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Abstract Influenza viruses continually evolve new antigenic variants, through mutations in 
epitopes of their major surface proteins, hemagglutinin (HA) and neuraminidase (NA). Antigenic drift 
potentiates the reinfection of previously infected individuals, but the contribution of this process 
to variability in annual epidemics is not well understood. Here, we link influenza A(H3N2) virus 
evolution to regional epidemic dynamics in the United States during 1997—2019. We integrate 
phenotypic measures of HA antigenic drift and sequence- based measures of HA and NA fitness to 
infer antigenic and genetic distances between viruses circulating in successive seasons. We estimate 
the magnitude, severity, timing, transmission rate, age- specific patterns, and subtype dominance 
of each regional outbreak and find that genetic distance based on broad sets of epitope sites is 
the strongest evolutionary predictor of A(H3N2) virus epidemiology. Increased HA and NA epitope 
distance between seasons correlates with larger, more intense epidemics, higher transmission, 
greater A(H3N2) subtype dominance, and a greater proportion of cases in adults relative to children, 
consistent with increased population susceptibility. Based on random forest models, A(H1N1) inci-
dence impacts A(H3N2) epidemics to a greater extent than viral evolution, suggesting that subtype 
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interference is a major driver of influenza A virus infection ynamics, presumably via heterosubtypic 
cross- immunity.

eLife assessment
This paper explores the relationships among evolutionary and epidemiological quantities in influ-
enza, and presents fundamental findings that substantially advance our understanding of the drivers 
of influenza epidemics. The authors use a rich set of data sources to gather and analyze compelling 
evidence on the roles of genetic distance, other influenza dynamics and epidemiological indicators 
in predicting influenza epidemics. The central findings highlight the significant influence of genetic 
distance on A(H3N2) virus epidemiology and emphasize the role of A(H1N1) virus incidence in 
shaping A(H3N2) epidemics, suggesting subtype interference as a key factor. This paper also makes 
relevant data available to the research community.

Introduction
Influenza viruses continually accumulate genetic changes in epitopes of two major surface proteins, 
hemagglutinin (HA) and neuraminidase (NA), in a process known as ‘antigenic drift’. Alhough indi-
vidual hosts develop long- lasting immunity to specific influenza virus strains after infection, antigenic 
drift helps the virus to escape immune recognition, leaving previously exposed hosts susceptible to 
reinfection and necessitating regular updates to the antigens included in the influenza vaccine (Gerdil, 
2003). While antigenic drift aids immune escape, prospective cohort studies and modeling of surveil-
lance data also indicate that reinfection by antigenically homologous viruses occurs on average every 
1–4 years, due to the waning of protection over time (He et al., 2015; Wraith et al., 2022).

Among the influenza virus types that routinely co- circulate in humans (A and B), type A viruses, 
particularly subtype A(H3N2), experience the fastest rates of antigenic evolution and cause the most 
substantial morbidity and mortality (Bedford et al., 2015; Bedford et al., 2014; Ferguson et al., 2005; 
Hay et al., 2001). Seasonal influenza A viruses (IAV) cause annual winter epidemics in temperate zones 
of the Northern and Southern Hemispheres and circulate year- round in tropical regions (Simonsen, 
1999). Influenza A epidemic burden fluctuates substantially from year to year (Viboud et al., 2004), 
and there is much scientific interest in disentangling the relative roles of viral evolution, prior immu-
nity, human behavior, and climatic factors in driving this seasonal variability. Climatic factors, such as 
humidity and temperature, have been implicated in the seasonality and timing of winter outbreaks 
in temperate regions (Chattopadhyay et al., 2018; Kramer and Shaman, 2019; Lee et al., 2018; 
Shaman and Kohn, 2009; Shaman et al., 2010), while contact and mobility patterns contribute to 
the seeding of new outbreaks and geographic spread (Bedford et al., 2010; Bedford et al., 2015; 
Charu et al., 2017; Chattopadhyay et al., 2018; Geoghegan et al., 2018; Pei et al., 2018; Viboud 
et al., 2006). A principal requirement for the recurrence of epidemics is a sufficient and continuous 
source of susceptible individuals, which is determined by the degree of cross- immunity between the 
surface antigens of currently circulating viruses and functional antibodies elicited by prior infection or 
vaccination in a population.

Because mutations to the HA1 region of the HA protein are considered to drive the majority of 
antigenic drift (Nelson and Holmes, 2007; Wiley et al., 1981), influenza virus genetic and antigenic 
surveillance have focused primarily on HA, and official influenza vaccine formulations prescribe the 
amount of HA (Fiore et al., 2009). Yet, evidence for the effect of HA drift on influenza epidemic 
dynamics remains conflicting. Theoretical and empirical studies have shown that HA drift between 
currently circulating viruses and the previous season’s viruses is expected to cause earlier, larger, 
more severe, or more synchronized epidemics; however, the majority of these studies were limited 
to the pre 2009 influenza pandemic period (Bedford et al., 2014; Boni et al., 2004; Geoghegan 
et al., 2018; Greene et al., 2006; Koelle et al., 2006; Koelle et al., 2009; Wolf et al., 2010; Wu 
et al., 2010). Information on HA evolution has been shown to improve forecasts of seasonal influenza 
dynamics in Israel (Axelsen et al., 2014) and the United States (Du et al., 2017), but recent research 
has also found that HA evolution is not predictive of epidemic size in Australia (Lam et al., 2020) or 
epidemic timing in the United States (Charu et al., 2017). A caveat is that many of these studies used 
binary indicators to study seasonal antigenic change, defined as seasons in which circulating viruses 

https://doi.org/10.7554/eLife.91849
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were antigenically distinct from the vaccine reference strain (Charu et al., 2017; Geoghegan et al., 
2018; Greene et al., 2006; Lam et al., 2020; Smith et al., 2004). This may obscure epidemiologically 
relevant patterns, as positive selection in HA and NA is both episodic and continuous (Bedford et al., 
2011; Bedford et al., 2014; Bhatt et al., 2011; Huddleston et al., 2020; Shih et al., 2007; Smith 
et al., 2004; Suzuki, 2008). Past research has also typically focused on serological and sequence- 
based measures of viral evolution in isolation, and the relative importance of these two approaches 
in predicting epidemic dynamics has not been systematically assessed. Further, to the best of our 
knowledge, the epidemiologic impact of NA evolution has not been explored.

There has been recent recognition of NA’s role in virus inhibiting antibodies and its potential as a 
vaccine target (Chen et al., 2018; Eichelberger et al., 2018; Wohlbold et al., 2015). Although anti-
bodies against NA do not prevent influenza infection, NA immunity attenuates the severity of infec-
tion by limiting viral replication (Brett and Johansson, 2005; Couch et al., 1974; Johansson et al., 
1993; Kilbourne, 1976; Murphy et al., 1972; Schulman et al., 1968), and NA- specific antibody titers 
are an independent correlate of protection in both field studies and human challenge trials (Couch 
et  al., 2013; Memoli et  al., 2016; Monto et  al., 2015). Lastly, the phenomenon of interference 
between influenza A subtypes, modulated by immunity to conserved T- cell epitopes (Grebe et al., 
2008; Sridhar et al., 2013; Ulmer et al., 1998), has long been debated (Epstein, 2006; Sonoguchi 
et al., 1985). Interference effects are most pronounced during pandemic seasons, leading to troughs 
or even replacement of the resident subtype in some pandemics (Ferguson et al., 2003), but the 
contribution of heterosubtypic interference to annual dynamics is unclear (Cowling et al., 2014; Gatti 
et al., 2022; Goldstein et al., 2011; He et al., 2015; Steinhoff et al., 1993).

Here, we link A(H3N2) virus evolutionary dynamics to epidemiologic surveillance data in the United 
States over the course of 22 influenza seasons prior to the coronavirus disease 2019 (COVID- 19) 
pandemic, considering the full diversity of viruses circulating in this period. We analyze a variety of 
antigenic and genetic markers of HA and NA evolution against multiple indicators characterizing the 

eLife digest Seasonal influenza (flu) viruses cause outbreaks every winter. People infected with 
influenza typically develop mild respiratory symptoms. But flu infections can cause serious illness in 
young children, older adults and people with chronic medical conditions. Infected or vaccinated indi-
viduals develop some immunity, but the viruses evolve quickly to evade these defenses in a process 
called antigenic drift. As the viruses change, they can re- infect previously immune people. Scientists 
update the flu vaccine yearly to keep up with this antigenic drift.

The immune system fights flu infections by recognizing two proteins, known as antigens, on the 
virus’s surface, called hemagglutinin (HA) and neuraminidase (NA). However, mutations in the genes 
encoding these proteins can make them unrecognizable, letting the virus slip past the immune system. 
Scientists would like to know how these changes affect the size, severity and timing of annual influ-
enza outbreaks.

Perofsky et al. show that tracking genetic changes in HA and NA may help improve flu season 
predictions. The experiments compared the severity of 22 flu seasons caused by the A(H3N2) subtype 
in the United States with how much HA and NA had evolved since the previous year. The A(H3N2) 
subtype experiences the fastest rates of antigenic drift and causes more cases and deaths than other 
seasonal flu viruses. Genetic changes in HA and NA were a better predictor of A(H3N2) outbreak 
severity  than the blood tests for protective antibodies that epidemiologists traditionally use to track 
flu evolution. However, the prevalence of another subtype of influenza A circulating in the population, 
called A(H1N1), was an even better predictor of how severe A(H3N2) outbreaks would be.

Perofsky et al. are the first to show that genetic changes in NA contribute to the severity of flu 
seasons. Previous studies suggested a link between genetic changes in HA and flu season severity, 
and flu vaccines include the HA protein to help the body recognize new influenza strains. The results 
suggest that adding the NA protein to flu vaccines may improve their effectiveness. In the future, flu 
forecasters may want to analyze genetic changes in both NA and HA to make their outbreak predic-
tions. Tracking how much of the A(H1N1) subtype is circulating may also be useful for predicting the 
severity of A(H3N2) outbreaks.

https://doi.org/10.7554/eLife.91849
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epidemiology and disease burden of annual outbreaks. Rather than characterize in situ evolution 
of A(H3N2) lineages circulating in the U.S., we study the epidemiological impacts of antigenic drift 
once A(H3N2) variants have arrived on U.S. soil and managed to establish and circulate at relatively 
high levels. We find a signature of both HA and NA antigenic drift in surveillance data, with a more 
pronounced relationship in epitope change rather than the serology- based indicator, along with a 
major effect of subtype interference. Our study has implications for surveillance of evolutionary indi-
cators that are most relevant for population impact and for the prediction of influenza burden on 
inter- annual timeframes.

Methods
Our study focuses on the impact of A(H3N2) virus evolution on seasonal epidemics from seasons 
1997–1998 to 2018–2019 in the U.S.; whenever possible, we make use of regionally disaggregated 
indicators and analyses. We start by identifying multiple indicators of influenza evolution each season 
based on changes in HA and NA. Next, we compile influenza virus subtype- specific incidence time 
series for U.S. Department of Health and Human Service (HHS) regions and estimate multiple indica-
tors characterizing influenza A(H3N2) epidemic dynamics each season, including epidemic burden, 
severity, type/subtype dominance, timing, and the age distribution of cases. We then assess univariate 
relationships between national indicators of evolution and regional epidemic characteristics. Lastly, 
we use multivariable regression models and random forest models to measure the relative importance 
of viral evolution, heterosubtypic interference, and prior immunity in predicting regional A(H3N2) 
epidemic dynamics.

Influenza epidemic timing and burden
Epidemiological data processing and analysis were performed using R version 4.3 (R Development 
Core Team, 2023).

Influenza-like illness and virological surveillance data
We obtained weekly epidemiological and virological data for influenza seasons 1997–1998 to 2018–
2019, at the U.S. HHS region level. We defined influenza seasons as calendar week 40 in a given year 
to calendar week 20 in the following year, with the exception of the 2008–2009 season, which ended 
in 2009 week 16 due to the emergence of the A(H1N1)pdm09 virus (Goldstein et al., 2011).

We extracted syndromic surveillance data for the 10 HHS regions from the U.S. Outpatient Influenza- 
like Illness Surveillance Network (ILINet) (Centers for Disease Control and Prevention, National 
Center for Immunization and Respiratory Diseases, 2023a). ILINet consists of approximately 3200 
sentinel outpatient healthcare providers throughout the U.S. that report the total number of consul-
tations for any reason and the number of consultations for influenza- like illness (ILI) every week. ILI 
is defined as fever (temperature of 100 °F [37.8 °C] or greater) and a cough and/or a sore throat. ILI 
rates are based on the weekly proportion of outpatient consultations for influenza- like illness and 
are available weighted or unweighted by regional population size. The number of ILI encounters by 
age group are also provided (0–4, 5–24, 25–64, and ≥65), but these data are not weighted by total 
encounters or population size.

We obtained data on weekly influenza virus type and subtype circulation from the U.S. CDC’s 
WHO Collaborating Center for Surveillance, Epidemiology and Control of Influenza (World Health 
Organization, 2023). Approximately 100 public health laboratories and 300 clinical laboratories 
located throughout the U.S. report influenza test results to the U.S. CDC, through either the U.S. 
WHO Collaborating Laboratories Systems or the National Respiratory and Enteric Virus Surveillance 
System (NREVSS). Clinical laboratories test respiratory specimens for diagnostic purposes whereas 
public health laboratories primarily test specimens to characterize influenza virus type, subtype, and 
lineage circulation. Public health laboratories often receive samples that have already tested positive 
for influenza at a clinical laboratory.

We estimated the weekly number of respiratory samples testing positive for influenza A(H3N2), 
A(H1N1), A(H1N1)pdm09, or B at the HHS region level. We combined pre- 2009 seasonal A(H1N1) 
and A(H1N1)pdm09 as influenza A(H1N1) and the Victoria and Yamagata lineages of influenza B as 
influenza B. Beginning in the 2015/2016 season, reports from public health and clinical laboratories 

https://doi.org/10.7554/eLife.91849
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are presented separately in the CDC’s weekly influenza updates. From 2015 week 40 onwards, we 
used clinical laboratory data to estimate the proportion of respiratory samples testing positive for any 
influenza type/subtype and the proportion of samples testing positive for influenza A or B. We used 
public health laboratory data to estimate the proportion of influenza A isolates typed as A(H3N2) 
or A(H1N1) in each week. Untyped influenza A- positive isolates were assigned to either A(H3N2) or 
A(H1N1) according to their proportions among typed isolates.

