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Non-reciprocal Supratransmission in Mechanical Lattices with Non-local
Feedback Control Interactions

Jack E. Pechac1 and Michael J. Frazier1, a)

Department of Mechanical and Aerospace Engineering, University of California, San Diego, California 92093,
USA

(Dated: 22 January 2021)

We numerically investigate the supratransmission phenomenon in an active non-linear system modeled by
the 1D/2D discrete sine-Gordon equation with non-local feedback. While, at a given frequency, the typical
passive system exhibits a single amplitude threshold marking the onset of the phenomenon, we show that
the inclusion of non-local feedback manifests additional thresholds that depend upon the specific boundary
from which supratransmission is stimulated, realizing asymmetric (i.e., non-reciprocal) dynamics. The results
illustrate a new means of controlling non-linear wave propagation and energy transport for, e.g., signal
amplification and mechanical logic.

I. INTRODUCTION

In the context of elastodynamics, phononic crystals
and metamaterials1,2 – collectively phononic materials
– are two classes of materials whose artificial
microstructure provides for the management of
mechanical waves. For linear, small-amplitude
waves, the microstructure design regulates internal
scattering and resonance phenomena such that the
Fourier components of a disturbance penetrate the
material within only particular frequency ranges
and in all or specific directions; outside these pass
bands, i.e., within the band gaps, wave propagation
is prohibited, the associated wave energy decaying
exponentially in space. This filtering capability has
inspired proposals for a variety of phononic material
applications3–5. Nevertheless, non-linearities inherent to
the microstructure enable a unique dynamic response
for large amplitude waves. Supratransmission describes
the spontaneous flow of energy within the band gap
via the non-linear (non-topological) modes of a medium
activated by a boundary driving of sufficient amplitude6.
The effect is a generic property of non-linear systems,
having been shown to emerge from both integrable
and non-integrable governing equations7–12 even when
accounting for dissipative effects13 which more readily
extinguish their linear counterparts. This may be
exploited, e.g., for the transmission of binary, non-linear
signals in lightly-damped systems14, as well as for the
digital amplification of exceptionally weak signals for
sensing12,15,16. While these and other studies have
promoted an understanding of amplitude-dependent
energy transmission, investigations of systems with a
directional response, beneficial in applications for greater
control of energy flow, are few.

Reciprocity describes the symmetry of wave
transmission between two points in space: if a source and
receiver exchange positions, the corresponding frequency
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response function is identical even in the presence of
inhomogeneities and losses17. In recent years, inspired
by the concept of electric18 and optical19,20 diodes
and motivated by their application in communications,
sensing, and the directional control of energy flow,
significant effort has been directed toward the discovery
and study of non-reciprocity in other domains of
physics. Regarding phononic materials3,21–24, inherent
non-reciprocity has been demonstrated in a number
of systems utilizing unique and intersecting strategies
for microstructure design, i.e., internal architectures
characterized by internal motion25, time-dependent26–28

and topological29–31 properties, and non-linearity32–34.
The focus of these and parallel studies is linear
wave manipulation. Transition waves – non-linear
(topological) modes characteristic of multi-stable
systems which propagate by liberating stored elastic
energy – demonstrate non-reciprocity as well35,36;
however, they are energetically limited to one-time
operation or short propagation distances37. In the
context of supratransmission, Wu et al.38 exploited a
spatial asymmetry in the metamaterial construction to
elicit non-reciprocal transmission.

While most of the previous references employ
a passive material platform, a small but growing
collection25,27,28,30,31,33 investigate linear wave
propagation within in an active setting. Recently,
feedback control integrated directly into the material
architecture has opened the door to more complex
interactions unavailable in traditional structures and
have been shown to be capable of eliciting non-reciprocal
behavior31,39. Uniquely, rather than injecting energy
into (or extracting from) the system by an external
means, feedback involves observing the state of the
system and then, following predetermined relations,
generating a response that alters the present state.
As a result the material behavior is inherent rather
than a function of environmental conditions (e.g.,
temperature, external fields, pumps, actuators which
behave independently of the system). At present, the
supratransmission phenomenon in feedback mediated
non-linear networks has yet to be investigated.

