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Abstract: Objective biomarkers are crucial for early diagnosis to promote treatment and raise survival
rates for diseases. With the smallest non-coding RNAs—piwi-RNAs (piRNAs)—and their transcripts,
we sought to identify if these piRNAs could be used as biomarkers for colorectal cancer (CRC).
Using previously published data from serum samples of patients with CRC, 13 differently expressed
piRNAs were selected as potential biomarkers. With this data, we developed a machine learning (ML)
algorithm and created 1020 different piRNA sequence descriptors. With the Naïve Bayes Multinomial
classifier, we were able to isolate the 27 most influential sequence descriptors and achieve an accuracy
of 96.4%. To test the validity of our model, we used data from piRBase with known associations
with CRC that we did not use to train the ML model. We were able to achieve an accuracy of 85.7%
with these new independent data. To further validate our model, we also tested data from unrelated
diseases, including piRNAs with a correlation to breast cancer and no proven correlation to CRC. The
model scored 44.4% on these piRNAs, showing that it can identify a difference between biomarkers
of CRC and biomarkers of other diseases. The final results show that our model is an effective tool for
diagnosing colorectal cancer. We believe that in the future, this model will prove useful for colorectal
cancer and other diseases diagnostics.

Keywords: piRNA; machine learning; colorectal cancer; diagnostics

1. Introduction

Piwi-interacting RNAs, also known as piRNAs, are RNAs with 24–31 nucleotides
found in the germline of many species. They are the largest class of non-coding RNAs
(functional RNAs that are not translated into a protein). Studies have shown the role of
piRNAs as biomarkers and therapeutic targets for cancer patients [1]. An example of this
is piR-36712, whose concentration is negatively correlated with tumor sizes within breast
cancer [2]. The functions of piRNAs are still not entirely understood, and they are actively
studied as biomarkers in neurodegenerative disease and cancer, including colorectal cancer
(CRC) [1].

CRC is currently the third most common cancer diagnosis between men and women,
making it a vital area of study [3]. Studies show that CRC is much easier to treat when it
is detected early, with more than a 90% 5-year survival rate at a localized stage compared
to less than 10% if it has spread to distant parts of the body [3]. Thus, within the field of
CRC, detecting biomarkers has been vital to the advancement of treatment within patients.
In this paper, we will explore predicting CRC with these biomarkers through machine
learning (ML) techniques to aid with the diagnostics of future patients.

Several studies have been conducted in the field of piRNAs and CRC. Qu and col-
leagues compared piRNAs in healthy individuals, patients with CRC stages I and II, and
patients with CRC stages III and IV [4]. Using serum samples from the patients, a re-
verse transcription quantitative real-time PCR was used to create biomarker panels. These
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panels were then compared and five differently expressed piRNAs were elucidated as
potential biomarkers [4]. Weng and colleagues conducted a similar study using small RNA
sequencing [5]. They investigated several piRNAs as possible prognostic biomarkers [5].

Using such research, validated piRNA biomarkers have been suggested. With these
data, we have created descriptors for ML models to predict other probable piRNA relations
with colorectal cancer. Due to the limited data availability in the piRNA field, we decided
to use sequences and their descriptors to predict associations.

piRNAs were initially assumed to be only involved with the reproductive system.
However, it was recently realized that various piRNAs tend to have abnormal expressions
in other tissues. Recently it was discovered that piRNA can exist not only in the germline,
but in other cancer tissues and body fluids [6]. piRNAs have been proven to correlate with
tumor cell invasion into distant parts of the body (metastasis). Upregulations of piRNA-823,
for example, are associated with distant metastasis in gastrointestinal cancers, including
CRC [7].

In other cancers such as breast cancer, piRNAs have been found within tumor cells,
indicating association. Although their exact role is not known, because of their irregular
expression, piRNAs are thought to have regulating abilities for cancer development and
progression [8].

Li and colleagues elucidated irregular piRNA levels in lung-cancer patients as well
and found a correlation between piRNA-651 and tumor growth. Using 78 separate lung-
cancer patients, they used quantitative real-time PCR to detect the levels of piRNA-651 in
tumor cells [9].

