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Abstract

Chromatin immunoprecipitation followed by massively parallel, high throughput sequencing (ChIP-seq) is the method of choice for genome-
wide identification of DNA segments bound by specific transcription factors or in chromatin with particular histone modifications. However,
the quality of ChIP-seq datasets varies widely, with a substantial fraction being of intermediate to poor quality. Thus, it is important to discern
and control the factors that contribute to variation in ChIP-seq. In this study, we focused on sonication, a user-controlled variable, to produce
sheared chromatin. We systematically varied the amount of shearing of fixed chromatin from a mouse erythroid cell line, carefully measuring
the distribution of resultant fragment lengths prior to ChIP-seq. This systematic study was complemented with a retrospective analysis of addi-
tional experiments. We found that the level of sonication had a pronounced impact on the quality of ChIP-seq signals. Over-sonication consis-
tently reduced quality, while the impact of under-sonication differed among transcription factors, with no impact on sites bound by CTCF but
frequently leading to the loss of sites occupied by TAL1 or bound by POL2. The bound sites not observed in low-quality datasets were inferred
to be a mix of both direct and indirect binding. We leveraged these findings to produce a set of CTCF ChIP-seq datasets in rare, primary he-
matopoietic progenitor cells. Our observation that the amount of chromatin sonication is a key variable in success of ChIP-seq experiments
indicates that monitoring the level of sonication can improve ChIP-seq quality and reproducibility and facilitate ChIP-seq in rare cell types.

Keywords: ChIP-seq; chromatin immunoprecipitation; reproducibility; sonication; genomics; hematopoiesis; hematopoietic progenitors;
CTCF; TAL1

Introduction
Chromatin immunoprecipitation followed by massively parallel,
high throughput sequencing (ChIP-seq) has been used exten-
sively to produce thousands of genome-wide maps of DNA seg-
ments bound by specific transcription factors (TFs) or in
chromatin with particular histone modifications. However, these
ChIP-seq datasets vary widely in quality. A uniform analysis of
vertebrate TF ChIP-seq datasets in the Gene Expression Omnibus
(GEO) repository (RRID: SCR_005012) found that a substantial
fraction were of intermediate to poor quality, and many of the
control datasets (e.g., IgG and mock immunoprecipitations) dis-
played enrichments similar to the experimental datasets, indicat-
ing that many ChIP-seq results are not substantially different
from the negative controls (Marinov et al. 2014). An independent
assessment of reproducibility in ENCODE ChIP-seq datasets

found that while almost half the datasets had good agreement in
peak calls across replicates, almost one-third (18/57) were dissim-
ilar between replicates (Devailly et al. 2015). The variation in qual-
ity of ChIP-seq datasets is well-known, and efforts have been
made to communicate the quality to potential users. A set of
quality metrics were defined (Landt et al. 2012), and these are
used to evaluate datasets within ENCODE and frequently in indi-
vidual labs. Application of these and additional considerations
has led to the introduction of audit “flags” at the ENCODE data
portal (RRID: SCR_015482; Sloan et al. 2016; Davis et al. 2018). For
the 7547 ChIP-seq datasets across four species in ENCODE (as of
July 14, 2020), about 300 red flags and about 3000 orange flags
were given (multiple flags can be assigned to one dataset), illus-
trating a serious, but not crippling, issue. The variable quality in
ChIP-seq datasets, documented in these studies, leads to
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increased costs due to failed experiments, and it can lead to mis-
interpretation of data when the failures or very low quality of
datasets are not recognized. Thus, it is important to discern and
control the factors that contribute to variation in ChIP-seq.

Some of the factors that affect quality and reproducibility of
ChIP-seq data are largely outside the control of the experimental-
ist. The major limiting factor in conventional ChIP-seq is the
availability of highly specific antibodies. While many manufac-
turers make claims of “ChIP-seq validated” antibodies, many
antibodies do not produce high-quality ChIP-seq data, resulting
in a high failure rate using commercially available antibodies
against a diverse spectrum of TFs (Savic et al. 2015).

Additional variables that influence the success of a ChIP-seq
experiment include the abundance of the target proteins and
their accessibility in chromatin to antibodies. Assays of modified
histones in chromatin are often highly sensitive and reproduc-
ible, likely due to the availability of good quality antibodies as
well as the abundance of histones and their tight association
with chromatin. By comparison, the abundance of sequence-spe-
cific TFs varies among factors as well as across cell types.
Furthermore, the extent of interaction with chromatin varies
depending on its binding site and whether or not it binds DNA di-
rectly or via other DNA-associated factors.

Variables such as antibody quality or antigen abundance and
accessibility can sometimes be controlled, but only by dedicated
effort focused on the TF or epigenetic feature of interest. Other
variables that are part of the preparative procedure, such as spe-
cific chromatin fixation and sonication conditions, are controlled
by the experimentalist, and they can be optimized to improve
sensitivity and reproducibility of chromatin immunoprecipitation
(Khoja et al. 2019). Previous studies of chromatin size in ChIP-seq
have indicated a recommended size range between 100 and
300 bp (Landt et al. 2012; Browne et al. 2014), while other work sug-
gests a wider size range of 100 to 600 bp (Diagenode 2012). Thus,
the optimal size for ChIP-seq currently is not clear, and a conve-
nient means for achieving an optimal size range has not been de-
scribed.

In this study, we evaluated how the extent of chromatin soni-
cation affects ChIP-seq quality and success rate for two different
sequence-specific TFs, CTCF and TAL1, and for POL2, in mouse
erythroid cells. We further develop a case that the distribution of
sizes of chromatin fragments after sonication is a critical and
controllable aspect of ChIP-seq experiments. Finally, we lever-
aged these findings to produce a set of CTCF ChIP-seq datasets in
primary hematopoietic progenitor cells, including several rare
cell types such as hematopoietic stem and progenitor cells and
lineage-restricted progenitor populations.

Materials and methods
Cell culture methods
G1E-ER4 cells were grown in IMDM media þ 15% FBS, kit ligand,
and erythropoietin in a standard tissue culture incubator at 37�C
with 5% CO2 as described (Weiss et al. 1997). To induce erythroid
maturation, G1E-ER4 cells were treated with 10�8 mol/L b-estra-
diol for 24 hours (G1E-ER4þE2). Cells were harvested by centrifu-
gation at 500 � g for 5 minutes at 4�C and washed once in 1�PBS.

Isolation of hematopoietic progenitor cells
All primary hematopoietic cell populations were enriched from
5- to 8-weeks-old C57BL6 male mice. LSK, CMP, MEP, GMP, CFU-E,
ERY, CFU-MK, and MK populations were harvested and isolated

from bone marrow (BM) using the following cell isolation markers
as described (Heuston et al. 2018, Supplementary Table S4).

