
UC Irvine
UC Irvine Previously Published Works

Title
PyWGCNA: a Python package for weighted gene co-expression network analysis

Permalink
https://escholarship.org/uc/item/5j93z2cx

Journal
Bioinformatics, 39(7)

ISSN
1367-4803

Authors
Rezaie, Narges
Reese, Farilie
Mortazavi, Ali

Publication Date
2023-07-01

DOI
10.1093/bioinformatics/btad415

Copyright Information
This work is made available under the terms of a Creative Commons Attribution License, 
available at https://creativecommons.org/licenses/by/4.0/
 
Peer reviewed

eScholarship.org Powered by the California Digital Library
University of California

https://escholarship.org/uc/item/5j93z2cx
https://creativecommons.org/licenses/by/4.0/
https://escholarship.org
http://www.cdlib.org/


Gene expression

PyWGCNA: a Python package for weighted gene
co-expression network analysis
Narges Rezaie1,2, Farilie Reese 1,2, Ali Mortazavi 1,2,*
1Department of Developmental and Cell Biology, UC Irvine, Irvine, CA 92697, United States
2Center for Complex Biological Systems, UC Irvine, Irvine, CA 92697, United States

*Corresponding author. Department of Developmental and Cell Biology and Center for Complex Biological Systems, 2300 Biological Sciences 3, UC Irvine,
Irvine, CA 92697, United States. E-mail: ali.mortazavi@uci.edu

Associate Editor: Anthony Mathelier

Abstract
Motivation: Weighted gene co-expression network analysis (WGCNA) is frequently used to identify modules of genes that are co-expressed
across many RNA-seq samples. However, the current R implementation is slow, is not designed to compare modules between multiple
WGCNA networks, and its results can be hard to interpret as well as to visualize. We introduce the PyWGCNA Python package, which is
designed to identify co-expression modules from large RNA-seq datasets. PyWGCNA has a faster implementation than the R version of WGCNA
and several additional downstream analysis modules for functional enrichment analysis using GO, KEGG, and REACTOME, inter-module analysis
of protein–protein interactions, as well as comparison of multiple co-expression modules to each other and/or external lists of genes such as
marker genes from single cell.

Results: We apply PyWGCNA to two distinct datasets of brain bulk RNA-seq from MODEL-AD to identify modules associated with the
genotypes. We compare the resulting modules to each other to find shared co-expression signatures in the form of modules with significant
overlap across the datasets.

Availability and implementation: The PyWGCNA library for Python 3 is available on PyPi at pypi.org/project/PyWGCNA and on GitHub at
github.com/mortazavilab/PyWGCNA. The data underlying this article are available in GitHub at github.com/mortazavilab/PyWGCNA/tutorials/
5xFAD_paper.

1 Introduction

Weighted gene co-expression network analysis (WGCNA) is
a widely used method for describing the correlation patterns
of genes across a large set of samples (Langfelder and
Horvath 2008). WGCNA can be used to find modules of
highly correlated genes, to summarize modules, to relate
modules to one another as well as to external traits, and
calculate module membership. Correlation networks facilitate
network-based gene screening methods that can be used to
identify candidate biomarkers or therapeutic targets. These
methods have been successfully applied in many biological
contexts, such as cancer, mouse genetics, and analysis of hu-
man data. The WGCNA package (Langfelder and Horvath
2008) is implemented in the popular R language. As sequenc-
ing datasets grow larger and more complex, it is important to
have a scalable implementation of WGCNA.

We introduce PyWGCNA, which is designed to perform
WGCNA and downstream analytical tasks natively in Python
(Fig. 1A). PyWGCNA supports co-expression network analy-
sis of large, high-dimensional gene or transcript expression
datasets that are time or memory inefficient in R. PyWGCNA
can directly perform functional enrichment analysis including
Gene Ontology (GO), KEGG, and REACTOME on co-
expression modules to characterize the functional activity of
each module. PyWGCNA also supports addition or removal

of data to allow for iterative improvement on network con-
struction as new samples become available or need to be
taken out. Finally, PyWGCNA can compare co-expression
modules from multiple networks with one another to assess
module reproducibility or with marker genes from scRNA-
seq clusters to assess functional activity or cell-type specificity
of each module. We demonstrate PyWGCNA’s utility in iden-
tifying co-expression modules associated with genotype in
bulk RNA-seq from MODEL-AD (www.model-ad.org) using
5xFAD and 3xTg-AD mouse models of Alzheimer’s disease
(AD) and matching WT mice.