We defined influenza A subtype dominance in each season based on the proportion of influenza 
A virus (IAV) positive samples typed as A(H3N2). Specifically, we categorized seasons as A(H3N2) or 
A(H1N1) dominant when ≥70% of IAV positive samples were typed as one IAV subtype and co- domi-
nant when one IAV subtype comprised 50–69% of IAV positive samples. We applied a strict threshold 
for subtype dominance because seasons with <70% samples typed as one IAV subtype tended to 
have greater geographic heterogeneity in circulation, resulting in regions with dominant subtypes that 
were not nationally dominant.

For each HHS region, we estimated weekly incidences of influenza A(H3N2), A(H1N1), and B by 
multiplying the percentage of influenza- like illness among outpatient visits, weighted by regional 
population size, with the percentage of respiratory samples testing positive for each type/subtype 
(Figure 1, Figure 1—figure supplement 1). ILI × percent positive (ILI+) is considered a robust esti-
mate of influenza activity and has been used in multiple prior modeling studies (Bedford et al., 2014; 
Goldstein et al., 2011; Pei et al., 2018). We used linear interpolation to estimate missing values for 
time spans of up to 4 consecutive weeks.

The emergence of the A(H1N1)pdm09 virus in 2009 altered influenza testing and reporting patterns 
(Figure 1—figure supplement 2). Specifically, the U.S. CDC and WHO increased laboratory testing 
capacity and strengthened epidemiological networks, which led to substantial improvements to influ-
enza surveillance that are still in place today (Centers for Disease Control and Prevention, National 
Center for Immunization and Respiratory Diseases, 2023b). For each HHS region, we adjusted 
weekly incidences for increases in reporting rates during the post- pandemic period – defined as the 
weeks after 2010 week 33 – by scaling pre- pandemic incidences by the ratio of mean weekly ILI+ in the 
post- pandemic period to that of the pre- pandemic period (1997 week 40–2009 week 17). Incidences 
for HHS Region 10 were not adjusted for pre- and post- pandemic reporting because surveillance data 
for this region were not available prior to 2009. To account for differences in reporting rates across HHS 
regions, we next scaled each region’s type/subtype incidences by its mean weekly ILI+ for the entire 
study period. Scaled incidences were used in all downstream analyses of epidemic burden and timing.

Characteristics of seasonal influenza epidemics
Epidemic burden
We considered three complementary indicators of epidemic burden, separately for each influenza 
type/subtype, HHS region, and season. We defined peak incidence as the maximum weekly scaled 
incidence and epidemic size as the cumulative weekly scaled incidence. We estimated epidemic inten-
sity based on a method previously developed to study variation in the shape (i.e. sharpness) of influ-
enza epidemics across U.S. cities (Dalziel et al., 2018). Epidemic intensity increases when incidence 
is more concentrated in particular weeks and decreases when incidence is more evenly spread across 
weeks. Specifically, we defined the incidence distribution  pij  as the fraction of influenza incidence in 
season  j  that occurred during week  i  in a given region, and epidemic intensity  vj  as the inverse of the 
Shannon entropy of the weekly incidence distribution:

 
vj =

(
−
∑

i
pij ln pij

)−1

  
(1)

Epidemic intensity is intended to measure the shape and spread of an epidemic, regardless of 
the actual volume of cases in a given region or season. Following the methodology of Dalziel et 
al., epidemic intensity values were normalized to fall between 0 and 1 so that epidemic intensity is 
invariant to differences in reporting rates and/or attack rates across regions and seasons.

https://doi.org/10.7554/eLife.91849
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Figure 1. Annual influenza A(H3N2) epidemics in the United States, 1997 – 2019. (A) Weekly incidence of influenza A(H1N1) (blue), A(H3N2) (red), and B 
(green) averaged across 10 HHS regions (Region 1: Boston; Region 2: New York City; Region 3: Washington, DC; Region 4: Atlanta; Region 5: Chicago; 
Region 6: Dallas, Region 7: Kansas City; Region 8: Denver; Region 9: San Francisco; Region 10: Seattle). Incidences are the proportion of influenza- like 
illness (ILI) visits among all outpatient visits, multiplied by the proportion of respiratory samples testing positive for each influenza type/subtype. Time 
series are 95% confidence intervals of regional incidence estimates. Vertical dashed lines indicate January 1 of each year. (B) Intensity of weekly influenza 
A(H3N2) incidence in 10 HHS regions. White tiles indicate weeks when influenza- like- illness data or virological data were not reported. Data for Region 
10 are not available in seasons prior to 2009.

The online version of this article includes the following figure supplement(s) for figure 1:

Figure supplement 1. Annual influenza A(H1N1) and influenza B epidemics in the United States, 1997 - 2019.

Figure supplement 2. Influenza test volume systematically increases in all HHS regions after the 2009 A(H1N1) pandemic.

Figure supplement 3. Pairwise correlations between seasonal influenza A(H3N2), A(H1N1), and B epidemic metrics.

https://doi.org/10.7554/eLife.91849
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Transmission intensity
For each region in each season, we used semi- mechanistic epidemiological models to estimate 
A(H3N2) virus time- varying (instantaneous) reproduction numbers,  Rt , by date of infection (Epidemia 
R package; Bhatt et al., 2023; Scott et al., 2021). Epidemia implements a Bayesian approach using 
the probabilistic programming language Stan (Carpenter et al., 2017). Prior to  Rt  estimation, we 
computed daily A(H3N2) case counts by disaggregating weekly incidence rates to daily rates (temp-
disagg R package; Sax and Steiner, 2013) and rounding the resultant values to integers.

Model specifications
Formally,  Rt  is modeled as:

 
Rt = exp

(
βo + ϵ1

t

)
,
  (2)

 βo ∼ Normal
(
log

(
Ro

)
, 0.2

)
,  (3)

 ϵ1
t ∼ Normal

(
0,σϵ

)
,  (4)

 σϵ ∼ Half − Normal
(
0, 0.01

)
,  (5)

where  exp  is the exponential function, the mean of the prior for the intercept  βo  is the natural log of 
the basic reproduction number  Ro  of A(H3N2) virus (1.3) (Biggerstaff et al., 2014a), and  ϵ

1
t   is a daily 

random walk process. The steps of the daily walks  ϵ
1
t   are independent and centered around 0 with 

standard deviation  σϵ .
Instead of using a renewal process to propagate infections, we modeled new infections  it  as 

unknown latent parameters  i
′
t , because the additional variance around infections can account for 

uncertainty in initial growth rates, as well as superspreading events (Bhatt et al., 2023; Scott et al., 
2021):

 
it ∼ Normal

(
i
′
t , d

)
,
  (6)

 d ∼ Normal
(
10, 2

)
,  (7)

where  d  is the coefficient of dispersion. This prior assumes that infections have conditional variance 
around 10 times the conditional mean (Scott et al., 2021).

The generation interval distribution  gk  is the probability that  s  days separate the moment of infec-
tion in an index case and in an offspring case. For the generation interval, we assumed a discretized 
Weibull distribution with mean 3.6 days and s.d. 1.6 days (Cowling et al., 2009).

Given the generation interval distribution  gk , the number of new infections on day  t  is given by the 
convolution function:

 
i
′
t = Rt

∑
s<t

isgt−s,
  

(8)

where  Rt  is the non- negative instantaneous reproduction number.  Rt  can be expressed as the number 
of new infections on day  t  relative to the cumulative sum of individuals infected  s  days before day  t , 
weighted by the current infectiousness of those individuals (Cori et al., 2013; Gostic et al., 2020):

 
Rt = i

′
t∑

s<t isgt−s   
(9)

The model is initialized with seeded infections  iv : 0, v < 0 , which are treated as unknown parameters 
(Bhatt et al., 2023; Scott et al., 2021). The prior on  iv : 0  assumes that daily seeds are constant over 
a seeding period of 6 days:

 
i−6 : 0 ∼ Exponential

(
τ−1

)
,
  (10)

 τ ∼ Exponential
(
λ0

)
,  (11)

https://doi.org/10.7554/eLife.91849
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where  λ0 > 0  is a rate hyperparameter.  λ0  is given an uninformative prior (0.03) so that seeds are 
primarily determined by initial transmission rates and the chosen start date of the epidemic (Bhatt 
et al., 2023; Scott et al., 2021).

Daily case counts  Yt  are modeled as deriving from past new infections  is, s < t , assuming a negative 
binomial observation model with mean  yt  and overdispersion parameter  ϕ  and a constant infection 
ascertainment rate  α  of 0.45 (Biggerstaff et al., 2014b). The expected number of observed cases 
on day  t  was mapped to past infections by convolving over the time distribution of infection to case 
observation  πk :

 Yt ∼ NegativeBinomial
(
yt,ϕ

)
  (12)

 ϕ ∼ Normal
(
10, 5

)
  (13)

 
logit

(
yt
)

= α

(
∑
s≤t

isπt−s

)

  
(14)

We estimated  πk  by summing the incubation period distribution and the reporting delay distribution 
(i.e. the time period from symptom onset to case observation), assuming a lognormal- distributed incu-
bation period with mean 1.4 days and s.d. 1.5 days (Lessler et al., 2009) and a lognormal- distributed 
reporting delay with mean 2 days and s.d. 1.5 days (Russell et al., 2018). Thus, the time distribution 
for infection- to- case- observation was:

 π ∼ lognormal
(
1.4, 1.5

)
+ lognormal

(
2, 1.5

)
  (15)

Epidemic trajectories for each region and season were fit independently using Stan’s Hamiltonian 
Monte Carlo sampler (Hoffman and Gelman, 2014). For each model, we ran four chains, each for 
10,000 iterations (including a burn- in period of 2000 iterations that was discarded), producing a total 
posterior sample size of 32,000. We verified convergence by confirming that all parameters had suffi-
ciently low R- hat values (all R- hat <1.1) and sufficiently large effective sample sizes (>15% of the total 
sample size).

To generate seasonal indicators of transmission intensity, we extracted posterior draws of daily 
 Rt  estimates for each region and season, calculated the median value for each day, and averaged 
daily median values by epidemic week. For each region and season, we averaged  Rt  estimates from 
the weeks spanning epidemic onset to epidemic peak (initial  Rt ) and averaged the two highest  Rt  
estimates (maximum  Rt ). Initial  Rt  and maximum  Rt  produced qualitatively equivalent results in down-
stream analyses, so we opted to report results for maximum  Rt .

Excess pneumonia and influenza deaths attributable to A(H3N2)
To measure the epidemic severity each season, we obtained estimates of seasonal excess mortality 
attributable to influenza A(H3N2) infections (Hansen et al., 2022). Excess mortality is a measure of 
the mortality burden of a given pathogen in excess of a seasonally adjusted baseline, obtained by 
regressing weekly deaths from broad disease categories against indicators of influenza virus circula-
tion. Hansen et al. used pneumonia and influenza (P&I) excess deaths, which are considered the most 
specific indicator of influenza burden (Simonsen and Viboud, 2012). Deaths with a mention of P&I 
(ICD- 10 codes J00- J18) were aggregated by week and age group (<1, 1–4, 5–49, 50–64, and ≥65) 
for seasons 1998–1999 to 2017–2018. Age- specific generalized linear models were fit to observed 
weekly P&I death rates, while accounting for influenza and respiratory syncytial virus (RSV) activity 
and seasonal and temporal trends. The weekly national number of excess A(H3N2)- associated deaths 
were estimated by subtracting the baseline death rate expected in the absence of A(H3N2) virus circu-
lation (A(H3N2) model terms set to zero) from the observed P&I death rate. We summed the number 
of excess A(H3N2) deaths per 100,000 people from October to May to obtain seasonal age- specific 
estimates.

Epidemic timing
Epidemic onset and peak timing
We estimated the regional onsets of A(H3N2) virus epidemics by detecting breakpoints in A(H3N2) 
incidence curves at the beginning of each season. The timing of the breakpoint in incidence represents 
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epidemic establishment (i.e. sustained transmission) rather than the timing of influenza introduction or 
arrival (Charu et al., 2017). We used two methods to estimate epidemic onsets: (1) piecewise regres-
sion, which models non- linear relationships with break points by iteratively fitting linear models to 
each segment (segmented R package; Muggeo, 2008; Muggeo, 2003), and (2) a Bayesian ensemble 
algorithm (BEAST – a Bayesian estimator of Abrupt change, Seasonal change, and Trend) that explic-
itly accounts for the time series nature of incidence data and allows for complex, non- linear trajecto-
ries interspersed with change points (Rbeast R package) (Zhao et al., 2019). For each region in each 
season, we limited the time period of breakpoint detection to epidemic week 40 to the first week of 
maximum incidence and did not estimate epidemic onsets for regions with insufficient signal, which 
we defined as fewer than three weeks of consecutive incidence and/or greater than 30% of weeks 
with missing data. We successfully estimated A(H3N2) onset timing for most seasons, except for 
three A(H1N1) dominant seasons: 2000–2001 (0 regions), 2002–2003 (3 regions), and 2009–2010 (0 
regions). Estimates of epidemic onset weeks were similar when using piecewise regression versus the 
BEAST method, and downstream analyses of correlations between viral fitness indicators and onset 
timing produced equivalent results. We therefore report results from onsets estimated via piecewise 
regression. We defined epidemic peak timing as the first week of maximum incidence.

Epidemic speed
To measure spatiotemporal synchrony of regional epidemic dynamics, we calculated the standard 
deviation (s.d.) of regional onset and peak timing in each season (Viboud et al., 2006; Wolf et al., 
2010). To measure the speed of viral spread in each region in each season, we measured the number 
of days spanning onset and peak weeks and seasonal duration (the number of weeks of non- zero inci-
dence). We used two- sided Wilcoxon rank- sum tests to compare the distributions of epidemic timing 
metrics between A(H3N2) and A(H1N1) dominant seasons.

