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Epigenomic signature of major congenital 
heart defects in newborns with Down syndrome
Julia S. Mouat1,2,3,4, Shaobo Li5, Swe Swe Myint5, Benjamin I. Laufer1,2,3,4, Philip J. Lupo6, Jeremy M. Schraw6, 
John P. Woodhouse6, Adam J. de Smith5† and Janine M. LaSalle1,2,3,4*† 

Abstract 

Background Congenital heart defects (CHDs) affect approximately half of individuals with Down syndrome (DS), 
but the molecular reasons for incomplete penetrance are unknown. Previous studies have largely focused on identify-
ing genetic risk factors associated with CHDs in individuals with DS, but comprehensive studies of the contribution 
of epigenetic marks are lacking. We aimed to identify and characterize DNA methylation differences from newborn 
dried blood spots (NDBS) of DS individuals with major CHDs compared to DS individuals without CHDs.

Methods We used the Illumina EPIC array and whole-genome bisulfite sequencing (WGBS) to quantitate DNA meth-
ylation for 86 NDBS samples from the California Biobank Program: (1) 45 DS-CHD (27 female, 18 male) and (2) 41 DS 
non-CHD (27 female, 14 male). We analyzed global CpG methylation and identified differentially methylated regions 
(DMRs) in DS-CHD versus DS non-CHD comparisons (both sex-combined and sex-stratified) corrected for sex, age 
of blood collection, and cell-type proportions. CHD DMRs were analyzed for enrichment in CpG and genic contexts, 
chromatin states, and histone modifications by genomic coordinates and for gene ontology enrichment by gene 
mapping. DMRs were also tested in a replication dataset and compared to methylation levels in DS versus typical 
development (TD) WGBS NDBS samples.

Results We found global CpG hypomethylation in DS-CHD males compared to DS non-CHD males, which was attrib-
utable to elevated levels of nucleated red blood cells and not seen in females. At a regional level, we identified 
58, 341, and 3938 CHD-associated DMRs in the Sex Combined, Females Only, and Males Only groups, respectively, 
and used machine learning algorithms to select 19 Males Only loci that could distinguish CHD from non-CHD. DMRs 
in all comparisons were enriched for gene exons, CpG islands, and bivalent chromatin and mapped to genes enriched 
for terms related to cardiac and immune functions. Lastly, a greater percentage of CHD-associated DMRs than back-
ground regions were differentially methylated in DS versus TD samples.

Conclusions A sex-specific signature of DNA methylation was detected in NDBS of DS-CHD compared to DS non-
CHD individuals. This supports the hypothesis that epigenetics can reflect the variability of phenotypes in DS, particu-
larly CHDs.

Keywords Down syndrome, Congenital heart defect, Newborn dried blood spot, DNA methylation, Whole-genome 
bisulfite sequencing, Epigenetics, Epigenome-wide association study, Differentially methylated regions, nRBC, 
Hypomethylation
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Introduction
Down syndrome (DS) is a set of distinct clinical features 
that result from trisomy 21, the most common autosomal 
aneuploidy across live births. Clinical characteristics of 
DS vary across individuals but include intellectual disabil-
ity, short stature, muscle hypotonia, atlantoaxial instabil-
ity, reduced neuronal density, cerebellar hypoplasia, and 
congenital heart defects (CHDs) [1]. CHDs affect ~ 50% 
of newborns of both sexes with DS [2–5] despite their 
diagnosis in only ~ 1% of newborns without DS [6]. The 
most frequently diagnosed CHD in children with DS is 
an atrioventricular septal defect (AVSD), a condition 
characterized by a large hole in the heart due to improper 
development of the endocardial cushion. Many cases of 
DS-CHDs, particularly AVSD, are diagnosed in utero by 
ultrasound, but others are not diagnosed until after birth 
following obvious symptoms or an echocardiogram and 
often require surgery.

The mechanisms influencing the development of CHDs 
among individuals with DS are not clear. Studies of par-
tial trisomy 21 patients have pinpointed critical regions 
on chromosome 21, including the Down syndrome cell 
adhesion molecule (DSCAM) gene, that appear to under-
lie CHD development [7], but these have not addressed 
the incomplete penetrance among individuals with com-
plete trisomy 21. Additionally, genome-wide association 
studies and candidate-gene approaches have identified 
variants on chromosomes throughout the genome that 
are associated with CHDs in DS [8–13]. However, these 
genetic variants do not sufficiently explain CHD risk 
among those with DS.

Another molecular driver or biomarker of CHD risk in 
children with DS may be epigenetic mechanisms such as 
DNA methylation. Increasing evidence has shown epige-
netic alterations and gene-environment interactions to 
be involved in the pathogenesis of non-syndromic CHDs 
[14, 15], but comprehensive studies of genome-wide 
DNA methylation variation associated with DS-CHD 
are lacking. We previously used whole-genome bisulfite 
sequencing (WGBS) of newborn dried blood spots 
(NDBS) to examine methylation profiles in 11 DS-CHD 
compared to 10 DS non-CHD samples, as part of a larger 
DS versus typical development (TD) study [16]. There 
were 1588 nominally significant (p < 0.05) differentially 
methylated regions (DMRs) (35% hypermethylated, 65% 
hypomethylated) distinguishing DS-CHD from DS non-
CHD, and these regions were enriched for terms related 
to the heart, as well as neurodevelopment and metabo-
lism [16]. These promising but preliminary results sug-
gesting an epigenomic signature of CHD within DS led 
us to conduct the present study.

This current study used WGBS of NDBS obtained from 
the California Biobank Program among 86 DS individuals 

with and without major CHDs to identify specific loci, 
biological pathways, and genic contexts that are asso-
ciated with risk for CHDs in the DS population. Very 
few studies have conducted WGBS on NDBS, a sample 
source that is accessible, widely banked, reflective of the 
intrauterine period, and informative regarding dysregu-
lation in other tissues, including the brain and the heart 
[16]. In contrast to reduced representation methods such 
as arrays, this WGBS study provides insight to the entire 
DS-CHD epigenome, particularly because regional meth-
ylation smoothing approaches increase confidence over 
regions with relatively low coverage. Additionally, our 
study investigates similarities/differences in molecular 
signatures of DS-CHD in males compared to females, 
as well as DS-CHD compared to DS (versus TD). Our 
findings showed sex-specific global and region-specific 
changes to methylation that may serve as biomarkers 
and/or be functionally important in the development of 
CHDs in individuals with DS.

