Invitrogen,
Cat #A10254) in 50 mM phosphate buffer, pH 7.2. Solution was briefly vortexed
then incubated at room temperature for 1 h. Excess dye was removed by Nap-5
size exclusion column (GE Healthcare, Cat #17-0853-01) equilibrated with 10 mM
phosphate buffer, pH 7.2. Modification of assembled VLPs was verified by HPLC
SEC and quantified by ESI-MS.

2.5.12 FPLC SEC

MS2 CP libraries and select individual variants were purified on an Akta Pure 25
L Fast Protein Liquid Chromatography (FPLC) system with a HiPrep Sephacryl
S-500 HR column (GE Healthcare Life Sciences, Cat #28935607) Size Exclusion
Chromatography (SEC) column via isocratic flow with 10 mM phosphate buffer at
pH 7.2 with 200 mM sodium chloride and 2 mM sodium azide.

2.5.13 HPLC SEC

Variants or libraries were analyzed on an Agilent 1290 Infinity HPLC with an Agilent
Bio SEC-5 column (5 um, 2000Å, 7.8x300mm) with isocratic flow of 10 mM phosphate
buffer at pH 7.2 with 200 mM sodium chloride and 2 mM sodium azide. Fractions were
harvested at 11.2 min, or the characteristic elution time for wild-type MS2. Harvested
VLPs were then subjected to RNA extraction and high-throughput sequencing sample
preparation.

2.5.14 Native gel electrophoresis

Variants were analyzed in a 0.8% agarose gel in 0.5X TBE buffer (45 mM Tris-borate,
1 mM EDTA) and 2X SYBR Safe DNA Gel Stain (ThermoFisher Scientific, Cat
#S33102) for 120 min at 40 V. Agarose gels were imaged on a BioRad GelDoc
EZ Imager. Densitometry with ImageJ was carried out to compare experimental
conditions to pH 7.4 in each case.
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2.5.15 ESI-TOF

Modified and unmodified variants were analyzed with an Agilent 1200 series liquid
chromatograph (Agilent Technologies, USA) connected in-line with an Agilent 6224
Time-of Flight (TOF) LC/MS system with a Turbospray ion source.

2.5.16 Strains

All library experiments were conducted with MegaX DH10B E. coli electrocompetent
cells (ThermoFisher Scientific, Cat #C640003). Chemically competent E. coli DH10B
cells were used for expression of individual variants of interest. Overnight growths
from a single colony were incubated for 16-20 h at 37 °C shaking at 200 RPM in
LB-Miller media (Fisher Scientific, Cat #BP1426-2) with chloramphenicol at 32 mg/L.
Expressions were subcultured 1:100 into 2xYT media (Teknova, Cat #Y0210) with 32
mg/L chloramphenicol, allowed to grow to an OD600 of 0.6, then induced with 0.1%
arabinose. Expressions continued overnight at 37 °C shaking at 200 RPM.

2.5.17 High-throughput sequencing data analysis

Data were trimmed and processed described previously,23 with minor variation.
Briefly, data were trimmed with Trimmomatic49 with a 4-unit sliding quality window
of 20 and a minimum length of 32. Reads were merged with FLASh (fast length
adjustment of short reads) with a maximum overlap of 150 base pairs. Reads were
sorted and indexed with SAMtools50 and unmapped reads were filtered with the
Picard function CleanSam. Reads shorter than 106 base pairs were removed. Reads
were processed with in-house code to produce various AFLs.

2.5.18 AFL calculations

Cleaned and filtered high-throughput sequencing reads were analyzed using Python
programs written in-house. Briefly, the N-terminal region of the MS2 CP was
located, and the three codons following the proline at the new N terminus were
recorded. Codons were then translated into amino acids to generate counts for each
tripeptide combination. These calculations were repeated for all experiments to
generate abundances before and after each selective pressure. Relative abundances
were calculated similarly to the previously described protocol.23 Briefly, the relative
percent abundance of a selection was calculated by dividing the percent abundance
generated from an assembled VLP, heat-selected, or chemically-selected library by
the plasmid percent abundance from its respective biological replicate. Two biological
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replicates were assessed for each challenge except for the heat-selected library, where
one biological replicate was analyzed. All Nan (null) values, which indicate variants
that were not identified in the plasmid library were ignored. Scores of zero, which
indicate variants that were sequenced in the unselected library but absent in the VLP
library, were replaced with an arbitrary score of 0.0001. We calculated the mean
relative abundances across replicates. We then calculated the log10 of the Relative
Abundance array to calculate the final array for each replicate. The log10 relative
abundance value for an individual variant in a particular challenge is referred to as
its Apparent Fitness Score (AFS). Arrays are displayed in Figure 2.3 and Additional
Figures 2.9, 2.10, 2.19, and 2.20. Heatmaps for each of five individual biological
replicates (two replicates of P-X-X-X-MS2 and three replicates of X-X-X-MS2) are
shown in Additional Figures 19-23, and the correlation between all replicates are shown
in Additional Figure 4, with plasmid abundance cutoffs indicated where relevant. For
the correlation analyses, any extension with a –4 or nan score in either replicate was
not included.

2.5.19 High-stringency heatmap calculation

Two additional data processing methods were applied to the P-X-X-X libraries in
order reduce the impact of stochastic variation on the generated heatmaps show in
Additional Figures 2.13-2.18. The first set of heatmaps were produced by removing
low read count variants from the dataset. Variants with three or fewer reads in
the plasmid library of any individual replicate were treated as null values in the
average heatmap and are shown in green (Additional Figures 2.13-2.15). The second
processing method removed ambiguous fitness scores and simplified scoring to a
positive (blue) or negative (red) score. In this filter, any variant with a fitness score
between -0.2 and 0.2 in any individual replicate was considered a null value and
colored in grey. Variants with scores of opposite charge between replicates were
also removed. The remaining variants were marked blue if their fitness scores were
>0.2 in all replicates or marked red if their fitness scores were <-0.2 in all replicates
(Additional Figures 2.16-2.18).

2.5.20 Making the aggregate AFL

The aggregate AFL was produced using in-house Python code. In brief, variants were
sorted by their AFS values in assembly, heat, and chemical selection. Variants with
an AFS value greater than or equal to 1.0 in all three criteria were designated Highest
Performing Extensions (HiPerX). Variants with AFS values of less that 1.0 in one or
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more challenge(s) were sorted as shown in Figure 2.4b. If a variant returned a null
value for any of the three challenges it was sorted into the not observed category.

2.5.21 Random selection of HiPerX variants

All HiPerX variants of the form P-X-X-R-MS2 were assigned a unique value from
1-65. Five random integers between 1-65 were produced using Python’s randint()
function and the corresponding variants were subsequently cloned and expressed.

2.5.22 Computational modeling of extended MS2 coat
proteins

A hexameric subunit of the MS2 capsid was prepared in based off of the crystal struc-
ture of wildtype MS2 (PDB ID:2MS2). The structure was imported into Schrodinger’s
Maestro suite and various N-terminal extensions were constructed with the build
tool. Preprocessing of the extended structures was performed with Maestro’s protein
preparation wizard. In brief, hydrogen bonds were assigned with the H-bond opti-
mization tool at a PROPKA pH of 7. Subsequently, a restrained minimization of the
structure using an OPLS3e forcefield was performed. MacroModel was then used to
carry out a Large-scale Low Mode conformational search of the minimized structures.
All residues within 10 Å of the N-terminal extensions were restrained with a force
constant of 200 kJ/mol. Atoms beyond this subshell were frozen in place. Sampling
used 1000 maximum steps with 100 steps per rotatable bond.
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2.6 Additional Figures

Figure 2.9: Labeled full assembly-selected AFL of N-terminal extensions with the pattern P-X-X-
X-MS2, as shown in Figure 2.3
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Figure 2.10: Assembly-selected AFL of N-terminal extensions with the pattern X-X-X-MS2. Blue
indicates enriched amino acids, red indicates combinations that are not enriched, and green indicates
missing values.
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Figure 2.11: Modeling of N-terminally extended MS2 coat protein variants. a) Modeling of the
extended variants uses a hexameric subunit of the MS2 capsid. The A, B, and C forms of the coat
protein monomer are labeled in blue, orange, and green respectively. b) A view of P-A-A-R MS2 is
shown with hydrogen bonds in yellow and salt bridges in pink. c) A close up of P-A-R-R MS2 is
presented with unfavorable van der Waals interactions highlighted in orange.



CHAPTER 2. SYSTEMATIC ENGINEERING OF A PROTEIN NANOCAGE
FOR HIGH-YIELD, SITE-SPECIFIC MODIFICATION 44

Figure 2.12: Correlation analyses of libraries described in this work. In all cases, variants
with –4 or NaN values in either replicate were excluded. The correlations for a) P-X-X-X-MS2
Assembly Replicates 1-2 and (b-d) X-X-X-MS2 Assembly replicates 1-3 are shown. e) Correlation
of modification conditions for P-X-X-X-MS2 is shown. In each case, extensions with two positive
scores (> 0.2) are shown in gray, and replicates with two negative scores (<–0.2) are shown in
orange. Replicates with scores close from –0.2 to 0.2 in both replicates are shown in yellow, while
green indicates extensions that are both inverted and greater than 1.5 apart. The remaining scores
are in purple. In addition, (f-h) correlation between various selections within a given replicate are
shown. Finally, medium and high stringency correlations for the P-X-X-X-MS2 library, determined
by abundances (>2 and >9, respectively), are shown.
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Figure 2.13: Apparent Fitness Landscape of P-X-X-X-MS2 N-terminal extensions with low read
filter. Variants with three or fewer reads in the plasmid library of either replicate were treated as a
missing value and are shown in green.
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Figure 2.14: Chemical challenge of P-X-X-X-MS2 N-terminal extensions with low read filter.
Variants with three or fewer reads in the plasmid library of either replicate were treated as a missing
value and are shown in green.
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Figure 2.15: Heat challenge of P-X-X-X-MS2 N-terminal extensions with low read filter. Variants
with three or fewer reads in the plasmid library were treated as a missing value and are shown in
green.
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Figure 2.16: Apparent Fitness Landscape of P-X-X-X-MS2 N-terminal extensions with alternative
data processing. Variants with an AFL score between -0.2 and 0.2 in either replicate or with opposite
signs across replicates are shown in grey. Variants in which both replicate scores are >0.2 are shown
in blue and variants with both replicate scores <-0.2 are shown in red.
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Figure 2.17: Chemical challenge of P-X-X-X-MS2 N-terminal extensions with alternative data
processing. Variants with a chemical challenge score between -0.2 and 0.2 in either replicate or with
opposite signs across replicates are shown in grey. Variants in which both replicate scores are >0.2
are shown in blue and variants with both replicate scores <-0.2 are shown in red.
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Figure 2.18: Heat challenge of P-X-X-X-MS2 N-terminal extensions with alternative data process-
ing. Variants with a score between -0.2 and 0.2 in were removed and are shown in grey. Variants
with heat challenge scores >0.2 are shown in blue and variants with a score <-0.2 are shown in red.
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Figure 2.19: Heat-selected AFL for the P-X-X-X-MS2 library. The library was subjected to 50
°C for ten minutes, and assembled VLPs were enriched with semi-preparative HPLC size exclusion
chromatography. Enriched amino acids are blue, variants that are not enriched are indicated in red,
and missing values are shown in green.
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Figure 2.20: Chemical modification AFL of the P-X-X-X-MS2 library. The library was subjected
to chemical modification conditions, and assembled VLPs were enriched with semi-preparative HPLC
size exclusion chromatography. Enriched combinations are blue, variants that are not enriched are
shown as red, and missing values are green.
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Figure 2.21: An aggregated heatmap combining results from the assembly, thermal, and chemical
modification selections. a) All combinations of P-X-X-X-MS2 are given a color based on the key
shown in Figure 2.5b
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Figure 2.22: Comparison of polyT and random hexamer primers for cDNA synthesis. Agarose gel
shows DNA following cDNA synthesis and the first PCR amplification of barcoding. Lanes 1 and
2 contain DNA synthesized from wtMS2-derived RNA using polyT and random hexamer primers,
respectively. Lanes 3 and 4 contain DNA synthesized from an assembly-incompetent MS2 variant
using polyT and random hexamer primers, respectively.

