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a b s t r a c t

The purpose of this paper is to extend classical modal analysis to decouple any viscously

damped linear system in non-oscillatory free vibration or in forced vibration. Based

upon an exposition of how exponential decay in a system can be regarded as imaginary

oscillations, the concept of damped modes of imaginary vibration is introduced. By

transformation is constructed to decouple non-oscillatory free vibration. When time

drifts caused by viscous damping and by external excitation are both accounted for, a

time-varying decoupling transformation for forced vibration is derived. The decoupling

procedure devised herein reduces to classical modal analysis for systems that are

undamped or classically damped. This paper constitutes the second and final part of a

solution to the ‘‘classical decoupling problem.’’ Together with an earlier paper, a general

methodology that requires only the solution of a quadratic eigenvalue problem is

developed to decouple any damped linear system.

& 2010 Elsevier Ltd. All rights reserved.
1. Introduction

It has long been recognized that coordinate coupling in damped linear systems is a considerable barrier to analysis and
design. In the absence of damping, a linear system possesses classical normal modes, which constitute a coordinate
transformation that decouples the undamped system. This process of decoupling the equation of motion of a dynamical
system is a time-honored procedure termed modal analysis. A damped linear system cannot be decoupled by modal
analysis unless it also possesses a full set of classical normal modes, in which case the system is said to be classically
damped. Rayleigh [1] showed that a system is classically damped if its damping matrix is a linear combination of its inertia
and stiffness matrices. Classical damping is routinely assumed in applications.

Practically speaking, classical damping means that energy dissipation is almost uniformly distributed throughout the
system. In general, there is no reason why this condition should be satisfied and thus damped linear systems cannot be
decoupled by modal analysis [2–6]. In addition, it has been shown [7] that no time-invariant linear transformations in the
configuration space can decouple all damped systems. Even partial decoupling, i.e. simultaneous transformation of the
coefficient matrices of the equation of motion to upper triangular forms, cannot be ensured with time-invariant linear
transformations [8]. As a consequence, any universal decoupling transformation in the configuration space must be time-
varying or nonlinear. In an earlier paper [9], it was shown that a non-classically damped system in oscillatory free vibration
can be transformed into one with classical damping by tuning its damped modes of vibration. This technique, referred to as
phase synchronization, generates a real time-varying transformation that decouples the system in configuration space.
Furthermore, the decoupling procedure reduces to modal analysis under classical damping. The term phase
ll rights reserved.
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synchronization has been used in such areas as circuit theory and stochastic systems to mean different things. In the
present context, it refers to the process of synchronizing the phase angles in a non-classically damped mode so as to
transform it into a classical mode.

The purpose of this paper is to build upon phase synchronization to decouple any viscously damped linear system in
non-oscillatory free vibration and in forced vibration. The organization of this paper is as follows. In Section 2, the problem
of decoupling is formulated and assumptions made only for gaining physical insight are discussed. Phase synchronization
of oscillatory free vibration is concisely surveyed in Section 3. This survey sets up the terminology and notation used
throughout the paper. The concept of damped modes of imaginary vibration is introduced in Section 4. By synchronizing
these physically excitable modes, a time-varying transformation is constructed to decouple non-oscillatory free vibration.
In Section 5, both oscillatory and non-oscillatory systems driven by external forces are considered. When time drifts caused
by viscous damping and by external excitation are both accounted for, a decoupling transformation for forced vibration is
derived. It is also shown that the decoupling procedure devised herein is a direct generalization of classical modal analysis.
In Section 6, four examples are given to illustrate the process of decoupling. A summary of major findings is provided in
Section 7. This paper constitutes the second and final part of a general methodology to decouple any damped linear system.
2. Problem statement

The equation of motion of an n-degree-of-freedom viscously damped linear system can be written as

M €qþC _qþKq¼ fðtÞ; (1)

where M, C and K are real square matrices of order n. The generalized coordinate q and the excitation fðtÞ are real
n-dimensional vectors. For passive systems, M, C and K are symmetric and positive definite. Unless the three coefficient
matrices are diagonal, Eq. (1) is coupled. Coupling is not an inherent property of a system but depends on the generalized
coordinates used. The ‘‘classical decoupling problem’’ is concerned with the transformation of Eq. (1) into

€pþD1 _pþX1p¼ gðtÞ; (2)

where D1, X1 are real diagonal matrices of order n, and p and gðtÞ are also real. This is a well-trodden problem that has
attracted the attention of many researchers in the past century. Over the years, various types of decoupling approximation
were employed in the analysis of damped systems [10–19]. Different indices of coupling were also introduced to quantify
coordinate coupling [20–28]. However, a solution to the ‘‘classical decoupling problem’’ has not been reported in the open
literature.

When fðtÞ ¼ 0, the decoupling problem is mathematically equivalent to the problem of simultaneous conversion of M, C
and K into diagonal forms. A traditional approach, as emphasized by Lancaster [29–33], is to address this problem as a
reduction of quadratic pencils of matrices. Garvey and others [34–38] recently diagonalized a class of matrix pencils by
transformations in state space. To be sure, the problem of simultaneous diagonalization of matrices can also be interpreted
from other perspectives [39–42]. As mentioned earlier, any universal decoupling transformation in the configuration space,
if it exists, must be at least time-varying or even nonlinear.
2.1. The quadratic eigenvalue problem

Associated with Eq. (1) is the quadratic eigenvalue problem [29,31,33]

ðMl2
þClþKÞv¼ 0: (3)

There are 2n eigenvalues lj but there cannot be more than n linearly independent eigenvectors vj, where j¼ 1; . . . ;2n. Since
M, C and K are real, any complex eigenvalues and the corresponding eigenvectors must occur in complex conjugate pairs.
In addition, the real parts of all eigenvalues must be negative because energy is dissipated by damping.

If the eigenvalues are distinct, the free response of system (1) is a linear combination of the form

q¼
X2n

j ¼ 1

cjvje
lj t ; (4)

where cj are 2n constants to be obtained from initial conditions. Clearly, the free response is purely non-oscillatory if all lj

are negative. The response is (partially) non-oscillatory if some lj are real and the rest complex. A method to decouple
oscillatory free vibration, for which all lj are complex, has already been provided [9]. Thus the present paper has a two-fold
objective. First, a transformation is constructed to decouple Eq. (1) when fðtÞ ¼ 0 and when some lj are negative. Second, a
general methodology is developed to decouple Eq. (1) in general setting, i.e. when fðtÞa0 and when lj occur in any
combination.
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2.2. Assumptions and possible relaxation

In non-oscillatory free vibration, it will of course be assumed that some eigenvalues of the quadratic eigenvalue
problem (3) are real. For both free and forced vibrations, it will be assumed that the 2n eigenvalues lj of Eq. (3) are distinct.
This assumption is made to streamline the introduction of new concepts and it can be readily relaxed. There will be little
change to the exposition of decoupling under the less restrictive condition that eigenvectors associated with repeated
eigenvalues are independent. For example, Eq. (4) remains the free response of system (1) as long as there is a full
complement of independent eigenvectors.

When an eigenvalue is repeated m times and a full complement of m independent eigenvectors cannot be found, the
eigenvalue problem (3) is said to be defective. As an example, Eq. (3) must be defective if any eigenvalue is repeated more
than n times [29]. Decoupling of systems with defective eigenvalue problems is of a purely theoretical nature but is still
relatively straightforward. However, physical insight is obscured due to the occurrence of Jordan sub-matrices in the
corresponding equations. A numerical example will be provided to indicate how defective systems can be decoupled. It
should be recalled that when M, C and K are randomly chosen (uniformly distributed in bounded continuous domains), the
probability that Eq. (3) being defective is zero [9]. Should the methodology expounded in this paper be accepted for use, a
thorough treatment of defective problems will probably be more deserving.

3. Preliminaries in decoupling

To set up the necessary terminology and notation, the decoupling of classically damped systems and non-classically
damped systems in purely oscillatory free vibration will be concisely surveyed.

