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ABSTRACT OF THE DISSERTATION

Exploiting Program Structure for Scaling Probabilistic Programming

by

Steven J. Holtzen

Doctor of Philosophy in Computer Science

University of California, Los Angeles, 2021

Professor Todd Millstein, Co-Chair

Professor Guy Van den Broeck, Co-Chair

Probabilistic modeling and reasoning are central tasks in artificial intelligence and machine

learning. A probabilistic model is a rough description of the world: the model-builder

attempts to capture as much detail about the world’s complexities as she can, and when

no more detail can be given the rest is left as probabilistic uncertainty. Once constructed,

the goal of a model is to perform automated inference: compute the probability that some

particular fact is true about the world. It is natural for the model-builder to want a flexible

expressive language – the world is a complex thing to describe – and over time this has led

to a trend of increasingly powerful modeling languages. This trend is taken to its apex by

probabilistic programming languages (PPLs), which enable modelers to specify probabilistic

models using the facilities of a full programming language. However, this expressivity comes

at a cost: the computational cost of inference is in direct tension with the flexibility of the

modeling language, and so it becomes increasingly difficult to design automated inference

algorithms that scale to the kinds of systems that model builders want to create.

This thesis focuses on the central question: how can we design effective probabilistic pro-
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gramming languages that profitably trade off expressivity and tractability for inference? The

approach taken here is first to identify and exploit important structure that a probabilistic

program may possess. The kinds of structure considered here are discrete program struc-

ture and symmetry. Programs are heterogeneous objects, so different parts of programs

may exhibit different kinds of structure; in the second part of the thesis I show how to

decompose heterogeneous probabilistic program inference using a notion of program abstrac-

tion. These contributions enable new applications of probabilistic programs in domains such

as text analysis, verification of probabilistic systems, and classical simulation of quantum

algorithms.
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CHAPTER 1

Introduction

The sciences do not try to explain, they

hardly even try to interpret, they

mainly make models.

John von Neumann

Probabilistic modeling is at the core of many scientific disciplines. A probabilistic model

consists of two parts. First, one gives a rough description of the world called a model. The

world is too complex to write down any precise set of rules describing its behavior, so the

philosophy taken by a probabilistic model is to simplify the world by permitting the modeler

to express uncertainty in the form of probabilities: “it is too hard to state for certain whether

or not it will rain tomorrow, so we will settle for a 90% chance of rain.” What good is a

model if it cannot tell you anything? Given a probabilistic model, the goal is then to perform

various forms of probabilistic inference: computing the probability that the model will exhibit

some behavior.

Traditionally the development of a probabilistic model is tightly coupled with its cor-

responding inference algorithm. This poses two key challenges. First is the challenge of

accessibility : there are few people who are capable of both designing an effective model and

inference algorithm, both of which require highly specialized domain knowledge. Second

is the challenge of modularity : by tightly coupling modeling and inference, it makes the

model inflexible: in this tightly coupled situation, changing the model requires rewriting the

entire delicately designed inference procedure. Taken together, these two challenges limit

1



the applicability of probabilistic modeling to specific scientific disciplines with the technical

resources to overcome them.

Probabilistic modeling frameworks resolve the problems of accessibility and modularity.

The idea is to give a general-purpose accessible probabilistic modeling language in which the

user specifies a model. Then, given a model, the system will automatically perform inference

in a generic fashion. This strategy separates the two concerns of modeling and inference:

an expert in inference can design a generic inference algorithm, and a domain expert can

provide the model using the easy-to-use modeling language.

However, probabilistic modeling frameworks are no panacea. Probabilistic inference in

many cases is computationally intractable, and hence every probabilistic modeling language

must make a central tradeoff between expressivity and tractability. More flexible models are

attractive because they are more accessible to users and allow them to express properties of

the world in a richer vocabulary. This increase in flexibility poses challenges for designing

effective scalable inference.

The most flexible kinds of modeling languages are probabilistic programming languages

(PPLs). The key idea of a PPL is to endow a traditional programming language – like

Python, C, or Haskell – with a notion of uncertainty, such as the ability to flip a coin.

Then, the meaning of the program, also known as its semantics, is defined as a probability

distribution over all possible runs through the program. PPLs are obviously extremely

flexible and general – they allow a modeler to express incredibly nuanced descriptions of the

world – but this flexibility comes at the cost of effective inference algorithms.

Currently, the lack of scalability of inference is one of the primary factors holding proba-

bilistic programming languages back from wide-spread application, and so scaling inference

will be the central topic of this thesis. In particular, since inference is in general hard in the

worst case, this thesis will argue that finding and exploiting program structure using program

analysis is essential for scaling inference to large probabilistic programs.

2



1.1 Contributions & Structure of the Thesis

At a high level, the main contribution of this thesis is giving three new strategies for scaling

inference by exploiting the structure of probabilistic programs. Chapter 3 describes Dice,

a new probabilistic programming language for discrete probabilistic programs that exploits

program factorization and modularity in order to scale. Then, Chapter 4 describes a new

inference algorithm for exploiting the symmetry of probabilistic programs. Clearly there

is a need for mixing and matching inference algorithms, since programs are complex het-

erogeneous objects with varying structure, so Chapter 5 gives a general-purpose approach

for decomposing probabilistic programs based on program abstraction in order to mix and

match the appropriate inference strategies.

The remainder of this chapter will go into further detail on the structure and motivation

of each subsequent chapter.

1.1.1 Chapter 2: Foundations

Probabilistic programming is naturally a broad synthesis of topics in artificial intelligence

and programming languages. This chapter aims to invite members of both audiences to the

thesis by providing key background content for both perspectives. In particular, this chapter

introduces (1) key definitions from probability; (2) high-level themes such as the trade off

between conciseness and tractability of a probabilistic model; (3) the syntax and semantics

of the Dice probabilistic programming language; (4) foundations of probabilistic program

inference.

1.1.2 Chapter 3: Dice: Exploiting Factorization in Discrete Probabilistic Pro-

grams

One of the most challenging kinds of probabilistic programs for many existing probabilistic

programming systems are discrete programs : programs that contain discrete random vari-

3



ables. This chapter introduces an inference algorithm for the Dice probabilistic programming

language that exploits factorization and modularity – two common and important properties

of probabilistic programs – in order to scale. In order to find this structure, Dice compiles

probabilistic programs according to the following pipeline:

Dice Pro-
gram

Dice
Front-End

Dice Middle-
End

Tractable
Probabilistic
Model

Query An-
swer

(1) (2) (3) (4)

Figure 1.1: System diagram for performing a query on a Dice program.

First, programs are input to the system as source code and they are parsed into an inter-

mediate representation by the Dice front-end. Then, in Step (2) programs are transformed

into a core intermediate representation that supports various optimizations, de-sugaring, and

other code-to-code transformations.

In a normal compiler, Step (3) would translate the intermediate representation into ma-

chine runnable code. This is different for Dice: Dice translates the intermediate representa-

tion into a tractable probabilistic model (TPM). This step may be expensive – this chapter

will show that it is worst-case PSPACE-hard – but once it is successfully completed inference

is efficient in the size of the compiled representation. Concretely, this means that Step (4) –

going from the TPM to the Query Answer – is an efficient step.

Different kinds of TPMs are capable of recognizing and exploiting different kinds of pro-

gram structure. Hence, the exact choice of back-end TPM heavily influences the scalability

of inference. This chapter proposes binary decision diagrams (BDDs) as a back-end TPM,

and shows that this choice exploits two kinds of program structure in order to scale inference

to large programs: factorization and modularity. Intuitively, factorization is a property of

the size of the interface between two programs. If two probabilistic programs communicate

using a relatively small interface – for instance, one program calls another program that

only takes a single argument – then inference should be able to exploit this small interface to

solve the two inference problems nearly independently. Modularity, on the other hand, is a
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Figure 1.2: Pigeonhole problem illustration with 3 pigeons and 3 holes.

property of function calls: if the same function is called multiple times, then a modular anal-

ysis would analyze that function call once and re-use that analysis across subsequent calls.

Both of these properties are abundant in natural programs, and BDDs naturally exploit both

properties to scale inference to large examples.

This chapter will show that, together, these traits allow Dice’s inference algorithm to scale

to programs that are orders of magnitude larger than existing commonly-used probabilistic

programming languages on examples from text analysis, network verification, and discrete

Bayesian networks. This chapter also proves this inference algorithm correct with respect to

a formal language semantics.

1.1.3 Chapter 4: Exploiting Symmetry with Lifted Inference

Dice compiles programs to binary decision diagrams, which implicitly exploits factorization

and program modularity. However, this is not the only structure that a probabilistic program

may possess that can enable fast probabilistic inference.

Symmetry is an orthogonal property to factorization that binary decision diagrams are

not natively able to exploit that can enable fast inference. Intuitively, symmetry naturally

arises when modeling distributions that are invariant under permutations of the sample

space. Symmetries can be abundant in problems with little or no factorization, and exploiting

symmetry can exponentially speed up probabilistic inference. In general, the class of inference

algorithms that inherently exploit symmetry are referred to as lifted inference [Poole, 2003,

Kersting, 2012, Niepert and Van den Broeck, 2014].
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This is best illustrated with an example. Figure 1.2 gives an illustration of the classic

pigeonhole problem with 3 pigeons and 3 holes. This situation can be made probabilistic by

assuming that each pigeon has an identical strong preference for hiding in a hole without

any other pigeons, so these configurations are given a high probability: the question then is

what is the probability that two pigeons end up in the same hole?

Since all pigeons and holes are identical, the problem has abundant symmetry: the

probability that the leftmost and rightmost pigeon end up in the leftmost hole is identical to

the probability that they end up in the rightmost hole. Put more formally, the distribution

is invariant to re-labelings of pigeons and holes. While this problem has symmetry, there

is little factorization structure: a Dice program encoding of this problem would fail to

effectively compile a BDD for even a modest number of pigeons and holes. Hence, there is a

need for more kinds of TPMs that can be used as Dice backends that exploit different kinds

of structure: in particular, in this case, we desire one that exploits symmetry.

A key challenge in applying lifted inference is identifying the symmetries. Most current

approaches to lifted inference require a relational representation, for instance as a weighted

first-order logic [Getoor and Taskar, 2007]. In other words, they require the problem to be

given in a way that makes extracting the symmetries a matter of inspecting the structure of

a first-order sentence. This does not directly apply to non-first order models such as proba-

bilistic programs or probabilistic graphical models such as factor graphs, so this chapter aims

to expand the domain of lifted inference to encompass more probabilistic models beyond rela-

tional representations. In particular, it (1) gives the first (exact) lifted inference algorithms

for factor graphs, and (2) gives a lifted Markov-Chain Monte Carlo algorithm that provably

scales in the degree of symmetry of the factor graph. Ultimately, this gives a foundation for

new Dice backends that exploit symmetry.
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Figure 1.3: Diagram describing decomposition by abstraction.

1.1.4 Chapter 5: Decomposing Inference & Probabilistic Program Abstractions

So far the thesis has introduced two new strategies for performing inference in probabilistic

programs that both work in very different ways and exploit different program structure.

Moreover, there is a myriad of approaches to probabilistic inference beyond those introduced

here. Hence there is a clear problem of combining different approaches to probabilistic infer-

ence in order to perform inference on heterogeneous programs with different properties that

this chapter addresses.

This chapter gives a method for decomposing probabilistic program inference via program

abstraction. Program abstractions – and in particular predicate abstractions – have a rich

and successful history in non-probabilistic program analysis. The key idea is to generate

a simplified abstract program from the original concrete program that captures a few key

properties. This abstraction property simplifies the analysis – the new abstract program

is by design simpler to analyze than the concrete program. If all goes well, the abstract

program will then contain sufficient information to verify the concrete program.

This chapter gives a generalization for non-probabilistic predicate abstraction to proba-

bilistic programs and shows how it decomposes inference. An outline is given in Figure 1.3.

First, the programmer provides three pieces of data: a probabilistic program, a set of predi-

cates that are Boolean random variables that capture properties about the program, and a
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query. Then, the abstraction engine automatically generates (1) a set of sub-programs that

are themselves probabilistic programs, and (2) an abstract Dice program that captures the

relationship among predicates. Note that the abstract Dice program is discrete regardless

of whether or not the input program is discrete: this is because the Dice program is only

concerned with predicates.

In order to evaluate the final query, the abstract Dice program is parameterized by

querying the sub-programs. Each (†) arrow in the figure represents a sub-query that queries

a small part of the original program: this is the stage where inference is decomposed, since

evaluating these (†) queries will ideally only require inspecting smaller portions of the original

program. Finally, the final query is answered via a standard Dice inference query along the

(?) arrow, as outlined in Chapter 3.

Formally, as contributions, this chapter (1) introduces a new notion of probabilistic pred-

icate abstractions and shows how to automatically generate them from a probabilistic pro-

gram; (2) gives a new soundness relation between abstract and concrete program called

distributional soundness ; (3) shows how distributionally sound abstractions decompose prob-

abilistic inference.

1.1.5 Chapter 6: Conclusion

There is no one-size-fits-all solution to probabilistic inference, so this thesis cannot conclude

with a solution that solves all problems. Each new approach to inference opens up a few

avenues for applying probabilistic programs in new places. Chapter 3 shows how to apply

probabilistic programs effectively in discrete domains that were previously out of reach,

Chapter 4 applies them to domains with symmetry, and Chapter 5 shows how to mix and

match programs with different kinds of structure. But long term, there remains many deep

foundational questions, and this chapter highlights a few of them that will require sustained

work.
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CHAPTER 2

Foundations

Probability is not really about numbers.

It is about the structure of reasoning.

Glenn Shafer

Programming languages and artificial intelligence are two very distinct fields. One of the

goals of this chapter is to bring readers from both audiences into the thesis, in order to bring

to bear techniques from both perspectives to the problem of probabilistic program inference.

This section will begin by laying the foundations of important ideas in probability. Then,

it will introduce the core topics in programming languages, and conclude with a discussion

specific to probabilistic programs.

A brief note on expected background: this thesis assumes a basic familiarity with the

notation and standard concepts from set theory, logic, and computational complexity.1 Each

subsequent chapter will contain its own self-contained background section: the goal of this

chapter is to lay broad foundations that stretch across chapters.

2.1 Probabilistic Modeling

We begin with the foundation: probability.

1Jaynes [2003] has an excellent perspective on probability in the sciences. Pearl [1988] contains a
computer-science and artificial intelligence perspective on probabilistic reasoning. Sipser [1996] gives an
excellent introduction to computational complexity. Gunter [1992] gives an overview of program semantics
and logic.
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State (Ω)

Probability 1/6 1/6 1/6 1/6 1/6 1/6

Table 2.1: The distribution on dice rolls.

Definition 2.1 (Discrete probability distribution). Let Ω be a (countably infinite) set called

the sample space, and let E be the set of all subsets of Ω called the event space. A discrete

probability distribution on Ω is a map Pr : E → [0, 1] that assigns a probability to each

possible event E ∈ E that satisfies the following axioms:

1. Non-negativity: Pr(E) ≥ 0 for all E ∈ E.

2. Unit measure: Pr(Ω) = 1.

3. Additivity: For any countable sequence of disjoint events of {Ei}, it holds that Pr(
⋃
iEi) =∑

i Pr(Ei).

A central focus of this thesis is various representations of probability distributions, and

the algorithmic implications of these data structures:

Definition 2.2 (Probabilistic model (informal)). Given a set Ω, a probabilistic model M

on Ω is a representation of a probability distribution Pr : Ω → [0, 1]. We denote the size of

the model as |M |, for some appropriate definition of size.

This definition is informal because it hinges on what a “representation” is. We will

formalize this notion throughout the thesis, but here we will make things more concrete

by considering one of the simplest probabilistic models: a table. A tabular probabilistic

model simply lists the probability of each element in Ω. For a tabular probabilistic model,

|M | = |Ω|. For instance, we can specify the distribution of a fair 6-sided dice roll using

Table 2.1.

Given a probabilistic model, the next goal is to query it to find out useful information

about the world. For instance, a simple query is: what is the probability that a particular
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dice roll is even? Given a tabular representation of a probability distribution, we must use

additivity to compute the probability of any event that is not a singleton:

Pr(a dice roll is even) = Pr( ) + Pr( ) + Pr( ). (2.1)

Besides the probabilities of events, one is often interested in the probabilities of event

A occurring given the presence of some other event B, often referred to as evidence. For

instance, suppose we want to know the probability that dice roll of occurs given that the

dice roll is even. This computation is known as the conditional probability of A given B,

denoted Pr(A | B), and is computed as:

Pr(A | B) ,
Pr(A ∩B)

Pr(B)
. (2.2)

The symbol “,” denotes a definition. In the dice roll example, we would have A = { }, B =

{ , , }, so Pr(A | B) = 1
3
. Note that computing the probability of an event is a special

case of conditional probability when B = Ω.

One of the main goals of this thesis is automating probabilistic inference, so here we

ask the core algorithmic question: how might we go about performing inference? As shown

earlier, computing the probability of an event requires scanning over the entire table and

collecting the total probability of entries that are contained in the event. The run-time of

this algorithm is O(|M |) – linear in the size of the tabular representation – assuming that

checking membership in an event can be done in constant time. The problem is that tables

are a very inconvenient way to represent probability distributions. Tables are not concise:

sample spaces, as we will see in later sections, can be prohibitively large – sometimes greater

than the number of atoms in the universe – so writing down a table is a hopeless task.

This tradeoff between how concise a model is and how tractable it is for various inference

queries is one of the central objects of study in this thesis. In the following sections we
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1 let cold = flip(1/1000) in
2 let flu = flip(1/10000) in
3 let coughing = if(cold || flu) then flip(1/2)
4 else false in
5 let highTemperature = if flu then flip 3/4 else
6 flip 1/100 in
7 let _ = observe coughing in
8 (cold, flu)

(a) An example probabilistic program for the medical sce-
nario.

TT TF FT FF
0

0.2
0.4
0.6
0.8

P
r

(b) The probability distribu-
tion encoded by the program.

Figure 2.1: An example probabilistic program and its distribution.

will explore other modeling language frameworks that are more concise and expressive than

tables, but at the cost of more challenging inference.

2.2 Probabilistic Programming Languages

Consider the following probabilistic scenario where a doctor wishes to model the rela-

tionship between symptoms and diseases:

• The average patient has a 1/1000 chance of having the cold; a 1/10000 chance of having

the flu; a 1/100 chance of having a high temperature; and does not cough.

• Common colds and the flu both cause coughing with probability 1/2;

• The flu causes a high temperature with probability 3/4.

Tables are an inadequate means of specifying the above distribution. They require the

doctor to specify the probability of every possible world, which is a very unintuitive task that

would not scale to larger systems with more symptoms and diseases. Much more intuitive,

from the perspective of the doctor, is to specify the relationship between symptoms and

diseases programmatically: “if the patient has the flu, then half of the time they have a

cough”.
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A probabilistic programming language extends a normal programming language with the

ability to represent probability distributions. As we will see, this is a very natural way

to represent a distribution: one can use the rich facilities of a programming language to

describe the nuanced relationship between uncertain events. Concretely, the above scenario

can very naturally be modeled as a program in Figure 2.1. This program is written in the

Dice probabilistic programming language, which will be formally introduced and elaborated

on in subsequent sections and in Chapter 3.

First, the program in Figure 2.1a assigns the identifiers cold and flu to the quantities

flip 1/1000 and flip 1/10000 respectively. The syntax flip θ introduces a Boolean random

variable that is true with probability θ and false with probability 1− θ: this program defines

a probability distribution. In the case of flu and cold, these flips represent the prior

probability that an average member of the population has either of these two diseases.

Then, each of the symptoms – coughing and highTemperature – is assigned to different

distributions depending on whether or not the patient has particular diseases. Note that

standard programming language constructs, such as assignments and if-statements, can be

naturally applied to random variables, enabling the construction of rich distributions.

Given this set of relationships between symptoms and diseases, a doctor would like to

know the answer to Bayesian inference query: what is the probability that a patient with a

cough has the flu? This too can be encoded into the probabilistic program by the addition of

an observe construct, which applies Bayesian conditioning to the current program. This is

shown on Line 7, where the evidence is introduced via observe coughing, which implicitly

rejects all computations that do not satisfy the condition that the patient is coughing. Fi-

nally, the program returns the pair (cold, flu), which are the main quantities of interest:

the probability distribution on diseases.

Figure 2.1b shows the output of this program. Note that it is not a particular value like

a typical program: rather, it is a probability distribution that assigns a probability to every

possible value that the program can output. The column “TF” corresponds to the case when

13



1 v ::= T | F
2 aexp ::= x | v
3 e ::= aexp | let x = e in e | flip θ
4 | if aexp then e else e | observe aexp

Figure 2.2: A subset of the Dice syntax given in Backus-Naur form.

cold is true and flu is false: this is the most likely column with a probability of about 0.9.

Note that this is markedly different from the prior probability: for a random person, the

probability of having a cold is 1/1000, so the presence of a cough increased the probability

of a cold by several orders of magnitude.

The above discussion gives an intuitive overview of what probabilistic programs are and

how they work, but it is informal. The follow section formalizes the relationship between

probabilistic programs and their distributions.

2.2.1 Syntax and Semantics of Dice

This section formally defines a fragment of the Dice probabilistic programming language.

More language features will be introduced in Chapter 3, but this section develops a core

subset of the language for simplicity.

The most basic element of a programming language is syntax : the formal rules that

describe how programs are presented to the system. Syntax is usually defined using a

compositional grammar that describes how big programs are made out of smaller programs.

The core syntax of Dice is given in Figure 2.2, which presents the grammar using a recursive

description.

The syntax has three important parts: (1) values, denoted v, which are simply either true

(T) or false (F); (2) atomic expressions aexp which are either values or variable identifiers x;

or (3) expressions, denoted e, which are the most important language component. There are

two kinds of expressions: probabilistic expressions which create or manipulate distributions

(flip θ and observe aexp) and non-probabilistic expressions that are familiar from normal
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Jif vg then e1 else e2K (v) ,


Je1K (v) if vg = T

Je2K (v) if vg = F

0 otherwise
Jflip θK (v) ,


θ if v = T

1− θ if v = F

0 otherwise

Jobserve v1K (v) ,

{
1 if v1 = T and v = T,

0 otherwise
Jv1K (v) ,

(
δ(v1)

)
(v)

Jlet x = e1 in e2K (v) ,
∑
v′

Je1K (v′)× Je2[x 7→ v′]K (v)

Figure 2.3: Semantics for Dice expressions. The function δ(v) is a probability distribution
that assigns a probability of 1 to the value v and 0 to all other values.

functional programming languages.

2.2.2 Semantics

Once a syntax is defined, the next step is to give a meaning to each syntactic term: this is

called semantics. Figure 2.3 provides a reference for the semantics for Dice expressions. The

semantic function J·K maps syntactic expressions to unnormalized probability distributions,

which intuitively is a probability distribution that relaxes the unit measure requirement:

Definition 2.3 (Unnormalized distribution). Let Ω be a sample space. Then a map Pr :

Ω→ [0, 1] is an unnormalized probability distribution on Ω if (1) it satisfies additivity and

non-negativity and (2) Pr(Ω) ≤ 1. The quantity Pr(Ω) is called the normalizing constant

and is usually denoted Z.

The simplest rule is for values. The semantics of values v1, denoted Jv1K, is assigned to

be equal to the Dirac delta distribution δ(v1) that assigns probability 1 to v1 and probability

0 to all other values. The semantics of flip θ produces a probability distribution on the
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sample space T, F that maps T to θ and F to 1− θ.

The most interesting aspect of a probabilistic programming language is that one can

neatly combine and manipulate probability distributions using the rules of a programming

language. The main workhorse for this capability is composition rules such as the let

expression, which has the form let x = e1 in e2 and intuitively means “let x take on the

value defined by e1 in e2”. How do we define this when e1 is a probability distribution?

A simple re-writing of Equation 2.2 shows us that Pr(A ∩B) = Pr(A | B)× Pr(B): this

version of the equation is often referred to as the chain rule of probability, since it allows

one to break a joint distribution into a product of conditional probabilities. We can use the

chain rule to give a semantics to let:

Jlet x = e1 in e2K (v) ,
∑
v′

Je1K (v′)× Je2[x 7→ v′]K (v) (2.3)

Breaking this down, the syntax e2[x 7→ v′] is standard programming language syntax that

denotes substituting the variable x with the value v′ in e2; this can be thought of as a

conditional probability on values given x is substituted for v′, which justifies the use of the

chain rule. The following example shows how to apply the semantics of let-expressions to

a simple program:

Example 2.1: Semantics of a let-statement

Consider the following simple program with a free variable x:

let x = flip 0.1 in flip 0.4 ∨ x (ExLet)

To compute the probability that (ExLet) results in some value v, we must consider

all possible ways in which that value could result, based on all possible values v′ for

x. Concretely, to evaluate Jlet x = flip 0.1 in flip 0.4 ∨ xK (T), the following sum is
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computed:

Jflip 0.1K (T)× Jflip 0.4 ∨ x[x 7→ T]K (T) + Jflip 0.1K (F)× Jflip 0.4 ∨ x[x 7→ F]K (T)

= 0.1× 1.0 + 0.9 ∗ 0.4 = 0.46.

A-Normal Form The syntax of Dice requires that programs be written in A-normal

form [Flanagan et al., 1993]. In well-formed (i.e., closed) programs the conditional guard

vg is always a value, because the language uses A-normal form. Hence, the semantics of if

selects either the then-branch or else-branch’s semantics depending on the value of vg. For

completeness of the semantics, we define the semantics of if to be the always-zero function

if the argument is not a Boolean.

2.2.2.1 Observations & Bayesian Conditioning

Observations complicate the goal of associating a probability distribution with each program

expression. The semantics of observe in Figure 2.3 follows prior work by assigning probabil-

ity 0 to a failed observation [Borgström et al., 2011, Kozen, 1979, Claret et al., 2013, Huang

and Morrisett, 2016, Nori et al., 2014]. Now consider the following example program:

let x = flip 0.6 in let y = flip 0.3 in let _ = observe x ∨ y in x

(ObsProg)

Because the observe expression is falsified when both x and y are false, that scenario has prob-

ability 0. Hence according to our semantics JObsProgK (T) = 0.6 and JObsProgK (F) =

0.12. As a result the meaning of this program is not a valid probability distribution.

The standard approach to handling this issue is to treat the semantics as producing

an unnormalized distribution that is normalized at the end of the program to produce a

valid probability distribution. Here we explore the subtle properties of this unnormalized
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distribution, which will serve a crucial purpose later during our compilation strategy. Let

JeKA denote the normalizing constant and JeKD denote the normalized distribution for an

expression. These two quantities can be straightforwardly computed from the unnormalized

semantics in Figure 2.3:

JeKA ,
∑
v

JeK (v), JeKD (v) ,
1

JeKA
JeK (v). (2.4)

For instance, in the above example JObsProgKA = 0.12 + 0.6 = 0.72, JObsProgKD (T) =

0.6/0.72 ≈ 0.83, and JObsProgKD (F) = 0.12/0.72 ≈ 0.17. In the event that JeKA = 0, the

distributional semantics is also defined to be zero.

By construction, J·KD always yields a probability distribution (or the always-zero function

in the event that the accepting semantics is zero), so we call it the distributional semantics.

This is the quantity that we need in order to answer inference queries. What does J·KA
represent? Typically it is not given a meaning but rather simply considered to be an ar-

bitrary normalizing constant that is only computed for the entire program. And indeed,

the normalizing constant is irrelevant for the purposes of performing global inference: the

probabilities in the unnormalized semantics can be scaled arbitrarily without changing J·KD.