Wavelet analysis
As a sensitivity analysis, we used wavelets to estimate timing differences between A(H3N2), A(H1N1), 
and B epidemics in each HHS region. Incidence time series were square root transformed and normal-
ized and then padded with zeros to reduce edge effects. Wavelet coherence was used to determine 
the degree of synchrony between A(H3N2) versus A(H1N1) incidence and A(H3N2) versus B inci-
dence within each region at multi- year time scales. Statistical significance was assessed using 10,000 
Monte Carlo simulations. Coherence measures time- and frequency- specific associations between two 
wavelet transforms, with high coherence indicating that two non- stationary signals (time series) are 
associated at a particular time and frequency (Johansson et al., 2009).

Following methodology developed for influenza and other viruses (Grenfell et  al., 2001; 
Johansson et  al., 2009; Liebhold et  al., 2004; Viboud et  al., 2006; Weinberger et  al., 2012), 
we used continuous wavelet transformations (Morlet) to calculate the phase of seasonal A(H3N2), 
A(H1N1), and B epidemics. We reconstructed weekly time series of phase angles using wavelet 
reconstruction (Torrence and Compo, 1998; Viboud et al., 2006) and extracted the major one- year 
seasonal component (period 0.8–1.2 years) of the Morlet decomposition of A(H3N2), A(H1N1), and 
B time series. To estimate the relative timing of A(H3N2) and A(H1N1) incidence or A(H3N2) and B 
incidence in each region, phase angle differences were calculated as phase in A(H3N2) minus phase in 
A(H1N1) (or B), with a positive value indicating that A(H1N1) (or B) lags A(H3N2).

Influenza-like illness age patterns
We calculated the seasonal proportion of ILI encounters in each age group (0–4 years, 5–24 years, 
25–64 years, and ≥65 years). Data for more narrow age groups are available after 2009, but we chose 
these four categories to increase the number of seasons in our analysis.

Influenza vaccination coverage and A(H3N2) vaccine effectiveness
Influenza vaccination coverage and effectiveness vary between years and would be expected to affect 
the population impact of seasonal outbreaks, and in turn our epidemiologic indicators. We obtained 
seasonal estimates of national vaccination coverage for adults 18–49 years and adults ≥65 years from 
studies utilizing vaccination questionnaire data collected by the National Health Interview Survey 
(Centers for Disease Control and Prevention, National Center for Immunization and Respiratory 
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Diseases, 2023b; Centers for Disease Control and Prevention, National Center for Immunization 
and Respiratory Diseases, 2019; Jang and Kang, 2021; Lu et al., 2019; Lu et al., 2013; National 
Health Interview Survey, 2008; Ward et al., 2015; Ward et al., 2016). We did not consider the 
effects of vaccination coverage in children, due to our inability to find published estimates for most 
influenza seasons in our study.

We obtained seasonal estimates of adjusted A(H3N2) vaccine effectiveness (VE) from 32 observa-
tional studies (Belongia et al., 2011; Bridges et al., 2000; Castilla et al., 2016; Centers for Disease 
Control and Prevention, National Center for Immunization and Respiratory Diseases, 2023b; 
Centers for Disease Control and Prevention (CDC), 2004; Flannery et al., 2019; Flannery et al., 
2020; Flannery et al., 2016; Jackson et al., 2017; Janjua et al., 2012; Kawai et al., 2003; Kissling 
et al., 2013; Lester et al., 2003; McLean et al., 2014; Ohmit et al., 2014; Pebody et al., 2017; 
Rolfes et al., 2019; Simpson et al., 2015; Public Health Agency of Canada, 2005; Skowronski 
et al., 2017a; Skowronski et al., 2016; Skowronski et al., 2017b; Skowronski et al., 2010; Skow-
ronski et al., 2009; Skowronski et al., 2014a; Skowronski et al., 2012; Skowronski et al., 2014b; 
Skowronski et al., 2022; Skowronski et al., 2007; Treanor et al., 2012; Valenciano et al., 2018; van 
Doorn et al., 2017; Zimmerman et al., 2016). Most studies had case- control test- negative designs 
(N=30) and took place in North America (N=25) or Europe (N=6). When possible, we limited VE esti-
mates to those for healthy adults or general populations. When multiple VE studies were available for 
a given season, we calculated mean VE as the weighted average of m different VE point estimates:

 

∑m
i=1 δVEi

−1/2VEi∑m
i=1 δVEi

−1/2 ,
  

(16)

wherein  δVE  denotes the width of the 95% confidence interval (CI) for  VEi  (Ndifon et al., 2009).
The 95% CI for the weighted mean VE was calculated as:

 

1
m

����
m∑

i=1
(δVEi )2

  
(17)

Correlations between seasonal epidemic metrics
We used Spearman’s rank correlation coefficients to measure pairwise relationships between A(H3N2), 
A(H1N1), and B epidemiological indictors. We adjusted p- values for multiple testing using the Benja-
mini and Hochberg method (Benjamini and Hochberg, 1995).

Indicators of influenza A(H3N2) evolution
We considered multiple indicators of influenza evolution based on genetic and phenotypic (serologic) 
data, separately for HA and NA (Figure 2, Table 1). Our choice of evolutionary indicators builds on 
earlier studies that found hemagglutination inhibition (HI) phenotype or HA sequence data beneficial 
in forecasting seasonal influenza virus evolution (Huddleston et al., 2020; Luksza and Lässig, 2014; 
Neher et al., 2016; Neher et al., 2014) or annual epidemic dynamics (Axelsen et al., 2014; Du et al., 
2017; Wolf et al., 2010; Table 1).

HA and NA sequence data
We downloaded all H3 sequences and associated metadata from the Global Initiative on Sharing 
All Influenza Data (GISAID) EpiFlu database (Shu and McCauley, 2017). We focused our analysis on 
complete H3 sequences that were sampled between January 1, 1997, and October 1, 2019. We priori-
tized viruses with corresponding HI titer measurements provided by the WHO Global Influenza Surveil-
lance and Response System (GISRS) Collaborating Centers and excluded all egg- passaged viruses and 
sequences with ambiguous year, month, and day annotations. To account for variation in sequence 
availability across global regions, we subsampled the selected sequences five times to representa-
tive sets of no more than 50 viruses per month, with preferential sampling for North America. Each 
month up to 25 viruses were selected from North America (when available) and up to 25 viruses were 
selected from nine other global regions (when available), with even sampling across the other global 
regions (Africa, Europe, China, South Asia, Japan and Korea, Oceania, South America, Southeast Asia, 
and West Asia; Figure 2—figure supplement 1). To ensure proper topology early in the phylogeny, 
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we included reference strains that had been collected no earlier than 5 years prior to January 1, 1997. 
The resultant sets of H3 sequences included 10,060–10,062 sequences spanning December 25, 1995 
– October 1, 2019 (Figure 2—source data 1). Although our subsampling scheme entailed selecting 
up to 50 viruses per month, with up to 25 viruses per month collected in North America, each replicate 
dataset was comprised of approximately 40% North American sequences across all seasons combined 
(Figure 2—source data 1), due to low sequence volumes in the early years of our study.

As with the H3 analysis, we downloaded all N2 sequences and associated metadata from GISAID 
and selected complete N2 sequences that were sampled between January 1, 1997, and October 1, 
2019. We excluded all sequences with ambiguous year, month, and day annotations, forced the inclu-
sion of reference strains collected no earlier than 5 years prior to January 1, 1997, and compiled five 

Figure 2. Antigenic and genetic evolution of seasonal influenza A(H3N2) viruses, 1997 – 2019. (A–B) Temporal phylogenies of (A) hemagglutinin 
(H3) and (B) neuraminidase (N2) gene segments. Tip color denotes the Hamming distance from the root of the tree, based on the number of 
substitutions at epitope sites in H3 (N=129 sites) and N2 (N=223 sites). Black ‘X’ marks indicate the phylogenetic positions of U.S. recommended 
vaccine strains. (C–D) Seasonal genetic and antigenic distances are the mean distance between A(H3N2) viruses circulating in the current season  t   and 
viruses circulating in the prior season ( t   – 1), measured by (C) five sequence- based metrics (HA epitope (N=129), HA receptor binding site (RBS) (N=7), 
HA stalk footprint (N=34), NA epitope (N=223 or N=53)) and (D) hemagglutination inhibition (HI) titer measurements. (E) The Shannon diversity of H3 
and N2 local branching index (LBI) values in each season. Vertical bars in (C), (D), and (E) are 95% confidence intervals of seasonal estimates from five 
bootstrapped phylogenies.

The online version of this article includes the following source data and figure supplement(s) for figure 2:

Source data 1. A/H3 sequence counts in five subsampled datasets.

Source data 2. A/N2 sequence counts in five subsampled datasets.

Figure supplement 1. The number of A/H3 sequences in five subsampled datasets in each month and in each influenza season.

Figure supplement 2. The number of A/N2 sequences in five subsampled datasets in each month and in each influenza season.

Figure supplement 3. Comparison of seasonal antigenic drift measured by substitutions at H3 epitope sites and HI log2 titer measurements, from 
seasons 1997–1998 to 2018–2019.

Figure supplement 4. Pairwise correlations between H3 and N2 evolutionary indicators (one- season lags).

Figure supplement 5. Pairwise correlations between H3 and N2 evolutionary indicators (two- season lags).

Figure supplement 6. Pairwise correlations between H3 and N2 evolutionary indicators (one- and two- season lags).

Figure supplement 7. Comparison of seasonal antigenic drift measured by substitutions at H3 and N2 epitope sites, from seasons 1997–1998 to 
2018–2019.
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replicate subsampled datasets with preferential sampling for North America (8815–8816 sequences; 
June 8, 1995 – October 1, 2019; Figure 2—figure supplement 2, Figure 2—source data 2). Similar 
to the H3 sequence datasets, each replicate dataset was comprised of approximately 40% North 
American sequences across all seasons combined (Figure 2—source data 2).

HA serologic data
Hemagglutination inhibition (HI) measurements from ferret sera were provided by WHO GISRS 
Collaborating Centers in London, Melbourne, Atlanta, and Tokyo. We converted raw two- fold dilution 
measurements to log2 titer drops normalized by the corresponding log2 autologous measurements 
(Huddleston et al., 2020; Neher et al., 2016).

Although a phenotypic assay exists for NA, NA inhibiting antibody titers are not routinely measured 
for influenza surveillance. Therefore, we could not include a phenotypic marker of NA evolution in our 
study.

Phylogenetic inference
For each set of H3 and N2 sequences, we aligned sequences with the augur align command (Hadfield 
et al., 2018) and MAFFT v7.407 (Katoh et al., 2002). We inferred initial phylogenies with IQ- TREE 
v1.6.10 (Nguyen et al., 2015). To reconstruct time- resolved phylogenies, we applied TreeTime v0.5.6 
(Sagulenko et al., 2018) with the augur refine command (Huddleston et al., 2021).

Viral fitness metrics
We defined the following fitness metrics for each influenza season:

Antigenic drift
We estimated antigenic drift of each H3 sequence using either serologic or genetic data.

Historically, HI serological assays were considered the ‘gold standard’ for measuring immune 
cross- reactivity between viruses, yet measurements are available for only a subset of viruses. To over-
come this limitation, we used a computational approach that maps HI titer measurements onto the 
HA phylogenetic tree to infer antigenic phenotypes (Huddleston et al., 2020; Neher et al., 2016). 
Importantly, this model infers the antigenicity of virus isolates that lack HI titer measurements, which 

Table 1. Evolutionary indicators of seasonal viral fitness.
Evolutionary indicators are labeled by the influenza gene for which data are available (hemagglutinin, HA or neuraminidase, NA), the 
type of data they are based on, and the component of influenza fitness they represent.

Evolutionary indicator
Influenza 
gene Data type Fitness category Citations

HI log2 titer distance from the 
prior season HA

Hemagglutination inhibition 
measurements using ferret sera Antigenic drift Huddleston et al., 2020; Neher et al., 2016

Epitope distance from the 
prior season HA and NA Sequences Antigenic drift

Bhatt et al., 2011; Bush et al., 1999; 
Krammer, 2023; Webster and Laver, 1980; 
Wiley et al., 1981; Wilson and Cox, 1990; 
Wolf et al., 2010

Receptor binding site 
distance from the prior 
season HA Sequences Antigenic drift Koel et al., 2013

Mutational load (non- epitope 
distance from the prior 
season) HA and NA Sequences Functional constraint Luksza and Lässig, 2014

Stalk ‘footprint‘ distance from 
the prior season HA Sequences Negative control Kirkpatrick et al., 2018

Local branching index HA and NA Sequences

Rate of recent 
phylogenetic 
branching Huddleston et al., 2020; Neher et al., 2014

Table format is adapted from Huddleston et al., 2020.
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comprise the majority of HA sequences in GISAID. To estimate antigenic drift with hemagglutination 
inhibition (HI) titer data, hereon HI log2 titer distance, we applied the phylogenetic tree model from 
Neher et al., 2016 to the H3 phylogeny and the available HI data for its sequences. The tree model 
estimates the antigenic drift per branch in units of log2 titer change.

Our sequence- based measures of drift counted substitutions at putative epitope sites in the glob-
ular head domains of HA and NA, identified through monoclonal antibody escape or protein crystal 
structure: 129 sites in HA epitope regions A to E (Bush et al., 1999; Webster and Laver, 1980; Wiley 
et al., 1981; Wilson and Cox, 1990; Wolf et al., 2006) (HA epitope distance), 7 sites adjacent to 
the HA receptor binding site (RBS) (Koel et al., 2013) (HA RBS distance), and 223 or 53 sites in NA 
epitope regions A to C (Bhatt et al., 2011; Krammer, 2023) (NA epitope distance). We also counted 
the number of substitutions at epitope sites in the HA stalk domain (HA stalk footprint distance) (Kirk-
patrick et al., 2018). Although the majority of the antibody- mediated response to HA is directed 
to the immunodominant HA head, antibodies towards the highly conserved immunosubdominant 
stalk domain of HA are widely prevalent in older individuals, although at low levels (Krammer, 2019; 
Margine et al., 2013; Nachbagauer et al., 2016). We considered stalk footprint distance to be our 
‘control’ metric for drift, given the HA stalk evolves at a significantly slower rate than the HA head 
(Kirkpatrick et al., 2018).