Figure 2.23: Native agarose gel of HiPerX variants following a thermal challenge. Lanes 1-3 for
each variant were incubated at room temperature, 50° C, and 100° C respectively.

Figure 2.24: Dual chemical modification of CP[PYQR-N87C] MS2. CP[PYQR-N87C] can be
modified with an AF-488 maleimide dye to quantitative conversion. Subsequent modification with a
small molecule cathechol via oxidative coupling proceeds to full conversion as well.
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Figure 2.25: HPLC SEC traces of CP[HiPerX] variants following K3Fe(CN)6-mediated oxidative
coupling. Presence of a light scattering peak at 11 min indicates that the capsids remain assembled.
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Figure 2.26: CP[HiPerX–S37P] variants following thermal and modification challenges. a) Native
agarose gel of CP[HiPerX-S37P] variants following a thermal challenge. Lanes 1-3 for each variant
represent incubation at room temperature, 50° C, and 100° C respectively. b) DLS of CP[HiPerX-
S37P] prior to small molecule oxidative coupling (red) and following modification (blue).
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Figure 2.27: Replicate one of the assembly-selected AFL of N-terminal extensions with the pattern
P-X-X-X-MS2.
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Figure 2.28: Replicate two of the assembly-selected AFL of N-terminal extensions with the pattern
P-X-X-X-MS2.
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Figure 2.29: Replicate one of the assembly-selected AFL of N-terminal extensions with the pattern
X-X-X-MS2.
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Figure 2.30: Replicate two of the assembly-selected AFL of N-terminal extensions with the pattern
X-X-X-MS2.
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Figure 2.31: Replicate three of the assembly-selected AFL of N-terminal extensions with the
pattern X-X-X-MS2.
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Chapter 3

Comprehensive Fitness Landscape of
a Multi-Geometry Protein Capsid
Informs Machine Learning Models of
Assembly

3.1 Abstract
Virus-like particles (VLPs) are non-infections viral-derived nanomaterials poised
for biotechnological applications due to their well-defined, modular self-assembling
architecture. Although progress has been made in understanding the complex effects
that mutations may have on VLPs, nuanced understanding of the influence particle
mutability has on quaternary structure has yet to be achieved. Here, we generate
and compare the apparent fitness landscapes of two capsid geometries (T=3 and T=1
icosahedral) of the bacteriophage MS2 VLP. We find significant shifts in mutability
at the symmetry interfaces of the T=1 capsid when compared to the wildtype
T=3 assembly. Furthermore, we use the generated landscapes to benchmark the
performance of in silico mutational scanning tools in capturing the effect of missense
mutation on complex particle assembly. Finding that predicted stability effects
correlated relatively poorly with assembly phenotype, we used a combination of de
novo features in tandem with in silico results to train machine learning algorithms
for the classification of variant effects on assembly. Our findings not only reveal ways
that assembly geometry affects the mutable landscape of a self-assembled particle,
but also establish a template for the generation of predictive mutational models of
self-assembled capsids using minimal empirical training data.



CHAPTER 3. COMPREHENSIVE FITNESS LANDSCAPE OF A
MULTI-GEOMETRY PROTEIN CAPSID INFORMS MACHINE LEARNING
MODELS OF ASSEMBLY 67

3.2 Introduction

Figure 3.1: Bacteriophage MS2 virus-like par-
ticle assemblies. (a) MS2[WT] T=3 icosahedral
capsid is shown (PDB ID: 2MS2). C/C and A/B
dimer conformers are shown in red and green/blue,
respectively. (b) MS2[S37P] T=1 icosahedral cap-
sid (PDB ID: 4ZOR). All dimers in this capsid
geometry are equivalent. Assembly capsomers are
outlined in black to show constituent symmetry
interfaces of each particle geometry.

Virus-like particles (VLPs) have emerged
as promising scaffolds for many appli-
cations in biotechnology, including vac-
cine development1–3, targeted drug de-
livery4,5, and nanoreactor production6.
These well-defined, highly symmetrical
closed-shell structures self-assemble from
discrete protein building blocks that
can be engineered to tune the physical
and chemical features of the assembly7.
While great strides have been made in
de novo design of self-assembling VLP
mimetics8–13, predicting the effects of
mutations to the subunit building blocks
of a nanocage remains challenging be-
cause even small changes can disrupt or
drastically alter the complex network of
interactions that drive assembly.14–16

Systematic study of the effects of mu-
tations on a given protein function has re-
cently been made possible by the advent
of deep-mutational scanning, a method
that uses next-generation sequencing to
assess > 105 protein variants in a single
experiment.17,18 This technique has pre-
viously been applied to self-assembling
viral structures such as AAV, HIV,19,20
influenza,21 and polio22 in order to gen-
erate fitness landscapes that describe the
effects of mutations on viral infectivity.
In order to probe the impact of mutations
on assembly interactions more directly,
we recently developed a strategy called
SyMAPS (Systematic Mutagenesis and
Assembled Particle Selection), which employs capsid self-assembly as a fitness readout
for deep mutational scanning.23 This method enables a quantitative, systematic un-
derstanding of how mutations to the subunits of a closed-shell particle affect the final



CHAPTER 3. COMPREHENSIVE FITNESS LANDSCAPE OF A
MULTI-GEOMETRY PROTEIN CAPSID INFORMS MACHINE LEARNING
MODELS OF ASSEMBLY 68

assembly state without relying on a selection that bundles many fitness criteria (e.g.
infectivity requires successful viral attachment, replication, and assembly).24 SyMAPS
has been successfully utilized to quantify the effects of single mutants, epistatic inter-
actions, loop insertions, and peptide extensions in bacteriophage MS2 VLPs, enabling
tuned particle thermostability, acid lability, and chemical reactivity.25–27

Here, we employ the SyMAPS approach to generate the apparent fitness landscape
of a non-native assembly geometry of an icosahedral VLP. Prior work uncovered a point
mutant (MS2[S37P]) in the coat protein of the well-studied MS2 bacteriophage VLP
that results in a shift in quaternary assembly of the particle.16 This shift from a T=3
to T=1 icosahedra dramatically reorganizes the capsid assembly while maintaining
nearly identical primary, secondary, and tertiary structures of the constituent coat
protein subunits (Figure 3.1).

By generating a 1-dimensional AFL of MS2[S37P] we were able to uncover un-
precedented insight into the underlying principles of assembled structure mutability
— we find that core residues and residues at the dimer interface of both VLP geome-
tries share similar mutabilities on average. On the other hand, residues mediating
interface between dimer subunits or at multiple contact interfaces are significantly
more mutable in the T=1 variant. Interestingly, this holds true for residues both
at the quasi-6-fold symmetry interface, which only occurs in the wildtype VLP, and
the 5-fold symmetry interface, which is present in both capsid phenotypes. We then
use the comprehensive variant data to assess computational methods for determining
changes to the folding free energy of a protein when point mutants are introduced, and
find that correlation between the predicted folding ΔΔG and the experimental effect
on assembly viability is relatively low. Lastly, we combine computational prediction
results with experimental fitness landscape results to train machine learning models
of assembly state classification (Figure 3.2). We find that minimal computational and
experimental input may be used to generate well-performing classifiers for mutational
effects on VLP assembly state.

3.3 Results

3.3.1 Deep Mutational Scan of a Non-Native Virus-like
Particle Assembly

In order to explore the effect of quaternary structure on the mutable landscape of
self-assembling VLPs, we generated a deep mutational scanning library of the MS2
coat protein with a fixed S37P backbone point mutation. This backbone, MS2[S37P],
shifts the MS2 VLP assembly from a 27 nm, T=3 icosahedral geometry to a 17
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Figure 3.2: Workflow for generation of capsid apparent fitness landscapes and subsequent assembly
classifier generation.

nm, T=1 icosahedral assembly.16 The SyMAPS platform was used to construct
triplicate libraries of the MS2[S37P], as well as the wildtype (MS2[WT]) backbone.
Next-generation sequencing of the mutagenized plasmid libraries resulted in excellent
coverage of the mutational space, with 94% and 96% of possible variants accounted for
in the MS2[S37P] and MS2[WT] libraries respectively. In both cases the majority of
variants missing from the library were at the first and last position of the coat protein,
which is the result of the first 5 base pairs of the Illumina PE300 MiSeq reads falling
below our quality score threshold. The mutagenized libraries were expressed and
subjected to size-exclusion chromatography to distinguish between assembling T=1
capsids, assembling T=3 capsids, and non-assembling variants. Assembled capsids
encapsidate their encoding mRNA, thus the genotype of each well-formed particle
was retained for sequencing. A high-temperature challenge was also introduced to
remove capsids with compromised thermostability. Following coat protein expression
and capsid enrichment, 72% of MS2[S37P] variants and 84% of MS2[WT] variants
were recovered via sequencing and assigned an Apparent Fitness Score (AFS) derived
from the log10 change in DNA read abundance between the input plasmid library
and assembled capsid library.

Correlation of AFS between replicates of the MS2[WT] was relatively high (r2 =
0.70 – 0.83), indicating strong reproducibility and minimal distortions from biological
noise (Figure 3.3a). Interreplicate correlation in the MS2[S37P] libraries was somewhat
lower (r2 = 0.32 – 0.56), possibly due to a lower signal-to-noise ratio, as T=1 capsids
encapsidate less genetic material than the wildtype capsid (Figure 3.3b).28 There was
a low degree of correlation between the MS2[WT] and MS2[S37P] libraries, meaning
that there are both shared mutability preferences and divergences in mutability
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Figure 3.3: Capsid apparent fitness landscape replicate correlation. Correlations between the three
biological replicates of the (a) MS2[WT] and (b) MS2[S37P] libraries are shown. (c) Correlation
between the mean apparent fitness scores of each variant in the MS2[S37P] and MS2[WT] libraries.
Kernel density estimations of apparent fitness score distributions are shown outside of the axes.

between the two capsid geometries. A notable difference in AFS distribution of the
libraries is derived from their tolerance to deleterious mutations. A large portion of
poorly performing variants in the MS2[WT] library (AFS = –2.0 – 0.0) drop to the
lowest possible fitness score in the MS2[S37P] library (AFS = -4) (Figure 3.3c). This
suggests that the MS2[WT] capsid may retain some level of assembly competency in
response to deleterious mutations, while the MS2[S37P] capsid assembly is completely
ablated in such cases. This may however also result from lower mRNA packaging per
T=1 capsid, thus dropping deleterious mutations below the detection limit.