This “normalize at the end” mode of operation is standard for many PPLs that use an un-

normalized semantics [Fierens et al., 2015, Claret et al., 2013]. Later in Section 3.3.1.2 we

will describe the approach Dice takes for handling observations in more detail once more

language features are introduced. Ultimately we will show that this normalizing constant

must be carefully constructed in order to give a compositional semantics to programs; the

utility of this will become clear when we introduce functions.
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1 let x = flip1 0.1 in
2 let y = if x then flip2 0.2 else flip3 0.3 in
3 let z = if y then flip4 0.4 else flip5 0.5 in z

Figure 2.4: Example Dice program.

2.3 Probabilistic Program Inference

Now that each Dice program has a semantics it is time to perform probabilistic inference:

computing the probability that the program outputs a particular value. The semantics given

in the previous section already give a recipe for how to perform inference: each program is

associated with a sum of products over all possible assignments to flips in the program: per-

forming inference in this way is called path-enumeration inference and is a common strategy

for performing exact inference on probabilistic programs in the literature [Sankaranarayanan

et al., 2013, Albarghouthi et al., 2017, Geldenhuys et al., 2012, Filieri et al., 2013].

Consider the example Dice program in Figure 3.2. The subscript on each flip is not part

of the syntax but rather used to refer to them uniquely in our discussion. Path-enumeration

on this program would is given by the following sum of products:

0.1︸︷︷︸
x=T

· 0.2︸︷︷︸
y=T

· 0.4︸︷︷︸
z=T

+ 0.1︸︷︷︸
x=T

· 0.8︸︷︷︸
y=F

· 0.5︸︷︷︸
z=T

+ 0.9︸︷︷︸
x=F

· 0.3︸︷︷︸
y=T

· 0.4︸︷︷︸
z=T

+ 0.9︸︷︷︸
x=F

· 0.7︸︷︷︸
y=F

· 0.5︸︷︷︸
z=T

(2.5)

How does exhaustive enumeration scale as this program grows in size? For this example

the program grows by adding one additional layer to the chain of flips that depends on the

previous. With this growing pattern, the number of terms that a path enumeration must

explore grows exponentially in the number of layers, so clearly exhaustive enumeration does

not scale on this simple example.

It will be shown show later (Theorem 3.3) that exact inference in Dice is PSPACE-

hard in the size of the program. Hence, there is an important difference between tabular

representations of distributions and probabilistic programs: it is possible to write a small
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probabilistic program for which inference is computationally intractable. Hence, probabilistic

programs are more concise than tables – you can write a small program that encodes a

distribution on a very large sample space – but inference is not in general tractable. This

leads to the fundamental tradeoff in probabilistic modeling languages, which will be a central

topic in this thesis:

The Fundamental Tradeoff Between Tractability and Conciseness: A key de-

sign decision when creating probabilistic modeling languages is the fundamental tradeoff

between tractability of inference and the conciseness of the representation.

This does not mean that inference in Dice is in general hopeless: worst-case performance

is different from the common case or average case. However, the presence of worst-case

programs does shape the design of inference algorithms in fundamental ways that will be

explored in later chapters. In particular, this implies that there is no universal solution to

fast inference in probabilistic programs : inference must, at its core, take advantage of the

delicate structure that is unique to the programs that users write in practice.

2.4 Conclusion

This chapter introduced a number of important concepts that will be revisited in subsequent

chapters. The key important definitions such as a probability distribution and probabilistic

models will be used repeatedly. The tradeoff between tractability and conciseness is the

root of the motivation for why probabilistic program inference is a hard and important

problem. The semantics of Dice and basic notions of probabilistic programs will be especially

important in Chapter 3. And finally, the basics of probabilistic inference will motivate our

further explorations in Chapter 4.

20



CHAPTER 3

Dice: Exploiting Factorization

One of the most challenging kinds of probabilistic programs for many existing probabilistic

programming systems are discrete programs : programs that contain discrete random vari-

ables. This chapter develops a domain-specific probabilistic programming language called

Dice that features a new approach to exact discrete probabilistic program inference. Dice ex-

ploits program structure in order to factorize inference, enabling it to perform exact inference

on probabilistic programs with hundreds of thousands of random variables.

The key technical contribution is a new reduction from discrete probabilistic programs to

weighted model counting (WMC). This reduction separates the structure of the distribution

from its parameters, enabling logical reasoning tools to exploit that structure for probabilistic

inference. In sum, this chapter (1) shows how to compositionally reduce Dice inference to

WMC, (2) proves this compilation correct with respect to a denotational semantics, (3)

empirically demonstrates the performance benefits over prior approaches, and (4) analyzes

the types of structure that allow Dice to scale to large probabilistic programs.

0This chapter based in part on Holtzen et al. [2020]. This chapter describes an artifact whose source
code is available at https://github.com/SHoltzen/dice. This work is partially supported by NSF grants
#IIS-1943641, #IIS-1956441, #CCF-1837129, DARPA grant #N66001-17-2-4032, a Sloan Fellowship, gifts
by Intel and Facebook research, and a UCLA Dissertation Year Fellowship. Jon Aytac and Philip Johnson-
Freyd contributed valuable feedback on drafts of the original paper.
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3.1 Introduction

As we have seen in prior chapters, inference for a sufficiently expressive language is an

extremely hard program analysis task. The key to scaling inference is to strategically make

assumptions about the structure of programs and place restrictions on which programs can

be written, while retaining a useful and expressive language.

This chapter scales inference for an important class of probabilistic programs: those whose

probability distributions are discrete. Most PPLs today focus on handling continuous random

variables. In the continuous setting one usually desires approximate inference techniques,

such as forms of sampling [Wingate and Weber, 2013, Kucukelbir et al., 2015, Jordan et al.,

1999, Bingham et al., 2019, Dillon et al., 2017, Carpenter et al., 2016, Nori et al., 2014,

Chaganty et al., 2013]. However, handling continuous variables typically requires making

strong assumptions about the structure of the program: many of these inference techniques

have strict differentiability requirements that preclude their application to programs with

discrete random variables. For instance, momentum-based sampling algorithms like HMC

and NUTS [Hoffman and Gelman, 2014] and many variational approximations [Kucukelbir

et al., 2017] are restricted to continuous latent random variables and almost-everywhere

differentiability of the posterior distribution. Yet many application domains are naturally

discrete: for example mixture models, networks and graphs, ranking and voting, and text.

This key deficiency in some of the most popular PPLs has led to a recent rise in interest

in handling discreteness in probabilistic programs [Obermeyer et al., 2019, Gorinova et al.,

2020, Zhou et al., 2020].

Discrete programs are not a new challenge, and there are existing PPLs that support

exact inference for discrete probabilistic programs [Narayanan et al., 2016, Gehr et al., 2016,

Sankaranarayanan et al., 2013, Albarghouthi et al., 2017, Goodman and Stuhlmüller, 2014,

Wang et al., 2018, Claret et al., 2013, Pfeffer, 2007a, Bingham et al., 2019, Geldenhuys

et al., 2012]. However, there are compelling example programs from text analysis, network
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Dice Pro-
gram

Dice
Front-End

Dice
Middle-
End

Tractable Prob-
abilistic Model
(BDD)

Query An-
swer

(1) (2) (3) (WMC)

Figure 3.1: System diagram for performing a query on a Dice program.

verification, and discrete graphical models on which existing methods fail. The reason that

they fail is that the existing methods do not find and automatically exploit the necessary

factorizations and structure.

Dice’s inference algorithm is inspired by techniques for exact inference on discrete graph-

ical models, which leverage the graphical structure to factorize the inference computation.

For example, a common property is conditional independence: if a variable z is conditionally

independent of x given y, then y acts as a kind of interface between x and z that allows

inference to be split into two separate analyses. This kind of structure abounds in typical

probabilistic programs. For example, a function call is conditionally independent of the

calling context given the actual argument value. Dice’s inference algorithm automatically

identifies and exploits these independences in order to factorize inference. This enables Dice

to scale to extremely large discrete probabilistic programs: our experiments in Chapter 3.5

show Dice performing exact inference on a real-world probabilistic program that is 1.9MB

large.

An outline of Dice is given in Figure 3.1. At its core, Dice builds on the knowledge com-

pilation approach to probabilistic inference [Chavira and Darwiche, 2008, 2005, Darwiche,

2009, Fierens et al., 2015, Chavira et al., 2006]. This chapter shows how to compile Dice pro-

grams to weighted Boolean formulas (WBF) and then perform exact inference via weighted

model counting (WMC) on those formulas. Dice programs are parsed (1) and translated into

an intermediate representation (2). Then, they are compiled to a tractable representation

(3) that supports efficient WMC and hence inference. This tractable representation is a

binary decision diagram (BDD) that supports efficient weighted model counting, described

in more detail later.
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Employing knowledge compilation for probabilistic inference in Dice requires generalizing

the prior approaches in several ways. First, in order to support logical compilation of tradi-

tional programming constructs such as conditionals, local variables, and arbitrarily nested

tuples, novel compilation rules that compositionally associate Dice programs with weighted

Boolean formulas are developed. A key challenge here is supporting arbitrary observations.

To do this, a Dice program, as well as each Dice function, is compiled to two BDDs. Intu-

itively, one BDD represents all possible executions of the program, ignoring observations, and

the other BDD represents all executions that satisfy the program’s observations. Performing

WMC on these formulas then performs exact Bayesian inference with arbitrary observations

throughout the program. Second, Dice compiles functions modularly: each function is com-

piled to a BDD once, and efficient BDD composition operations are exploited to reuse this

BDD at each call site. This technique produces the same final BDD that would otherwise

be produced, but it allows amortizing the costly BDD construction phase across all callers,

which can provide orders-of-magnitude speedups.

In sum, this chapter presents the following technical contributions:

• It describes the Dice language and illustrate its utility through three motivating examples

(Chapter 3.2).

• It formalizes Dice’s semantics (Chapter 3.3) and its compilation to weighted Boolean

formulas (Chapter 3.4). It proves that the compilation rules are correct with respect to

the denotational semantics: the probability distribution represented by a compiled Dice

program is equivalent to that of the original program.

• It empirically compares Dice’s performance to that of prior PPLs with exact inference

(Chapter 3.5). It describes new and challenging benchmark probabilistic programs from

cryptography, network analysis, and discrete Bayesian networks, and show that Dice

scales to orders-of-magnitude larger programs than existing probabilistic programming

languages, and is competitive with specialized Bayesian network inference engines on cer-
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1 let x = flip1 0.1 in
2 let y = if x then flip2 0.2 else
3 flip3 0.3 in
4 let z = if y then flip4 0.4 else
5 flip5 0.5 in z

(a) Example Dice program.

f1.471

f2.48 f3 .47

f4.4 f5 .5

T1 F 0

(b) Compiled BDD with weighted model
counts.

Figure 3.2: Illustration of compiling a Dice program that exploits factorization.

tain tasks.

• It analyzes some of the benefits of Dice’s compilation strategy in Chapter 3.6. First it

proves that Dice inference is PSPACE-hard. Then it characterizes cases where Dice scales

efficiently, and which types of structure it exploits in the distribution. It illustrates where

to find that structure in the program code as well as the compiled BDD form. Finally these

results are used to provide a technical comparison with prior exact inference algorithms.

Dice is available at https://github.com/SHoltzen/dice.

3.2 An Overview of Dice

This section overviews the Dice language and its inference algorithm. First a simple example

program is given to show how Dice exploits program structure to perform inference in a

factorized manner. Then an example from network verification is used to show how Dice

exploits the modular structure of functions. Finally a cryptanalysis example illustrates how

inference in Dice is augmented to support Bayesian inference in the presence of evidence.

3.2.1 Factorizing Inference

We begin with a simple motivating example that highlights the challenge of performing

inference efficiently and how Dice meets this challenge. Consider the example Dice program
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in Figure 3.2a, reproduced from Chapter 2. The subscript on each flip is not part of the

syntax but rather used to refer to them uniquely in our discussion.

The goal of probabilistic inference is to produce a program’s output probability distribu-

tion, so in Figure 3.2a we desire the probability that z is true and the probability that z is

false. Consider computing the probability that z is true, which we denote Pr(z = T). The

most straightforward way to compute this quantity is via path enumeration: we can con-

sider all possible assignments to all flips and sum the probability of all assignments under

which z = T. A number of existing PPLs directly implement path enumeration to perform

inference [Sankaranarayanan et al., 2013, Albarghouthi et al., 2017, Geldenhuys et al., 2012,

Filieri et al., 2013]. Concretely this would involve computing the following sum of products:

0.1︸︷︷︸
x=T

· 0.2︸︷︷︸
y=T

· 0.4︸︷︷︸
z=T

+ 0.1︸︷︷︸
x=T

· 0.8︸︷︷︸
y=F

· 0.5︸︷︷︸
z=T

+ 0.9︸︷︷︸
x=F

· 0.3︸︷︷︸
y=T

· 0.4︸︷︷︸
z=T

+ 0.9︸︷︷︸
x=F

· 0.7︸︷︷︸
y=F

· 0.5︸︷︷︸
z=T

(3.1)

This thesis focuses on the problem of scaling inference, so we ask: how does exhaustive

enumeration scale as this program grows in size? In this case we grow the program by adding

one additional layer to the chain of flips that depends on the previous. With this growing

pattern, the number of terms that a path enumeration must explore grows exponentially

in the number of layers, so clearly exhaustive enumeration does not scale on this simple

example. Despite its apparent simplicity, many existing inference algorithms cannot scale to

large instances of this example; see Figure 3.11d in Chapter 3.5.

However, the sum in Equation 3.1 has redundant computation, and thus can be factorized

as:

0.1︸︷︷︸
x=T

·
(

0.2︸︷︷︸
y=T

· 0.4︸︷︷︸
z=T

+ 0.8︸︷︷︸
y=F

· 0.5︸︷︷︸
z=T

)
+ 0.9︸︷︷︸

x=F

·
(

0.3︸︷︷︸
y=T

· 0.4︸︷︷︸
z=T

+ 0.7︸︷︷︸
y=F

· 0.5︸︷︷︸
z=T

)
. (3.2)

Such factorizations are abundant in this example, and in many others. Dice exploits these

factorizations to scale, and in Chapter 3.5 we show that Dice scales to orders of magnitude
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larger programs than existing methods in part by exploiting these forms of factorization.

Such factorizations are extremely common in probabilistic models, and finding and exploiting

them is an essential strategy for scaling exact inference algorithms, for example for graphical

models [Chavira and Darwiche, 2008, Darwiche, 2009, Koller and Friedman, 2009a, Boutilier

et al., 1996, Pearl, 1988].

3.2.2 Factorized inference in Dice

Inference in Dice is designed to find and exploit factorizations like the one shown above. The

key insight is to separate the logical representation of the state space of the program from

the probabilities, which allows Dice to identify factorizations implied by the structure of the

program that are otherwise difficult to detect. This separation is achieved by compiling each

program to a weighted Boolean formula:

Definition 3.1 (Weighted Boolean Formula). Let ϕ be a Boolean formula over variables

X, let L be the set of all literals (assignments to variables) over X, and w : L → R be a

weight function that associates a real-valued weight with each literal L. The pair (ϕ,w) is a

weighted Boolean formula (WBF).

To compile the program in Figure 3.2a into a WBF, introduce one Boolean variable fi for

each expression flipi θ in the program. The goal is for the resulting boolean formula over

these variables to represent all possible flip valuations that cause z to be true, so one choice

of WBF is ϕex = f1f2f4∨f1f̄2f5∨ f̄1f3f4∨ f̄1f̄3f5. Separately, the weight function represents

the specific probabilities for each expression flipi θ from the program: the weight of fi is θ

if fi is true and 1− θ otherwise.

Once the program is associated with a WBF, probabilistic inference is performed via a

weighted model count (WMC). Formally, for a formula ϕ over variables X, a sentence ω is

a model of ϕ if it is a conjunction of literals, contains every variable in X, and ω |= ϕ. We

denote the set of all models of ϕ as Mods(ϕ). The weight of a model, denoted w(ω), is the
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product of the weights of each literal w(ω) ,
∏

l∈ω w(l). Then, the following defines the

WMC task:

Definition 3.2 (Weighted Model Count). Let (ϕ,w) be a weighted Boolean formula. The

weighted model count (WMC) of (ϕ,w) is the sum of the weights of each model, WMC(ϕ,w) ,∑
ω∈Mods(ϕ) w(ω).

What has been achieved? So far, not much! The WMC task is known to be #P-hard for

arbitrary Boolean formulas. Indeed, the formula ϕex above is isomorphic to the structure

of Equation 3.1, so the WMC calculation over it will be essentially equivalent. However,

it has been observed in the AI literature that certain representations of Boolean formulas

— such as binary decision diagrams (BDDs) — both exploit the structure of a formula to

minimize its representation and support linear time weighted model counting, and as such

are useful compilation targets [Chavira and Darwiche, 2008, Darwiche and Marquis, 2002,

Bryant, 1986]. Formally, as outlined in Chapter 2, BDDs are a tractable probabilistic model.

The field of compiling Boolean formulas to representations that support tractable weighted

model counting is broadly known as knowledge compilation, and inference via knowledge

compilation is currently the state-of-the-art inference algorithm for certain kinds of discrete

Bayesian networks [Chavira and Darwiche, 2008] and probabilistic logic programs [Fierens

et al., 2015].

Dice utilizes the insights of knowledge compilation to perform factorized inference. First,

the generated formula ϕ in a compiled WBF is represented as a BDD; Figure 3.2b shows

the compiled BDD for the program in Figure 3.2a. A solid edge denotes the case where the

parent variable is true and a dotted edge denotes the case where the parent variable is false.

This BDD is logically equivalent to ϕex but the BDD’s construction process exploits the pro-

gram’s conditional independence to efficiently produce a compact canonical representation.

Specifically, there is a single subtree for f4, which is shared by both the path coming from

f2 and the path coming from f3, and similarly for f5. These shared sub-trees are induced by
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S1

S2

S3

S4

(a) Network dia-
gram.

1 fun diamond(s1:Bool):Bool {
2 let route = flip1 0.5 in
3 let s2 = if route then s1 else F

in
4 let s3 = if route then F else s1

in
5 let drop = flip2 0.0001 in
6 s2 ∨ (s3 ∧ ¬drop)
7 }
8 let net1 = diamond(T) in
9 let net2 = diamond(net1) in

10 diamond(net2)

(b) Dice program.

s1

f1

f2

T F

(c) diamond
function.

f 1
1

f 1
2

f 2
1

f 2
2

f 3
1

f 3
2

T F

(d) Final BDD.

Figure 3.3: A sub-network, its description as a probabilistic program, a compiled function,
and the final BDD.

conditional independence: fixing y to the value true — and hence guaranteeing that a path

to f4 is taken in the BDD — screens off the effect of x on z, and hence reduces both the size

of the final BDD and the cost of constructing it. The BDD automatically finds and exploits

such factorization opportunities by caching and reusing repetitious logical sub-functions.

Dice performs inference on the original probabilistic program via WMC once the program

is compiled to a BDD. Crucially, it does so without exhaustively enumerating all paths or

models. By virtue of the shared sub-functions, the BDD in Figure 3.2b directly describes

how to compute the WMC in the factorized manner. Observe that each node is annotated

with the weighted model count, which is computed in linear time in a single bottom-up pass

of the BDD. For instance, the WMC at node f2 is given by taking the weighted sum of the

WMC of its children, 0.2 × 0.4 + 0.8 × 0.5. Finally, the sum taken at the root of the BDD

(the node f1) is exactly the factorized sum in Equation 3.2.

3.2.3 Leveraging Functional Abstraction

The previous section highlights how Dice exploits factorization that comes from condi-

tional independences in the program. One common source of such independences is functional
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abstraction: the behavior of a function call is independent of the calling context, given the

actual argument. Dice inference as described above automatically exploits this structure

as part of the BDD construction. In addition, Dice exploits functional abstraction in an

orthogonal manner by modularly compiling a BDD for each function once and then reusing

this BDD at each call site, thereby amortizing the cost of the BDD construction across all

callers.

To illustrate the benefits of functional abstraction, consider an example from recent work

in probabilistic verification of computer networks via probabilistic programs [Gehr et al.,

2018]. Figure 3.3a shows a “diamond” network that contains four servers, labeled Si. The

network’s behavior is naturally probabilistic, to account for dynamics such as load balancing

and congestion. In this case, server S1 forwards an incoming packet to either S2 or S3,

each with probability 50%. In turn, those servers forward packets received from S1 to S4,

except that S3 has a 0.1% chance of dropping such a packet. The diamond function in

Figure 3.3b defines the behavior of this network as a probabilistic program in Dice. The

argument boolean s1 represents the existence of an incoming packet to S1 from the left, and

the function returns a boolean indicating whether a packet was delivered to S4.

As mentioned above, Dice compiles functions modularly, so Dice first compiles the

diamond function to a BDD, shown in Figure 3.3c. The variable s1 represents the unknown

input to the function, and the fi variables represent the flips in the function body, as in our

previous example. Next Dice will create the BDD for the “main” expression in lines 8–10 of

Figure 3.3b. During this process, the BDD for the diamond function is reused at each call

site using standard BDD composition operations like conjunction (Chapter 3.4 describes this

in more detail). The final BDD for the program is shown in Figure 3.3d, where each variable

f ji represents the ith flip in the jth call to diamond.

The final BDD automatically identifies and exploits functional abstraction. For example,

the structure of the BDD makes it clear that the third call to diamond depends only on the

output of the second call to diamond, rather than the particular execution path taken to
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1 fun EncryptChar(key:int, c:char):Bool {
2 let randomChar = ChooseChar() in
3 let ciphertext = (randomChar+key)%26 in
4 let fail = flip 0.0001 in
5 if fail then true else
6 observe ciphertext == c
7 }
8 let k = UniformInt(0, 25) in
9 let _ = EncryptChar(k, ’H’) in

10 · · · // encrypt n total characters
11 in k

Figure 3.4: A frequency analyzer for a noisy Caesar cipher.

produce that output. As a result, even though there are three sub-networks, and therefore

26 possible joint assignments to flips, the BDD only has 8 nodes. More generally, this BDD

will grow linearly in the number of composed diamond calls, though the number of possible

executions grows exponentially. Hence functional abstraction both produces smaller BDDs,

which leads to faster WMC computation, and reduces BDD compilation time by compiling

each function once. Chapter 3.5 shows that these capabilities provide orders of magnitude

speedups in inference.

3.2.4 Bayesian Inference & Observations

Bayesian inference is a general and popular technique for reasoning about the probability

of events in the presence of evidence. Dice, similar to other PPLs, supports Bayesian rea-

soning through an observe expression. Specifically, the expression “observe e” represents

evidence (or an observation) that e is true; the expression always evaluates to true, but it

has the side effect that executions on which e is not true are defined to have 0 probability.

Dice supports first-class observations, including inside of functions. An example is shown

in Figure 3.4, which shows another rich class of discrete probabilistic inference problems that

come from text analysis. For this problem the goal is to decrypt a given piece of ciphertext

by inferring the most likely encryption key. We assume that the plaintext was encrypted
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using a Caesar cipher, which simply shifts characters by a fixed but unknown constant, so

the encryption key is an integer between 0 and 25 (e.g., with key 2, “abc” becomes “cde”).

The task of decrypting encrypted ciphertext can be cast as a probabilistic inference

task by using frequency analysis Katz et al. [1996]. In the English language each letter

has a certain probability of being used: for instance, the frequency of letter “E” is 12.02%.

In Figure 3.4, the function EncryptChar is a generative model for how each letter in the

ciphertext was created. The function takes as an argument the encryption key as well as a

received ciphertext character c. First a plaintext character randomChar is chosen according

to its empirical distribution (the ChooseChar function is not shown but straightforward).

Then this character is encrypted with the given key and we observe that the ciphertext is

the actual ciphertext character c that we received. To make the inference problem more

challenging and realistic, we assume that there is a chance that the encryptor mistakenly

forgets to encrypt a character, in which case we do not perform the observation. Initially,

the key (k) is assumed to be uniformly random (line 6). After invoking EncryptChar once

for each received ciphertext character (lines 7–8), the posterior distribution on the key is

returned.

The interaction of probabilistic inference with observations is subtle. Observations have

a non-local and “backwards” effect on the probability distribution, which must be carefully

preserved when performing inference. In our example, the observation inside of EncryptChar

affects the posterior distribution of its argument key. These non-local effects are the bane of

sampling-based inference algorithms: observations can impose complex constraints — such

as the need in our example for ChooseChar to draw the right character — that make it

challenging for sampling algorithms to find sufficiently many valid samples (we highlight

this challenge in Chapter 3.5).

The WBF compilation strategy outlined in the previous section is inadequate for cap-

turing the semantics of the EncryptChar function: this function always returns true, so its

compiled BDD would be trivial. Clearly this is incorrect, since the EncryptChar function has
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1 τ ::= Bool | τ1 × τ2

2 v ::= T | F | (v, v)
3 aexp ::= x | v
4 e ::= aexp | fst aexp | snd aexp | (aexp, aexp) | let x = e in e | flip θ
5 | if aexp then e else e | observe aexp | f(aexp)
6 func ::= fun f(x:τ): τ { e }
7 p ::= e | func p

Figure 3.5: Syntax for the core Dice language. The metavariable f ranges over function
names, x over variable names, and θ over real numbers in the range [0, 1].

an additional, implicit effect on the program, by making certain encryption keys more or less

likely to be the correct one. To handle observations, the compilation strategy is augmented

to produce a second logical formula, which is called the accepting formula and denoted γ.

The accepting formula represents all possible assignments to flips that cause all observes

in the program to be satisfied. Together the formulas ϕ and γ capture the meaning of the

program: we can compute the posterior distribution on k by computing weighted model

counts of the form WMC(ϕ∧ γ, w)/WMC(γ, w) for each value of k. Note that γ serves two roles:

it constrains ϕ to only those executions that satisfy the observations, and its weighted model

count computes the normalizing constant for the final probability distribution.

3.3 The Dice Language

Chapter 2 gave an introduction to a small subset of the complete Dice language; here

extra language constructs like tuples and functions are introduced.

3.3.1 Semantics

Recall from Chapter 2.2.1 that the semantic bracket J·K associates each Dice expression with

an unnormalized distribution, and further denote the set of all Dice values as V . Figure 3.6

provides the full semantics for Dice expressions. The semantics of values and tuple access are

straightforward. For example, the semantics of the expression fst (F,T) is the probability
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Jv1K (v) ,
(
δ(v1)

)
(v) Jfst (v1, v2)K (v) ,

(
δ(v1)

)
(v) Jsnd (v1, v2)K (v) ,

(
δ(v2)

)
(v)

Jif vg then e1 else e2K (v) ,


Je1K (v) if vg = T

Je2K (v) if vg = F

0 otherwise
Jflip θK (v) ,


θ if v = T

1− θ if v = F

0 otherwise

Jobserve v1K (v) ,

{
1 if v1 = T and v = T,

0 otherwise
Jf(v1)K (v) ,

((
T (f)

)
(v1)

)
(v)

Jlet x = e1 in e2K (v) ,
∑
v′

Je1K (v′)× Je2[x 7→ v′]K (v)

Figure 3.6: Full semantics for Dice expressions. The function δ(v) is a probability distribu-
tion that assigns a probability of 1 to the value v and 0 to all other values. The implicit
context T maps function names to their semantics.

distribution that assigns probability 1 to F and 0 to all other values. The semantics for

conditionals follows from its usual semantics.

3.3.1.1 Functions and Programs

Dice supports non-recursive functions. We generalize the semantics of expressions to func-

tions in a natural way. Specifically, the semantics of a function f is a conditional probability

distribution, which is a function from each value v to a probability distribution for f(v).