Methods
Study populations and DNA extraction from NDBS
This study was approved by Institutional Review Boards 
at the California Health and Human Services Agency, 
University of Southern California, and University of Cali-
fornia, Davis. For the Discovery study, deidentified NDBS 
were obtained from 90 newborns with DS from the Cali-
fornia Biobank Program (CBP, SIS request number 572), 
with a waiver of consent from the Committee for the 
Protection of Human Subjects of the State of Califor-
nia [17]. Demographic and birth-related data, including 
sex, race/ethnicity, birthweight, gestational age, and age 
of blood collection, were obtained from the CBP (Addi-
tional file 1: Tables S1 and S2). DS newborns with CHD 
or without CHD were identified via linkage between the 
California Department of Public Health Genetic Dis-
ease Screening Program and the California Birth Defects 
Monitoring Program (CBDMP). In brief, the CBDMP is a 
population-based surveillance program that covers ~ 30% 
of the births in California, including 10 counties, which 
are representative of the state’s population [18]. Birth 
defects diagnosis data from CBDMP for the 90 new-
borns were coded into “major birth defects” and “major 
heart defects” using guidelines from the National Birth 
Defects Prevention Network [6]. Major defects included 
AVSD and tetralogy of Fallot. We identified 46/90 new-
borns with a CHD, of which 44 were AVSDs, and 3 had 
tetralogy of Fallot. For this study, we focused on major 
heart defects and following sample quality control (QC) 
(described below) we included 45 DS with CHD (27 
female, 18 male) and 41 DS without CHD (27 female, 14 
male). DNA was extracted from one 4.7 mm card punch 
of each of the 90 NDBS, roughly 1.4  cm in diameter, 
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with the Beckman Coulter GenFind V3 Reagent Kit (cat 
#C34880).

Whole‑genome bisulfite sequencing
All DNA samples were sonicated to ~ 350 bp with a peak 
power of 175, duty of 10%, 200 cycles/burst, and a time 
of 47  s. The sonicated DNA was cleaned and concen-
trated with Zymo gDNA clean and concentrator columns 
and eluted in 25  µl  EB. Bisulfite conversion was per-
formed with the Zymo EZ DNA Methylation Lightning 
Kit (cat #11-338) using ~ 35 ng of each sonicated sample. 
Libraries were prepared using the Swift ACCEL-NHS 
MethylSeq DNA Library Kit (cat #30096) with 7 cycles 
of PCR for normal-input samples and 11 cycles for low-
input samples. Libraries were pooled, and a 0.85X SPRI 
cleanup was performed on 250 µl of the pool, eluted in 
100 µl. The library pool (concentration of 3.63 ng/µl) was 
sequenced across 4 lanes of an Illumina NovaSeq 6000 S4 
flow cell using 150 bp paired end reads.

FASTQ files for each sample were merged across lanes 
using FASTQ_Me [19] and aligned to the hg38 genome 
using CpG_Me [20] with the default parameters [21–
24]. The alignment pipeline includes trimming adapters 
and correcting for methylation bias, screening for con-
taminating genomes, aligning to the reference genome, 
removing PCR duplicates, calculating coverage and insert 
size, and extracting CpG methylation to generate a cyto-
sine report (CpG count matrix) and a QC report. Global 
methylation for each sample was calculated as the total 
number of methylated CpG counts divided by the total 
number of CpG counts from CpG count matrices. From 
the 90 samples sequenced, four samples were removed 
from analysis: two due to high levels of sequence duplica-
tion and two due to missing sample data.

Genome‑wide DNA methylation arrays
In addition to WGBS, existing DNA methylation data 
were available from NDBS for each sample from Illu-
mina Infinium MethylationEPIC (EPIC) DNA meth-
ylation arrays [17]. In brief, DNA was isolated from a 
separate one-third portion of the NDBS, bisulfite conver-
sion performed as above, and DNA samples were block-
randomized (ensuring equivalent distribution of sex and 
race/ethnicity on each plate) for EPIC arrays [17]. QC of 
DNA methylation array data was conducted in R using 
“minfi,” “SeSAMe,” and “noob” packages, and trisomy 21 
was confirmed from copy-number variation plots gener-
ated using the conumee R package [25], as described [17]. 
Global methylation for each sample is represented by the 
beta value, the ratio of the methylated probe intensity and 
the overall intensity [26]. As previously done [27], EPIC 
array beta values from all samples were correlated with 
WGBS global methylation values to assess consistency 

across platforms (see Sect.  2.5). DMRs associated with 
DS-CHDs were investigated using the ipDMR method 
with the ENmix R package [28].

Cell‑type estimation
To estimate nucleated cell proportions in NDBS samples, 
we used the EPIC array data to perform reference-based 
deconvolution using the Identifying Optimal Libraries 
(IDOL) algorithm [29]. Briefly, “estimateCellCounts2” 
function from the FlowSorted.Blood.EPIC R package 
[30] was used to estimate proportions of CD8 + T lym-
phocytes (CD8T), CD4 + T lymphocytes (CD4T), natu-
ral killer (NK) cells, B lymphocytes (B cell), monocytes, 
granulocytes, and nucleated red blood cells (nRBC), 
using cord blood cell reference samples included in the 
FlowSorted.CordBloodCombined.450 k R package [31].

Sample trait analysis
Newborn sample traits of global CpG methylation, birth-
weight, gestational age of delivery, age of blood collection, 
race, ethnicity, and cell-type proportions were correlated 
using Pearson’s method with the Hmisc package v4.7.1 
[32], and p values were adjusted by FDR (0.05 threshold) 
using the corr.test function in the psych package v2.2.9 
[33] in R v4.1.3. DS-CHD versus DS non-CHD samples 
(sex-combined and sex-segregated) were tested for dif-
ferences across sample traits using Welch’s unpaired 
variances t test with GraphPad Prism v9.4.1. Stepwise 
forward logistic regression was performed to determine 
the variables that best predicted CHD in each sex using 
the “glm (family = binomial)” function in R v4.1.3. Step-
wise linear regression was performed to determine the 
variables that best predicted global CpG methylation in 
each sex using the lm function in R v4.1.3.

DMR analysis from WGBS
DMRs for DS-CHD versus DS non-CHD in the WGBS 
data were called for Sex Combined, Females Only, and 
Males Only samples using DMRichR v1.7.3 [16] and R 
v4.1.0. Default parameters were used to identify DMRs 
containing at least 5 CpGs with at least a 5% methylation 
difference between groups, with each CpG requiring at 
least 1 × coverage in at least 75% of samples. These cutoffs 
were selected to leverage the genome-wide coverage of 
low-pass WGBS (~ 4 × coverage) by including a large pro-
portion of total CpGs in the analyses (Additional file  2: 
Fig. S1) [34]. To increase confidence of putative DMRs 
despite a requirement of only 1 × coverage over each 
CpG, DMRichR implements a smoothing approach that 
gives greater weight to CpGs with higher coverage and 
infers the methylation levels of nearby CpGs that have 
lower coverage. Specifically, DMRichR uses bsseq [35] 
to extract methylation levels from cytosine reports and 
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dmrseq [36] to identify DMRs. The dmrseq algorithm 
detects candidate regions whose smoothed pooled meth-
ylation proportion shows differences between groups 
and then assesses the significance of candidate regions 
through permutation testing of the pooled null distribu-
tion to calculate p values that are then FDR corrected to 
generate q-values [36].