3.1. Classical modal analysis and associated inadequacy

Since M, K are positive definite, solution of the symmetric eigenvalue problem

Ku¼ lMu (5)

generates n positive eigenvalues li and n real eigenvectors ui that are orthogonal with respect to either M or K. Upon mass
normalization such that uT

i Muj ¼ dij, the eigenvectors constitute the columns of a modal matrix U¼ ½u1ju2j � � � jun�. Define a
modal transformation by

q¼Up: (6)

In terms of the principal coordinate p, Eq. (1) takes the canonical form:

€pþD _pþXp¼UTfðtÞ; (7)

where X¼ diag½l1; l2; . . . ; ln� is the spectral matrix and D¼UTCU is the modal damping matrix. A system is classically
damped if it can be decoupled by classical modal analysis, whereby D is diagonal. A necessary and sufficient condition [43]
for classical damping is CM�1K¼KM�1C. There is, of course, no particular reason why this condition should be satisfied.
In general, a damped linear system cannot be decoupled by classical modal analysis.

Classical modal analysis utilizes real coordinate transformations and is amenable to physical interpretation. Foss and
others [44–47] extended classical modal analysis to a process of complex modal analysis in the state space to treat non-
classically damped systems. However, complex modal analysis still cannot decouple all damped linear systems. A
condition of non-defective eigenvectors in the state space must be satisfied in order for complex modal analysis to achieve
complete decoupling. As an example, complex modal analysis fails to decouple even a classically damped system if one or
more degrees of freedom are critically damped. Furthermore, upon state-space transformation it is generally not possible
to classify the 2n state variables as displacements and velocities. Physical insight is thus greatly diminished. Perhaps it is
fair to say that decoupling in configuration space renders decoupling in state space unnecessary; the state of a system can
always be obtained from displacements and their time derivatives.

3.2. Phase synchronization of oscillatory free vibration

Suppose all eigenvalues of Eq. (3) are complex and distinct. The eigenvalues lj and the corresponding eigenvectors vj

occur in n pairs of complex conjugates. Let

lj ¼ ajþ ioj; (8)

vj ¼ ½rj1e�ijj1 rj2e�ijj2 � � � rjne�ijjn �T; (9)

where aj, oj, rjk and jjk are real parameters for j; k¼ 1; . . . ;n. The 2n complex conjugate eigensolutions vje
lj t are sometimes

referred to as the complex modes in configuration space [29,48,49]. Two eigensolutions vje
lj t and vje

l j t combine to
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generate a non-classically damped mode of vibration defined by the linear combination [9]

sjðtÞ ¼ ajvje
ðajþ iojÞtþajvje

ðaj�iojÞt ¼ Cje
aj t

rj1 cosðojt�yj�jj1Þ

rj2 cosðojt�yj�jj2Þ

^

rjn cosðojt�yj�jjnÞ

2
66664

3
77775; (10)

where aj is an arbitrary constant which, in polar form, may be expressed as 2aj ¼ Cje
�iyj . The real parameters Cj and yj are

determined by initial conditions. Each damped mode sjðtÞ is real and physically excitable.
If suitable phase shifts are introduced into each damped mode sjðtÞ so that jj1 ¼jj2 ¼ � � � ¼jjn ¼ 0, then various

components of the system vibrate in a synchronous manner, passing through their equilibrium positions at the same
instant of time. In other words, the system is transformed into one with classical damping. A basic objective of a process
termed phase synchronization is to do just that [9]. Upon phase synchronization, the resulting classically damped system
can be decoupled by modal analysis. When fðtÞ ¼ 0 and all eigenvalues lj of Eq. (3) are complex and distinct, Eq. (1) can
always be converted into Eq. (2), for which

D1 ¼�diag½ljþlj� ¼ �diag½2a1;2a2; . . . ;2an�; (11)

X1 ¼ diag½ljlj� ¼ diag½a2
1þo

2
1;a

2
2þo

2
2; . . . ;a

2
nþo

2
n�; (12)

and gðtÞ ¼ 0. The free response qðtÞ of Eq. (1) can be recovered from the free response pðtÞ of Eq. (2) by

qðtÞ ¼
Xn

j ¼ 1

diag½pjðt�jj1=ojÞ; pjðt�jj2=ojÞ; . . . ;pjðt�jjn=ojÞ�zj; (13)

where

zj ¼ ½rj1eajjj1=oj rj2eajjj2=oj � � � rjneajjjn=oj �T: (14)

The real time-varying decoupling transformation (13), obtained through solution of only the quadratic eigenvalue problem
(3), can be cast in state space in the form

pðtÞ

_pðtÞ

" #
¼

I I

K K

� �
V V

VK VK

" #�1
qðtÞ

_qðtÞ

" #
; (15)

where V and K are given in terms of lj and vj in Eqs. (8) and (9) by

V¼ ½v1jv2j � � � jvn�; (16)

K¼ diag½l1; l2; . . . ; ln�: (17)

It can be readily shown that the overall transformation matrix in Eq. (15) is real and invertible. Unlike Eq. (13), the
displacement and velocities can no longer be separated in Eq. (15). Initial conditions of qðtÞ and pðtÞ can be connected by
putting t¼ 0 in either Eq. (13) or (15). Perhaps it should be emphasized that Eq. (15) does not decouple the first-order state
equation associated with the free vibration of Eq. (1). Rather, it transforms the state equation in such a way that when a
second-order equation is extracted from the new state equation, the extracted equation is Eq. (2) with coefficients defined
by Eqs. (11), (12) and with gðtÞ ¼ 0.

Finally, each eigenvector of Eq. (3) can only be determined up to an arbitrary multiplicative constant. The eigenvectors
vj may be normalized for convenience in accordance with

2ljv
T
j MvjþvT

j Cvj ¼ 2ioj; (18)

which implies that 2ljv
T
j MvjþvT

j Cvj ¼�2ioj; for vj. The above normalization reduces to normalization with respect to the
mass matrix M for an undamped or classically damped system [6]. A flowchart depicting the decoupling of oscillatory free
vibration is shown in Fig. 1, for which c¼ n, r¼ 0, fðtÞ ¼ gðtÞ ¼ 0, and Eq. (69) coincides with Eq. (13). Phase synchronization
can also be used to decouple defective systems [9], in which case the phase angles between different Jordan sub-matrices
are shifted. It has been shown that the method of phase synchronization is a direct generalization of classical modal
analysis.

4. The mechanics of decoupling of non-oscillatory free vibration

To begin, consider purely non-oscillatory free vibration for which all eigenvalues lj of Eq. (3) are real and distinct.
The corresponding eigenvectors vj can all be chosen real. By convention, the eigenvalues will be arranged in an increasing
order such that l1ol2o � � �ol2no0. Can phase synchronization [9], applicable to oscillatory free vibration, be modified
to decouple non-oscillatory free vibration? Where are the phase angles to synchronize? What is the meaning of a damped
mode of vibration when lj are real? These questions will be examined in an organized manner.
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4.1. The concept of imaginary vibration

From a strict mathematical viewpoint, there need not be day and night distinction between oscillatory and non-
oscillatory behaviors. Real exponential decay of a damped system can be regarded as oscillations with an imaginary
frequency. To demonstrate this, consider a single-degree-of-freedom system in non-oscillatory free vibration. If n¼ 1, the
coefficient matrices in Eq. (1) become positive scalars m, c and k. The two real and distinct eigenvalues may be written as

l1; l2 ¼
1

2m
ð�c8

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
c2�4mk

p
Þ ¼ a7 io; (19)

where c2�4mk40 and

a¼� c

2m
; o¼ i

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
c2�4mk
p

2m
: (20)

In terms of complex trigonometric functions [50], the free response of Eq. (1) is

qðtÞ ¼ c1el1tþc2el2t ¼ Ceat cosðot�jÞ: (21)

The constants c1, c2 or C, j depend on initial conditions. It can be verified that

C2 ¼ q2ð0Þþ
_qð0Þ�aqð0Þ

o

� �2

; tanj¼
_qð0Þ�aqð0Þ

oqð0Þ
: (22)

In Eq. (21), real exponential decay has been represented as oscillations with an imaginary frequency o, for which the
amplitude C and phase angle j may not be real.
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Since imaginary vibration exhibits itself physically as real exponential decay, its characterization can be subtle at times.
For example, if the initial displacement and velocity are such that

qð0Þ ¼ i
_qð0Þ�aqð0Þ

o

� �
; (23)

then C ¼ 0 and tanj¼ 1=i. The last expression implies that tanh ij¼ 1 and, therefore, ij¼1. Under condition (23),
Eq. (21) becomes

qðtÞ ¼ ðCeatÞcoshðiot�ijÞ ¼ 0 � 1: (24)

The above indeterminate form can be evaluated by recognizing that qðtÞ represents real exponential decay. It can be
checked, under condition (23), that c1 ¼ 0 and c2 ¼ qð0Þ. Thus Eq. (24) is equivalent to

qðtÞ ¼ qð0Þel2t ¼ qð0Þeða�ioÞt : (25)

Finally, it is not necessary to investigate the infinite nature of the phase angle j when tanj¼ 1=i. In stereographic
projection of the unit sphere onto the complex plane, all positions of infinity on the complex plane are equivalent as they
are identified with the north pole [51].

