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Structural Optimization of Plate-Like Aircraft

Wings under Flutter & Divergence Constraints

Scott Townsend1 and Renato Picelli2

Cardiff University, Cardiff, CF24 3AA, UK

Bret Stanford3

NASA Langley Research Center, Hampton, VA, 23681, USA.

H. Alicia Kim4

UC San Diego, CA, 92093, USA and Cardiff University, Cardiff, CF24 3AA, UK

Minimum-weight aircraft wing design, with an emphasis on avoiding aeroelastic

instability, has been studied since the 1960’s. The majority of works to date were

posed as sizing problems; only a handful of researchers have employed a topology

optimization approach. The aim of this study is to utilize the level set method for this

purpose: The problem is formulated as one of plate thickness distribution, which takes

on one of two prescribed values at every point on the wing planform. We combine

this with constraints implemented on the eigenvalues of the flutter equation; such

an approach is shown to be robust and versatile. We include optimization results

for rectangular plate wings at a range of sweep configurations studied previously in

order to validate our methods. We then optimize delta, high aspect ratio and typical

swept transport wing planforms. All solutions demonstrate the ability to significantly

reduce wing mass while maintaining flutter and divergence speed above a specified

limit, which can be higher than that of the reference, maximum-thickness design.

We submit that the proposed method can be used to provide insights into optimal

aeroelastic wing structures, particularly useful for developing unconventional aircraft
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structural configurations.

Nomenclature

[M ] = mass matrix

[C] = structural damping matrix

[K] = stiffness matrix

[Q] ≡ [Q]
′
+ i [Q]

′′ = aerodynamic pressure matrix

[F ] = flutter equation matrix

{u} = deflection of structure

p ≡ γ + ik = eigenvalue of flutter equation

ρ = air density

V = air speed

q = 1
2ρV

2 = dynamic pressure

c = chord length

Vf = flutter airspeed

Vd = divergence airspeed

Vc ≡ min (Vf , Vd) = critical airspeed

fc = fraction of critical airspeed

W = weight, expressed as proportion of wing area

φ = level set function

H(.) = Heaviside operator

δ(.) = Kronecker delta operator

Ω = structure topology i.e. plate thickness distribution

I. Introduction

In many areas of engineering, topology optimization methods have produced designs often

radically-different from those suggested by intuition alone. Weight reductions of 20% and more

2



are routinely achieved in the automotive industry, prompting a representative to remark: “Topology

and shape optimization have become the most important development tools used by the Audi AG

in the last few years” [1].

The above notwithstanding, sparse is the literature regarding its application in aircraft aeroe-

lasticity. This is not to say that a broader class of optimization methods are not frequently and

successfully applied in this field. Indeed, there has been great interest since the 1960’s in developing

algorithms to minimize the weight of an aircraft subject to constraints on its aeroelastic performance.

This so-called aeroelastic tailoring has since facilitated numerous developments in high-performance

aircraft design, perhaps most notably the forward-swept wings of the X-29 demonstrator aircraft,

wherein divergence is prevented via judicious distribution of composite thickness and fiber orienta-

tion [2].

The established aeroelastic design tools such as TSO [3] and ASTROS [4], as well as the vast

majority of works found in the literature, formulate the design problem as one of sizing: A wing

structural layout is assumed a priori, the parameters of which are then optimized in a continu-

ous fashion. Numerous works have centered on the thickness distribution of plates within a fixed

planform, either that of wings modeled as such [5–7], or of the skin fastened over a three dimen-

sional wing structure [8–10]. Composite lamination parameters [11], ply orientation [9], and plate

material properties [12] have likewise comprised the design variables in optimization studies. Us-

ing such sizing formulations, one retrieves a design with, for example, a continually-varying skin

thickness distribution. From perspectives such as physical interpretation or manufacturability, one

may, in contrast, prefer binary designs, whereby skin thickness is constrained to take on one of sev-

eral allowed values; such is the essence of topology optimization methods, and formed the primary

motivation for this work.

As noted above, flutter and/or divergence-based topology optimization studies are rare though

not entirely absent. Stanford et al [13] optimized rectangular, plate-like wings at several different

sweep configurations via an unconstrained, weighted objective function, comprised of wing mass

and critical speed (defined herein as the minimum of the flutter and divergence speeds), with ad-

ditional penalty terms to force binary plate thickness. This early work suggested that “the use of
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a variable-thickness topology optimization can consistently locate designs that outproduce uniform

thickness plates in a multi-objective sense: higher flutter/divergence speeds, lighter weight” [13].