In all three comparisons (Sex Combined, Females Only, 
and Males Only), we adjusted for sample traits that were 
correlated with global methylation (|r|> 0.2): age of blood 
collection and all cell types. Sex was additionally adjusted 
for in the Sex Combined analysis. Gestational age and 
birthweight met this cutoff in males, but not females, and 
were not corrected for because the effect of gestational 
age on DNA methylation has been found to mostly be 
due to nRBC proportion [37] and birthweight is largely 
dependent on gestational age. Sex chromosomes were 
included in Females Only and Males Only comparison 
but not the Sex Combined comparison. The sex of each 
sample was confirmed by the number of reads of sex 
chromosomes as previously described [16].

Principal component analysis (PCA) was performed 
using smoothed methylation values over the DMRs 
identified in each comparison to test for separation of 
CHD and non-CHD samples. Data were standardized 
so each variable had a mean of 0 and standard deviation 
of 1, and principal components were selected by parallel 
analysis from 1000 permutations using GraphPad Prism 
v9.4.1. The two principal components that explained the 
greatest variance in the data were selected for graphing 
and samples were color-coded by CHD and non-CHD. 
Sex specificity of the DMRs was tested by obtaining 
smoothed methylation values over DMRs from the Males 
Only comparison in female samples and over DMRs from 
the Females Only comparison in male samples, and PCA 
was performed as explained above.

Machine learning algorithms implemented through 
DMRichR were used to identify minimal DMRs for clas-
sifying samples as CHD or non-CHD [16]. Random for-
est algorithms from the Boruta package [38] and support 
vector machine algorithms from the sigFeature package 
[39] were used to build binary classification models and 
rank the DMRs by importance for the feature selection 
analyses. Minimal DMRs were selected as those that were 
identified in both lists and were in the top 1%.

DS-CHD DMRs from Sex Combined, Females Only, 
and Males Only comparisons were overlapped by 
genomic coordinates using rtracklayer v1.54.0 [40] and 
GenomicRanges v1.46.1 [41], and the Venn diagram 
was made with VennDiagram v1.7.3 [42] in R v4.1.3. The 
significance of the overlap between any two DMR com-
parisons was tested by permutation testing using the 
regioneR R package v1.32.0 [43]. The true overlap was 

compared to a null distribution of overlaps containing 
10,000 length-matched random regions from the “uni-
verse” which we defined as the intersection of the total 
regions that were tested as potential DMRs for each 
comparison.

Enrichment testing and gene ontology from WGBS DMRs
DMRs from all comparisons were tested for enrich-
ment in chromosome location compared to background 
regions using the Database for Annotation, Visualization 
and Integrated Discovery (DAVID), 2021 version [44, 45]. 
DMRs were tested for enrichment in genic (promoter, 
5’UTR, exon, intron, 3’UTR, downstream, intergenic) 
and CpG (island, shore, shelf, open sea) contexts com-
pared to background regions using DMRichR [16]. The 
significance of genic and CpG annotations was tested 
using Fisher’s exact test and FDR correction. DMRs were 
mapped to genes on the hg38 genome using TxDb. Gene 
ontology enrichment was performed using rGREAT [46], 
with genomic coordinates of DMRs tested relative to 
background regions using the “oneClosest” rule.

Replication of WGBS CHD DMRs in independent DS 
newborn study
DMRs were tested for replication in a previously pub-
lished DS NDBS WGBS dataset with 10 non-CHD (2 
female, 8 male) and 11 CHD (6 female, 5 male) individu-
als [16]. Unadjusted smoothed methylation values were 
calculated in replication dataset samples over DMR 
genomic coordinates from Sex Combined, Females Only, 
and Males Only comparisons using the “getMeth” func-
tion of the bsseq R package [35]. Unpaired t tests were 
calculated using the smoothed methylation values for 
replication CHD versus non-CHD samples, and p values 
were corrected by FDR using GraphPad Prism v9.4.1.

Comparison of WGBS CHD DMRs and background regions 
with DS versus TD NDBS samples
DS-CHD DMRs and background regions were tested 
for overlap with DMRs associated with DS in a previous 
epigenome-wide association study that included 21 DS (8 
female, 13 male) and 32 TD (16 female, 16 male) NDBS 
samples with WGBS data [16]. Unadjusted smoothed 
methylation values were calculated in replication data-
set samples over DMR and background region genomic 
coordinates from Sex Combined, Females Only, and 
Males Only analyses using the “getMeth” function of the 
bsseq R package [35]. Unpaired t tests were calculated for 
DS versus TD using the smoothed methylation values of 
the replication dataset, and p values were corrected by 
the FDR method using GraphPad Prism v9.4.1. Poten-
tial differences between the proportions of DS-CHD 
DMRs and background regions that were significantly 
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differentially methylated in DS versus TD or methylated 
in the same direction in DS versus TD as DS-CHD ver-
sus DS non-CHD were calculated using the z test for two 
population proportions.

Results
Sample traits were not different in DS‑CHD cases 
compared to DS non‑CHD controls
We quantitated DNA methylation by EPIC array and 
WGBS in DNA isolated from NDBS from 86 individu-
als with DS, 45 of whom also had a CHD. Overall, our 
cohort had more females [n = 54 (62.8%), CHD = 27, 
non-CHD = 27] than males [n = 32 (37.2%), CHD = 18, 
non-CHD = 14] as well as a higher proportion of His-
panic participants [n = 57 (63%)] and lower proportion of 
non-Hispanic white [n = 17 (19.8%)], non-Hispanic Asian 
[n = 8 (9.3%)], and non-Hispanic Black [n = 4 (4.7%)] par-
ticipants when compared to California census data [47]. 
However, there were no significant differences for sex 
or race/ethnicity between DS-CHD and DS non-CHD 
newborns (Table 1) (Additional file 1: Table S3). In addi-
tion, birthweight, gestational age, and age at blood col-
lection did not differ significantly between DS-CHD 
and DS non-CHD newborns (Table 1) (Additional file 1: 
Table S3).