mailto:mjfrazier@ucsd.edu


2

In this article, we present an approach to asymmetric
(i.e., non-reciprocal) wave propagation in non-linear
mechanical networks with a focus on energy transmission
within the band gap. Unique in the supratransmission
literature, these lattice materials incorporate active
elements which impart a local, non-conservative forcing
proportional to non-local degrees-of-freedom. The
result of this construction is that the onset of the
supratransmission phenomenon is not only a function of
the driving parameters (i.e., frequency and amplitude)
but the specific network boundary at which the excitation
is applied and from which wave energy is transmitted
to the medium, establishing the asymmetric dynamic
behavior.

The article is organized as follows. Section II presents
the non-linear governing equation of a representative,
one-dimensional mechanical system with feedback and
formulates the corresponding dispersion relation of
linear, small-amplitude dynamics. In Sec. III, we analyse
the supratransmission characteristics of the system,
demonstrating asymmetric performance. We also present
results for a two-dimensional network. Section IV
concludes the article with a summary of the main results
and proposals for future research directions.

II. THEORY

A. Model

To demonstrate the feedback-mediated asymmetric
energy transmission, we initially consider the non-linear
dynamics of a one-dimensional (1D) periodic network of
coupled pendula, a modified version of that analyzed
by Geniet and Leon6 (Fig. 1a). The pendulum motif
is composed of a ring of radius, `, and mass, m,
concentrated at a single point along the circumference.
The pendulum rotates (in-plane), ϕ, about its center
which, in the presence a gravitational field of strength
g, adjusts the local potential as ψ = mg`(1 −
cosϕ), which describes a non-convex energy landscape
responsible for the network non-linearity (Fig. 1b).
Moreover, the potential renders the system multi-stable,
possessing several energetically degenerate ground states
at ϕ = 2πp, p ∈ Z. Utilizing elastic bands to
manifest an effective (torsional) stiffness, c = k`2,
the network emerges via nearest-neighbor coupling.
Uniquely, a feedback mechanism imposes an additional,
non-conservative influence on each ϕj which, from
myriad possible descriptions, we relate to non-local
variables; specifically, the torque, fc, applied to ϕj via
feedback is proportional to the relative rotation of its
nearest neighbors, i.e., fc = s(ϕj+1 − ϕj−1), where s
denotes the proportional control gain. Physically, the
feedback mechanism may emerge from active components
which sense the non-local displacement and then,
through a connected micro-controller and actuator, apply
the calculated torque. For example, each pendulum may

connect to a potentiometer which converts the angular
displacement to a predetermined voltage drop measured
by a programmable micro-controller. Dependent upon
the voltage associated with ϕj+1 and ϕj−1, the
micro-controller regulates a voltage sent to drive a DC
motor which applies a torque, fc, to the pendulum at
site j. For an arbitrary pendulum in the 1D network,
the non-dimensional governing equation has the form

ϕ̈j + c̄(2ϕj − ϕj+1 − ϕj−1)

+ s̄(ϕj+1 − ϕj−1) + r̄ sinϕj = 0,
(1)

where c̄ = cτ2/m, s̄ = sτ2/m`2, and r̄ = gτ2/m`
are dimensionless parameters. The period of oscillation
for an isolated pendulum, τ = 2π

√
`/g, is a natural

choice for the characteristic time and the normalizing
parameter defining the dimensionless temporal variable,
t̄ = t/τ . Absent the feedback mechanism (i.e., s̄ = 0),
Eq. (1) has a form that arises in several domains of
science40–42; however, the sine-Gordon equation with
feedback appears unique to the metamaterial described
in this article.