Mutational load
To estimate mutational load for each H3 and N2 sequence, an inverse proxy of viral fitness (Huddleston 
et al., 2020; Luksza and Lässig, 2014), we implemented metrics that count substitutions at putative 
non- epitope sites in HA (N=200) and NA (N=246), hereon HA non- epitope distance and NA non- 
epitope distance. Mutational load produces higher values for viruses that are less fit compared to 
previously circulating strains.

Clade growth
The local branching index (LBI) measures the relative fitness of co- circulating clades, with high LBI 
values indicating recent rapid phylogenetic branching (Huddleston et al., 2020; Neher et al., 2014). 
To calculate LBI for each H3 and N2 sequence, we applied the LBI heuristic algorithm as originally 
described by Neher et al., 2014 to H3 and N2 phylogenetic trees, respectively. We set the neighbor-
hood parameter  τ   to 0.4 and only considered viruses sampled between the current season  t  and the 
previous season  t  – 1 as contributing to recent clade growth in the current season  t .

Variation in the phylogenetic branching rates of co- circulating A(H3N2) clades may affect the 
magnitude, intensity, onset, or duration of seasonal epidemics. For example, we expected that 
seasons dominated by a single variant with high fitness might have different epidemiological dynamics 
than seasons with multiple co- circulating clades with varying seeding and establishment times. We 
measured the diversity of clade growth rates of viruses circulating in each season by measuring the 
standard deviation (s.d.) and Shannon diversity of LBI values in each season. Given that LBI measures 
relative fitness among co- circulating clades, we did not compare overall clade growth rates (e.g. mean 
LBI) across seasons.

Each season’s distribution of LBI values is right- skewed and does not follow a normal distribu-
tion. We therefore bootstrapped the LBI values of each season in each replicate dataset 1000 times 
(1000 samples with replacement) and estimated the seasonal standard deviation of LBI from resam-
ples, rather than directly from observed LBI values. We also tested the seasonal standard deviation of 
LBI from log transformed LBI values, which produced qualitatively equivalent results to bootstrapped 
LBI values in downstream analyses.

As an alternative measure of seasonal LBI diversity, we binned raw H3 and N2 LBI values into cate-
gories based on their integer values (e.g. an LBI value of 0.5 is assigned to the (0,1] bin) and estimated 
the exponential of the Shannon entropy (Shannon diversity) of LBI categories (Hill, 1973; Shannon, 
1948). The Shannon diversity of LBI considers both the richness and relative abundance of viral clades 
with different growth rates in each season and is calculated as follows:

 

1D = exp

(
−

R∑
i=1

pi ln pi

)
,
  

(18)
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where  qD  is the effective number of categories or Hill numbers of order  q  (here, clades with different 
growth rates), with  q  defining the sensitivity of the true diversity to rare versus abundant categories 
(Hill, 1973).  exp  is the exponential function,  pi  is the proportion of LBI values belonging to the ith 
category, and  R  is richness (the total number of categories). Shannon diversity  1D  ( q = 1 ) estimates 
the effective number of categories in an assemblage using the geometric mean of their proportional 
abundances (Hill, 1973).

Because ecological diversity metrics are sensitive to sampling effort, we rarefied H3 and N2 
sequence datasets prior to estimating Shannon diversity so that seasons had the same sample size. 
For each season in each replicate dataset, we constructed rarefaction and extrapolation curves of LBI 
Shannon diversity and extracted the Shannon diversity estimate of the sample size that was twice the 
size of the reference sample size (the smallest number of sequences obtained in any season during 
the study) (iNEXT R package; Chao et al., 2014). Chao et al. found that their diversity estimators work 
well for rarefaction and short- range extrapolation when the extrapolated sample size is up to twice 
the reference sample size. For H3, we estimated seasonal diversity using replicate datasets subsam-
pled to 360 sequences/season; For N2, datasets were subsampled to 230 sequences/season.

Antigenic and genetic distance relative to prior seasons
For each replicate dataset, we estimated national- level genetic and antigenic distances between influ-
enza viruses circulating in consecutive seasons by calculating the mean distance between viruses 
circulating in the current season  t  and viruses circulating during the prior season ( t  – 1 year; one- 
season lag) or two prior seasons ago ( t  – 2 years; two- season lag). We then averaged seasonal mean 
distances across the five replicate datasets. Seasonal genetic and antigenic distances are greater 
when currently circulating strains are more antigenically distinct from previously circulating strains. 
We used Spearman’s rank correlation coefficients to measure pairwise relationships between scaled 
H3 and N2 evolutionary indicators. We adjusted p- values for multiple testing using the Benjamini and 
Hochberg method (Benjamini and Hochberg, 1995).

Univariate relationships between viral fitness, (sub)type interference 
and A(H3N2) epidemic impact
We measured univariate associations between national indicators of A(H3N2) viral fitness and regional 
A(H3N2) epidemic parameters: peak incidence, epidemic size, transmissibility (effective  Rt ), epidemic 
intensity, subtype dominance, excess P&I deaths, onset timing, peak timing, spatiotemporal synchrony, 
the number of weeks from onset to peak, and seasonal duration. All predictors were centered and 
scaled prior to measuring correlations or fitting regression models.

We first measured Spearman’s rank correlation coefficients between pairs of scaled evolutionary 
indicators and epidemic metrics using 1000 bootstrap replicates of the original dataset (1000 samples 
with replacement). Next, we fit regression models with different distribution families (Gaussian or 
Gamma) and link functions (identity, log, or inverse) to observed data and used Bayesian informa-
tion criterion (BIC) to select the best fit model, with lower BIC values indicating a better fit to the 
data. For subtype dominance, epidemic intensity, and age- specific proportions of ILI cases, we fit 
Beta regression models with logit links. Beta regression models are appropriate when the variable of 
interest is continuous and restricted to the interval (0, 1) (Ferrari and Cribari- Neto, 2004). For each 
epidemic metric, we fit the best- performing regression model to 1000 bootstrap replicates of the 
original dataset.

To measure the effects of sub(type) interference on A(H3N2) epidemics, the same approach was 
applied to measure the univariate relationships between A(H1N1) or B epidemic size and A(H3N2) 
peak incidence, epidemic size, effective  Rt , epidemic intensity, and excess mortality. As a sensitivity 
analysis, we evaluated univariate relationships between A(H3N2) epidemic metrics and A(H1N1) 
epidemic size during pre- 2009 seasons (seasonal A(H1N1) viruses) and post- 2009 seasons (A(H1N1)
pdm09 viruses) separately.

Selecting relevant predictors of A(H3N2) epidemic impact
Next, we explored multivariable approaches that would shed light on the potential mechanisms 
driving annual epidemic impact. Considering that we had many predictors and relatively few observa-
tions (22 seasons × 9–10 HHS regions), several covariates were collinear, and our goal was explicative 
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rather than predictive, we settled on methods that tend to select few covariates: conditional inference 
random forests and LASSO (least absolute shrinkage and selection operator) regression models. All 
predictors were centered and scaled prior to fitting models.

Preprocessing of predictor data
The starting set of candidate predictors included all viral fitness metrics: genetic and antigenic distances 
between current and previously circulating viruses and the standard deviation and Shannon diversity 
of H3 and N2 LBI values in the current season. To account for potential type or subtype interference, 
we included A(H1N1) or A(H1N1)pdm09 epidemic size and B epidemic size in the current and prior 
season and the dominant IAV subtype in the prior season (Lee et al., 2018). We included A(H3N2) 
epidemic size in the prior season as a proxy for prior natural immunity to A(H3N2). To account for 
vaccine- induced immunity, we considered four categories of predictors and included estimates for 
the current and prior seasons: national vaccination coverage among adults (18–49 years coverage × 
≥65 years coverage), adjusted A(H3N2) vaccine effectiveness (VE), a combined metric of vaccination 
coverage and A(H3N2) VE (18–49 years coverage × ≥65 years coverage × VE), and H3 and N2 epitope 
distances between naturally circulating A(H3N2) viruses and the U.S. A(H3N2) vaccine strain in each 
season. We could not include a predictor for vaccination coverage in children or consider clade- 
specific VE estimates because these data were not available for most seasons in our study.

Random forest and LASSO regression models are not sensitive to redundant (highly collinear) 
features (Kuhn and Johnson, 2019), but we chose to downsize the original set of candidate predictors 
to minimize the impact of multicollinearity on variable importance scores. For both types of models, 
if there are highly collinear variables that are useful for predicting the target variable, the predictor 
chosen by the model becomes a random selection (Kuhn and Johnson, 2019). In random forest 
models, these highly collinear variables will be used in all splits across the forest of decision trees, and 
this redundancy dilutes variable importance scores (Kuhn and Johnson, 2019). We first confirmed 
that none of the candidate predictors had zero variance or near- zero variance. Because seasonal lags 
of each viral fitness metric are highly collinear, we included only one lag of each evolutionary predictor, 
with a preference for the lag that had the strongest univariate correlations with various epidemic 
metrics. We checked for multicollinearity among the remaining predictors by examining Spearman’s 
rank correlation coefficients between all pairs of predictors. If a particular pair of predictors was highly 
correlated (Spearman’s  ρ >0.8), we retained only one predictor from that pair, with a preference for 
the predictor that had the strongest univariate correlations with various epidemic metrics. Lastly, we 
performed QR decomposition of the matrix of remaining predictors to determine if the matrix is full 
rank and identify sets of columns involved in linear dependencies. This step did not eliminate any 
additional predictors, given that we had already removed pairs of highly collinear variables based on 
Spearman correlation coefficients.

After these preprocessing steps, our final set of model predictors included 21 variables, including 8 
viral evolutionary indicators: H3 epitope distance ( t  – 2), HI log2 titer distance ( t  – 2), H3 RBS distance 
( t  – 2), H3 non- epitope distance ( t  – 2), N2 epitope distance ( t  – 1), N2 non- epitope distance ( t  – 1), 
and H3 and N2 LBI diversity (s.d.) in the current season; 6 proxies for type/subtype interference and 
prior immunity: A(H1N1) and B epidemic sizes in the current and prior season, A(H3N2) epidemic 
size in the prior season, and the dominant IAV subtype in the prior season; and 7 proxies for vaccine- 
induced immunity: A(H3N2) VE in the current and prior season, H3 and N2 epitope distances between 
circulating viruses and the vaccine strain in each season, the combined metric of adult vaccination 
coverage × VE in the current and prior season, and adult vaccination coverage in the prior season.

Random forest models
We used conditional inference random forest models to select relevant predictors of A(H3N2) epidemic 
size, peak incidence, transmissibility (effective  Rt ), epidemic intensity, and subtype dominance (party 
and caret R packages; Hothorn et al., 2006; Kuhn, 2008; Strobl et al., 2008; Strobl et al., 2007). We 
did not conduct variable selection analysis for excess A(H3N2) mortality due to data limitations (one 
national estimate per season). Metrics related to epidemic timing were also excluded from this anal-
ysis because we found weak or non- statistically significant associations with most viral fitness metrics 
in univariate analyses. Lastly, we could not separate our analysis into pre- and post- 2009 pandemic 
periods due to small sample sizes.

https://doi.org/10.7554/eLife.91849
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We created each forest by generating 3000 regression trees. To determine the best performing 
model for each epidemic metric, we used leave- one- season- out (jackknife) cross- validation to train 
models and measure model performance, wherein each ‘assessment’ set is one season of data 
predicted by the model, and the corresponding ‘analysis’ set contains the remaining seasons. This 
approach is roughly analogous to splitting data into training and test sets, but all seasons are used 
at some point in the training of each model (Kuhn and Johnson, 2019). Due to the small size of 
our dataset (~20 seasons), evaluating the predictive accuracy of random forest models on a quasi- 
independent test set of 2–3 seasons produced unstable estimates. Instead of testing model perfor-
mance on an independent test set, we generated 10 bootstrap resamples (‘repeats’) of each analysis 
set (‘fold’) and averaged the predictions of models trained on resamples (Kuhn and Johnson, 2013; 
Kuhn and Johnson, 2019). For each epidemic metric, we report the mean root mean squared error 
(RMSE) and R2 of predictions from the best tuned model. We used permutation importance (N=50 
permutations) to estimate the relative importance of each predictor in determining target outcomes. 
Permutation importance is the decrease in prediction accuracy when a single feature (predictor) is 
randomly permuted, with larger values indicating more important variables. Because many features 
were collinear, we used conditional permutation importance to compute feature importance scores, 
rather than the standard marginal procedure (Altmann et al., 2010; Debeer and Strobl, 2020; Strobl 
et al., 2008; Strobl et al., 2007).

Regression models
As an alternative method for variable selection, we performed LASSO regression on the same cross- 
validated dataset and report the mean RMSE and R2 of predictions from the best tuned model 
(glmnet and caret R packages; Friedman et al., 2010; Kuhn, 2008). Unlike random forest models, this 
modeling approach assumes linear relationships between predictors and the target variable. LASSO 
models (L1 penalty) are more restrictive than ridge models (L2 penalty) and elastic net models (combi-
nation of L1 and L2 penalties) and will arbitrarily retain one variable from a set of collinear variables.

To further reduce the set of predictors for each epidemic metric, we performed model selection 
with linear regression models that considered all combinations of the top 10 ranked predictors from 
conditional inference random forest models. Candidate models could include up to three predictors, 
and models were compared using BIC. We did not include HHS region or season as fixed or random 
effects because these variables either did not improve model fit (region) or caused overfitting and 
convergence issues (season).