Formally, the semantics of a function JfuncK : V → V → [0, 1] is defined as follows:

Jfun f(x : τ) : τ ′{e}K (v) , Je[x 7→ v]K (3.3)

To give a semantics for function calls the semantic judgment is extended to include a

function table T , which is a finite map from function names to their conditional probability
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distributions. Formally our semantics judgment for expressions now has the form JeKT : V →

[0, 1], and similarly for the semantics of function definitions above, but we leave T implicit

when it is clear from the context. Figure 3.6 provides the semantics of a function call: the

function’s conditional probability distribution is found in T , and the probability distribution

associated with the actual argument v is retrieved.

Finally, we define the semantics of programs JpKT : V → [0, 1]. Intuitively, each function

is given a semantics in the context of the prior functions, and then the semantics of the

program is defined as the semantics of the “main” expression. We formalize this semantics

inductively via the following two rules, where • denotes the empty sequence and η(func)

denotes the name of the function func:

J• eKT , JeKT Jfunc pKT , JpKT∪
{
η(func)7→JfuncKT

}
. (3.4)

3.3.1.2 Semantics of Observation

Now that Dice functions have been introduced we are ready to discuss the subtle composi-

tional semantics of observations. When reasoning about partial programs, the distributional

semantics alone is not sufficient. For example, consider these two functions:

fun f(x:Bool):Bool { let y = x ∨ flip(0.5) in let z = observe y in y } (3.5)

fun g(x:Bool):Bool { true } (3.6)

Because the observation in f requires y to be true, the two functions have the identical

distributional semantics: they both return true with probability 1, regardless of the argument

x. However, these two functions are not equivalent! Specifically, the observation in f has the

effect of changing the probability distribution of the argument x when the function is called.
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Concretely,

Jlet x = flip 0.1 in let obs = f(x) in xKD (T) = 0.1/0.55

Jlet x = flip 0.1 in let obs = g(x) in xKD (T) = 0.1

The quantity J·KA carries exactly the information needed to distinguish these functions.

Specifically, JeKA represents the probability that e has an accepting execution, which satisfies

all observations, so we call it the accepting semantics. In the above example, Jg(F)KA = 1

but Jf(F)KA = 0.5: the function call f(F) will succeed only half of the time. This quantity

allows us to precisely compute the effect of the observation on any caller.

In summary, the semantics in Figure 3.6 computes an unnormalized distribution. How-

ever, since the normalizing constant is exactly the accepting probability, the semantics has

the effect of computing two key quantities on each program fragment, both of which are nec-

essary to characterize its meaning: its normalized probability distribution and its probability

of accepting.

3.4 Probabilistic Inference for Dice

This section formalizes the approach to probablistic inference in Dice via reduction to

weighted model counting (WMC). In this style, a probabilistic model is compiled to a weighted

Boolean formula (WBF) such that WMC queries on the WBF exactly correspond to inference

queries on the original model. This approach has been successfully used to perform exact

inference in discrete Bayesian networks as well as probabilistic databases and logic pro-

grams [Chavira and Darwiche, 2008, Fierens et al., 2015, Van den Broeck and Suciu, 2017].

However, to our knowledge it has not been previously applied to a probablistic program-

ming language with traditional programming language constructs, functions, and first-class

observations.
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The bulk of this section formalizes a novel algorithm for compiling Dice programs to

WBF. This compilation is introduced in stages: first on the Boolean sub-language, then

with the addition of tuples, and finally with the addition of functions. Along the way a

correctness theorem is stated that formally relates WMC queries over a program’s compiled

WBF to the semantics from the previous section. Finally I illustrate how to use BDDs to

represent WBFs, which enables the approach to automatically perform factorized inference.

3.4.1 A Primer on Logical Notation

This part of the thesis makes heavy use of logical notation which may be unfamiliar to some

readers. Formally, inference rules are composed of premises, written on top of a bar, and

conclusions written below the bar. If there are multiple premises, they are often separated

by a space. For instance, the well-known rule modus ponens which says that “if P implies Q

and P is true, then Q must be true” can be written as the following inference rule:

P ⇒ Q P

Q

(Modus Ponens)

Another commonly-used notational convention for logic is sequent notation, which makes

use of the turnstyle operator “`”. Equations to the left of the turnstyle are premises and to

the right are conclusions, so modus ponens can again be written using sequent notation:

P ⇒ Q, P ` Q. (3.7)

3.4.2 Compiling Boolean Dice Expressions

The formal compilation judgment for Boolean Dice expressions has the form e (ϕ, γ, w),

where ϕ and γ are logical formulas and w is a weight function (recall Definition 3.1). This

judgment form will be extended later to accommodate other language features. The symbol
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T (T, T, ∅)
(C-True)

F (F, T, ∅)
(C-False)

x (x, T, ∅)
(C-Ident)

fresh f

flip θ  
(
f , T, (f 7→ θ, T, f 7→ 1− θ)

) (C-Flip)
aexp (ϕ, T, ∅)

observe aexp (T, ϕ, ∅)
(C-Obs)

aexp (ϕg, T, ∅) eT  (ϕT , γT , wT ) eE  (ϕE, γE, wE)

if aexp then eT else eE  
((

(ϕg ∧ ϕT
)
∨
(
(ϕg ∧ ϕE

)
,
(
(ϕg ∧ γT

)
∨
(
(ϕg ∧ γE

)
, wT ∪ wE

)
(C-Ite)

e1  (ϕ1, γ1, w1) e2  (ϕ2, γ2, w2)

let x = e1 in e2  
(
ϕ2[x 7→ ϕ1], γ1 ∧ γ2[x 7→ ϕ1], w1 ∪ w2

) (C-Let)

Figure 3.7: Compiling Boolean expressions to WBFs.

ϕ is called the unnormalized formula: it represents all possible assignments to variables and

flips for which e evaluates to true, ignoring observations. The symbol γ is the accepting

formula: it represents all possible assignments to variables and flips that cause all obser-

vations in e to succeed. Before showing the formal rules, here are two examples to build

intuition on the compilation to WBF and how it is used to perform inference.

Example 3.1: Compiling (ExLet)

Recall the following example program:

let x = flip 0.1 in flip 0.4 ∨ x (ExLet)

The above expression compiles to the unnormalized formula ϕ = f1 ∨ f2, where f1 and

f2 are Boolean variables associated with flip 0.1 and flip 0.4 respectively. Since there
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are no observations, γ = T for this example. The weight function w assigns weights to

the literals of f1 and f2 that correspond with their probabilities in (ExLet). Then we

have that JExLetK (T) = WMC(ϕ,w) = 0.46 and JExLetK (F) = WMC(ϕ,w) = 0.54.

Example 3.2: Compiling (ObsProg)

Recall the following example program:

let x = flip 0.6 in let y = flip 0.3 in let _ = observe x ∨ y in x

(ObsProg)

The above program compiles to the unnormalized formula ϕ = f1 and the accepting

formula γ = f1∨f2, where f1 corresponds with flip 0.6 and f2 with flip 0.3. Hence the

formula ϕ∧γ is true if and only if the program evaluates to T and satisfies all observations,

and similarly ϕ ∧ γ is true if and only if the program evaluates to F and satisfies all

observations. Then, with the appropriate weight function w, Bayesian inference on

(ObsProg) is performed via two weighted model counts: J(ObsProg)KD (T) = WMC(ϕ∧

γ, w)/WMC(γ, w) ≈ 0.83 and J(ObsProg)KD (F) = WMC(ϕ ∧ γ, w)/WMC(γ, w) ≈ 0.17.

The formal compilation rules are shown in Figure 3.7. The above examples show how

closed programs are compiled, but expressions can also have free variables in them. The rule

C-Ident handles a free variable x simply by introducing a corresponding Boolean variable

x. To illustrate the rule C-Flip, flip 0.4  (f, T, w) where w maps f to 0.4 and f̄ to

0.6, and f is a fresh Boolean variable. Hence WMC(f ∧ T, w) = 0.4 = Jflip 0.4K (T) and

WMC(f̄ , w) = 0.6 = Jflip 0.4K (F).

The rule C-Obs handles observes. Since an expression’s unnormalized formula ignores

observations, the unnormalized formula for observe aexp is simply T. The metavariable

aexp ranges over values and identifiers and hence compiles to an accepting formula of T and

an empty weight function (aexp stands for atomic expression). Finally, the unnormalized
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formula of aexp becomes the accepting formula of observe aexp, in order to capture all ways

that the observation is satisfied.

The rule C-Ite encodes the usual logical semantics of conditionals. Finally, the C-

Let rule shows how to represent expression sequencing. The logical substitution ϕ1[x 7→

ϕ2] replaces all occurrences of x in ϕ1 with the formula ϕ2. For the accepting formula,

the expression let x = e1 in e2 only accepts if both expressions accept, so their accepting

formulas are simply conjoined. To illustrate the rule, here is the derivation through the rules

for our example (ExLet), assuming the obvious rule for compiling logical disjunction (which

is syntactic sugar for a conditional expression):

fresh f1

flip 0.1 (f1, T, w1)

x (x, T, ∅)
fresh f2

flip 0.4 (f2, T, w2)

flip 0.4 ∨ x (f2 ∨ x, T, w2)

let x = flip 0.1 in flip 0.4 ∨ x (f2 ∨ x[x 7→ f1], T, w1 ∪ w2)

(ExLetCompilation)

This compilation matches Example 3.1 above and shows how logical substitution captures

expression sequencing. The union of two weight functions, denoted w1 ∪ w2, is simply the

union of the two maps w1 and w2; this is well-defined because no two subexpressions can

share flips, so there can be no conflicts.

The statement of correctness for Boolean Dice expressions connects our compilation rules

to the formal semantics from the previous section:

Lemma 3.1 (Boolean Expression Correctness). Let e be a Boolean Dice expression with

free variables x1, . . . , xn and suppose e (ϕ, γ, w). Then for any Boolean values v1, . . . , vn:

• Je[xi 7→ vi]KA = WMC(γ[xi 7→ vi], w)

• for any Boolean value v,

Je[xi 7→ vi]KD (v) =
WMC(((ϕ⇔ v) ∧ γ)[xi 7→ vi], w)

WMC(γ[xi 7→ vi], w)
.
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As in the earlier definition of the distributional semantics, in the event that a division

by zero occurs in the above lemma, the result is defined to be zero. This lemma implies

that we can answer inference queries on the original expression via two WMC queries on the

compiled WBF. The following key lemma directly implies the one above:

Lemma 3.2. Let e be a Boolean Dice expression with free variables x1, . . . , xn and suppose

e (ϕ, γ, w). Then for any Boolean values v1, . . . , vn and Boolean value v,

Je[xi 7→ vi]K (v) = WMC(((ϕ⇔ v) ∧ γ)[xi 7→ vi], w).

3.4.3 Tuples & Typed Compilation

Now the compilation rules are extended to support arbitrarily nested tuples. The primary

purpose of tuples is to empower Dice functions by enabling multiple arguments and return

values. Intuitively, this involves generalizing the compilation target from a single Boolean

formula ϕ to tuples of Boolean formulas. Formally, this extension requires generalizing the

compilation judgment, which now has the following form:

Γ ` e : τ  (
.
ϕ, γ, w).

First, compilation is now typed: Γ is the usual type environment for free variables and τ

is the type of e. The types are necessary to determine how to properly encode program

variables in the compiled logical formulas. Second, compilation produces a collection of

Boolean formulas, one per occurrence of the type Bool in τ . The new metavariable .
ϕ is

defined inductively as either a Boolean formula ϕ or a pair of the form (
.
ϕ1,

.
ϕ2).

As a concrete example of compiling a program that contains tuples:

{} ` let x = flip 0.2 in (x, T) : Bool×Bool 
(

(f1, T), T, [f1 7→ 0.2, f̄1 7→ 0.8]
)
.
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Γ(x) = τ

Γ ` x : τ  (Fτ (x), T, ∅)
(C-Ident)

Γ(x1) = τ1 Γ(x2) = τ2

Γ ` (x1, x2) : τ1 × τ2  ((Fτ1(x1), Fτ2(x2)), T, ∅)
(C-Tup)

Γ(x) = τ1 × τ2

Γ ` fst x : τ1  (Fτ1(xl), T, ∅)
(C-Fst)

Γ(x) = τ1 × τ2

Γ ` snd x : τ2  (Fτ2(xr), T, ∅)
(C-Snd)

Γ ` aexp : Bool (ϕg, T, ∅) Γ ` eT : τ  (
.
ϕT , γT , wT ) Γ ` eE : τ  (

.
ϕE, γE, wE)

Γ ` if aexp then eT else eE : τ  
((

(ϕg∧
τ

.
ϕT
) .
∨
τ

(
(ϕg∧

τ

.
ϕE
)
,
(
(ϕg ∧ γT

)
∨
(
(ϕg ∧ γE

)
, wT ∪ wE

)
(C-Ite)

Γ ` e1 : τ1  (
.
ϕ1, γ1, w1) Γ ∪ {x : τ1} ` e2 : τ2  (

.
ϕ2, γ2, w2)

Γ ` let x : τ1 = e1 in e2 : τ2  
( .
ϕ2[x

τ7−→ .
ϕ1], γ1 ∧ γ2[x

τ7−→ .
ϕ1], w1 ∪ w2

) (C-Let)

Figure 3.8: Typed compilation for tuples. These assume, without loss of generality but for
simplicity, that fst, snd, and tuple construction are only ever performed with identifiers as
arguments.

Here, the resulting compiled formula .
ϕ is a pair of Boolean formulas (f1, T).

Figure 3.8 shows the new rules for compiling tuples and also presents updated versions of

the rules from Figure 3.7, other than the Boolean-specific rules. The extended compilation

for tuples is structurally very similar to Boolean compilation, but requires generalizing the

Boolean operations in a natural way to accommodate tuples. The new version of C-Ident

uses the form function Fτ (x), which constructs the logical representation of a variable x based

on its type τ . It is defined inductively as FBool(x) , x and Fτ1×τ2(x) , (Fτ1(xl), Fτ2(xr)).

Note the subscripts xl and xr that lexically distinguish the left and right elements. This

function also allows for defining the compilation for tuple creation as well as fst and snd in

Figure 3.8.

The C-Ite rule shows how to generalize the compilation of conditionals to accommodate

tuples. The rule requires conjoining a Boolean expression ϕg (the compiled guard) with a

potential tuple of formulas (the compiled then and else branches). To do this, conjunction
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must be generalized to broadcasted conjunction, denoted ϕg∧
τ

.
ϕ, by conjoining ϕg with all the

Boolean expressions in the tuple .
ϕ. Formally, it is defined inductively as:

• ϕa ∧
Bool

ϕb , ϕa ∧ ϕb

• ϕa ∧
τ1×τ2

(
.
ϕb1,

.
ϕb2) ,

(
ϕa∧

τ1

.
ϕb1, ϕa∧

τ2

.
ϕb2
)
.

In addition to broadcasted conjunction, C-Ite also requires point-wise disjunction, denoted
.
ϕ1

.
∨
τ

.
ϕ2. Point-wise disjunction is nearly identically defined inductively as:

• ϕ1

.
∨

Bool
ϕ2 , ϕ1 ∨ ϕ2 and

• (
.
ϕ11,

.
ϕ12)

.
∨

τ1×τ2
(
.
ϕ21,

.
ϕ22) , (

.
ϕ11

.
∨
τ1

.
ϕ21,

.
ϕ12

.
∨
τ2

.
ϕ22).

Finally, to generalize the compilation of let expressions, the C-Let rule employs a

generalized version of substitution called typed substitution
.
ϕ2[x

τ17−→ .
ϕ1] that substitutes the

compiled version of e1 into the compiled version of e2. Typed substitution inductively as

follows:

ϕ2[x
Bool7−−−→ ϕ1] , ϕ2[x 7→ ϕ1], ϕ2[x

τa×τb7−−−→ (
.
ϕa,

.
ϕb)] , ϕ2[xl

τa7−→ .
ϕa][xr

τb7−→ .
ϕb],

(
.
ϕ1,

.
ϕ2)[x

τ7−→ .
ϕ] , (

.
ϕ1[x

τ7−→ .
ϕ],

.
ϕ2[x

τ7−→ .
ϕ]).

We can state and prove a natural generalization of our key lemma from the previous

subsection, Lemma 3.2. The lemma depends on pointwise iff, denoted .
ϕ1

τ⇐⇒ .
ϕ2 and de-

fined inductively as follows: ϕ1
Bool⇐==⇒ ϕ2 , ϕ1 ⇔ ϕ2 and (

.
ϕ1,

.
ϕ2)

τ1×τ2⇐===⇒ (
.
ϕ
′
1,

.
ϕ
′
2) ,(

.
ϕ1

τ1⇐⇒ .
ϕ
′
1

)
∧
(
.
ϕ2

τ2⇐⇒ .
ϕ
′
2

)
. Finally the following key correctness lemma can be stated:

Lemma 3.3 (Typed Correctness Without Functions). Let e be a Dice expression without

function calls, and suppose {xi : τi} ` e : τ  (
.
ϕ, γ, w). Then for any values {vi : τi} and

v : τ , we have that Je[xi 7→ vi]K (v) = WMC
((

(
.
ϕ

τ⇐⇒ v) ∧ γ
)
[xi

τi7−→ vi], w
)
.

43



Γ ∪ {x1 : τ1},Φ ` e : τ2  (
.
ϕ, γ, w)

Γ,Φ ` fun f(x1 : τ1) : τ2 {e} (
.
ϕ, γ, w)

(C-Func)
Γ,Φ ` e : τ  (

.
ϕ, γ, w)

Γ,Φ ` • e : τ  (
.
ϕ, γ, w)

(C-Prog1)

Γ,Φ ` fun f(x1 : τ1) : τ2 {e} (
.
ϕf , γf , wf )

Γ ∪ {f 7→ τ1 → τ2},Φ ∪ {f 7→ (x1,
.
ϕf , γf , wf )} ` p : τ  (

.
ϕ, γ, w)

Γ,Φ ` fun f(x1 : τ1) : τ2 {e} p : τ  (
.
ϕ, γ, w)

(C-Prog2)

Γ(f) = τ1 → τ2 Γ(x1) = τ1

Φ(f) = (xarg,
.
ϕ, γ, w) (

.
ϕ
′
, γ′, w′) = RefreshFlips(xarg,

.
ϕ, γ, w)

Γ,Φ ` f(x1) : τ2  (
.
ϕ
′
[xarg

τ17−→ x1], γ′[xarg
τ17−→ x1], w′)

(C-FuncCall)

Figure 3.9: Compiling functions and programs. These assume without loss of generality but
for simplicity that function calls are only ever given identifiers as arguments.

3.4.4 Functions & Programs

We conclude the development of Dice compilation by introducing functions and programs

in Figure 3.9. This requires introducing a new piece of context Φ into our judgment, which

maps function names to their compiled function bodies. Function names are mapped to a

4-tuple (xarg,
.
ϕ, γ, w) where xarg is the logical variable for the function’s formal argument

and the other items are respectively the function body’s compiled unnormalized formula,

accepting formula, and weight function.

The judgment Γ,Φ ` func  (
.
ϕ, γ, w) compiles function definitions. As shown in C-

Func, the function’s body is simply compiled in an appropriate type environment. The

judgment Γ,Φ ` p : τ  (
.
ϕ, γ, w) compiles programs by compiling each function in order,

followed by the “main” expression. The rules C-Prog1 and C-Prog2 perform this compi-

lation. After each function is compiled, its compiled WBF is added to Φ and its name and

type are added to Γ, for use in subsequent compilation.
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The final judgment form for expressions is Γ,Φ ` e : τ  (
.
ϕ, γ, w), and C-FuncCall

shows the rule for compiling function calls. The rule simply looks up the function’s com-

piled WBF and substitutes the actual argument for the formal argument. One subtlety is

ensuring that the flips in each call to a function are independent of one another. Our

compilation approach makes it straightforward to do so: simply replace all of the variables

in .
ϕ and γ, aside from the formal argument xarg, with fresh variables. An auxiliary func-

tion RefreshFlips(xarg,
.
ϕ, γ, w) is used for this purpose. Now it is possible to state the full

correctness theorem for Dice compilation:

Theorem 3.1 (Compilation Correctness). Let p be a Dice program and ∅, ∅ ` p : τ  

(
.
ϕ, γ, w). Then: (1) JpKA = WMC(γ, w), and (2) for any value v : τ , JpKD (v) = WMC((

.
ϕ

τ⇐⇒

v) ∧ γ, w)/WMC(γ, w).

All proofs for this chapter can be found in Appendix A.1. As before, division by zero is

defined to be zero, and the above theorem is proved as a corollary of the following stronger

property:

Theorem 3.2 (Typed Program Correctness). Let p be a Dice program ∅, ∅ ` p : τ  

(
.
ϕ, γ, w). Then for any v : τ , we have that JpK (v) = WMC((

.
ϕ

τ⇐⇒ v) ∧ γ, w).

3.4.5 Binary Decision Diagrams as WBF

Weighted model counting on WBFs is still #P-hard, so the compilation above is not necessar-

ily advantageous. Now it is time to reap the benefits of this translation by representing WBF

with binary decision diagrams (BDDs), a data structure that facilitates efficient inference by

exploiting the program structure to minimize the size of the WBF. A BDD is a popular data

structure for representing Boolean formulas, and there is a rich literature of using BDDs to

represent the state space of non-probabilistic programs during model checking [Clarke et al.,

1999, Jhala and Majumdar, 2009].

The compilation rules in the previous subsections were deliberately designed to facil-
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fresh f1

flip 0.1 
(

f1

T F
, T , w1

) x 
(

x
T F

, T , ∅
) fresh f2

flip 0.4 
(

f2

T F
, T , w2

)
flip 0.4 ∨ x 

(
x

f2

F T
, T , w2

)

let x = flip 0.1 in flip 0.4 ∨ x 

(
f1

f2

F T
, T , w1 ∪ w2

)

Figure 3.10: A BDD derivation tree for (ExLetCompilation), with environments elided
for visual clarity.

itate BDD compilation. Consider the example compilation (ExLetCompilation) from

Chapter 3.4.2. Each step in this derivation can be translated into a corresponding BDD op-

eration, as illustrated by the BDD derivation tree in Figure 3.10. The final BDD is compiled

compositionally, at each step exploiting program structure to produce a minimal, canonical

representation (for the given variable ordering). The operations necessary for constructing

this derivation tree — BDD conjunction, disjunction, and substitution — are all standard

operations that are available in BDD packages such as CUDD [Somenzi].

The cost of Dice inference is dominated by the cost of constructing the corresponding

BDD derivation tree: that step is computationally hard in general, while WMC on the final

BDD is linear time in the size of the BDD. However, BDDs can exploit program structure

in order to allow compilation to scale efficiently on many examples. The remainder of this

chapter is devoted to showing that the BDD can be efficient to construct for useful programs.

In Chapter 3.5 we show this experimentally, and Chapter 3.6 characterizes the hardness of

Dice inference.
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3.5 Dice Implementation & Empirical Evaluation

This section describes the implementation and empirical evaluation of Dice. Dice is imple-

mented in OCaml and uses CUDD as its backend for compiling BDDs [Somenzi]. First I describe

extensions to the core Dice syntax that make programming more ergonomic and enable us

to more easily implement some of the benchmark programs. Then I describe our empirical

evaluation of Dice’s performance in comparison with prior PPLs on a suite of benchmarks.

In Chapter 3.6 I give context to these experiments and discuss why Dice succeeds on many

benchmarks where others fail.

3.5.1 Dice Extensions, Ergonomics, and Implementation Details

The actual implementation extends the core Dice syntax from Figure 3.5 in several ways.

The constraint on A-normal form is relaxed here, allowing more arbitrary placement of

expressions. Syntactic sugar for the usual Boolean operators ∧,∨ and ¬ is supported. Finally,

bounded integers and bounded iteration are both supported as well, and are described in

more detail next.

3.5.1.1 Bounded Integers

Dice supports probability distributions over integers with the discrete keyword: for in-

stance, the expression discrete(0.1, 0.4, 0.5) defines a discrete distribution over {0, 1, 2}

where 0 has probability 0.1, 1 has probability 0.4, and 2 has probability 0.5. There are a

number of possible strategies for encoding integers into a WBF. The simplest — and the

one we implemented — is a one-hot encoding. Specifically, a distribution over n integers is

represented as tuple of n Boolean variables, each representing one integer value, and flips

are used to ensure that each variable is true with the specified probability. For example,
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here is the encoding of our example distribution above:

discrete(0.1, 0.4. 0.5) 

{ let v0 = flip(0.1) in

let v1 = ¬v0 ∧ flip(0.4/(0.4 + 0.5)) in

let v2 = ¬v0 ∧ ¬v1 in (v0, (v1, v2))

Formally, for a discrete distribution discrete(θ1, θ2, · · · , θn), the encoded value vi is true

only if (1)
∧
k<i ¬vk holds and (2) a coin flipped with probability θi/

∑
j≥i θj is true. Dice

also supports the standard modular arithmetic operations like (+) and (×) on integers.

3.5.1.2 Statically Bounded Iteration

Iteration and loops are challenging program constructs to support in PPLs. Dice, like many

other PPLs, supports bounded iteration: loops that always terminate after a finite number

of iterations [Cusumano-Towner et al., 2018, Gehr et al., 2016, Claret et al., 2013, Pfeffer,

2007a, Goodman and Stuhlmüller, 2014]. It does so via the syntax iterate(f, init, k),

where f is a function name, init is an initialization expression, and k is an integer indicating

the number of times to call f:

iterate(f, init, k) f(f(· · · f︸ ︷︷ ︸
k times

(init))).

Many useful examples — such as the network reachability example from Chapter 3.2 — can

be expressed as bounded iteration.

3.5.1.3 Variable Ordering

The variable ordering — the order in which variables are branched on in a BDD — is a

critical parameter that determines how compactly a BDD can represent a particular logical

formula [Meinel and Theobald, 1998, Bryant, 1986]. Finding the optimal order — the one
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that minimizes the size of the BDD — is NP-hard, so one must typically resort to heuristics

for choosing orderings that work well in practice. Dice orders variables according to the syn-

tactic order in which they occur in the program, mirroring the topological variable ordering

heuristic from Bayesian networks [Darwiche, 2009]. We anticipate future work in deriving

more sophisticated variable ordering heuristics from static program analyses.

3.5.1.4 Multi-rooted BDDs

Dice typically needs to represent many BDDs at the same time that share structure. The

accepting and unnormalized formulas may share sub-formulas, or tuples may compile to

formulas that share some substructure. Multi-rooted BDDs naturally exploit this repeated

substructure to compactly represent multiple Boolean formulas in a single data structure.

For instance, the following example program that returns a tuple is compiled into the multi-

rooted BDD shown after:

let x = flip1 0.6 in let y = x ∧ flip2 0.4 in (x, y)

This is compiled to a multi-rooted BDD, with each root shown with initial arrows:

f2

f1

fst

snd

T F

3.5.2 Empirical Performance Evaluation

This section describes the empirical evaluation of an implementation of the Dice compilation

rules and BDD-based inference algorithm. Chapter 3.2 highlights some program structure

that BDD compilation exploits, and Chapter 3.6 explores this structure further, but the

question remains: does this structure exist in practice, and can Dice effectively exploit it?

These questions are investigated from three angles:
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Q1: Comparison with Existing PPLs How quickly can Dice perform exact inference

on benchmark probabilistic programs from the literature? This is evaluated in Chap-

ter 3.5.2.1.

Q2: Exploiting Functions What are the performance benefits of modular compilation for

functions? This is evaluated in in Chapter 3.5.2.2 by comparing Dice’s performance

with and without inlining function calls.