4.2. Real quadratic conjugation

Were the two eigenvalues l1, l2 in Eq. (19) complex, they would be complex conjugates of each other. Since l1, l2 are
real, they may be referred to as real quadratic conjugates using the notation l2 ¼

~l1. It will be evident that real quadratic
conjugation is an important concept in interpreting imaginary oscillations. In order to take advantage of the algebra of
complex variables, real quadratic conjugates will be expressed in complex notation. A pair of real quadratic conjugates, say
d and ~d, are defined as two real roots of a common quadratic equation. In analogy to Eq. (19), one can write in rectangular
form d; ~d ¼ a7 ib, where a is real and b is imaginary. In polar form, d; ~d ¼ re8 iy, where the amplitude r and phase angle y
are defined by

r2 ¼ d ~d; y¼
i

2
ln

d
~d

� �
: (26)

Although d; ~d are real, the amplitude r may be real or imaginary. On the other hand, the phase angle y is either imaginary or
complex with �p=2 as the real part such that [50]

y¼�
p
2
þ

i

2
ln

d
~d

����
����: (27)

Similar to the evaluation of Eq. (24), polar representations of real quadratic conjugates should be interpreted appropriately
in limiting cases ( ~d ¼ 0 for example). Finally, any complex number z¼ aþ ib has a unique complex conjugate z ¼ a�ib but
real quadratic conjugation need not be unique. In fact, any two real numbers c1, c2 form a pair of real quadratic conjugates
because they may be regarded as the roots of the same quadratic equation.

Real quadratic conjugation generates imaginary oscillations in much the same fashion that complex conjugation
generates real oscillations. Let c1 ¼ ~c2 ¼ re�iy in Eq. (21). It can be readily shown that

c1el1tþc2el2t ¼ re�iyeðaþ ioÞtþreiyeða�ioÞt ¼ 2reat cosðot�yÞ; (28)

where o is an imaginary frequency. An upshot is that Eq. (28) can be extended to higher dimensions. Let c1, c2 be two real
column vectors of order n. The jth elements of c1, c2 are two real numbers which may be regarded as a pair of real
quadratic conjugates. Thus it is permissible to write

c1 ¼ ~c2 ¼ ½r1e�iy1 r2e�iy2 � � � rne�iyn �T: (29)

It follows from Eq. (28) that

c1el1tþc2el2t ¼ c1el1tþ ~c1e
~l1t ¼ 2eat

r1 cosðot�y1Þ

r2 cosðot�y2Þ

^

rn cosðot�ynÞ

2
66664

3
77775: (30)

4.3. Damped modes of imaginary vibration

If the eigenvalues lj of Eq. (3) are complex, a real damped mode of vibration is formed by pairing vje
lj t with vje

l j t as
depicted in Eq. (10). This natural pairing scheme breaks down when all lj are real because the eigensolutions are also real.
However, as is evident in Eq. (30), any two real eigensolutions may be regarded as real quadratic conjugates of each other
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and they can be paired to generate a damped mode of imaginary vibration. There are

N¼

2n

2

� �
2n�2

2

� �
2n�4

2

� �
� � �

2

2

� �
n!

¼
ð2nÞ!

2nn!
(31)

different ways to pair the real eigensolutions by real quadratic conjugation. Indeed, there are N different ways to decouple
Eq. (1) when all lj are real. One such scheme, termed primary–secondary pairing, will be devised for the construction of an
algorithm for decoupling.

Among the 2n real eigenvalues l1ol2o � � �ol2no0, the n largest eigenvalues are referred to as primary eigenvalues
and the n smallest eigenvalues are termed secondary eigenvalues. As established by Lancaster [29,33], there are n linearly
independent eigenvectors associated with the primary eigenvalues and likewise for the secondary eigenvalues. In addition,
there is usually a gap between the sets of primary and secondary eigenvalues. Identify the primary eigenvalues as real
quadratic conjugates of the secondary eigenvalues so that

l1o � � �oljo � � �olnolnþ1 ¼
~l1o � � �olnþ j ¼

~ljo � � �ol2n ¼
~lno0: (32)

One version of the fundamental theorem of algebra states that the characteristic polynomial associated with Eq. (3)
possesses n real quadratic factors. These quadratic factors are not unique, and Eq. (32) simply states that lj, lnþ j are
real roots of the same quadratic factor. The corresponding eigenvectors vj, vnþ j may also be regarded as real
quadratic conjugates and, similar to Eq. (29), one can write vj ¼ ~vnþ j ¼ ½rj1e�ijj1 rj2e�ijj2 � � � rjne�ijjn �T for j¼ 1; . . . ;n.
Express the real eigenvalues in rectangular form such that lj;

~lj ¼ aj7 ioj where, in the decoupling algorithm based
upon primary–secondary pairing, aj, oj are computed from

aj ¼
1
2 ð
~ljþljÞ ¼

1
2ðlnþ jþljÞ; (33)

oj ¼
i

2
ð ~lj�ljÞ ¼

i

2
ðlnþ j�ljÞ: (34)

In analogy to Eq. (10), construct a damped mode of imaginary vibration by pairing vje
lj t with ~vje

~l j t ¼ vnþ je
lnþ j t in the

real linear combination

sjðtÞ ¼ ajvje
lj tþbjvnþ je

lnþ j t ¼ ajvje
lj tþ ~aj ~v je

~l j t ¼ Cje
aj t

rj1 cosðojt�yj�jj1Þ

rj2 cosðojt�yj�jj2Þ

^

rjn cosðojt�yj�jjnÞ

2
66664

3
77775; (35)

where, once again, aj, bj may be regarded as real quadratic conjugates and, in polar form 2aj ¼ 2 ~bj ¼ Cje
�iyj . Note that

Eq. (35) becomes identical to Eq. (10) if real quadratic conjugation is replaced by complex conjugation. Although Cj, oj, yj,
rjk and jjk may not be real, sjðtÞ in Eq. (35) is always real. Indeed, each damped mode of imaginary vibration sjðtÞ can be
physically excited with the real initial conditions

qð0Þ ¼ ajvjþ ~aj ~v j ¼ Cj

rj1 cosðyjþjj1Þ

rj2 cosðyjþjj2Þ

^

rjn cosðyjþjjnÞ

2
66664

3
77775; (36)

_qð0Þ ¼ ljajvjþ
~lj ~aj ~v j ¼ ajCj

rj1 cosðyjþjj1Þ

rj2 cosðyjþjj2Þ

^

rjn cosðyjþjjnÞ

2
66664

3
77775þojCj

rj1 sinðyjþjj1Þ

rj2 sinðyjþjj2Þ

^

rjn sinðyjþjjnÞ

2
66664

3
77775: (37)

Furthermore, it can be observed from Eq. (4) that purely non-oscillatory free response of Eq. (1) is simply a superposition of
n damped modes of imaginary vibration.