LSK: CD4�, CD8�, IL7Ra�, CD11b�, Ly6g/c�, CD45R�, Ter119�,
cKitþ, Sca1þ

CMP: CD4�, CD8�, IL7Ra�, CD11b�, Ly6g/c�, CD45R�, Ter119�,
cKitþ, Sca1�, CD34þ, CD16/32�

GMP: CD4�, CD8�, IL7Ra�, CD11b�, Ly6g/c�, CD45R�, Ter119�,
cKitþ, Sca1�, CD34þ, CD16/32þ

MEP: CD4�, CD8�, IL7Ra�, CD11b�, Ly6g/c�, CD45R�, Ter119�,
cKitþ, Sca1�, CD34�, CD16/32�

CFUE: CD4�, CD8�, IL7Ra�, CD11b�, Ly6g/c�, CD45R�,
Ter119þ, CD44þ, FSCHigh

ERY: CD4�, CD8�, IL7Ra�, CD11b�, Ly6g/c�, CD45R�, Ter119þ,
CD44þ, FSCLow

CFUMk: CD4�, CD8�, IL7Ra�, CD11b�, Ly6g/c�, CD45R�,
Ter119�, Sca1�, CD41þ, CD61þ, cKitþ

MK: CD4�, CD8�, IL7Ra�, CD11b�, Ly6g/c�, CD45R�, Ter119�,
Sca1�, CD41þ, CD61þ, cKit�

Chromatin immunoprecipitation (ChIP)
For CTCF or TAL1 in G1E-ER4þE2 cells, either 1, 5, 20, or 50 M cells
in 1�PBS were crosslinked for 10 minutes by adding formalde-
hyde at a final concentration of 0.4%, and glycine was added at a
final concentration of 125 mM to quench cross-linking. Cells were
washed in 1�PBS and stored at �80�C until needed. For POL2
datasets, in either G1E-ER4 (YFP-MD) or G1E-ER4þE2 (YFP-MD)
cells, chromatin immunoprecipitation was performed as de-
scribed (Hsiung et al. 2016).

For CTCF in LSK, CMP, MEP, GMP, CFUE, ERY, CFUMk, MK, cells
were fixed in 0.4% formaldehyde (16% methanol-free, Thermo
Scientific) for 15 minutes before quenching in 125 mM glycine for
5 minutes. Cells were washed in 2� PIC (Roche mini-tabs, 1 tab in
5 ml ¼ 2�) and stored at �80�C until needed.

Cells were then lysed (10 mM Tris-HCl, pH 8.0, 10 nM NaCl,
0.2% NP40) for 10 minutes on ice, washed once in 1� PBS, fol-
lowed by nuclear lysis (50 mM Tris-HCl 8.0, 10 mM EDTA, 1% SDS)
for 10 minutes on ice. Chromatin was then diluted further with
Immunoprecipitation Buffer (20 mM Tris-HCl, pH 8.0, 2 mM
EDTA, 150 mM NaCl, 1% Triton X-100, 0.01% SDS) and a 1�
Protease Inhibitor Cocktail set V, EDTA-free (Calibiochem, La
Jolla, CA, USA). A Diagenode Bioruptor Plus 300 (Diagenode Cat#
B0102001) was used to shear samples in cycles of 30 seconds on,
30 seconds off sonication at high output power at 4�C for the de-
sired number of cycles. For optimization of sonication, see the
protocol detailed in Supplementary Figure S1.

Sonicated chromatin was pre-cleared overnight at 4�C with
8 lg of normal goat IgG (Santa Cruz Biotechnology, Santa Cruz,
CA; sc2028) for TAL1 or 8 lg of normal rabbit IgG (sc2027) for
CTCF. Separately, 5 lg of TAL1 antibody (Santa Cruz
Biotechnology, sc12984x, lot B2511) or 5 ll of CTCF antiserum
(MilliporeSigma, 07-729) were pre-bound to protein G agarose
beads overnight at 4�C. For binding, pre-cleared chromatin was
added to the antibody: bead complex and incubated with rotation
at 4�C for 4 hours. Two hundred microliters of pre-cleared chro-
matin was saved for use as input. After binding, the beads were
washed with Wash Buffer I (20 mM Tris-HCl, pH 8.0, 2 mM EDTA,
50 mM NaCl, 1% Triton X-100, 0.1% SDS), High Salt Wash Buffer
(20 mM Tris-HCl, pH 8.0, 2 mM EDTA, 500 mM NaCl, 1% Triton X-
100, 0.1% SDS), Wash Buffer II (10 mM Tris-HCl, pH 8.0, 1 mM
EDTA, 250 mM LiCl, 1% NP-40, 1% deoxycholate), and 1�TE. DNA:
protein complexes were then eluted from beads with Elution
Buffer (1% SDS, 100 mM NaHCO3). Reverse crosslinking of immu-
noprecipitated chromatin was accomplished by the addition of
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NaCl to ChIP and input samples, followed by incubation over-
night at 65�C with 1 lg RNase A. To remove proteins, each sample
was treated with 6 lg Proteinase K for 2 hours at 45�C. Finally,
immunoprecipitated DNA was then purified using the Qiagen
PCR Purification Kit (Qiagen, Germantown, MD, USA).

Illumina library preparation for ChIP-Seq
All samples, including inputs, were processed for library con-
struction for Illumina sequencing using Illumina’s TruSeq ChIP-
seq Sample Preparation Kit according to manufacturer’s instruc-
tions. The DNA libraries were sequenced on the HiSeq 2000 or
NextSeq 500, as indicated (Supplementary Tables S1 and S3), us-
ing Illumina’s kits and reagents as appropriate.

ChIP-seq data processing
The sequencing reads were mapped to mouse genome assembly
mm10 (CTCF and TAL1) or mm9 (POL2) using Bowtie (0.12.8), and
then filtered to remove chrM, unplaced chromosomes, and
unmapped reads. The alignment was converted to bam format
using Samtools 0.1.8., and MACS (1.3.7.1) was used to generate
the wiggle tracks and call peaks. UCSC’s wigToBigWig program
was used to convert the wiggle file to a bigWig.