Q3: Comparison with Bayesian Network Solvers Discrete Bayesian networks are a

special case of Dice programs and are a good source of challenging and realistic in-

ference problems. A natural question here is: how does Dice compare against state-

of-the-art Bayesian network solvers that are specialized for this class of programs?

Chapter 3.5.2.3 compares Dice against Ace [Chavira and Darwiche, 2008], a state-of-

the-art discrete Bayesian network solver.

The evaluation compares Dice against state-of-the-art PPLs that employ two different

classes of exact inference algorithms:

Algebraic Methods The first class are algebraic inference methods that represent the

probability distribution as a symbolic expression or algebraic decision diagram (ADD) [Gehr

et al., 2016, Claret et al., 2013, Dehnert et al., 2017, Narayanan et al., 2016]. Chap-

ter 3.6.3 discusses this class of inference algorithms more thoroughly. From this class

Psi is compared against [Gehr et al., 2016].1

Enumerative Methods The second class of inference methods work by exhaustively enu-

merating all paths through the probabilistic program, possibly using dynamic program-

ming to reduce the search space [Wingate and Weber, 2013, Sankaranarayanan et al.,

2013, Albarghouthi et al., 2017, Goodman and Stuhlmüller, 2014, Chistikov et al., 2015,

Filieri et al., 2013, Geldenhuys et al., 2012]. Both Psi and WebPPL [Goodman and

1Psi version 2d21f9fe04cf3aac533e08ccc2df18179947baad was used.
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Table 3.1: Baselines. Comparison of inference algorithms (times are milliseconds). The total
time for Dice is reported under the “Dice” column, and the total size of the final compiled
BDD is reported in the “BDD Size” column.

Benchmark Psi (ms) DP (ms) Dice (ms) # Paths BDD Size

Grass 167 57 14 95 15

Burglar Alarm 98 10 13 250 11

Coin Bias 94 23 13 4 13

Noisy Or 81 152 13 1640 35

Evidence1 48 32 13 9 5

Evidence2 59 28 13 9 6

Murder Mystery 193 75 10 16 6

Stuhlmüller, 2014] have a mode that supports dynamic-programming exact inference,

and both are compared against experimentally.

Comparing the performance of probabilistic program inference is challenging because

performance is closely tied to the intricacies of how the program is structured: semantically

equivalent programs may have vastly differing performance. Throughout our experiments

a best-effort attempt was made at representing the programs in a way that was maximally

performant in each language. The tables in this section report the mean value over at least

5 runs for each experiment. All experiments were single-threaded and performed on the

same server with a 2.66GHz CPU and 512GB of RAM. The timings were recorded using

hyperfine,2 a utility that performs statistical timing analysis of Unix shell commands.
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3.5.2.1 Baselines

Table 3.1 summarizes the experimental performance results on well-known baselines which

includes all of the discrete programs that Psi and R2 were evaluated on [Gehr et al., 2016,

Nori et al., 2014, Borgström et al., 2011]. Each row is a different benchmark. The “Psi”,

“DP”, and “Dice” columns give the amount of time (in milliseconds) for respectively (1) Psi’s

default inference algorithm [Gehr et al., 2016], (2) Psi’s dynamic programming inference

algorithm that is specialized for finite discrete programs, and (3) the total time for Dice to

compile a BDD and perform weighted model counting. These examples are small and thus

relatively easy for exact inference, but they serve as an important sanity check. Generally

these examples are too trivial to differentiate the performance of Dice and Psi.

Two other columns – “# Paths” and “BDD Size” – are included. These give a proxy for

how hard each inference problem is. The “# Paths” column gives how many paths would be

explored by a path enumeration algorithm. The “BDD Size” gives the final compiled BDD

generated by Dice, which in conjunction with the “# Paths” column gives a metric for how

much structure Dice is exploiting.

3.5.2.2 Modular Compilation

Now the motivating examples from Chapter 3.2 are returned to in order to see how Dice

compares with existing methods, and against a version of itself where all function calls are

inlined. Figure 3.11 shows how different algorithms scale as the size of the problem grows

(note that all plots are in log-log scale).

Encryption Figure 3.4 introduced the Caesar cipher motivating example, and Figure 3.11a

shows how exact inference on this example scales as the number of characters being encrypted

increases. Dice is about an order of magnitude faster than the case when function calls are

2https://github.com/sharkdp/hyperfine

52

https://github.com/sharkdp/hyperfine


100101102103104
101
102
103
104
105

# Characters

T
im

e
(m

s)
Dice Dice (Inline) Psi Psi DP WebPPL Exact Rejection

(a) Caesar cipher with errors.

100101102103104
100
101
102
103
104
105

Length

(b) Diamond net.

101 102 103 104
100
101
102
103
104
105

Length

(c) Ladder net.

100101102103104
100
101
102
103
104
105

Length

(d) Figure 3.2.

Figure 3.11: Log-log scaling plots illustrating the benefits of separate compilation of func-
tions. An “x”-mark denotes a runtime error was encountered at that point. The time reported
for Dice inference includes the time required to compile and perform WMC. The standard
deviation for the run-times are negligible.

inlined, and multiple orders of magnitude faster than WebPPL and Psi. In particular, Psi’s

default algebraic inference fails to handle the encryption of even a single character; we explore

why in Chapter 3.6.3.

Approximate inference approaches generally struggle with these kinds of programs, due

to the low probability of finding samples that satisfy the observations. To illustrate this, we

also report the time it took for rejection sampling to draw 10 accepted samples. WebPPL

supports rejection sampling, and Figure 3.11a shows how it scales for this particular example

program. This figure shows that rejection sampling scales exponentially in this case, and

thus is not a feasible route around the state-space explosion problem.

Network Reachability Next let us examine how separate compilation helps in the net-

work reachability task described in Figure 3.3. Figure 3.11b shows how exact inference scales

in the number of diamond subnetworks. There is a modest benefit over inlining: compiling

the diamond function multiple times is not very expensive since it is so small. Note that

modular function compilation is not strictly beneficial: for this example, the inlined version

is faster than the modular version after about 102 iterations. Also note that both versions of

Dice are multiple orders of magnitude faster than Psi and WebPPL due to the exponential
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number of paths.

It is expected to see overall linear scaling of Dice for many network topologies due to

conditional independence. To evaluate this, Figure 3.11c shows a version where instead of

diamonds a ladder network of the following structure is used:

. . .

. . .

. . .

. . . .

The goal is to determine the probability of a packet reaching the end of a network that

consists of a chain of ladder subnetworks where each has a similar probabilistic routing policy

to the diamond network. Dice continues to scale well, while this example is challenging for

the other methods, in part since the number of paths is exponential in the length of the

network.

3.5.2.3 Discrete Bayesian Networks

There is currently a lack of challenging discrete probabilistic program benchmarks in the

literature. To more rigorously establish the relative performance of Dice and existing algo-

rithms, here the performance of Dice is evaluated on discrete Bayesian networks that are

translated into equivalent Psi and Dice programs. These benchmarks were selected from

the Bayesian Network Repository, an online repository of well-known Bayesian networks.3

These programs are (1) realistic: each has been used to answer scientific research questions in

various domains such as medical diagnosis, weather modeling, and insurance modeling; and

(2) challenging : many of these examples have on the order of thousands or tens of thousands

of random variables.

First, we will compare the performance of Dice and Psi on this task; then we compare

Dice against a specialized Bayesian network tool. We will show that Dice significantly

outperforms Psi on all of these examples and is competitive with the specialized Bayesian

3https://www.bnlearn.com/bnrepository/
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Figure 3.12: The “Cancer” Bayesian network.

network solver.

Comparison with Psi Table 3.2 compares Psi against Dice on the task of computing a

single marginal of a leaf node of a Bayesian network, a standard Bayesian network query.

As an example of this task, Figure 3.12 shows the “Cancer” Bayesian network [Korb and

Nicholson, 2010], a simple 5-node network for modeling the probability that a patient has

cancer (the c○ node) given a collection of symptoms ( x○ and d○) and causes ( p○ and s○).

The single-marginal task for this example is to compute the marginal probability of the leaf

node Pr( x○).

Table 3.2 compares the performance of Dice and Psi on the single-marginal inference

task for a variety of Bayesian networks. The size of the network — a proxy for the difficulty

of the inference task — is given by the number of parameters (the “# Parameters” column

in the table). Psi fails to complete the inference within the allotted two hours on any of the

medium or larger sized Bayesian networks.

Comparison with a Bayesian Network Solver As a final test of the Dice’s perfor-

mance, Table 3.3 compares Dice against Ace, a state-of-the-art Bayesian network solver [Chavira

and Darwiche, 2008]. The task here is to compute all marginal probabilities, a strictly harder

task than the single-marginal task considered earlier. Note that Psi fails to complete even a

single marginal inference task on any of these examples within 2 hours, so it is omitted from

this table.

Part of what makes the all-marginals inference task challenging is that it requires the
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Table 3.2: Single Marginal Inference. Comparison of inference algorithms (times are millisec-
onds). A “7” denotes a timeout at 2 hours of running. The total time for Dice is reported
under the “Dice” column, and the total size of the final compiled BDD is reported in the
“BDD Size” column.

Benchmark Psi (ms) DP (ms) Dice (ms) # Parameters # Paths BDD Size

Cancer 772 46 13 10 1.1×103 28

Survey 2477 152 13 21 1.3×104 73

Alarm 7 7 25 509 1.0×1036 1.3×103

Insurance 7 7 212 984 1.2×1040 1.0×105

Hepar2 7 7 54 48 2.9×1069 1.3×103

Hailfinder 7 7 618 2656 2.0×1076 6.5×104

Pigs 7 7 72 5618 7.3×10492 35

Water 7 7 2590 1.0× 104 3.2×1054 5.1×104

Munin 7 7 1866 8.1× 105 2.1×101622 1.1×104

Table 3.3: All marginals. A comparison between Dice and Ace on the all-marginal discrete
Bayesian network inference task.

Benchmark Dice (ms) Ace (ms) BDD Size

Alarm 159 422 4.3×105

Hailfinder 1280 522 2.1×105

Insurance 222 492 2.3×105

Hepar2 163 495 5.4×105

Pigs 11243 985 2.6×105

Water 3320 605 6.8×104

Munin 4021194 3500 2.2×107
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computation of many queries: one for each node in the Bayesian network. One of the bene-

fits of Dice compilation is that a single (potentially expensive) compilation, once completed,

can be efficiently reused to perform many marginal probability queries: this is a key benefit

of compiling to a tractable probabilistic model. This capability is highlighted in Table 3.3,

which shows the cost of compiling the full joint distribution of the example discrete Bayesian

networks. These compilations take on the order of several seconds; however, once compiled,

computing each marginal probability — or any other query with a small BDD, such as dis-

joining together several variables — takes milliseconds. For comparison, Psi cannot compute

a single marginal on any of these examples within two hours.

Ace, similar to Dice, reduces the Bayesian network probabilistic inference task to weighted

model counting (with a very different encoding scheme). This gives Ace an inherent advan-

tage over Dice on this task: Ace does not support arbitrary program constructs — such

as conditional branching, procedures, and observe statements — and hence can specialize

directly for Bayesian networks, a limited subclass of Dice programs.

Despite these inherent advantages, Table 3.3 shows that Dice is competitive with Ace

on a number of challenging Bayesian network inference tasks. Ace significantly outperforms

Dice only on the very largest network, “Munin”. These results suggest that even though Dice

is a general-purpose PPL, it is still a competitive exact inference algorithm for medium-sized

Bayesian networks.

3.6 Discussion & Analysis

The previous section demonstrates empirically that Dice can perform exact inference orders

of magnitude faster than existing inference algorithms on a range of benchmarks. This section

provides discussion and analysis that provide context for these results. First Chapter 3.6.1

asks: how hard is exact inference in Dice? It shows that inference is PSPACE-hard, which

means that it is likely harder than inference on discrete Bayesian networks. This begs the
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question: why do the experiments in Chapter 3.5 succeed at all? This question is explored

in Chapter 3.6.2 by identifying different forms of program structure that Dice exploits in

order to scale. Finally, Chapter 3.6.3 considers algebraic representations as an alternative

compilation target for probabilistic programs and discusses the forms of structure that they

are and are not capable of exploiting.

3.6.1 Computational Hardness of Exact Dice Inference

The experiments in Chapter 3.5 raise a natural question: how hard is the exact inference

challenge for Dice programs? The complexity of exact inference has been well-studied in the

context of discrete Bayesian networks. In particular, the decision problem of determining

whether or not the probability of an event in a Bayesian network exceeds a certain threshold

is PP-complete [Kwisthout, 2009, Littman et al., 1998]. The canonical PP-complete problem

is MajSat, the problem of deciding whether or not the majority of truth assignments satisfy

a logical formula. It is clear that exact Dice is PP-hard: indeed, some of the experiments

in Chapter 3.5 utilize a polynomial-time reduction from discrete Bayesian networks to Dice

programs. However, exact inference for Dice is PSPACE-hard, and therefore likely harder

than discrete Bayesian network inference as PP⊆PSPACE:

Theorem 3.3. Exact inference in Dice is PSPACE-hard.

Proof Sketch. The PSPACE-hardness of Dice inference follows directly from the expressive-

ness of non-recursive Boolean programs. In particular, there is a polynomial-time reduction

from the quantified Boolean formula (QBF) problem, which is PSPACE-complete, to such a

program. This reduction can also be used to reduce QBF to the problem of determining

the probability that a Dice program outputs true. In particular, the construction relies on

the expressiveness of nested function calls. Each nested function call corresponds to either

a universal or existential quantifier, and the innermost call can be such that it evaluates a

fully-quantified CNF.
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This result depends on the expressiveness of functions, which Bayesian networks lack.

3.6.2 When Is Dice Inference Fast?

Dice inference, in the worst case, is extremely hard. Why, then, do the experiments in

Chapter 3.5 succeed? Put another way: when is it possible to guarantee that the BDD

derivation tree is efficient to construct (i.e., polynomial in the size of the program)? This

section explores two sources of tractability in Dice inference, both of which are structural

properties that a programmer can consciously exploit while designing Dice programs. The

first source of structure is independence, which implies the existence of factorizations. The

second is a more subtle property called local structure that implies that, even in some cases

without independence, it can still be efficient to construct the BDD derivation tree [Boutilier

et al., 1996, Chavira and Darwiche, 2005]. These forms of structure were first introduced

in the context of graphical models for capturing conditional probability tables with various

forms of structure, which here are shown to generalize to Dice programs.

3.6.2.1 Independence

The independence property implies that two program parts communicate only over a limited

interface. It is the key reason why Dice performs so well in many of the benchmarks (Chap-

ter 3.5.2.1). Programs naturally have conditional independence, implied by their control

flow, function boundaries, etc. In the motivating example in Figure 3.2b, variable z does not

depend on x given an assignment to y. This is commonly called conditional independence

of x and z given y, and it partially explains why Dice scales to thousands of conditionally

independent layers in Figure 3.11d.

Dice naturally exploits conditional independence. This is formalized by giving bounds on

the cost of composing BDDs that are conditionally independent. In general, the operation

B1∧B2 on two BDDs B1 and B2 has time and space complexity O(|B1|×|B2|), and similarly
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for B1 ∨ B2 [Meinel and Theobald, 1998]. This implies a worst-case exponential blowup as

BDDs are composed. However, Dice can exploit conditional independence — among other

properties — to avoid this exponential blowup in practice:

Proposition 3.1. Let B1 and B2 be BDDs that share no variables other than some variable

z, and let |B| be the size of the BDD B. Then B1 and B2 are conditionally independent

given z, and computing B1 ∧ B2 and B1 ∨ B2 has time and space complexity O(|B1|+ |B2|)

for a variable order that orders the variables in B1 before z and z before the variables in B2.

Proof Sketch. The proof is by construction. For instance, for conjunction, BDDs for B1 and

B2 are of the form:

B1 =
B′1

z z

T F

B2 =
z

B2 | z B2 | z̄

where B′1 is the BDD for B1 with z separated out and B2 | z is the BDD for B2 with z = T.

The BDD for B1 ∧ B2 can be constructed in linear time by traversing B′1 and rerouting all

high edges coming from z to that end in T to B2 | z, and all low edges from z that end in T

to B2 | z̄.

Proposition 3.1 implies that compositional rules that utilize conjunction and disjunction

to compose Dice programs — like C-Let — can be efficient in the presence of conditional in-

dependence. One useful source of conditional independence is function calls. The motivating

example in Figure 3.3 illustrates an example of this form of conditional independence. Each

call to the diamond procedure is independent of all prior calls given only the immediately

previous call. It follows that the size of the BDD for the example in Figure 3.3d grows as

O(|diamond| × c), where c is the number of calls to the diamond procedure and |diamond| is

the size of the compiled BDD for the procedure.
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1 let z = flip1 0.5 in
2 let x = if z then flip2 0.6 else flip3 0.7 in
3 let y = if z then flip4 0.7 else x in (x, y)

(a) Context-specific independence.

f1 f1

l r

f4 f3 f2

T F

(b) Compiled BDD.

1 fun foo(a:Bool, b:Bool, c:Bool):Bool {
2 a ∨ b ∨ c
3 }

(c) Structure without independence.

a
b

c
TF

(d) Compiled BDD.

Figure 3.13: Dice programs and their compiled BDDs illustrating different degrees of struc-
ture.

Dice exploits another, more fine-grained form of independence called context-specific

independence. Historically, context-specific independence has led to significant speedups in

graphical model inference [Boutilier et al., 1996]. The benefits are briefly sketched here. Two

BDDs B1 and B2 are contextually independent given z = v, for some variable z and value

v, if B1[z 7→ v] and B2[z 7→ v] share no variables [Boutilier et al., 1996]. As for conditional

independence, composing contextually independent BDDs can often be efficient.

An example program that exhibits context-specific independence is shown in Figure 3.13a.

The variables x and y are correlated if z = F or if z is unknown, but they are independent

if z = T. Thus, x is independent of y given z = T. Figure 3.13b shows how our compilation

strategy exploits this independence. Since the program evaluates to a tuple, it is compiled to

a tuple of two BDDs. However, in the Dice implementation these BDDs share nodes wherever

possible, so they can be equivalently viewed as a single, multi-rooted BDD. The left and

right element of the tuple are represented by the l and r roots respectively. The program’s

context-specific independence implies that there will be no shared sub-BDD between l and

r if f1 is true. See Boutilier et al. [1996] for more on the performance benefits of exploiting

context-specific independence in probabilistic graphical models.
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Figure 3.14: An ADD representation of the distribution in Equation 3.1.

3.6.2.2 Local Structure

Finally, it is possible for the BDD compilation process to be efficient even in the absence

of independence if the program has structure that is amenable to efficient BDD compila-

tion. Chavira and Darwiche [2005] showed that exploiting local structure led to significant

speedups in Bayesian network inference, and this performance was one of the primary moti-

vations for developing Ace. Local structure is a broad category of structural properties that

can make performance more efficient, including determinism, context-specific independence,

and other properties [Boutilier et al., 1996, Gogate and Dechter, 2011, Sang et al., 2005,

Chavira and Darwiche, 2008].

At its core, local structure is a property that makes compiling a BDD more efficient than

naively using a conditional probability table to represent a probability distribution. Fig-

ure 3.13c gives an example Dice function that computes the disjunction of three arguments.

Figure 3.13d shows the compiled BDD for this function. It is compact and hence exploiting

the program structure. Note that, if the number of variables disjoined together were to

increase, the size of the BDD — and the cost of compiling it — would increase only linearly

with the number of variables. This stands in stark contrast to an approach to inference that

is agnostic to local structure (such as simple variable elimination), which would not identify

that this or-function is a compact way of representing the distribution.

Dice implicitly exploits local structure during inference. For instance, the Bayesian

network “Hepar2” has many examples of determinism, sparse probability tables, and context-

specific independence; Dice exploits these properties to be competitive with the performance

of Ace on this example and others in Table 3.3.
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3.6.3 Algebraic Representations

Previous sections have shown that BDDs naturally capture and exploit factorization and

procedure reuse. While these are common and useful program properties, they are not

the only possible ones, and different compilation targets will naturally exploit others. This

section considers algebraic compilation targets as a foil to the Dice uses in order to highlight

the relative strengths and weaknesses.

In contrast to our WMC approach that explicitly separates the logical representation

from probabilities, algebraic approaches integrate probabilities directly into the compilation

target. A common algebraic target are algebraic decision diagrams (ADDs) [Bahar et al.,

1997], which are similar to binary decision diagrams except that they have numeric values as

leaves. This makes them a natural choice for compactly encoding probability distributions in

the probabilistic programming and probabilistic model checking communities, with different

encoding strategies from Dice [Claret et al., 2013, Dehnert et al., 2017, Kwiatkowska et al.,

2011]. As an example, Figure 3.14 shows an ADD for the program in Figure 3.2a if it

returned a tuple of x, y, and z. ADDs encode probabilities of total assignments of variables:

in this example, a probability of 0.008 is given to the assignment x = y = z = T.

ADDs have several similarities with BDDs. First, they support composition operations

and so can offer a compositional compilation target [Claret et al., 2013], albeit very different

from the one described by our compilation rules. Second, they support efficient inference

once the ADD is constructed. Despite these similarities, ADDs have strikingly different scal-

ing properties from BDDs because they exploit different underlying structure of the program.

The key difference is that BDDs are agnostic to the flip parameters: they naturally exploit

logical program structure such as independence and local structure in order to scale with-

out needing to know what any probabilities are. As the previous subsections have argued,

BDDs excel at this task. In contrast, ADDs naturally exploit global repetitious probabilities :

repeated probabilities of possible worlds in the entire distribution. This is shown in Fig-
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ure 3.14, which collapses states with the same probability — for example, if x = y = F, then

the ADD terminates with a node that does not depend on z’s value: .315 .

Global repetitious probabilities are an orthogonal property to independence. ADDs do

not exploit independence in the same way as Dice. ADDs must explicitly represent the

probability of each total instantiation of the variables of interest, corresponding to each

possible value of the returned tuple. In our example, this means that the ADD cannot

exploit the conditional independence of z and x given y, and instead needs to enumerate

their joint probabilities.

Hence, unlike Dice’s BDD representation, the size of a compiled ADD is sensitive to the

precise parameters chosen for flips in the program. If these parameters are chosen such

that the probability of each total assignment is distinct, and we are interested in a tuple of

all the random variables, then the number of leaves in the ADD will equal the number of of

paths in the probabilistic program. As shown in Table 3.1, this can be prohibitively large

for many examples; the BDD size is typically many orders of magnitude smaller than the

number of paths on these real-world programs.

3.7 Conclusion

This chapter presented a new approach to exact inference for discrete probabilistic programs

and implement it in the Dice probabilistic programming language. It (1) showed how to

reduce exact inference for Dice to weighted model counting, (2) proved this translation

correct, (3) demonstrated the performance of this inference strategy over existing methods,

and (4) characterized the efficiency of compiling Dice in key scenarios.

In the future I hope to extend Dice in several ways. First, I believe that the insights of

Dice can be cleanly integrated into many existing probabilistic programming systems, even

those with approximate inference that can handle continuous random variables. I see this

as an exciting avenue for extending the reach of approximate inference algorithms, which
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Intermezzo 1: Rubicon: Model Checking Markov Chains with Dice

Probabilistic model checking is a sub-field of automated verification that seeks to verify
properties of probabilistic processes. An example problem is as follows. Suppose there
are n factories. Each day, the workers at each factory collectively decide whether or
not to strike. Furthermore, since no two factories are identical, the probability to begin
striking and to stop striking are different for each factory. Assuming that each factory
transitions synchronously and in parallel with the others, a standard query is: “what is
the probability that all the factories are simultaneously striking within h days?”
There are many mature tools for performing probabilistic model checking such as

Storm [Dehnert et al., 2017] and Prism [Kwiatkowska et al., 2011]. At its core prob-
abilistic model checking has much in common with probabilistic inference, and conse-
quently probabilistic model checkers implicitly rely on similar algorithms to probabilistic
inference. Concretely, probabilistic model checkers commonly employ algebraic repre-
sentations to represent probability distributions symbolically during verification. Hence
it is natural to ask: how well can Dice serve as a probabilistic model checker?
Holtzen et al. [2021] developed Rubicon to test this hypothesis, and showed that

translating probabilistic model checking problems and queries into Dice programs and
relying on Dice’s inference algorithm is a potentially profitable avenue for speeding up
probabilistic model checkers. Importantly, this is because Dice uses a fundamentally
different approach to inference – BDDs instead of ADDs – and so scales differently on
certain classes of problems.
The following figure shows how Dice can scale on a the example factory problem in

comparison with Storm and Prism as the number of factories increases:
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The above figure compares the performance of Rubicon ( ), Storm’s explicit engine
( ), Storm’s symbolic engine that uses ADDs ( ) and Prism ( ). As the number
of parallel factories grows, the state space of the problem grows exponentially, so Dice
can scale to an order of magnitude more states on this example.
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currently struggle with discreteness. Second, I believe that Dice can be extended to handle

more powerful data structures and programming constructs, notably forms of unbounded

loops and recursion. And finally, I hope to further explore the landscape of weighted model

counting approaches.

3.8 Bibliographic Notes

There is a large literature on probabilistic programming languages and inference algorithms.

At a high level, Dice is distinguished from existing PPLs by being the first to use weighted

model counting to perform exact inference for a PPL that includes traditional programming

language constructs, functions, and first-class observations. In this section we survey the

existing literature on probabilistic program inference and provide context for how each relates

to Dice.

Applications Due in part to their flexibility and ease of use, PPLs have been applied

in a variety of scientific disciplines, including computer vision [Ritchie et al., 2016], cancer

screening [Jacobs et al., 2016], biological modeling [Becker et al., 2017], psychology [Van de

Schoot et al., 2017], modeling population dynamics [Hooten et al., 2017, Dhir et al., 2017],

and more.

Path-based inference algorithms The most common class of probabilistic program in-

ference algorithms today are operational, meaning that they work by executing the probabilis-

tic program on concrete values. Common examples include sampling algorithms [Carpenter

et al., 2016, Hur et al., 2015, Pfeffer, 2007b, Chaganty et al., 2013, Wood et al., 2014, van de

Meent et al., 2015, Mansinghka et al., 2013, Goodman et al., 2008, Saad and Mansinghka,

2016, Mansinghka et al., 2018] and variational approximations [Bingham et al., 2019, Dillon

et al., 2017, Wingate and Weber, 2013, Kucukelbir et al., 2015, Minka et al., 2014]. Other

approaches use symbolic techniques to perform inference but are similar in spirit, in the sense

66



that they separately enumerate paths through the program [Sankaranarayanan et al., 2013,

Albarghouthi et al., 2017, Geldenhuys et al., 2012, Filieri et al., 2013]. These approaches

do not factorize the program: they consider entire execution paths as a whole. Chistikov

et al. [2015] proposes performing weighted model integration — a generalization of weighted

model counting to the continuous domain [Belle et al., 2015, Zeng and Van den Broeck,

2020, Dos Martires et al., 2019] — to perform inference by integrating along paths through

a probabilistic program.

Additionally, sampling and variational algorithms are distinguished from this approach by

being approximate rather than exact inference algorithms. In general, these techniques can

be applied to both discrete and continous distributions, though they often rely on program

continuity or differentiation to be effective [Carpenter et al., 2016, Hoffman and Gelman,

2014, Gram-Hansen et al., 2018, Wingate and Weber, 2013, Kucukelbir et al., 2015, Minka

et al., 2014]. In contrast to all of these approaches, Dice performs factorized, exact inference

on non-smooth, non-differentiable, discrete programs.

