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Abstract

Recurrent attractor networks offer many advantages over feed-
forward networks for the modeling of psychological phenom-
ena. Their dynamic nature allows them to capture the time
course of cognitive processing, and their learned weights may
often be easily interpreted as soft constraints between repre-
sentational components. Perhaps the most significant feature
of such networks, however, is their ability to facilitate gener-
alization by enforcing “well formedness” constraints on inter-
mediate and output representations. Attractor networks which
learn the systematic regularities of well formed representations
by exposure to a small number of examples are said to possess
articulated attractors. This paper investigates the conditions
under which articulated attractors arise in recurrent networks
trained using variants of backpropagation. The results of com-
putational experiments demonstrate that such structured attrac-
tors can spontaneously appear in an emergence of systematic-
ity, if an appropriate error signal is presented directly to the
recurrent processing elements. We show, however, that dis-
tal error signals, backpropagated through intervening weights,
pose serious problems for networks of this kind. We present
simulation results, discuss the reasons for this difficulty, and
suggest some directions for future attempts to surmount it.

Introduction

Recurrent attractor networks have been studied by cognitive
modelers since the onset of the recent connectionist renais-
sance. The hallmark of these networks is the complex evolu-
tion of their processing element activity over time. Though
dynamic by nature, these networks have been applied to many
associational mapping tasks which possess no inherent tempo-
ral component. In domains as diverse as content-addressable
memory (Hopfield, 1982), schema formation (Rumelhart et
al., 1986b), and word naming (Plaut & McClelland, 1993),
recurrent networks which settle over time to some stable ac-
tivation state have displayed some noteworthy advantages
over feed-forward models. The attractor networks directly
exhibit time-varying processing, allowing them to capture the
dynamics of cognition in a manner which may be validated
against common psychological measures, such as reaction
times. Also, learned connection weights in such recurrent
networks often lend themselves to interpretation as soft con-
straints between representational units, facilitating analysis.
Perhaps the most interesting potential advantage of such net-
works, however, is the manner in which attractor basin for-
mation may aid in generalization to novel inputs.

Attractor networks can encourage generalization by en-
forcing “well formedness™ constraints on the intermediate

and output representations produced by an otherwise feed-
forward process (Mathis & Mozer, 1995). Such constraints
are embodied in these networks as distinct fixed-point attrac-
tors for every possible well formed representation. Patterns
may be “cleaned up” by such a network via a process of
settling over time to one of these meaningful, well formed,
and stable activation states. The potentially combinatoric
space of valid attractor basins need not be explicitly trained,
however, but may arise in the compositional interaction of
trained attractors (Plaut & McClelland, 1993). It has long
been known that the training of recurrent networks may result
in spurious attractor basins: fixed-point attractors which are
not explicitly trained (Hopfield, 1982). Under appropriate
conditions, however, these spurious attractors may actually
arise in a systematic manner, producing serendipitous basins
which encode novel but meaningful patterns of activation. We
refer to the dynamics of such networks as containing articu-
lated attractors — meaningful attractor basins arising from the
compositional interaction of explicitly trained attractors.

This paper provides an empirical analysis of the conditions
under which articulated attractors form in recurrent neural
networks trained using various versions of backpropagation
(Rumelhartet al., 1986a). This work stemmed from our initial
attempts to incorporate an attractor network of this kind into
our connectionist model of instruction following (Noelle &
Cottrell, 1995), a model which develops an internal represen-
tation of verbal instructions in the service of a task (St. John,
1992). We discovered that articulated attractors did not ap-
pear in this model, and this paper sprang from our attempt to
explain why. In hopes of acquiring a deep understanding of
the learning difficulties experienced by our model, we began
with the most simple attractor network architecture possible
— a single recurrent layer of processing elements. We in-
crementally augmented this network with further layers of
units, expanding the complexity of the architecture towards
the configuration of our instruction following model. This
investigation revealed that articulated attractors form readily
when the network’s recurrent layer is directly provided with
a teaching signal, but such systematic dynamics do not ap-
pear when recurrent weights are shaped by backpropagated
error. In addition to demonstrating this finding, this paper
also presents some possible explanations for why this is so.