4.4. Phase synchronization of imaginary vibration

It has been explained that oscillatory free vibration has no divine rights in its functional representation as a
superposition of sinusoidal oscillations. Every formula established for oscillatory free vibration can be suitably applied to
purely non-oscillatory free vibration with the use of imaginary frequencies. The upshot is that the methodology of
decoupling by phase synchronization [9], developed for oscillatory systems, can be applied to non-oscillatory free vibration
if a pairing scheme is chosen for the real eigensolutions. Phase synchronization of a non-oscillatory system amounts to
introducing complex phase shifts to each damped mode in Eq. (35) so that jj1 ¼jj2 ¼ � � � ¼jjn ¼ 0 for j¼ 1; . . . ;n. A
system possessing these synchronized modes is classically damped. Basically, all equations for decoupling oscillatory free



ARTICLE IN PRESS

F. Ma et al. / Journal of Sound and Vibration 329 (2010) 3182–3202 3189
vibration can be carried over to purely non-oscillatory free vibration provided that complex conjugation is suitably
replaced by real quadratic conjugation. In particular, the real decoupled system (2) is defined by

D1 ¼�diag½ljþ
~lj� ¼ �diag½ljþlnþ j� ¼ �diag½2a1;2a2; . . . ;2an�; (38)

X1 ¼ diag½lj
~lj� ¼ diag½ljlnþ j� ¼ diag½a2

1þo
2
1;a

2
2þo

2
2; . . . ;a

2
nþo

2
n�; (39)

where gðtÞ ¼ 0.
Once the solution pðtÞ of the decoupled system (2) is obtained, the free response qðtÞ of Eq. (1) can be recovered by using

Eq. (13), which always generates a real qðtÞ. Again, Eq. (13) can be cast as a state-space transformation

pðtÞ

_pðtÞ

" #
¼

I I

K ~K

� �
V ~V

VK ~V ~K

" #�1
qðtÞ

_qðtÞ

" #
; (40)

where V, K are still defined by Eqs. (16) and (17). Unlike Eq. (13), qðtÞ and pðtÞ are connected at the same instant in Eq. (40)
but displacements and velocities can no longer be separated. Initial conditions between qðtÞ and pðtÞ are connected
either by

qð0Þ ¼
Xn

j ¼ 1

diag½pjð�jj1=ojÞ;pjð�jj2=ojÞ; . . . ; pjð�jjn=iojÞ�zj; (41)

_qð0Þ ¼
Xn

j ¼ 1

diag½ _pjð�jj1=iojÞ; _pjð�jj2=iojÞ; . . . ; _pjð�jjn=iojÞ�zj; (42)

or by putting t=0 in Eq. (40). Observe that the exact solution pðtÞ of the decoupled system (2) is given by

pjðtÞ ¼
~ljpjð0Þ� _pjð0Þ

~lj�lj

elj t�
ljpjð0Þ� _pjð0Þ

~lj�lj

e
~l j t (43)

for j¼ 1; . . . ;n. If Eq. (43) is substituted into (13), an analytical expression of qðtÞ can be obtained. If lj are complex, it has
been shown [9] that the calculation of oscillatory free response by phase synchronization is more efficient than direct
numerical integration. Since every decoupling formula valid for complex lj can be suitably carried over to real lj, the
improvement in efficiency in response calculation is comparable when lj are all real or all complex. The issue of efficiency
will be revisited under forced vibration.

In the solution of Eq. (3), each eigenvector can only be determined up to an arbitrary multiplicative constant. The real
eigenvectors vj may be normalized for convenience in accordance with, for example

2ljv
T
j MvjþvT

j Cvj ¼ 2ioj ¼ lj�lnþ j; (44)

which implies that 2 ~lj ~v
T
j M ~v jþ ~v

T
j C ~vj ¼�2ioj ¼ lnþ j�lj for ~v j. The above normalization reduces to normalization with

respect to the mass matrix M for an undamped or classically damped system. Any normalization can only specify the
magnitude of vj but its sign is still arbitrary. With or without normalization the equations of phase synchronization are not
unique although the decoupling procedure is always valid. This issue of non-uniqueness should not be surprising since a
similar situation exists in classical modal analysis: the modal transformation (6) is not unique because any column uj of
the modal matrix U may be replaced by �uj. Decoupling by phase synchronization of damped modes of imaginary
vibration is a direct generalization of classical modal analysis. A flowchart depicting the decoupling and response
calculation of purely non-oscillatory free vibration is shown in Fig. 1, for which c¼ 0, r¼ n, fðtÞ ¼ gðtÞ ¼ 0, and Eq. (69)
coincides with Eq. (13). All parameters required for decoupling and response calculation are obtained through solution of
the quadratic eigenvalue problem (3).

Thus far phase synchronization of imaginary vibration has been presented in terms of complex trigonometric functions.
The entire exposition can instead be given in terms of hyperbolic functions using relationships such as cosðixÞ ¼ cosh x and
sinðixÞ ¼ i sinh x. However, complex parameters still appear here and there. For this and other reasons, the hyperbolic
version of the decoupling of purely non-oscillatory free vibration will not be given.

4.5. Duality and non-uniqueness

As previously shown, oscillatory and non-oscillatory behaviors are theoretically equivalent. Exponential decay can
simply be regarded as vibration with an imaginary frequency and there is a degree of duality between real and imaginary
oscillations. Yet, when lj are complex, there is a unique way of pairing the eigensolutions to form the damped modes of
real oscillations: vje

lj t is paired with its complex conjugate v je
l j t as depicted in Eq. (10). This natural pairing scheme breaks

down when lj are real. There are N different ways to pair the real eigensolutions by real quadratic conjugation, where N is
given by Eq. (31). A flowchart for decoupling oscillatory free vibration [9] cannot be used for non-oscillatory free vibration
unless an explicit pairing scheme is devised for the real eigensolutions. The primary–secondary pairing scheme shown in
Fig. 1 is optimal in the sense that, on average, real eigensolutions with well separated decay exponents are paired.
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Independently of the chosen pairing scheme, the method of phase synchronization is always applicable. As long as the
eigenvalues are distinct, Eq. (43) implies that all N pairing schemes are comparable in such a way that every decoupled
degree of freedom is overdamped. A numerical example will be given to illustrate the use of different pairing schemes.

Why is there a natural and unique way of pairing the eigensolutions only when lj are complex? What is the extent of
duality between real and imaginary oscillations? Theoretically speaking, the pairing of vje

lj t with vje
l j t when lj are

complex is mandated by the constraint that Eq. (1) is real and one also insists on real and physically excitable modes of
vibration. If Eq. (1) and its damped modes could be complex, pairing by complex conjugation would break down. In this
case there would also be N different pairing schemes. Since the objective of this paper is to develop a practical method for
decoupling damped linear systems, this issue of duality will not be pursued further.
4.6. Free vibration with mixed eigenvalues

In (partially) non-oscillatory vibration, both real and complex eigenvalues lj of Eq. (3) occur simultaneously. Free
vibration with mixed eigenvalues can be decoupled by dividing its eigensolutions into two groups: one associated with the
real eigenvalues and the other with complex eigenvalues. The complex eigensolutions are treated by complex conjugation
and the real ones by real quadratic conjugation. Let 2c eigenvalues be complex and 2r¼ 2ðn�cÞ be real. Separate the
distinct eigenvalues into two disjoint sets so that

flg ¼ f2c complex lg [ f2r real lg: (45)

The complex eigenvalues occur as c pairs of complex conjugates and the real eigenvalues can be classified into primary
and secondary eigenvalues. Enumerate the eigenvalues in such a way that

f2c complex lg ¼ fl1; . . . ; lc; lnþ1 ¼ l1; . . . ; lnþ c ¼ lcg; (46)

f2r real lg ¼ flcþ1o � � �olnolnþ cþ1 ¼
~lcþ1o � � �ol2n ¼

~lng: (47)

The above indexing means that the first c eigenvalues are complex and the next r¼ n�c are the real secondary eigenvalues.
These are followed by c complex conjugates of the first set and finally by r real primary eigenvalues. This issue of indexing
may be important in computer programming. It permits the normalization Eqs. (18) and (44) to be combined in a
streamlined fashion.

Simultaneous phase synchronization of the damped modes of real and imaginary vibration produces a decoupled
system (2) for which

D1 ¼�diag½ljþlj; lkþ
~lk� ¼ �diag½l1þlnþ1; l2þlnþ2; . . . ; lnþl2n�; (48)

X1 ¼ diag½ljlj; lk
~lk� ¼ diag½l1lnþ1; l2lnþ2; . . . ;lnl2n�: (49)

In the configuration space, the decoupling transformation is still given by Eq. (13). In state space, the decoupling
transformation is

pðtÞ

_pðtÞ

" #
¼

I I

K K�

� �
V V�

VK V�K�

� ��1 qðtÞ

_qðtÞ

" #
; (50)

where V, K are still defined by Eqs. (16) and (17). In addition, V� and K� are given by

V� ¼ ½v1j � � � jvcj ~vcþ1j � � � j ~vn� ¼ ½vnþ1jvnþ2j � � � jv2n�; (51)

K� ¼ diag½l1; . . . ; lc ; ~lcþ1; . . . ; ~ln� ¼ diag½lnþ1; lnþ2; . . . ; l2n�: (52)

Clearly, Eq. (50) is a generalization of Eq. (15) or (40). A flowchart depicting the decoupling of any damped system in free
vibration is shown in Fig. 1, for which fðtÞ ¼ gðtÞ ¼ 0 and Eq. (69) coincides with Eq. (13). While only the eigenvalues lj of
Eq. (3) are required to construct the decoupled system, the eigenvectors vj are needed to generate the decoupling
transformation.