For a system of N pendula, Eq. (1) forms the basis
of a system of equations, Mü + (K + S)u + fNL = 0,
where M, K, and S, respectively, are the mass, stiffness,
and feedback matrices; u and fNL are, accordingly, the
displacement and non-linear force vectors. While the
mass and stiffness matrices are symmetric, S 6= ST,
which renders the system non-Hermitian and supportive
of non-reciprocal dynamics. Alternatively, K + S may
emerge from a system in which the spring interactions,
when deformed, manifest unequal forces at each end.
Moreover, from the continuum limit of Eq. (1) with
expansion ϕj±1 → ϕ± aϕ,x +a2ϕ,xx /2,

ϕ,tt−c̄a2ϕ,xx +2s̄aϕ,x +r̄ sinϕj = 0,

it is apparent that the activity either injects or extracts
energy (spatially) from the system depending on the
sign of s̄ϕ,x. Consequently, for a positive s̄ and, e.g.,
an exponentially decreasing (increasing) displacement
function, the active term tends to support (dampen) the
motion of ϕ. Odd spatial derivatives of higher order
would have a similar effect.

B. Dispersion

The proposed system supports a number of
amplitude-dependent solutions owing to the non-linear
on-site potential. For the particular case of
small-amplitude motion, the Fourier components of an
initially compact disturbance disperse as the propagation
speeds depend on the corresponding wavelength. To
establish the dispersion relation, we first linearize Eq.
(1) about a (stable) equilibrium configuration and then
theoretically extend the pendulum network to infinity
through the application of Bloch boundary conditions
on a single unit cell; thus, the dynamics of such a
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FIG. 1. Pendulum Network with Feedback. (a) One-dimensional network of rotating pendula with elastic bands providing
nearest-neighbor coupling and a feedback mechanism imposing a local influence which is proportional to the non-local
displacements, fc = s(ϕj+1 − ϕj−1). (b) The on-site, multi-stable potential which manifests the system non-linearity. (c)
The complex dispersion of small-amplitude waves of prescribed non-dimensional frequency, ωτ , with real and imaginary
wavenumbers, κR (solid) and κI (dotted), respectively. The feedback effect shifts the attenuating structure about κI = 0,
provoking non-reciprocal wave propagation.

system are described by ϕj = Φei(κja−ωτt̄) with κ and
ω, respectively, the spatial and temporal frequencies.
Applied to Eq. (1), the Bloch wave solution entails the
following dispersion relation

−ω2τ2 + c̄(2− γ − 1/γ) + s̄(γ − 1/γ) + r̄ = 0, (2)

where γ = eiκa. The complex band structure emerges
from the solution, γ(ωτ), which contains the real and
imaginary components of the normalized wavenumber,
κa = κRa + iκIa: κRa = Re[−iln(γ)], specifying
the spatial oscillation of displacement, and κIa =
Im[−iln(γ)], expressing the spatial attenuation of the
amplitude.

III. RESULTS

A. Simulation

In the following, we numerically investigate the
dynamics of a representative non-linear network with
non-local feedback. To this end, we consider a finite,
non-linear system of N pendula subject to a prescribed
harmonic boundary displacement, ϕj = Φ sin(ωτ t̄),
where ωτ is set within the band gap and Φ varies between
simulations. The left (L) and right (R) boundaries
are distinguished, respectively, by j = 1 and j = N .
The system response is quantified by the mean energy
transmitted to the network by the driven boundary over

an n ∈ Z+ multiple of the excitation period, T :

Ein =
c̄

nT

∫ nT

0

(ϕ2 − ϕ1)ϕ̇1dt̄, (3)

for the left boundary; for the right boundary, substitute
the indices in Eq. (3) as {1, 2} → {N,N − 1}.
For sufficiently small amplitudes, the system exhibits
a linear response where the energy supplied to the
system, ultimately, returns to the driving due to Bragg
reflection, causing Ein to vanish. Conversely, beyond
a critical amplitude, Φc, the driving excites non-linear
modes which penetrate the system, resulting in Ein > 0,
signifying a spontaneous energy flow. While a number of
methods have been developed to predict the amplitude
threshold7,43–45, in this article, we intend to introduce
the concept of active lattices to the supratransmission
literature and initiate exploration of its effects.