We begin by describing the simple structured memory task
which we used to examine attractor formation in a number of
recurrent network architectures. We then present simulation
results for three successively more complex architectures, and
we close with a discussion of these results.
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Figure 1: The Slot-Filler Structure Memory Task
A Structured Memory Task terns, we expected the networks to simply memorize the train-

In hopes of facilitating analysis, we selected an extremely
simple task for our attractor networks. Each network was
presented, for a single time step only, with an encoding of a
simple slot-filler structure. The goal of the network was to
“clean up” any noise in this representation and to retain the
result at the network’s output indefinitely, even after the input
pattern was removed. Thus, through training, the network
needed to acquire a distinct fixed-point attractor for each valid
input slot-filler structure. These attractor basins had to be
sufficiently wide to capture slightly noisy patterns, and the
fixed-points needed to be sufficiently stable to remember the
input for an indefinite period.

To be specific, each pattern represented a structure contain-
ing two slots, each holding exactly one of five distinct fillers.
The contents of the slots were considered independent, with
the specific filler in one slot in no way constraining the filler
for the other. The whole was encoded as a 10 element binary
vector, divided into two groups of five. Since each slot could
contain only a single filler, exactly one element in each group
of five was turned “on” in each valid pattern. The networks,
then, were to learn an attractor for each input pattern involv-
ing exactly one of the first five elements “on” and exactly one
of the last five elements “on”. Thus, with five possibilities
for each of two slots, there were only 52 = 25 patterns con-
sidered “well formed” out of the 2'° = 1024 possible binary
input vectors. This task is depicted schematically in Figure 1.
The diagram on the left side of that figure depicts the mapping
being performed as the network settles, and the table on the
right provides an example of the time course of input activity,
expected output activity, and the target output. Note that the
input pattern is made available to the network for the first
time step only, requiring the network to both *“clean up” and
remember the pattern over time.

Systematic generalization was the focus of these experi-
ments. The goal was to produce a fixed-point attractor for ev-
ery valid slot-filler structure, given training on only a fraction
of these valid patterns. To this end, each network was explic-
itly trained on some subset of the allowable input patterns,
encouraging the formation of attractors for these patterns by
the presentation of an error signal on every time step for a
fixed settling period. Once trained, each network was then
tested on all valid slot-filler representations, and the number
of fixed-point attractors corresponding to these valid patterns
was determined. The dynamic behavior of each trained net-
work was also examined to locate any spurious attractors
corresponding to ill formed patterns.

For small training sets, consisting of only a few valid pat-
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ing instances — to build attractors only for the presented pat-
terns. We predicted, however, that beyond some threshold in
training set size the networks would generalize to all valid
structures. In order to test this hypothesis, we trained each
network architecture on multiple training sets, varying in size.
Each trained network was examined to determine the attrac-
tor structure resulting from its training. At least five patterns
were present in each training set, as this was the minimum
number needed to turn each input element “on” at least once
over a training set. The largest training set consisted of all
25 well formed patterns. The frequency of each filler in each
training set was balanced as much as was possible given the
small size of the training sets. Noise was added to input el-
ements during training, but this noise never exceeded 5% of
the activation range of the elements (i.e., 0.05 for binary units
and 0.10 for bipolar units). Network output targets consisted
of the “clean” patterns over the entire time course of network
settling, as shown in Figure 1. A settling period of 10 time
steps was used during training, and 100 time steps were used
during testing.

The Emergence Of Systematicity

The first architecture examined was a single recurrent layer of
sigmoidal processing elements. The entire network consisted
of ten units which acted as both input and output for the net-
work. This single layer was provided with complete recurrent
connections to itself. Each unit also had a bias weight, re-
sulting in a total of 110 adaptable connections. Unlike some
single layer networks of this kind, this weight matrix was not
constrained to be symmetric. The architecture is shown in
Figure 2, on the left. The network received an input pattern
by clamping the activation state of the processing elements
to the input values for a single time step. After this initial
time step, the activation state of the network was allowed to
freely evolve according to the connection weights. Train-
ing was provided by a version of backpropagation through
time (BPTT) (Rumelhart et al., 1986a) in which error is back-
propagated for only a single time step, much as is done for
Simple Recurrent Networks (Elman, 1990). An illustrationof
how this was implemented is also shown in Figure 2. Binary
sigmoidal units were used, with a learning rate of 0.01, no mo-
mentum term, and a mean squared error objective function.
Connection weights were initialized to small random values,
normally distributed about 0 with a variance of 0.5. For each
training set size, training was conducted for 4000 epochs (i.e.,
passes through the entire training set) with patterns randomly
reordered on each epoch.
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Figure 2: Single Layer Network: The Architecture, Unrolled In Time, And Generalization Performance