The estimated cell-type proportions (CD8T, CD4T, 
NK, B cell, monocytes, granulocytes, nRBC) in newborn 
blood were highly variable across samples, particularly 
for nRBC and granulocyte proportions (Additional file 1: 
Table  S2). All cell types were positively correlated with 
one another, except nRBCs which were negatively corre-
lated with all other cell types (Additional files 1: Table S4, 
2: Fig. S2). Most cell types (CD8T, CD4T, NK, mono-
cytes, nRBC) were also significantly (unadjusted p < 0.05) 
correlated with age of blood collection, and all cell types 
were significantly correlated with WGBS global methyla-
tion levels, supporting the adjustment for cell types in 
our DMR analyses. Cell-type proportions did not differ 
significantly between DS-CHD and DS non-CHD new-
borns overall, or in sex-stratified comparisons (Table  1) 
(Additional file 1: Table S3).

WGBS of newborn blood DNA detects global 
hypomethylation in DS‑CHD males compared to DS 
non‑CHD males due to elevated nRBC proportions
To assess the reproducibility of EPIC array and WGBS 
methylation quantitation, we examined global CpG 
methylation levels from the two platforms and found 
that EPIC array beta values (Additional file 1: Table S5) 
were lower than WGBS global methylation values across 

Table 1 Sample traits in DS-CHD cases and DS non-CHD controls

a Missing data from 1 sample (DS non-CHD)
b Missing data from 5 samples (4 DS-CHD, 1 DS non-CHD)

All samples 
(n = 86) 
Mean or n
(SD or %)

DS‑CHD 
(n = 45) 
Mean or n
(SD or %)

DS non‑CHD (n = 41)
Mean or n (SD or %)

Global methylation 79.3 (3.9) 79.0 (4.3) 79.5 (3.4)

CD8T 0.05 (0.03) 0.05 (0.03) 0.05 (0.04)

CD4T 0.12 (0.08) 0.13 (0.09) 0.11 (0.07)

NK 0.03 (0.02) 0.03 (0.03) 0.03 (0.02)

B cells 0.007 (0.009) 0.006 (0.009) 0.007 (0.01)

Monocytes 0.07 (0.04) 0.07 (0.05) 0.07 (0.04)

Granulocytes 0.58 (0.21) 0.54 (0.23) 0.63 (0.17)

nRBCs 0.12 (0.23) 0.15 (0.27) 0.09 (0.19)

Birthweight (grams)a 3018 (633) 2953 (636) 3092 (630)

Gestational age (days)b 266 (17) 266 (16) 267 (18)

Age of blood collection (hours) 62 (57) 63 (49) 62 (65)

Sex

Female 54 (62.8%) 27 (60%) 27 (65.9%)

Male 32 (37.2%) 18 (40%) 14 (34.1%)

Race/ethnicity

Asian (non-Hispanic) 8 (9.3%) 6 (13.3%) 2 (4.9%)

Black (non-Hispanic) 4 (4.7%) 3 (6.7%) 1 (2.4%)

White (non-Hispanic) 17 (19.8%) 9 (20%) 8 (19.5%)

Hispanic 57 (66.3%) 27 (60%) 30 (73.2%)
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all samples, but very strongly correlated (r = 0.9716, 
p < 0.0001) (Additional file  2: Fig. S3), consistent with 
previous findings [27]. While a few samples had notably 
low global CpG methylation levels (< 70% from WGBS), 
these samples were not removed from analysis because 
their other QC metrics were acceptable and their cor-
responding array beta values were also low, suggesting it 
was not a technical error.

Using WGBS data, we first assessed whether global 
CpG methylation levels differed between DS-CHD and 
DS non-CHD newborns. There was no significant differ-
ence overall, but when stratified by sex we found signifi-
cant hypomethylation in DS-CHD males compared with 
DS non-CHD males (unadjusted p < 0.05), a pattern that 
was not seen in females (Fig.  1A, B) (Additional files 1: 
Table  S3, Fig S4). We confirmed by logistic regression 
that global methylation was the most predictive variable 
of CHD in males (p = 0.101), while CD4T cell proportion 
was the most predictive variable in females (p = 0.0681) 
(Additional file  1: Table  S6). Because nRBCs are known 
to have lower methylation levels than other cell types 

in blood [48] and their proportion in blood samples 
varies widely across individuals [49] in negative asso-
ciation with global methylation [48, 50], we investigated 
the relationship between nRBC proportion and global 
methylation in our samples. In both females and males, 
nRBC proportion was significantly negatively correlated 
with global methylation levels (Fig.  1C, D) (Additional 
files 1: Table  S4, Fig S2) and was the most predictive 
variable of global methylation in linear regression mod-
els (females p <  − 2E16, males p = 2.12E−9) (Additional 
file  1: Table  S6). The presence of CHD predicted global 
methylation levels in males (p = 0.0618) much better than 
in females (p = 0.981), but addition of nRBC propor-
tion as an adjustment covariate decreased the strength 
of this relationship (males, p = 0.237) (Additional file  1: 
Table S6).

While proportion of nRBCs in the nucleated cell popu-
lation is typically very low, with a median of 0 for the esti-
mated nRBC proportions across samples in our study, we 
identified 12 out of 32 male samples with nRBC propor-
tions > 1%, of which 10 (83%) had a CHD (Supplemental 

Fig. 1 Global hypomethylation in DS-CHD males versus DS non-CHD males is driven by samples with high nRBC proportions. Density plot 
of average percent smoothed methylation in DS-CHD (Yes: blue) and DS non-CHD (No: red) in A females (note that red and blue lines are 
overlapping) and B males. Percent global methylation correlated with nRBC proportion in C females (Pearson’s r =  − 0.93, p = 2.16E−24) and D males 
(Pearson’s r =  − 0.84, p = 2.13E−9)
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Table S2) (Additional file 2: Fig. S4). In contrast, we iden-
tified 24/54 females with nRBC proportions > 1% of which 
only 50% (n = 12) had a CHD. In a sensitivity analysis, we 
removed five male samples that had notably high nRBC 
levels (> 20%) and corresponding low global methylation 
levels and saw that global methylation in DS-CHD ver-
sus DS non-CHD male samples were no longer signifi-
cantly different (p = 0.1865) (Additional file 1: Table S3). 
Females showed high interindividual variation in global 
methylation levels and nRBC proportions in both CHD 
and non-CHD groups, while CHD males showed much 
more variation (similar to females) than non-CHD males 
(Additional file 2: Fig. S4).

Sex‑stratified DMRs distinguish DS‑CHD from DS non‑CHD 
samples better than sex‑combined DMRs
Next, using WGBS data we investigated whether there 
were DMRs associated with DS-CHDs in Sex Com-
bined, Females Only, and Males Only comparison groups 
to characterize both sex-specific and sex-independent 
patterns in DS-CHD methylation. We adjusted for con-
founding variables that were associated with global meth-
ylation (|r|> 0.2): age of blood collection and all cell-type 
proportions, as well as sex (specific for the Sex Combined 
comparison) (Additional files 1: Table S4, Fig. S2).