Motif analysis of optimal peaks
Optimal IDR thresholded (high confidence) peak bed files were
downloaded from the ENCODE portal (RRID: SCR_015482) (Sloan
et al. 2016; Davis et al. 2018) for TAL1 (https://www.encodeproject.
org/files/ENCFF972VNL/; last accessed April 6, 2021) and CTCF
(https://www.encodeproject.org/files/ENCFF929RJU/; last
accessed April 6, 2021). All peak bed files (both high confidence
and our datasets) were converted to fasta files using bedtools
(2.27.1) getfasta command. Each peak in the fasta files were
screened for CTCF and TAL1 motifs (HOCOMOCOv11) (RRID:
SCR_005409) using FIMO, from the MEME suite (5.2.0) (RRID:
SCR_001783), to predict peaks with that motif (P< 0.0001). A com-
bination of custom bash scripts and the bedtools intersect com-
mand was used to extract and quantitate peaks with and without
motifs (Supplemental File S2). Visualization of the bigWigs of the
retrospective datasets over optimal peaks regions was done using
deepTools (3.5.0) (RRID: SCR_016366) computeMatrix, bamCoverage,
plotHeatmap, and plotProfile.

Selection criteria for retrospective datasets
The inclusion criteria for CTCF and TAL1 datasets were as fol-
lows: (1) ChIP-seq experiments were performed in the same
mouse erythroid cell line, G1E-ER4þE2, (2) the factor immunopre-
cipitated was either CTCF or TAL1, and (3) we had available unen-
riched input chromatin corresponding to the ChIP-seq library so
that we could measure the average length of the chromatin used
for the corresponding ChIP. A total of 17 retrospective datasets
(eight CTCF, nine TAL1) with independent chromatin sonications
met these criteria. These ChIP-seq experiments were conducted
over a variety of conditions, including different fixation methods.
For POL2, we used a series of 25 published (Hsiung et al. 2016) and
unpublished POL2 ChIP-seq datasets that includes three to four
replicates per condition. Because these POL2 ChIP-seq experi-
ments were part of a time-course experiment in which G1E-
ER4þE2 cells were arrested in prometaphase by nocodazole treat-
ment, followed by release into nocodazole-free medium for 40–
360 minutes (Hsiung et al. 2016), and thus display little to no POL2
binding at the early time points, we excluded datasets that were
less than 60 minutes after nocodazole release, and only com-
pared replicates within each time point for our subjective

assessment of dataset quality. Metadata for all retrospective
datasets can be found in Supplementary Table S1.

Data availability
Supplemental File S1 contains detailed descriptions of all supple-
mental files. Supplemental File S2 contains code used to analyze
peaks and motifs. Supplementary Table S1 contains a list of data-
sets and metadata for all ChIP-seq samples. Supplementary
Table S2 contains data on peaks and motifs statistics.
Supplementary Table S3 contains a list of datasets and accompa-
nying metadata for all input samples. Supplementary Table S4
contains isolation/sort markers, dates of collection, and cell
numbers for hematopoietic progenitors. Supplemental Material
available at figshare: https://doi.org/10.25387/g3.14237849. Data
are deposited in the NCBI Gene Expression Omnibus (GEO;
https://www.ncbi.nlm.nih.gov/geo/; last accessed April 6, 2021;
RRID: SCR_005012), GEO accession number GSE159503. A custom
UCSC genome session for the datasets in Figures 1 and 7 can be
viewed at: https://main.genome-browser.bx.psu.edu/cgi-bin/
hgTracks?hgS_doOtherUser¼submit&hgS_otherUserName¼
cak142&hgS_otherUserSessionName¼Keller_sonication_mm10;
last accessed April 6, 2021.

Results
To evaluate systematically how chromatin sonication affects
ChIP-seq quality and success rate, we used the Diagenode
Biorupter 300 to shear fixed chromatin from batches of 50 and
20 M mouse erythroid G1E-ER4þE2 cells to varying degrees
(Supplementary Figure S1), assayed the extent of shearing using
the Agilent Bioanalzyer 2100, and then subjected the chromatin
to immunoprecipitation and sequencing using antibodies against
either CTCF or TAL1 (Figure 1, Supplementary Table S1), for
which binding sites are well known.

The resulting ChIP-seq patterns revealed a striking depen-
dence on numbers of sonication cycles. While many CTCF ChIP-
seq samples (Figure 1, A and B) showed the expected peaks at the
illustrative locus Gfi1b, the sample from 20 M cells sonicated for
15 cycles showed low signal-to-noise (Figure 1B). Good quality
TAL1 ChIP-seq data were obtained for most of the samples, but
the pattern of failures was more complex, with poor results
obtained at low cycle numbers for 50 M cells and at higher cycle
numbers for 20 M cells (Figure 1, C and D).

We hypothesized that the lower quality datasets may result
from the impact of the different cell numbers and sonication con-
ditions on the resulting sizes of the chromatin. To investigate the
relationship between sheared chromatin length and ChIP-seq
success, we used the Bioanalyzer results to determine the aver-
age size of unenriched chromatin between 100 and 500 bp for
each sample (Figure 1, Supplementary Table S1). This range was
selected in order to standardize the measurement and avoid
skewing the average by including large molecular weight hetero-
chromatin. Further, fragments outside of this size range are less
likely to be sequenced when using the Illumina platform. We
stress that the average chromatin fragment sizes measured in
this manner are not the same as the average library size of the
completed library or the library insert sizes deduced from the
patterns of mapped reads after sequencing. Those library sizes
reflect the distribution of DNA fragments that were selected dur-
ing the library preparation protocol; they are not the average size
of the pool of unenriched chromatin. In other words, the DNA
fragments measured by sequencing library size are the subset of

C. A. Keller et al. | 3

https://www.encodeproject.org/files/ENCFF972VNL/
https://www.encodeproject.org/files/ENCFF972VNL/
https://www.encodeproject.org/files/ENCFF929RJU/
https://www.encodeproject.org/files/ENCFF929RJU/
https://doi.org/10.25387/g3.14237849
https://www.ncbi.nlm.nih.gov/geo/
https://main.genome-browser.bx.psu.edu/cgi-bin/hgTracks?hgS_doOtherUser=submit&hx0026;hgS_otherUserName=cak142&hx0026;hgS_otherUserSessionName=Keller_sonication_mm10
https://main.genome-browser.bx.psu.edu/cgi-bin/hgTracks?hgS_doOtherUser=submit&hx0026;hgS_otherUserName=cak142&hx0026;hgS_otherUserSessionName=Keller_sonication_mm10
https://main.genome-browser.bx.psu.edu/cgi-bin/hgTracks?hgS_doOtherUser=submit&hx0026;hgS_otherUserName=cak142&hx0026;hgS_otherUserSessionName=Keller_sonication_mm10
https://main.genome-browser.bx.psu.edu/cgi-bin/hgTracks?hgS_doOtherUser=submit&hx0026;hgS_otherUserName=cak142&hx0026;hgS_otherUserSessionName=Keller_sonication_mm10
https://main.genome-browser.bx.psu.edu/cgi-bin/hgTracks?hgS_doOtherUser=submit&hx0026;hgS_otherUserName=cak142&hx0026;hgS_otherUserSessionName=Keller_sonication_mm10
https://main.genome-browser.bx.psu.edu/cgi-bin/hgTracks?hgS_doOtherUser=submit&hx0026;hgS_otherUserName=cak142&hx0026;hgS_otherUserSessionName=Keller_sonication_mm10
https://main.genome-browser.bx.psu.edu/cgi-bin/hgTracks?hgS_doOtherUser=submit&hx0026;hgS_otherUserName=cak142&hx0026;hgS_otherUserSessionName=Keller_sonication_mm10
https://main.genome-browser.bx.psu.edu/cgi-bin/hgTracks?hgS_doOtherUser=submit&hx0026;hgS_otherUserName=cak142&hx0026;hgS_otherUserSessionName=Keller_sonication_mm10


immunoprecipitated chromatin that are most favorable for se-
quencing, whereas the measurements used in our study are
those of the unenriched chromatin input for immunoprecipita-
tion, which are controlled by the experimentalist.