Results
Indicators of influenza A(H3N2) evolution
We characterized seasonal patterns of genetic and antigenic evolution among A(H3N2) viruses circu-
lating during 1997–2019, using HA and NA sequence data shared via the GISAID EpiFlu database 
(Shu and McCauley, 2017) and ferret hemagglutination inhibition (HI) assay data shared by WHO 
GISRS Collaborating Centers in London, Melbourne, Atlanta, and Tokyo. Time- resolved phylogenies 
of HA and NA genes are shown in Figure 2. Although our study is U.S.-focused, we used a global 
dataset because U.S.-collected sequences and HI titers were sometimes sparse during the earlier 
seasons of the study (Figure 2—figure supplements 1 and 2).

To measure antigenic distances between consecutive seasons, we calculated mean genetic 
distances at epitope sites or mean log2 titer distances from HI titer measurements (Figure 2), between 
viruses circulating in the current season  t  and the prior season  t  – 1 year (one- season lag) or two 
prior seasons ago  t  – 2 years (two- season lag). These time windows generated seasonal antigenic 
distances consistent with empirical and theoretical studies characterizing transitions between H3 or 
N2 antigenic clusters (Bedford et al., 2014; Ferguson et al., 2003; Huddleston et al., 2020; Neher 
et  al., 2014; Sandbulte et  al., 2011; Smith et  al., 2004), with H3 epitope distance and HI log2 
titer distance, at two- season lags, and N2 epitope distance, at one- season lags, capturing expected 
‘jumps’ in antigenic drift during key seasons that have been previously associated with major antigenic 
transitions (Smith et al., 2004), such as the seasons dominated by A/Sydney/5/1997- like strains (SY97) 
(1997–1998, 1998–1999, 1999–2000) and the 2003–2004 season dominated by A/Fujian/411/2002- 
like strains (FU02) (Figure 2—figure supplements 3 and 7). Prior studies explicitly linking antigenic 

https://doi.org/10.7554/eLife.91849
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drift to epidemic size or severity also support a 1- year (Bedford et al., 2014) or 2- year time window 
of drift (Koelle et al., 2006; Wolf et al., 2010). Given that protective immunity to homologous strains 
wanes after 1–4 years (He et al., 2015; Wraith et al., 2022), we would also expect these timeframes 
to return the greatest signal in epidemiological surveillance data.

We measured pairwise correlations between seasonal indicators of HA and NA evolution to assess 
their degree of concordance. As expected, we found moderate- to- strong associations between 
HA epitope distance and HI log2 titer distance (Figure 2—figure supplements 3–6) and HA RBS 
distance and HI log2 titer distance (Figure 2—figure supplements 4–6). Consistent with prior sero-
logical studies (Eichelberger et al., 2018; Kilbourne et al., 1990; Schulman and Kilbourne, 1969), 
epitope distances in HA and NA were not correlated at one- season lags (Spearman’s  ρ =0.25, p=0.3) 
or two- season lags ( ρ =0.15, p=0.5) (Figure 2—figure supplements 4–7). The seasonal diversity of 
HA and NA LBI values was negatively correlated with NA epitope distance (Figure 2—figure supple-
ments 5 and 6), with high antigenic novelty coinciding with low genealogical diversity. This associa-
tion suggests that selective sweeps tend to follow the emergence of drifted variants with high fitness, 
resulting in seasons dominated by a single A(H3N2) variant rather than multiple co- circulating clades.

Associations between A(H3N2) evolution and epidemic dynamics
We explored relationships between viral evolution and variation in A(H3N2) epidemic dynamics from 
seasons 1997–1998 to 2018–2019, excluding the 2009 A(H1N1) pandemic, using syndromic and viro-
logic surveillance data collected by the U.S. CDC and WHO. We estimated weekly incidences of 
influenza A(H3N2), A(H1N1), and B in 10 HHS regions by multiplying the influenza- like illness (ILI) 
rate – the proportion of outpatient encounters for ILI, weighted by regional population size – by the 
regional proportion of respiratory samples testing positive for each influenza type/subtype (percent 
positive). Figure 1 and Figure 1—figure supplement 1 show variability in the timing and intensity 
of annual epidemics of A(H3N2), A(H1N1), and B viruses. Based on these incidence time series, we 
measured indicators of epidemic burden, intensity, severity, subtype dominance, timing, and age- 
specific patterns during each non- pandemic season (Table 2) and assessed their univariate relation-
ships with each indicator of HA and NA evolution. Figure 1—figure supplement 3 shows pairwise 
correlations between epidemic metrics.

Table 2. Seasonal metrics of A(H3N2) epidemic dynamics.
Epidemic metrics are defined and labeled by which outcome category they represent.

Epidemic Outcome Definition Outcome category Citations

Epidemic size Cumulative weekly incidence Burden

Peak incidence Maximum weekly incidence Burden

Maximum time- varying effective 
reproduction number,  Rt 

The number of secondary cases arising from a 
symptomatic index case, assuming conditions 
remain the same Transmissibility

Scott et al., 2021; Bhatt 
et al., 2023

Epidemic intensity

Inverse Shannon entropy of the weekly incidence 
distribution (i.e. the spread of incidence across the 
season)

Sharpness of the 
epidemic curve Dalziel et al., 2018

Subtype dominance
The proportion of influenza positive samples typed 
as A(H3N2) Viral activity

Excess pneumonia and influenza mortality 
attributable to A(H3N2) virus

Mortality burden in excess of a seasonally adjusted 
baseline Severity

Hansen et al., 2022; 
Simonsen and Viboud, 
2012

Onset week Winter changepoint in incidence Timing Charu et al., 2017

Peak week First week of maximum incidence Timing

Spatiotemporal synchrony Regional variation (s.d.) in onset or peak timing Speed Viboud et al., 2006

Onset to peak Number of days between onset week and peak week Speed

Seasonal duration Number of weeks with non- zero incidence Speed

https://doi.org/10.7554/eLife.91849
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Two sequence- based measures based on broad sets of epitope sites exhibited stronger relationships 
with seasonal A(H3N2) epidemic burden and transmissibility than the serology- based measure, HI log2 
titer distance. Both H3 epitope distance ( t  – 2) and N2 epitope distance ( t  – 1) correlated with increased 
epidemic size (H3, adjusted R2=0.37, p=0.03; N2: R2=0.26, p=0.08) and peak incidence (H3: R2=0.4, 
p=0.02; N2: R2=0.33, p=0.04) and higher effective reproduction numbers,  Rt  (H3, R2=0.37, p=0.06; N2, 
R2=0.33, p=0.03; regression results: Figure 3; Spearman correlations: Figure 3—figure supplement 1). 
Excess pneumonia and influenza mortality attributable to A(H3N2) increased with H3 epitope distance, 
though this relationship was not statistically significant (Figure 3—figure supplement 2). HI log2 titer 
distance ( t  – 2) exhibited positive but non- significant associations with different measures of epidemic 

Figure 3. Influenza A(H3N2) antigenic drift correlates with larger, more intense annual epidemics. A(H3N2) epidemic size, peak incidence, 
transmissibility (effective reproduction number,  Rt ), and epidemic intensity increase with antigenic drift, measured by (A) hemagglutinin (H3) epitope 
distance, (B) neuraminidase (N2) epitope distance, and (C) hemagglutination inhibition (HI) log2 titer distance. Seasonal antigenic drift is the mean titer 
distance or epitope distance between viruses circulating in the current season  t   and viruses circulating in the prior season ( t   – 1) or two prior seasons 
ago ( t   – 2). Distances are scaled to aid in direct comparison of evolutionary indicators. Point color indicates the dominant influenza A virus (IAV) subtype 
based on CDC influenza season summary reports (red: A(H3N2), blue: A(H1N1), purple: A(H1N1)pdm09, orange: A(H3N2)/A(H1N1)pdm09 co- dominant), 
and vertical bars are 95% confidence intervals of regional estimates (pre- 2009 seasons: 9 regions; post- 2009 seasons: 10 regions). Seasonal mean 
A(H3N2) epidemic metric values were fit as a function of antigenic or genetic distance using LMs (epidemic size, peak incidence), Gaussian GLMs 
(effective  Rt : inverse link), or Beta GLMs (epidemic intensity: logit link) with 1000 bootstrap resamples. In each plot, the black dashed line represents the 
mean regression fit, and the gray shaded band shows the 95% confidence interval, based on 1000 bootstrap resamples. The R2 and associated p- value 
from the mean regression fit are in the top left section of each plot.

The online version of this article includes the following figure supplement(s) for figure 3:

Figure supplement 1. Univariate correlations between influenza A(H3N2) evolutionary indictors and epidemic impact.

Figure supplement 2. Excess influenza A(H3N2) mortality increases with H3 and N2 epitope distance, but correlations are not statistically significant.

Figure supplement 3. Low seasonal diversity in the clade growth rates of circulating A(H3N2) viruses, as measured by the standard deviation of local 
branching index values, correlates with higher transmissibility and greater epidemic intensity.

Figure supplement 4. Low seasonal diversity in the clade growth rates of circulating A(H3N2) viruses, as measured by the Shannon diversity of local 
branching index values, correlates with higher transmissibility and greater epidemic intensity.

https://doi.org/10.7554/eLife.91849
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impact (Figure 3, Figure 3—figure supplement 1). Effective  Rt  and epidemic intensity were greater in 
seasons with low LBI diversity (Figure 3—figure supplement 1; Figure 3—figure supplement 3 and 
Figure 3—figure supplement 4). The remaining indicators of viral evolution, including H3 and N2 non- 
epitope distance (mutational load), H3 RBS distance, and H3 stalk footprint distance had weaker, non- 
statistically significant correlations with epidemic impact (Figure 3—figure supplement 1).

We explored whether evolutionary changes in A(H3N2) may predispose this subtype to dominate 
influenza virus circulation in a given season. A(H3N2) subtype dominance – the proportion of influenza 
positive samples typed as A(H3N2) – increased with H3 epitope distance ( t  – 2) (R2=0.32, p=0.05) 
and N2 epitope distance ( t  – 1) (R2=0.34, p=0.03) (regression results: Figure 4; Spearman correla-
tions: Figure  3—figure supplement 1). Figure  4 illustrates this relationship at the regional level 
across two seasons in which A(H3N2) was nationally dominant, but where antigenic change differed. In 
2003–2004, we observed widespread dominance of A(H3N2) viruses after the emergence of the novel 
antigenic cluster, FU02 (A/Fujian/411/2002- like strains). In contrast, there was substantial regional 
heterogeneity in subtype circulation during 2007–2008, a season in which A(H3N2) viruses were anti-
genically similar to those circulating in the previous season. Patterns in type/subtype circulation across 
all influenza seasons in our study period are shown in Figure 4—figure supplement 1. As observed 
for the 2003–2004 season, widespread A(H3N2) dominance tended to coincide with major antigenic 
transitions (e.g. A/Sydney/5/1997 (SY97) seasons, 1997–1998 to 1999–2000; A/California/7/2004 
(CA04) season, 2004–2005), although this was not universally the case (e.g. A/Perth/16/2009 (PE09) 
season, 2010–2011).

After the 2009 A(H1N1) pandemic, A(H3N2) dominant seasons still occurred more frequently 
than A(H1N1) dominant seasons, but the mean fraction of influenza positive cases typed as A(H3N2) 
in A(H3N2) dominant seasons was lower compared to A(H3N2) dominant seasons prior to 2009 
(Figure 4—figure supplement 1). Antigenically distinct 3 c.2a and 3 c.3a viruses began to co- circulate 
in 2012 and underwent further diversification during subsequent seasons in our study (https://next-
strain.org/seasonal-flu/h3n2/ha/12y@2024-05-13; Dhanasekaran et  al., 2022; Huddleston et  al., 
2020; Yan et al., 2019). The decline in A(H3N2) predominance during the post- 2009 period may be 
linked to the genetic and antigenic diversification of A(H3N2) viruses, wherein multiple lineages with 
similar fitness co- circulated in each season.

Next, we tested for associations between A(H3N2) evolution and various measures of epidemic 
timing (Table  2). Seasonal duration increased with H3 and N2 LBI diversity in the current season 
(H3, LBI Shannon diversity: R2=0.37; p=0.04; LBI s.d.: R2=0.3; p=0.09; N2, LBI Shannon diversity: 
R2=0.38; p=0.04; LBI s.d.: R2=0.36; p=0.06; regression results: Figure  5; Spearman correlations: 
Figure 5—figure supplement 1), while the number of days from epidemic onset to peak incidence 
shortened with increasing N2 epitope distance ( t  – 1) (R2=0.38, p=0.03; Figure 5—figure supple-
ment 2). Onset and peak timing tended to be earlier in seasons with increased H3 and N2 antigenic 
novelty, but correlations between antigenic change and epidemic timing were not statistically signifi-
cant (Figure 5—figure supplement 3). A(H3N2) evolution did not correlate with the degree of spatio-
temporal synchrony across HHS regions (Figure 5—figure supplement 1).

Lastly, we considered the effects of antigenic change on the age distribution of outpatient ILI cases, 
with the expectation that the proportion of cases in children would decrease in seasons with greater 
antigenic novelty, due to drifted variants’ increased ability to infect more immunologically experi-
enced adults (Bedford et al., 2015; Gostic et al., 2019). Consistent with this hypothesis, N2 epitope 
distance was negatively correlated with the fraction of cases in children aged <5 years (one- season 
lag: R2=0.29, p=0.1; two- season lag: R2=0.59, p=0.003) and individuals aged 5–24 years (one- season 
lag: R2=0.38, p=0.04; two- season lag: R2=0.17, p=0.18) and positively correlated with the fraction of 
cases in adults aged 25–64 years (one- season lag: R2=0.36, p=0.05; two- season lag: R2=0.49, p=0.01) 
and ≥65 years (one- season lag: R2=0.39, p=0.01; two- season lag: R2=0.33, p=0.05) (regression results: 
Figure 6; Spearman correlations: Figure 6—figure supplement 1). Antigenic drift in H3 exhibited 
similar associations with age patterns of ILI cases, but correlations were weaker and non- significant 
(Figure 6, Figure 6—figure supplement 1).