Furthermore, rib and spar structures have been subjected to topology optimization methods [14]:

The outer mold line of a common research model (CRM) wing was populated with a fixed lattice of

orthogonal ribs and spars, each of which were subsequently designed to maximize flutter speed. The

retrieved structures were far from typical, and accorded significant changes in both flutter mode

shape and dynamic pressure when compared to the initial design. Common to these works was the

incorporation of aeroelastic metrics (flutter speed, etc.) in the objective function, rather than as

constraints; such is more commonly encountered in the aforementioned sizing optimization studies,

wherein two main approaches are prevalent: Enforcing a single constraint on the flutter speed [5],

and constraining the eigenvalues of the flutter equation directly. The former is computationally

more efficient, the latter avoids issues associated with discontinuities in flutter and divergence speed

with respect to design changes [8].

The constrained formulation is at least as useful in practice as the unconstrained one, and in

general, the two will conclude different optima. It thus stands to reason that topology-optimized

wing structures remain to be uncovered. Most recently, Dunning et al employed the constrained

topology optimization approach to the entire interior of a CRM wing [15]. Such a strategy proved

effective at obtaining feasible optimal designs, though it is noted that the choice of initial design

appeared most influential over the retrieved optima, necessitating further studies.

In light of the above, we herein present a further investigation of flutter and divergence-

constrained topology optimization methods. In order to maintain relative simplicity in analysis

and interpretation of results, this work will focus on plate-like aircraft wings: Our goal will be to

obtain the optimal plate thickness distribution over a given wing planform; such can be interpreted

as the design of stiffening elements in a wing [16]. In contrast to Stanford and Beran [13], we employ

a constrained optimization, and also favor a level set topology optimizer which will be shown to

obtain superior wing topologies compared to those obtained with the intermediate-density approach

of Ref. [13]. This work considers the rectangular planforms considered in Ref. [13], as well as delta,

high aspect ratio and typical swept transport wing planforms. Section II introduces the flutter

4



equation and its use in predicting the aeroelastic behavior of plate-like wings. Section III describes

the level set method and its role in distributing plate thickness in an optimal fashion. Section IV

details our method of constraint-handling, and includes the derivation of constraint sensitivity with

respect to design variables. Section V provides optimization results for the range of considered

planforms. We conclude in Section VI.

II. Simulation Method

The flutter equation relates the dynamic aerodynamic loading on a structure to its deformation,

and can be written in discrete form as (see, e.g. [4, 17]):[(
2V

c

)2

p2M +

(
2V

c

)
pC +K − q

(
Q′(k) +

p

k
Q′′(k)

)]
{u} ≡ [F ] {u} = {0} (1)

We calculate the aerodynamic loading matrices [Q] ≡ [Q]
′
+i [Q]

′′ via the doublet-lattice method,

using 4-node surface elements with a quartic approximation to the Kernel function [18]. The struc-

tural mass, damping and stiffness matrices [M ], [C] and [K] are calculated using 4-node Mindlin-

Reissner plate elements [19]. A surface spline was used to couple the structural and aerodynamic

deflection degrees of freedom [20]. Due to the nature of the wing model, the structural and aerody-

namic meshes overlap, though more structural than doublet-lattice elements are needed to model

the plate deformation (typically an order of magnitude more). Plate thickness is defined at the

nodes and will, as a result of the optimization, take on either a minimum or maximum value, such

that a binary thickness distribution is obtained.

In order to solve Eq. 1, we utilize mode-reduction and a non-iterative frequency sweep

method [21], whereby aerodynamic matrices [Q(k)] are computed at pre-determined k values and

linearly-interpolated between. One notable characteristic of this method is that the number of

aeroelastic vibration modes (solutions to Eq. (1)) can change between airspeeds. In some cases, this

is due to bifurcation or coalescence of modes (such as the formation of two equally-valid divergence

modes), though in many cases, it is simply that a given mode frequency drifts either in or out of

the range chosen for the sweep (such is discussed further in Section V). In this way, as will be

seen in Section V, modes become present mid-way through the airspeed range. The entire solution

procedure was completed via an in-house c++ code, which was developed and benchmarked against
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Table 1: Benchmark Result Comparison with Attar et al. [22]

Modal Freq. (Hz) Flutter Characteristics

Mode 1 Mode 2 Mode 3 Mode 4 Mode 5 Speed (m/s) Freq. (Hz)

Attar et al. (Theoretical) 7.54 30.00 34.58 71.35 86.18 42.8 23.1

Attar et al. (Experimental) 7.50 29.26 33.37 68.03 84.54 47.8 22.45

This Work 7.52 29.75 32.99 71.61 77.49 42.0 21.9

results from ASTROS [4] and experimental data [22].