2 Materials and methods
2.1 Identifying co-expression modules
2.1.1 Data preprocessing and initialization of the PyWGCNA
object

The PyWGCNA object stores user-specified network parame-
ters such as the network type and major outputs such as the
adjacency matrix. PyWGCNA can be initialized from data in
csv, tsv or AnnData (Virshup et al. 2021) format. We recom-
mend prior preprocessing and normalization of input gene or
transcript expression data, including any necessary batch cor-
rection. Gene/transcript expression data and metadata about
each gene or sample are stored within the object in AnnData

Received: August 23, 2022. Revised: June 12, 2023. Editorial Decision: June 16, 2023. Accepted: June 30, 2023

VC The Author(s) 2023. Published by Oxford University Press.

This is an Open Access article distributed under the terms of the Creative Commons Attribution License (https://creativecommons.org/licenses/by/4.0/), which

permits unrestricted reuse, distribution, and reproduction in any medium, provided the original work is properly cited.

Bioinformatics, 2023, 39(7), btad415
https://doi.org/10.1093/bioinformatics/btad415

Advance access publication 3 July 2023

Applications Note

https://orcid.org/0000-0002-9240-0102
https://orcid.org/0000-0002-4259-6362
http://www.model-ad.org


Identify co-expression modules

Expression data Initialize PyWGCNA Preprocess Find co-expression
modules

Analyse co-expression 
modules

PyWGCNA object

Comparing co-expression modules

PyWGCNA object(s)

gene marker
single-cell data

Calculate
jaccard index Calculate p-value Comparison object Input

Analysis steps

Ouput

0 20 40 60 80 100
Number of genes or transcript (*1000)

2

4

6

8

10

12

14

16

lo
g2

(T
im

e)
 (s

ec
)

1.6 min

2.6 min 6.4 min

7.1 min
10.6 min

21 min

15.5 min

31.4 min

34 min

1h 15 min

1h 31 min

Runtime PyWGCNA and R WGCNA
PyWGCNA
R WGCNA

5xFAD coral module

−0.10

−0.05

0.00

0.05

0.10

0.15

0.20

0.25

ei
ge

ng
en

eE
xp

Genotype
C57BL/6J
5xFADHEMI

Sex
Female
Male

Tissue
Hippocampus
Cortex

Age
4mon
8mon
12mon
18mon

A

CB

G

Calculate fraction

D

ei
ge

ng
en

eE
xp

5xFAD white module

5xFAD coral module
% Genes
in set

0.24
0.32
0.40

15

20

25

log10
1
Pval

E F

H
200 300 400

Combined Score

positive regulation of tumor necrosis factor production (GO:0032760)

positive regulation of tumor necrosis factor superfamily cytokine production (GO:1903557)

regulation of immune response (GO:0050776)

regulation of tumor necrosis factor production (GO:0032680)

positive regulation of cytokine production (GO:0001819)

cellular response to cytokine stimulus (GO:0071345)

neutrophil degranulation (GO:0043312)

neutrophil activation involved in immune response (GO:0002283)

neutrophil mediated immunity (GO:0002446)

cytokine-mediated signaling pathway (GO:0019221)

da
rk

re
d

da
rk

gr
ey

co
ra

l
ga

in
sb

or
o

ro
sy

br
ow

n
br

ow
n

w
hi

te
bl

ac
k

si
lv

er
in

di
an

re
d

sa
lm

on
to

m
at

o
di

m
gr

ey
da

rk
sa

lm
on

m
ar

oo
n

re
d

m
is

ty
ro

se

rosybrown

white

gainsboro

brown

darkgrey

darkred

black

darksalmon

maroon

firebrick

salmon

tomato

lightcoral

mistyrose

lightgrey

indianred

red

Jaccard index
0.05
0.10
0.15
0.20
0.25

0

50

100

150

200

250

-lo
g1

0(
P_

va
lu

e)

2

3x
Tg

AD
 m

od
ul

es

5xFAD modules

0.23

0.05

0.25

0.1
5

0.06

0.05

0.28

0.28

0.09

darkred

rosybrown

darkred

darkgrey

coral

darkgrey

gainsboro

gainsboro

rosybrown

brown

black

salmon

5xFAD
3xTg-AD

white

white

Neutrophil activation
Immune response

Cilium

Translation

0.0

0.1

0.2

0.3

0 200
Combined Score

cilium assembly (GO:0060271)
cilium organization (GO:0044782)

axoneme assembly (GO:0035082)
external encapsulating structure organization (GO:0045229)

extracellular structure organization (GO:0043062)
collagen fibril organization (GO:0030199)

extracellular matrix organization (GO:0030198)
outer dynein arm assembly (GO:0036158)

axonemal dynein complex assembly (GO:0070286)
cilium movement (GO:0003341)