Algebraic inference algorithms A number of PPL inference algorithms work by trans-

lating the probabilistic program into an algebraic expression that encodes its probability dis-

tribution, and then using symbolic algebra tools in order to manipulate that expression and

perform probabilistic inference. Examples include Psi [Gehr et al., 2016], Hakaru [Narayanan

et al., 2016], and approaches that employ algebraic decision diagrams [Claret et al., 2013,

Dehnert et al., 2017]. Algebraic representations exploit fundamentally different program

structure from this approach based on weighted model counting; see Chapter 3.6.3 for a

discussion.

Graphical model compilation There exists a large number of PPLs that perform infer-

ence by converting the program into a probabilistic graphical model Pfeffer [2009], McCallum

et al. [2009], Minka et al. [2014], Bornholt et al. [2014]. These compilation strategies are
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limited by the semantics of graphical models: key program structure — such as functions,

conditional branching, etc. — is usually lost during compilation and so cannot be exploited

during inference. Further, graphical models can express conditional independence via the

graphical structure, but typical inference algorithms such as variable elimination cannot

exploit more subtle, context-specific forms of independence that this approach exploits, as

shown in Chapter 3.6.2.1 [Darwiche, 2009].

Probabilistic Logic Programs Closest to the approach presented in this chapter are

techniques for exact inference in probabilistic logic programs De Raedt et al. [2007], Riguzzi

and Swift [2011], Fierens et al. [2015], Vlasselaer et al. [2015]. Similar to this work, these

techniques reduce probabilistic inference to weighted model counting and employ represen-

tations that support efficient WMC, such as BDDs Bryant [1986] or sentential decision dia-

grams Darwiche [2011]. Unlike that work, Dice supports traditional programming language

constructs, including functions, and it supports first-class observations rather than only ob-

servations at the very end of the program. We show how to exploit functional abstraction

for modular compilation, and first-class observations require us to explicitly account for an

accepting probability in both the semantics and the compilation strategy.

Programmer-Guided Inference Decomposition Several PPLs provide a sublanguage

that allows the programmer to provide information that can be used to decompose program

inference into multiple separate parts [Pfeffer et al., 2018, Mansinghka et al., 2018, Holtzen

et al., 2018]. Hence the goal is similar in spirit to this chapter’s goal of automated program

factorization. These approaches are complementary: Dice automatically finds and exploits

program factorizations and local structure, while these approaches can perform sophisticated

decompositions through explicit programmer guidance.

Static Analysis & Model Checking Forms of symbolic model checking often represent

the reachable state space of a program as a BDD [Jhala and Majumdar, 2009, Biere, 2009].

68



Dice’s compilation can be thought of as enriching this representation with probabilities: we

track the possible assignments to each flip and the accepting formula in order to do exact

Bayesian inference via WMC. Static analysis techniques have also been generalized to ana-

lyze probabilistic programs. For example, probabilistic abstract interpretation [Cousot and

Monerau, 2012] provides a general framework for static analysis of probabilistic programs.

However, these techniques seek to acquire lower or upper bounds on probabilities, while we

target exact inference. Probabilistic model checking (PMC) is a mature generalization of

traditional model checking with multiple high-quality implementations [Dehnert et al., 2017,

Kwiatkowska et al., 2011]; see Intermezzo 1 and Holtzen et al. [2021]. The goal of PMC is

typically to verify that a system meets a given probabilistic temporal logic formula. They

can also be used to perform probablistic inference, but they have not used weighted model

counting for inference and instead typically rely on ADDs, which gives them different scaling

properties than Dice as we discussed earlier. Vazquez-Chanlatte and Seshia [2020] recently

described an approach to learn Boolean task specifications on Markov decision processes.

This work shares some core technical machinery with Dice but differs markedly in its goals

and encoding strategy.
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CHAPTER 4

Exploiting Symmetry with Lifted Inference

Symmetry is what we see at a glance;

based on the fact that there is no

reason for any difference.

Blaise Pascal

Chapter 3 described how to exploit factorization and modularity in probabilistic pro-

grams, but this is not the only kind of structure that a probabilistic program or probabilistic

model can exhibit.

Recall the pigeonhole example described in Chapter 1.1.3. Imagine here that there is just

a single pigeon, but there are 5 holes that it wants to hide in. What is the probability that

the pigeon is in a particular hole? This is easy to answer at a glance: the probability that it

is in any particular hole is 1/5, since each hole is equally likely and there are 5 of them. But

what happens if we try to encode this situation as a Dice program? Here is an example of

how this might be encoded:

1 let isInHole1 = flip 1/5 in

2 let isInHole2 = if !isInHole1 then flip 1/4 else false in

3 let isInHole3 = if !isInHole1 && !isInHole2 then flip 1/3 else false in

0This chapter is based in large part on the original publication Holtzen et al. [2019], partially supported
by NSF grants #IIS-1657613, #IIS-1633857, #CCF-1837129, DARPA XAI grant #N66001-17-2-4032, NEC
Research, a gift from Intel, and a gift from Facebook Research. Many thanks to Tal Friedman, Pasha
Khosravi, Jon Aytac, Philip Johnson-Freyd, Mathias Niepert, and Anton Lykov for helpful discussions and
feedback on drafts on the published version of this work.
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4 let isInHole4 = if !isInHole1 && !isInHole2 && !isInHole3 then flip 1/2 else

false in

5 let isInHole5 = !isInHole1 && !isInHole2 && !isInHole3 && !isInHole4 in

6 (isInHole1, isInHole2, isInHole3, isInHole4, isInHole5)

This program returns a distribution on 5 holes, but it has interesting structure. Programs

have execution order : the pigeon must decide, in order, which hole it wants to be in, which

breaks the delicate symmetry on the holes. In this program, each hole is distinct from the

others because of their ordering. Moreover, observe that there is no independence between

each of the isInHole variables: each depends on all the previous. More broadly, even if the

symmetry is obvious, existing probabilistic program inference algorithms do not

The key to this problem is identifying and exploiting properties of the distribution that

make inference tractable. Lifted inference algorithms identify symmetry as a property that

enables efficient inference and seek to scale with the degree of symmetry of a probability

model [Poole, 2003, Kersting, 2012, Niepert and Van den Broeck, 2014]. Many existing

exact inference algorithms, such as the BDD compilation strategy employed by Dice, are

unaware of and cannot directly exploit symmetry for speeding up inference. To exploit this

structure, we will need an entirely different inference methodology.

Lifted inference identifies orbits of the distribution: sets of points in the probability space

that are guaranteed to have the same probability. This enables inference strategies that scale

in the number of distinct orbits. Highly symmetric distributions have few orbits relative to

the size of their state space, allowing lifted inference algorithms to scale to large probability

distributions with scant independence. Thus, lifted inference algorithms identify symmetry

as a complement to independence in the search for efficient inference algorithms.

This chapter introduces a new family of exact and approximate lifted inference algo-

rithms. It will also focus on a class of probabilistic models not explored yet in this thesis:

factor graphs [Koller and Friedman, 2009a]. The reason for focusing initially on factor graphs
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rather than probabilistic programs is practical.1 One of the main challenge in designing a

lifted inference technique is finding and identifying symmetries. The techniques presented

in this chapter will heavily rely on graph isomorphism tools for finding symmetries: in the

future, I hope this can be used as a foundation for new probabilistic program inference

algorithms that exploit symmetry.

4.1 Introduction

A factor graph is a bipartite graph that defines a distribution on random variables by a

set of functions called factors, which intuitively give a weight to assignments to a subset of

variables.2 Formally stated:

Definition 4.1 (Factor graph). Let X be a set called the variable set. We call a vector

x = {0, 1}|X| an assignment. A function f : {0, 1}k → R is called a factor. Then a factor

graph is a bipartite graph defined by the tuple G = (X, F, E), where X are variable nodes, F

are factor nodes associated with factors, and E are edges between variables and factor nodes.

A factor graph is a probabilistic model. It defines a distribution on assignments via the

following:

Pr(x) ,
1

Z

∏
f∈F

f(x). (4.1)

The symbol Z is a normalizing constant. Observe that this definition is not quite right: a

factor fi : {0, 1}k → R is only well-defined on a k-dimensional sub-vector of x. This is where

the edges between variables and factors come in: the edges will tell us which variables are

1There are probabilistic programs that compile programs to factor graphs, and so the methods described
in this directly apply to these languages [McCallum et al., 2009, Minka et al., 2014, Bornholt et al., 2014].

2For a good reference on factor graphs and other graphical models, see Koller and Friedman [2009a].
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Figure 4.1: The pigeon-hole factor graph example with 3 pigeons and 2 holes.

required data for evaluating a particular factor. Let Vars(f) be the set of indices of variables

that share an edge with factor f . As convention, we say f(x) is the factor f : {0, 1}k → R

applied to a k-dimensional sub-vector of x given by:

f((x1, x2, · · · , xn)) , f((xp1 , xp2 , · · · , xpk)) where pi ∈ Vars(f). (4.2)

Hence, intuitively, the graph structure tells us how the distribution factorizes into a product

of factors.

This definition can seem complicated at first, so it is best to further develop it with an

example. Figure 4.1 shows how to encode as a factor graph the 3-pigeons in 2-holes situation

similar to the one in Figure 1.2. By convention, factors are denoted with square boxes and

variables are denoted with round nodes. Each of the three pigeons is identified by a number,

and the two holes are identified by the letters A and B: hence the variable node x1B is 1 if

and only if pigeon 1 is in hole B.

There are two kinds of factors in this graph: hole factors (shown in red) that connect

two holes and give a large weight to a state in which no two pigeons are in the same hole,

and pigeon factors (in black) that give a large weight to a state in which no two pigeons are

in more than a single hole simultaneously. For instance, we might define hole factors fh as
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and pigeon factors fp as:

fh(xiA, xiB) =


1 if xiA = xiB = 1

1000 if xiA 6= xiB

10 otherwise.

(4.3)

fp(xiB, xjB) =


−∞ if xiB = xjB = 1

100000 if xiB 6= xjB

1 otherwise.

(4.4)

We create one hole factor for each pair of holes and one pigeon factor for each pair

of pigeons. Each of these factors has special structure: they are symmetric about their

arguments, meaning that we can always permute the order in which arguments are presented

to the factor without changing the probability. This is a key property which will be exploited

during lifted inference.

The first question that must be answered is: how can we find the symmetries implied by

factors in a factor graph? A key observation made in the lifted inference literature is that

the symmetries of a probability distribution directly correspond to automorphisms of the

colored graph [Bui et al., 2013, Niepert, 2012]. Any permutation of vertices that preserves

the graph structure leaves the distribution unchanged.3 Two assignments (see Definition 4.1)

that are reachable from one another via a sequence of permutations are in the same orbit ;

all assignments in the same orbit thus have the same probability.

Figure 4.2 shows the orbits of the 3-pigeon 2-hole scenario up to inversion of true and

false assignments. Each orbit is boxed. There are few orbits relative to the number of states,

which is the property that lifted inference algorithms exploit.

3It is assumed here w.l.o.g. but for simplicity that the factors are individually fully symmetric. Asymmetric
factors can either be made symmetric by duplicating variable nodes [Niepert, 2012] or encoded using colored
edges [Bui et al., 2013].
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000 000

100 000
010 000

001 000

000 100

000 010

000 001

100 100 010 010 001 001

110 000 011 000 101 000

000 110 000 011 000 101

100 010 100 001

010 100 001 100

111 000 000 111

110 100 110 010 011 001

100 110 010 110 001 011

110 001 101 010 011 100

001 110 010 101 100 011

Figure 4.2: Orbits of the assignments to variables in the pigeonhole problem. An assignment
is written as a binary string x1Ax2Ax3Ax1Bx2Bx3B. Each orbit is boxed, and each canonical
representative is bold. Cases where there are 4 or greater true variable assignments are
omitted, as these are symmetric to previously listed cases where the true and false values
are flipped.

This chapter presents both exact and approximate inference strategies that scale with the

number of orbits of a probability distribution. The exact inference algorithm is as follows.

First, generate a single canonical representative from each orbit; in Figure 4.2, canonical

representatives are shown in bold. Then for each representative, compute the size of its orbit.

If both of these steps are efficient, then this inference computation scales efficiently with the

number of orbits. This orbit generation procedure is at the heart of many existing lifted

inference algorithms that construct sufficient statistics of the distribution from a relational

representation [Niepert and Van den Broeck, 2014]. An exact lifted inference algorithm is

given in Chapter 4.3 that applies this methodology to arbitrary factor graphs by using graph

isomorphism tools to generate canonical representatives and compute orbit sizes.

Next, Chapter 4.4 describes an approximate inference algorithm called orbit-jump MCMC

that provably mixes quickly in the number of distinct orbits of the distribution. This algo-

rithm uses as its proposal the uniform orbit distribution: the distribution defined by choosing

an orbit of the distribution uniformly at random, and then choosing an element within that

orbit uniformly at random. We present a novel application of the Burnside process in order

to draw samples from the uniform orbit distribution [Jerrum, 1993], and show how to imple-

ment the Burnside process on factor graphs by using graph isomorphism tools. Thus, this

orbit-jump MCMC provides an alternative to lifted MCMC that trades computation time

75



for provably good sample quality.

Note, however, that purely scaling in the number of orbits is not a panacea. The presented

methods are both limited: there are liftable probability models that still have too many orbits

for these methods to be effective. The presented methods only exploit symmetry, which is in

contrast to existing exact lifted inference algorithms that simultaneously exploit symmetry

and independence. Therefore, the presented algorithms scale exponentially for certain well-

known liftable distributions, such as the friends and smokers Markov logic network [Niepert

and Van den Broeck, 2014]. Thus, this work provides a foundation for future work on

inference for factor graphs that exploits both symmetry and independence.

4.2 Background

This section gives a brief description of important concepts from group theory and approxi-

mate lifted inference that will be used throughout the chapter.

4.2.1 Group Theory

This section briefly reviews some standard terminology and notation from group theory,

following Artin [1998]. A group G is a pair (S, ·) where S is a set and · : S × S → S is a

binary associative function such that there is an identity element and every element in S has

an inverse under (·). The order of a group is the number of elements of its underlying set,

and is denoted |G|. A permutation group acting on a set Ω is a set of bijections g : Ω → Ω

that forms a group under function composition. For G acting on Ω, a function f : Ω→ Ω′ is

G-invariant if f(g · x) = f(x) for any g ∈ G, x ∈ Ω. Two elements x, x′ ∈ Ω are in the same

orbit under G if there exists g ∈ G such that x = g · x′. Orbit membership is an equivalence

relation, written x ∼G x′. The set of all elements in the same orbit is denoted OrbG(x). A

stabilizer of x is an element g ∈ G such that g ·x = x; the set of all stabilizers of x is a group

called the stabilizer subgroup, denoted StabG(x). The subscript in the previous notation is
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elided when clear. A cycle (x1 x2 · · · xn) is a permutation x1 7→ x2, x2 7→ x3, · · · , xn 7→ x1.

A permutation can be written as a product of disjoint cycles.

4.2.2 Lifted Probabilistic Inference & Graph Automorphism Groups

Lifted inference relies on the ability to identify the symmetries of probability distributions.

In existing exact lifted inference methods, the symmetries are evident from the relational

structure of the probability model [Poole, 2003, De Salvo Braz et al., 2005, Gogate and

Domingos, 2011, Van den Broeck, 2013]. In order to extend the insights of lifted inference to

models where the symmetries are less accessible, many lifted approximation algorithms rely

on graph isomorphism tools to identify the symmetries of probability distributions [Niepert,

2012, Bui et al., 2013, Mckay and Piperno, 2014].

A colored graph is a 3-tuple G = (V,E,C) where (V,E) are the vertices and edges of an

undirected graph and C : V → N assigns a non-negative integer, or color, to each vertex.

Definition 4.2. Let G = (V,E,C) and G′ = (V,E ′, C ′) be colored graphs. Then G and G′ are

color-isomorphic to one another, denoted ∼=, if there exists a bijection φ : V → V such that

(1) (v1, v2) ∈ E ⇔ (φ(v1), φ(v2)) ∈ E ′; and (2) for all v ∈ V , C(v) = C ′(v).

Factor graphs have a natural encoding as a colored graph:

Definition 4.3 (Induced colored graph). Let F = (X, F ) be a factor graph with variables

X, and factors F , where F are symmetric functions on assignments to variables X, written

x. Then the colored graph induced by F is a tuple (V,E,C) where V = X ∪ F , the set of

edges E connects variables and factors in F , and C is a partition such that (1) factor nodes

are given the same color iff they are identical factors, and (2) variables are colored with a

single color that is distinct from the factor colors.

A related notion is the color-automorphism group a colored graph:
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Definition 4.4. The color automorphism group of a colored graph G = (V,E,C), denoted

A(G), is the set of all color isomorphisms onto itself.

The group A(G) acts on the vertices of G by permuting them. The color automorphism

group of a colored factor graph is directly related to the symmetries of the underlying dis-

tribution:

Theorem 4.1 (Bui et al. [2013], Theorem 2). Let F be a factor graph and G be its induced

colored graph. Then, the distribution of F is A(G)-invariant.

4.3 Exact Lifted Inference

This section describes the exact lifted inference procedure. First I will discuss the group-

theoretic properties of orbit generation that enable efficient exact lifted inference. Then, I

describe the algorithm for implementing orbit generation on colored factor graphs. Finally,

I present some case studies demonstrating the performance of the algorithm.

4.3.1 G-Invariance & Tractability

This section describes the group-theoretic underpinnings of the orbit-generation procedure

and describes its relationship with previous work on tractability through exchangeability.

We will capture the behavior of a G-invariant probability distribution on a set of canonical

representatives of each orbit:

Definition 4.5. Let G be a group that acts on a set Ω. Then, there exists a set of canonical

representatives Ω/G ⊆ Ω and surjective canonization function σ : Ω → Ω/G such that for

any x, y ∈ Ω, (1) Orb(x) = Orb(σ(x)); and (2) Orb(x) = Orb(y) if and only if σ(x) = σ(y).

In statistics, σ is often called a sufficient statistic of a partially exchangeable distribution

[Niepert and Van den Broeck, 2014, Diaconis and Freedman, 1980]. The motivating example
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hinted at a general-purpose solution for exact inference that proceeds in two phases. First,

one constructs a representative of each orbit; then, one efficiently computes the size of that

orbit. We can formalize this using group theory:

Theorem 4.2. Let Pr be a G-invariant distribution on Ω, and evidence e : Ω → Bool be

a G-invariant function. Then, the complexity of computing the most probable explanation

(MPE) is poly(|Ω/G|) if the following can be computed in poly(|Ω/G|):

1. Evaluate Pr(x) for x ∈ Ω;

2. (Canonical generation) Generate a set of canonical representatives Ω/G,

Moreover, if |Orb(x)| can be computed in poly(|Ω/G|), then Pr(e) can be computed in

poly(|Ω/G|).

Proof. To compute the MPE, choose:

arg max
{x∈Ω/G | e(x)=T}

Pr(x). (4.5)

The G-invariance of e allows us to evaluate e on only x without considering other elements

of Orb(x). To compute Pr(e), compute

∑
{x∈Ω/G | e(x)=T}

|Orb(x)| × Pr(x). (4.6)

Both of these can be accomplished in poly(|Ω/G|).

Niepert and Van den Broeck [2014] identified a connection between bounded-width ex-

changeable decompositions and tractable (i.e., domain-lifted) exact probabilistic inference us-

ing the above approach. Exchangeable decompositions are a particular kind of G-invariance.

Let Pr(X1,X2, · · · ,Xn) be a distribution on sets of variables Xi. Let Sn be a group of all

permutations on a set of size n. Then, this distribution has an exchangeable decomposition
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along {Xi} if, for any g ∈ Sn:

Pr(X1,X2, · · · ,Xn) = Pr(Xg·1,Xg·2, · · · ,Xg·n)

Niepert and Van den Broeck [2014] showed how to perform exact lifted probabilistic inference

on any distribution with a fixed-width exchangeable decomposition by directly constructing

canonical representatives. However, this construction does not generalize to other kinds

of symmetries, and thus cannot be applied to factor graphs which may have arbitrarily

complex symmetric structure. In the next section, we show how to apply Theorem 4.2 to

factor graphs.

4.3.2 Orbit Generation

The previous section shows that inference can be efficient if one can (1) construct representa-

tives of each orbit class, (2) compute how large each orbit is. This section gives an algorithm

for performing these two operations for colored factor graphs. First, the procedure for en-

coding variable assignments directly into the colored factor graph is described, providing

a way to leverage graph isomorphism tools to compute canonical representatives and orbit

sizes for assignments to variables in factor graphs. This colored assignment encoding is one

of the key technical contributions of this chapter, and forms a foundation for the exact and

approximate inference algorithms. Then, I will give a breadth-first search procedure for

generating all canonical representatives of a colored factor graph.

4.3.2.1 Encoding Assignments

The objective in this section is to leverage graph isomorphism tools to compute the key

quantities necessary for applying the procedure described in Theorem 4.2 to factor graphs.

Let G be the induced colored graph of F . As terminology, an element x ∈ BoolX is an

assignment to variables X. We will use graph isomorphism tools to construct (1) a canon-
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Figure 4.3: A colored graph of the 3-pigeon 2-hole problem that encodes the assignment
x = 000 111. True variable nodes are gray and false variable nodes are white.

ization function for variable assignments, σ : BoolX → BoolX/A(G); and (2) the size of

the orbit of x ∈ BoolX under A(G). To do this, assignments are encoded directly into the

colored factor graph:

Definition 4.6. Let F = (X, F ) be a factor graph, let x ∈ BoolX, and let G = (V,E,C)

be the colored graph induced by F . Then the assignment-encoded colored graph, denoted

G(F ,x), is the colored graph that colors the variable nodes that are true and false in x with

distinct colors in G.

An example is shown in Figure 4.3, which shows an encoding of the assignment 000 111.

The assignment 000 111 is isomorphic to the assignment 111 000 under the action of A(G),

specifically flipping holes. Then, assignments that are in the same orbit under A(G) have

isomorphic colored graph encodings:

Theorem 4.3. Let F = (X, F ) be a factor graph, G be its colored graph encoding, and

x,x′ ∈ BoolX. Then, x ∼ x′ under the action of A(G) iff G(F ,x) ∼= G(F ,x′).

Proof. Let G1 = (V1, E1, C1) = G(F ,x) and G2 = (V2, E2, C2) = g · G(F ,x). Assume x ∼ x′.

Then there exists an element g ∈ A(G) such that g · x = x′. First we show colors are

preserved. By construction of the colored assignment encoding, for any variable node v ∈ G1,

color(v, C1) = color(g · v, C2). The colors of factor nodes are preserved because A(G) by

definition preserves them. The fact that g ∈ A(G) directly implies that vertex neighborhoods

are preserved. Then G1
∼= G2.
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Assume G1
∼= G2; then there exists g ∈ A(G) such that g · G1 = G2. By the construction of

the colored encoding, this g also preserves the colors of the variable vertices, so g ·x = x′.

Canonization The goal now is to use graph isomorphism tools to construct a canonization

function for variable assignments. In particular, it maps all isomorphic assignments to exactly

one member of their orbit. This will rely on colored graph canonization, a well-studied

problem in graph theory for which there exist many implementations [Mckay and Piperno,

2014]:

Definition 4.7. Let G = (V,E,C) be a colored graph. Then a colored graph canonization

is a canonization function σ : V → V/A(G).

A colored graph canonization function applied to Figure 4.3 will select exactly one color-

isomorphic vertex configuration as the canonical one, for example putting all pigeons in hole

A. Then, the canonization of the assignment-encoded colored graph is a canonization of

variable assignments:

Definition 4.8. Let F = (X, F ) and x = {(x, v)} be a variable assignment, where x ∈ X

and v ∈ Bool. Let σG(F ,x) be a canonization of G(F ,x). Then, let σ′ : BoolX → BoolX

be defined σ′(x) = {(σG(F ,x)(x), v) | (x, v) ∈ x}. Then σ′ is called the induced variable

canonization of BoolX.

Intuitively, an induced variable canonization computes the canonization of the assignment-

encoded colored graph, and then applies that canonization function to variables. Then,

Proposition 4.1. For a factor graph F with colored graph G, the induced variable canon-

ization is a canonization function BoolX → BoolX/A(G).

4.3.2.2 Computing the Size of an Orbit

Theorem 4.2 requires efficiently computing the size of the orbit of an assignment, a task that

at first glance seems hard. In fact, the orbit size can be computed by reducing the problem
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to a graph isomorphism call and an efficient group order computation. This reduction hinges

on the following well-known theorem that relates the size of an orbit to the size of a stabilizer:

Theorem 4.4 (Orbit-stabilizer [Artin, 1998]). Let G act on Ω. Then for any x ∈ Ω, |G| =

|Stab(x)| × |Orb(x)|.

Proof. This well-known theorem has many proofs, and one is included here due to its fun-

damental importance. Let Orb(x) = {x1, x2, · · · , xn}, and let P = {π1, π2, · · · , πn} be such

that πi · x = xi. Then, |P | = |Orb(x)|. We will show that every element of G can be written

in exactly one way as a product of an element in P and an element in Stab(x). This fact

directly implies the theorem.

First, we show that each element can be written as a product of α ∈ P and β ∈ Stab(x).

Let g ∈ G. Then, for some πi ∈ P , we have that πi · x = π · x, so π−1
i · π ∈ Stab(x). So, we

have that:

πi︸︷︷︸
∈P

· (π−1
i · π)︸ ︷︷ ︸
∈Stab(x)

= π. (4.7)

Now, we show that this product is unique. Let π ∈ G. Assume there exist α1, α2 ∈ P and

β1, β2 ∈ Stab(x) such that π = α1 ·β1 = α2 ·β2. Both β1 and β2 stabilize x, so α1 ·β1 = α2 ·β2

implies α1 = α2, which implies β1 = β2.

Then, to compute orbit size of assignments x, compute (1) the stabilizer group of an

assignment StabA(G)(x) and (2) the order of A(G) and the assignment stabilizer. Comput-

ing the order of a group is efficient, and high-performance algorithms are implemented in

computational group theory tools such as GAP [GAP, Seress, 2003].
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Figure 4.4: Example breadth-first search tree, read top-down. White nodes encode false
assignments, and black nodes encode true assignments.

4.3.2.3 Generating All Canonical Representatives

The algorithm for generating canonical representatives is a simple breadth-first search that

relies on assignment canonization. This procedure is a kind of isomorph-free exhaustive

generation, and there exist more sophisticated procedures than the one we present here

[McKay, 1998].

Let x be some variable assignment. Then, an augmentation of x is a copy of x with one

variable that was previously false assigned to true. We denote the set of all augmentations as

A(x). The breadth-first search tree will be defined by a series of augmentations as follows:

Orbit generation breadth-first search

1. Nodes of the search tree are assignments x.

2. The root of the tree is the all false assignment.

3. Each level L of the search tree has exactly L true assignments to variables.

4. Nodes are expanded until level |X|.

5. Before expanding a node, check if it is not isomorphic to one that has already been

expanded by computing its canonical form.

6. Then, expand a node x by adding A(x) to the frontier.
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An example of this breadth-first search procedure is visualized in Figure 4.4. The search

is performed on a 4-variable factor graph that has one factor on each edge, and all factors

are symmetric. The factors are elided in the figure for visual clarity. Each arrow represents

an augmentation. Crossed out graphs are pruned due to being isomorphic with a previously

expanded node.

Now we bound the number of required graph isomorphism calls for this search procedure:

Theorem 4.5. For a factor graph F = (X, F ) with |BoolX/A(G)| canonical representa-

tives, the above breadth-first search requires at most |X| × |BoolX/A(G)| calls to a graph

isomorphism tool.

Proof. There are at most |BoolX/A(G)| expansions, and each expansion adds at most |X|

nodes to the frontier. A canonical form must be computed for each node that is added to

the frontier.