Simulations evolve Eq. (1) for a network of N = 1000
coupled pendula with c̄ = 4 and r̄ = 1 for n = 100
periods. In order to minimize reflections from the free
boundary (thus, mimicking an infinite medium), we
apply a linearly increasing viscous damping, η̄ϕ̇j , to the
final 800 sites with max(η̄) = 1/10. In order to avoid
the shock wave generated by vanishing initial velocities,
the simulations adopt an inaugural velocity profile
matching the (linear) evanescent solution at the driving
frequency, i.e., ϕ̇j = −ωτΦ cos[(j − 1)κRa]e−(j−1)κIa. In
simulation, each boundary is excited in turn, revealing a
direction-specific energy transmission for s̄ 6= 0.



4

FIG. 2. Asymmetric Supratransmission in One Dimension (color online). (a) Energy transmission as a function of the driving
amplitude. For supratransmission, the passive system (s̄ = 0) exhibits a common threshold amplitude, Φc = 1.77, when
excited from either the left or right boundary; conversely, the active system (s̄ = 1/3) expresses two thresholds, ΦL

c = 1.41 and
ΦR

c = 2.44, when excited from the left and right, respectively. (b) The separation of ΦL
c and ΦR

c over a range of s̄. (c) The
normalized displacement profile and energy distribution for an active system (s̄ = 1/100) at various amplitudes. For each row,
the left and right boundaries are subject to the same harmonic excitation, the amplitude of which may be above/below the
critical amplitude to trigger supratransmission at the particular boundary.

B. Supratransmission: One Dimension

Figure 1c graphs the dispersion diagram for instances
of passive (s̄ = 0) and active (s̄ = 1/3) feedback
control, each exhibiting a single pass band separating
two band gaps. Apparently, for the reference case
where s̄ = 0, the diagram is symmetric about κ =
0, implying that wave propagation is independent of
direction. Harmonic boundary driving in the pass band
transmits wave energy unabated into the network; in
the band gap, Bragg reflection confines energy to the
boundary as indicated by κI 6= 0. Activating the
feedback mechanism modifies the dispersion. While the
real component of the band structure, κR(ωτ), remains
symmetric about κ = 0, the imaginary component,
κI(ωτ), shifts primarily along the wavenumber axis,
breaking the diagram symmetry. This implies that
wave propagation, including the supratransmission
phenomenon, is direction dependent under non-local
feedback control. Analyzing small-amplitude waves,
Rosa and Ruzzene31 also observed non-reciprocal
behavior via a feedback effect which was attributed
to a complex temporal frequency whose imaginary

component resulted in a propagation direction dependent
exponential growth or decay. This article describes a
similar effect for non-linear waves which is attributed to
a shift in the imaginary wavenumber component of the
linear wave dispersion.

Figure 2a plots the energy transmission efficiency of a
harmonic boundary driving within the lower band gap
(ωτ = 0.9) in the pendulum network as a function of
the driving amplitude for two values of the control gain,
s̄ = 0 and s̄ = 1/3. In general, below a critical amplitude,
Φc, the linear, small-amplitude response of the system
dominates as the total energy remains concentrated near
the driven boundary. As the driving amplitude increases,
however, higher harmonic modes – the multiples of the
driving frequency which appear in the pass band –
generated by burgeoning non-linear effects propagate into
the system, contributing to a relatively small increase in
Ein. For the reference case (s̄ = 0), beyond the critical
amplitude predicted by Geniet and Leon6, Φc = 1.77, the
attenuating displacement profile of the linear solution is
unstable46,47; instead, non-linear modes generated at the
driven boundary subsequently propagate into the system,
signified by the sudden increase in the transmitted
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FIG. 3. Dispersion (color online). (a) The complex dispersion surfaces for a passive, square lattice of pendula with near-neighbor
interactions, including the propagating (yellow) and attenuating (red) modes. (b) The circular contour formed by the
cross-section of the attenuating surface at band-gap frequency ωτ = 0.9. Active feedback, i.e., s̄1,2 6= 0, shifts the attenuation
contour (red, dashed) with respect to the passive result (black), enabling direction-dependent non-reciprocal wave propagation.

energy, i.e., supratransmission. As the band diagram
of the reference system is symmetric (Fig. 1c), the
critical amplitude for supratransmission is identical for
left- and right-boundary driving. However, setting s̄ 6= 0
activates the feedback mechanism and adjusts the band
diagram as described previously – for s̄ = 1/3 and
ωτ = 0.9, forward and backward waves are attenuated
according to κIa = 0.150 and κIa = 0.317, respectively
– which suggests that Φc differs for the same excitation
on opposite boundaries. The simulation results depicted
in Fig. 2a confirm that the amplitude thresholds for
supratransmission in the feedback network do, indeed,
differ: ΦL

c = 1.41 and ΦR
c = 2.44, respectively, for left-

and right-boundary driving. Figure 2b shows how the
two thresholds diverge as a function of s̄.