Furthermore, Cheng and colleagues concluded that piRNA-651 could be involved
with the development of gastric cancer itself. They observed an upregulation of piRNA-651
in cancerous tissues compared to that in noncancerous tissues. The upregulation of piRNA-
651 was, in fact, found to be correlated with all gastric, lung, mesothelium, breast, liver,
and cervical cancer cell lines. The authors also wrote that multiple piRNAs were found
upregulated in these cells, suggesting a significant correlation between piRNA and cancer
cells [10].

Liu and colleagues concluded that the dysregulation of piRNA was associated with
several diseases, especially cancer tumors and reproductive system diseases [1]. All of these
authors discussed that more needs to be known to find the direct correlation and effect that
piRNAs have on cancer; however, there is an obvious pattern between piRNAs in cancerous
or reproductive diseases. This could be both a dysregulation and an upregulation of a
specific piRNA, suggesting that piRNAs could be directly related to tumor development.
piRNAs are directly involved in cancer development. In neuroblastoma, piRNA-39980 tar-
gets the JAK3 gene, causing cell proliferation and increasing metastasis [11]. Alternatively,
some piRNAs serve as anticancer molecules. For example, piRNA DQ594040 targets the
TNFSF4 gene and inhibits bladder cancer cell proliferation [11].

Several research papers have been published with ML-based diagnostics using small
non-coding RNAs as biomarkers. Kang and colleagues, for example, used ML methods for
miRNA–disease associations for three types of cancer. They developed a set of descriptors,
which were used for disease classification [12]. Xu and colleagues used target genes and
pathways to create ML models for Alzheimer’s disease diagnostics [13]. The use of machine
learning to explore biomarkers for diseases through small non-coding RNAs has grown in
popularity in recent years. In this study, we used similar strategies for CRC diagnostics
through piRNAs.

2. Results

The results of different model classification algorithms were evaluated based on the
confusion matrices. The True Positive Rate (TPR), the False Positive Rate (FPR), the preci-
sion, the recall, the F-Measure, the Matthews correlation coefficient (MCC), the area under
the receiver-operating characteristic (ROC) curve (AUC), and the area under the precision–
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recall curve (AUPRC) were all considered (Table 1). These statistical characteristics are
derived from the confusion matrix.

Table 1. Performance comparison for multiple different classifiers on the dataset.

Classifier TPR FPR Precision Recall F-
Measure MCC AUC AUPRC

Multilayer Perceptron 100% 0% 100% 100% 100% 100% 100% 100%
Naïve Bayes Multinomial 96.40% 3.10% 96.70% 96.40% 96.40% 93.10% 99.50% 99.50%

Random Forest 92.90% 8.20% 93.70% 92.90% 92.80% 86.40% 99.00% 99.10%
AdaBoostM1 85.70% 15.50% 86.30% 85.70% 85.60% 71.70% 89.20% 90.30%

Decision Table 82.10% 19.60% 83.50% 82.10% 81.80% 65.10% 71.50% 71.40%

2.1. Performance Comparison for Different Classifiers through Cross-Validation

Accuracies of 10-fold cross-validation for several best classifiers with the developed
ML model are shown in Figure 1. The best-performing models reached over 90% accuracy
with the 10-fold cross-validation—ML algorithms such as the multilayer perceptron (MLP)—
100%, Naïve Bayes Multinomial—96%, and Random Forest—93%, gave perfect values for
all derivatives of the confusion matrix (Table 1). Accuracies for the best classifiers are
illustrated in Figure 1. The ROC curves (Figure 2) demonstrate a very high performance
of classifiers on the classification thresholds. Overall, the MLP shows the best results in
cross-validation, but the Naïve Bayes Multinomial gives the most accurate results in the
independent data testing (Figure 3). The entire dataset including all selected and random
descriptors was used for cross-validation and resulted in Figures 1 and 2.