It has been assumed that the eigenvalues of Eq. (3) are distinct. This assumption can be relaxed effortlessly if there is a
full complement of independent eigenvectors associated with each repeated eigenvalue. When the multiplicity of a
repeated eigenvalue is greater than the corresponding number of independent eigenvectors, Eq. (3) is defective. Whether
defective or non-defective, system (1) can always be decoupled into the form (2), where D1, X1 are given by Eqs. (48) and
(49). It is the decoupling transformation (13) or (50) that increases in complexity for defective systems. As mentioned
earlier, the probability that Eq. (3) being defective is zero [9]. Nonetheless, defective systems were considered in
certain situations [31,32,42,52–54]. A numerical example will be provided to indicate how defective systems can be
decoupled.
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5. Decoupling of forced vibration

It has been shown that a damped system in free vibration can be decoupled if suitable phase shifts are introduced into
each damped mode of vibration so that all components are either in phase or out of phase. This process is termed phase
synchronization, and its purpose is to compensate for the time drifts caused by viscous damping. The required phase shifts
are real for oscillatory free vibration; they are either imaginary or complex with �p=2 as the real part for purely non-
oscillatory free vibration. In any case the time drifts are constant; that is why the time-varying decoupling transformation
(13) is merely time-shifting. In the presence of an external excitation fðtÞ, the interplay between these time drifts and fðtÞ
generates a genuinely time-varying decoupling transformation for forced vibration.

Postulate that system (1) is decoupled into the form (2), where the diagonal matrices D1, X1 are still given by Eqs. (48)
and (49). What is the relationship between fðtÞ and gðtÞ? How is the decoupling transformation (13) generalized? While it
is possible to investigate these issues in the configuration space, with the theoretical framework that has been set up it is
more efficient to perform additional manipulations in state space. To streamline the presentation, forced vibration with
complex eigenvalues will first be considered. This will be followed by a general setting in which both real and complex
eigenvalues occur simultaneously.

5.1. State space analysis of systems with complex eigenvalues

Suppose all eigenvalues lj of Eq. (3) are complex and distinct. Cast Eq. (1) in state space in the symmetric form

C M

M 0

� � _q

€q

" #
þ

K 0

0 �M

� � q

_q

" #
¼

fðtÞ

0

� �
(53)

for complex modal analysis [44,45]. Since lj are distinct, the quadratic eigenvalue problem (3) is non-defective, which
implies that the state-space eigenvalue problem

K 0

0 �M

� �
w¼�l

C M

M 0

� �
w (54)

is also non-defective because the eigenvectors of Eqs. (3) and (54) are connected by wj ¼ ½v
T
j lj vT

j �
T. If the generalized

eigenvalue problem (54) is non-defective, the two symmetric coefficient matrices of Eq. (53) can be diagonalized
simultaneously by a congruence transformation. This is the essence of complex modal analysis.

Define a complex modal transformation by

q

_q

" #
¼

V V

VK VK

" #
x¼ S1x; (55)

where V, K are given by Eqs. (16) and (17), and x is a 2n-dimensional column vector. It is assumed that the eigen
vectors vj of Eq. (3) have been normalized in accordance with Eq. (18) so that V reduces to the modal matrix U of Eq. (6) if
system (1) is undamped or classically damped. Substitute Eq. (55) into (53) and pre-multiply the resulting equation by ST

1

to obtain

K�K 0

0 K�K

" #
_xþ
ðK�KÞK 0

0 ðK�KÞK

" #
x¼

VTf

V
T
f

" #
; (56)

which is a system possessing diagonal coefficient matrices in state space. Although Eq. (53) has been decoupled in state
space, it is no longer possible to classify the 2n state variables of x as displacements and velocities. Thus physical insight is
greatly diminished.

5.2. Transformation of driving forces

Define a 2n-dimensional vector ½pT
1 pT

2�
T by

p1

p2

" #
¼

I I

K K

� �
x; (57)

where I is the identity matrix of order n. By inversion,

x¼
I I

K K

� ��1 p1

p2

" #
¼
ðK�KÞ�1K ðK�KÞ�1

ðK�KÞ�1K ðK�KÞ�1

" #
p1

p2

" #
¼ S2

p1

p2

" #
: (58)

Substitute Eq. (58) into (56) and then pre-multiply the resulting equation by ST
2 to obtain

D1 I

I 0

� � _p1

_p2

" #
þ

X1 0

0 �I

� � p1

p2

" #
¼

TT
1f

TT
2f

" #
; (59)
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where T1 and T2 are given by

T1 ¼ ðVK�VKÞðK�KÞ�1
¼ 2Re

l1

l1�l1

v1
l2

l2�l2

v2 � � �
ln

ln�ln

vn

�����
#
;

�����
�����

"
(60)

T2 ¼ ðV�VÞðK�KÞ�1
¼ 2 Re

1

l1�l1

v1
1

l2�l2

v2 � � �
1

ln�ln

vn

����
�
:

����
����

�
(61)

The upper and lower halves of Eq. (59) are

_p2þD1 _p1þX1p1 ¼ TT
1f; (62)

_p1�p2 ¼ TT
2f: (63)

Eliminate p2 from the above two equations to get

€p1þD1 _p1þX1p1 ¼ TT
1fþTT

2
_f : (64)

When Eqs. (2) and (64) are compared, it becomes obvious that p1 can be identified with p. Therefore, the relationship
between fðtÞ and gðtÞ is

gðtÞ ¼ TT
1fðtÞþTT

2
_f ðtÞ: (65)

Observe that T1, T2, and hence gðtÞ can be readily obtained upon solution of the quadratic eigenvalue problem (3).

5.3. Decoupling transformations

Upon substitution of Eq. (65) in (2), forced vibration with complex eigenvalues is decoupled in the configuration space.
What is the relationship between the solution pðtÞ of Eq. (2) and solution qðtÞ of the original system (1)? To answer this
question, first combine Eqs. (55) and (57) to obtain

q

_q

" #
¼

V V

VK VK

" #
I I

K K

� ��1 p1

p2

" #
: (66)

When the overall transformation matrix in the above expression is evaluated, Eq. (66) becomes

q

_q

" #
¼
ðVK�VKÞðK�KÞ�1

ðV�VÞðK�KÞ�1

ðV�VÞKKðK�KÞ�1
ðVK�VKÞðK�KÞ�1

" #
p1

p2

" #
: (67)

The upper half of Eq. (67) is

q¼ T1p1þT2p2: (68)

Recall that p1 has been identified with p. It follows by using Eq. (63) that

q¼ T1pþT2 _p�T2TT
2f: (69)

The above expression represents a time-varying decoupling transformation in the configuration space. A closer
examination of Eq. (69) reveals that it consists of two parts. The first part, T1pþT2 _p, accounts for time drifts caused by
viscous damping in free vibration. The second part, T2TT

2f, accounts for time drifts induced by the excitation fðtÞ. When
fðtÞ ¼ 0, Eq. (69) reduces to q¼ T1pþT2 _p which, by direct manipulations, is the same as Eq. (13).

To cast Eq. (69) in state space, simply rewrite Eq. (66) in the form

pðtÞ

_pðtÞ

" #
¼

I I

K K

� �
V V

VK VK

" #�1
qðtÞ

_qðtÞ

" #
þ

0

TT
2fðtÞ

" #
: (70)

The above invertible transformation generalizes Eq. (15) from free to forced vibration. Initial conditions of pðtÞ in Eq. (2)
and qðtÞ in the original system (1) can be connected by putting t¼ 0 in Eq. (70). A flowchart depicting the decoupling of
forced vibration with complex eigenvalues is shown in Fig. 1, for which c¼ n and r¼ 0.