For the sake of completeness, we include one set of validation results here. Table 1 compares

modal frequencies and flutter characteristics obtained using the c++ code developed in this work

with the theoretical and experimental values reported by Attar et al. [22] for a Lucite delta wing.

It is considered that the general agreement shown, in addition to numerous comparisons performed

in-house with the ASTROS [4] program, provides sufficient confidence in the code used herein.

The aeroelastic stability information is contained within the (non-dimensional) eigenvalues p ≡

γ + ik: A negative damping term (γ < 0) implies stability and vice versa. Flutter-like (k > 0) and

divergence-like (k = 0) modes can be distinguished from the value of the corresponding reduced

frequency k.

III. Optimization Method

With the aim to optimize the plate thickness distribution within a given wing planform, we

require a method to define geometric boundaries (i.e. the boundary between thin and thick sections

of plate) and track the movement of such through design iterations; this can be achieved efficiently

via the use of the level set method [23, 24]. Developed originally for fluid interface tracking, the

method has since found use in topology optimization as a way to define structural boundaries [25, 26].

Physical properties, in our case plate thickness h, can be mapped through the use of a scalar field

φ, defined everywhere in the planform such that

h = h0 + (h1 − h0) H(φ) (2)

where H(.) is the Heaviside operator. In this way, plate thickness at a given position may assume
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(a) Example φ field. (b) Resulting plate thickness distribution.

Fig. 1: Wing structures are represented by the level set method.

only one of two distinct values: h0 when φ < 0 and h1 when φ > 0; the boundary is (implicitly)

well-defined, occurring where φ = 0. This concept is displayed graphically in Fig. 1.

The above implies a need to re-mesh the design at every iteration, such that the structural

boundaries are well-represented in the flutter analysis. However from a practical standpoint, it is far

more convenient to employ a fixed finite element mesh, the thickness values (though not geometry) of

which are changed throughout the optimization, than to attempt re-meshing of arbitrary geometries.

For this reason, a concession is often made to the above, such that a smooth Heaviside function is

used instead [25]. In this work, we use

H(φ) =
1

1 + e−sφ
(3)

As such, the portion of structure nearest the boundary becomes “gray”, taking-on intermediate

thickness values. However, through judicious choice of the smoothing parameter s, we found the

effect of the approximation on both global and local structural metrics to be negligible. Specifically,

we chose s such that the vast majority of the smooth Heaviside curve occurred over the length of

two plate elements. It is common-practice to maintain φ as a signed-distance function, such that

|∇φ| = 1 everywhere in the computational domain; this ensures a well-behaved boundary, both in

terms of percentage gray elements and merging/splitting behavior. In this way, the entire φ field is

not free to change arbitrarily; rather, at a given iteration, changes at the boundary points {∆φb}
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are propagated to changes at the level set grid nodes {∆φ} via the relation:

{∆φ} =

[
∂φ

∂φb

]
{∆φb} (4)

The requirement that |∇φ| = 1 everywhere allows the relational matrix
[
∂φ
∂φb

]
to be computed.

In order to achieve this, we use the fast marching algorithm [27]. It is noted that this procedure differs

from the traditional level set method, whereby a velocity normal to the boundary is propagated to

the remainder of the field via the Hamilton-Jacobi equation. The difference arises via use of the

smooth Heaviside, which makes it possible to work with changes in φ directly.

The optimization procedure can be summarized as follows: We begin by choosing an initial

design and the accompanying φ field; thickness is then assigned to each plate element via Eq. (2)

and flutter analysis is carried out; once complete, the sensitivity of the objective and constraints are

computed (details in Section IV), first with respect to the physical plate thickness, then to the φ

field via Eq. (2), then to the boundary points via Eq. (4); lastly, we employ IPOPT [28] to select the

optimal change in the φ field, thus updating the design, and repeat the process until convergence. In

this way, the optimization problem is solved sequentially, with IPOPT used to solve a linearized sub-

problem each iteration. More information regarding the sequential level set topology optimization

can be found in Ref. [29].