The Sex Combined comparison yielded 58 signifi-
cant by permutation (p < 0.05) DMRs (Additional file  1: 
Table S7). In Females Only, we found 341 DMRs (Addi-
tional file 1: Table S8), whereas in Males Only we found 
3938 DMRs (Fig. 3A) (Additional file 1: Table S9). Sam-
ples with low methylation levels across Males Only 
DMRs corresponded with those with low global methyla-
tion. In a sensitivity analysis excluding the five male sam-
ples with nRBC proportions > 20%, we identified 2474 
Males Only DMRs (Additional file 1: Table S10).

DMR hierarchal clustering and principal component 
analysis (PCA) showed that CHD and non-CHD sam-
ples did not separate completely, although sex stratifica-
tion improved the distinction (Fig. 2A, B). Using machine 
learning feature selection, we identified a minimal set of 
19 Males Only DMRs that could distinguish CHD from 
non-CHD samples (Fig. 2C) (Additional file 1: Table S11). 
The five male samples with high nRBCs and low meth-
ylation across DMRs did not have outlier methylation 

values across the 19 minimal DMRs, showing that the 
most predictive DMRs were not driven by outliers. In 
the Males Only sensitivity analysis (with 5 samples with 
nRBC > 20% removed), 13 minimal DMRs distinguished 
CHD from non-CHD, with four overlapping with those 
from the Males Only minimal selection using all samples: 
DCAF1, LARGE2, LOC105379273, SYT9 (Additional 
file 1: Table S11). In the other comparisons, 6 Sex Com-
bined and 3 Females Only DMRs were identified by the 
feature selection but could not cleanly distinguish CHD 
from non-CHD samples (Additional files 1: Table  S11, 
Fig. S5).

In the replication dataset of WGBS from NDBS of 21 
children with DS, 11 with CHD (6 females, 5 males) and 
10 without CHD (2 females, 8 males) [16], we found that 
26 (46.4%) of the 56 Sex Combined DMRs that were cov-
ered in the replication study were methylated in the same 
direction in both groups (Additional file  1: Table  S12), 
while 161/329 (48.9%) of Females Only (Additional file 1: 
Table S13) and 2229/3938 (56.7%) of Males Only DMRs 
(Additional file 1: Table S14) were methylated in the same 
direction. Few DMRs were significantly differentially 
methylated (unadjusted p < 0.05) in the replication data-
set, with 2 Sex Combined, 9 Females Only, and 68 Males 
Only meeting this cutoff.

In DMR analysis using EPIC array data, there were no 
significant DMRs associated with DS-CHDs, likely due 
to the EPIC array only covering ~ 3% of CpGs covered by 
WGBS (data not shown).

DS‑CHD DMRs are sex‑specific, with a small fraction 
overlapping across sexes
We next examined similarities and differences in DMRs 
across females and males. In the Sex Combined compari-
son, 60% of DMRs were hypomethylated in CHD com-
pared to non-CHD samples, while 40% of Females Only 
DMRs and 96% of Males Only DMRs were hypomethyl-
ated (Fig. 3A). In our Males Only sensitivity analysis that 
removed samples with nRBC proportions > 20%, 82% of 
DMRs were hypomethylated. To test the sex specific-
ity of Females Only and Males Only DMRs, we analyzed 
the smoothed methylation values over DMRs from the 
Males Only comparison in female samples and from the 
Females Only comparison in male samples and found 

(See figure on next page.)
Fig. 2 DMR profiles of CHD versus non-CHD in Sex Combined, Females Only, and Males Only comparisons within DS. A Heatmaps of nominally 
significant (p < 0.05) DMRs from DS-CHD versus DS non-CHD samples in Sex Combined, Females Only, and Males Only comparisons. All heatmaps 
show hierarchical clustering of Z-scores, which are the number of standard deviations from the mean of non-adjusted percent smoothed individual 
methylation values for each DMR. B PCA analysis using the smoothed methylation values of all DMRs from the Sex Combined and Females Only 
comparisons and the 1000 most significant DMRs in the Males Only comparison. C Hierarchical clustering heatmap of the machine learning feature 
selection analysis of the consensus DMRs from the Males Only comparison
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Fig. 2 (See legend on previous page.)
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that CHD and non-CHD samples did not separate by 
PCA (Additional file 2: Fig. S6). Females and males also 
did not separate by hierarchal clustering or PCA in the 
Sex Combined comparison (Fig.  2A) (Additional file  2: 
Fig. S7).

DMR genomic coordinates from all comparisons 
were then overlapped to identify sex-specific versus 

sex-independent regions. Four DMRs overlapped across 
all three comparisons, 26 across Sex Combined and 
Females Only comparisons (p < 9.99E−05), 14 across Sex 
Combined and Males Only comparisons (p < 9.99E−05), 
and 8 across Males Only and Females Only compari-
sons (p = 0.207) (Fig.  3B) (Additional file  1: Table  S15). 
All overlapping DMRs between comparison groups were 

Fig. 3 Overlapping CHD DMRs across Sex Combined, Female Only, and Male Only comparisons within DS. A The percent of DMRs which were 
hypermethylated versus hypomethylated in each of the three comparisons. B Venn diagram reflecting the numbers of unique and overlapping 
DMR genomic coordinates across the three comparisons. C DS-CHD DMRs which overlap in two or more comparisons mapped to genes. Red 
indicates hypermethylation in CHD compared to non-CHD, while blue represents hypomethylation, with stronger shades representing a greater 
percent methylation difference. Gray is used when a DMR was not called for that comparison. Black dots indicate methylation in the same direction 
in the discovery and replication datasets [10 non-CHD (2 female, 8 male) and 11 CHD (6 female, 5 male)], while white dots indicate methylation 
in the opposite direction in the two datasets. No dot means that the DMR genomic coordinates were not covered in the replication dataset
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methylated in the same direction except for the 4 over-
lapping between Females Only and Males Only com-
parisons (but not the Sex Combined comparison), which 
showed methylation in opposite directions (Fig. 3C). The 
4 DMRs identified in all three comparisons mapped to 
CDH22, ZNF890P, DIRC3, and TTLL10-AS1 genes.