5.4. Forced vibration with mixed eigenvalues

Suppose real and complex eigenvalues of Eq. (3) occur simultaneously. As in free vibration, forced vibration with mixed
eigenvalues can be decoupled by dividing its eigensolutions into two groups: one associated with the real eigenvalues and
the other with complex eigenvalues. Let 2c eigenvalues be complex and 2r¼ 2ðn�cÞ be real. Separate the distinct
eigenvalues in accordance with Eq. (45). Index the 2c complex conjugate eigenvalues in a manner depicted in Eq. (46).
Index the 2r real eigenvalues according to Eq. (47). Upon decoupling, system (1) is transformed into Eq. (2), with D1, X1

given by Eqs. (48) and (49).
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To compute the excitation gðtÞ in the decoupled system (2), normalize the complex eigenvectors by Eq. (18) and the real
eigenvectors be Eq. (44). Construct V, K by Eqs. (16), (17) and V� and K� by Eqs. (51) and (52). Define

T1 ¼ ðVK��V�KÞðK��KÞ�1; (71)

T2 ¼ ðV
�
�VÞðK��KÞ�1: (72)

Using T1, T2 as given above, the driving forces fðtÞ and gðtÞ are still connected by Eq. (65). In addition, the form of the
decoupling transformations (69), (70) remains unchanged for mixed eigenvalues as long as T1, T2 are defined by Eqs. (71)
and (72) and V , K are replaced by V�, K�, respectively. A flowchart depicting the decoupling of any damped linear system is
shown in Fig. 1 when Eq. (3) is non-defective. If Eq. (1) is to be decoupled under the constraint that eigenvalues of Eq. (3)
remain invariant, then Eq. (2) as prescribed in Fig. 1 must be the decoupled system, unique up to an equivalence class
(because of non-unique pairing of the real eigensolutions).

5.5. Reduction to classical modal analysis

The decoupling methodology developed herein is a direct generalization of classical modal analysis. Without loss of
generality, assume that all eigenvectors are normalized in accordance with either Eqs. (18) or (44). Suppose all eigenvalues
lj of Eq. (3) are complex. It can be shown that, when system (1) is undamped or classically damped, V¼ V ¼U, where V is
given by Eq. (16) and U is the classical modal matrix of Eq. (6). It follows from Eqs. (60) and (61) that T1 ¼U and T2 ¼ 0.
Thus Eq. (65) simplifies to gðtÞ ¼UTfðtÞ. In addition, Eq. (69) simplifies to q¼Up, which is exactly the classical modal
transformation. Therefore the decoupled system (2) becomes identical to Eq. (7).

To the other extreme, assume that all eigenvalues lj are real. If system (1) is classically damped, the sets of eigenvectors
associated with the primary and secondary eigenvalues are each identical to the set of classical normal modes. Among the
N different ways to pair the eigensolutions by real quadratic conjugation, where N is given by Eq. (31), there exists a pairing
scheme such that V¼ ~V ¼U. Subsequent reduction to classical modal analysis occurs in the same manner as for complex
eigenvalues. Note that the pairing scheme that imposes the condition V¼ ~V ¼U is not necessarily the same as the
primary–secondary pairing scheme defined by Eq. (32). In the case of real eigenvalues, reduction of phase synchronization
to classical modal analysis is not as neat as for complex eigenvalues.

When real and complex eigenvalues of Eq. (3) occur simultaneously, the decoupling procedure expounded earlier
obviously remains a direct generalization of modal analysis. There exists a pairing scheme for the real eigensolutions such
that V¼ V� ¼U. Using this pairing scheme, Eqs. (65) and (69) simplify to gðtÞ ¼UTfðtÞ and q¼Up for systems that are
undamped or classically damped. There remains a final question. What if the eigenvectors are not normalized in
accordance with Eqs. (18) or (44)? Reduction of the method of phase synchronization to classical modal analysis remains
valid except that multiplicative constants occur here and there. For example, V and U may differ by a constant matrix
multiplier instead of being equal.

5.6. Efficiency of solution by decoupling

System solution is probably not the most important reason for decoupling. It is the possibility, for example, of modal
reduction (using the real damped modes) and of an investigation of energy distribution among independent coordinates
that would make decoupling worthwhile. Nevertheless, it may still be instructive to examine the efficiency of solution of
Eq. (1) by decoupling, when both real and complex lj occur at the same time. It will be assumed that the excitation fðtÞ and
response qðtÞ are sufficiently smooth (adequate if twice differentiable). One measure of the performance of an algorithm is
the number of flops (floating point operations) required to evaluate the response at m points within a given time window.
The flops associated with two procedures are compared. (a) In direct numerical integration, a standard procedure is to
recast the second-order Eq. (1) in state space as a first-order system of dimension 2n. The state equation is then discretized,
and the resulting difference equation is solved by matrix computations [42]. The estimate of flops of this standard
procedure for response calculation at m instants is [9,55–57]

N1 ¼ 160n3þ16mn2; (73)

where n is the number of degrees of freedom and mbn in general. (b) In solving Eq. (1) by decoupling, Eq. (2) is obtained
through solution of Eq. (3) and evaluation of Eq. (65). Each independent decoupled system in Eq. (2) is then solved
numerically at m instants with the same algorithm used in procedure (a). Subsequently, Eq. (69) is employed to compute
the response qðtÞ. The estimate of flops is [9,55–57]

N2 ¼ 10mn2þ16mnþ213n3þ4n2: (74)

The variations of N1 and N2 with n are illustrated in Fig. 2 for a window containing m¼ 106 instants. It is observed that
response calculation by decoupling generally reduces the flops and economizes on both core memory and computing time.
In fact, Fig. 2 is rather conservative because N2 has been estimated by using the same sampling time in the integration of all
decoupled equations. If an optimal sampling time can be individually chosen for each decoupled equation, N2 may
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Fig. 2. Comparison of efficiency in response calculation under forced vibration by direct numerical integration N1 ( ) and by decoupling N2 ( ).

Estimated flops to evaluate the response at m¼ 106 instants are plotted against the degree of freedom n.
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decrease substantially. Moreover, each decoupled equation may be solved exactly in many applications in terms of
elementary functions (rather than convolution integrals).

On the other hand, the efficiency of response calculation by decoupling depends on the size of the time window. In
addition, validity of Eqs. (73) and (74) requires that the excitation fðtÞ and response qðtÞ be sufficiently smooth.
Distributional excitation such as an impulse and weak solutions (less than twice differentiable) are excluded [58,59]. Thus
Fig. 2 should be interpreted as indicative rather than absolute in the comparison of efficiency.

6. Illustrative examples

The decoupling of systems possessing both real and complex eigenvalues, and executing free or forced oscillations, are
considered. A defective system will also be decoupled by phase synchronization.

Example 1. The choice of pairing schemes and damped modes of imaginary vibration are examined. Consider a system
governed by Eq. (1), with

M¼
1 0

0 1

� �
; C¼

4 �1

�1 8

� �
; K¼

1 0

0 4

� �
; fðtÞ ¼ 0; (75)

and initial conditions

qð0Þ ¼ ½1 �1�T; _qð0Þ ¼ ½1 1�T: (76)

This system is non-classically damped and it cannot be decoupled by modal analysis. Solution of the quadratic eigenvalue
problem (3) yields

l1 ¼�4�
ffiffiffiffiffiffi
14
p

ol2 ¼�2�
ffiffiffi
2
p

ol3 ¼�2þ
ffiffiffi
2
p

ol4 ¼�4þ
ffiffiffiffiffiffi
14
p

: (77)

Instead of primary–secondary pairing as prescribed in Eq. (32), assign l4 ¼
~l1, l3 ¼

~l2. Using the first parts of Eqs. (33) and
(34), l1 ¼ a1þ io1 ¼�4þ iði

ffiffiffi
4
p
Þ, l2 ¼ a2þ io2 ¼�2þ iði

ffiffiffi
2
p
Þ. It can also be checked that

v1 ¼
r11e�ij11

r12e�ij12

" #
¼

0:59e�ið�0:85iÞ

�0:42e�ið0:85iÞ

" #
¼

0:25

�0:98

� �
; v4 ¼ ~v1 ¼

r11e�ij11

r12e�ij12

" #
¼

1:39

�0:18

� �
; (78)

v2 ¼
r21e�ij21

r22e�ij22

" #
¼

0:59e�ið0:44iÞ

�0:42e�ið0:44iÞ

" #
¼

0:92

0:27

� �
; v3 ¼ ~v2 ¼

r21e�ij21

r22e�ij22

" #
¼

0:38

0:65

� �
; (79)

where the eigenvectors are normalized in accordance with Eq. (44). From Eq. (35), the two modes of imaginary vibration
are given by

s1ðtÞ ¼ C1e�4t
0:59 cosði

ffiffiffiffiffiffi
14
p

t�y1þ0:85iÞ

�0:42 cosði
ffiffiffiffiffiffi
14
p

t�y1�0:85iÞ

" #
; (80)
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s2ðtÞ ¼ C2e�2t
0:59 cosði

ffiffiffi
2
p

t�y2�0:44iÞ

0:42 cosði
ffiffiffi
2
p

t�y2þ0:44iÞ

" #
: (81)