Pruning expansions This expansion process can be further optimized by preemptively

reducing the number of nodes that are added to the frontier in Step 6, using the following

lemma:

Lemma 4.1 (Expansion Pruning). Let F be a factor graph, x be a variable assignment,

and x1,x2 be augmentations of x that update variables x and y respectively. Then, x1 ∼ x2

under A(G) if x and y are in the same variable orbit under A(G(F ,x)).

Proof. Let G1 = G(F ,x1) and G2 = G(F ,x2). Assume x and y are in the same orbit under

A(G(F ,x)); then there exists g ∈ A(G(F ,x)) such that g · x = y. There is only one vertex

color that differs between G1 and G2: x and y. Then, g · G1 = G2, so Theorem 4.3 then shows

x1 ∼ x2.

Using this lemma we can update Step 6 to only include a single element of each variable

orbit of X under A(G(F ,x)).
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4.3.3 Exact Lifted Inference Algorithm

This section will combine the theory of the previous two sections to perform exact lifted

inference on factor graphs. Algorithm 1 performs exact lifted inference via a breadth-first

search over canonical assignments. Variable r holds a set of canonical representatives, q holds

the frontier, p accumulates the unnormalized probability of the evidence, and Z accumulates

the normalizing constant. A graph isomorphism tool is used to compute σ on Line 5. Each

time the algorithm finds a new representative, it computes the size of the orbit using the

orbit stabilizer theorem on Line 9; GAP is used to compute the order of these permutation

groups. Lemma 4.1 is used on Line 13 to avoid adding augmentations to the frontier that

are known a-priori to be isomorphic to prior ones. This algorithm can be easily modified to

produce the MPE by simply returning the canonical representative from r with the highest

probability.

Experimental Evaluation To validate the proposed method Algorithm 1 was imple-

mented using the Sage math library, which wraps GAP and a graph isomorphism tool [The

Sage Developers, 2018].4 The lifted inference procedure is compared against Ace, an ex-

act inference tool for discrete Bayesian networks that is unaware of the symmetry of the

model [Chavira and Darwiche, 2005]. Figure 4.5 shows experimental results for performing

exact lifted inference on two families of factor graphs. The first is a class of pairwise factor

graphs that have an identical symmetric potential between all nodes, with one factor (in red)

designated as an evidence factor:

Figure 4.5b evaluates exact lifted inference on the pigeonhole problem from Chapter 5.1 with

two holes and increasing number of pigeons. In both experiments, the number of orbits grows

4The source code for the exact and approximate inference algorithms can be found at https://github.
com/SHoltzen/orbitgen.

86

https://github.com/SHoltzen/orbitgen
https://github.com/SHoltzen/orbitgen


Algorithm 1: ExactLiftedInference(F , e)

Data: A factor graph F = (X, F ) with color encoding G; A(G)-invariant evidence e
Result: The probability of evidence Pr(e)

1 r ← empty set, p← 0, Z ← 0;
2 q ← queue containing the all-false assignment;
3 while q is not empty do
4 x← q.pop();
5 Canon← σ(G(F ,x)) ; // Invoke graph iso. tool
6 if Canon ∈ r then
7 continue;
8 end
9 Insert Canon into r;

10 |Orb(x)| ← |A(G)|/|StabA(G)(x)| ; // Invoke GAP

11 if e(x) = T then
12 p← p+ |Orb(x)| × F (x);
13 end
14 Z ← Z + |Orb(x)| × F (x);
15 for o from each variable orbit of StabA(G)(x) do
16 if o is a false variable then
17 x′ ← x with o true;
18 Append x′ to q;
19 end
20 end
21 end
22 return p/Z

linearly, even though there is little independence. Thus, Ace scales exponentially, since the

treewidth grows quickly, while the lifted method appear to scale sub-exponentially. This is

the first example of performing exact inference on this family of models.

4.4 Orbit-Jump Markov-Chain Monte Carlo

This section introduces orbit-jump MCMC, an MCMC algorithm that mixes quickly when

the distribution has few orbits, at the cost of requiring multiple graph isomorphism calls for

each transition. The algorithm is summarized in Algorithm 2. Orbit-jump MCMC is an

alternative to Lifted MCMC [Niepert, 2012, 2013] that generates provably high-quality sam-
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Figure 4.5: Evaluation of Algorithm 1. A red circle indicates that Ace ran out of memory
at that time.

ples at the expense of more costly transitions. Lifted MCMC exploits symmetric structure

to quickly transition within orbits. Lifted MCMC is efficient to implement: it requires only a

single call to a graph isomorphism tool. However, lifted MCMC relies on Gibbs sampling to

jump between orbits, and therefore has no guarantees about its mixing time for distributions

with few orbits. Orbit-jump MCMC is a Metropolis-Hastings MCMC algorithm that uses

the following distribution as its proposal:5

Definition 4.9. Let G act on Ω. Then for x ∈ Ω, the uniform orbit distribution is:

PrΩ/G(x) ,
1

|Ω/G| × |Orb(x)|
(4.8)

This is the probability of uniformly choosing an orbit o ∈ Ω/G, and then sampling uniformly

from σ−1(o).

The orbit-jump MCMC chain for a G-invariant distribution Pr is defined as follows,

initialized to x ∈ Ω:

A step in orbit-jump MCMC

1. Sample x′ ∼ PrΩ/G;

5For a good introduction Metropolis-Hastings in the context of probabilistic models, see Murphy [2012,
Chapter 24].
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Figure 4.6: Illustration of the Burnside process on a colored graph with two nodes and two
colors.

2. Accept x′ with probability min
(

1, Pr(x′)×|Orb(x′)|
Pr(x)×|Orb(x)|

)
This Markov chain has Pr as its stationary distribution. Orbit-jump MCMC has a high

probability of proposing transitions between orbits, which is an alternative to the within-orbit

exploration of lifted MCMC.6

Next we will describe how to sample from PrΩ/G using an MCMC method known as the

Burnside process. Then, we will discuss the mixing time of this proposal, and prove that it

mixes in the number of orbits of the distribution.

4.4.1 Sampling From the Uniform Orbit Distribution

Jerrum [1993] gave an MCMC technique known as the Burnside process for drawing samples

from PrΩ/G. The Burnside process is a Markov Chain Monte Carlo method defined as follows,

beginning from some x ∈ Ω:

A step in the Burnside process

1. Sample g ∼ Stab(x) uniformly;

2. Sample x ∼ Fix(g) uniformly, where Fix(g) = {x ∈ Ω | g ·x = x}. Elements of Fix(g)

are called fixers.

Theorem 4.6 (Jerrum [1993]). The stationary distribution of the Burnside process is equal

to PrΩ/G.

6This proposal is independent of the previous state, a scheme that is sometimes called Metropolized
independent sampling (MIS) [Liu, 1996]. Importance sampling is an alternative to MIS. We use MIS rather
than importance sampling in order to make the connection with lifted MCMC more explicit.
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This process can be visualized as a random walk on a bipartite graph. One set of nodes

are elements of Ω, and the other set are elements of G. There is an edge between x ∈ Ω and

g ∈ G iff g · x = x.

An example of this bipartite graph is shown in Figure 4.6. The set Ω is the set of 2-node

colored graphs, and the group G = S2 permutes the vertices of the graph. The identity

element (A)(B) stabilizes all elements of Ω, and so has an edge to every element in x; (A B)

only stabilizes graphs whose vertices have the same color.

Jerrum [1993] proved that the Burnside process mixes rapidly for several important

groups, but it does not always mix quickly [Goldberg and Jerrum, 2002]. In such cases,

it is important to draw sufficient samples from the Burnside process in order to guaran-

tee that the orbit-jump proposal is unbiased. Next we will describe how to implement the

Burnside process on factor graphs using the machinery from Chapter 4.3.2.1.

4.4.1.1 Burnside Process on Factor Graphs

For G acting on a set of variables X, the Burnside process requires the ability to (1) draw

samples uniformly from the stabilizer subgroup of an assignment to variables, and (2) sample

a random fixer for any group element in G. Here we describe how to perform these two

computations for a colored factor graph F = (X, F ).7 This procedure is summarized in lines

3–7 in Algorithm 2.

4.4.1.2 Stabilizer Sampling

Chapter 4.3.2.1 showed how to compute the stabilizer group of x ∈ BoolX using graph

isomorphism tools. Sampling uniformly from the stabilizer group relies on the product re-

placement algorithm, which is an efficient procedure for uniformly sampling group elements

7This process is conceptually similar to the procedure for randomly sampling orbits in the Pólya-theory
setting described by Goldberg [2001], but this is the first time that this procedure is applied directly to factor
graphs
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Algorithm 2: A step of Orbit-jump MCMC
Data: A factor graph F = (X, F ), a point x ∈ BoolX, number of Burnside process

steps k
1 x′ ← x;
2 for i ∈ {1, 2, · · · , k} do
3 GStab ← A(G(F ,x′)) ; // Invoke graph iso. tool
4 Sample s ∼ GStab using product replacement;
5 for Each variable cycle c of s do
6 v ∼ Bernoulli(1/2);
7 Assign all variables c in x′ to v;
8 end
9 end

10 Accept x′ with probability min
(

1, F (x′)×|Orb(x′)|
F (x)×|Orb(x)|

)

[Pak, 2000]. This step occurs on Line 4 of Algorithm 2.

4.4.1.3 Fixer Sampling

Let g ∈ G be a permutation that acts on the vertices of a colored factor graph. Then

we uniformly sample an assignment-encoded colored factor graph that is fixed by g in the

following way. First, decompose g into a product of disjoint cycles. Then, for each cycle

that contains variable nodes, choose a truth assignment uniformly randomly, and then color

the vertices in that cycle with that color. This colored graph is fixed by g and is uniformly

random by the independence of coloring each cycle and the fact that all colorings fixed by g

can be obtained in this manner. This step occurs on lines 5 – 8 in Algorithm 2.

4.4.2 Mixing Time of Orbit-Jump MCMC

The total variation distance between two discrete probability measures µ and ν on Ω, denoted

dTV (µ, ν), is:

dTV (µ, ν) =
1

2

∑
x∈Ω

|µ(x)− ν(x)|. (4.9)
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The mixing time of a Markov chain is the minimum number of iterations that the chain

must be run starting in any state until the total variation distance between the chain and its

stationary distribution is less than some parameter ε > 0. The mixing time of orbit-jump

MCMC can be bounded in terms of the number of orbits, which is a property not enjoyed

by lifted MCMC:

Theorem 4.7. Let Pr be a G-invariant distribution on Ω and let P be the transition matrix

of orbit-jump MCMC. Then, for any x ∈ Ω, dTV (P tx,Pr) ≤
(
|Ω/G|−1
|Ω/G|

)t
. It follows that for

any ε > 0, dTV (P tx,Pr) ≤ ε if t ≥ log(ε−1)× |Ω/G|.

Proof. See Appendix A.2.

Note that the bound on this mixing time does not take into account the cost of drawing

samples from PrΩ/G, which involves multiple graph isomorphism calls.

4.4.2.1 Pigeonhole case study

In order to empirically evaluate its performance, the orbit-jump MCMC procedure on factor

graphs was implemented using Sage. The mixing time of lifted MCMC [Niepert, 2012, 2013]

and orbit-jump MCMC are compared in Figure 4.7, which computes the total variation

distance of these two MCMC methods from their stationary distribution as a function of

the number of iterations on two versions of the pigeonhole problem.8 The first version

in Figure 4.7a is the motivating example with hard constraints from Chapter 5.1. The

second version in Figure 4.7b shows a “quantum” pigeonhole problem, where the constraint

in Equation 4.4 is relaxed so that pigeons are allowed to be placed into multiple holes (i.e.,

the case when xiB = xjB = 1 is given a finite negative weight.).

Lifted MCMC fails to converge in Figure 4.7a because it cannot transition due to the

hard constraint from Equation 4.4; this illustrates that lifted MCMC can fail even for distri-

8In these experiments, for each step of orbit-jump MCMC, we use 7 steps of the Burnside process.
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Figure 4.7: Total variation distance between Markov chains and their stationary distributions
for a pigeonhole problem with 5 pigeons and 2 holes. “Lifted” is lifted MCMC [Niepert, 2012]
and “UB” is the upper bound predicted by Theorem 4.7.

butions with few orbits. In addition to comparing against lifted MCMC, we also compare the

theoretical upper bound from Theorem 4.7 against the two mixing times. This upper bound

only depends on the number of orbits, and does not depend on the parameterization of the

distribution.9 Orbit-jump MCMC converges to the true distribution in both cases faster

than lifted MCMC, and the upper bound ensures that orbit-jump MCMC cannot get stuck

in low-probability orbits. Note however that lifted MCMC transitions are less expensive to

compute than orbit-jump MCMC transitions. We hope to explore this practical tradeoff

between sample quality and the cost of drawing a sample in future work.

4.5 Conclusion

This chapter provided the first exact and approximate lifted inference algorithms for factor

graphs that provably scale in the number of orbits. However, the presented methods are

limited: there are tractable highly symmetric distributions that still have too many orbits

for these methods to be effective. Existing lifted inference algorithms utilize independence

to extract highly symmetric sub-problems, which is an avenue for integrating independence

9For this example, there are 78 orbits.
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into this current approach. A further limitation of the approach is that it exploits only

symmetries on variables; additional forms of symmetries, such as block symmetries, are

beyond the scope of the presented algorithms [Madan et al., 2018].

4.6 Bibliographic Notes

Lifted inference Existing exact lifted inference algorithms apply to relational models

[Getoor and Taskar, 2007]. The tractability of exact lifted inference was studied by Niepert

and Van den Broeck [2014], but their approach cannot be directly applied to factor graphs.

Approximate lifted inference can be applied to factor graphs, but existing approaches do not

provably mix quickly in the number of orbits [Niepert, 2012, 2013, Bui et al., 2013, Van den

Broeck and Niepert, 2015, Madan et al., 2018, Kersting et al., 2009, Gogate et al., 2012].

Symmetry in constraint satisfaction and logic Some techniques for satisfiability and

constraint satisfaction also exploit symmetry. The goal in that context is to quickly select one

of many symmetric candidate solutions, so a key difference is that in the current setting one

must exhaustively explore the search space. Sabharwal [2005] augments a SAT-solver with

symmetry-aware branching capabilities. Symmetry has also been exploited in integer-linear

programming [Margot, 2010, Ostrowski et al., 2007, Margot, 2003].
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CHAPTER 5

Composing Inference Algorithms

Abstraction is all relative; one person’s

abstraction is another person’s bread

and butter.

Charles Pinter

Thus far this thesis has introduced two new strategies for performing inference in proba-

bilistic programs that both work in very different ways and exploit different program struc-

ture. Chapter 3 showed how to exploit factorization in order to scale inference, but it did

so at the cost of supporting other kinds of program features like continuous random vari-

ables and unbounded loops. Chapter 4 showed how to exploit symmetry, but at the expense

of exploiting factorization. There are many more inference algorithms that make different

tradeoffs between tractability and expressivity, so this motivates the following key problem:

how can we mix and match inference algorithms depending on the kind of structure exhibited

by a heterogeneous probabilistic program?

This chapter gives a method for decomposing probabilistic program inference via program

abstraction. Program abstractions – and in particular predicate abstractions – have a rich

and successful history in non-probabilistic program analysis [Ball et al., 2001, Cousot and

Cousot, 1977]. The key idea is to generate a simplified abstract program from the original

0This chapter is based in part on Holtzen et al. [2018] and Holtzen et al. [2017]. The work that went
into this chapter was partially supported by NSF grants #CCF-1527923, #IIS-1657613, #IIS-1633857 and
DARPA XAI grant #N66001-17-2-4032, and a National Physical Sciences Consortium fellowship. Tal Fried-
man and Jon Aytac gave helpful feedback on early drafts of the original published works.
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Figure 5.1: Diagram describing decomposition by abstraction.

concrete program that captures a few key properties. This abstraction property simplifies

the analysis – the new abstract program is by design simpler to analyze than the concrete

program. Ideally the abstract program will then contain sufficient information to verify

various properties of the concrete program.

This chapter gives a generalization for non-probabilistic predicate abstraction to proba-

bilistic programs and shows how it decomposes inference. An outline is given in Figure 5.1.

First, the programmer provides three pieces of data: a probabilistic program, a set of predi-

cates that are Boolean random variables that capture properties about the program, and a

query. Then, the abstraction engine automatically generates (1) a set of sub-programs that

are themselves probabilistic programs, and (2) an abstract Dice program that captures the

relationship among predicates.

In order to evaluate the final query, the abstract Dice program is parameterized by

querying the sub-programs. Each (†) arrow in the figure represents a sub-query that queries

a small part of the original program: this is the stage where inference is decomposed, since

evaluating these (†) queries will ideally only require inspecting smaller portions of the original

program. Finally, the final query is answered via a standard Dice inference query along the

(?) arrow, as outlined in Chapter 3.

Formally, as an outline, (1) Chapter 5.1 introduces a new notion of probabilistic predicate

abstractions and shows how to automatically generate them from a probabilistic program;
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(2) Chapter 5.2 gives background; (3) Chapter 5.3 gives a new soundness relation between

abstract and concrete program called distributional soundness ; (4) Chapter 5.4 shows how

to construct distributionally sound abstractions; and (5) Chapter 5.5 shows empirically how

distributionally sound abstractions decompose probabilistic in order to speed up inference.

5.1 Motivating Example

Probabilistic programs can exhibit complex structure. In particular, they admit complex

operations such as control-flow logic and numerical manipulation, which entangle random

variables in ways that are difficult to reason about. Consider Figure 5.2a, which shows a

simple probabilistic program that combines two random variables via multiplication. We

wish to compute the query Pr(z = 0) on this program. Initially, this seems to be difficult

since the variables x and y are entangled via multiplication. In a typical probabilistic pro-

gramming system such as Stan, Psi, or Anglican, this query would be evaluated by sampling

or integration beginning on Line 1 of the program Carpenter et al. [2016], Gehr et al. [2016],

Wood et al. [2014]. This would require jointly integrating over the random variables x and

y (or approximating the integral by sampling).

One option for potentially simplifying inference on this program is to generate a factor

graph abstraction on which to perform inference, which is the approach taken by compilation

techniques such as Factorie, Infer.Net and Figaro [McCallum et al., 2009, Minka et al., 2014,

Pfeffer, 2009]. Figure 5.2b shows such a factor graph abstraction. The parameters of this

factor graph are chosen so that it is a distributionally sound abstraction: it is possible to

instantiate the factors in such a way that the graphical model exactly captures the proba-

bilistic program’s intended distribution. However, a key disadvantage is that the graph-based

abstraction may be overly coarse, disregarding key structural aspects of the program.

For this example, the abstraction is overly coarse, and thus during inference it yields no

useful decompositions. From the perspective of the graph, all three random variables are
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1 x←discrete_dist();
2 y ←continuous_dist();
3 z ← x * floor(y);

(a) A concrete probabilistic program. Probabilistic sub-program discrete_dist returns a discrete
random variable. Sub-program continuous_dist returns a continuous random variable. floor
rounds down to the nearest integer.

x

y z

(b) A factor graph which captures the conditional independences in Figure 5.2a. Factors encap-
sulate the two sub-programs and represent dependencies between the three random variables x, y,
and z.

1 {x = 0} ←flip(θx=0);
2 {0 ≤ y < 1} ←flip(θ0≤y<1);
3 {z = 0} ← {x = 0} ∨ {0 ≤ y < 1};

(c) A probabilistic program which captures the distribution only on the predicates {x = 0}, {0 ≤
y < 1}, and {z = 0}. A flip(θ) expression is true with probability θ.

Figure 5.2: Abstracting a probabilistic program as a factor graph and a probabilistic predi-
cate abstraction.

inextricably linked via an opaque factor. Thus, computing Pr(z = 0) on the factor graph

abstraction would require jointly integrating x and y. Nonetheless, observe that this factor

is actually highly structured: in the program, z is linked to x and y via a deterministic

multiplication. We wish to exploit this structure.

This chapter proposes to instead utilize a simpler probabilistic program as the abstraction,

rather than a graph. Specifically, this probabilistic program will only model the distribution

on a collection of Boolean predicates – statements about the original program which are true

or false. Since it only models Boolean predicates, it will be a discrete probabilistic program

and hence we can use Dice to perform inference. The parameters of this probabilistic program

will be chosen so that it is distributionally sound with respect to the original program. In

this chapter, we show how to automatically produce a distributionally sound abstraction

for a given program relative to a given set of predicates. While a distributionally sound

abstraction always exists, whether that abstraction is informative depends on the choice of
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predicates. This approach assumes that the predicates are provided a priori ; automated

techniques for selecting predicates are left as future work and discussed in more detail in

Chapter 5.4.1.

Let us consider an example of the flexibility of probabilistic programs as a language for

abstraction: capturing a nuanced decomposition which relies on properties of multiplication.

Observe that the program in Figure 5.2a has the following property: after executing Line

3, z = 0 if and only if x = 0 or 0 ≤ y < 1. The present notion of abstraction is capa-

ble of representing this relationship, and this approach can automatically produce such an

abstraction.

Given the three predicates above, the goal is to automatically generate the abstract prob-

abilistic program in Figure 5.2c, which only models the distribution on the three predicates;

such abstractions are a specific kind of probabilistic predicate abstraction [Holtzen et al.,

2017]. This step is part of the “Abstraction” box in Figure 5.1. Denote the Boolean variable

that corresponds with a predicate as {·}. In order for this abstraction to be distribution-

ally sound, it requires the correct parameterization. In this case, we must compute two

sub-queries on the original probabilistic program:

θx=0 = Pr(discrete_dist() = 0)

θ0≤y<1 = Pr(0 ≤ continuous_dist() < 1)

With these parameters, Figure 5.2c is distributionally sound; computing Pr({z = 0}) on this

abstract program will yield the same result as computing Pr(z = 0) on the original program.

Therefore, in the process of parameterizing this abstraction, the concrete program has been

decomposed: at no point were we required to jointly integrate x and y. Further, each of the

two sub-queries can be answered using the inference method that is most suitable for it, which

may be different for discrete and continuous distributions. This motivating example raises

the following questions, which the remainder of the chapter will be devoted to answering:
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Formalization What is a distributionally sound probabilistic program abstraction? (Chap-

ter 5.3)

Existence For a fixed choice of predicates, can a distributionally sound abstraction always

be generated? What is an algorithm for doing so? (Chapter 5.4)

Usefulness What are the benefits of constructing and querying a distributionally sound

abstraction over querying the original program? (Chapter 5.5)

5.2 Background

The goal of this section is to provide a concise background in semantics of probabilistic

programming languages and program abstractions. The formalism used here for describing

probabilistic programs is subtly different than that laid out in the prior Dice chapters,

since here we consider a broader class of programs. First this section gives a brief review

and expansion of the language of probability theory. Then, this language is used to give

the semantics of probabilistic programming languages. Finally, it introduces the necessary

background from program analysis: predicate abstractions and weakest preconditions.

5.2.1 Probability Theory

This chapter will require some standard notions from probability theory such as a measurable

space, probability space, and measurable function. Probability spaces are denoted (Ω,Σ, µ),

where Ω is a sample space, Σ is a σ-algebra on Ω, (Ω,Σ) is a measurable space, and µ is a

probability measure. Of particular importance in this chapter is the notion of a push-forward

probability measure:

Definition 5.1 (Push-forward). Let (Ω,Σ, µ) be a probability space and (Ω′,Σ′) be a measur-

able space. Let f : Ω → Ω′ be a measurable function. Then, the push-forward of µ through

f is a probability measure ν on (Ω′,Σ′) such that for any e ∈ Σ′, ν(e) = µ(f−1(e)). As
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notation, we sometimes treat f as a mapping between probability spaces.

Some standard notation and concepts from probability theory are necessary during this

chapter’s formalization of probabilistic programs. First, we define a measurable space:

Definition 5.2 (Measurable space). Let Ω be a set, called the sample space. In the context

of programs Ω is sometimes called a domain. A σ-algebra Σ on Ω is a collection of subsets of

Ω that is (i) closed under countable unions; (ii) closed under complementation; (iii) contains

Ω. We call the pair (Ω,Σ) a measurable space.

We will rely on the notion of a probability space: a measurable space with a probability

measure.

Definition 5.3 (Probability space). Let (Ω,Σ) be a measurable space and µ : Σ → R be a

function such that (i) µ is countably additive; (ii) µ(Ω) = 1. The tuple (Ω,Σ, µ) is called a

probability space, and µ is called a probability measure.

Measurable spaces afford a particular class of functions called measurable functions. In-

tuitively, such functions represent a random variable.

Definition 5.4 (Measurable function). Let (Ω,Σ) and (Ω′,Σ′) be two measurable spaces.

Then a function f : Ω→ Ω′ is called a measurable function if for any E ∈ Σ′, we have that

f−1(E) = {x ∈ Ω | f(x) ∈ E} ∈ Σ.

Measurable functions define a transformation between probability spaces known as a

push-forward :

Definition 5.5 (Push-forward). Let (Ω,Σ, µ) be a probability space and (Ω′,Σ′) be a measur-

able space, and f : Ω → Ω′ be a measurable function. Then, the push-forward of µ through

f is a probability measure ν on (Ω′,Σ′) such that for any e ∈ Σ′, ν(e) = µ(f−1(e)). As

notation, we sometimes treat f as a mapping between probability spaces.
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5.2.2 Semantics of Probabilistic Programs

The probabilistic programs that this chapter studies are defined in two parts: the first part

assigns an initial probability distribution to variables, and the second produces a new proba-

bility measure that results from the manipulation of these variables through the composition

of measurable functions.1

Definition 5.6 (Semantics of probabilistic programs). A probabilistic program p has two

semantic components:

1. An initial probability space (Ω,Σ, µ). The sample space Ω is the set of joint states of the

variables in the program.

2. A measurable function JpK : Ω→ Ω′. It is implied that there exists some σ-algebra Σ′ on

Ω′ such that (Ω′,Σ′) form a measurable space.

We say the probability measure induced by p is the probability measure which results from

pushing µ through JpK.

This style of semantics does not reason about arbitrary unbounded loops or higher-

order functions, as these cannot in general be represented as measurable functions [Aumann,

1961]. However, measurable functions typically form a core component of the underly-

ing semantics of higher-order and loopy programming languages, allowing the abstraction

technique described in this chapter to be applied to measurable sub-programs within such

languages [Kozen, 1979]. Further, many existing useful probabilistic programming languages

do not have loops.

5.2.3 Predicate Abstraction

Predicate abstraction is a common and effective form of program analysis [Graf and Saïdi,

1997, Ball et al., 2001]. At a high level, the goal is to generate an abstract program that

1This two-part style of semantics is used by the popular probabilistic programming language Stan [Car-
penter et al., 2016].
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is easier to analyze than the original program, while maintaining a meaningful relationship

– known as soundness – with the original program. The traditional soundness property

for predicate abstraction is over-approximation, the property that the abstraction contains

the original program’s behavior as a subset of its own. This is useful for proving safety

properties: for instance, if the abstraction never divides an integer by zero, then neither

does the original program.

The way a predicate abstraction accomplishes this feat is by generating an abstract

program that only manipulates a selection of Boolean predicates. A predicate is a property

of the domain of the concrete program. For example, a predicate on the concrete variable x

may be {x < 4}. A collection of predicates forms a predicate domain:

Definition 5.7 (Predicate domain). Let Ω be a domain, and let Ψ = {ψ1, ψ2, · · · , ψn} be

a collection of predicates on Ω. Then the predicate domain DA over Ψ is the set of all 2n

truth assignments to the predicates in Ψ.