We found that, as expected, the chromatin size decreased ex-
ponentially relative to the numbers of cycles of sonication that
were used for generating both the CTCF and TAL1 ChIP-seq data-
sets (Figure 2A). The number of cycles required to reach a given
average chromatin size range depended on the number of cells in
the starting sample, with consistently more cycles of sonication

needed to break chromatin to a given size when more cells are
being processed. One would also expect sonication behavior to
vary with different cell types and fixation methods, so in practice,
the number of cycles to obtain a particular range of chromatin
needs to be determined empirically. A general procedure for de-
termining the optimal number of cycles to obtain a good frag-
ment size range is outlined in Supplementary Figure S1.

We then tested the hypothesized impact of chromatin size on
the success rate of ChIP-seq in several ways. First, we categorized
the success or failure of each ChIP-seq experiment by inspection

Figure 1 Bioanalyzer size distribution profiles and ChIP-seq signal tracks at the Gfi1b locus (chr2: 28,581,747-28,660,175). Bioanalzyer tracings (gray)
show the size distribution profiles of the unenriched chromatin length. Black boxes overlaying the tracings denote the 100–500 bp region used to
measure the average chromatin length (number in the box). Shaded areas in the signal tracks are also shown at 10�magnification to the right of the
signal track, followed by the number of peaks observed genome-wide and the Fraction of Reads in Peaks as a percentage (% FRiP). The assessment
(Assess.) is P, pass; LP, low pass; F, fail. (A) CTCF 50 M cells, (B) CTCF 20 M cells, (C) TAL1 50 M cells, and (D) TAL1 20 M cells.
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of the signal tracks in loci for which the CTCF and TAL1 patterns
have been studied extensively by ChIP-seq and genetic experi-
ments (Wilson et al. 2010, 2016; Dogan et al. 2015; Xiang et al.
2020). As illustrated for the Gfi1b locus (Figure 1, A–D), datasets
with good signal-to-noise ratios and concordance with prior
knowledge were classified as “Pass,” those with some peaks pre-
sent but missing others were classified as “Low pass,” and those
with almost no peaks were classified as “Fail” (Figure 1, A–D).
These subjective inspections were consistent with the objectively
determined numbers of peaks called by MACS in each sample,
with the experiments assessed as “Pass” having more peaks
(Figure 1, A–D, Supplementary Table S1, Materials and Methods).

We then examined the relationship between the subjective
success calls and the input chromatin size, and found that the
successful ChIP-seq experiments all came from sheared chroma-
tin whose size was within a fairly defined range (about 190 to
290 bp; Figure 2B). Samples for which the ChIP-seq failed or mar-
ginally passed tended to have chromatin sizes outside this range.
These results support our hypothesis and indicate that chroma-
tin size may be related to success frequency of ChIP-seq.

We then examined objective quality metrics of each ChIP-seq
experiment, starting with the relative strand correlation (RSC) val-
ues, which are independent of peak calling (Landt et al. 2012). The
RSC metric is based on the observation that, in good quality ChIP-
seq experiments, mapped reads accumulate on the forward and
reverse strands centered around the binding site and separated by
a distance that depends on the fragment length distribution. After
computing the cross-correlation of read mapping density on each
strand as a function of a shifting distance, the RSC value is deter-
mined as the ratio of the cross-correlations at the peak inferred to
be related to the fragment length and at a peak representing the
read length. The ENCODE standards considered RSC values above
0.8 as indicative of a successful ChIP-seq (Landt et al. 2012). In our
datasets, the samples with ChIP-seq patterns that passed our sub-
jective visual inspection tended to have RSC values within a de-
fined range (between 1.5 and 2.5) while lower quality datasets
tended to have RSC values outside of this range (Figure 2C).

We then examined the Fraction of Reads in Peaks (FRiP)
scores, which are dependent on peak calling, for each of our data-
sets. The FRiP score is determined by calculating the fraction of
all mapped reads that fall into peak regions identified by a peak-
calling algorithm such as MACS (Landt et al. 2012). Even in suc-
cessful ChIP-seq experiments, only a minority of the sequencing
reads map to enriched genomic regions that represent occupied
sites while the remainder of the reads represent background or
noise, and thus, FRiP is considered to be a useful, straightforward
metric for the ChIP-seq success. In our study, the FRiP values
aligned with our initial assessment of data quality such that all
five of our datasets with reduced signal strength had lower FRiP
scores ranging from 0 to 0.9%, thus suggesting a sub-par or failed
immunoprecipitation (Figure 2D). Conversely, all of our other
study datasets had higher FRiP scores (�1%), consistent with the
1% threshold in the ENCODE guidelines (Landt et al. 2012) and in-
dicative of successful immunoprecipitation. By contrast, other
quality metrics we tested (normalized strand coefficient, Q-tag)
did not consistently distinguish between successful and unsuc-
cessful immunoprecipitation (data not shown).

As a further test of our hypothesis that chromatin size is one
determinant of ChIP-seq quality, we examined whether these ob-
jective measures of quality were also related to chromatin size.
For these ChIP-seq samples, the RSC score was found to be
strongly negatively associated with chromatin size (Figure 2E),
and the samples at both the low and high extremes of the sizes

were failures (F) or low passes (LP). The FRiP scores were also re-
lated to input chromatin size, with the scores for CTCF ChIP-seq
datasets increasing with fragment length (Figure 2F). The scores
for TAL1 ChIP-seq presented a more complex pattern, such that
the datasets with low FRiP scores also had the smallest (<180 bp)
and largest (>250 bp) average chromatin length (Figure 2F). As
with the RSC assessment, the datasets at the extremes of the
fragment size distribution tended to have FRiP scores indicative
of poor quality. Overall, these analyses implicate the chromatin
fragment size distribution (summarized as the mean) as an im-
portant determinant of success of a ChIP-seq experiment, and
suggested the possibility that chromatin length may have some
predictive value in determining ChIP-seq success.