Molecules 2024, 29, x FOR PEER REVIEW 3 of 11 
 

 

2. Results 
The results of different model classification algorithms were evaluated based on the 

confusion matrices. The True Positive Rate (TPR), the False Positive Rate (FPR), the preci-
sion, the recall, the F-Measure, the Matthews correlation coefficient (MCC), the area under 
the receiver-operating characteristic (ROC) curve (AUC), and the area under the preci-
sion–recall curve (AUPRC) were all considered (Table 1). These statistical characteristics 
are derived from the confusion matrix. 

Table 1. Performance comparison for multiple different classifiers on the dataset. 

Classifier TPR FPR Precision Recall F-Measure MCC AUC AUPRC 
Multilayer Perceptron 100% 0% 100% 100% 100% 100% 100% 100% 

Naïve Bayes Multinomial 96.40% 3.10% 96.70% 96.40% 96.40% 93.10% 99.50% 99.50% 
Random Forest 92.90% 8.20% 93.70% 92.90% 92.80% 86.40% 99.00% 99.10% 
AdaBoostM1 85.70% 15.50% 86.30% 85.70% 85.60% 71.70% 89.20% 90.30% 

Decision Table 82.10% 19.60% 83.50% 82.10% 81.80% 65.10% 71.50% 71.40% 

2.1. Performance Comparison for Different Classifiers through Cross-Validation 
Accuracies of 10-fold cross-validation for several best classifiers with the developed 

ML model are shown in Figure 1. The best-performing models reached over 90% accuracy 
with the 10-fold cross-validation—ML algorithms such as the multilayer perceptron 
(MLP)—100%, Naïve Bayes Multinomial—96%, and Random Forest—93%, gave perfect 
values for all derivatives of the confusion matrix (Table 1). Accuracies for the best classifi-
ers are illustrated in Figure 1. The ROC curves (Figure 2) demonstrate a very high perfor-
mance of classifiers on the classification thresholds. Overall, the MLP shows the best re-
sults in cross-validation, but the Naïve Bayes Multinomial gives the most accurate results 
in the independent data testing (Figure 3). The entire dataset including all selected and 
random descriptors was used for cross-validation and resulted in Figures 1 and 2. 

 
Figure 1. Accuracies of ML model derived through cross-validation for several classifiers.  Figure 1. Accuracies of ML model derived through cross-validation for several classifiers.



Molecules 2024, 29, 4311 4 of 10Molecules 2024, 29, x FOR PEER REVIEW 4 of 11 
 

 

 
(a) 

 
(b) 

 
(c) 

 
(d) 

Figure 2. ROC curves for ML classifiers for the testing data set: (a) Multilayer Perception; (b) Naïve 
Bayes Multinomial; (c) Random Forest. (d) Color interpretation of ROC curves. Color represents 
threshold value set to get the best pair of true FPR/TPR point. 

Figure 2. ROC curves for ML classifiers for the testing data set: (a) Multilayer Perception; (b) Naïve
Bayes Multinomial; (c) Random Forest. (d) Color interpretation of ROC curves. Color represents
threshold value set to get the best pair of true FPR/TPR point.



Molecules 2024, 29, 4311 5 of 10
Molecules 2024, 29, x FOR PEER REVIEW 5 of 11 
 

 

 
Figure 3. Diagnostic accuracies that were obtained from independent CRC-related data. 

2.2. Comparison of Different Classifiers’ Performance on Independent CRC-Related Data 
To test the validity of our model on an independent new dataset, we used data from 

piRBase with known associations with CRC. All the piRNAs in this dataset were not pre-
sent in the piRNAs used for training a model [14]. Taking seven new piRNAs with corre-
spondence to CRC (piR-000335, piR-005132, piR-015481, piR-021520, piR-015551, piR-
020980, and piR-002587), we calculated all the corresponding sequence descriptors and 
tested them in the trained model. The resulting accuracies were calculated by taking the 
total number of predicted biomarkers over all the piRNAs tested in the independent da-
taset. Figure 3 summarizes the diagnostic accuracy for the new independent data of the 
best-performing classifiers used from previous data to train the model. These accuracies 
show that our model can make diagnostics with independent data related to CRC. 