A summary of the results over all training set sizes is shown
on the right side of Figure 2. That graph displays the number
of well formed attractors found in a trained network as a func-
tion of the training set size. The plot also includes a reference
line which depicts the hypothetical case of no generalization
outside of the training set. Notice that small training sets
resulted in the simple memorization of the trained attractors,
but networks that saw at least half of all valid patterns consis-
tently generalized to all 25 allowable structures. Furthermore,
none of these networks constructed spurious attractor basins
corresponding to ill formed patterns. The weights of these
successful networks took the unsurprising form of two un-
coupled winner-take-all networks. Each unit had a highly
weighted self-connection and inhibited the other four units
in its group of five. Weights on connections between units
for different slots (i.e., between the two groups of five units)
remained close to zero.

Given a sufficiently large training set, these networks con-
sistently exhibited an emergence of systematicity. General-
ization was perfect, with a fixed-point attractor formed for
every valid pattern.

Input Preprocessing

The next architectural variant we considered involved the in-
clusion of a matrix of weights between the network input and
the recurrent output layer. Instead of providing input patterns
by clamping unit activations for the initial time step, noisy
inputs were provided at an input layer for the first time step,
and activity at this layer was set to zero for all remaining time
steps. Activation levels at the recurrent output layer were
initialized to zero. This network contained the same recurrent
connection architecture as in the single layer case but also in-
cluded a complete set of connections from the input layer, for
a total of 210 adaptable weights. The same learning parame-
ters were used, and training continued, once again, for 4000
epochs. Asin the single layer model, weight modification was
performed by BPTT, with the network unrolled in time for a
single time step. The basic architecture of this network, as
well as how it appears when “unrolled”, is show in Figure 3.
Summarized results are also graphed in that figure. Notice that
systematic performance arose from even smaller training sets
than in the single layer case. As before, no spurious attractors
were found. The recurrent weights, once again, embodied
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two separate five-unit winner-take-all networks. Systematic
generalization appears to arise spontaneously under this ar-
chitecture, as well.

It is fairly clear why the inclusion of input weights intro-
duced no additional difficulty for the learning of articulated
attractors. The training of the input weights was essentially
decoupled in time from the training of the recurrent weights.
During the initial time step, output activity was at the initial-
ized level of zero, which implied no change to the recurrent
weights since this activity plays a multiplicative role in the
backpropagation weight update equation. In other words, only
the input weights could be updated on the first time step. On
the other hand, on every subsequent time step the input layer
activity was clamped to zero, directing all weight updates to
the recurrent connections. In short, each of the weight ma-
trices was provided with its own direct error signal at regular
times during training.

An Indirect Error Signal

The final architecture examined here differed from the previ-
ous two in that an error signal was not provided directly to
the recurrent layer but was backpropagated through an inter-
vening matrix of weights. The basic architecture is shown
in Figure 4. Unlike the last model, activity was propagated
forward beyond the recurrent layer to a separate output layer
of sigmoidal units. Error was computed at this final output
layer and was backpropagated to influence the modification of
the recurrent and input weights. This additional layer raised
the number of adaptable parameters to 320. The network was
trained as a Simple Recurrent Network (SRN) (Elman, 1990),
unrolling the recurrent hidden layer for a single time step. As
in the previous architecture, noisy input patterns were pre-
sented at the input layer for the first time step only, and input
activity was set to zero during the rest of the settling period.
The same learning parameters were used, but training time
was extended to 6000 epochs.

The performance of this configuration, shown in the cen-
ter of Figure 4, is grim. These networks not only failed to
generalize, but they often failed to form attractors for training
sel patterns. Also, several spurious attractors (as many as 8
for some training set sizes) arose for ill formed patterns. The
introduction of an indirect error signal presented a serious
obstacle to the formation of articulated attractors.
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Figure 3: Network With Input Layer: The Architecture, Unrolled In Time, And Generalization Performance

In hopes of remedying this situation, the training procedure
for this architecture was modified in a number of substantial
ways. The first modification involved the number of time
steps experienced by the network during training. An exam-
ination of the dynamics associated with well formed patterns
revealed that, when presented with a valid pattern, the acti-
vation state of the network often drifted away from that well
formed configuration, but it did so only very slowly. After
10 time steps of settling (which was the settling period during
network training) almost all training set patterns appeared in-
tact at the output layer. This observation suggested that the
number of settling time steps experienced by the network dur-
ing training was sufficient to keep the network from drifting
away from the training patterns too quickly but was insuffi-
cient to construct the needed stable fixed-point attractors. To
correct for this problem, we retrained these networks using
incrementally larger settling times during training. In other
words, whenever a network successfully retained the training
patterns for ¢ time steps during training, the settling time was
advanced to (f + 1) for the next training epoch. Unfortu-
nately, this strategy did not work. Invariably, some settling
time threshold would be reached, past which the networks
would not learn.