To investigate how the mutational landscape of the T=1 assembly phenotype
differs from the wildtype T=3 icosahedron further, Shannon Entropy calculations
were performed for each position of the capsid monomer backbone.29 This measure
of diversity at a given residue has previously been used to generate a Mutability
Index (MI) of each backbone position,23 which may be used to determine engineering
"hotspots" in the capsid coat protein as well as conserved residues likely to mediate key
interactions for successful protein folding and particle self-assembly. The difference in
MI between the MS2[WT] and MS2[S37P] capsid monomers is shown in (Figure 3.4a).
The majority of the coat protein backbone shows a relatively low difference in MI
between the wildtype and S37P libraries, indicating that many of the essential folding
and assembly interactions are preserved. Regions of defined secondary structure
elements, such as the central portion of the alpha helix spanning residues 105-111,
show low mutability in both the T=1 and T=3 capsids. Likewise, the well-studied
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Figure 3.4: Global mutability trends in MS2 capsid assemblies. (a) Per-residue differences in
the mutability index between MS2[WT] and MS2[S37P] capsid backbones. (b) Mean apparent
fitness scores (AFS) of all mutations at a given backbone position for both mutagenic libraries. (c)
Differences in mean AFS for both capsid libraries. (d) Differrences in mutability index mapped to
the MS2[S37P] capsid (PDB ID: 4ZOR) as well as its constituent dimer using ChimeraX.32 In all
cases blue represents a higher value in MS2[S37P] and red represents a higher value in MS2[WT].

FG loop region30,31 (residues 71-76) of the coat protein retains high mutability in
both capsid assemblies. However, individual positions with a significant shift in MI
(< –0.2 or > 0.2) span the length of the backbone.Mapping of MI to the capsid
structures reveals the variety of secondary structural motifs with shifts in mutability
between the two capsid phenotypes — residues in beta sheets, alpha helices, turns,
and disordered loops show unique preferences in the MS2[S37P] capsid (Figure 3.4d).

Surprisingly, it is much more common that positions become more permissive to
mutations in the T=1 capsid than become more strongly conserved, which is reflected
in a higher mean MI for the MS2[S37P] than MS2[WT] (-0.24 and -0.33, respectively).
This may seem counterintuitive, given that the mean AFS of the MS2[S37P] library
was lower than that of the MS2[WT] library (-1.14 and -0.92, respectively). However,
the lower mean AFS of the MS2[S37P] library results from the abundance of mutants
at the minimum -4.0 AFS.

Disaggregation of AFS distribution by structural context (core, interface, or
surface) reveals that the capsid AFLs differ most at subunit interfaces (Figure 3.5a).
The MS2[WT] capsid shows a hierarchy whereby core residues are most conserved,
followed by subunit interface residues, with surface residues (at either the interior or
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exterior surface) being most permissive to mutation. These preferences are in line
with previous trends determined from multiple sequence alignment of T=3 VLPs.33
MS2[S37P] capsids also possess a highly conserved core; however the mutability
indicies of the interface and surface residues are statistically similar.

Figure 3.5: Capsid mutability trends based on
structural context. (a) Boxplots of MS2[WT] and
MS2[S37P] apparent fitness score (AFS) distribu-
tion by residue context. (b) Boxplot of AFS distri-
bution by interface context, further separated in (c)
by symmetry contact. MS2[WT] and MS2[S37P
distributions are shown in red and blue, respec-
tively. *** indicates p < 0.001 and **** indicates
p < 0.0001.

Closer examination of contact inter-
face context reveals that interdimer con-
tact residues have similar mutabilities in
both MS2[WT] and MS2[S37P]. Mean-
while, residues along intradimer contacts
or residues that participate in multiple
interface contacts are more permissive
to mutation in the MS2[S37P] capsid li-
brary.

The symmetry elements of MS2[WT]
and MS2[S37P] were next explored to
understand better differences in the AFL
of both capsid phenotypes. Casper and
Klug’s theory of quasi-equivalence dic-
tates that T=3 capsids will form from
a mixture of pentameric and hexameric
subunits at 5-fold and quasi-6-fold axes
of symmetry, while T=1 icosahedral cap-
sids form only from pentamer subunits at
5-fold symmetry axes.34 Prior work has
also isolated two key intermediates in the
MS2[WT] assembly pathway: a 12mer
subunit at the quasi-6-fold symmetry axis
(6CP2) and a 20mer subunit at the 5-fold
symmetry axis (10CP2).35 While assem-
bly intermediates of MS2[S37P] have not
been directly observed, the 10CP2 sub-
unit is a viable assembly intermediate,
while the 6CP2 subunit presumably is not
due to the geometry of the T=1 capsid.
As such, we hypothesized that residues
involved in the pentameric interfaces of
the MS2 capsid would be similarly con-
served in MS2[WT] and MS2[S37P], while the hexameric interfaces would be more
flexible in MS2[S37P] as they do not mediate productive intermediates in the assembly
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pathway. Surprisingly, we find that both hexameric and pentameric interface residues
are significantly more flexible in MS2[S37P]. This may suggest that the assembly
pathway of the T=1 capsid may be more reliable than the T=3 capsid once initial
folding and dimerization has occurred. There are indeed more potential misassembly
pathways in T=3 icosehedra due to their larger number of unique interfaces,33 al-
though the relationship between the number of improper assembly pathways and the
mutational flexibility of VLPs has not been previously established. These trends and
observations demonstrate how comprehensive fitness landscapes may reveal mutability
preferences that challenge expectations from sequence conservation in nature or known
assembly pathways.

3.3.2 Benchmarking Computational Residue Scanning
Methods for Variant Fitness Prediction

We used these datasets to benchmark computational tools that calculate predicted
changes in folding free energy of protein variants. In silico deep mutational scans of
the MS2[WT] and MS2[S37P] coat proteins were performed using BioLuminate,36
the DynaMut2 web server37 and the PoPMuSiC 2.1 web server38. As modeling the
monomer subunit only accounts for one potential mode of assembly failure (protein
misfolding), computational scans of the dimeric, 6CP2, and 10CP2 subunits of the
assembled capsid were performed to achieve better coverage of the assembly deficits
related to changes in intra-dimer and inter-dimer affinity. The 6CP2 capsomer was
not modeled for MS2[S37P] as it is not likely to be formed in the assembly pathway.
Correlation between computationally predicted ΔΔG of coat protein variants and
experimentally determined AFS was low across all tested methods and modeled
subunits. This suggests that calculated fitness values of the capsid assemblies depends
on a more complex set of factors than are captured by the endpoint Gibbs free energy
of its constituent subunits.

Although the absolute AFS is not well correlated with computationalΔΔG scoring,
we hypothesized that these methods may be successful in a binary classification of
variant assembly competency. Previously established AFS thresholds for assembly
were used to label variant phenotypes (AFS > 0.2 = “assembling”, AFS < –0.2 =
“non-assembling”). Predictions were classified as “assembling” if ΔΔG <= 0 (i.e.
computation predicts the mutation is neutral or stabilizing) and “non-assembling” if
ΔΔG > 0 (i.e. computation predicts the mutant is destabilizing). Binary classification
results are shown in Figure 3.6. The accuracy of the tested classification methods
was modest, ranging from 0.62-0.73. There were no large differences in accuracy
between the three computational scanning methods. Gratifyingly, models of assembly
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subunits improved classification accuracy over models of the coat protein monomer
for both MS2[WT] and MS2[S37P] in all three computational methods. Accuracy
can, however, provide an overly optimistic measure of performance in cases where
the tested dataset has a class imbalance (i.e. there are many more non-assembling
mutations than assembling mutations).39 Thus, the Matthews correlation coefficient
(MCC) was reported for each classification case, as this metric is a more reliable
measure for classification of imbalanced datasets.40,41 MCC was calculated with
values derived from Table 3.1 using equation 3.1.

Table 3.1: Confusion matrix describing performance of computational scanning classification.

Fitness Landscape

Assembling Non-Assembling

Computational Scan
Assembling TP FP

Non-Assembling FN TN

MCC =
TP× TN – FP× FN√

(TP + FP)× (TP + TN)× (TN + FP)× (TN + FN)
(3.1)

MCC ranges from -1 to +1, where MCC = +1 represents a perfect classifier,
MCC = -1 represents perfect misclassification, and MCC = 0 represents the expected
value of a coin toss classification. Evaluation by MCC reveals that the physics-based
prediction via Bioluminate scored much higher than the other two methods. While the
overall accuracy of each method was relatively similar, Bioluminate correctly predicted
the minority class (i.e., “assembling” mutation) in more cases than DynaMut2 and
PoPMuSiC 2.1. Subsequent tuning efforts focused on Bioluminate’s computational
scanning results, since predicting assembly-competent mutations is more valuable
for the production of capsids with engineered properties or new sequence motifs.
In order to improve classifier performance, the ΔΔG threshold for designation of
a mutation as “assembling” or “non-assembling” was scanned to optimize the MCC
scores (Figure 3.6c). Threshold scanning revealed that a higher ΔΔG cutoff (ΔΔG
= +5-8 kcal/mol) resulted in a higher MCC score for capsid phenotype classification.
This indicates that MS2 capsid assembly can readily occur in spite of moderate
increases to the folding free energy of the capsid subunits. Though tuning the cutoff
threshold improved model performance, we sought to improve predictive power further
by employing machine learning to capitalize on the rich feature set derived from these
computational methods.
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Figure 3.6: Computational residue scanning classification performance. The (a) accuracies and
(b) Matthews correlation coefficients of three computational residue scanning methods are shown
for various subunit models of the MS2[WT] and MS2[S37P] capsid. Calculated ΔΔG values were
compared to experimental apparent fitness scores. (c) Matthews correlation coefficients are shown
as a function of classification ΔΔG threshhold.
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3.3.3 Development of Supervised Learning Models for
Capsid Assembly Classification

Figure 3.7: Initial machine learning model classi-
fication performance. Four machine learning algo-
rithms were benchmarked for predicting the assem-
bly state of (a) MS2[WT] or (b) MS2[S37P] capsid
variants. Boxplots of the resultant Matthews cor-
relation coefficients from 10-fold cross validation
of models are shown.

A total of 106 features for the MS2[WT]
set and 81 features for the MS2[S37P]
set were prepared for each amino acid
variant represented in the experimental
fitness landscapes of each capsid. Ini-
tial models were prepared via four su-
pervised learning algorithms (K-Nearest
Neighbor,42 logistic regression,43 random
forest,44 and XGBoost45) These models
were trained with default hyperparam-
eters using a stratified 75/25 train/test
split of the landscape data. Models were
evaluated by 10-fold cross validation, and
binary classifier performance was mea-
sured using the MCC scores (Figure 3.7).
The random forest and XGBoost mod-
els outperformed the K-nearest neigh-
bor and logistic regression models in
both training sets, as measured by MCC.
Bayesian Optimization was subsequently
implemented to tune the hyperparame-
ters used for XGBoost or random forest
model training.46 The resultant tuned
models showed strong predictive perfor-
mance on the unseen test set of landscape
data, with the MS2[WT] model slightly
outperforming the MS2[S37P] model (ac-
curacy = 0.86, MCC = 0.58 and accuracy
= 0.82, MCC = 0.52, respectively).