Effects of heterosubtypic viral interference on A(H3N2) epidemic 
burden and timing
We investigated the effects of influenza type/subtype interference – proxied by influenza A(H1N1) and 
B epidemic size – on A(H3N2) incidence during annual outbreaks. Across the entire study period, we 

https://doi.org/10.7554/eLife.91849
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Figure 4. The proportion of influenza positive samples typed as A(H3N2) increases with antigenic drift. (A- B) Seasonal A(H3N2) subtype dominance 
increases with (A) hemagglutinin (H3) and (B) neuraminidase (N2) epitope distance. Seasonal epitope distance is the mean epitope distance between 
viruses circulating in the current season  t   and viruses circulating in the prior season ( t   - 1) or two prior seasons ago ( t   - 2). Distances were scaled to aid in 
direct comparison of evolutionary indicators. Point color indicates the dominant influenza A virus (IAV) subtype based on CDC influenza season summary 
reports (red: A(H3N2), blue: A(H1N1), purple: A(H1N1)pdm09, orange: A(H3N2)/A(H1N1)pdm09 co- dominant), and vertical bars are 95% confidence 
intervals of regional estimates (pre- 2009 seasons: 9 regions; post- 2009 seasons: 10 regions). Seasonal mean A(H3N2) dominance was fit as a function 
of H3 or N2 epitope distance using Beta GLMs with 1000 bootstrap resamples. In (A) and (B), the dashed black line represents the mean regression 
fit, and the gray shaded band shows the 95% confidence interval, based on 1000 bootstrap resamples. The R2 and associated p- value from the mean 
regression fit are in the bottom right section of each plot. (C–D) Regional patterns of influenza type and subtype incidence during two seasons when 
A(H3N2) was nationally dominant. Pie charts represent the proportion of influenza positive samples typed as A(H3N2) (red), A(H1N1) (blue), or B (green) 
in each HHS region. The sizes of regional pie charts are proportional to the total number of influenza positive samples. Data for Region 10 (purple) are 
not available for seasons prior to 2009. (C) Widespread A(H3N2) dominance during 2003–2004 after the emergence of a novel antigenic cluster, FU02 (A/
Fujian/411/2002- like strains). (D) Spatial heterogeneity in subtype circulation during 2007–2008, a season with low A(H3N2) antigenic novelty relative to 
the prior season.

The online version of this article includes the following figure supplement(s) for figure 4:

Figure supplement 1. Regional patterns of influenza type and subtype circulation during seasons 1997–1998 to 2018–2019.

https://doi.org/10.7554/eLife.91849
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observed moderate- to- strong, non- linear relationships between A(H1N1) epidemic size and A(H3N2) 
epidemic size (R2=0.65, p=0.01; Figure 7), peak incidence (R2=0.66, p=0.02; Figure 7), and excess 
mortality (R2=0.57, p=0.01; Figure 7—figure supplement 1), wherein A(H3N2) epidemic burden and 
excess mortality decreased as A(H1N1) incidence increased. A(H1N1) epidemic size was also signifi-
cantly correlated with A(H3N2) transmissibility (effective  Rt ), exhibiting a negative, approximately 

Figure 5. Influenza A(H3N2) seasonal duration increases with the diversity of hemagglutinin (H3) and neuraminidase (N2) clade growth rates in each 
season. Seasonal diversity of clade growth rates is measured as the (A) Shannon diversity or (B) standard deviation (s.d.) of H3 and N2 local branching 
index (LBI) values of viruses circulating in each season. LBI values are scaled to aid in direct comparisons of different LBI diversity metrics. Point color 
indicates the dominant influenza A subtype based on CDC influenza season summary reports (red: A(H3N2), blue: A(H1N1), purple: A(H1N1)pdm09, 
orange: A(H3N2)/A(H1N1)pdm09 co- dominant), and vertical bars are 95% confidence intervals of regional estimates (pre- 2009 seasons: 9 regions; 
post- 2009 seasons: 10 regions). Mean seasonal duration was fit as a function of H3 or N2 LBI diversity using Gaussian GLMs (inverse link) with 1000 
bootstrap resamples. In each plot, the black dashed line represents the mean regression fit, and the gray shaded band shows the 95% confidence 
interval, based on 1000 bootstrap resamples. The R2 and associated p- value from the mean regression fit are in the top left section of each plot.

The online version of this article includes the following figure supplement(s) for figure 5:

Figure supplement 1. Univariate correlations between influenza A(H3N2) evolutionary indicators and epidemic timing.

Figure supplement 2. Epidemic speed increases with N2 antigenic drift.

Figure supplement 3. Influenza A(H3N2) epidemic onsets and peaks are earlier in seasons with high antigenic novelty, but correlations are not 
statistically significant.

https://doi.org/10.7554/eLife.91849
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linear relationship (R2=0.46, p=0.01; Figure 7). A(H3N2) epidemic intensity was negatively associated 
with A(H1N1) epidemic size, but this relationship was not statistically significant (R2=0.21, p=0.15; 
Figure  7). Influenza B epidemic size was not significantly correlated with any A(H3N2) epidemic 
metrics (Figure 7, Figure 7—figure supplement 1).

The internal gene segments NS, M, NP, PA, and PB2 of A(H3N2) viruses and pre- 2009 seasonal 
A(H1N1) viruses share a common ancestor (Webster et al., 1992) whereas A(H1N1)pdm09 viruses 
have a combination of gene segments derived from swine and avian reservoirs that were not reported 
prior to the 2009 pandemic (Garten et al., 2009; Smith et al., 2009). Non- glycoprotein genes are 
highly conserved between influenza A viruses and elicit cross- reactive antibody and T cell responses 
(Grebe et al., 2008; Sridhar, 2016). Because pre- 2009 seasonal A(H1N1) viruses and A(H3N2) are 
more closely related, we hypothesized that seasonal A(H1N1) viruses could potentially limit the circu-
lation of A(H3N2) viruses to a greater extent than A(H1N1)pdm09 viruses, due to greater T cell- 
mediated cross- protective immunity. As a sensitivity analysis, we measured correlations between 

Figure 6. The proportion of outpatient influenza- like illness (ILI) cases in adults increases with neuraminidase (N2) antigenic novelty. N2 epitope 
distance, but not H3 epitope distance, significantly correlates with the age distribution of outpatient ILI cases. Seasonal epitope distance is the mean 
distance between viruses circulating in current season  t   and viruses circulating in the prior season ( t   – 1) or two prior seasons ago ( t   – 2). Distances are 
scaled to aid in direct comparison of evolutionary indicators. Point color indicates the dominant influenza A subtype based on CDC influenza season 
summary reports (red: A(H3N2), blue: A(H1N1), purple: A(H1N1)pdm09, orange: A(H3N2)/A(H1N1)pdm09 co- dominant), and vertical bars are 95% 
confidence intervals of regional age distribution estimates (pre- 2009 seasons: 9 regions; post- 2009 seasons: 10 regions). The seasonal mean fraction of 
cases in each age group were fit as a function of H3 or N2 epitope distance using Beta GLMs (logit link) with 1000 bootstrap resamples. In each plot, the 
black dashed line represents the mean regression fit, and the gray shaded band shows the 95% confidence interval, based on 1000 bootstrap resamples. 
The R2 and associated p- value from the mean regression fit are in the top right section of each plot.

The online version of this article includes the following figure supplement(s) for figure 6:

Figure supplement 1. Univariate correlations between A(H3N2) antigenic change and the age distribution of outpatient influenza- like illness (ILI) cases.
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A(H1N1) incidence and A(H3N2) epidemic metrics separately for pre- and post- 2009 pandemic time 
periods. Relationships between different A(H3N2) epidemic metrics and A(H1N1) epidemic size were 
broadly similar for both periods, with slightly stronger correlations observed during the pre- 2009 
period (Figure 7—figure supplement 2).

We compared A(H3N2) epidemic timing across A(H3N2) and A(H1N1) dominant seasons, which 
we defined as when ≥70% of influenza A positive samples are typed as A(H3N2) or A(H1N1), respec-
tively. A(H3N2) epidemic onsets and peaks occurred, on average, 3–4 weeks earlier in A(H3N2) domi-
nant seasons (Wilcoxon test, p<0.0001; Table 3). In A(H1N1) dominant seasons, regional A(H3N2) 
epidemics exhibited greater heterogeneity in epidemic timing (Wilcoxon tests, p<0.0001; Table 3) 
and were shorter in duration compared to A(H3N2) dominant seasons (median duration: 21.5 weeks 
versus 28 weeks; Wilcoxon test, p<0.0001; Table 3).

We applied a wavelet approach to weekly time series of incidences to measure more fine- scale 
differences in the relative timing of type/subtype circulation (Figure  7—figure supplement 3). 
A(H3N2) incidence preceded A(H1N1) incidence during most seasons prior to 2009 and during the 
two seasons in which A(H1N1)pdm09 was dominant, potentially because A(H3N2) viruses are more 
globally prevalent and migrate between regions more frequently than A(H1N1) viruses (Bedford 
et al., 2015). There was not a clear relationship between the direction of seasonal phase lags and 
A(H1N1) epidemic size (R2=0.23, p=0.1; Figure  7—figure supplement 3). A(H3N2) incidence led 
influenza B incidence in all influenza seasons (positive phase lag), irrespective of influenza B epidemic 
size (R2=0.05, p=0.5; Figure 7—figure supplement 3).

Figure 7. The effects of influenza A(H1N1) and B epidemic size on A(H3N2) epidemic burden. (A) Influenza A(H1N1) epidemic size negatively correlates 
with A(H3N2) epidemic size, peak incidence, transmissibility (effective reproduction number,  Rt ), and epidemic intensity. (B) Influenza B epidemic 
size does not significantly correlate with A(H3N2) epidemic metrics. Point color indicates the dominant influenza A virus (IAV) subtype based on CDC 
influenza season summary reports (red: A(H3N2), blue: A(H1N1), purple: A(H1N1)pdm09, orange: A(H3N2)/A(H1N1)pdm09 co- dominant), and vertical 
and horizontal bars are 95% confidence intervals of regional estimates (pre- 2009 seasons: 9 regions; post- 2009 seasons: 10 regions). Seasonal mean 
A(H3N2) epidemic metrics were fit as a function of mean A(H1N1) or B epidemic size using Gaussian GLMs (epidemic size and peak incidence: inverse 
link; effective  Rt : log link) or Beta GLMs (epidemic intensity: logit link) with 1000 bootstrap resamples. In each plot, the black dashed line represents the 
mean regression fit, and the gray shaded band shows the 95% confidence interval, based on 1000 bootstrap resamples. The R2 and associated p- value 
from the mean regression fit are in the top left section of each plot.

The online version of this article includes the following figure supplement(s) for figure 7:

Figure supplement 1. National excess influenza A(H3N2) mortality decreases with A(H1N1) epidemic size but not B epidemic size.

Figure supplement 2. The effect of influenza A(H1N1) epidemic size on A(H3N2) epidemic burden during the entire study period, pre- 2009 seasons, 
and post- 2009 seasons.

Figure supplement 3. Wavelet analysis of influenza A(H3N2), A(H1N1), and B epidemic timing.
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The relative impacts of viral evolution, heterosubtypic interference, 
and prior immunity on A(H3N2) epidemic dynamics
We implemented conditional inference random forest models to assess the relative importance of viral 
evolution, type/subtype co- circulation, prior population immunity, and vaccine- related parameters in 
predicting regional A(H3N2) epidemic metrics (Figure 8).

Based on variable importance scores, A(H1N1) epidemic size in the current season was the most 
informative predictor of A(H3N2) epidemic size and peak incidence, followed by H3 epitope distance 
( t  – 2) and the dominant IAV subtype in the previous season or N2 epitope distance ( t  – 1) (Figure 8). 
For A(H3N2) subtype dominance, the highest ranked predictors were N2 epitope distance ( t  – 1), the 
dominant IAV subtype in the previous season, and H3 epitope distance ( t  – 2) (Figure 8). We note 
that we did not include A(H1N1) epidemic size as a predictor in this model, due to its confounding 
with the target outcome. For models of A(H3N2) transmissibility (effective  Rt ) and epidemic intensity, 
we observed less discernable differences in variable importance scores across the set of candidate 
predictors (Figure 8). For the model of effective  Rt , A(H1N1) epidemic size in the current season, adult 
vaccination coverage in the previous season, and N2 epitope distance between circulating viruses and 
the vaccine strain were the highest ranked variables, while the most important predictors of epidemic 
intensity were vaccination coverage in the previous season, N2 epitope distance between circulating 
viruses and the vaccine strain, and N2 epitope distance ( t  – 1). Variable importance rankings from 
LASSO models were qualitatively similar to those from random forest models, with A(H1N1) epidemic 
size in the current season, H3 and N2 epitope distance, and the dominant IAV subtype in the previous 
season consistently retained across the best- tuned models of epidemic size, peak incidence, and 
subtype dominance (Figure 8—figure supplement 1). Vaccine- related parameters and H3 antigenic 
drift (either H3 epitope distance or HI log2 titer distance) were retained in the best- tuned LASSO 
models of effective  Rt  and epidemic intensity (Figure 8—figure supplement 1).

We measured correlations between observed values and model- predicted values at the HHS 
region level. Among the various epidemic metrics, random forest models produced the most accurate 
predictions of A(H3N2) subtype dominance (Spearman’s  ρ =0.95, regional range = 0.85–0.97), peak 
incidence ( ρ =0.91, regional range = 0.72–0.95), and epidemic size ( ρ =0.9, regional range = 0.74–0.95), 
while predictions of effective  Rt  and epidemic intensity were less accurate ( ρ =0.81, regional range 
= 0.65–0.91;  ρ =0.78, regional range = 0.63–0.92, respectively) (Figure  9). Random forest models 
tended to underpredict most epidemic targets in seasons with substantial H3 antigenic transitions, in 
particular the SY97 cluster seasons (1998–1999, 1999–2000) and the FU02 cluster season (2003–2004) 
(Figure 9).