DS‑CHD DMRs are enriched for gene exons, CpG islands, 
and bivalent chromatin
CHD DMRs from Sex Combined, Females Only, and 
Males Only comparisons were analyzed for enrich-
ment compared to background regions by distribu-
tion across chromosomes, genic and CpG contexts, 
histone marks, and chromatin states. In all three 
comparisons, DMRs were distributed throughout the 
genome (Additional file 2: Fig. S8), though Males Only 
DMRs showed significant enrichment (FDR < 0.05) 

on chromosomes 2, 4, 5, 8, 18, and 21, while Females 
Only DMRs showed nominal enrichment (unad-
justed p < 0.05) on chromosomes 20, X, and 21 (Addi-
tional file 1: Table S16). There was significant positive 
enrichment in all comparisons for gene exons and CpG 
islands (Fig.  4) (Additional file  2: Figs. S9 and S10) 
(Additional file 1: Table S17), as well as the transcrip-
tionally repressive H3K27me3 histone mark and biva-
lent enhancers and transcription start sites based on 
chromatin states (Additional file 2: Figs. S11–S16). Sex 
differences were also observed, with significant posi-
tive enrichment for CpG shelves in the Females Only 
comparison and significant negative enrichment in 
the Males Only comparison. The Females Only DMRs 
also showed enrichment for H3K4me3, associated with 
active/poised chromatin, while the Males Only DMRs 
showed enrichment for H3K9me3, another repressive 

Fig. 4 Annotation enrichments of CHD DMRs. A Genic and B CpG enrichments of all significant (p < 0.05) DMRs from Sex Combined, Females Only, 
and Males Only comparisons. DMRs were compared to background regions for each comparison, and significance was determined by the Fisher’s 
test and FDR correction. * = q < 0.05
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mark (Additional file  2: Fig. S14). Hypomethylated 
regions showed overall stronger enrichment for his-
tone marks and chromatin states compared to hyper-
methylated regions (Additional file 2: Figs. S15, S16).

DS‑CHD DMRs map to genes that are enriched for cardiac 
terms
DMRs mapped to genes were analyzed for enrichment 
across Gene Ontology terms (p < 0.05) related to bio-
logical processes, cellular components, and molecular 
functions. All comparisons showed enrichment for 
heart-related terms, such as cardiac muscle contrac-
tion (Sex Combined) (Fig.  5), dorsal/ventral pattern 
formation, which includes formation of the embry-
onic heart tube (Females Only), and development of 
the septum primum, which divides the heart atrium 
into left and right and whose developmental failure 
can lead to AVSD (Males Only) (Additional files 1: 
Tables S18–S20, 2: Fig. S17). Genes contributing to 
the heart-related terms included FGF12, PIK3CA, 
TNNI3, PDE4D, ACVR1, GATA4, and others (Table 2). 
Enriched terms also included immune-related biologi-
cal processes, such as platelet activation and innate 
immune response (Sex Combined) (Fig. 5).

DS‑CHD DMRs are also differentially methylated in DS 
versus typical development NDBS
DS-CHD DMRs were tested for comparison in previ-
ously published DS versus TD NDBS WGBS samples 
[16] to evaluate the hypothesis that if DS-CHD is a 
more severe form of DS, CHD DMRs should be par-
tially shared with DS versus TD DMRs (Table 3). Of the 
58 Sex Combined CHD DMRs, 16 (27.6%) were signifi-
cantly differentially methylated (p < 0.05) in DS versus TD 
samples (Additional file 1: Table S21), 9 of which (56.3%) 
were methylated in the same direction in DS versus 
TD samples as DS-CHD versus DS non-CHD samples. 
Of Females Only DMRs, 42/341 (12.3%) were signifi-
cantly differentially methylated (p < 0.05) in DS versus 
TD, with 28 (66.7%) methylated in the same direction 
(Additional file 1: Table S22), and of Males Only DMRs, 
602/3938 (15.3%) were significantly differentially methyl-
ated (p < 0.05) in DS versus TD, with 528 (87.7%) methyl-
ated in the same direction (Additional file 1: Table S23). 
These numbers decreased in a sensitivity analysis with 
the Males Only DMRs generated with five samples with 
nRBC > 0.2 removed, where 334/2454 (13.6%) covered 
DMRs were significantly (p < 0.05) differentially methyl-
ated in DS versus TD male samples, of which 248/334 
(74.3%) were methylated in the same direction. For 

Fig. 5 Gene ontology enrichments. Bar plot of the fifteen most significant GO enrichments for biological processes in DS-CHD versus DS non-CHD 
DMRs from the Sex Combined comparison
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all three comparisons, there was a trend toward more 
CHD DMRs being significantly differentially methyl-
ated in DS versus TD samples compared to background 
regions (z test for two population proportions, Sex Com-
bined p = 0.08364, Females Only p = 0.0536, Males Only 
p = 0.0601) (Fig.  6A). In Males Only, significantly more 
DMRs were methylated in the same direction in DS ver-
sus TD as DS-CHD versus DS non-CHD compared to 
background regions (z test for two population propor-
tions, p < 0.00001), though this was not true for Sex Com-
bined or Females Only CHD DMRs (Fig. 6B). Of DMRs 
that were significantly differentially methylated (q < 0.05) 
in DS versus TD samples, 5/9 (55.6%) Sex Combined, 

6/8 (75%) Females Only, and 15/16 (93.85%) Males Only 
DMRs were hypomethylated in DS compared to TD sam-
ples. With the exception of an exon in ZNF735, which 
was significantly hypermethylated (q < 0.05) in both the 
Sex Combined and Females Only DS versus TD compari-
sons, all DMRs were specific to one comparison (Fig. 6C).

Discussion
This is the largest study to date to investigate epigenetic 
variation associated with CHDs in individuals with DS. 
Although non-syndromic CHDs have been widely stud-
ied, there has been relatively little research into the eti-
ology and biomarkers of CHDs in individuals with DS, 

Table 2 Heart-related biological processes identified from DMR Gene Ontology

Comparison GO Term Genes

Sex combined Cardiac muscle contraction FGF12,PIK3CA,TNNI3

Striated muscle contraction FGF12,PIK3CA,TNNI3

Heart contraction FGF12,PIK3CA,TNNI3

Heart process FGF12,PIK3CA,TNNI3

Ductus arteriosus closure TFAP2B

Determination of dorsal/ventral asymmetry NBL1

Cellular response to erythropoietin CD40

Regulation of cardiac conduction NPR2,TNNI3

Muscle contraction FGF12,PIK3CA,TNNI3

Skeletal muscle contraction TNNI3

Females only Dorsal/ventral pattern formation FOXG1,GLI2,GREM2,INTU,MDFI,SMAD6,SUFU,TCTN1