Ensemble tree-based algorithms, such
as XGBoost and random forest, further-
more enable calculation of the impor-
tance of each feature with respect to pre-
diction of the target variable, thus offer-
ing interpretability of the final MS2[WT]
and MS2[S37P] models (Figure 3.8).47,48
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Figure 3.8: Performance of XGBoost and ran-
dom forest models of (a), (b) MS2[WT] and (c),
(d) MS2[S37P] assembly classification are shown.
The top 10 most informative features for classi-
fication are shown. Model-derived and de novo
features are shown in red and blue, respectively.

Across all four models, the most im-
portant feature for prediction was the
ΔStability of the 10CP2 subunit cal-
culated using Bioluminate. Many de
novo features, such as residue solvent-
accessible surface area, hydropathy, po-
tential energy, and internal energy, con-
tributed significantly to the final models.
In the MS2[WT] models, ΔStability of
the 6CP2 subunit was much less impor-
tant than the 10CP2 subunit, which may
indicate either that the endpoint stabil-
ity of the 6CP2 complex does not cap-
ture inhibition of the subunit assembly
pathway, or that this complex is more
resilient to perturbation than the 10CP2
complex. Interestingly, no intersubunit
affinity terms ranked highly in impor-
tance, while intradimer affinity ranked
in the top ten of 2 out of 4 of the final
models.

We next aimed to establish the min-
imal input data set necessary for model
training, as reduction of the training set
size or initial computational modeling
steps may enable accurate construction of
assembled capsid fitness landscapes with
reduced experimental and computational
cost. Training features were reduced to
include only de novo amino acid features
as well as the most predictive feature,
ΔStability derived from the 10CP2 Bi-
oluminate modeling. A random forest
model was trained on randomly gener-
ated subsets of the fitness landscape (1-
2000 training samples) and evaluated by
predicting the remaining landscape as-
sembly states. Learning curves of both
models displaying the gain in MCC and accuracy as a function of training samples are
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Figure 3.9: Determination of minimized input model performance. (a) MCC gain plot and (b)
accuracy gain plot of both capsid models as functions of training set size. Models were generated
using only ΔStability BL 10CP2 and de novo parameters for training. Random subsets of the fitness
landscape data were used to simulate low-sample training information. MS2[WT] and MS2[S37P]
learning curves are shown in red and blue, respectively.

shown in Figure 3.9. Interestingly, the model achieves reasonable accuracy after very
few samples, and only marginally improves as the sample numbers increase. Viewing
MCC gain, however, displays a sharp improvement that plateaus after roughly 500
samples. This suggests that small sublibraries of self-assembled protein capsids may
enable reasonably accurate predictions of capsid fitness landscapes, likely by learning
that the majority of mutations inhibit capsid assembly. To obtain predictions that
correctly classify assembly-competent mutants, a moderate sampling of the full muta-
tional space of the VLP (about 20% of variants) will be needed. The extent that this
sampling ratio may be generalized to VLPs of different levels of homology to MS2
remains to be determined.

3.4 Conclusion
Here, we have characterized the apparent fitness landscape of a non-native (T=1
icosahedral) VLP assembly geometry. Comparison to the apparent fitness landscape of
the wild type (T=3 icosahedral) particle yielded insight into the influences quaternary
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structure has on the mutability of a self-assembling material. Residues at the core of
the monomer subunit, as well as residues mediating the dimer interfaces of the capsid
showed similar mutability preferences in both capsid libraries. Surprisingly, residues
along both the five-fold and quasi-six-fold symmetry interfaces of the particle were
significantly more mutable in the T=1 capsid than the wildtype assembly, suggesting
that the T=1 capsid may be a more versatile platform for engineering efforts. Further,
the deep mutational scanning data produced were used to benchmark the performance
of various computational residue scanning tools for estimating the effects of missense
mutations on protein folding energetics. While correlations between calculated
ΔΔG values and measured assembly competency were relatively low, modeling
known assembly intermediates using BioLuminate’s MM/GBSA method offered the
best overall performance. Finally, machine learning models were trained using de
novo structural features in tandem with computational modeling data to produce
predictive assembly state classifiers for both capsid assemblies. The relationship
between input training size and classifier performance demonstrates that relatively
small input datasets can be used to produce predictive classifiers for self-assembly
with strong performance. As such, this study may represent a generalizable strategy
for semi-rational engineering and systematic mutation of proteinaceous self-assembled
nanomaterials.

3.5 Experimental

3.5.1 Strains

All library experiments were conducted with MegaX DH10B E. coli electrocompetent
cells (ThermoFisher Scientific, Cat# C640003). Overnight growths from a single
colony were incubated for 18 h at 37 °C with shaking at 200 RPM in LB-Miller media
(Fisher Scientific, Cat# BP1426-2) with chloramphenicol at 32 mg/L. Expressions
were subcultured 1:100 into 2xYT media (Teknova, Cat# Y0210) with 32 mg/L
chloramphenicol, allowed to grow to an OD600 of 0.6, then induced with 0.1%
arabinose. Expressions continued overnight at 37 °C with shaking at 200 RPM.

3.5.2 FPLC SEC

MS2 CP libraries and select individual variants were purified on an Akta Pure 25
L Fast Protein Liquid Chromatography (FPLC) system with a HiPrep Sephacryl
S-500 HR column (GE Healthcare Life Sciences, Cat# 28935607) Size Exclusion
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Chromatography (SEC) column via isocratic flow with 10 mM phosphate buffer at
pH 7.2 with 200 mM sodium chloride and 2 mM sodium azide.

3.5.3 HPLC SEC

Variants or libraries were analyzed on an Agilent 1290 Infinity HPLC with an Agilent
Bio SEC-5 column (5 um, 2000A, 7.8x300mm) with isocratic flow of 10 mM phosphate
buffer at pH 7.2 with 200 mM sodium chloride and 2 mM sodium azide. Fractions were
harvested at 11.2 min, or the characteristic elution time for wild-type MS2. Harvested
VLPs were then subjected to RNA extraction and high-throughput sequencing sample
preparation.

3.5.4 Library generation

Deep mutational scanning libraries of both capsids were performed as previously
described via SyMAPS.23 SyMAPS uses the EMPIRIC cloning developed in the
Bolon lab.49 In EMPIRIC cloning, a plasmid contains a self-encoded removable
fragment (SERF) flanked by inverted BsaI recognition sites. Thus, BsaI digestion
simultaneously removes the SERF and BsaI sites. Five previously generated entry
vectors each designed to accept a 26 codon region of the MS2 coat protein as an
insert were used to prepare both the MS2[WT] and MS2[S37P] libraries. Four of the
entry vectors bearing the position S37 codon were mutated to S37P via Quikchange
mutagenesis for the MS2[S37P] library. Single-stranded DNA primers spanning each
26-codon region with an NNK codon at each position were pooled and diluted to a
final concentration of 50 ng/uL. Touchdown PCR was used to amplify the mutagenic
inserts and the double-stranded DNA was purified by PCR clean-up (Promega,
Cat# A9282). Cleaned dsDNA inserts were diluted to 5 ng/µL, then cloned into
the entry vector using Golden Gate cloning. Ligated plasmids were incubated on
desalting membranes (Millipore Sigma, Cat# VSWP02500) for 20 min, followed by
transformation into electrocompetent DH10B E. coli cells (Invitrogen, Cat# 18290015).
Following electroporation and recovery, cells were plated onto LB-A containing 32
µg/mL chloramphenicol and grown overnight at 37 °C. Dilutions (100-fold) of each
replicate were plated and counted to ensure a minimum of 3x colony-forming units
relative to the number of possible variants.

3.5.5 Assembly selection

Colonies were harvested by scraping plates into LB-M and growing the mixture for
2 h. Each library was subcultured 1:100 into 1 L of 2xYT (Teknova, Cat# Y0210)
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and grown to an OD of 0.6, then induced with 0.1% arabinose. Variant libraries were
expressed overnight at 37 °C. Cells were harvested by centrifugation and lysed by
sonication. Libraries were subjected to two rounds of ammonium sulfate precipitation
(50% saturation), followed by FPLC size exclusion chromatography purification to
select for well-assembled T=3 or T=1 VLPs. Collected fractions were then subjected
to 50 °C thermostability challenges in a H2O bath for 10 min. Precipitated VLPs were
pelleted via centrifugation, and assembled VLPs were isolated via semi-preparative
HPLC size exclusion chromatography. Fractions containing assembled VLPs (at the
characteristic elution time of 6.5 min for MS2[WT] or 8.0 min for MS2[S37P]) were
combined, subjected to RNA extraction, barcoded, and identified via high-throughput
sequencing.

3.5.6 High-throughput sequencing sample preparation

Plasmid DNA was isolated prior to expressions using Zyppy Plasmid Miniprep Kit
(Zymo, Cat# D4036). RNA was extracted from the assembly-selected libraries using
previously published protocols.50 Briefly, homogenization was carried out with TRIzol
(Thermo Fisher Cat# 15596026), followed by chloroform addition. The sample was
centrifuged to separate into aqueous, interphase, and organic layers. The aqueous
layer, containing RNA, was isolated, and the RNA was precipitated with isopropanol
and washed with 70% ethanol. RNA was dried and resuspended in RNAse free water.
cDNA was synthesized with the Superscript III first strand cDNA synthesis kit from
Life (Cat# 18080051, random hexamers primer).

cDNA and plasmids were both barcoded for high-throughput sequencing. Both
types of samples were amplified with two rounds of PCR (10 cycles, followed by 8
cycles) to add barcodes and Illumina sequencing handles, following Illumina 16S
Metagenomic Sequencing Library Preparation recommendations. Libraries were
quantified with Qubit and combined in equal molar ratio. Libraries were analyzed by
PE300 MiSeq in collaboration with the UC Davis Sequencing Facilities.

3.5.7 High-throughput sequencing data processing and
analysis

Data were trimmed and processed described previously,23 with minor variation.
Briefly, data were trimmed with Trimmomatic51 with a 4-unit sliding quality window
of 20 and a minimum length of 32. Reads were merged with FLASH (fast length
adjustment of short reads) with a maximum overlap of 300 base pairs. Reads were
sorted and indexed with SAMtools52 and unmapped reads were filtered with the
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Picard function CleanSam. Reads were processed with in-house code to produce
various AFLs.

3.5.8 AFL calculations

Cleaned and filtered high-throughput sequencing reads were analyzed using in-
house Python code (available at https://github.com/dan-brauer/MS2-Assembly-
Classification). Briefly, the start codon and stop codons on either end of the MS2
gene were parsed and the correct gene length was verified. For MS2[S37P], codon
encoding for the S37P mutation was also verified. Codons were then translated into
amino acids to generate counts for each tripeptide combination

Calculations were repeated for all replicate plasmid pools and assembled selections.
Relative abundances were calculated similarly to the previously described protocol.26
Briefly, the relative abundance of a selection was calculated by dividing the abundance
generated from an assembled VLP by the plasmid abundance from its respective
biological replicate.