Since FRiP is sensitive to the parameters used for peak calling,
and the differences in the number of peaks called for each dataset
may affect the FRiP score for the datasets, we then investigated
the impact of using one high confidence, reference peak set to
compute FRiP scores for the datasets. Use of the same set of peaks
across all datasets potentially could provide a more direct compar-
ison of enrichment between datasets, but it also requires counting
of reads mapping to some regions not called as peaks in a particu-
lar dataset. No ChIP-seq datasets are true gold-standard reference
sets, so we chose objectively defined reference sets based on repro-
ducibility. Specifically, we chose to use “optimal” IDR thresholded
peak sets from ENCODE as proxies for high confidence peak sets
for both CTCF (28,636 peaks) and TAL1 (3,334 peaks) in G1E-
ER4þE2 cells. A high percentage of called CTCF peaks (average of
97%) in our datasets overlapped with the high confidence peaks
(CTCF overlapped-hc; Supplementary Figure S2A, Table S2),
whereas a smaller fraction of called TAL1 peaks in the pass and
low-pass datasets overlapped with the high-confidence set, rang-
ing from 23 to 51% (mean of 41%) (TAL1 overlapped-hc;
Supplementary Figure S2B, Table S2). We then computed the frac-
tion of reads that are in the overlapped-hc peak sets for CTCF and
TAL1 for each of the datasets, generating a variant of the FRiP
score (FRiP-hc) (Supplementary Figure S2, C and D). As one might
expect, the FRiP-hc scores were lower than the FRiP scores for the
higher quality ChIP-seq results, likely reflecting the smaller num-
ber of peaks in the overlapped-hc sets, while the lower quality
ChIP-seq results showed an increase in FRiP-hc relative to FRiP,
perhaps because of the inclusion of reads in peaks not called in
those datasets (Supplementary Figure S2, E and F). Importantly,
even with this reduced range of values, the FRiP-hc scores are con-
sistently higher for the subjectively assessed “pass” datasets than
for the “low-pass” or “failed” sets. Thus, the observation of lower
quality or failed datasets having lower FRiP-like scores than higher
quality datasets is robust to the choice of peak sets used.

Motif analysis
Having shown that sonication and the resulting distribution of
chromatin fragment sizes are important variables in ChIP-seq
experiments, we considered what aspects of ChIP-seq data and
their interpretation were sensitive to variation in sonication con-
ditions. As just presented, the signal-to-noise ratio was heavily
influenced, leading to lower FRiP scores in the poor-quality data-
sets. Also, the number of peaks was substantially reduced in low
quality and poor datasets. We then investigated the impact of
sonication variation on inferences of direct or indirect binding.
The TF-bound sites deduced from ChIP-seq experiments are a
mix of both direct binding to DNA with binding site motif and in-
direct binding to another DNA-bound protein, and either or both
types of binding could be reduced in the lower quality datasets.
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We assessed the contributions of direct and indirect binding to
the peak sets in our experiments by using the presence of a sig-
nificant match to a binding site motif in the peak region as the in-
dicator of direct binding. Using the program FIMO (5.2.0) (RRID:
SCR_001783), we scanned the DNA sequences of the called peaks
in our datasets for significant (P< 0.0001) matches to the CTCF
and TAL1 binding site motifs recorded in HOCOMOCO (v11)
(RRID: SCR_005409) (Supplementary Table S2). Approximately
97% of called CTCF peaks in each dataset contained the consen-
sus binding site motif, with little variation among the datasets
despite differences in the total numbers of peaks and FRiP scores
(Figure 3A). Similarly, CTCF peaks that overlapped the high confi-
dence set also had a very high frequency of motif presence (mean
of 98%. range ¼ 97–99%, P< 0.0001, Figure 3A). Thus, we infer
that almost all the CTCF peaks reflect direct binding, even for the
low-pass dataset. Peaks lost in the lower quality dataset predomi-
nantly are inferred to result from direct binding.

In contrast, slightly over half of TAL1 peaks (mean of 58%,
range ¼ 53� 61%; P< 0.0001) contained a significant match to the
binding site motif in all the successful (pass and low pass) and
high confidence TAL1 datasets (Figure 3B). This lower proportion
of direct binding for TAL1 (compared to CTCF) is expected for this
TF, which is known to bind in association with other proteins at

many locations (Wu et al. 2014). Importantly, the failed TAL1
ChIP-seq experiments showed little to no motif enrichment, indi-
cating that the peaks called in these low-quality datasets reflect
indirect binding or false positives. When the motif analysis was
confined to the peaks that overlapped the high confidence TAL1
peaks, a larger proportion contained a motif match (mean of
87%, range ¼ 82–100%; P< 0.0001; Figure 3B), suggesting that the
subset of called peaks overlapping high confidence peaks was
enriched for direct binding. Despite the rarity of a motif match in
the small numbers of peaks in the failed TAL1 ChIP-seq experi-
ments, the very small number of peaks in those sets that overlap
the high confidence set actually do contain a match to the bind-
ing site motif. These results indicate that for TAL1 ChIP-seq,
peaks inferred to result from both direct and indirect binding
were lost in the lower quality and failed experiments, but a small
number of direct binding peaks were retained.

We then performed a metapeak analysis to examine at higher
granularity how the ChIP-seq read distribution at peak sites
changed as a function of sonication and chromatin size. For con-
sistency, we computed the numbers of mapped reads across the
DNA intervals containing high confidence peaks for all experi-
ments, regardless of whether a peak was called in each experi-
ment. In the CTCF datasets, the motif-containing peaks

Figure 2 Effect of sonication cycles on chromatin length, and assessment of ChIP-seq success as related to subjective and objective quality metrics. (A)
Average chromatin length versus number of sonication cycles for CTCF and TAL1, circles ¼ 50 M cells, triangles ¼ 20 M cells. (B) Average chromatin
length classified by subjective assessment, (C) RSC scores classified by subjective assessment. (D) FRiP scores (as percentage) classified by subjective
assessment. (E) RSC versus chromatin size for CTCF and TAL1. (F) FRiP (as percentage) versus average chromatin size for CTCF and TAL1. blue, CTCF;
orange, TAL1; P, pass; LP, low pass; F, fail. Blue and orange horizontal lines in each category in panels (B) through (D) represent the mean. Gray dotted
lines in panels (D) and (F) indicate the commonly used 1% threshold for FRiP.