The free response is a superposition of these two real damped modes. In fact, the constants Cj, yj can be determined by
imposing the initial conditions to yield C1e�iy1 ¼ 0:36e�1:95 and C2e�iy2 ¼�1:26e�0:44. As shown in Fig. 3, the two modes of
imaginary vibration indeed represent real exponential decay. By phase synchronization of s1ðtÞ and s2ðtÞ, the system can be
converted into the decoupled system (2), in which

D1 ¼�diag½ljþ
~l jðj¼ 1;2Þ� ¼ diag½8;4�; (82)

X1 ¼ diag½lj
~ljðj¼ 1;2Þ� ¼ diag½2;2�; (83)

and gðtÞ ¼ 0. From Eq. (40), the initial conditions of the decoupled system are

pð0Þ ¼ ½1:28 �1:39�T; _pð0Þ ¼ ½�0:52 1:96�T (84)

The solution qðtÞ of the original (M, C, K, 0) system can be recovered from solution pðtÞ of the decoupled ðI;D1;X1;0Þ system
by Eq. (13), in which

Z¼ ½z1jz2� ¼
1:48 0:32

�0:17 0:78

� �
: (85)

Both pðtÞ and qðtÞ are plotted in Fig. 4. It can be checked that qðtÞ, whether generated by decoupling or by direct numerical
integration of the original equation of motion, is the same.

In the above computation, primary–secondary pairing as prescribed in Eq. (32) was not used. If one insists on primary–

secondary pairing so that l3 ¼
~l1 and l4 ¼

~l2, then Eqs. (33) and (34) indicate that l1 ¼ a1þ io1 ¼�4:16þ iði3:58Þ and

l2 ¼ a2þ io2 ¼�1:84þ iði1:58Þ. By Eq. (35),

s1ðtÞ ¼ �0:25ie�4:16t
0:39 cosði3:58tþp=2þ1:59iþ0:45iÞ

1:00i cosði3:58tþp=2þ1:59iþp=2þ0:04iÞ

" #
; (86)

s2ðtÞ ¼ 1:72ie�1:84t
0:94 cosði1:58tþp=2þ0:81i�0:04iÞ

�0:18i cosði1:58tþp=2þ0:81iþp=2�045iÞ

" #
; (87)

under the same initial conditions given in Eq. (76). A different decoupled ðI;D1;X1;0Þ system is obtained, since in this case

D1 ¼ diag½8:33; 3:67�; X1 ¼ diag½4:54; 0:88�: (88)

The two decoupled systems, defined by Eqs. (82), (83) and by Eq. (88), are both overdamped. With primary–secondary

pairing, initial conditions of the decoupled system are

pð0Þ ¼ ½�0:59 1:55�T; _pð0Þ ¼ ½0:16 0:81�T (89)
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The decoupling transformation (13) that generates solution qðtÞ of the original (M, C, K, 0) system from the decoupled

solution is also different since

Z¼ ½z1jz2� ¼
0:66 0:90

1:01�0:27i �0:10þ0:03i

" #
(90)

As far as response calculation is concerned, the choice of pairing scheme is rather immaterial.

Example 2. Forced vibration is decoupled and the transformation of driving force is examined. Consider a mass-spring-
damper system governed by an equation of the type (1), with

M¼
1 0

0 1

� �
; C¼

0:7 �0:1

�0:1 0:2

� �
; K¼

2 �1

�1 2

� �
; fðtÞ ¼

cos t

sin 2t

� �
; (91)

and initial conditions

qð0Þ ¼ ½1 2�T; _qð0Þ ¼ ½�1 1�T: (92)

Since CM�1KaKM�1C, the system is non-classically damped. Solution of the quadratic eigenvalue problem (3) yields two
pairs of complex conjugate eigensolutions prescribed by

l1 ¼�0:18þ1:00i; v1 ¼
0:74e�i7:383

�0:72e�i172:513

" #
; (93)

l2 ¼�0:27þ1:68i; v2 ¼
�0:73e�i167:133

�0:73e�i12:683

" #
: (94)

This system can be converted into the decoupled form (2), for which

D1 ¼�diag½ljþljðj¼ 1;2Þ� ¼ diag½0:36; 0:54�; (95)

X1 ¼ diag½ljljðj¼ 1;2Þ� ¼ diag½1:03; 2:90�: (96)

Using Eqs. (60) and (61)

T1 ¼
0:72 0:74

0:73 �0:69

� �
; T2 ¼

�0:09 0:10

0:09 0:10

� �
: (97)

It follows from Eq. (65) that the transformed driving force is given by

gðtÞ ¼
0:72 cos tþ0:18 cos 2tþ0:09 sin tþ0:73 sin 2t

0:74 cos tþ0:20 cos 2t�0:10 sin t�0:69 sin 2t

" #
: (98)
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Initial conditions of the decoupled ðI; D1; X1; gðtÞÞ system are

pð0Þ ¼ ½2:32 �0:71�T; _pð0Þ ¼ ½�0:43 �1:61�T: (99)

The decoupled system can be readily solved and solution qðtÞ of the original ðM; C; K; fðtÞÞ system can be recovered from
pðtÞ by Eq. (69). Steady-state behaviors of gðtÞ, pðtÞ and qðtÞ are shown in Fig. 5. It can be checked that qðtÞ, whether
generated by decoupling or by direct numerical integration, is the same.

It would appear that an implicit assumption in Eq. (65) is that fðtÞ be differentiable. This is not the case. To illustrate

how discontinuous driving forces may be transformed by decoupling, superpose a square wave on the excitation in Eq. (91)

to get

fðtÞ ¼
cos t

sin 2t

� �
þ

9

�3

� �
sgn sin

t

3

� �
: (100)

Using distributional derivative [58,59] of fðtÞ, the excitation gðtÞ can be obtained from Eq. (65). As shown in Fig. 6,

discontinuities in fðtÞ give rise to delta distributions in gðtÞ. Under the excitation of Eq. (100), initial conditions of the

decoupled system as deduced from Eq. (70) are

pð0Þ ¼ ½2:32 �0:71�T; _pð0Þ ¼ ½�0:43 �1:61�T: (101)

The distributional response pðtÞ of the decoupled ðI; D1; X1; gðtÞÞ system is also shown in Fig. 6. The response qðtÞ of the

original ðM; C; K; fðtÞÞ system can still be recovered readily from pðtÞ by Eq. (69).

Example 3. A four-degree-of-freedom system possessing both real and complex eigenvalues is decoupled. In Eq. (1),
let M¼ I:

C¼

0:1 �0:1 0 0

�0:1 0:2 �0:1 0

0 �0:1 0:2 �0:1

0 0 �0:1 1:35

2
6664

3
7775; K¼

1 �1 0 0

�1 2 �1 0

0 �1 2 �1

0 0 �1 1:1

2
6664

3
7775; fðtÞ ¼

0

0

0

1

2
6664

3
7775te�0:3t sin 2t: (102)

Assume zero initial conditions qð0Þ ¼ 0, _qð0Þ ¼ 0. This system is non-classically damped. Solution of the quadratic
eigenvalue problem (3) yields c¼ 3 pairs of complex conjugates and r¼ 1 pair of real quadratic conjugates prescribed by

l1 ¼�0:33þ0:60i; v1 ¼

�0:62e�i28:293

�0:50e�i56:433

�0:58e�i112:713

�0:97e�i154:373

2
6664

3
7775; (103)
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l2 ¼�0:20þ1:31i; v2 ¼

0:55e�i9:573

0:44e�i167:833

�0:71e�i16:013

�0:47e�i132:323

2
6664

3
7775; (104)

l3 ¼�0:19þ1:81i; v3 ¼

0:30e�i7:003

�0:71e�i4:553

�0:64e�i177:083

0:21e�i130:643

2
6664

3
7775; (105)

l4 ¼�0:21þ iði0:07Þ; v4 ¼

0:59e�0:06

0:62e�0:04

0:67e0:02

0:76e0:09

2
6664

3
7775: (106)