Negative regulation of relaxation of cardiac muscle PDE4D

Negative regulation of heart contraction AGTR2,PDE4D

Adrenergic receptor signaling pathway involved in heart process PDE4D

Regulation of heart rate by chemical signal PDE4D

Regulation of relaxation of cardiac muscle PDE4D

Aorta development SMAD6,SUFU,TFAP2B,TGFB2

Regulation of ventricular cardiac muscle cell membrane repolari-
zation

ANK2,WDR1

Males only Septum primum development ACVR1,GATA4,GJA5,SOX4,TGFB2

Atrial septum primum morphogenesis ACVR1,GATA4,SOX4,TGFB2

Atrioventricular canal development CHD7,FOXN4,HAS2,PTPN11

Adult heart development ADRA1A,CHD7,HAND2,SCUBE1,TCAP

Artery smooth muscle contraction AGT,EDN1,EDN2,HTR2A,MKKS

Right ventricular compact myocardium morphogenesis CHD7

Atrial septum secundum morphogenesis GATA4

Positive regulation of heart rate ADRA1A,ADRB1,EDN1,EDN2,EDN3,KCNQ1,PDE4D,RYR2,SCN3B,TACR3
,UTS2

Cardiac muscle hypertrophy AGT,GATA4,GATA6,HDAC4,KDM4A,LEP,PPP3CA,RYR2,TCAP,TIAM1,TTN

Positive regulation of heart contraction ADRA1A,ADRB1,EDN1,EDN2,EDN3,KCNQ1,PDE4D,RGS2,RYR2,SCN3B,T
ACR3,TGFB2,UTS2

Septum secundum development GATA4

Cardiac septum morphogenesis ACVR1,BMP4,BMP7,CHD7,FZD1,FZD2,GATA4,GATA6,GJA5,HES1,HEY1,H
EYL,ISL1,JAG1,MSX2,NRP1,PARVA,PITX2,PROX1,RARB,SMAD6,SMAD7,SO
X11,SOX4,TBX3,TGFB2,TGFBR2,ZFPM2
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despite nearly half of the DS population presenting this 
phenotype [2–5]. To address this gap, we assessed DS-
CHD methylation in DNA isolated from NDBSs, an 
understudied and accessible biospecimen that enables 
the analysis of epigenomic changes during the in utero 
and perinatal periods that are associated with pheno-
typic traits of interest. We confirmed the reproducibility 
of DNA extraction and bisulfite conversion from NDBSs 
by finding a high correlation (r = 0.9716) between global 
methylation levels from WGBS and EPIC array, which 
used different punches from the same blood spots.

Although newborn blood typically shows ~ 79–84% 
global CpG methylation from WGBS [16, 50], we found 
a range of 60.8–82.9% in our NDBS DNA. The samples 
with notably low WGBS global methylation also had low 
EPIC array beta values and passed other QC metrics, 
indicating that technical errors do not explain the result, 
although we cannot exclude non-biological causes. Previ-
ous studies have found a trend toward global hypometh-
ylation in DS compared to TD NDBS [16], which may 
explain our findings. We further found that global meth-
ylation was lower in DS-CHD males compared to DS 
non-CHD males, though this relationship was not found 
in females. Global methylation was strongly negatively 

correlated with, and predicted by, nRBC proportion in 
both sexes. Although nRBCs typically constitute a very 
small proportion of nucleated cells, we found nRBC pro-
portions ranged widely in both sexes and were evenly 
spread among CHD and non-CHD females but in males, 
10/12 samples with nRBC > 1% were CHD positive. This 
discrepancy in the relationship between high nRBCs and 
CHD in males versus females likely explains the associa-
tion between CHD and global hypomethylation in males 
and the lack of such association among females, given the 
strong effects of nRBC proportions on global methylation 
levels in DS newborns [17]. The etiology of the male-spe-
cific association between high nRBCs and CHD in new-
borns with DS remains to be determined.

Previous studies have reported high nRBC levels in DS 
newborns with pulmonary hypertension [51], as well as in 
hypoxic-related pregnancy situations, such as preeclamp-
sia, maternal obesity and diabetes, maternal smoking, 
and prenatal exposure to infection [52–58]. Increased 
nRBC counts are thought to follow fetal hypoxemia 
through elevated erythropoietin (EPO), a hormone that 
stimulates production of erythrocytes (red blood cells) in 
an effort to increase oxygen delivery to tissues [59, 60]. 
Interestingly, EPO is higher in children with DS-CHD 
compared to non-syndromic CHD [61]. Because CHDs 
reduce cerebral oxygen [62] and may induce fetal hypox-
emia [63], high nRBC proportions may be more common 
in individuals with CHDs and, in particular, in DS new-
borns with CHDs given the placental abnormalities seen 
in fetuses with trisomy 21 (PMID: 31683073). However, 
we could not confirm this hypothesis with our sample 
size. Moreover, nRBC proportions were estimated from 
DNA methylation array data, rather than using actual cell 
counts, and cell-type deconvolution in individuals with 
DS may be confounded by the presence of blast cells that 
are common in DS and not accounted for in the analysis 
[17]. Cell composition deconvoluted from DNA methyla-
tion arrays has been previously reported to be altered in 
DS blood compared to non-DS blood [64]. Further, we 
previously reported a positive relationship between high 
nRBC proportions in newborns with DS and the pres-
ence of somatic GATA1 mutations, indicative of transient 
abnormal myelopoiesis (TAM) or silent TAM, and it is 
possible that the relationship between CHD and global 
hypomethylation in males may be confounded by this 
preleukemic condition [17]. Understanding of the com-
plex relationships between CHDs in DS, global methyla-
tion, cell-type proportions, sex, and fetal hypoxia would 
benefit from further investigation.

In our WGBS regional analysis, we found over ten-
fold the number of CHD-associated DMRs in DS 
males than in females, and even fewer DMRs in the 
Sex Combined analysis. Reflecting our finding of global 

Table 3 Significance and direction of CHD DMRs and 
background regions in DS versus TD samples

Same direction indicates methylation is in same direction (hypo or hyper) in DS 
versus TD as in DS-CHD versus non-CHD

DMRs Background regions
n (%) n (%)

Sex combined

Total 58 5363

Omitted 0 28

p < 0.05 16 (27.6) 995 (18.7)

p ≥ 0.05 42 (72.4) 4340 (81.3)

Same direction 34 (58.6) 3274 (61.4)

Opposite direction 24 (41.4) 2061 (38.6)

Females only

Total 341 11,998

Omitted 2 147

p < 0.05 42 (12.4) 1101 (9.3)

p ≥ 0.05 297 (87.6) 10,750 (90.7)

Same direction 172 (50.7) 6304 (53.2)

Opposite direction 167 (49.3) 5547 (46.8)

Males only

Total 3938 127,819

Omitted 26 1413

p < 0.05 602 (15.4) 18,099 (14.3)

p ≥ 0.05 3310 (84.6) 108,307 (85.7)

Same direction 3001 (76.7) 90,954 (72.0)