6 | G3, 2021, Vol. 11, No. 6



presented a stronger signal compared to those that did not con-

tain a significant motif match, and the signal in both types of

peaks was reduced in the low pass dataset (Figure 4A). In con-

trast, the signal intensities and positional distributions are simi-

lar for the TAL1 peaks in both the motif-containing class and the

motif-lacking class (Figure 4B), again leading to the inference that

TAL1 binds directly or indirectly at roughly equivalent frequen-

cies. The signal intensities were reduced for both classes of TAL1

binding in the low-pass datasets, and they were almost undetect-

able for both classes in the failed datasets.

Both types of analyses indicate that sonication conditions that

produced lower quality datasets reduced the ability to detect

both direct and indirect binding for both TFs. The failed experi-

ments detected few peaks, but even in these cases, a low-level ac-

cumulation of reads was detected at the positions of high

confidence peaks.

Retrospective analysis
To examine whether the relationship between average fragment

size and success rate of ChIP-seq held for other samples, we did a

Figure 3 Peaks and overlapped-hc peaks, split by the presence or absence of a significant match to a binding site motif (P< 0.0001). High confidence
peaks (hc) included for reference. Consensus binding sites for CTCF and TAL1 motifs maintained by HOCOMOCO (v11) shown on the right. (A) CTCF. (B)
TAL1. Blue, CTCF; green, CTCF overlapped-hc peaks, orange, TAL1 peaks; brown, TAL1 overlapped-hc peaks.
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retrospective analysis of 17 additional ChIP-seq datasets (eight
for CTCF and nine for TAL1) generated in our laboratory. These
ChIP-seq experiments were conducted over a variety of condi-
tions, including different fixation methods that confounded our

assessment of quality, and they provided an opportunity to deter-
mine whether a robust relationship between chromatin size and
quality could be detected. After assessing their quality by subjec-
tive inspection, we observed, as before, that very low average

Figure 4 Metapeak analysis on the high confidence set of peaks for (A) CTCF, and (B) TAL1 datasets. Each peak was classified by the presence or absence
of a significant match to the binding site motif. Each row represents a genomic region (centered on a peak and then extended 1,000 bp in each direction)
with the signal strength (normalized as the Z-score for mapped reads) indicated by the color intensity, with darker colors for higher scores. Aggregated
signal intensity across all DNA intervals are plotted in the top graphs for peaks containing a motif match (darker color) or not (lighter color). Peaks with
a significant CTCF motif (P< 0.0001) ¼ 25984. Peaks without a CTCF motif ¼ 2651. Peaks with a significant TAL1 motif (P< 0.0001) ¼ 1783. Peaks without
a TAL1 motif ¼ 1550. blue, CTCF; orange, TAL1.
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chromatin length was associated with failure or low quality of
the experiment (Figure 5A). Successful ChIP-seq experiments
showed values around 2 for the ENCODE quality metric RSC and
a FRiP score above 1% (Figure 5, B and C, Supplementary Table
S1). While no consistent trend was observed for RSC scores in low
quality or failed datasets, all such datasets had very low FRiP
scores. These retrospective analyses support our hypothesis that
chromatin length distributions are important variables in the
success of ChIP-seq. However, we also found that some of the ret-
rospective TAL1 datasets with larger average chromatin size
ranges were successful, particularly those prepared with differ-
ent fixatives.

To determine whether the effect of chromatin size generalizes
among different factors and even between different laboratories,
we included a series of published and unpublished ChIP-seq
experiments on a third protein, POL2, in our retrospective analy-
sis. These experiments examined the pattern of POL2 occupancy
over a time-course after release of mitotically arrested G1E-
ER4þE2 cells (Hsiung et al. 2016). The mitotic cells had very low
levels of transcription and POL2 occupancy, but those levels in-
creased dramatically after release to G1 phase. Therefore, we in-
cluded only the POL2 datasets at least 60 minutes after release to
focus on the period after transcription was underway, and we
only compared replicates within each time point after release for
our subjective assessment of dataset quality (Supplementary

Table S1). We could not examine the impact of very small aver-
age chromatin lengths in these POL2 ChIP-seq datasets because
all were >260 bp, but we did find that the lower quality and failed
ChIP-seq experiments all had average chromatin lengths of
�290 bp (Figure 5A). No consistent trend was observed for RSC
scores, but the lower quality and failed POL2 experiments had
lower FRiP scores than successful POL2 experiments (Figure 5, B
and C). Thus, this retrospective analysis of experiments for all
three proteins further supports the finding that average fragment
length distribution (sonication) impacts the quality and sensitiv-
ity of ChIP-seq.

To further test our hypothesis that ChIP-seq experimental
success was dependent on the input chromatin size, we con-
ducted a meta-analysis of the combined initial and retrospective
datasets using the quality metric FRiP score rather than pass-fail
categorization. These combined datasets from a total of 62
experiments were binned by the chromatin length, specifically
<200, 200–250, and >250 bp for CTCF and TAL1, and <290 and
�290 bp for POL2 (Figure 6). Our hypothesis predicts that the FRiP
scores should be higher for experiments with chromatin sizes in
specific ranges for each factor, and this was observed in the
results. For both CTCF and TAL1, most samples of chromatin size
<200 bp have a low FRiP score indicative of failure, while experi-
ments with samples of chromatin size between 200 and 250 bp
have FRiP scores indicative of success. The differences between

Figure 5 Retrospective datasets separated by subjective assessment. (A) Average chromatin length. (B) RSC. (C) FRiP (as percentage). blue, CTCF; orange,
TAL1; purple, POL2; P, pass; LP, low pass; F, fail; open circles, different fixative than all other TAL1 datasets (new and retrospective) described in this
study. Blue and orange horizontal lines in each category represent the mean. Gray dotted lines in (C) indicate the commonly used 1% threshold for FRiP.
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the scores for these two size ranges were significant for both
CTCF (P< 0.005, Student’s t-test) and TAL1 (P< 0.05, Student’s t-
test). Consistent with the previous analyses, CTCF ChIP-seq was
successful on samples with an average fragment size larger than
250 bp. Most of the TAL1 ChIP-seq experiments on samples in
this larger size range had low FRiP scores, but some were success-
ful, showing that the impact of larger chromatin fragment sizes
on success of TAL1 ChIP-seq was not completely consistent.
These results support our hypothesis and show that, under the
conditions tested, sonication products between 200 and 250 bp
yield the highest frequency of acceptable FRiP scores for success-
ful CTCF and TAL1 ChIP-seq experiments. For the retrospective
POL2 datasets, samples with a mean average chromatin length
<290 bp had high FRiP score indicative of success, while experi-
ments with samples of chromatin size �290 bp tended to have
lower FRiP scores indicative of either lower quality or failed ChIP-
seq experiments (P< 0.005, Student’s t-test). These latter data,
despite the fact that they were generated in another lab with a
different sonicator, provide an additional example of the impact
of fragment length distribution (sonication) on the success rate of
ChIP-seq, thus further supporting our hypothesis.