IV. Application of Flutter & Divergence Constraints

The optimization problem is formulated as follows: For a given wing planform, choose the

topology Ω (i.e. plate thickness distribution) which minimizes the weight W , such that the critical

speed, defined as the lesser of the flutter and divergence speeds, is greater than or equal to a given

value, which is expressed as a fraction fc of that of the reference (uniform, maximum-thickness)

design V Ω0
c . Mathematically, it can be written:

min
Ω
W subject to Vc ≥ fc V Ω0

c (5)

However, since a given planform can have both flutter and divergence modes (sometimes mul-

tiples of each), and the critical mode can alternate depending on the topology of said planform,

the above formulation is not always continuous with respect to design changes [8]. There exists an
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equivalent in terms of the flutter eigenvalues p ≡ γ + ik which, as per previous discussion, contain

the stability information directly: At a given airspeed, if the real part γ is negative, the wing is

stable for that mode, and vice versa. Thus, an equivalent problem statement is:

min
Ω
W subject to γj < 0 ∀ V ∈

[
0, fc V

Ω0
c

]
(6)

where j denotes the mode number. The above would suggest applying constraints at every velocity

V ∈
[
0, fc V

Ω0
c

]
. However, by considering the wing planforms and associated behavior on a case-by-

case basis, we found it sufficient to apply the constraints at a modest number of fixed velocity points

only; such is detailed in Section V. It is possible that for more complex wing geometries, a general

method would be required. In such eventualities, the active set method could be employed, whereby

a large set of sample points is taken initially, then reduced based on the value of the constraints

prior to derivative calculation; such has been used in both frequency [8] and time domain-based [30]

optimization.

It is worth noting that the problem formulation (6) is necessarily simplistic in order to facilitate

study of the relation between weight and flutter/divergence phenomena. It is understood that

realistic design problems would include other complexities not included here, such as stress, buckling

and fatigue constraints. The development herein should thus be considered a potential complement

to research that considers the other design criteria.

In order to optimize (6), we require derivatives of W and γ with respect to plate thickness, i.e.

W,h and γ,h. In this work, we compute W as

W =
{z}T [M(h)] {z} −Wmin

Wmax −Wmin
(7)

where the {z} vector is 1 for the plate deflection degrees of freedom (in the z-direction) and 0 else-

where. The values for Wmin and Wmax are computed using [M(hmin)] and
[
M(hmax)

]
respectively.

In this way, W represents a fraction of the maximum planform weight. The W derivative with

respect to plate thickness can be computed simply as

W,h =
{z}T [M,h] {z}
Wmax −Wmin

(8)

For the γ derivative, we apply the adjoint method to the flutter equation (1). Pre-multiplying
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[F ] by an adjoint vector {λ} gives:

{λ}T [F ]{u} = 0 (9)

where the right-hand side is now zero in the scalar sense. Taking the derivative of (9) with respect

to plate thickness h, we get:

{λ,h}T [F ]{u}+ {λ}T [F ]{u,h}+ {λ}T [F,h]{u} = 0 (10)

Since, by Eq. (1), [F ]{u} = {0}, the first term in (10) is zero. Now since {u,h} cannot be known

for arbitrary design variable changes, we will choose {λ} such that the second term is also zero:

{λ}T [F ] = {0}T (11)

The above is called the adjoint equation. We solve Eq. (11) and the original flutter equation (1)

via mode-reduction, with the assumption that the structural deflection and adjoint variable can

be expressed as a linear combination of bases: {u} = [Φ]{η}, {λ} = [Φ]{µ}, where [Φ] is a matrix

containing eigenvectors from the free-vibration system, herein solved using the ARPACK software [31].

The mode-reduced versions of Eqs. (1) and (11) are then:

[Φ]T [F ][Φ]{η} ≡ [F̄ ]{η} = {0} (12)

([Φ]{µ})T [F ][Φ] ≡ {µ}T [F̄ ] = {0}T (13)

The mode reduction procedure will invalidate the original equations (1) and (11), and thus

introduce sensitivity errors, unless a sufficient number of modes are retained (included in [Φ]) [30, 32].