The supratransmission demonstrated in the previous
results transmits the energy of a signal with band-gap
frequency through a non-linear system. To further
emphasize this phenomenon, Fig. 2c displays snapshots
of the left and right boundary regions of the active
pendula network (s̄ = 1/100) subject to the same
harmonic driving with various amplitudes. For
visualization purposes, the instantaneous displacement in
the boundary region is normalized such that max(|ϕj |) =
1. The superposed color indicates the corresponding
energy distribution over the same region, Hj =
1
2 ϕ̇

2
j + 1

2 c̄(ϕj − ϕj−1)2 + ψ(ϕj). As expected, for
small amplitudes, the displacement profile exhibits
an exponential decay and energy concentrates at the
boundary. In the second row of Fig. 2c, the excitation
amplitude exceeds the supratransmission threshold for
only the left boundary driving; consequently, the
evanescent response is unstable and energy propagates

away from the boundary. The same excitation
amplitude does not exceed the critical value for the
right boundary; therefore, apart from the aforementioned
higher harmonics lying within the pass band, the energy
remains localized there.

C. Supratransmission: Two Dimensions

The pendulum network can be extended to obtain
a two-dimensional (2D) periodic system, e.g., a square
lattice with nearest-neighbor coupling. Accordingly,
the non-local feedback applied to each ϕj,k depends on
additional terms, fc = s̄1(ϕj+1,k − ϕj−1,k) + s̄2(ϕj,k+1 −
ϕj,k−1) where s̄1 and s̄2 are gain parameters. Considering
a Cartesian frame, indices j and k designate sites
along the x and y axes, respectively, with the indices
increasing with the relevant coordinate. Following the
same normalization scheme as before, the governing
equation for a generic unit cell is

ϕ̈j,k + c̄(4ϕj,k − ϕj+1,k − ϕj−1,k − ϕj,k+1 − ϕj,k−1)

+ s̄1(ϕj+1,k − ϕj−1,k) + s̄2(ϕj,k+1 − ϕj,k−1)

+ r̄ sinϕj,k = 0.

(4)

Linearizing Eq. (4) and applying the Bloch solution,
ϕj,k = Φei(κxja+κyka−ωτt̄), yields the dispersion relation

−ω2τ2 + c̄(4− γx − 1/γx − γy − 1/γy)

+ s̄1(γx − 1/γx) + s̄2(γy − 1/γy) + r̄ = 0,
(5)

where γx = eiκxa and γy = eiκya. Figure 3a plots
the complex dispersion surfaces for the passive system
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FIG. 4. Asymmetric Supratransmission in Two Dimensions (color online). (a) Finite square lattice with periodic boundary
conditions (blue) and a harmonically exciting a line of nodes (red). (b) The threshold amplitude Φc versus orientation angle
θ reveals the directional impact of activity for a different combinations of the feedback parameters (red) relative to a passive
system (black).

(s̄1 = s̄2 = 0), revealing a single propagating surface
separating two attenuating surfaces within frequency
band gaps. Since, as before, our focus is in the lower
band gap where the real component of the wavevector
vanishes, we substitute γx = e−κI,xa and γy = e−κI,ya

in Eq. (5) such that, for a given ωτ in the lower
band gap, the κI,x and κI,y which satisfy the relation
trace the circular contour of the attenuating surface.
Specifically, at the band-gap frequency ωτ = 0.9, the
diagrams in Fig. 3b compare the attenuating contours
of various active systems with that of the passive lattice.
Apparently, similar to the earlier 1D system, in the 2D
network, activity causes the attenuating contour to shift
relative to the passive reference centered at (κx, κy) =
(0, 0), indicating the broken symmetry of the system’s
small-amplitude dynamics which we expect to persist at
larger amplitudes.