Finally, several retrospective datasets provided an opportunity to
examine whether using a matched versus a nonmatched input con-
trol for peak calling with MACS impacted the number of called peaks
or the FRiP quality scores. We do not typically sequence unenriched
chromatin from the same cell line multiple times, and instead use a
composite, nonmatched input file generated from several different
sequenced G1E-ER4þE2 libraries to call peaks with MACS
(Supplementary Table S3) for the majority of ChIP-seq experiments
that use G1E-ER4þE2 cells. By re-analyzing four TAL1 retrospective
datasets using their matched input sequence data, we found that us-
ing a matched input control had little effect on peak numbers and
the FRiP scores were unchanged (Supplementary Figure S3).

Low input ChIP-seq
Obtaining reliable ChIP-seq results on TFs or other epigenetic fea-
tures in cell types that can be purified only in small quantities
would facilitate many studies, such as mechanisms regulating
gene expression during cell differentiation. While some success
has been reported for ChIP-seq in low cell input samples (Adli

et al. 2010; Lara-Astiaso et al. 2014), these approaches have been
applied primarily to modified histones, which are often present
in greater abundance than TFs. We wanted to determine whether
careful control of chromatin shearing would facilitate low input
ChIP-seq using standard methods. A pilot CTCF ChIP-seq experi-
ment varying sonication cycles in 1 and 5 M G1E-ER4þE2 cells
showed that successful results could be obtained with 5 M cells
with appropriate sonication (Figure 7A, Supplementary Table S1).
No signal was observed in any of the 1 M cell samples or the 5 M
cell sample with an average chromatin length of 329 bp.
However, we observed good quality signal tracks with FRiP scores
�1.0% in the 5 M cell datasets with average chromatin lengths of
302 and 248 bp.

We then applied our findings on low cell input to produce a set
of CTCF ChIP-seq datasets in hematopoietic cell populations puri-
fied by sorting mouse BM cells (Figure 7B, Supplementary Table
S1, Materials and Methods). These cell populations were LSK
(Lin�Sca1þKitþ, which includes hematopoietic stem cells or HSC),
several multilineage progenitor cells (common myeloid progenitor
cells or CMP, granulocyte monocyte progenitor cells or GMP, mega-
karyocyte erythrocyte progenitor cells or MEP), and committed
cells of two major blood cell lineages at different stages of matu-
rity, specifically colony-forming units erythroid (CFUE) and eryth-
roblasts (ERY) and colony-forming units megakaryocyte (CFUMK),
and megakaryocytes (MK). The progenitor cells are very rare in the
BM, and it is challenging to obtain enough cells for a single ChIP-
seq determination. For example, the isolation of 4.85 M MEP cells
required isolation of BM from 200 mice and a total of 10 flow cy-
tometry sorts (Supplementary Table S4). The progenitor cells were
isolated and fixed in small batches (<1 M cells, Materials and
Methods) over the course of several months, and they were frozen
at �80�C until enough cells were amassed to attempt a CTCF
ChIP-seq experiment. Isolation procedures of this magnitude in-
volve a significant time investment, and thus it is critical on the
part of the experimentalist to do everything possible to increase
the probability of ChIP-seq success.

As before, we used the Diagenode Biorupter Plus 300 to shear
chromatin from the fixed hematopoietic cells, assayed the extent
of shearing using the Agilent Bioanalzyer 2100, and then sub-
jected the chromatin to immunoprecipitation and sequencing

Figure 6 Relationship between chromatin size and FRiP score (as percentage) for study and retrospective datasets. blue, CTCF; orange, TAL1; purple,
POL2. Blue and orange horizontal lines in each category represent the mean. *P< 0.05, **P< 0.005. Gray dotted lines indicate the commonly used 1%
threshold for FRiP.
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using antiserum against CTCF (Figure 7B). We first inspected
each of the signal tracks in all 11 datasets in eight different cell
types across several loci, including the Gfi1b and Zfpm1 loci. We
observed peaks in all 11 datasets across eight different cell types
examined, though there were notable differences in the signal-
to-noise ratio between samples. Based on this initial subjective
visual inspection, two of the 11 datasets were deemed as “Low
pass” while the remaining datasets were classified as “Pass.”
Examination of the objective metrics for these datasets revealed
a large number of peaks and, in some cases, very high FRiP scores
with all of the datasets having a FRiP score of at least �1%.

In summary, by rigorous attention to sonication conditions,
we were able to obtain good quality CTCF binding profiles across
a panel of cells differentiating from rare, multilineage progenitor
cells to lineage-specific, maturing blood cells.

Discussion
ChIP-seq has been used extensively across a broad spectrum of
species, tissues, and cell types to interrogate the locations of TFs
occupying specific sites in chromatin or mapping the profile of
histone modifications in chromatin (Wold and Myers 2008; Rivera

and Ren 2013). This powerful technique has moved studies of
gene regulation to a global (genome-wide) scale, and the data
produced by this method form the foundation for many efforts to
develop coherent, integrated models for gene regulation (Ching
et al. 2018; Zhou et al. 2019; Xiang et al. 2020). However, the tech-
nique is not uniformly successful for all samples, and even when
apparently successful, the resulting ChIP-seq datasets vary
widely in quality (Marinov et al. 2014; Devailly et al. 2015). A major
factor impacting success of the ChIP-seq is the antibody directed
against the chromatin-associated factor, i.e., TF or histone modi-
fication (Landt et al. 2012). Effective antibodies not only must be
highly specific, but they also must recognize epitopes that may
not be sufficiently exposed in the fixed chromatin. These require-
ments are difficult to evaluate prior to performing the ChIP-seq
experiment, since many antibodies that are effective for other
applications, such as Western blots, are not effective in ChIP-seq
(Egelhofer et al. 2011). Thus, the only assay for effectiveness of an
antibody is to actually do the ChIP-seq experiment, which
requires expenditure of resources and time, and of course it is
frustrating when the experiment fails. Such failures are frequent
for commercially available antibodies (Egelhofer et al. 2011; Savic
et al. 2015). Sophisticated tagging approaches have been

Figure 7 CTCF occupied sites at the Gfi1b (chr2: 28,575,695—28,666,063) and Zfpm1 (chr8: 122,210,058—122,399,621) loci. Shown to the left of the genome
browser tracks are the number of sonication cycles and the mean size of the unenriched chromatin. Shown to the right of the genome browser tracks
are peaks, FRiP score (as percentage), and subjective assessment of each dataset. (A) G1E-ER4þE2 cells, and (B) Hematopoietic cell types LSK,
Lin-Sca1þKitþ; CMP, common myeloid progenitor cells; MEP, megakaryocyte erythrocyte progenitor cells; CMP, common myeloid progenitor cells; CFUE,
colony-forming units erythroid; ERY, erythroblasts; GMP, granulocyte monocyte progenitor cells; CFUMK, colony-forming units megakaryocyte; MK,
megakaryocytes. P, pass; L, low pass; F, fail; ND, not detectable.
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developed to enable the use of antibodies known to be
effective in a context where the level of antigen is close to the
natural level (Savic et al. 2015). These approaches help to gener-
ate more uniform results for TFs expressed in cell lines or organ-
isms amenable to the targeted genetic engineering required for
tagging.