% Genes
in set

0.10

0.20

0.30

2

3

4
log10

1
Pval

5xFAD white module

Figure 1. PyWGCNA steps and output example. (A) Overview of PyWGCNA. (B) Average runtime of PyWGCNA and R version of WGCNA versus the

number of features used in downsampled datasets in triplicate. (C) Coral and (D) white module eigengene expression profile from 5xFAD mouse model

summarized by genotype. Above, the top three rows display the metadata for each dataset including sex, tissue, and age. Below, the bar plot represents

module eigengene expression by genotype for each dataset with individual sample module eigengene expression shown as points. GO analysis of the

genes in 5xFAD (E) coral and (F) white modules, respectively. (G) Bubble plot of module overlap test results between 5xFAD and 3xTg-AD mouse models

of familial AD. The dot size represents the fraction of shared genes between each pair of modules and non-gray color denotes the significance of the

overlap between modules. (H) Comparison graph of 5xFAD and 3xTg-AD modules mouse models of familial AD for those with >0.05 Jaccard similarity.

The thickness of lines shows the Jaccard index value.

2 Rezaie et al.



format. PyWGCNA can remove overly sparse genes/tran-
scripts or samples and lowly expressed genes/transcripts, as
well as outlier samples based on hierarchical clustering and
user-defined thresholds.

2.1.2 Finding co-expression modules

PyWGCNA follows an identical approach to the reference
WGCNA R package, differing only in default parameter
choices. First, PyWGCNA constructs a co-expression matrix
by calculating the correlation between each pair of genes/tran-
scripts from the preprocessed expression data. It then con-
structs a co-expression network based on soft power
thresholding the correlation matrix followed by computing
the topological overlap matrix to produce the final network.
Finally, PyWGCNA identifies co-expressed modules of genes/
transcripts by hierarchically clustering the network and per-
forming a dynamic tree cut.

2.1.3 Downstream analysis and visualization of co-expression
modules

PyWGCNA provides several options for downstream analysis
and visualization of co-expression modules. It can perform
module-trait correlation, compute and summarize module
eigengene expression across sample metadata categories,
detecting hug genes in each module, and perform functional
enrichment analysis in each module using databases such as
GO, KEGG, and REACTOME (Gillespie et al. 2022) via
GSEApy (Fang et al. 2023) and BioMart (Cunningham et al.
2022). PyWGCNA can also recover known and predicted
protein–protein interactions within each module using the
STRING database (Szklarczyk et al. 2021). Each of these
analysis options comes with easy-to-use plotting tools to visu-
alize the results. Additional plotting tools include interactive
module network visualization with options for selecting genes
to display in each module.

2.2 Assessing co-expression module overlap

between PyWGCNA objects or to single-cell data

PyWGCNA can compare co-expression modules from multi-
ple PyWGCNA objects by computing the Jaccard similarity
coefficient and the proportion of common genes for each pair
of modules between objects. The statistical significance of the
overlap is assessed using Fisher’s exact test. Using the same
strategy, PyWGCNA can find the overlap between co-
expression modules and different gene lists such as marker
genes from single-cell RNA-seq, which can reveal the cell-type
specificity of each co-expression module. In both cases, the
results from these tests can be easily visualized using
PyWGCNA (Fig. 1A).

3 Results

In order to compare the performance of PyWGCNA and the
R reference of WGCNA, we used expression data for both
gene-level (from bulk short-read RNA-seq) and transcript-
level (from bulk long-read RNA-seq) expression datasets of
100 samples from the ENCODE portal (www.encodeproject.
org). We produced 15 subset datasets with a reduced number
of genes or transcripts to calculate how runtime changes as
the number of features increases. For each subset, we ran
PyWGCNA and R WGCNA three times each on the same
number of CPUs (32 cores) and memory allocation (300 GB).
We found that while both packages had similar performance

up to 16 000 genes, PyWGCNA was twice as fast on larger
datasets. Furthermore, we were able to identify modules for
96 000 transcripts with PyWGCNA but were not able to com-
pute a co-expression network in R with the same dataset due
to memory constraints (Fig. 1B).