2.3. Comparison of Different Classifiers’ Performance on Independent CRC-Unrelated Data 
To further test the validity of our model, we ran data from piRBase with known as-

sociations to breast cancer to analyze the data with no connection to CRC [14]. Taking nine 
piRNAs (piR-932, piR-31106, piR-34377, piR-34736, piR-35407, piR-36026, piR-36249, 
piR-36318, and piR-36743), we once again calculated all the corresponding sequence de-
scriptors to test them in the trained model (Figure 4). Overall, these obtained accuracies 
are much lower than the accuracies of the classifiers with the initial CRC-related data, 
showing that the model can detect the difference between data that have a correlation 
(Figure 3) and data that are not correlated to CRC (Figure 4). 

Figure 3. Diagnostic accuracies that were obtained from independent CRC-related data.

2.2. Comparison of Different Classifiers’ Performance on Independent CRC-Related Data

To test the validity of our model on an independent new dataset, we used data from
piRBase with known associations with CRC. All the piRNAs in this dataset were not
present in the piRNAs used for training a model [14]. Taking seven new piRNAs with
correspondence to CRC (piR-000335, piR-005132, piR-015481, piR-021520, piR-015551, piR-
020980, and piR-002587), we calculated all the corresponding sequence descriptors and
tested them in the trained model. The resulting accuracies were calculated by taking
the total number of predicted biomarkers over all the piRNAs tested in the independent
dataset. Figure 3 summarizes the diagnostic accuracy for the new independent data of the
best-performing classifiers used from previous data to train the model. These accuracies
show that our model can make diagnostics with independent data related to CRC.

2.3. Comparison of Different Classifiers’ Performance on Independent CRC-Unrelated Data

To further test the validity of our model, we ran data from piRBase with known
associations to breast cancer to analyze the data with no connection to CRC [14]. Taking
nine piRNAs (piR-932, piR-31106, piR-34377, piR-34736, piR-35407, piR-36026, piR-36249,
piR-36318, and piR-36743), we once again calculated all the corresponding sequence de-
scriptors to test them in the trained model (Figure 4). Overall, these obtained accuracies are
much lower than the accuracies of the classifiers with the initial CRC-related data, showing
that the model can detect the difference between data that have a correlation (Figure 3) and
data that are not correlated to CRC (Figure 4).
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3. Discussion

Our data were gathered from a study that isolated potential biomarkers for CRC using
quantitative real-time PCR (qRT-PCR). The authors [3] extracted piRNAs from the blood,
saliva, mucus, and/or tissue of patients. With this data, we developed the ML model
for the diagnostics of CRC. Using our ML model for unknown data with the same set of
descriptors as we used in training the piRNA dataset, we can find that the patient could
have CRC and suggest further testing.

CRC remains to be one of the world’s deadliest diseases. To date, the distant stage
of CRC only has less than a 10% 5-year survival rate [3]. CRC is usually found through a
colonoscopy procedure where the rectum and entire colon are observed under a colono-
scope [3,15]. However, many post-procedure complications may arise due to the nature
of the procedure, and for many at-risk groups such as pregnant women, people with
pre-existing diseases, or the elderly, colonoscopies can cause dehydration or electrolyte
problems [16]. CRC research also shows that patients younger than 50 who are diagnosed
with CRC tend to have a more advanced stage of the disease [17]. Colonoscopies are
traditionally conducted after the age of 50, making the screening and risk assessment in
younger patients less common and harder to find earlier. Thus, finding reliable biomarkers
for CRC is crucial.

piRNAs, which are found in somatic cells, can maintain germline DNA integrity,
silence transcription, and suppress the translation of cancer-related genes [18]. As such,
piRNA can be used as a biomarker of cancers including CRC.

This paper shows the importance of biological data for the early detection of CRC and
as an early diagnosis biomarker. Observing the piRNAs found with a correlation with CRC,
we first created a multinomial model that achieved over 96% accuracy of CRC elucidation.
The sequence descriptors we generated were determined through initial selection, and
our models could become a basis for future research into the field of piRNAs for multiple
diseases. This model was then tested using independent testing data and achieved over
an 85% accuracy of CRC elucidation with the independent CRC data and under 50% for
non-CRC data related to breast cancer.