The mean relative abundance across three biological replicates was calculated
for the final fitness landscape of each library. All NaN (null) values, which indicate
variants that were not identified in the plasmid library were ignored. Scores of zero,
which indicate variants that were sequenced in the unselected library but absent in
the VLP library, were replaced with an arbitrary score of 0.0001. The log10 relative
abundance value for an individual variant in a particular challenge is referred to as
its Apparent Fitness Score (AFS).

3.5.9 Computational fitness scanning

Assembly subunits (monomer, dimer, 6CP2, and 10CP2) were constructed in the
Maestro molecular modeling environment based on the crystal structures of MS2[WT]
(PDB:2MS2) and MS2[S37P] (PDB:4ZOR). Resultant structures were preprocessed
and minimized using the OPLS3e forcefield. Computational scanning for minimized
subunit structures via DynaMut2 and PoPMuSiC 2.1 was performed using their
respective web servers. BioLuminate calculations were performed symmetrically
across chains using side-chain prediction with backbone minimization at a 0.00 Å
cutoff. Classifier performance was evaluated using in-house Python code (available at
https://github.com/dan-brauer/MS2-Assembly-Classification).
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3.5.10 Machine learning model training

Machine learning models were trained and assessed using the Tidymodels53 frame-
work in R (available at https://github.com/dan-brauer/MS2-Assembly-Classification).
Continuous training variables were normalized, nominal variables (e.g. amino acid
identity) were encoded as binary dummy variables, and zero variance variables were
filtered in data preprocessing. Algorithm comparisons (K-Nearest Neighbor, logistic
regression, random forest, and XGBoost) were performed using default hyperparam-
eters. Initial random forest and XGBoost model training used 1000 trees. Cross
validation (10-fold) was performed on a 75/25 split of the fitness landscaping data.
Random forest and XGBoost models were further optimized through 100 rounds of
Bayesian hyperparameter tuning, with 10 initial parameter sets and an early stop
after 20 consecutive iterations with no improvement. Optimized parameters were
used to train final models which were evaluated on the 25% of data held out for final
evaluation. Model feature importance was determined using the R ‘vip’ package.54

3.6 Additional Figures

Figure 3.10: Separation of purified MS2[WT] and MS2[S37P] capsids by size exclusion chromatog-
raphy. MS2[WT] and MS2[S37P are shown in blue and red traces, respectively
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Figure 3.11: Apparent fitness landscape of MS2[S37P]. Blue indicates enriched amino acids, while
red indicates combinations that are not enriched. Variants that were present in the plasmid library
but absent in the VLP library are indicated in dark red while missing values are shown in green.
Nonsense mutations are marked with an asterisk.
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Figure 3.12: Sequence conservation of MS2 compared to apparent fitness scores. (a) Multiple
sequence alignment of bacteriophage MS2 with structural homologues. Apparent fitness score distri-
bution for (b) MS2[WT] and (c) MS2[S37P] sorted by conservation score is shown. A conservation
score of 11 indicates a position was completely conserved, while a score of 0 indicates a position was
highly variable.
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Figure 3.13: Bayesian tuning of machine learning models for assembly classification. Mean
Matthews correlation coefficient of 10-fold cross validation for each parameter iteration is plotted
for (a) MS2[WT] random forest, (b) MS2[WT] XGBoost, (c) MS2[S37P] random forest, and (d)
MS2[S37P] XGBoost models. Tuning tested 10 initial parameter sets and stopped after 20 iterations
with no improvement.
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Chapter 4

Improving the Academic Climate of
an R1 STEM Department:
Quantified Positive Shifts in
Perception

The following is adapted from Stachl, Brauer, Mizuno, Gleason, Francis, and Baranger;
J Chem Ed, 2021 with permission.

4.1 Abstract
While calls for increased diversity have echoed through STEM for decades, the field
continues to exclude groups based on race, gender, sexual orientation and ability.
Efforts to improve diversity have historically failed because they focus on increasing
recruitment without repairing the systemic barriers within academic communities that
prevent marginalized individuals from thriving. Presented here are the results of a
multiyear effort to improve the climate of the UC Berkeley Department of Chemistry.
We use student-led, department-specific, faculty-supported initiatives to quantitatively
assess and address issues of departmental climate. These results provide evidence that
data-driven community discussions alongside cooperative efforts to remedy persistent
concerns are effective methods for driving positive change. Longitudinal assessment of
academic climate from 2018 to 2020 via annual department-wide surveys indicates that
these interventions have succeeded in shifting student and faculty perceptions. This
work confirms the positive outcomes of having a sustainable, data-driven framework
for affecting change within a graduate community.
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4.2 Introduction
Although the relative representation of women in science, technology, engineering,
and mathematics (STEM) has improved since 1993, women continue to be underrepre-
sented in all career stages across nearly every STEM field.1 Moreover, individuals who
identify as Black, Hispanic, American Indian, Alaskan Native, Native Hawaiian, and
Pacific Islander make up just 7.6% of researchers at all levels of doctorate-granting
research universities and are systematically disadvantaged within STEM.2 These
numbers further decline at the most senior levels of academia and industry.1–4

There is growing evidence that systemic patterns of bias, discrimination, and
inequity discourage women and members of other historically marginalized groups
from entering or persisting in STEM.5–9 For example, archaic stereotypes suggesting
that women have less innate scientific ability, and implying that whiteness is cor-
related more strongly with ability than any other race, have cemented gender and
racial/ethnic disparities as natural outcomes.10–12 The resulting, persistent culture
heavily influences perceptions of who can and cannot thrive in STEM5,13–22 and cre-
ates structural barriers that can impede the success of women and gender, racial, and
ethnic minorities—for example, by making the doctoral experience socially isolating,
research groups inhospitable, and mentoring interactions less than satisfactory.5,23–29

As members of the academic community, we have a moral imperative to ensure
equitable opportunities and inclusive environments for would-be scientists from all
backgrounds. Top-down administrative approaches have gained traction as solutions
to many of the aforementioned issues, but such efforts can fail to identify and
improve the unique situation of a department. Department-level initiatives are thus
necessary to combat factors that negatively impact equity and inclusion within a
community.1,24,30–32 Furthermore, grassroots departmental efforts have the ability to
engage passionate stakeholders to drive lasting institutional change.

4.2.1 Theoretical Framework

A change framework has grounded the goals of a graduate student-led, stakeholder
supported, grassroots initiative to shift the academic climate of the University of
California, Berkeley Department of Chemistry in a positive direction. This framework
requires: (1) making longitudinal data collection an institutional priority, to diagnose
specific problems within a department’s academic climate;30 (2) empowering com-
mitted administrative and graduate student leadership for the collaborative design
and implementation of targeted, evidence-based interventions; (3) institutionalizing
the developed interventions so they can persist through institutional or leadership
disruptions (e.g. COVID-19 pandemic); and (4) soliciting regular feedback via annual
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data collection, to monitor the department climate and determine whether the inter-
ventions are effective. (3) The application of this theory of change has successfully
enabled us to address the following research questions:

1. Can longitudinal changes in academic climate be quantified?

2. Have perceptions of academic climate improved as data-driven interventions
have been implemented?

To the best of our knowledge, no other large-scale, coordinated, longitudinal
efforts to improve a STEM department climate exist. Thus, the approach we use,
and the results presented herein, expand the scope of foundational knowledge and
existing methods for improving academic culture in a quantitative way.

4.3 Results
Since 2018, graduate students in the Department of Chemistry at the University of
California, Berkeley, have been leading efforts to assess the issues that affect diversity,
equity, and inclusion within the department. Thorough discussion of the founding of
these initiatives and their multitude of outcomes are discussed elsewhere.24,30,32,33
The first of these efforts is an annual department academic climate survey—designed
to obtain data indicative of the department sentiment on key issues affecting inclusion,
diversity, and well-being among graduate students, postdoctoral researchers, and
faculty—which has been administered every spring since 2018.30

The total response rates were 43.1% (2018), 35.7% (2019), and 39.4% (2020).
Graduate student and postdoctoral researcher respondent demographics have been
representative of the department population across all 3 years of data, as 40%
of graduate student and postdoctoral researcher respondents identify as female,
and 40% of the graduate student researchers in the UC Berkeley Department of
Chemistry are female. We note that 55% of respondents identified as belonging
to underrepresented groups (URGs) across all three climate surveys. While this
number is high, our definition of URGs is broad—it includes, but is not limited
to, individuals who identify as female; are from underrepresented racial, religious,
ethnic, sexual orientation, and international groups; have a disability(ies) (defined
as a physical or mental impairment that substantially limits one or more major life
activities); and have low socio-economic status. (4) Given the underrepresentation
of women and racial/ethnic minority scholars in STEM, the term URG was used to
enable a general comparison of URG and majority respondent populations, while still
maintaining a balanced representation of study participants. Racial/ethnic minority
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respondent responses are not analyzed separately due to concerns about compromised
confidentiality from low total numbers of these students and faculty in the department.
It is important to note that we did not collect demographic information from faculty
members, as the low numbers of female and minority faculty in the department may
compromise respondent confidentiality.

Each year after the climate survey closes, the areas of concern most frequently
highlighted by department members in survey responses are compiled and used to
ground open, active discussion among community members at the annual ‘Chemistry
Department Information and Brainstorming Session’ (cDIBS) forum. cDIBS occurs
every spring and has been a critical aspect of our academic climate initiative because
it encourages community members to generate practical solutions to the issues that
are revealed in our department’s own data collaboratively.24,30 cDIBS is attended by a
range of stakeholders (graduate students, faculty, postdocs, and staff), which enables
rapid implementation and institutionalization of the new initiatives and interventions
that result from this event every year.

4.3.1 Interventions

Since 2018, the following evidence-based interventions have been designed and imple-
mented to directly combat disparities and increase inclusivity within the Department
of Chemistry academic community:

1. Discussions of mental health, cultural adaptation, and student identity are
included throughout new graduate student orientation.

2. The graduate student handbook has been updated to include a comprehensive
overview of the departmental policies and resources for students who do not
pass their qualifying exam or decide to leave the program, to reduce the stigmas
that surround those options.

3. Graduate students and College of Chemistry administration host an annual
crowdfunding campaign to raise awareness of and money for these new initiatives.

4. Formal methods for inclusion of graduate student feedback in the faculty hiring
processes were developed: graduate student search committee members interview
candidates about their research, mentorship, diversity, service, and teaching;
the student committee’s feedback is then compiled and given to the faculty
hiring committee.

5. Sexual violence and sexual harassment (SVSH) prevention training for new
graduate students was redesigned. All College of Chemistry incoming graduate
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students attend a peer-led, in-person SVSH prevention workshop during new
student orientation. The workshop includes a small group discussion of real
SVSH scenarios that occurred on the University of California, Berkeley campus.
Scenarios are restructured in conjunction with the PATH to Care Center.
Within their small groups, workshop attendees assess the problem in each
scenario, discuss the underlying structural issues that led to those situations,
and brainstorm strategies to resolve the issue.

6. A monthly event called the Diversity and Inclusion Focus Group (DIFG) was
developed as a recurring forum where faculty, graduate students, staff, and
postdoctoral researchers discuss challenging issues in academic culture. DIFG is
intended to foster literature-based discussions about systemic inequities within
academia, help shift social norms, and positively influence their confidence when
engaging with peers, mentors, and mentees in difficult topics of conversation.
Past DIFG topics include: sexism and racism in science, LGBTQ+ community
inclusion, unconscious bias in hiring and letters of recommendation, the ramifi-
cations of sexual assault and harassment, mental health, managing work–life
balance, and more.