By numerical experimentation, we found 10 modes to be adequate for the range of wing planforms

considered in Section V: For each reference design, incorporating more than 10 modes changed the

predicted critical speed by less than 1%. In this work, Eqs. (12) and (13) were solved using LAPACK

routines [33]. The derivative equation (10) then becomes

{λ}T [F,h]{u} = 0 (14)

The matrix [F,h] contains terms which can be used to relate topological changes [M,h], [C,h],

[K,h] to changes in the flutter eigenvalues p,h = γ,h + ik,h. Namely, the above can be written
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explicitly as

γ,h {λ}T
[(

2V

c

)2

2pM +

(
2V

c

)
C − q

k
Q′′

]
{u}

+k,h {λ}T
[(

2V

c

)2

2ipM +

(
2V

c

)
iC − i q

k
Q′′ + p

q

k2
Q′′ − p q

k
Q′′,k − q Q′,k

]
{u}

+{λ}T
[(

2V

c

)2

p2M,h +

(
2V

c

)
pC,h +K,h

]
{u} = 0 (15)

The real and imaginary parts of (15) can be used to solve for γ,h in terms of topology changes

[M,h], [K,h], [C,h]. Namely, let

α1 = {λ}T
[(

2V

c

)2

2pM +

(
2V

c

)
C − q

k
Q′′

]
{u}

α2 = {λ}T
[(

2V

c

)2

2ipM +

(
2V

c

)
iC − i q

k
Q′′ + p

q

k2
Q′′ − p q

k
Q′′,k − q Q′,k

]
{u}

α3 = {λ}T
[(

2V

c

)2

p2M,h +

(
2V

c

)
pC,h +K,h

]
{u}

→ α1γ,h + α2k,h + α3 = 0

Then we can write:

α′1γ,h + α′2k,h + α′3 = 0

α′′1γ,h + α′′2k,h + α′′3 = 0

which can be solved simultaneously:

→
(
α′1 −

α′2
α′′2
α′′1

)
γ,h =

(
α′2
α′′2
α′′3 − α′3

)
(16)

The above analytical expression for γ,h has been checked against central finite difference results

for a range of representative configurations. One example is shown in Fig. 2, which is for the unswept

reference planform from Fig. 4a at 25 m/s; samples were taken at each of the FEA nodes. As per

later discussion, this design point includes information from several flutter modes, one of which is

unstable, as well as two divergence modes. There was no apparent trend regarding mode type and

error distribution. It is worth noting that these errors arise from two sources: the first is due to the

first derivative truncation itself, and the other is the approximation introduced via mode reduction.

As depicted in Fig. 2, there is a significant reduction in error when 10 modes are retained in the
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(a) 5 modes retained; mean = 0.03%, std = 2.12%. (b) 10 modes retained; mean = 0.06%, std = 0.92%.

Fig. 2: Comparison between finite difference and analytical γ derivatives.

flutter analysis compared to 5, though additional modes yielded far less improvement, and incur

significant computational cost.

Once derivatives with respect to h are computed, it is straightforward to transform them to the

level set field φ, and to the movement of the boundary points, via Eqs. (2) and (4).

V. Results

In each of the results that follow, the wing material comprises an aluminum plate with a mean

chord of 0.3m, to be optimized for thickness distributions of 0.5 and 1.5 mm, represented in the

figures by gray and black regions on the planforms, respectively; structural damping is assumed

negligible. The wing structures are clamped at zero angle of attack along the entire root edge

(left-most edge in the figures), which marks the aerodynamic symmetry plane. Dynamic pressure is

calculated using sea-level air density at zero Mach number. Such dimensions and flight conditions

were chosen to facilitate a comparison with the previously-published work [13]. It is worth noting

that a non-zero minimum plate thickness avoids issues arising from highly-localized vibration mode

formation [34].

The number of chord-wise finite elements was on the order of 100, with as many as required

span-wise in order to approximately maintain unit aspect ratios (thus high quality elements). This

number was found to be large enough such that several finite elements remained present on any

structural features which formed in the optimized design, thus retaining accuracy in the fixed grid
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(a) Representative aerodynamic mesh. (b) Representative structural mesh.

Fig. 3: Representative meshes used

simulation method utilized. The number of chord-wise doublet lattice elements was on the order

of 10, again, with as many required span-wise to maintain approximate unit aspect ratios. As

discussed by Rodden et al. [18], the maximum k value which can be accurately simulated in Eq. (1)

is dictated by the ratio of chord length to the number of chord-wise elements. The number of chord-

wise elements chosen here allowed k values between 0 and 2.25 to be simulated, which we found

high-enough to capture the flutter and divergence behavior relevant to this study. That is to say, any

solutions to Eq. (1) with k values outside this range did not impact the flutter or divergence speeds

recorded herein. Accordingly, the results which follow can only include solutions to Eq. (1) with k

values in this range. This accounts for modes becoming present mid-way through the velocity range

shown in the figures, since when absent, those modes have k values outside the range permitted by

the aerodynamic mesh used, and cannot be simulated accurately. For all planforms shown, we used

100 k values to pre-compute the aerodynamic [Q(k)] matrices; 20 matrices were uniformly sampled

between 0 and 0.1, the remainder were uniformly sampled between 0.1 and 2.25. This scheme was

chosen based on experience: solutions tend to have higher stability (in terms of smoothness between

velocities) when a cluster of k values close to zero is used. Sample aerodynamic and structural

meshes are depicted in Fig. 3.