As notation, let c be a concrete state. We write [c] to denote the abstract state corre-

sponding with the predicates that hold for c, and [a]−1 = {c | [c] = a} for its inverse. When

necessary, we use the subscript [·]Ψ to denote abstract states with respect to a particular set

of predicates Ψ.

When the collection of predicates Ψ is insufficient to capture the behavior of the concrete

program, the abstraction must behave non-deterministically in order to remain an over-

approximation. All of these definitions are best illustrated with an example:

Example 5.1: A simple predicate abstraction

Consider the concrete program C = x← x + 1;, which simply increments a variable x.

We consider the predicate domain Ψ = {x < 0}. The goal is to generate an abstract

program A that represents how the predicate {x < 0} changes as a result of this assign-

ment to x. Specifically, if x is negative before incrementing, it could remain negative
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or become non-negative: in this case, we conservatively allow the predicate to take ei-

ther value. However, if x is non-negative, it is guaranteed to remain non-negative after

incrementing. We can write this update using the syntax of a programming language,

denoting a non-deterministic Boolean choice with the * symbol:

{x<0}← {x<0} ∧ *;

Note that all logical connectives can be naturally extended to a 3-valued over the val-

ues (T, F, *) where * represents nondeterminism. For instance, conjunction is naturally

extended by defining T ∧ * , *, F ∧ * , F, and so on.

An over-approximate predicate abstraction can be automatically generated for a program

relative to a given set of predicates [Ball et al., 2001]. The process of constructing a predicate

abstraction relies on the ability to compute a weakest precondition, a tool which will be

utilized in later technical sections and can be computed automatically for loop-free programs

[Dijkstra, 1976]:

Definition 5.8 (Weakest precondition). Let p be a program and φ be a predicate. Then the

weakest precondition of p with respect to φ, denoted WP(p, φ), is the most general predicate

ψ such that ψ holding before executing p implies that φ holds after executing p.

5.3 Distributional Soundness

Traditional over-approximate predicate abstractions are insufficient as abstractions for prob-

abilistic programs since they are not distributionally sound: they do not preserve the dis-

tributions of the given predicates in the original program. In particular, the use of non-

determinism is not compatible with distributional soundness; for example, the abstraction

shown in Example 5.1 does not preserve Pr(x < 0) from the original program. This section

formally defines what it means for a predicate abstraction A that manipulates variables

from a predicate domain DA to be distributionally sound for a given concrete probabilistic
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program C.

First we require a way of connecting the concrete and abstract initial probability spaces.

There is a straightforward mapping of probability measures on the concrete domain to prob-

ability measures on the abstract domain, simply by evaluating the concrete measure for each

abstract state’s equivalence class.

Definition 5.9 (Probabilistic abstraction function). Let (Ω,Σ, µ) be a probability space and

(DA,ΣDA) be a measurable space where the sample space is a predicate domain DA over

predicates Ψ. Then, a probabilistic abstraction function α : (Ω,Σ, µ) → (DA,ΣDA , ν), is

defined as the push-forward of µ through [·].

Now utilizing this definition we give the formal notion of distributional soundness:

Definition 5.10 (Distributional soundness). Let JCK : Ω → Ω′ and JAK : DA → DA′ be

measurable functions, where DA and DA′ are predicate domains on Ω and Ω′ respectively.

Then JAK is a distributionally sound abstraction of JCK if the following diagram commutes

for any initial concrete probability space (Ω,Σ, µ):

(Ω,Σ, µ) (Ω′,Σ′, µ′)

(DA,ΣDA , ν) (DA′ ,ΣDA′ , ν
′)

JCK

α α′

JAK

Distributional soundness requires that the probability of a predicate being true in the

abstraction is equal to the probability of the corresponding predicate being true in the

concrete program. This in turn implies that inference on the abstraction is sound for queries

that can be defined in terms of the predicates in DA′ . Specifically, we describe a class of

events for which we can perform inference using exclusively the abstraction:

Definition 5.11 (Corresponding events). Let (Ω,Σ, µ) be a probability space, (DA,ΣDA) be a

measurable space over predicate domain DA, and [·] be an abstraction function. Then for any
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abstract event eDA ∈ ΣDA, there exists a corresponding concrete event eΩ =
⋃
{[a]−1 | a ∈ eDA}.

We call the pair (eDA , eΩ) an event pair.

Formally, the abstraction can be used to reason about the concrete program by utilizing

event pairs:

Proposition 5.1 (Distributional soundness implies soundness for inference). Let JAK :

DA → DA′ be a distributionally sound abstraction of JCK : Ω→ Ω. Then for any initial proba-

bility space (Ω,Σ, µ), and any event pair (eDA′ , eΩ′), it is the case that Prν′(eDA′ ) = Prµ′(eΩ′),

where µ′ is the push-forward of µ through JCK and ν ′ is the push-forward of µ through JAK◦[·].

Graph-based abstractions often serve as a semantic tool, by asserting independences that

are assumed to hold in the distribution of interest. For probabilistic program abstractions,

distributional soundness guarantees that the abstraction is able to exactly capture the con-

crete program’s distribution over some key predicates:

Proposition 5.2 (Independence Assumptions). Let C be a concrete probabilistic program and

let JAK be a distributionally sound abstraction of JCK. Then any conditional independence

that holds between abstract events eDA ∈ ΣDA in A also holds between the corresponding

concrete events eΩ ∈ ΣΩ in C.

Distributionally sound abstractions are a powerful technique for reasoning about proba-

bilistic programs: they allow one to reason about a simplified program that only manipulates

a collection of predicates. The obvious question is: can we always construct such a distri-

butionally sound abstraction for an arbitrary choice of predicates? The following section

answers this question affirmatively.
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5.4 Constructing Sound Abstractions

The goal of this section is to provide a technique to automatically generate a distributionally

sound abstraction for a given concrete program and set of predicates. In particular, it

describes how to implement the “Abstraction” box in Figure 5.1. As input the algorithm

takes a concrete program C and a set of predicates Ψ of interest. Then, it constructs a

distributionally sound abstraction A, which consists of two parts: (1) a measurable function

JAK, and (2) an initial abstract probability space such that the diagram in Definition 5.10

commutes.

Given a user-provided C and Ψ it is not always possible to generate a distributionally

sound abstraction from DA to DA, because the predicates in Ψ might not be sufficiently

expressive to capture all the required concrete behavior in order to maintain the original

distribution. This is resolved by automatically identifying predicates called completions

(denoted Φ), which are added to Ψ, yielding a new set of predicates Ψ ∪ Φ. Then, we

generate a distributionally sound abstraction A with measurable function JAK : DΨ∪Φ → DΨ

and initial abstract probability space (DΨ∪Φ,ΣΨ∪Φ, ν). In the process of constructing the

initial probability space, we automatically identify sub-queries on the original probabilistic

program, which are used to provide the values of the parameters and which are the source

of decomposition.

First we give a criterion on abstractions that is sufficient to ensure distributional sound-

ness. Crucially, the criterion is solely a relationship between concrete and abstract states,

so it avoids directly reasoning about distributions.

Definition 5.12 (Tight abstraction). Let JCK : Ω→ Ω′ and, JAK : DA → DA′ be measurable

functions, where DA and DA′ are predicate domains. Then we say JAK is a tight abstraction

of JCK if for any c ∈ Ω, we have that:

[
JCK (c)

]
Ψ′

= JAK
(
[c]Ψ
)
. (5.1)

107



Theorem 5.1 (Tightness implies soundness). Let JCK : Ω → Ω′ and JAK : Ψ → Ψ′ be

measurable functions. Then, if JAK is a tight abstraction of JCK, then JAK is a distributionally

sound abstraction of JCK.

Proof of Theorem 5.1. Let µ : Σ → [0, 1] be an initial probability measure. The proof

will follow by deriving a probability measure on the abstract domain ν ′ : ΣDA → [0, 1] by

following both paths in the commutative diagram from Definition 5.10, and showing that

the result is the same for both paths.

Following the concrete path, we compute µ′ : Σ′ → [0, 1], which is the push-forward

µ′(c′) = µ(JCK−1 (c′)). Then, abstracting this measure, we have that

ν ′ = α′(µ′) = a′ 7→ µ′([a′]−1)

= a′ 7→ µ(JCK−1 ([a′]−1)). (5.2)

Note that [a′]−1 is an element of the σ-algebra and therefore the inverse JCK−1 ([a′]−1) is well

defined.

Next, following the abstract path, we first compute ν : ΣDA → [0, 1], which is ν = α(µ) =

a 7→ µ([a]−1). Then, we compute ν ′ using the push-forward of JAK:

ν ′ = a′ 7→ ν((JAK)−1(a′)) = a′ 7→ α(µ)((JAK)−1(a′))

= a′ 7→ µ([(JAK)−1(a′)]−1). (5.3)

To prove these ν ′ measures equivalent, it suffices to show that JCK−1 ([a′]−1) = [(JAK)−1(a′)]−1.

This follows from Definition 5.12 by taking the inverse of both sides.

With the guarantee that tight abstractions are sound, we now seek to generate a tight

abstraction. Unfortunately, it is not always possible to generate a tight abstraction for an
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arbitrary choice of predicates. The following example demonstrates this, and also shows how

we can find additional predicates called completions which, when added to the domain of

the abstraction, allow us to generate tight abstractions.

Example 5.2: Completing an abstract domain

Consider the program JCK (x) = x+1. A tight abstraction for the predicate domain over

the predicate {x is even} is:

JAK = {({x is even},¬{x is even}), (¬{x is even}, {x is even})}

Note here that we are describing the function JAK as a set of pairs, where the first

element denotes the domain and the second element denotes its corresponding output.

On the other hand, no tight abstraction exists for the predicate domain over the predicate

Ψ = {x < 0}: it is not possible to choose an element ofDA for JAK ({x < 0}) that satisfies

condition (1) in Definition 5.12. However, we observe that if we add the predicate

{x < −1} to the domain (but not to the range) of JAK, then we can build a tight

abstraction of JCK:

JAK = {({x < −1} ∧ {x < 0}, {x < 0}),

(¬{x < −1} ∧ {x < 0},¬{x < 0}),

(¬{x < 0},¬{x < 0})}

We call {x < −1} a completion predicate.

Completing the domain. Example 5.2 showed that adding completion predicates Φ

to Ψ enables the creation of a tight abstraction from DΨ∪Φ to DA. In general we say that Φ

completes Ψ with respect to Ψ′ and JCK if there exists a tight abstraction JAK : DΨ∪Φ → DA′ .

We call Ψ ∪ Φ the completed set of predicates and DΨ∪Φ the completed predicate domain.

Algorithm 3 automatically completes a set of predicates Ψ with respect to Ψ′ and JCK and
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generates a corresponding tight abstraction and initial probability space.2 The algorithm

relies on the standard notion of the weakest precondition (see Definition 5.8). We formally

state the correctness of Algorithm 3:

Theorem 5.2 (Domain completion). Let JCK : Ω → Ω′ be a measurable function and Ψ

and Ψ′ be sets of predicates, and let (Ω,Σ, µ) be an initial concrete probability space. Then

Algorithm 3 produces: (1) a tight abstraction JAK : DΨ∪Φ → DΨ′ of JCK over a completed

predicate domain DΨ∪Φ; (2) an initial probability space (DΨ∪Φ,ΣDΨ∪Φ
, ν), where ν is the

push-forward of µ through [·]Ψ∪Φ.

Proof of Theorem 5.2. We must show that (1) the generated measurable function JAK is

a tight abstraction of JCK, and (2) that the resulting probability space (ΩΨ∪Φ,ΣΨ∪Φ, ν) is

correctly pushed forward through [·]Ψ∪Φ. The second point clearly is true, since the loop

iterates over each element of DΨ∪Φ and updates ν accordingly, so we focus on the first point.

It is clear that JAK is a well-defined function, since each element of the domain is assigned

to some element of the co-domain in the loop. Then, we must show that the resulting function

is tight, i.e. that for any c ∈ Ω, it is the case that [JCK (c)]Ψ′ = JAK ([c]Ψ∪Φ).

For each a ∈ DΨ∪Φ, there is some aφ ∈ DΦ such that a implies aφ. For any concrete state

c such that [c]Ψ∪Φ implies aφ, by the definition of the weakest precondition, [JCK (c)]Ψ′ = a′

for some a′ ∈ DA′ . Then, we let JAK ([c]Ψ∪Φ) = a′, so by definition JAK is a tight measurable

function.

Discussion We provide some discussion of Algorithm 3. Then, we describe optimizations

that can improve the performance of the algorithm in practice. Algorithm 3 proceeds as

follows. First, on Line 3 the set of predicates Φ is generated using the weakest precondition.

2We describe Algorithm 3 as directly producing a measurable function, but the implementation adapts
standard predicate abstraction techniques [Ball et al., 2001, Holtzen et al., 2017] to generate an abstract
probabilistic program.
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Algorithm 3: Domain completion
Data: Probability space (Ω,Σ, µ), measurable function JCK, input predicates Ψ and

output predicates Ψ′

Result: A tight abstraction and a distributionally sound probability space
1 JAK← [] ; // New tight abstract function
2 ν ← [] ; // New probability measure

3 Φ←
{
WP(JCK , a′) | a′ ∈ DΨ′

}
;

4 for a ∈ DΨ∪Φ do
5 c′ ← JCK (c) for any c ∈ [a]−1;
6 Append (a, [c′]Ψ′) to JAK;
7 Append (a,Prµ(a)) to ν;
8 end
9 return (JAK , (DΨ∪Φ,ΣDΨ∪Φ

, ν));

By construction, there exists a tight measurable function from DΦ to DΨ′ . This fact relies

on the definition of the weakest precondition. Formally, for each φ ∈ DΦ, there exists some

a′ ∈ DΨ′ such that for any c ∈ [φ]−1, [JCK (c)]Ψ′ = a′.

Now, we must construct a tight measurable function on the domain DΨ∪Φ and compute

the appropriate sub-queries, both of which are done in the loop beginning on Line 4. For

each a ∈ DΦ∪Ψ, there is some φ ∈ DΦ such that a implies φ, which guarantees that we can

give a deterministic function JAK for a following the arguments in the previous paragraph.

Example 5.3: Running Algorithm 3.

Consider the program p = x←x+1 and the predicate Ψ = {x < 0}. We wish to evaluate

Algorithm 3 with input probability space (DΨ,Σ, µ) with initial and final predicate

domains over Ψ, i.e. DΨ = {{x < 0},¬{x < 0}}, as in Example 5.2. Then, Φ = {x <

−1}, and DΨ∪Φ = {{x < 0} ∧ {x < −1},¬{x < 0} ∧ {x < −1}, . . . }. Consider the case

a = {x < 0} ∧ {x < −1}. The algorithm will select a c ∈ [a]−1; for example −2. Then,

JAK (a) will be assigned to [−2 + 1]Ψ′ = [−1]Ψ′ = {x < 0}.

As described, this algorithm produces 2n completion predicates, where n is the size

of Ψ′. However, in practice various logical optimizations are used to reduce the number
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of completion predicates and sub-queries, such as exploiting logical implication between

predicates, pruning unsatisfiable configurations of predicates, and exploiting independence

between non-overlapping predicates [Ball et al., 2001, Holtzen et al., 2017].

5.4.1 Selecting Predicates

Thus far we have assumed the collection of predicates from which the abstraction is built is

provided a priori. In general, the problem of finding a useful set of predicates – i.e., one that

fruitfully decomposes the program – is hard. Nonetheless, even simple heuristics may work

well for many programs. For example, one approach is to include each Boolean expression

in the program as a predicate; this has the useful property of capturing the behavior of if

and observe statements, constructs that many existing probabilistic programming systems

struggle with due to their non-differentiability [Carpenter et al., 2016].

More generally, much of the insight from decades of research on constructing non-

deterministic predicate abstractions can be applied here, and generalizing these techniques

to the setting of probabilistic predicate abstractions is a direction for future research. For

instance, a common technique for predicate generation is counterexample-guided refinement,

which iteratively generates new predicates on demand, until the abstraction is rich enough

to either prove or disprove a query of interest [Clarke et al., 2003].

5.5 Decomposition via Abstraction

The theory and algorithm presented in the previous sections can be used to simplify inference

via a process called decomposition via abstraction. The process is as follows. First, we are

given a program C over which we wish to perform some inference query Pr(q | e). Then

we choose, or are provided with, a set of predicates Ψ, which must include the necessary

predicates for describing q and e. Next, we utilize Algorithm 3, which (1) generates a tight

abstract probabilistic program A, and (2) parameterizes the abstraction by performing sub-
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Figure 5.3: Experimental results.

queries to the original probabilistic program. To answer queries, we perform inference on

the abstraction A. This is sound due to Proposition 5.1.

Figure 5.3a shows the computational benefits of decomposition via abstraction on exact

and approximate inference tasks, which are elaborated on in the following sub-sections.

5.5.1 Exact Inference

This section asks the question: does decomposition improve the performance of exact infer-

ence? Many existing techniques for exact probabilistic program inference utilize path-based

decompositions [Gehr et al., 2016, Chistikov et al., 2015, Albarghouthi et al., 2017, Sankara-

narayanan et al., 2013]. Specifically, they operate by integrating the probability mass along

each path of a probabilistic program. This section shows how the decomposition technique

serves to complement path-based decompositions in the following way. For each probabilistic
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program, we used Psi [Gehr et al., 2016] to compute an inference query on (1) the concrete

program, and (2) the abstract program and the sub-queries. 3 The total time for each query

task is reported in Figure 5.3a. There are three experiments that each highlight an important

property of probabilistic programs that may be exploited via abstraction. In each case, it is

shown experimentally that the total time spent parameterizing and performing inference on

the abstraction is less than the time spent performing inference on the original concrete pro-

gram. Interestingly, we will see that different kinds of abstractions enable existing inference

algorithms to exploit different kinds of structure, including factorization and symmetry.

Multiplication This experiment uses a complete version of the example described in

Chapter 5.1 and illustrates how abstraction via decomposition can automatically perform

context-sensitive decomposition. Specifically, computing the sub-queries during the abstrac-

tion procedure can implicitly decompose a complex probability distribution, even when a

factor-graph representation is fully connected. Given the appropriate predicates, Algorithm 3

automatically constructs an abstraction and exploits these independence properties when

performing sub-queries.

Markov Chain Decomposition via abstraction can exploit conditional independences that

are typically unexploited by existing probabilistic programming inference algorithms. One

particular example is a Markov chain, a model which has exponentially many paths yet

retains linear-time exact inference Koller and Friedman [2009b]:

n1 n2 · · · nk

In order to compute Pr(n1 | nk), path-based inference techniques must integrate O(2k) paths,

which quickly becomes infeasible as the Markov chain grows. However, there is a natural

choice of predicates for decomposing such programs: simply including the guard of each if-

statement. By applying an optimized Algorithm 3 recursively on each if-statement in turn,

3Psi build 5334524fe was used for these experiments.
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we recover a linear-time inference algorithm for Markov-Chain-like probabilistic programs,

and more generally a join-tree-like inference algorithm for Bayesian-network-like programs.

For demonstration, consider performing inference on the following Boolean-valued Markov

chain, although strategy generalizes to more complex networks:

1 n1 ←flip(θn1);

2 n2 ←if n1 then flip(θn2|n1
) else flip(θn2|n1

)

3 · · ·

4 nk ←if nk−1 then flip(θnk|nk−1
) else flip(θnk|nk−1

);

First we generate an abstraction using the predicates {n1} and {nk}. The algorithm generates

(1) an abstract program which describes the relationship between these two predicates, and

(2) sub-queries necessary for computing the parameters in (1). The generated abstract

program is:

1 {n1} ←flip(θn1);

2 {nk} ←if {n1} then flip(θnk|n1
) else flip(θnk|n1

);

Next we must evaluate the sub-queries. The parameter θn1 is from the original program; it is

the prior on the first variable in the chain. The parameters θnk|n1 and θnk|n1 are completion

predicates, which must both be evaluated on the concrete program. To evaluate these sub-

queries, we can utilize abstraction recursively, this time using the predicates {n1}, {nk}, and

{nk−1}. The intermediate abstract program is:

1 {n1} ←flip(θn1);

2 {nk−1} ←if {n1} then flip(θnk−1|n1
) else flip(θnk−1|n1

);

3 {nk} ←if {nk−1} then flip(θnk|nk−1
) else flip(θnk|nk−1

);

The sub-query on Line 3 implicitly exploits the conditional independence between n1 and

nk−1 given nk. In this case, θnk|nk−1,n1 = θnk|nk−1,n1 , so Line 3 performs only one of these

equivalent queries. This is an optimization that Algorithm 1 would not do automatically, as it
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would naively consider all possible joint assignments to predicates on Line 3, and would thus

evaluate both of these equivalent sub-queries. In practice, identifying duplicate sub-queries

will be an important optimization. In this case probabilistic program slicing would discover

this equivalence [Hur et al., 2014]. The process of querying the concrete program recursively

utilizing abstraction may be repeated inductively for each sub-program. Ultimately, n sub-

programs will be generated, each with 2 paths, for a total of 2n sub-queries.

Note that this is quite similar to the way that Dice exploits factorization. However, Dice

does not require the user to select predicates.

Shuffle Recall from Chapter 4 that many intractable models can be rendered tractable by

exploiting the underlying symmetry of random variables. This example illustrates the po-

tential connections between probabilistic program abstraction and lifted inference. Consider

the following probabilistic program, which shuffles a small deck of cards:

1 deck←[1,2,3,4,5,6];

2 for idx in [0..5) {

3 j←uniformInt(idx, 6);

4 swap(deck[j], deck[i]);

5 }

We wish to compute Pr(deck[0] = 1), i.e. the probability that the top card of the deck is

still 1 after shuffling. There is a key symmetry that reduces the state space of this problem:

it is not necessary to model the distribution on all the cards. For answering this query, it

is sufficient to treat the cards as either “1” or “not 1”, since all cards that are not 1 are

exchangeable. Specifically, we can create an abstract program by changing the first line of

the original program:

1 deck←[{1},¬{1},¬{1},¬{1},¬{1},¬{1}];

Before this abstraction, there were 6! arrangements of cards; after this abstraction, there are
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only 6, drastically reducing the cost of inference.

Note that while this abstract program is distributionally sound, it is not a predicate

abstraction and thus not generated by Algorithm 3. Specifically, this abstraction is con-

structed by surgically abstracting portions of the concrete program, rather than by building

an abstraction from the ground up with predicates. Automating such abstractions is an

interesting direction for future work.

5.5.2 Approximate Inference

Many existing probabilistic programming systems rely on approximate inference methods

such as Markov-Chain Monte Carlo or variational approximations to perform inference [Car-

penter et al., 2016, Wood et al., 2014, Goodman et al., 2008, Tran et al., 2017]. These

techniques typically make assumptions about the underlying program structure in order

to perform well: for example, Hamiltonian Monte-Carlo will assume that the underlying

distribution is continuous, and variational inference assumes that the distribution can be

well-captured by the proposal family. In general, we may utilize decomposition via abstrac-

tion to apply approximate inference methods to evaluate the sub-queries for which they are

best suited.

Consider the following probabilistic program. We wish to infer the probability that x

is less than a constant k given three noisy observations about x (as notation, N (µ, σ) is a

normal distribution with mean µ and variance σ):

1 x←N(µ, σ);

2 y1 ←if(x<k){N(µy,σy)} else {N(µ′y,σ
′
y)};

3 y2 ←if(x<k){N(µy,σy)} else {N(µ′y,σ
′
y)};

4 y3 ←if(x<k){N(µy,σy)} else {N(µ′y,σ
′
y)};

5 observe(y1<c ∧ y2<c ∧ y3 ≥c);

6 return x<k;
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Approximate inference techniques such as Markov-Chain Monte-Carlo (MCMC) or direct

sampling struggle with this example: the distribution is multi-modal, non-differentiable, and

the a-priori probability of the observations being satisfied is low. This is evidenced by the

blue circle performance line in Figure 5.3b, which shows the performance of MCMC on the

un-abstracted model using WebPPL [Goodman and Stuhlmüller, 2014] with a fixed number

of samples.

The red performance line in Figure 5.3b shows the convergence of an abstracted model

generated by Algorithm 3 with respect to the predicates {x < k}, {yi < c}. This abstrac-

tion allows us to perform a hybrid inference procedure. Each sub-query (i.e., computing

Pr(x < k)) is differentiable and uni-modal, and can be easily evaluated using MCMC; in

this experiment, we evaluated each sub-query using a portion of a fixed total budget of

samples. Because the abstraction itself is a discrete Dice program, the final query on the

abstract program may be performed using enumeration, which can handle discontinuities

and low-probability evidence.

5.6 Related Work

Graph compilation. There exists a family of inference tools that compile probabilistic

programs to structured probabilistic models [Pfeffer, 2009, McCallum et al., 2009, Minka

et al., 2014]. Often, these tools are too coarse; the techniques presented here can exploit

more decompositions than a graph captures by exploiting nuanced program structure.

Program analysis. Some approximate inference tools integrate static information from

the program: for instance, Chaganty et al. [2013] and Nori et al. [2014] utilize symbolic

execution or weakest precondition computations to draw samples more efficiently from a

probabilistic program. However, they do not exploit statistical decompositions such as con-

ditional independence, and they perform their analyses over the entire program, rather than

performing sub-queries. Probabilistic abstract interpretation has been studied in prior work,
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but in all cases the soundness relationship is weaker than distributional soundness [Cousot

and Monerau, 2012, Monniaux, 2000, 2001].

5.7 Conclusion

This chapter addresses the question: what is a useful abstraction for a probabilistic program?

It showed that such a useful abstraction must be distributionally sound, and described the

theory and practice for constructing such abstractions. Then, it empirically validated this

approach on approximate and exact inference tasks.
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CHAPTER 6

Conclusion

This chapter will conclude the thesis with discussion of the contributions, future work and

open problems, and finally end with a broad future outlook.

6.1 Contributions & Outlook

There is no one-size-fits-all solution to probabilistic program inference. Each new approach

to inference reveals avenues for applying probabilistic programs in new places or designing

languages with richer and more expressive features. Long term, there remains many deep

foundational questions, and this chapter highlights a few of them that will require sustained

work.

6.1.1 Challenges and Opportunities in Probabilistic Programming Language

Design

Chapter 3 showed how to apply probabilistic programs effectively in discrete domains that

were previously out of reach. It showed that, by using a strategy of compiling programs to

tractable representations, it is possible to scale to large language models, verify properties

of large computer networks, compete with state-of-the-art Bayesian network solvers, and

compete with probabilistic model checkers [Holtzen et al., 2021]. However, Dice is in its

infancy: there are many substantive improvements that are necessary to make it a standard

tool in a programmer’s toolbox. I divide these improvements and future work goals into 3
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broad categories: usability, expressivity, and applications. I see these goals as challenges for

all current probabilistic programming languages, but I highlight specific aspects of them as

they relate to Dice.

6.1.1.1 Usability

Currently writing probabilistic programs – in any probabilistic programming languages – is

a very delicate task, and I would argue is still quite difficult for the average user. The exact

way in which the program is written can have drastic impacts on performance of inference,

and the inference algorithm itself can often be inscrutable from the perspective of the user.

Hence, there is a need for usable probabilistic program inference: probabilistic programming

systems that assist the user in designing programs for which inference scales.

A very similar usability challenge exists in traditional software design, and I advocate

that we should draw inspiration from techniques from this area. In particular, the areas of

compiler design and software debugging are two compelling areas that have many insights

for probabilistic programming language designers [Aho et al., 1986].

Probabilistic programming languages are in need dire need of compiler optimizations :

techniques for helping users write fast programs without needing deep knowledge of the

internal workings of the inference algorithm. For instance, Dice’s inference algorithm is

currently quite naive and eager in how it builds large BDDs: it will happily compile both

branches of an if-statement even if the guard makes one of those branches impossible.