While we recognize that many factors can contribute to improved perceptions of
the academic climate, these interventions were specifically implemented between the
2018 and 2020 climate surveys. Thus, we speculate that these interventions largely
contributed to the resulting, overall positive change in community perceptions of the
Berkeley Chemistry academic climate.

4.3.2 Longitudinal Analysis of Academic Climate

Annual department climate survey data have been critical to measuring perceptions
within the chemistry community. Longitudinal analyses were performed on the
response distributions from each core survey question to understand shifts in the
perception of the academic climate from 2018 to 2020. Encouragingly, all statistically
significant shifts in responses were positive.
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4.3.3 Equity and Inclusion

Figure 4.1: Significant increase in graduate stu-
dent and postdoctoral researcher perceptions of
equity, inclusion, and their sense of value from
2018 to 2020. Responses regarding (A) discussion
of equity and inclusion, (B) action toward improv-
ing equity and inclusion, and (C) perceptions of
feeling valued and included as a member of the
department are shown.

We report a significant increase from
2018 to 2020 in graduate student and
postdoctoral researcher perceptions of
there being sufficient discussion of eq-
uity and inclusion issues (p ≤ 0.01; Fig-
ure 4.1A) and action toward improving
equity and inclusion (p ≤ 0.01; Figure
4.1B). The data also indicate a signifi-
cant increase in respondent perceptions
of feeling valued and included as a mem-
ber of the department from 2018 to 2020
(p ≤ 0.01; Figure 4.1C).

These data were further analyzed to
determine whether any differences in per-
ception exist between those who identify
as belonging to a URG or not across sur-
vey years. The results suggest persistent
differences in perceptions of inclusion be-
tween respondents that belong to URGs
and their majority counterparts (Figure
4.2). This is also true with respect to the
department’s overall tolerance of exclu-
sionary behavior and harassment (Figure
4.2). In 2020, for example, non-URG re-
spondents felt generally more valued and
included than respondents belonging to
URGs (p ≤ 0.05). Interestingly, not all
of these perception gaps existed among
2018 and 2019 respondents. The signifi-
cant perception gaps between URGs and
their majority counterparts in 2018 and
2019 are shown in Figure 4.2 as well.
Data from 2018 and 2019 questions that
did not indicate statistically significant
differences between URG and non-URG
respondents are omitted.

The data also indicate that faculty
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perceptions of mutual respect, cooperation, and collaboration with their colleagues
improved significantly since 2018 (p ≤ 0.05). Perceptions that faculty from URGs
are treated the same as all other faculty members during the tenure process also
increased significantly (p ≤ 0.01).

Figure 4.2: Perception gaps between URG and non-URG respondents. The entire distribution of
responses from 2018 (top panel), 2019 (middle panel), and 2020 (bottom panel) climate survey data
regarding ‘peer and community interaction’ questions, disaggregated based on URG-identity. Note
that “URG” includes both female-identifying and racial/ethnic minority individuals, as the low total
numbers of racial/ethnic minority members of the department may compromise confidentiality.
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4.3.4 Mentorship and Mental Health

Figure 4.3: Significant increase in graduate stu-
dent and postdoctoral researcher perceptions of
mentors treating their ideas with respect. The en-
tire distributions of responses from each year are
compared for this ’mentor interactions’ question.

Graduate student and postdoctoral re-
searcher respondents were asked about
the research-, career-, and mental health-
related support they receive from chem-
istry faculty. Encouragingly, faculty
were generally rated highly in their abil-
ity to provide research-related support
across all three years of data. There
was an increase in mentee perceptions
of having a research advisor who treats
their ideas with respect (2018–2019, p <
0.10; 2018–2020, p ≤ 0.01; Figure 4.3).
All other mentoring interaction ques-
tions showed no statistically significant
changes from 2018 to 2020.

4.3.5 Department Resources

All department members indicated in-
creased knowledge of whom to approach regarding concerns about department climate
since 2018 (Figure 4.4). This knowledge continued to increase significantly for grad-
uate students and postdoctoral researchers from 2019 to 2020. This indicates that
community members may be more empowered to engage with agents of change
throughout the department when issues or new ideas arise.

4.4 Results and Discussion
Annual department climate survey data have supported the collaborative development
of a number of department interventions, including the monthly, student-led Diversity
and Inclusion Focus Groups (DIFGs), which began in 2018 and have succeeded in
building community among attendees and lowering the barrier to engaging in challeng-
ing conversations about mental health, sexism, racism, unconscious bias, and more.
While we recognize that many factors can contribute to improved perceptions of the
academic climate, we speculate that these interventions contributed largely. We also
believe that periodic, publicized initiatives (e.g., annual cDIBS event, crowdfunding,
and the recent Stachl et al. publication have been instrumental in displaying the
ongoing commitment to equity and inclusion, as well as ensuring transparency with
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the department community. Multilevel stakeholder participation in these initiatives,
combined with a formative assessment approach to maximizing their efficacy,34,35
has been critical for improving our academic climate. These grassroots methods for
creating tailored solutions to departmental concerns are poised to improve gradu-
ate community climate more nimbly and precisely than top–down administrative
approaches.

Figure 4.4: Significant increase in all department
members’ knowledge of whom to contact regarding
department climate concerns from 2018 to 2020.
The entire distribution of graduate student and
postdoctoral researcher responses (top panel) and
faculty responses (bottom panel) for each year of
climate survey data.

Data from the past three years in-
dicate that respondents have felt an in-
crease in their overall sense of value and
inclusion within the department. Still, it
is clear that URG respondents feel these
improvements less strongly than their ma-
jority counterparts (Figure 4.2). While it
is heartening that there continues to be
near-unanimous agreement that represen-
tation should improve at all levels within
our department, we must continue efforts
to improve the academic climate in order
to attract and retain individuals of all
identities and from all backgrounds. This
is particularly important at the faculty
level, as our faculty population currently
includes just 18% women. Additionally,
it is critical to take further action to edu-
cate our community about the biases that
negatively affect the experiences of mem-
bers of historically marginalized groups
in STEM. One way to do this is to teach
mentors (at all levels, but particularly
faculty with large research groups) how
to make use of inclusive approaches to
mentoring (e.g., active listening, cultural
awareness and responsiveness, and how
to reflect on biases and prejudices that
may impact trust between mentors and
mentees—especially those with marginal-
ized identities).1 In a previous sense of
belonging study, faculty acknowledged that it is most difficult for them to mentor all of
their students effectively, suggesting that improved mentor training would significantly
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benefit both mentors and mentees.24 Mentor training could also contribute positively
to faculty perceptions of how prepared they feel directing mentees to mental and
physical health resources on campus, which have not changed since 2018.

Allocating resources to understand the experiences of members of historically
marginalized groups is key to further improving the academic climate, because such
experiences do not stand out when data are collected in aggregate in a predominantly
white department.1 The small number of racial/ethnic minority members within
our academic community necessitates the aggregation of those data with those of
female respondents, which limits investigation of the specific needs of members of
historically marginalized groups. Future qualitative studies will be carried out to
improve understanding of the needs of members of historically marginalized groups
and help shape policies to improve their experiences. Additionally, reimagining
faculty recruitment, evaluation, and promotion can also have a profound effect on
diversity and inclusion at all levels—specifically because being mentored by faculty
with similar identities can elevate mentees from URGs, helping them develop positive
self-perceptions about their academic capabilities.36–38

Perceptions of faculty membership have improved overall since 2018, and there
was a significant increase in mentee’s feelings that their research advisor(s) provide(s)
emotional support when necessary. Mentees continue to find it considerably easier to
discuss research-related topics with their mentors than to solicit non-academic career
support or discuss mental/physical health concerns. Therefore, we suggest offering
more opportunities for mentorship in external groups, either through peer-to-peer
mentoring or mentee-non-advisor faculty interactions. Finding a way to formalize
and improve mentoring at all levels would not only help accommodate the needs
and personalities of more mentees, but may also help students feel more comfortable
communicating openly with their mentors about research, career goals, and their
general well-being. The latter is particularly important for eliminating stigmas
surrounding the discussion of mental health, and may help faculty advisors become
more supportive in all facets of mentee development.39

In response to the 2020 climate survey and cDIBS (Chemistry Department In-
formation and Brainstorming Session; during which these longitudinal data were
presented and discussed), the COVID-19 pandemic, and the resurgence of the Black
Lives Matter movement, the UC Berkeley College of Chemistry has implemented at
least four new interventions to continue making significant forward progress toward a
more diverse, inclusive, and equitable academic climate and culture. These include
the following: (1) appointing an inaugural Associate Dean for Diversity, Equity, and
Inclusion, who is already developing a 5-year strategic diversity, equity, inclusion,
and belonging plan; (2) hiring its first Chief Diversity, Equity, and Inclusion Officer,
who will continue developing and directing programs to engage faculty, staff, and
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students at all levels in the ongoing diversity, equity, inclusion, and belonging efforts;
(3) institutionalizing a “Graduate Diversity Program”, to provide financial, social,
and educational support—as well as College-wide recognition—for graduate students
who carry out projects to improve diversity, equity, inclusion, and belonging within
the College of Chemistry; and (4) ensuring more frequent discourse between com-
munity members at all levels and administrative leadership, particularly concerning
the impact of COVID-19 on the Ph.D. program and College as a whole. We are
excited to continue this grassroots work and make an enduring impact on the Berkeley
Chemistry community.

4.5 Conclusion
Although it may be appealing to seek standardized solutions to resolve issues of
institutional climate and inclusion, the particular needs and constraints of a given
department vary widely. Highlighted here is a flexible framework for generating and
implementing tailored solutions for problems related to diversity, equity, and inclusion
in a STEM department. Periodic, grassroots initiatives in particular drive stakeholder
engagement and culture change over time.

In contrast to strictly administrative policy changes, a community-driven, holistic
approach enables rapid identification and addressing of the most pressing climate
issues. The cyclical nature of the survey along with consistent respondent feedback
allows for integrated, data-rich problem identification and solution evaluation. Three
years of results from UC Berkeley’s Department of Chemistry gives evidence that
statistically significant, positive changes in departmental culture are possible using
the climate survey and cDIBS framework. We hope these methods can act as a
template for any academic institution seeking to develop a departmental culture that
better serves its community, ultimately changing academia over time to be more
welcoming for all.

4.6 Materials and Methods

4.6.1 Academic Climate Survey Instrument

The academic climate survey used in this study has been modified slightly from
the original instrument designed by Stachl et al.30,32 to assesses the experiences
of graduate students, postdoctoral researchers, and faculty within the Department
of Chemistry at the University of California, Berkeley. Graduate students and
postdoctoral researchers took one version of the academic climate survey, and the
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faculty took a different version. The content of the faculty survey mirrors that of the
graduate student and postdoctoral researcher survey but from the perspective of a
faculty member.

Twenty-five questions in the graduate student and postdoctoral researcher survey,
and 18 questions in the faculty survey, were measured on a 5-point Likert scale (1 =
Strongly Disagree, 5 = Strongly Agree), and six questions were measured on a 3-point
Likert scale (1 = Not Important, 2 = Somewhat Important, 3 = Very Important).
Twenty-one and 15 of these questions, respectively, were identical across all 3 years
of survey data collected to enable a longitudinal comparison of data and changes
of the perception of department climate over time. The remaining, non-core survey
data were added to the 2020 survey, to assess the publication culture within our
department. These data are beyond the scope of this manuscript. All survey items
were coded so that a higher score indicates a more positive perception or experience
of the academic climate within our community.