Other factors also contribute to the success of a ChIP-seq ex-
periment, some of which are directly under the control of the ex-
perimentalist. One illustration of high-technical variation arises
when a particular lot of a commercial antibody preparation is
used successfully in ChIP-seq for one biosample, but then a sub-
sequent experiment fails, even though the same lot of antibody
was used in another preparation of that same biosample. The
experiments described in this study were developed to better un-
derstand the technical contributors to success of a ChIP-seq ex-
periment beyond the well-known issues with antibody quality.

We discovered that the size distribution of the sonicated chro-
matin was an important factor in the ChIP-seq procedure, with
more frequent success observed for chromatin with an average
size in a range of approximately 200 to 250 bp. We conclude that
monitoring the level of chromatin sonication is one way to im-
prove ChIP-seq quality and reproducibility. Indeed, we would ar-
gue that in situations with failure and success for the same
antibody in the same biosample, it would be wise to re-evaluate
the unenriched chromatin length for these samples. In such
instances, it is critical to measure the size distribution of the ac-
tual chromatin to be used in a ChIP-seq experiment.

The best sonication conditions should be determined empiri-
cally for the number and types of cells, and ideally matching any
treatments applied to those cells that could cause changes in cell
morphology. While some parameters for sonication may be
expected to be predictable, the many factors impacting the final
chromatin size distribution mean that an empirical approach is
needed. For example, as expected, we observed that samples
with larger numbers of cells required more sonication cycles
than those with fewer cells to achieve a given size range.
However, it is should be noted that very low numbers of cells
may actually require more sonication cycles than larger numbers
of cells because the incidence of a sound wave interacting with
the chromatin decreases as the overall chromatin size decreases,
relative to the wavelength of the insonifying sound (Espana et al.
2014). Thus, additional time may be required to have sufficient
interaction between the sound wave and the chromatin. While
not specifically addressed in the current presentation, it is rea-
sonable to expect the amount of required sonication to vary by
tissue and cell type. To facilitate these empirical determinations,
we provide a protocol for determining chromatin size distribution
in the desired range in Supplementary Figure S1.

We demonstrated an effect of chromatin size distribution on suc-
cess of ChIP-seq experiments for three TF targets. While the experi-
ments for both tended to fail at small chromatin sizes for CTCF and
TAL1, the effects of larger chromatin sizes differed, with the CTCF
ChIP-seq experiments being less sensitive to large sizes of chromatin,
compared to TAL1 ChIP-seq. One hypothesis to explain the differen-
ces in effects of larger chromatin sizes is a difference in the exposure
of the antigens. Specifically, one can conjecture that TAL1 antigens
are more sequestered in longer chromatin fragments, whereas the
CTCF antigens may be more exposed in those longer fragments.
Such accessibility may also be influenced by fixation conditions
which have been demonstrated to affect chromatin shearing dynam-
ics (Khoja et al. 2019). Relatedly, several of the successful retrospec-
tive TAL1 experiments with higher average chromatin lengths were
cross-linked with a different fixative than all of the other TAL1 ChIP-

seq experiments reported in this study (Supplementary Table S1),

and thus it is possible that these differences contributed to accessibil-

ity of the epitope and its effect on ChIP-seq quality. However, it is

also possible that the effect of larger average chromatin lengths on

TAL1 ChIP-seq success is less robust than that of smaller average

chromatin lengths. Indeed, we emphasize that sonication and aver-

age chromatin length is only one of several variables that affect

ChIP-seq quality and sensitivity. Furthermore, we may expect the

details of the relationship between chromatin fragment size and

ChIP-seq success to vary among different TF targets and fixation con-

ditions, but working within a range with frequent success (200–

250bp for average fragment sizes) is a good starting point for most

experiments involving sequence-specific TFs. By comparison, targets

that display a high level of enrichment, such as POL2, are likely to be

successful under a broader range of acceptable chromatin sizes sim-

ply because of the abundance of available epitopes.
In agreement with previous work (Landt et al. 2012), we found

that FRiP scores of at least 1% to be strongly associated with suc-

cessful ChIP-seq experiments targeting TFs. It is important to

note, however, that the suggested 1% FRiP guideline is most appli-

cable for sequence-specific TFs that have thousands to tens of

thousands of occupied sites in large mammalian genomes, and

that successful ChIP-seq experiments with TFs that have only a

small number of occupied sites would be expected to have a FRiP

of <1%. Indeed, successful ChIP-seq experiments for ZNF410, a

pentadactyl DNA-binding protein that is expressed in human ery-

throid cells and directly activates only a single gene, typically have

FRiP scores of <0.2% (Lan et al. 2021). By contrast, for TFs with very

large numbers of occupied sites (e.g., RAD21) and/or those that dis-

play a high level of enrichment at binding locations, may actually

have FRiP scores >1%, despite a lower quality or failed ChIP-seq

experiment (Landt et al. 2012). Thus, while we used FRiP to com-

pare ChIP-seq experiments obtained with the same antibody, we

emphasize that FRiP scores are not comparable between different

antibody targets (CTCF vs TAL1 vs POL2). We also noted some ex-

perimental results with very high FRiP scores, e.g., 17–19%. Such

very high scores do not necessarily indicate an exquisite dataset.

For instance, in a dataset with a low signal-to-noise ratio, a peak-

calling algorithm may call an excessive number of false positive

“peaks.” Those overcalled peaks are included when counting the

number of reads assigned to peaks, and thus, the FRiP score can be

artificially inflated.
In addition to improving the success rate for conventional

ChIP-seq experiments, careful control of chromatin shearing may

help facilitate ChIP-seq experiments on low numbers of input

cells. We showed that, with rigorous attention to sonication con-

ditions, we were able to obtain good quality CTCF binding profiles

across a series of cells differentiating from multilineage progeni-

tor cells to lineage-specific, maturing blood cells. This series

includes rare progenitor cells that have been difficult to interro-

gate for binding profiles of specific TFs. These maps of binding by

CTCF across progenitor and lineage-specific cells should be use-

ful for multiple studies of the roles of this important architec-

tural protein during blood cell differentiation.
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