Our next modification involved using a more robust esti-
mate of the error gradient by backpropagating error through
time all the way to the first time step. Using complete BPTT
instead of the SRN training method showed no significant
improvement by itself, but when coupled with a switch to a
bipolar activation function (units which ranged in activation
between —1 and 1) and with a reduced learning rate (0.001),
this architecture began to successfully memorize the training
set attractors. Systematic generalization remained elusive,
however. This performance is shown in Figure 4, on the
right.

In the previous two network architectures, the pattern of ac-
tivation at the recurrent layer was consistently both polarized
and sparse. Units tended to be either all the way “on” or all
the way “off”", and only two of the ten units were “on” for any
given valid pattern. These properties of the recurrent layer
activation patterns were directly enforced by the error signal
provided at the output. In the case of an indirect error signal,
however, these properties are no longer directly determined
by training. Since the recurrent layer is a hidden layer in these
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networks, other patterns of activation are free to arise there.
Indeed, the activation patterns at the recurrent hidden layers
of these networks were quite distributed, with approximately
half of the hidden units being highly positive for any given
training pattern. These recurrent layer patterns still tended to
be polarized, however, presumably because it is easier to con-
struct stable fixed-point attractors in the corners of activation
space.! Still, these networks apparently included a sufficient
number of free parameters (weights) to associate a fairly ar-
bitrary distributed hidden layer attractor with each training
pattern. Unlike the dual winner-take-all structure learned by
the previous two architectures, these attractors showed few
signs of compositionality.

This problem of hidden layer representation is serious. Itis
quite possible for a network to learn a hidden layer encoding
of input patterns which is consistent with the training items but
is inherently incapable of generalizing to other valid patterns.
This problem may be illustrated by the simple example show
inFigure 5. This diagram displays a small piece of a network,
includingtwo hidden units and two output units. Two possible
configurations of weights between these processing elements
are shown, with the output bias weights always being slightly
negative. Both configurations can produce the given training
set targets at their outputs, but only the configuration on the left
is capable of producing the generalization target. The weights
in the right network fragment fail because they collapse too
many distinct hidden layer patterns to single output patterns.
For generalization to have any hope of occurring, hidden layer
activation space must retain distinct correlates to the entire
range of valid outputs.

One way to avoid this “collapsing” of hidden layer space
is to drive the weight vectors coming out of each hidden unit
towards mutual orthogonality. This constraint makes the con-

!Near the comers of the 10 dimensional activation space of the
recurrent layer, the derivative of the sigmoidal activation function of
each recurrent unit is close to zero. This means that a large weight
change is typically needed to change the fixed-point of a comer
attractor. By comparison, a fixed-point attractor in the middle of this
10 dimensional space may drift significantly as the result of evena
small weight change. In general, with sigmoidal units, fixed-point
attractors in the corners of activation space are much less sensitive to
small perturbations in weight values than fixed-points in the middle
of activation space.
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Figure 4: Network With Indirect Error: The Architecture, SRN Results, And BPTT Results

tribution of each hidden unit to the formation of an output
pattern orthogonal to the contributions of the other hidden
units. Note that the weight set schematically shown on the
left in Figure 5, which effectively copies the hidden layer ac-
tivation pattern to the output layer, is one example of a set
of orthogonal outgoing weight vectors which is capable of
appropriate generalization. To test this idea of an orthogonal-
ity constraint, we added a term to our squared error objective
function of the form:

E= Z Z: cos’ 8,3
a b

...where a and b are hidden unit indices and f,5 is the angle
between their outgoing weight vectors. Unfortunately, de-
pending on the proportion with which £; was mixed with
squared error, orthogonalization either interfered with the
learning of even training set patterns or had little effect at
all. We noticed that the orthogonalization term often moved
the hidden layer representations away from the corners of ac-
tivation space, where attractors were typically constructed,
so we also added a polarization error term which encouraged
bipolar vectors at the hidden layer. This term took the form

of:
Ep =— Zoi
a

...where o, is the activation level of hidden unit a. Even
when the objective function was augmented with both of these
terms, the best networks still did little more than memorize
training patterns.