A smart optimization here is branch elimination: if you can prove that a branch of an

if-statement is never exercised, then that BDD should never be compiled. This flavor of

probabilistic program optimization – and many others – will be critical for designing scalable

turn-key inference that does not depend on exactly how the user writes the program.

Aside from the scalability issue, probabilistic programs also suffer from a correctness

issue: currently there is almost no language support for programmers to track down and
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isolate errors in probabilistic programs. Ideas like probabilistic program debugging will be

critical long-term for designing usable systems that work in practice [Nandi et al., 2017].

6.1.1.2 Expressivity

One of the key arguments of this thesis is that expressivity is tightly coupled with scalability:

having a language with many features is not particularly compelling if inference for all but

the most simple programs is hopelessly intractable. I advocate for an approach to language

design that is in harmony with scalability of inference: when adding a feature, be cognizant

of how it impacts the underlying inference algorithm, and ideally characterize how it affects

inference using complexity-theoretic arguments.

Claim 1

Probabilistic modeling languages should be designed in concert with their inference

algorithms.

What does this mean in the context of Dice? It asks the question: how many language

features can we add while still remaining compatible with Dice’s BDD compilation strategy?

How far can we push BDDs? For instance, handling continuous random variables is an

extremely important concept for representing distributions, but they seem incompatible with

BDDs. However, consider the special case of a beta-prior on a Bernoulli variable: it is well-

known that this is a special case of Bayesian conjugacy, and there exist closed-form solutions

for the posterior of such instances. Can Dice exploit this to handle some limited forms of

continuity while maintaining its BDD backend?

Moreover, as we observed in Chapter 4, there are plenty of discrete distributions that

Dice cannot handle, but for which there exist efficient specialized inference strategies. These

are opportunities : how can we extend Dice to handle these kinds of distributions? For

instance, there are many specialized inference algorithms for handling distributions on per-

mutations, but Dice would struggle with these kinds of distributions since there is little
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independence [Huang et al., 2009]. Can Dice be extended with these ideas to handle these

new kinds of distributions?

6.1.1.3 Applications

There is a nearly infinite space of probabilistic programming language designs that trade off

all possible combinations of language features and inference algorithm possibilities. How can

we choose a particular point in this vast design space? I advocate that language design be

driven by applications :

Claim 2

Applications should drive the development of probabilistic modeling language enhance-

ments and features.

Dice was initially motivated by applications in language modeling, network verification,

and probabilistic graphical models. After it was initially developed, Dice found new ap-

plication in probabilistic model checking [Holtzen et al., 2021]. Each of these applications

motivated specific features and design decisions in Dice: for instance none of these problems

required continuous random variables or unbounded loops.

On the horizon, I see future applications of Dice in surprising areas like classical simula-

tion of quantum algorithms [Huang et al., 2021], and in less surprising but still challenging

areas such as linguistics and bioinformatics. To reach this goal, we will need to add new

features to Dice – for instance, forms of loops or the ability to represent complex amplitudes

instead of probabilities. Each of these features should be carefully considered in the context

of the kinds of inference algorithms that they would allow us to employ.

123



6.1.2 Symmetry and Lifted Inference

Chapter 4 gave a new foundation for exploiting symmetry in probabilistic graphical models,

but there is still much work to do before this foundation can be directly applied inside of

probabilistic program inference algorithms like Dice. I see two key challenges in bridging

this gap: (1) designing a tractable back-end that exploits symmetry and (2) integrating this

back-end with Dice, a property called compositionality.

6.1.2.1 New Tractable Back-ends

One of the key insights behind knowledge compilation – the philosophy that drives Dice

inference – is the relationship between fast inference and tractable representations : the key

idea that, if inference is fast, we can often capture this fast computation as a compact circuit

that has certain properties [Darwiche and Marquis, 2002]. This motivates the following claim:

Claim 3

If it is possible to perform fast inference, then we should be able to identify a tractable

probabilistic model that isolates the computation.

Given the foundation laid in Chapter 4, a future goal driven by the above claim is identifying

a tractable representation that captures the symmetry exploited by lifted inference. Van den

Broeck [2013] studied this very question in the context of first-order sentences, but the chal-

lenge remains open for other representations like propositional factor graph and probabilistic

programs.

Symmetry is just the beginning. There are countless other situations in which tractable

probabilistic reasoning is possible: for instance, determinantal point processes (DPPs) are

a well-known TPM that has been studied in the context of subset selection for machine

learning [Kulesza and Taskar, 2012]. Zhang et al. [2020] and Zhang et al. [2021] study the

124



problem of constructing a probabilistic circuit that captures the computation of a DPP: one

day this foundation may well yield a backend TPM that exploits the structure implied by a

DPP.

6.1.2.2 Compositionality of TPMs

Probabilistic programs are compositional by design: big programs are made up of smaller

programs. This compositionality must be reflected in the inference algorithm if there is

to be any hope of scaling to large probabilistic programs. Hence, there is a dire need of

compositional inference algorithms that allow inference results for smaller sub-programs to

be combined to give inference results about the entire program. For instance, in Dice, each

sub-program is associated with a BDD, which is itself a compositional object that can be

combined with other BDDs to give an inference result for the whole program.

As more TPMs are developed, the question of composing them with other TPMs becomes

increasingly pressing. This field is in its infancy and there are many important questions

about when it is possible to combine two different kinds of TPMs that have yet to be

properly posed. However, I will argue that probabilistic programming languages provide the

most compelling motivation for this study: compositionality is the essence of programming,

so compositionality of TPMs will be the essence of probabilistic program inference.

6.1.3 Abstraction and Distributional Soundness

The previous section posed several challenges in designing compositional tractable proba-

bilistic models motivated by the goal of combining inference results for sub-programs. One

avenue for this process of program decomposition was given in Chapter 5: breaking the

program up structurally into sub-components given by the program’s behavior on a set of

predicates.

There are a number of important avenues for extending this work so that it becomes an
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integral part of a probabilistic programming work-flow. The primary challenge is automating

the abstraction process. Currently the method in Chapter 5 requires the user to provide a

set of predicates, but this is quite unwieldy: methods from verification like counter-example

guided abstraction refinement [Clarke et al., 2000, McIver et al., 2005] could give avenues for

automating predicate abstraction construction.

6.2 Discussion

The idea of a probabilistic program is widely regarded to have originated in Kozen [1979]. In

this context, the goal was to verify and give a formal semantics to randomized algorithms.

However, since then, the scope of objectives for probabilistic programs has vastly widened

to include not only verifying randomized algorithms, but also data analysis and modeling

probabilistic agents and systems. I would like to conclude this thesis with a call to action

that touches on broader ideas. In particular I would like to close with some high-level calls to

the artificial intelligence and programming languages communities, bringing some attention

to the shared insights that will be necessary from each field in order to achieve progress. To

the PL community:

• Probabilistic program semantics are important, but they are not the only problem.

There are many interesting classes of languages that do not have particularly interesting

semantics but have very interesting inference algorithms.

• Think beyond sampling for probabilistic program inference: compositional exact in-

ference has a very “PL” flavor and there are many opportunities still for applying

programming language ideas in this direction.

• Formalization of probabilistic program inference is in its infancy: there is much work

to do here still.

To the AI community:

126



• Think about compositionality: how can we combine different kinds of modeling families

in natural ways? Different kinds of inference algorithms?

• Think about formalization and verification: how can we prove inference algorithms

correct? Programs should have semantics.

Ultimately I argue that ideas from both of these communities are necessary for designing

strategies for scaling inference by exploiting program structure.
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APPENDIX A

Proofs

Three steps to a proof: (1) Start in the

right place; (2) End in the right place;

(3) Don’t skip any steps.

Anonymous

A.1 Chapter 3

A.1.1 Important Lemmas

Lemma A.1 (Independent Conjunction). Let α and β be Boolean sentences which share no

variables; we call such sentences independent. Then, for any weight function w, WMC(α ∧

β, w) = WMC(α,w)× WMC(β, w).

Proof. The proof relies on the fact that, if two sentences α and β share no variables,

then any model ω of α ∧ β can be split into two components, ωα and ωβ, such that

ω = ωα ∧ ωβ, ωα ⇒ α, and ωβ ⇒ β, and ωα and ωβ share no variables. Then: WMC(α ∧

β, w) =
∑

ω∈Mods(α∧β)

∏
l∈ω w(l) =

[∑
ωα∈Mods(α)

∏
a∈ωα w(a)

]
×
[∑

ωβ∈Mods(β)

∏
b∈ωβ w(b)

]
=

WMC(α,w)× WMC(β, w).

Proposition A.1 (Inclusion-Exclusion). For any two formulas ϕ1 and ϕ2 and weight func-

tion w, WMC(ϕ1 ∨ ϕ2, w) = WMC(ϕ1, w) + WMC(ϕ2, w) − WMC(ϕ1 ∧ ϕ2, w). Note the important

mutual exclusion case when ϕ1 ∧ ϕ2 = F.
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A.1.2 Correctness of Expression Compilation

Lemma A.2 (Value Correctness). For any values v and v′ of type τ , JvK (v′) = WMC(v
τ⇐⇒

v′, ∅).

Proof. By induction on τ :

• τ = Bool. Then case analysis:

– JTK (T) = 1 = WMC(T⇔ T, ∅)

– JTK (F) = 0 = WMC(T⇔ F, ∅)

– JFK (F) = 1 = WMC(F⇔ F, ∅)

– JFK (T) = 0 = WMC(F⇔ T, ∅)

• Inductive step: τ = τ1 × τ2. Then,

J(v1, v2)K ((v′1, v
′
2)) = Jv1K (v′1)× Jv2K (v′2)

= WMC(v1
τ1⇐⇒ v′1, ∅)× WMC(v2

τ1⇐⇒ v′2, ∅) Induction Hyp.

= WMC(v1
τ1⇐⇒ v′1 ∧ v2

τ1⇐⇒ v′2, ∅) Independent Conj.

= WMC((v1, v2)
τ1×τ2⇐===⇒ (v′1, v

′
2), ∅).

Lemma A.3 (Typed Substitution). For any values v, vx : τ , it holds that (v
τ⇐⇒ vx) =

(Fτ (x)
τ⇐⇒ v)[x

τ7−→ vx].

Proof. By induction on τ :

• τ = Bool. Then, (v ⇔ vx) = (v ⇔ x)[x 7→ vx] = (v ⇔ FBool(x))[x 7→ vx].
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• τ = τ1 × τ2. Then, let v = (vl, vr) and vx = (vlx, v
r
x). Then,

(vl, vr)
τ1×τ2⇐===⇒ (vlx, v

r
x) = (vl

τ1⇐⇒ vlx) ∧ (vr
τ2⇐⇒ vrx)

= (vl
τ1⇐⇒ Fτ1(xl))[xl

τ17−→ vlx] ∧ (vr
τ2⇐⇒ Fτ2(xr))[xr

τ17−→ vrx] Ind. Hyp.

= (vl
τ1⇐⇒ Fτ1(xl) ∧ (vr

τ2⇐⇒ Fτ2(xr)))[xl
τ17−→ vlx][xr

τ17−→ vrx]

= ((vl, vr)
τ1×τ2⇐===⇒ Fτ1×τ2(x))[x

τ1×τ27−−−→ (vlx, v
r
x)].

Lemma A.4 (Typed Correctness Without Procedures). Let e be a Dice expression without

procedure calls. Let {xi : τi} ` e : τ  (
.
ϕ, γ, w). Then for any values {vi : τi} and v : τ , we

have that Je[xi 7→ vi]K (v) = WMC
((

(v
τ⇐⇒ ϕ) ∧ γ

)
[xi

τi7−→ vi], w
)
.

Proof. The proof is by structural induction on the syntax of Boolean Dice programs. First,

we prove that the theorem holds for the non-inductive terms:

• e = T and e = F follow directly from Lemma A.2.

• e = flip θ. Then, Γ ` flip θ : Bool (f , T, w) for a fresh f . Then, WMC(f ∧ T, w) = θ =

Jflip θK (T) and WMC(f, w) = 1− θ = Jflip θK (F).

• e = x. Then, Γ ` x : τ  (
.
ϕ, T, ∅), and let vx : τ be the value substituted for x.

r
x[x

τ7−→ vx]
z

(v) = JvxK (v)

= WMC((vx
τ⇐⇒ v) ∧ T, ∅) Lemma A.2

= WMC
(

((Fτ (x)
τ⇐⇒ v) ∧ T)[x

τ7−→ vx], ∅
)

Lemma A.3

• e = fst x. Assume Γ(x) = τ1 × τ2. Then, Γ ` fst x : τ1  (Fτ1(xl), T, ∅). Let vx =
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(vlx, v
r
x) : τ1 × τ2 be the value substituted for x. Then,

r
fst x[x

τ×τ ′7−−→ vx]
z

(v) =
q
vlx

y
(v)

= WMC((vlx
τ⇐⇒ v) ∧ T, ∅) Lemma A.2

= WMC
((

(Fτ (xl)
τ⇐⇒ v) ∧ T

)
[x

τ×τ ′7−−→ vx], ∅
)

Lemma A.3

An analogous argument holds for snd x.

• e = (x1, x2). Then, Γ ` (x1, x2) : τ1 × τ2  ((Fτ1(x1), Fτ2(x2)), T, ∅). Let v1 : τ1 and v2 : τ2

be the value substituted for x1 and x2 respectively, and let v = (vl, vr). Then,

r
(x1, x2)[x1

τ17−→ v1, x2
τ27−→ v2]

z
((vl, vr))

= J(v1, v2)K (vl, vr)

= WMC
(

(v1
τ1⇐⇒ vl) ∧ (v2

τ2⇐⇒ vr) ∧ T, ∅
)

Lemma A.2

= WMC
((
Fτ1(x1)

τ1⇐⇒ vl
)
∧
(
Fτ2(x2)

τ2⇐⇒ vr
)
∧ T[x1

τ17−→ v1, x2
τ27−→ v2], ∅

)
Lemma A.3

Now for the inductive terms:

• e = let e1 in e2. Assume Γ ` e1 : τ1  (
.
ϕ1, γ1, w1) and Γ ∪ {x : τ1} ` e2 : τ2  

(
.
ϕ2, γ2, w2). For notational simplicity, assume that the substitution [xi

τi7−→ vi] has been

applied to .
ϕ1, γ1,

.
ϕ2, γ2, and that all weighted model counts are performed with the weight
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w1 ∪ w2. Then,

J(let x = e1 in e2)[xi 7→ vi]K (T)

=
∑
v

Je1[xi 7→ vi]K (v)× Je2[xi 7→ vi, x 7→ v]K (T)

=
∑
vx∈τ1

WMC
(
(
.
ϕ1

τ1⇐⇒ vx) ∧ γ1

)
× WMC

(
((

.
ϕ2

τ2⇐⇒ v) ∧ γ2)[x
τ17−→ vx]

)
Ind. Hyp.

=
∑
vx∈τ1

WMC
(

(
.
ϕ1

τ1⇐⇒ vx) ∧ γ1 ∧
(
(
.
ϕ2

τ2⇐⇒ v) ∧ γ2

)
[x

τ17−→ vx]
)

Indep. Conj.

= WMC
( ∨
vx∈τ1

(
.
ϕ1

τ1⇐⇒ vx) ∧ γ1 ∧
(
(
.
ϕ2

τ2⇐⇒ v) ∧ γ2

)
[x

τ17−→ vx]
)

Mut. Excl.

= WMC
(

((
.
ϕ2

τ2⇐⇒ v2) ∧ γ1 ∧ γ2)[x
τ17−→ .

ϕ1]
)

• e = observe g. Assume Γ ` g : Bool  (ϕ, T, w). This case relies on interpreting the

semantics of Jobserve g[xi 7→ vi]K (v) as Jg[xi 7→ vi]K (T)× JTK (v). Then,

Jobserve g[xi 7→ vi]K (v) = Jg[xi 7→ vi]K (T)× JTK (v)

= WMC(ϕ ∧ T, w)× WMC(v ∧ T). Ind. Hyp.

= WMC(ϕ ∧ v, w). Indep. Conj.

• e = if g then eT else eE. Assume Γ ` g : Bool  (ϕg, T, wg), Γ ` eT : τ  

(
.
ϕT , γT , wT ), Γ ` eE : τ  (

.
ϕE, γE, wE). Again assume for notational simplicity that

all weighted model counts are performed with the weight function wg ∪ w2 ∪ wg and that
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the substitutions [xi
τi7−→ vi] have been performed on the compiled formulas. Then,

Jif g then eT else eEK (v)

= JgK (T)× JeT K (v) + JgK (F)× JeEK (v)

= WMC(ϕg ∧ T)× WMC((
.
ϕT

τ⇐⇒ v) ∧ γT ) + WMC(ϕg ∧ T)× WMC((
.
ϕE

τ⇐⇒ v) ∧ γE) Ind. Hyp.

= WMC(ϕg ∧ (
.
ϕT

τ⇐⇒ v) ∧ γT ) + WMC(ϕg ∧ (
.
ϕE

τ⇐⇒ v) ∧ γE) Indep. Conj.

= WMC((ϕg ∧ (
.
ϕT

τ⇐⇒ v) ∧ γT ) ∨ (ϕg ∧ (
.
ϕE

τ⇐⇒ v) ∧ γE)) Mut. Excl.

= WMC
((

(ϕg∧
τ

.
ϕT )

.
∨
τ
(ϕg∧

τ

.
ϕE)

)
τ⇐⇒ v ∧

(
(ϕg ∧ γT ) ∨ (ϕg ∧ γE)

))

A.1.3 Theorem 3.2

First we extend Lemma 3.3 to show that Boolean function call compilation is correct. First

we need some preliminaries. The semantics and compilation of an expression can only be

compared if the function context they are compiled in is compatible:

Definition A.1 (Table Compatibility). Let Φ be a compiled function table, T be a function

table, and Γ be a type environment. Then we say T and Φ are compatible if for any function

identifier x, where Γ(x) = τ1 → τ2 and Φ(x) = (x,
.
ϕ, γ, w), it holds for any argument value

vx : τ1 and value v : τ2, T (x)(vx)(v) = WMC
(
((

.
ϕ

τ2⇐⇒ v) ∧ γ)[x
τ17−→ vx], w

)
.

Then, we can extend Lemma 3.3 to assume compatible tables:

Theorem A.1 (Boolean Correctness with Procedure Calls). Let e be a Dice expression with

function calls, T and Φ be compatible tables, let {xi : τi},Φ ` e : τ  (ϕ, γ, w). Then, for

any values {vi : τi} and v : τ , we have that Je[xi 7→ vi]K (v) = WMC
((

(ϕ
τ⇐⇒ v)∧γ

)
[xi

τi7−→ vi]
)
.

Proof. The proof is identical to the proof of Lemma 3.3 except for the addition of the function

call syntax, which we prove here.

133



Assume e = x1(x2) and assume Φ(x1) = (xarg,
.
ϕ, γ, w). Assume (

.
ϕ
′
, γ′, w) = RefreshFlips(

.
ϕ, γ, w)

Then, x1(x2) (
.
ϕ[xarg 7→ x2], γ[xarg 7→ x2], w). Then the result follows directly from table

compatibility:

Jx(vx)K (T) = T (x)(vx)(T)

= WMC
(
((

.
ϕ

τ2⇐⇒ v) ∧ γ)[x
τ17−→ vx], w

)
Table Compatibility

= WMC
(
((

.
ϕ
′ τ2⇐⇒ v) ∧ γ′)[x τ17−→ vx], w

)
Defn. of RefreshFlips

Now we are ready for the main theorem:

Theorem A.2 (Typed Program Correctness). Let p be a Dice program Γ ` p : τ  (
.
ϕ, γ, w).

Then for any v : τ , we have that JpK (v) = WMC((
.
ϕ

τ⇐⇒ v) ∧ γ, w).

Proof. • Base case: p = e. Assume Γ,Φ • e : τ  (
.
ϕ, γ, w). Then, J•eK (v) = JeK (v) =

WMC((
.
ϕ

τ⇐⇒ v) ∧ γ, w), by Theorem A.1.

• Inductive step: The program is of the form p1 = fun x1(x2) {e} p2.

Assume that Γ,Φ ` fun x1(x2) {e} : τ1 → τ2  (
.
ϕf , γf , wf ). Let T ′ = T ∪ {x1 7→ JfuncK}

and Φ′ = Φ ∪
{
x1 7→ (x2,

.
ϕf , γf , wf )

}
. Then, Theorem A.1 guarantees that T ′ and Φ′ are

compatible tables. Let Γ ∪ {x1 7→ τ1 → τ2},Φ′ ` p2 : τ  (
.
ϕ, γ, w). Then,

Jfun x1(x2) {e} p2K
T (v) = Jp2K

T ′ (v)

=WMC
(( .
ϕ

τ⇐⇒ v
)
∧ γ, w

)
By Ind. Hyp.

Finally we prove Theorem 3.1, restated here for convenience:
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Theorem A.3 (Compilation Correctness). Let p be a Dice program and ∅, ∅ ` p : τ  

(
.
ϕ, γ, w). Then:

• JpKA = WMC(γ, w)

• for any value v : τ , JpKD (v) = WMC((
.
ϕ

τ⇐⇒ v) ∧ γ, w)/WMC(γ, w).

Proof. Let {}, {} ` p : τ  (
.
ϕ, γ, w). Then,

JpKA =
∑
v

WMC((
.
ϕ

τ⇐⇒ v) ∧ γ, w) Theorem 3.2

= WMC

(∨
v

((
.
ϕ

τ⇐⇒ v) ∧ γ), w

)
Mut. Excl.

= WMC(γ, w).

Then, JpKD (v) = JpK (v)/
∑

v′ JpK (v′) = WMC((
.
ϕ

τ⇐⇒ v)∧γ, w)/WMC(γ, w) by Theorem 3.2 and

the above argument.

A.2 Chapter 4

Theorem 4.7. The proof will proceed as follows. First, we will split up Pr into two distribu-

tions: a between-orbit distribution, which describes the probability of transitioning between

two orbits, and a within-orbit distribution, which is uniform. We will bound the total varia-

tion distance for these two quantities, and combine these results to get a bound on the total

variation distance on the original distribution using the following lemma:

Lemma A.5. Let µ(x, y) and ν(x, y) be two distributions on X×Y . Let µx(x) =
∑

y µ(x, y),

defined similarly for ν. If for all (x, y) ∈ X × Y it holds that Prµ(y | x) = Prν(y | x), then

dTV (µ, ν) = dTV (µx, νx).
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Proof.

dTV (µ, ν) =
1

2

∑
x,y

|Prµ(x, y)− Prν(x, y)|

=
1

2

∑
x,y

|Prµ(y | x)Prµx(x)− Prν(y | x)Prνx(x)| Chain rule

=
1

2

∑
x,y

Prµ(y | x)× |Prµx(x)− Prνx(x)| Since 0 ≤ Prµ(y | x) = Prν(y | x) ≤ 1

=
1

2

∑
x

(
|Prµx(x)− Prνx(x)| ×

∑
y

Prµ(y | x)︸ ︷︷ ︸
=1

)

=dTV (µx, νx).

Now we begin the main proof. Let Pr(x) be a G-invariant distribution on a set Ω, and let

P t
x(y) be the probability of transitioning from a state x to a state y after t steps under the

orbit-jump proposal. We can write Pr(x) as a product of a between-orbit (PrB) and within-

orbit (PrW ) distribution, where PrB is a distribution on Ω/G and PrW is a distribution on

Ω:

Pr(x) = Pr(x)× |Orb(x)|︸ ︷︷ ︸
PrB(σ(x))

× 1

|Orb(x)|︸ ︷︷ ︸
PrW (x|σ(x))

(A.1)

I.e., for some o ∈ Ω/G, for some x ∈ σ−1(o), PrB(o) = Pr(x) × |Orb(x)|. Similarly, the

distribution P t
x can be divided into a between-orbit and within-orbit component. We define

a new Markov chain B between orbits that has the following transition rule from some initial

state σ(x) ∈ Ω/G:

1. Sample x′ ∼ PrΩ/G

2. Accept σ(x′) with probability Pr(x′)×|Orb(x′)|
Pr(x)×|Orb(x)| .
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Then, for some y ∈ Ω and ŷ = σ(y),

P t
x(y) = Bt

σ(x)(ŷ)× PrW (y | ŷ), (A.2)

where we used the important fact that the orbit-jump proposal that defines P t
x is uniform

within orbits. Now we can rewrite the total variation distance that we wish to upper-bound:

dTV
(
P t
x(y),Pr(y)

)
= dTV

(
Bt
σ(x)(ŷ)× PrW (y | ŷ),PrB(ŷ)× PrW (y | ŷ)

)
(A.3)

Now using Lemma A.5 we can simplify the bound on the total variation distance to be

the total variation distance of the between-orbit distributions:

dTV (P t
x(y),Pr(y)) = dTV (Bt

σ(x)(ŷ),PrB(ŷ)). (A.4)

Now, our goal is to upper-bound dTV (Bt
σ(x),PrB). To do this we will use a standard

coupling argument. A coupling is a way to run two copies of a Markov chain P at the same

time with the following properties:

1. Both copies in isolation evolve according to P ;

2. If both copies are in the same state, they remain in the same state.

Two coupled chains can be used to acquire upper-bounds on the total variation distance

of a Markov chain by upper-bounding the probability that a Markov chain starting from two

initial distributions – one in its stationary distribution and the other in an arbitrary location

– will coalesce into the same state:

Lemma A.6 ([Levin and Peres, 2017] Theorem 5.4). Let P be a transition matrix on state-

space Ω with stationary distribution π. Let {(Xt, Yt)} be coupled chains that evolve according
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to P of length t, starting from an initial state x ∈ Ω and y ∼ π. Then,

dTV (P t
x, π) ≤ Pr(Xt 6= Yt). (A.5)

Now we define the coupled chains {(Xt, Yt)}. Let X0 ∈ Ω/G be an arbitrarily chosen

initial element, and let Y0 ∼ PrB be an element chosen according to PrB. At each time step

t, choose a state o ∈ Ω/G uniformly at random. Then, both chains attempt to transition to

o, using the standard metropolis correction criteria to decide whether or not to accept o. In

order to guarantee coalescence, if both chains are in the same state, then we define them

to accept or reject a new state together. Intuitively, these two chains simulate the Markov

chain B starting from different initial states, where they both share a common source of

randomness. Then by Lemma A.6,

dTV (Bt
X0
,PrB) ≤ Pr(Xt 6= Yt). (A.6)

This probability can be upper bounded as follows. There exists a (possibly non-unique)

maximum probability state M ∈ Ω/G:

M = σ
(

arg max
x

Pr(x)× |Orb(x)|
)
.

If both Markov chains uniformly choose M to transition to, then by the Metropolis rule

they will both accept and thus coalesce. Since the proposal is uniform, Pr(Xt 6= Yt) is

upper-bounded by the probability of not transitioning to M after t steps, so:

Pr(Xt 6= Yt) ≤
(
|Ω/G| − 1

|Ω/G|

)t
, (A.7)

which gives the first bound in the theorem. This quantity can be upper bounded by a
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parameter ε > 0 representing the chosen error tolerance. Solving for t:

t ≥ log(ε)×
[
log

(
|Ω/G| − 1

|Ω/G|

)]−1

Using the identity:

log

(
x− 1

x

)
= −

(
1

x
+

1

2x2
+ · · ·

)
,

we then have that:

t ≥ log(ε−1)× |Ω/G| ≥ log(ε−1)×
(

1

|Ω/G|
+

1

2|Ω/G|2
+ · · ·

)−1

, (A.8)

which gives the second bound and concludes the proof.
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