It is important to address the limitations of this study. For example, the lack of
information currently available on piRNAs, such as gene targets, can indicate that this
model can be improved in the future. However, with the patterns detected from the piRNA
sequence descriptors, we can conclude that ML is an effective method for the use of piRNAs
as biomarkers for diagnostics.

4. Materials and Methods
4.1. Classification Model

Utilizing known associations with piRNA and CRC, we developed a classification
model (Figure 5) using Waikato Environment for Knowledge Analysis (WEKA) soft-
ware [19]. We selected 13 different piRNAs that have shown a correlation to CRC [4]
(piR-001312, piR-004150, piR-004153, piR-009295, piR-014620, piR-016677, piR-017716, piR-
017723, piR-017724, piR-020326, piR-020365, piR-020388, and piR-020829), and then we
extracted 13 random piRNAs from the piRNA database piRNAdb [14]. The ML model was
then created using sequence descriptors like the set used in another study [12]. Additional
descriptors were added for motifs in the first and last 5 nucleotides of piRNAs because it is
known that these molecules have differences in starting and ending sequences. Figure 5
displays the preparation of the piRNA descriptor table with associated piRNA sequences,
filtered by piRNA reads per million (RPM), fold change (FC) values, and random piRNA
sequences. This table is then associated with several classifiers to build an ML model to
predict if piRNAs can be used for the diagnostics of CRC. We compared these classifiers to
find the most accurate models (Figure 5).
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subjects. Also, the equivalent number of random piRNAs was selected. The sequences were extracted
from both datasets and used for the creation of sequence descriptors. These descriptors were used for
the development of an ML model using various classifiers. The ML model with the best accuracy
was used for further exploration of new data.

4.2. Sequence Descriptor System

We analyzed “reads per million (RPMs) clean tags” of piRNAs in control individuals
and CRC patients and their fold changes (FC) values. We extracted ratios of RPMs from
2 different groups, group A—CRC patients in stages I and II, and B—CRC patients in stages
III and IV, with a combined total of 220 CRC patients [4]. When we analyzed the RPM and
FC values of the expressions of piRNA in CRC patients related to healthy individuals, we
found that the FC values are surprisingly very close for all piRNAs in the A and B groups.
Eventually, we used the list of 13 piRNAs, having significant FC in both groups.

Alongside selected CRC-related piRNAs, 13 non-associated piRNAs were randomly
selected from piRNAdb [14]. We selected these piRNAs using a random number generator
without repetitions. The 13 associated values were labeled “selected”, while the non-
associated values were labeled “random”. A set of descriptors was calculated from the
piRNA sequences found in piRNAdb [14]. We used a table of sequence descriptors applied
in similar studies with small non-coding RNAs for cancer classification [12].
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We developed a Python script to evaluate all input sequences, calculate the numerical
values related to nucleotides motifs, symmetry, and repetitions, and used them as sequence
descriptors, which included: the number of all nucleotides in piRNA, the numbers of each
separate nucleotide (A, U, C, and G in this case), the frequency of each nucleotide, the
mean mass of each nucleotide, the number of hydrogen bonds, and symmetry, which was
calculated by comparing the sequence with a reflected version of the sequence and counting
the number of nucleotides that were the same. Other values were created to calculate every
2-, 3-, and 4-base pair motifs found in the entire piRNA sequence [12]. The same strategy
was used to compare the first 5- and the last 5-base pairs, respectively. Each pattern we
searched for was then used as a descriptor for the ML model. In total, 1020 descriptors
were created. This system can be replicated in any other study relating to small non-coding
RNAs and disease classification.

The Python script is available upon request.
We used the InfoGainAttributeEval function to select the sequence descriptors that

contribute the most to disease classification. This greatly reduced the 1020 descriptors to 27
that made the most contributions to building the model (Table 2). The fragment of the large
table of descriptors is presented in Table 3.

Table 2. Sequence descriptors that have the most informational impact on the ML model.