We then applied PyWGCNA to 192 bulk RNA-seq samples
of cortex and hippocampus of the 5xFAD mouse model and
matching C57BL/6J mice at four ages (4, 8, 12, and
18 months) in both sexes (Forner et al. 2021). PyWGCNA re-
covered 17 gene co-expression modules that are associated
with age, genotype, tissue, and sex. The coral module is
strongly correlated with age progression in the 5xFAD geno-
type (P-value < 0.05) as illustrated by the module eigengene
expression (Fig. 1C), while the white module is significantly
correlated with the hippocampus in both genotypes (Fig. 1D).
The 5xFAD coral module contains 1335 genes, which are sig-
nificantly enriched for GO terms related to immune response
and neutrophil activation (Fig. 1E). This module includes
well-known microglial activation genes such as Cst7, Tyrobp,
and Trem2. In contrast, the 5xFAD white module (435 genes)
was enriched in GO terms such as cilium movement, organi-
zation, and assembly (Fig. 1F).

We also applied PyWGCNA to 38 bulk RNA-seq hippo-
campus female samples from the 3xTg-AD mouse model and
matching WT mice at three ages (4, 12, and 18 months)
(Javonillo et al. 2022). This analysis yielded 17 modules that
are correlated with age or genotype. The dark gray module
(380 genes) is strongly correlated with the 3xTg-AD genotype
mice and the 18-month time point. GO analysis reveals that
this module is also significantly enriched for genes related to
neutrophil degranulation and immune response with genes
such as Csf1, Tyrobp, and Trem2.

To assess the similarity between modules found in the
5xFAD and 3xTg-AD experiments, we used PyWGCNA to
perform module overlap tests. We find several modules with
significant overlap that are also enriched for similar functions
(Fig. 1G and H). As expected, based on their functional en-
richment, the 5xFAD coral module and the 3xTg-AD dark
gray module significantly overlap one another, suggesting
that the co-expression network within these modules is con-
served across the two familial AD mouse models. The 3xTg-
AD white module (434 genes) has a strong correlation with
18-month samples and is also enriched in cilium movement.
This module significantly overlaps with the 5xFAD white
module (Fig. 1H).

4 Summary

We have developed a Python package based on the original R
implementation of WGCNA. PyWGCNA is capable of
handling larger datasets and provides an additional set
of well-documented functions. There are several additional
downstream functions for the analysis and visualization tools
for results such as functional enrichment analysis and identi-
fying protein–protein interactions, as well as multi ways com-
parison between multiple PyWGCNA networks or with any
other gene list. For example, the PyWGCNA Jaccard
similarity-based gene list overlap test allows for associating
specific cell types to individual modules for further interpreta-
tion of the possible functions of these modules. We expect
such comparative analyses to grow as the number of datasets
grows exponentially. We hope that this package will fill a gap
in the Python bioinformatics community.

PyWGCNA 3

http://www.encodeproject.org
http://www.encodeproject.org


Author contributions

A.M. and N.R. designed the study; A.M., N.R., and F.R.
wrote the article. N.R. wrote the package and documentation.

Conflict of interest

None declared.

Funding

This work was supported by National Institutes of Health
[U54 AG054349 to A.M.].

References

Cunningham F, Allen JE, Allen J et al. Ensembl 2022. Nucleic Acids Res

2022;50:D988–95.

Fang Z, Liu X, Peltz G. GSEApy: a comprehensive package for perform-

ing gene set enrichment analysis in Python. Bioinformatics 2023;39:

btac757.
Forner S, Kawauchi S, Balderrama-Gutierrez G et al. Systematic pheno-

typing and characterization of the 5xFAD mouse model of

Alzheimer’s disease. Sci Data 2021;8:270.
Gillespie M, Jassal B, Stephan R et al. The reactome pathway knowl-

edgebase 2022. Nucleic Acids Res 2022;50:D687–92.
Javonillo DI, Tran KM, Phan J et al. Systematic phenotyping and char-

acterization of the 3xTg-AD mouse model of Alzheimer’s disease.

Front Neurosci 2022;15:785276.

Langfelder P, Horvath S. WGCNA: an R package for weighted correla-

tion network analysis. BMC Bioinformatics 2008;9:559.

Szklarczyk D, Gable AL, Nastou KC et al. The STRING database in

2021: customizable protein–protein networks, and functional char-

acterization of user-uploaded gene/measurement sets. Nucleic Acids
Res 2021;49:D605–12.

Virshup I, Rybakov S, Theis FJ et al. 2021. anndata: annotated data.

bioRxiv, http://biorxiv.org/lookup/doi/10.1101/2021.12.16.473007,

18 August 2022, preprint: not peer reviewed.

4 Rezaie et al.

http://biorxiv.org/lookup/doi/10.1101/2021.12.16.473007

	Active Content List
	2 Materials and methods
	4 Summary
	Funding
	References