From Eqs. (71) and (72),

T1 ¼

�0:38 0:53 0:30 0:70

�0:05 �0:45 �0:70 0:68

0:52 �0:66 0:64 0:64

1:11 0:37 �0:16 0:57

2
6664

3
7775; T2 ¼

0:49 �0:07 �0:02 0:53

0:71 �0:07 0:03 0:31

0:90 0:15 0:02 �0:17

0:70 0:27 �0:09 �0:93

2
6664

3
7775: (107)

It can be checked that the decoupled ðI; D1; X1; gðtÞÞ system is given by

D1 ¼�diag½ljþljðj¼ 1;2;3Þ; l4þ
~l4� ¼ diag½0:65;0:40;0:39;0:41�; (108)

X1 ¼ diag½ljljðj¼ 1;2;3Þ; l4
~l4� ¼ diag½0:46;1:75;3:32;0:04�; (109)

gðtÞ ¼ e�0:3t

1:4t cosð2tÞþð0:70þ0:90tÞsinð2tÞ

0:54t cosð2tÞþð0:27þ0:29tÞsinð2tÞ

�0:18t cosð2tÞ�ð0:09þ0:13tÞsinð2tÞ

�1:86t cosð2tÞþð�0:93þ0:85tÞsinð2tÞ

2
66664

3
77775; (110)

with initial conditions pð0Þ ¼ 0, _pð0Þ ¼ 0. The decoupled system can be readily solved and solution qðtÞ of the original
ðM; C; K; fðtÞÞ system can be recovered from pðtÞ by Eq. (69). As shown in Fig. 7, gðtÞ, pðtÞ and qðtÞ are all oscillatory. It can
be verified that qðtÞ, whether generated by decoupling or by direct numerical integration, is the same.
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Example 4. A defective system in forced vibration is decoupled. Consider a non-classically damped system governed by an
equation of the type (1), with M¼ I

C¼
1

3

4 �
ffiffiffi
5
p

�
ffiffiffi
5
p

8

" #
; K¼

1 0

0 4

� �
; fðtÞ ¼

cos 2t

tþ1

1

2

� �
; (111)

and zero initial conditions qð0Þ ¼ 0, _qð0Þ ¼ 0. Solution of the quadratic eigenvalue problem (3) yields two repeated
eigenvalues

l1; l1 ¼ l2; l2 ¼�17 i (112)

each of multiplicity 2. There is only one eigenvector v1 ¼ ½�0:08�0:25i �0:19�T associated with l1 ¼ l2 and also only one
eigenvector v1 associated with l1 ¼ l2. Hence this system is defective.

As discussed earlier, this defective system can still be decoupled into the form (2), with D1, X1 given by Eqs. (11) and

(12). In the present example, it can be verified that [9]

D1 ¼ 2I; X1 ¼ 2I: (113)

To determine the transformed excitation gðtÞ and a decoupling transformation, it will be shown how Eqs. (65) and (69) can

be updated. Suppose all eigenvalues of Eq. (3) are complex and there are only don pairs of complex conjugate eigenvalues.

Let mk be the multiplicity of lk. Then mk is also the multiplicity of lk so that m1þm2þ � � � þmd ¼ n. If Jk is a Jordan block of

order mk associated with lk ¼ akþ iok, Jk must be a Jordan block associated with lk ¼ ak�iok. Let

Vk ¼ ½v
k
1jv

k
2j � � � jv

k
mk
� (114)

be a matrix of order n�mk whose columns are made up of eigenvectors and generalized eigenvectors vk
j that constitute a

Jordan chain of length mk associated with lk. Construct the following square matrices of order n by

V¼ ½V1jV2j � � � jVd�; J¼ diag½J1; J2; � � � ; Jd�; K¼ diag½J�; N¼ J�K: (115)

For a defective system with complex eigenvalues, it can be shown that transformation (65) is modified to

gðtÞ ¼ _g1ðtÞþD1g1ðtÞþg2ðtÞ; (116)

where g1ðtÞ and g2ðtÞ are obtained from

g1ðtÞ

g2ðtÞ

" #
¼

e�Nt e�Nt

Ke�Nt Ke�Nt

" #
V V

VJ VJ

" #�1
0

fðtÞ

" #
: (117)

In addition, the decoupling transformation (69) is modified to

q¼ T1ðtÞpþT2ðtÞ _p�T2ðtÞg1; (118)
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where T1ðtÞ, T2ðtÞ are real and invertible matrices given by

T1ðtÞ ¼ ðVeNtK�VeNtKÞðK�KÞ�1
¼ 2 Re½VeNtKðK�KÞ�1

�; (119)

T2ðtÞ ¼ ðV�VÞeNtðK�KÞ�1
¼ 2 Re½VeNtðK�KÞ�1

�: (120)

Initial conditions of the original and decoupled systems are connected by

pð0Þ

_pð0Þ

" #
¼

I I

K K

� �
V V

VJ VJ

" #�1
qð0Þ

_qð0Þ

" #
þ

0

g1ð0Þ

" #
(121)

where g1ð0Þ ¼ ½1:58 3:79�T in this example. If Eq. (3) is non-defective, N¼ 0 and all equations developed for defective

systems reduce to those for non-defective systems. In the present example, d=1 and it can be verified that

V¼
�0:08�0:25i 0:50�0:58i

0:19 0:19i

� �
; J¼

�1þ i 1

0 �1þ i

" #
; (122)

T1ðtÞ ¼
�0:33 �0:33t�0:08

0:19 0:19tþ0:19

" #
; T2ðtÞ ¼

�0:25 �0:25t�0:58

0 0:19

� �
: (123)

The driving force gðtÞ, solution pðtÞ of the decoupled ðI; D1; X1; gðtÞÞ system and qðtÞ of the original ðM; C; K; fðtÞÞ

system are shown in Fig. 8. It can be checked that qðtÞ, whether generated by decoupling or by direct numerical integration,

is the same.

7. Conclusions

Classical modal analysis has been extended to decouple any viscously damped linear system in non-oscillatory free
vibration and in forced vibration. The extension utilizes phase synchronization to compensate for time drifts caused by
viscous damping and external excitation. Together with an earlier paper on the decoupling of oscillatory free vibration [9],
a solution to the ‘‘classical decoupling problem’’ has been provided. The decoupling methodology developed herein
possesses ample physical insight and it also lends itself to numerical computations. Major findings of this paper are
summarized in the following statements.
1.
 Phase synchronization of damped modes in exponential decay is based upon the concept of imaginary vibration. Unlike
oscillatory free vibration, there are N different ways to decouple purely non-oscillatory free vibration, where N is given
by Eq. (31).
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2.
 In free or forced vibration, all parameters required for the construction of decoupled systems and decoupling
transformations are obtained through the solution of a quadratic eigenvalue problem.
3.
 Any viscously damped linear system (no restrictions) can be completely decoupled by phase synchronization. A
flowchart outlining the decoupling procedure is given in Fig. 1. If Eq. (3) is defective (with probability zero for a
randomly chosen eigenvalue problem), only the driving force gðtÞ and Eq. (69) need to be updated.
4.
 While damped linear systems are decoupled in the configuration space, transformations of initial conditions are
prescribed in state space (otherwise initial values are connected at different time instants due to phase
synchronization).
5.
 The methodology of phase synchronization is a direct generalization of classical modal analysis.

To streamline the introduction of new concepts (such as damped modes of imaginary vibration), most formulas have
been established with the assumption that eigenvalues of the quadratic eigenvalue problem (3) are distinct. These
formulas remain unchanged when Eq. (3) is non-defective (each repeated eigenvalue possesses a full complement of
independent eigenvectors). A system for which Eq. (3) is defective can still be decoupled by phase synchronization.
However, physical insight is obscured due to the occurrence of Jordan sub-matrices in the corresponding equations.
Although only four numerical examples are presented, extensive simulations using the flowchart of Fig. 1 have been
performed to support the validity of phase synchronization.

System decoupling plays a fundamental role not only in linear vibrations but also in such diverse areas as quantum
mechanics, mathematical economics, and computational science. It not only provides an efficient means of evaluating the
system response but also greatly facilitates qualitative analysis. Among other things, it is hoped that this paper would point
to directions along which further research efforts should be made. One such direction is obvious. The symmetry of M, C and
K has not been used directly in phase synchronization. Thus the method devised in this paper may be further extended to
decouple certain systems with non-symmetric coefficient matrices. The study of other issues, such as energy distribution
among the independent decoupled coordinates, numerical algorithms for decoupling, and modal reduction using the real
damped modes of vibration, is also worthwhile in a subsequent course of investigation.
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