Opposite direction 911 (23.3) 35,452 (28.0)
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hypomethylation in CHD males, 96% of Males Only 
DMRs were hypomethylated, a pattern not seen in the 
Females Only or Sex Combined analyses. All DMRs 
were corrected for confounding factors including cell-
type proportions, suggesting that nRBC levels were not 
fully responsible for the notable proportion of hypo-
methylated DMRs in males, although we cannot rule 
out residual confounding due to nRBCs or unmeas-
ured traits related to nRBCs. Additionally, removing 
the five male samples with nRBC proportions > 20% 
resulted in 82% hypomethylated DMRs, suggesting that 
these five samples alone were not driving the signature 
of hypomethylation in DS-CHD males. Some DMRs 
from all comparisons were also differentially methyl-
ated in DS versus TD samples, and in males, a signifi-
cantly higher proportion of DMRs were methylated 
in the same direction in DS versus TD and DS-CHD 

versus DS non-CHD compared to background regions. 
These results suggest that male DS patients with CHD 
may represent a more severe epigenomic signature than 
is observed for DS versus TD, although this may also 
reflect the higher nRBC proportions that have been 
reported in newborns with DS than in TD newborns 
(Muskens 2021). In contrast, female DS cases with 
CHD are somewhat epigenetically distinct from female 
and male DS cases without CHD. Response to hypoxia 
may play a role in these differences. DS newborns, 
even those without CHDs, experience more hypoxemia 
events than newborns with TD [65], and CHDs further 
induce fetal hypoxemia [63]. A wide variety of sex dif-
ferences have been observed in response to hypoxia 
in both humans and animal models [66, 67], including 
differences in gene expression profiles of female ver-
sus male mice in cardiac adaptive responses to hypoxia 

Fig. 6 Comparison of DS-CHD DMRs with DS versus TD samples. A Percent of DS-CHD DMRs and background regions that were significantly 
differentially methylated in DS versus TD samples. Z test for two population proportions, Sex Combined (z = 1.7343, two-tailed p = 0.08364), Females 
Only (z = 1.93, two-tailed p = 0.0536), Males Only (z = 1.8808, two-tailed p = 0.0601). +  = p < 0.1. B Percent of DS-CHD DMRs that were methylated 
in same direction in DS versus TD as in DS-CHD versus DS non-CHD. Z test for two populations proportions, Sex Combined (z =  − 0.4274, two-tailed 
p = 0.6672), Females Only (z =  − 0.8936, two-tailed p = 0.37346), Males Only (z = 6.5357, two-tailed p < 0.00001). **** = p < 0.00001. C Heatmap 
showing DS-CHD DMRs that were significant (q < 0.05) in DS versus TD samples mapped to genes. Red indicates hypermethylation in CHD 
compared to non-CHD, while blue represents hypomethylation, with stronger shades representing a greater percent methylation difference 
and gray meaning that that DMR was not significant for that comparison. Black dots indicate that methylation is in the same direction for DS 
versus TD as DS-CHD versus DS non-CHD, while white dots indicate methylation is in the opposite direction
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[68]. These sex-specific responses to hypoxia may be 
reflected in the methylome, which is known to be influ-
enced by gestational hypoxia [69] (reviewed in [70]). 
Identification of genes and pathways whose methyla-
tion and/or gene expression is altered in DS, CHDs, 
and hypoxia may help elucidate the sex specificity of 
molecular mechanisms related to DS-CHD.

Although we did not find any significant DMRs associ-
ated with DS-CHD after FDR correction, the nominally 
significant DMRs were enriched for genes implicated in 
cardiac processes, suggesting that at least some of the 
DMRs may reflect true epigenetic mechanisms associ-
ated with DS-CHD development. In particular, Males 
Only DMRs selected by machine learning feature selec-
tion were able to distinguish CHD from non-CHD sam-
ples and frequently mapped to genes associated with 
CHDs or cardiomyopathies, including FUNDC1 [71], 
ETV5 [72, 73], SYT9 [74], CAMTA1 [75], GRIA4 [76], 
and IGF1R [77–80]. Additionally, DMRs that contrib-
uted to enrichment for heart-related gene ontology terms 
included TNNI3, a cardiac-specific gene that codes for 
cardiac troponin I, whose absence leads to severe pedi-
atric cardiomyopathy [81], and GATA4, which encodes a 
member of the GATA family of zinc finger transcription 
factors, are essential for mammalian cardiac develop-
ment, and whose sequence variants have been identified 
in individuals with CHDs [82]. Whether the differential 
methylation in the genes we identified plays an etiologic 
role or reflects epigenomic effects downstream of the 
development of CHDs remains to be determined.

While this is, to our knowledge, the largest DNA meth-
ylation study of CHDs in DS, our sample size of 86 DS 
newborns may still have limited our ability to detect 
genome-wide significant (q < 0.05) DMRs. Additionally, 
only around half of DMRs in all comparisons were meth-
ylated in the same direction in the discovery and replica-
tion groups, potentially due to the very small sample sizes 
and absence of confounding variable data to use for cor-
rection in the replication group, as well as high interindi-
vidual variation in methylation. The genes to which our 
DMRs mapped did not heavily coincide with those iden-
tified in previous epigenetic studies of DS-CHD [83, 84], 
likely because those studies included small numbers of 
DS subjects, used non-NDBS biospecimens assayed with 
array-based methods, which do not have good coverage 
over the regions we detected using WGBS, and did not 
account for cell-type heterogeneity. One exception to this 
is that we identified a DMR in the Males Only compari-
son that mapped to SHC3, a gene that was differentially 
expressed in DS individuals with an endocardial cushion 
CHD [83]. The DS field would benefit from further stud-
ies into the etiology and biomarkers of phenotypes com-
mon in the DS population, including CHDs.

Conclusions
Overall, this study presents the largest investigation of 
epigenetic variation associated with CHDs in individuals 
with DS. We identified sex-specific global and regional 
methylation differences in DS-CHD versus DS non-CHD 
newborns. Specifically, in males we found that newborns 
with DS-CHD were globally hypomethylated compared 
to DS newborns without CHD, a finding that appeared 
to be driven by differences in nRBC proportions between 
the two groups. At the regional level, the majority of 
CHD DMRs identified by sex stratification did not over-
lap by genomic coordinates, suggesting sex differences in 
the molecular signature of CHDs in DS. Gene ontology 
analysis of DMRs from both sexes revealed enrichment in 
pathways related to the heart, and some DS-CHD DMRs 
were also differentially methylated in DS versus TD sam-
ples. Our results provide insight into the development of 
CHDs in newborns with DS, pointing to sex-specific dif-
ferences that warrant further investigation, and suggest 
that DNA methylation may serve as a useful biomarker 
for investigating the variability of clinical features within 
the genetic disorder of DS.
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