For epidemic size and peak incidence, seasonal predictive error – the root- mean- square error 
(RMSE) across all regional predictions in a season – increased with H3 epitope distance (epidemic size, 
Spearman’s  ρ =0.51, p=0.02; peak incidence,  ρ =0.63, p=0.004) and N2 epitope distance (epidemic 

Table 3. Comparison of influenza A(H3N2) epidemic timing between A(H3N2) and A(H1N1) dominant seasons.
We used two- sided Wilcoxon rank- sum tests to compare the distributions of epidemic timing metrics between A(H3N2) and A(H1N1) 
dominant seasons. We categorized seasons as A(H3N2) or A(H1N1) dominant when ≥70% of IAV positive samples were typed as one 
IAV subtype.

A(H3N2) timing metric

Dominant
IAV subtype Wilcoxon test

H3N2 H1N1 W p- value

Median onset week
(from EW40) 8 11 3590 2.95×10–7

Median peak week
(from EW40) 17 20.5 5294.5 3.5×10–9

Regional variation (s.d.) in onset timing 9.6 16.3 4095 1.61×10–5

Regional variation (s.d.) in peak timing 12 22.6 6166 6.43×10–18

Seasonal duration 28 21.5 1977.5 6.25×10–6

Abbreviations: IAV, influenza A virus; EW40, epidemic week 40 (the start of the influenza season); s.d., standard deviation.

https://doi.org/10.7554/eLife.91849
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size,  ρ =0.48, p=0.04; peak incidence,  ρ =0.48, p=0.03) (Figure 9—figure supplements 1 and 2). For 
models of epidemic intensity, seasonal RMSE increased with N2 epitope distance ( ρ =0.64, p=0.004) 
but not H3 epitope distance ( ρ =0.06, p=0.8) (Figure  9—figure supplements 1 and 2). Seasonal 
RMSE of effective  Rt  and subtype dominance predictions did not correlate with H3 or N2 epitope 
distance (Figure 9—figure supplements 1 and 2).

To further refine our set of informative predictors, we performed multivariable regression with the 
top 10 ranked predictors from each random forest model and used BIC to select the best fit model 
for each epidemic metric, allowing each metric’s regression model to include up to three independent 
variables. This additional step of variable selection demonstrated that models with few predictors fit 
the observed data relatively well (epidemic size, adjusted R2=0.69; peak incidence, R2=0.63; effective 
 Rt , R2=0.63; epidemic intensity, R2=0.75), except for subtype dominance (R2=0.48) (Table 4). The set 
of variables retained after model selection were similar to those with high importance rankings in 
random forest models and LASSO regression models, with the exception that HI log2 titer distance, 
rather than H3 epitope distance, was included in the minimal models of effective  Rt  and epidemic 
intensity.

Discussion
Antigenic drift between currently circulating influenza viruses and the previous season’s viruses 
is expected to confer increased viral fitness, leading to earlier, larger, or more severe epidemics. 
However, prior evidence for the impact of antigenic drift on seasonal influenza outbreaks is mixed. 

Figure 8. Variable importance rankings from conditional inference random forest models predicting seasonal region- specific influenza A(H3N2) 
epidemic dynamics. Ranking of variables in predicting regional A(H3N2) (A) epidemic size, (B) peak incidence, (C) transmissibility (maximum effective 
reproduction number,  Rt ), (D) epidemic intensity, and (E) subtype dominance. Each forest was created by generating 3000 regression trees from a 
repeated leave- one- season- out cross- validated sample of the data. Variables are ranked by their conditional permutation importance, with differences 
in prediction accuracy scaled by the total (null model) error. Black error bars are 95% confidence intervals of conditional permutation scores (N=50 
permutations). Abbreviations:  t   – 1, one- season lag;  t   – 2, two- season lag; IAV, influenza A virus subtype; s.d., standard deviation; HI, hemagglutination 
inhibition; LBI, local branching index; distance to vaccine, epitope distance between currently circulating viruses and the recommended vaccine strain; 
VE, vaccine effectiveness.

The online version of this article includes the following figure supplement(s) for figure 8:

Figure supplement 1. Variable importance rankings from LASSO regression models predicting seasonal region- specific influenza A(H3N2) epidemic 
dynamics.

https://doi.org/10.7554/eLife.91849
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Here, we systematically compare experimental and sequence- based measures of A(H3N2) evolution in 
predicting regional epidemic dynamics in the United States across 22 seasons, from 1997 to 2019. We 
also consider the effects of other co- circulating influenza viruses, prior immunity, and vaccine- related 
parameters, including vaccination coverage and effectiveness, on A(H3N2) incidence. Our findings 
indicate that evolution in both major surface proteins – hemagglutinin (HA) and neuraminidase (NA) 
– contributes to variability in epidemic magnitude across seasons, though viral fitness appears to be 
secondary to subtype interference in shaping annual outbreaks.

The first question of this study sought to determine which metrics of viral fitness have the strongest 
relationships with A(H3N2) epidemic burden and timing. Among our set of candidate evolutionary 

Figure 9. Observed versus predicted values of seasonal region- specific influenza A(H3N2) epidemic metrics from conditional inference random forest 
models. (A) Epidemic size, (B) peak incidence, (C) transmissibility (maximum effective reproduction number,  Rt ), (D) epidemic intensity, and (E) subtype 
dominance. Results are facetted by HHS region and epidemic metric. Point color and size corresponds to the mean H3 epitope distance between 
viruses circulating in the current season  t   and viruses circulating two prior seasons ago ( t   – 2). Large, yellow points indicate seasons with high antigenic 
novelty, and small blue points indicate seasons with low antigenic novelty. In each facet, the Spearman’s rank correlation coefficient and associated p- 
value are in the top left section, and the black dashed line shows  y = x .

The online version of this article includes the following figure supplement(s) for figure 9:

Figure supplement 1. Relationships between the predictive accuracy of random forest models and seasonal H3 epitope distance.

Figure supplement 2. Relationships between the predictive accuracy of random forest models and seasonal N2 epitope distance.

https://doi.org/10.7554/eLife.91849
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predictors, genetic distances based on broad sets of epitope sites (HA = 129 sites; NA = 223 epitope 
sites) had the strongest, most consistent associations with A(H3N2) epidemic size, transmission rate, 
severity, subtype dominance, and age- specific patterns. Increased epitope distance in both H3 and 
N2 correlated with larger epidemics and increased transmissibility, with univariate analyses finding 
H3 distance more strongly correlated with epidemic size, peak incidence, transmissibility, and excess 
mortality, and N2 distance more strongly correlated with epidemic intensity (i.e. the ‘sharpness’ of 
the epidemic curve) and subtype dominance patterns. However, we note that minor differences in 
correlative strength between H3 and N2 epitope distance are not necessarily biologically relevant and 
could be attributed to noise in epidemiological or virological data or the limited number of influenza 
seasons in our study. The fraction of ILI cases in children relative to adults was negatively correlated 
with N2 epitope distance, consistent with the expectation that cases are more restricted to immu-
nologically naive children in seasons with low antigenic novelty (Bedford et al., 2015; Gostic et al., 
2019). Regarding epidemic timing, the number of days from epidemic onset to peak (a proxy for 
epidemic speed) decreased with N2 epitope distance, but other measures of epidemic timing, such 
as peak week, onset week, and spatiotemporal synchrony across HHS regions, were not significantly 
correlated with H3 or N2 antigenic change.

The local branching index (LBI) is traditionally used to predict the success of individual clades, 
with high LBI values indicating high viral fitness (Huddleston et al., 2020; Neher et al., 2014). In 
our epidemiological analysis, low diversity of H3 or N2 LBI in the current season correlated with 
greater epidemic intensity, higher transmission rates, and shorter seasonal duration. These associa-
tions suggest that low LBI diversity is indicative of a rapid selective sweep by one successful clade, 
while high LBI diversity is indicative of multiple co- circulating clades with variable seeding and estab-
lishment times over the course of an epidemic. A caveat is that LBI estimation is more sensitive to 
sequence sub- sampling schemes than strain- level measures. If an epidemic is short and intense (e.g. 
1–2 months), a phylogenetic tree with our sub- sampling scheme (50 sequences per month) may not 
incorporate enough sequences to capture the true diversity of LBI values in that season.

Positive associations between H3 antigenic drift and population- level epidemic burden are consis-
tent with previous observations from theoretical models (Bedford et al., 2012; Koelle et al., 2006; 
Koelle et al., 2009). For example, phylodynamic models of punctuated antigenic evolution have 
reproduced key features of A(H3N2) phylogenetic patterns and case dynamics, such as the sequen-
tial replacement of antigenic clusters, the limited standing diversity in HA after a cluster transition, 
and higher incidence and attack rates in cluster transition years (Bedford et al., 2012; Koelle et al., 
2006; Koelle et  al., 2009). Our results also corroborate empirical analyses of surveillance data 

Table 4. Predictors of seasonal A(H3N2) epidemic size, peak incidence, transmissibility, epidemic 
intensity, and subtype dominance.
Variables retained in the best fit model for each epidemic outcome were determined by BIC.

Outcome Best Minimal Model1 R2 Adj. R2 RMSE

Epidemic Size H3 epitope distance ( t   – 2) +
H1 epidemic size +
H3 epidemic size ( t   – 1)

0.74 0.69 9.88

Peak Incidence H3 epitope distance ( t   – 2) +
H1 epidemic size +
Dominant IAV Subtype ( t   – 1)

0.69 0.63 2.09

Effective Rt HI log2 titer distance ( t   – 2) +
H1 epidemic size +
N2 distance to vaccine strain

0.69 0.63 0.11

Epidemic Intensity HI log2 titer distance ( t   – 2) +
N2 distance to vaccine strain +
vaccination coverage ( t   – 1)

0.79 0.75 0.07

Subtype Dominance H3 epitope distance ( t   – 2) +
N2 epitope distance ( t   – 1) +
Dominant IAV Subtype ( t   – 1)

0.56 0.48 0.2

1Candidate models were limited to three independent variables and considered all combinations of the top 10 
ranked predictors from conditional inference random forest models (Figure 8).

https://doi.org/10.7554/eLife.91849
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(Bedford et al., 2014; Wilson and Cox, 1990; Wolf et al., 2010; Wu et al., 2010) and forecasting 
models of annual epidemics (Axelsen et al., 2014; Du et al., 2017) that found direct, quantitative 
links between HA antigenic novelty and the number of influenza cases or deaths in a season. Moving 
beyond the paradigm of antigenic clusters, Wolf et al., 2010 and Bedford et al., 2014 demon-
strated that smaller, year- to- year changes in H3 antigenic drift also correlate with seasonal severity 
and incidence (Bedford et al., 2014; Wolf et al., 2010). A more recent study did not detect an asso-
ciation between antigenic drift and city- level epidemic size in Australia (Lam et al., 2020), though 
the authors used a binary indicator to signify seasons with major HA antigenic transitions and did not 
consider smaller, more gradual changes in antigenicity. While Lam and colleagues did not observe 
a consistent effect of antigenic change on epidemic magnitude, they found a negative relation-
ship between the cumulative prior incidence of an antigenic variant and its probability of successful 
epidemic initiation in a city.

We did not observe a clear relationship between H3 receptor binding site (RBS) distance and 
epidemic burden, even though single substitutions at these seven amino acid positions are implicated 
in major antigenic transitions (Koel et al., 2013; Petrova and Russell, 2018). The outperformance 
of the RBS distance metric by a broader set of epitope sites could be attributed to the tempo of 
antigenic cluster changes. A(H3N2) viruses are characterized by both continuous and punctuated 
antigenic evolution, with transitions between antigenic clusters occurring every 2–8 years (Bedford 
et al., 2011; Bedford et al., 2014; Koel et al., 2013; Koelle et al., 2006; Koelle and Rasmussen, 
2015; Shih et al., 2007; Smith et al., 2004; Suzuki, 2008; Wolf et al., 2006). Counting substitutions 
at only a few sites may fail to capture more modest, gradual changes in antigenicity that are on a time 
scale congruent with annual outbreaks. Further, a broader set of epitope sites may better capture the 
epistatic interactions that underpin antigenic change in HA (Kryazhimskiy et al., 2011). Although 
the seven RBS sites were responsible for the majority of antigenic phenotype in Koel and colleagues’ 
experimental study (Koel et al., 2013), their findings do not necessarily contradict studies that found 
broader sets of sites associated with antigenic change. Mutations at other epitope sites may collec-
tively add to the decreased recognition of antibodies or affect viral fitness through alternate mech-
anisms (e.g. compensatory or permissive mutations) (Gong et al., 2013; Koel et al., 2013; Koelle 
et al., 2006; Kryazhimskiy et al., 2011; Myers et al., 2013; Neher et al., 2014; Shih et al., 2007; 
Smith et al., 2004).

A key result from our study is the direct link between NA antigenic drift and A(H3N2) incidence 
patterns. Although HA and NA both contribute to antigenicity (Nelson and Holmes, 2007; Webster 
et al., 1982) and undergo similar rates of positive selection (Bhatt et al., 2011), we expected anti-
genic change in HA to exhibit stronger associations with seasonal incidence, given its immunodom-
inance relative to NA (Altman et  al., 2015). H3 and N2 epitope distance were both moderately 
correlated with epidemic size, peak incidence, and subtype dominance patterns, but, except for 
subtype dominance, H3 epitope distance had higher variable importance rankings in random forest 
models and N2 epitope distance was not retained after post- hoc model selection of top ranked 
random forest features. However, N2 epitope distance but not H3 epitope distance was associated 
with faster epidemic speed and a greater fraction of ILI cases in adults relative to children. Antigenic 
changes in H3 and N2 were independent across the 22 seasons of our study, consistent with previous 
research (Bhatt et al., 2011; Sandbulte et al., 2011; Schulman and Kilbourne, 1969). Thus, the 
similar predictive performance of HA and NA epitope distance for some epidemic metrics does not 
necessarily stem from the coevolution of HA and NA.