Additionally, the following questions were added to the survey in 2019 to gauge
whether the administrative changes to the Department of Chemistry that have been
implemented since the inception of the academic climate initiative have been noticed
by the community:

“Since the 2018 and 2019 climate surveys, the Chemistry Graduate Life Committee
(CGLC) and Department of Chemistry administration have worked together to:

1. Update the first-year handbook

2. Ensure discussions of mental health were incorporated into Fall orientation

3. Incorporate graduate student input in the faculty hiring process

4. Ensure non-alcoholic beverages and snacks in our weekly chemistry social hour
(Chem Keg)

5. Incorporated peer-led sexual violence and sexual harassment training into new
student orientation

6. Established a monthly diversity and inclusion focus group

Did you notice any of these changes?” (yes/no response choices) and “Do you have
any feedback regarding the changes listed above?” (open-ended question).

The reliability of our academic climate survey was evaluated using the item
response theory40 and has a value of 0.84. This indicates that the items in this survey
relate to each other and do provide a reliable measure of academic climate across all
3 years of data collection.41,42
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4.6.2 Academic Climate Survey Administration

The surveys were fielded using the Qualtrics LLC platform. They were adminis-
tered confidentially and distributed electronically via email to all graduate students,
postdoctoral researchers, and faculty in the UC Berkeley Department of Chemistry
using the “individual link” function in Qualtrics during the Spring semester of every
academic year. The “anonymize responses” function in Qualtrics was used to retroac-
tively delete all identifying information from survey responses. Additionally, since
2019, a departmental survey “release party” has been hosted—with free coffee, snacks,
and sweets—to incentivize survey participation. All other details of the survey ad-
ministration are the same as those reported by Stachl et al.30 This longitudinal study
was authorized by the University of California, Berkeley institutional review board,
protocol ID#2019-01-11732. All survey respondents were informed that completion of
the surveys is voluntary, and they all completed informed consent.

4.6.3 Longitudinal Data Analysis

The 2018 data used in this study were previously published by Stachl et al. “Prefer not
to answer” data was omitted from our analysis, and nonbinary gender responses were
removed from the gender category because of the low overall number of responses. We
note that the term “URG” as used in this paper inclusive of both female-identifying and
racial/ethnic minority populations. We did not separate these populations’ data due to
concerns about compromising confidentiality from low total numbers of racial/ethnic
minority trainees. Additionally, we did not collect demographic information from
faculty members, as low overall numbers of faculty in the department may compromise
the confidentiality of responses. We also note that 2020 data were collected prior to
the mandated shelter-in-place order in California due to the COVID-19 pandemic.

The Kruskal–Wallis H test (nonparametric significance test for ordinal data with
3+ independent variables) was used to carry out longitudinal comparison of data by
question, and the Mann Whitney U test (nonparametric significance test for ordinal
data with 2 independent variables) was used to compare demographic data for any
given question within 1 year’s dataset. In cases where pairwise comparisons are
included, the Kruskal–Wallis H test was carried out on the entire dataset; if this
analysis indicated that the distributions are not the same for each independent group
(p < 0.05), then pairwise comparisons were carried out using the Mann Whitney U
Test to determine the significance level between two groups within the dataset. All of
these statistical analyses were completed using IBM SPSS Statistics Version 26. In
general, changes were considered significant for p ≤ 0.10. Significance values have
been adjusted by the Bonferroni correction for multiple tests.
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Chapter 5

Mismatch in Perceptions of Success:
Investigating Academic Values among
Faculty and Doctoral Students

The following is adapted from Brauer, Mizuno, Stachl, Gleason, Bumann, Yates,
Francis, and Baranger; J Chem Ed, 2021 with permission.

5.1 Abstract
Many cultural and institutional barriers have prevented Chemistry from realizing
greater calls for diversity in academia. Though recent work has elucidated how the
measures of success used in academia can disadvantage students from underrepresented
groups at the undergraduate level, understanding of how success metrics are valued
by minoritized students at the graduate level is lacking. Here, we use data generated
from the UC Berkeley Department of Chemistry’s student-led climate survey to
investigate both how graduate students prioritize and how faculty employ common
metrics for graduate student success. Results revealed that faculty undervalued
metrics preferred by students from underrepresented groups (URGs) in STEM such
as underrepresented people of color, women, LGBTQ+ students, and first-generation
students. Priorities of students that do not identify as underrepresented displayed no
statistically significant differences to faculty values. Questions regarding publication
record, a common measure of success in STEM academia, suggest that graduate
students, particularly those belonging to URGs, challenge the use of publication
record as the primary metric of success in graduate school. These findings highlight
some of the ways that definitions of academic success can be exclusionary for graduate
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students from underrepresented backgrounds and encourage re-envisioning graduate
school success in ways that reflect the values of diverse student populations.

5.2 Introduction
Despite receiving significant attention and widespread awareness, the crisis of marginal-
ization of women and underrepresented people of color (URPOC) continues to persist
in STEM disciplines. In the US, 30% of the population identify as Black, Indigenous,
and People of Color (BIPOC), yet they account for only 10% of chemistry doctoral
recipients and 6% of faculty at research institutions. Women in chemistry likewise
experience significant attenuation in higher education, representing 41% of chemistry
graduate students and 20% of faculty at research institutions.1,2 Myriad research
has been devoted to understanding this marginalization, highlighting institutional
barriers,3 discrimination,4 stereotype threat,5 and belonging uncertainty6,7 as factors
to address.

Recent work has examined definitions of student success in STEM education
through the lens of critical race theory, asserting that historical views of student
success enforce cultural hegemony and ultimately translate to policies and structures
that harm minoritized students.8 Students from underrepresented backgrounds often
define success differently from the most literature-prevalent success metric, the
grade point average (GPA). Through interviews, first-generation undergraduates
revealed qualitative, emotional themes for success, such as self-efficacy and passion,
and explicitly rejected notions of success related to exam performance or GPA.9
Minoritized students are thus forced to either conform to a value system designed
and enforced by the majority, underperform in these chosen metrics, or choose to
leave the system entirely.10

In higher levels of STEM academia, quantitative metrics shift to those related
to research productivity and output. For decades, publication rate has been the
key indicator for success in the academy, often defined by the mantra “publish or
perish.”11 Publication records are a key factor in hiring and tenure decisions, academic
promotions, and allocation of grant funds.12,13 The field of bibliometrics has employed
statistical methods to generate various models for research productivity beyond raw
publication count that have gained widespread use, including journal impact factor,
h-index, and g-index.14–16 These measures attempt to capture the significance of a
scientist’s contributions by weighing the number of publications with citation count
over time. The application of these measures in an increasingly competitive field has
resulted in a rise of publication-related fraud and manipulation, as scientists struggle
to secure scarce funding.17 Furthermore, it is well-established that these metrics
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contribute to the marginalization of underrepresented groups in STEM: women and
underrepresented minorities publish at lower rates, are less represented in high impact
journals, and are less likely to be cited for their work than their well-represented
counterparts.18–20

While efforts have been made to incorporate undergraduate student input in
defining notions of academic success, work to understand how STEM graduate stu-
dents prioritize various metrics of success during their doctoral program is lacking.21
Graduate program climate surveys have shown recent success as mechanisms for
understanding graduate student perceptions and implementing evidence-based inter-
ventions, particularly with regard to improving student mental health.22,23 Here, we
present an examination of how graduate students in the UC Berkeley Department
of Chemistry view graduate student success using primary data generated via the
Department’s annual climate survey.24,25 We sought to address two research questions:

1. How do graduate students and faculty in chemistry prioritize the varied measures
of success for graduate students?

2. Are success metric preferences influenced by graduate student identity?

Graduate student rankings of success metrics reveal differences in priorities be-
tween students from various underrepresented groups (URGs) and non-URG students.
In this study, URG encompasses URPOC, women, first-generation students, LGBTQ+
individuals, students with disabilities, and low-socioeconomic status (low-SES) stu-
dents. Student values were also compared to success metrics employed by faculty in
their assessment of graduate students. Analyses reveal that, on average, priorities
diverge between faculty and URG graduate students while faculty and non-URG
graduate student priorities align. These results highlight the importance of setting
clear expectations between graduate students and faculty in STEM and underscore
the importance of elevating minoritized student voices in rethinking frameworks for
success in chemistry higher education.

5.2.1 Theoretical Framework

This work draws on the frameworks of cultural capital, social reproduction, and
critical race theory (CRT) to investigate value systems in STEM academia. Theories
of cultural capital and social reproduction posit the perpetuation of social inequalities
via socialization of culturally relevant skills, preferences, and norms.26 Educational
settings reinforce and reward cultural capital that aligns with the values of the
dominant class, providing institutional recognition and conversion social hierarchies
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into academic hierarchies.27 Some educational research has used theories of cultural
capital to construct deficit notions of minoritized groups — minoritized groups are to
blame for unequal outcomes due to failure in required metrics.28 However, more recent
work has reconceptualized cultural capital through CRT, rejecting deficit notions
of minoritized individuals.29 CRT challenges the dominant ideology and looks to
dismantle “notions of colorblindness, meritocracy, deficit thinking, linguicism, and
other forms of subordination”.30 Intersectionality is a core commitment of CRT,
recognizing that discrimination crosses multiple planes of identity, including race,
gender, class, sexuality and disability.31 Framing cultural capital through CRT
recognizes that structures center the power with the majority and fail to recognize
the values of minoritized communities. With this understanding, dominant modes of
cultural capital in settings such as higher education may be challenged with skills,
abilities, and knowledge valued by marginalized voices. This work in particular aims
to garner input from underrepresented doctoral students to reframe modes of success
in graduate school that may better serve the priorities of all graduate students.

5.3 Survey Methods
Since 2018, the Department of Chemistry at UC Berkeley has administered an annual
climate survey to understand faculty and graduate student perspectives on issues
pertaining to inclusivity, diversity, and wellness in the department.24,25 Discussions
held in the accompanying Chemistry Department Information and Brainstorming
Session (cDIBS) in which faculty, postdocs, and graduate students discuss survey
results led to initial conception of a survey section concerning publication and success
metrics. Success metrics questions were subsequently designed by a graduate student
committee responsible for climate survey design and administration. Questions
were finalized following input from faculty stakeholders, including the Chair of the
Department of Chemistry and Associate Dean for Diversity, Equity, and Inclusion.

Survey data were collected in the 2021 academic climate survey administered
over 14 days in March 2021. Graduate students and faculty received a unique link
to the online survey via their UC Berkeley email using the Qualtrics LLC platform.
All respondents offered informed consent and were notified that completion of the
survey was voluntary. The “anonymize responses” function in Qualtrics was used to
remove identifying information from survey responses. The study was approved by the
UC Berkeley institutional review board, protocol #2019-10-11732. The 2021 survey
included the new success metric section: graduate students were asked four questions
related to their perception of publications as a metric for graduate student success;
faculty were asked three questions related to publication as a metric of assessment
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for their own careers as well as how important publication record is in evaluating
their graduate students. Graduate students and faculty were also asked to rank seven
common metrics for assessing graduate student success.