To investigate asymmetric supratransmission in the
2D setting, we track the energy transmitted to a
square lattice of finite dimension by a set of co-linear
sites oscillating in phase at a band-gap frequency (Fig.
4a). Beyond a critical amplitude, the driven boundary
generates a wave front which propagates away from the
driving and normal to it, i.e., at an angle θ with respect
to the x-axis. Thus, the directional dependence of the

supratransmission phenomena may be investigated by
adjusting the slope of the driven boundary. To this
end, we modify Eq. (3) to accommodate the additional
interactions of the 2D system under consideration:

Ein =
c̄

nT

∑
m,n

∑
r,s

∫ nT

0

(ϕr,s − ϕm,n)ϕ̇m,ndt̄, (6)

where {m,n} collects the indices of driven sites and {r, s}
the indices of their nearest neighbor(s). Thus Eq. (6) is
the time-averaged energy transmitted to the lattice by
the driven boundary.

Simulations utilize a square lattice with
nearest-neighbor interactions to develop a rectangular
system of approximately 23a × 800a in dimension with
the driven sites along one of the smaller dimensions and
periodic boundary conditions along the two extended
dimensions. For c̄ = 4 and r̄ = 1, the excitation
frequency ωτ = 0.9 lies within the band gap. For n = 25
periods, we evolve the system following Eq. (4) from
an initial velocity, ϕ̇j,k = −ωτΦ cos(κRd)eκId, where d
is the perpendicular distance from the driven boundary
to the (j, k)th site and κ = κR + iκI is the complex
wavenumber in that direction.
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For a number of orientations, θ, we determine the
critical driving amplitude above which Ein sharply
increases. The panels in Fig. 4b display the directional
dependence of the threshold amplitude for different
combinations of the feedback parameters, s̄1 and s̄2.
For the passive system, we determine a θ-independent
threshold amplitude of Φc = 1.77 which is identical
to that of the 1D passive system. However, following
the wavenumber contours in Fig. 3b, activity causes
the threshold amplitude to shift relative to its passive
value, the magnitude of the shift dependent upon θ.
For the active scenario (s̄1, s̄2) = (1/8, 0), the minimum
amplitude for supratransmission decreases for waves
propagating to the right (i.e., |θ| < π/2); increases for
waves traveling to the left (i.e., |θ| > π/2). The effect
is maximized for θ = 0 where the wave front aligns with
the gradient, ϕ,x, which determines the strength of fc.
Conversely, the threshold is unchanged at θ = ±π/2
where the effect of ϕ,x and, therefore, fc vanish. Figure
4b displays additional orientation-amplitude results for
systems with alternative feedback definitions which may
be similarly understood.

IV. CONCLUSION

To summarize, we numerically investigated the
non-linear supratransmission phenomenon in active
1D/2D periodic networks characterized by a non-local
feedback control. We found that such a feedback
adjusts the imaginary wavenumber component across the
whole of the frequency range, although asymmetrically,
such that the otherwise reciprocal dynamics becomes
direction-dependent. In the context of band gap energy
transmission in finite, one-dimensional networks, the
critical amplitude for stimulating supratransmission via
boundary excitation differs for each boundary. Similarly,
for a two-dimensional system, the amplitude threshold
changes with boundary orientation. These results
demonstrate an alternative, extremely tunable approach
toward non-reciprocal dynamics and applications9,14.

There are several research directions for subsequent
studies. The influence of anisotropy and lattice type,
especially those with multiple elements per lattice site
(e.g. Lieb, Kagome, etc.), on the directionality of
supratransmission is worth investigating. While we have
considered a proportional controller with displacement
inputs, a natural extension of the present work would
explore controllers of derivative- and integral-type to
determine the characteristics of each feedback archetype,
independently followed by in combination. In addition,
feedback definitions involving spatial and temporal rates
have yet to be explored.
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