Discussion
These results suggest that systematic generalization may arise
easily in recurrent attractor networks when they are presented
with a direct error signal. Distal error signals, backpropagated
through intervening weights, however, appear to present a
profound obstacle to the formation of articulated attractors.
This finding is disconcerting since many cognitive models
incorporating recurrent attractor networks implicitly assume
an error signal conceptually “backpropagated” through some
other psychological process while, in actual simulations, they
utilize an error signal applied directly to the recurrent layer
(Mathis & Mozer, 1995; Plaut & McClelland, 1993). For the
theories underlying these models to be valid, there must be
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some learning mechanism through which articulated attractors
may be shaped by a distal teaching signal.

This problem may be viewed as one of finding a way to bias
the learning of a multi-layer network in a way which encour-
ages the general formation of articulated attractors without
essentially “hard wiring” the structure of the input patterns.
The main question that has yet to be answered is: What is
the correct inductive bias for this task? We suggest that this
bias should encourage recurrent hidden layer representations
which use polarized activation levels and should drive hidden
to output weights towards configurations which preserve, as
much as possible, accessibility to the whole range of poten-
tial output patterns. Polarization is taken as a goal for the
sake of the stability of attractor learning. Even with “cor-
ner attractors”, however, these networks still need to avoid
hidden to output mappings which restrict generalization. A
technique such as activation sharpening (French, 1991) could
potentially produce the kinds of representations needed, but
this would require an a priori specification of the number of
hidden elements “on” for each pattern. Still, an inductive bias
of this sort may be the best that is possible under an indirect
error signal.

Our future work will focus on solving this indirect error sig-
nal problem using two distinct approaches: by modifying the
input pattern encoding and by modifying the network archi-
tecture. The first of these approaches involves encoding slot
fillers in a non-localist fashion. Rather than assigning a single
input and output unit to each filler, a more distributed repre-
sentation could be used for filler values. This might involve
a less sparse binary code in which different fillers share “on”
elements, or it might involve a real vector encoding which
retains the orthogonality of filler representations present in
our localist code. Using a more distributed representation
would cause weights from individual inputs and ro individual
output units to play a significant processing role over multiple
filler values. The additional utilization of these weights may
facilitate generalization to novel slot-filler patterns.

We will also consider encouraging articulated attractors by
constraining the network architecture. In particular, we plan
to investigate the possibility of initializing weights at the re-
current layer to a configuration which embodies a collection
of winner-take-all networks. These will be implemented us-
ing a softmax constraint (Bridle, 1990), so backpropagated
error can still successfully reach weights feeding into the at-
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tractor network. Also, restricted receptive fields among the
hidden to output connections might be used to approximate an
orthogonality constraint on this mapping. Such strong archi-
tectural constraints may be necessary to consistently produce
articulated attractors from distal error.

If further investigation reveals that the learning of system-
atic attractor structures from a distal teaching signal requires
specific constraints on network architecture, cognitive mod-
els which utilize such attractor networks will need to assume
some significant innate constraints on learning. This does
not mean that an architecture specifically tuned to a particu-
lar task, such as reading aloud or proper production of verb
tense, is necessary. The required innate constraints may sim-
ply involve the early presence of lateral inhibition between
processing elements grouped into clusters or the existence of
map-like structures arising from topologically regular connec-
tion patterns. The learning bias introduced by such general
connection patterns may be all that is needed. Still, the work
presented in this paper suggests that the simple presence of
recurrent connections is not enough to produce systematic
attractor dynamics. Learning to enforce “well formedness”
constraints on internal representations may require somewhat
structured network architectures.

Conclusion

Connectionist attractor networks have shown much promise
as a mechanism for improving generalization performance
by enforcing well formedness constraints on representations.
Attractor networks which successfully learn a systematic col-
lection of such constraints given a small training set are said
to embody articulated attractors — meaningful attractor basins
arising from the compositional interaction of explicitly trained
stable fixed-points. We have shown that articulated attractors
can readily arise in such networks when an error signal is
applied directly to the recurrent processing elements. Distal
error signals, however, pose surprisingly profound difficulties
for such networks. A strong prior inductive bias, perhaps best
seen as genetic in origin, towards compositional structure may
be needed to produce articulated attractors at hidden layers in
backpropagation networks.
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