Descriptor Explanation

C Number of C nucleotides
C/N Frequency of C nucleotides
CU Number of CU dinucleotides

UUC Number of UUC trinucleotides
CGC Number of CGC trinucleotides

5sCAG Number of CAG trinucleotides in the first 5 nucleotides of piRNA
5sAAG Number of AAG trinucleotides in the first 5 nucleotides of piRNA
5sGGU Number of GGU trinucleotides in the first 5 nucleotides of piRNA
5sGGC Number of GGC trinucleotides in the first 5 nucleotides of piRNA
5eCA Number of CA dinucleotides in the last 5 nucleotides of piRNA

5eUGA Number of UGA trinucleotides in the last 5 nucleotides of piRNA
5eGGA Number of GGA trinucleotides in the last 5 nucleotides of piRNA
5eAGG Number of AAG trinucleotides in the last 5 nucleotides of piRNA
AGGC Number of AGGC four nucleotides’ motifs
AUCA Number of AUCA four nucleotides’ motifs
GAAA Number of GAAA four nucleotides’ motifs
GAGU Number of GAGU four nucleotides’ motifs
GGCA Number of GGCA four nucleotides’ motifs
GUAG Number of GUAG four nucleotides’ motifs
GUGU Number of GUGU four nucleotides’ motifs
CUUC Number of GUUC four nucleotides’ motifs
UAAA Number of UAAA four nucleotides’ motifs
UCCA Number of UCCA four nucleotides’ motifs
UCCC Number of UCCC four nucleotides’ motifs
UCUG Number of UCUG four nucleotides’ motifs
UUGU Number of UUGU four nucleotides’ motifss

Table 3. Fragment of sequence descriptors for three selected piRNAs.

piRNA A G C U AA GG UU CC AAA GGG UUU CCC N A/N G/N C/N U/N Mass/N

piR-001312 7 8 3 6 0 4 1 0 0 0 0 0 29 0.24 0.28 0.1 0.21 111.88
piR-004150 7 5 9 2 2 1 0 3 0 0 1 0 30 0.23 0.17 0.3 0.07 98.44
piR-004153 9 5 7 4 1 2 0 1 1 0 0 0 30 0.3 0.17 0.2 0.13 108.45
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4.3. Classifier Descriptions

The types of ML classifiers we used include the Multilayer Perceptron, Naïve Bayes,
Decision Table, Logistic Regression, K-Nearest Neighbor, Artificial Neural Networks/Deep
Learning, and Support Vector Machine.

The Multilayer Perceptron is a feed-forward artificial neural network. There is an input
layer, an output layer, and an arbitrary number of hidden layers in between. Prediction
and classification are completed by the output layer.

The Naïve Bayes Multinomial calculates the probability for each option and creates a
prediction of the output with the highest probability. The probabilities culminate through
each predictor.

Random Forest uses multiple decision trees to reach a single result. The output is the
class that the majority of the decision trees reach.

AdaBoostM1, also known as Adaptive Boosting, uses multiple weak or base learners
to classify the data. For example, this includes many single-layer decision trees.

The Decision Table documents all possible actions and outcomes to reach one outcome.

5. Conclusions

We propose a descriptor system using the piRNA parameters and sequence descriptors
to develop ML models for colorectal cancer. We want to note that the current article is the
first publication describing the use of piRNA and ML for the diagnostics of CRC.

We compared several classifiers such as the Random Forest, Naïve Bayes Multinomial,
AdaBoostM1, Multilayer Perceptron, and Decision Table. Each ML model was able to
respond with more than 90% accuracy, and most models were able to correctly classify inde-
pendent data with more than 70% accuracy. Furthermore, data not related to CRC achieved
much lower accuracies, showing that our model can be highly selective in CRC elucidation.
With this proof, we created an ML model that can explore the piRNA correlation with CRC.
The results show that our model can be an effective tool for diagnosing colorectal cancer.
The current model trained on the limited number of piRNAs is proof of the principle. We
would not recommend using it in clinical practice right away. Currently, we are working on
models that can be trained on significantly more piRNAs related to CRC and other cancers.
These would be useful in a clinical environment.
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