HI log2 titer distance was positively correlated with different measures of epidemic impact yet 
underperformed in comparison to H3 and N2 epitope distances. This outcome was surprising given 
that we expected our method for generating titer distances would produce more realistic estimates 
of immune cross- protection between viruses than epitope- based measures. Our computational 
approach for inferring HI phenotype dynamically incorporates newer titer measurements and assigns 
antigenic weight to phylogenetic branches rather than fixed sequence positions (Huddleston et al., 
2020; Neher et al., 2016). In contrast, our method for calculating epitope distance assumes that the 
contributions of specific sites to antigenic drift are constant through time, even though beneficial 
mutations previously observed at these sites are contingent on historical patterns of viral fitness and 
host immunity (Huddleston et al., 2020; Koelle et al., 2006; Neher et al., 2014). HI titer measure-
ments have been more useful than epitope substitutions in predicting future A(H3N2) viral populations 

https://doi.org/10.7554/eLife.91849
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(Huddleston et al., 2020) and vaccine effectiveness (Ndifon et al., 2009), with the caveat that these 
targets are more proximate to viral evolution than epidemic dynamics.

HI titer measurements may be more immunologically relevant than epitope- based measures, yet 
several factors could explain why substitutions at epitope sites outperformed HI titer distances in 
epidemiological predictions. First, epitope distances may capture properties that affect viral fitness 
(and in turn outbreak intensity) but are unrelated to immune escape, such as intrinsic transmissibility, 
ability to replicate, or epistatic interactions. A second set of factors concern methodological issues 
associated with HI assays. The reference anti- sera for HI assays are routinely produced in ferrets 
recovering from their first influenza virus infection. Most humans are infected by different influenza 
virus strains over the course of their lifetimes, and one’s immune history influences the specificity 
of antibodies generated against drifted influenza virus strains (Hensley, 2014; Lee et al., 2019; Li 
et al., 2013; Miller et al., 2013). Thus, human influenza virus antibodies, especially those of adults, 
have more heterogeneous specificities than anti- sera from immunologically naive ferrets (Hensley, 
2014).

A related methodological issue is that HI assays disproportionately measure anti- HA antibodies 
that bind near the receptor binding site and, similar to the RBS distance metric, may capture only a 
partial view of the antigenic change occurring in the HA protein (Gostic et al., 2019; Henry et al., 
2019; Lam et al., 2020; Ranjeva et al., 2019). A recent study of longitudinal serological data found 
that HI titers are a good correlate of protective immunity for children, while time since infection is a 
better predictor of protection for adults (Ranjeva et al., 2019). This outcome is consistent with the 
concept of antigenic seniority, in which an individual’s first exposure to influenza virus during child-
hood leaves an immunological ‘imprint’, and exposure to new strains ‘back boosts’ one’s antibody 
response to strains of the same subtype encountered earlier in life (Cobey and Hensley, 2017; Gostic 
et al., 2019; Zhang et al., 2019). Ranjeva et al.’s study and others suggest that human influenza 
virus antibodies shift focus from the HA head to other more conserved epitopes as individuals age 
(Gostic et al., 2019; Henry et al., 2019). Given that HI assays primarily target epitopes adjacent to 
the RBS, HI assays using ferret or human serological data are not necessarily suitable for detecting 
the broader immune responses of adults. A third explanation for the underperformance of HI titers 
concerns measurement error. Recent A(H3N2) viruses have reduced binding efficiency in HI assays, 
which can skew estimates of immune cross- reactivity between viruses (Zost et  al., 2017). These 
combined factors could obfuscate the relationship between the antigenic phenotypes inferred from 
HI assays and population- level estimates of A(H3N2) incidence.

Novel antigenic variants are expected to have higher infectivity in immune populations, leading 
to earlier epidemics and more rapid geographic spread (Viboud et al., 2006), but few studies have 
quantitatively linked antigenic drift to epidemic timing or geographic synchrony. Previous studies of 
pneumonia and influenza- associated mortality observed greater severity or geographic synchrony 
in seasons with major antigenic transitions (Greene et al., 2006; Wiley et al., 1981). A more recent 
Australian study of lab- confirmed cases also noted greater spatiotemporal synchrony during seasons 
when novel H3 antigenic variants emerged, although their assessment was based on virus typing alone 
(i.e. influenza A or B; Geoghegan et al., 2018). A subsequent Australian study with finer- resolution 
data on subtype incidence and variant circulation determined that more synchronous epidemics were 
not associated with drifted A(H3N2) strains (Lam et al., 2020), and a U.S.-based analysis of ILI data 
also failed to detect a relationship between HA antigenic cluster transitions and geographic synchrony 
(Charu et al., 2017). In our study, the earliest epidemics tended to occur in seasons with transitions 
between H3 antigenic clusters (e.g. the emergence of the FU02 cluster in 2003–2004) or vaccine 
mismatches (e.g. N2 mismatch in 1999–2000, H3 mismatch in 2014–2015; Sandbulte et al., 2011; 
Smith et al., 2004; Xie et al., 2015), but there was not a statistically significant correlation between 
antigenic change and earlier epidemic onsets or peaks. Regarding epidemic speed, the length of 
time from epidemic onset to peak decreased with N2 epitope distance but not H3 epitope distance. 
The relationship between antigenic drift and epidemic timing may be ambiguous because external 
seeding events or climatic factors, such as temperature and absolute humidity, are more important in 
driving influenza seasonality and the onsets of winter epidemics (Bedford et al., 2015; Charu et al., 
2017; Chattopadhyay et al., 2018; Kramer and Shaman, 2019; Lee et al., 2018; Shaman and Kohn, 
2009; Shaman et  al., 2010). Alternatively, the resolution of our epidemiological surveillance data 
(HHS regions) may not be granular enough to detect a signature of antigenic drift in epidemic timing, 
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though studies of city- level influenza dynamics were also unable to identify a clear relationship (Charu 
et al., 2017; Lam et al., 2020).

After exploring individual correlations between evolutionary indicators and annual epidemics, we 
considered the effects of influenza A(H1N1) incidence and B incidence on A(H3N2) virus circulation 
within a season. We detected strong negative associations between A(H1N1) incidence and A(H3N2) 
epidemic size, peak incidence, transmissibility, and excess mortality, consistent with previous animal, 
epidemiological, phylodynamic, and theoretical studies that found evidence for cross- immunity 
between IAV subtypes (Cowling et al., 2010; Epstein, 2006; Ferguson et al., 2003; Gatti et al., 
2022; Goldstein et al., 2011; Sonoguchi et al., 1985). For example, individuals recently infected with 
seasonal influenza A viruses are less likely to become infected during subsequent pandemic waves 
(Cowling et al., 2010; Epstein, 2006; Fox et al., 2017; Laurie et al., 2015; Sridhar et al., 2013), 
and the early circulation of one influenza virus type or subtype is associated with a reduced total 
incidence of the other type/subtypes within a season (Goldstein et al., 2011; Lam et al., 2020). Due 
to the shared evolutionary history of their internal genes (Webster et al., 1992) and in turn greater 
T cell- mediated cross- protective immunity, pre- 2009 seasonal A(H1N1) viruses may impact A(H3N2) 
virus circulation to a greater extent than A(H1N1)pdm09 viruses, which have a unique combination of 
genes that were not identified in animals or humans prior to 2009 (Garten et al., 2009; Smith et al., 
2009). We observed similar relationships between A(H3N2) epidemic metrics and A(H1N1) incidence 
during pre- and post- 2009 pandemic seasons, with slightly stronger correlations observed during 
the pre- 2009 period. However, given the small sample size (12 pre- 2009 seasons and 9 post- 2009 
seasons), we cannot fully answer this question.

In our study, univariate correlations between A(H1N1) and A(H3N2) incidence were more 
pronounced than those observed between A(H3N2) incidence and evolutionary indicators, and 
A(H1N1) epidemic size was the highest ranked feature by random forest models predicting epidemic 
size, peak incidence, and transmissibility (effective  Rt ). Consequently, interference between the two 
influenza A subtypes may be more impactful than viral evolution in determining the size of annual 
A(H3N2) outbreaks. Concerning epidemic timing, we did not detect a relationship between A(H3N2) 
antigenic change and the relative timing of A(H3N2) and A(H1N1) cases; specifically, A(H3N2) inci-
dence did not consistently lead A(H1N1) incidence in seasons with greater H3 or N2 antigenic change. 
Overall, we did not find any indication that influenza B incidence affects A(H3N2) epidemic burden 
or timing, which is not unexpected, given that few T and B cell epitopes are shared between the two 
virus types (Terajima et al., 2013).

Lastly, we used random forest models and multivariable linear regression models to assess the 
relative importance of viral evolution, prior population immunity, co- circulation of other influenza 
viruses, and vaccine- related parameters in predicting regional A(H3N2) epidemic dynamics. We chose 
conditional inference random forest models as our primary method of variable selection because 
several covariates were collinear, relationships between some predictors and target variables were 
nonlinear, and our goal was inferential rather than predictive. We performed leave- one- season- out 
cross- validation to tune each model, but, due to the limited number of seasons in our dataset, we 
were not able to test predictive performance on an independent test set. With the caveat that models 
were likely overfit to historical data, random forest models produced accurate predictions of regional 
epidemic size, peak incidence, and subtype dominance patterns, while predictions of epidemic inten-
sity and transmission rates were less exact. The latter two measures could be more closely tied to 
climatic factors, the timing of influenza case importations from abroad, or mobility patterns (Bedford 
et al., 2015; Charu et al., 2017; Shaman and Kohn, 2009; Shaman et al., 2010) or they may be 
inherently more difficult to predict because their values are more constrained. Random forest models 
tended to underpredict epidemic burden in seasons with major antigenic transitions, particularly the 
SY97 seasons (1998–1999, 1999–2000) and the FU02 season (2003–2004), potentially because anti-
genic jumps of these magnitudes were infrequent during our 22- season study period. An additional 
step of post- hoc model selection demonstrated that models with only three covariates could also 
produce accurate fits to observed epidemiological data.

Our study is subject to several limitations, specifically regarding geographic resolution and data 
availability. First, our analysis is limited to one country with a temperate climate and its findings 
concerning interactions between A(H3N2), A(H1N1), and type B viruses may not be applicable to 
tropical or subtropical countries, which experience sporadic epidemics of all three viruses throughout 
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the year (Yang et al., 2020). Second, our measure of population- level influenza incidence is derived 
from regional CDC outpatient data because those data are publicly available starting with the 1997–
1998 season. State level outpatient data are not available until after the 2009 A(H1N1) pandemic, 
and finer resolution data from electronic health records are accessible in theory but not in the public 
domain. Access to ILI cases aggregated at the state or city level, collected over the course of decades, 
would increase statistical power, and enable us to add more location- specific variables to our analysis, 
such as climatic and environmental factors. A third limitation is that we measured influenza incidence 
by multiplying the rate of influenza- like illness by the percentage of tests positive for influenza, which 
does not completely eliminate the possibility of capturing the activity of other co- circulating respi-
ratory pathogens (Kramer and Shaman, 2019). Surveillance data based on more specific diagnosis 
codes would ensure the exclusion of patients with non- influenza respiratory conditions. Fourth, our 
data on the age distribution of influenza cases are derived from ILI encounters across four broad age 
groups and do not include test positivity status, virus type/subtype, or denominator information. 
Despite the coarseness of these data, we found statistically significant correlations in the expected 
directions between N2 antigenic change and the fraction of cases in children relative to adults. Lastly, 
a serological assay exists for NA, but NA titer measurements are not widely available because the 
assay is labor- intensive and inter- lab variability is high. Thus, we could not test the performance of NA 
antigenic phenotype in predicting epidemic dynamics.

Beginning in early 2020, non- pharmaceutical interventions (NPIs), including lockdowns, school 
closures, physical distancing, and masking, were implemented in the United States and globally to slow 
the spread of severe acute respiratory syndrome coronavirus 2 (SARS- CoV- 2), the virus responsible for 
the COVID- 19 pandemic. These mitigation measures disrupted the transmission of seasonal influenza 
viruses and other directly- transmitted respiratory viruses throughout 2020 and 2021 (Cowling et al., 
2020; Huang et al., 2021; Olsen et al., 2020; Olsen et al., 2021; Qi et al., 2021; Tempia et al., 
2021), and population immunity to influenza is expected to have decreased substantially during this 
period of low circulation (Ali et al., 2022; Baker et al., 2020). COVID- 19 NPIs relaxed during 2021 
and 2022 and co- circulation of A(H3N2) and A(H1N1)pdm09 viruses in the United States resumed 
during the 2022–2023 influenza season. Our study concludes with the 2018–2019 season, and thus it 
is unclear whether our modeling approach would be useful in projecting seasonal burden during the 
post- pandemic period, without an additional component to account for COVID- 19- related perturba-
tions to influenza transmission. Further studies will need to determine whether ecological interactions 
between influenza viruses have changed or if the effects of viral evolution and subtype interference on 
seasonal outbreaks are different in the post- pandemic period.

In conclusion, relationships between A(H3N2) antigenic drift, epidemic impact, and age dynamics 
are moderate, with genetic distances based on broad sets of H3 and N2 epitope sites having greater 
predictive power than serology- based antigenic distances for the timeframe analyzed. Influenza 
epidemiological patterns are consistent with increased population susceptibility in seasons with high 
antigenic novelty, and our study is the first to link NA antigenic drift to epidemic burden, timing, 
and the age distribution of cases. It is well established that anti- HA and anti- NA antibodies are inde-
pendent correlates of immunity (Couch et al., 2013; Gaglani et al., 2016; Gill and Murphy, 1977; 
Hope- Simpson, 1971; Memoli et al., 2016; Monto et al., 2015; Murphy et al., 1972), and the influ-
enza research community has advocated for NA- based vaccines (Eichelberger et al., 2018; Krammer 
et al., 2018). The connection between NA drift and seasonal incidence further highlights the impor-
tance of monitoring evolution in both HA and NA to inform vaccine strain selection and epidemic 
forecasting efforts. Although antigenic change in both HA and NA was correlated with epidemic 
dynamics, ecological interactions between influenza A subtypes appear to be more influential than 
viral evolution in determining the intensity of annual A(H3N2) epidemics. The aim of our study was to 
retrospectively assess the potential drivers of annual A(H3N2) epidemics, yet we cautiously suggest 
that one could project the size or intensity of future epidemics based on sequence data and A(H1N1)
pdm09 incidence alone (Goldstein et al., 2011; Wolf et al., 2010).
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