Figure 5.1: Distribution of responses regarding
publication as a metric for success. (a) Graduate
student and faculty responses pertaining to publi-
cation as a personal success metric. (b) Responses
related to use of publication by faculty advisors
to judge graduate student success. (c) Responses
evaluating if publication impact is more important
than quantity. *** indicates p < 0.001.

Demographic information on identi-
fication with underrepresented group(s)
was collected for graduate students but
not for faculty as such information
could compromise anonymity. Ensuring
anonymity has been crucial for encour-
aging continued engagement of graduate
students and faculty. The graduate stu-
dent response rate for the 2021 survey
was ∼40% (154/387), and the faculty re-
sponse rate was ∼40% (26/63), which
is consistent with response rates from
previous years.24,25. The statistical sig-
nificance of differences in distribution be-
tween groups was calculated using the
Mann–Whitney U test. All statistical
analyses were performed using IBM SPSS
Statistics 27.

5.4 Results
and Discussion

5.4.1 Academic Publication
as the Key Metric for
Graduate Student Success

The full distribution of graduate student
and faculty responses to publication ques-
tions are presented in Figure 5.1. In gen-
eral, members of the department agree
that publications are an important met-
ric of their personal successes (Figure
1a). However, there are large disparities
in how publications should be and are
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utilized in the assessment of graduate student success. About 40% of faculty respon-
dents agree that they use publication record as the primary metric to gauge mentees’
success, while only ∼27% of graduate students believe their advisor assesses them in
this manner (Figure 5.1b). Furthermore, very few (∼12%) graduate students believe
academic papers should be used as the primary metric to gauge their success (Figure
5.1c). Though the majority of graduate students (∼70%), and faculty (∼88%) agree
that the impact of a publication is more important than the number of publications,
faculty tend to endorse impact over quantity less strongly (Figure 5.1c).

Figure 5.2: Distribution of responses regarding
publication as a metric for success. (a) Graduate
student and faculty responses pertaining to publi-
cation as a personal success metric. (b) Responses
related to use of publication by faculty advisors
to judge graduate student success. (c) Responses
evaluating if publication impact is more important
than quantity. *** indicates p < 0.001.

These data were further analyzed
based on self-identified URG status.
As our definition of URG encompasses
many underrepresented groups, including
women, they constitute the majority of
respondents (67% of graduate student
responses). However, the constituent
groups are underrepresented across mul-
tiple facets of STEM, ranging from the
undergraduate to the faculty level, and
thus are considered URG members de-
spite their majority designation in our
responses. Graduate students who identi-
fied as members of a URG were less likely
than their non-URG peers to agree with
the statement: “publishing academic pa-
pers should be the primary metric used
to gauge graduate student success” (p < 0.05, Figure 5.2). No other questions about
publication values achieved statistical significance when disaggregated by URG status.

5.4.2 Divergent Priorities of Graduate Students by
Demographic Group

Histograms containing the rank order distribution of graduate student success metrics
as determined by faculty, URG graduate students and non-URG graduate students
are shown in Figure 5.3. Both faculty and graduate students generally indicated
the “ability to develop new research projects” as the most important factor for
assessing graduate student success. “Publication record”, “Mentorship”, and “Scientific
presentation” were given moderate priority while “Teaching”, “Time spent working”
and “DEI and outreach work” were ranked lower on average. Non-URG students’
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Figure 5.3: Graduate student ranking distribution of success metrics. Students ordered their
priorities from 1 to 7, with 1 indicating the highest priority metric. Faculty, URG-identifying
graduate student, and non-URG graduate student mean rankings for each metric are indicated via
black, red, and green dotted lines, respectively.

priorities aligned more closely with the values of faculty; no metrics displayed a
statistically significant difference in distribution between faculty and well-represented
graduate students. URG students, however, ranked publication record as a lower
priority success metric than did faculty (p = 0.031). It is worth noting that non-
URG students ranked publications lower than faculty as well, but the shift was just
outside of statistical significance (p = 0.058). Other visible preferences that were
not statistically significant include a lower priority of scientific publication by URG
students, an increased priority of DEI and outreach work by URG students, and lower
priority of time spent working by both graduate student groups relative to faculty.
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Figure 5.4: Box plot of success metric priority rankings separated by graduate student identity. A
response of 1 indicates the highest priority metric, and 7 indicates the lowest priority. Mean ranking
of each group is indicated by a black circle, while outliers are shown with blue circles. * indicates
p < 0.05, ** indicates p < 0.01.

When separated by underrepresented group affiliations (URPOC, women, LGBTQ,
first-generation students, and low socio-economic status), various statistically signifi-
cant shifts in priorities emerge between graduate student affinity groups as well as
relative to the metrics faculty use for student assessment. Significant disparities are
shown in Figure 5.4. Graduate students who identified as URPOC de-emphasized
the value of publication record (p = 0.019) while placing more value on DEI and
outreach work (p = 0.039) compared to faculty. Women graduate students showed
a similar tendency towards publication record, rating this metric as much lower
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priority than did faculty (p = 0.0083). LGBTQ+ students likewise had a strong
preference for DEI and outreach work (p = 0.0046) and de-emphasized publication
record (p = 0.043). This pattern is also observed in first-generation students (outreach
p = 0.048, publication p = 0.037). Interestingly, the values of low socio-economic
status students statistically align with faculty.

5.4.3 The Gap in Graduate Student and Principal
Investigator Success Metrics

These data display the discrepancy between the metrics of success faculty apply
to graduate student mentees and the priorities reported by graduate students in
the Chemistry Department at University of California, Berkeley. UC Berkeley
graduate students from backgrounds that are historically well-represented in STEM
have goals and priorities that more closely align with the assessment metrics of
faculty than students from URGs. Various underrepresented groups, including
underrepresented people of color (URPOC), LGBTQ+ individuals and first-generation
students value DEI and outreach work significantly more than such work is valued by
faculty. This may be tied to the well-established phenomenon of “cultural taxation”
or “invisible work”, where URGs are asked and expected to spend significantly more
time devoted to diversity-related mentorship and service often at the expense of time
spent researching.32–34 Underrepresented individuals must not only shoulder this
burden of additional service, but also find their work unrecognized as essential by
their advisors and peers.

The data presented here indicate that our graduate student population as a
whole rejects the use of publishing as a primary indicator for graduate student
success. This finding aligns with many challenges to hegemony of publishing Ph.D.
evaluation.8,35–39 We find this effect, however, is more pronounced for students from
minoritized groups. Historically marginalized students are significantly less likely to
agree with the statement “Publishing academic papers should be the primary metric
to gauge graduate student success” than their well-represented peers. Almost every
minoritized group of graduate students valued publication record significantly lower
than faculty advisors. Considering the notable disparities in publication for women
and BIPOC scientists, this challenge to publication as a graduate student’s primary
evaluative metric should be expected. Though other underrepresented groups such as
LGBTQ+ students face discrimination and systemic inequalities in STEM, information
about publication rate is unavailable due to a lack of data.40,41 Taken together, these
results demonstrate how ‘common sense’ modes of evaluation and success in STEM
can contribute to exclusion and alienation of underrepresented individuals. URGs
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in STEM must reconcile their values with the evaluation metrics of their faculty
advisors, who mostly represent the dominant class (white, heterosexual, male). This
dissonance of values can harm graduate students’ sense of belonging in STEM, which
is linked to lowered retention and achievement.42,43 Indeed, the culture of publishing
is understood to impact URG sense of belonging negatively at all levels of academia.6
Meanwhile, our data suggest that non-URG trainees, on average, find their values
more closely reflected in the values of their advisors. This mismatch in values may
stem from the ambiguity in what a ‘successful’ outcome is for a graduate student.37
Some may define success as the attainment of a PhD, while others may define success
based on their career goal. Thus, the path to achieving each different success outcome
will naturally necessitate different benchmarks and milestones throughout graduate
school. It is well established that graduate students in Chemistry find research faculty
careers to be most strongly encouraged by their advisors, despite waning interest in
academic careers across STEM.44 Yet this supported path is much less likely to be a
desired path for women in STEM, and in particular women from underrepresented
racial or ethnic groups prefer non-research careers following completion of their
degree.45

We note that the culture and expectations of graduate students and faculty
at a large research institution such as UC Berkeley may not be representative of
those across Chemistry academia. However, graduate students from top-ranking
institutions such as UC Berkeley produce a larger share of future faculty than other
research institutions. This may affect the real and perceived career interests of
graduate students and faculty towards academia, where publication metrics remain
the strongest indicator for successful faculty appointment.46 Thus, we hope this work
inspires increased collection of community-level, quantitative data to explore the
evaluative structure of Chemistry.

5.4.4 Building Inclusive Evaluation in Chemistry

Steps to remove this barrier to equity can take place both on the individual and
institutional scale. Clear communication of expectations between graduate students
and faculty advisors can ensure values of both parties are aligned, and has been shown
to improve graduate student confidence and motivation.47 Additionally, systematic
feedback between mentees and mentors is known to empower graduate students to
address areas of their experience that need improvement, while training in “Culturally
Aware Mentoring” shows promise for teaching mentors to better serve mentees from
minoritized populations.48 Even the act of affirming one’s own values can positively
impact their sense of belonging.49 Taken together, there are many practices that
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individual research groups can adopt to ensure the goals and priorities of graduate
student mentees are reflected throughout their training.

Deeper scrutiny of publishing and promotion in STEM via principles from CRT
sheds light on how the current system upholds the power of the majority. Moving
away from a publication-dominant values system may better serve groups with
diverse priorities. However, the current structure of STEM academia may make it
difficult for faculty to shift their focus away from publication as the dominant notion
of success for themselves and for mentees. Publication metrics not only factor in
hiring, promotion, and tenure of faculty, but are also correlated with successful grant
funding.50–52 Accumulation of funding enables financial support of more graduate
student and postdoc researchers, leading to increased research output, establishing a
publication “feed-forward loop”.53–57 Many funding agencies have incorporated criteria
to emphasize mentorship and outreach, including the National Science Foundation and
the Natural Sciences and Engineering Research Council of Canada Athena Scientific
Women’s Academic Network. This represents meaningful progress towards valuation
of non-publication metrics, and further commitment to such efforts better supports
marginalized researchers.

Alternative systems, such as those employed at the University Medical Center
Utrecht, seek to rectify the “evaluation gap” by shifting the Ph.D. candidate evalua-
tion such that it no longer focuses on publications, abstracts, or academic awards.
Instead, assessment relies on a holistic self-evaluation of accomplishments of which
the candidate is most proud, including those historically defined as “invisible work”.58
Recently, Utrecht University has extended this shift to the faculty level by replacing
impact factor and h-indices in hiring and promotion decisions with standards such
as commitment to teamwork and efforts to promote open science.59 This initiative
aims to shirk measures that “contribute to a ‘productification’ of science” and instead
focus on factors that promote open science. Other avenues for reimagining scientific
impact focus on centering the mentorship as an evaluation metric, whereby measures
of acquired skills, self-efficacy and wellbeing of mentees may be quantitatively tracked
using surveys.60 Incorporating the values and voices of historically marginalized
groups into a new academic model of success is key to establishing Chemistry as an
equitable pursuit for all.
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