The first result is that of an unswept aspect ratio (AR) 6 planform shown in Fig. 4. The reference

(i.e. uniform, 1.5 mm thick) design is flutter-critical at 23 m/s; divergence occurs at 28 m/s. The

design shown in Fig. 4b was obtained through optimization with fc = 1.0 from Eq. (6); that is,

weight is minimized subject to no reduction in the critical speed. Accordingly, the optimized design
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shares the same 23 m/s critical speed as the reference, though now both flutter and divergence occur

at this point. The weight W (i.e. proportion of planform filled by maximum-thickness plate) has

reduced by 73% compared to the reference design. Since, for this type of planform, the damping

terms γj tend to be monotonic functions of the airspeed, we found it necessary to implement the

aeroelastic constraints (Eq. (6)) at the maximum speed (i.e. 23 m/s) only.

Convergence for this planform, as well as all those subsequent, was deemed to occur when all

constraints were satisfied and weight reduced by less than 0.1% in 10 iterations. Fig. 4g depicts

the weight (in red) and constrained damping values (in black) throughout the design iterations.

The starting design was, as for all planforms considered, the reference design i.e. planform filled

with maximum thickness plate. Several alternative starting designs were also tried, however each

converged to topologies remarkably similar to those shown, with the same overall and functional

features.

As for the topological features, two are prominent: A forward shift in both the flexural axis

and center of gravity, and a stiffening member towards the trailing edge of the root; such features

complement both intuition and idealized results. Namely, it can be shown that flexible wing diver-

gence will not occur given the flexural axis is far enough forward with respect to the aerodynamic

center (c.f. section 8.2 of reference [35]). Moreover, forward shifting the center of gravity (known

as mass balancing) is a well-known flutter prevention strategy [13, 36]. It is worth noting, however,

that we found both mass and stiffness to be salient: A significant weight penalty must be paid if

one is to attempt flutter control using mass distribution only. This idea will be exemplified for the

CRM planform later in this section.

The role of the stiffening member near the trailing edge root can be examined by removing it

and analyzing the resulting design. Upon doing this, we observed that the difference between the

first (bending) and second (twisting) natural frequencies of the design reduced by 10%, as did the

flutter speed. Frequency separation is known to delay the coalescence of the first two aeroelastic

modes [13], and has been used as a proxy for flutter performance in the past [37]; the stiffening

member thus appears to be acting in this capacity. In contrast, the thicker skin nearest the leading

edge root pertains to divergence control: Removing it caused the divergence speed to fall drastically,
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(a) Reference design thickness distribution;

Vf = 23, Vd = 28 m/s; W = 100%.

(b) Optimized design thickness distribution;

Vf = Vd = 23 m/s; W = 27%.

(c) Reference design damping (d) Optimized design damping

(e) Reference design frequency (f) Optimized design frequency

(g) Convergence history (h) Flutter (left) and divergence (right) mode shapes

Fig. 4: Results for unswept AR = 6 wing.

while the flutter speed actually improved.

The optimum solutions for higher aspect ratio planforms retained essentially the same structural
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features: Fig. 5 shows an example where AR = 30. Despite being much lower in value, the flutter

and divergence speeds converged and a similar weight reduction was achieved. It has been suggested

that geometric nonlinearity should be included in such high AR simulations [38, 39]; such will be

considered in future work, for situations where the wing flutters about a deformed configuration.

The effect of sweep angle is explored in Figs. 6 and 7, wherein 20◦ back- and forward-swept

planforms have been optimized. In order to control the hump modes in the γ curves for the swept

planforms, we required constraints on 5 equally spaced sample velocities in the 0 − 30 m/s range.

As expected, the back-swept reference design is flutter critical, and does not register a divergence

speed. In contrast, the optimal design does diverge, though this occurs at a higher speed than that

of flutter. There is, then, less pressure on the topology to control divergence than there is flutter.

Such can explain the observed topological features: the optimal design forward shifts the flexural

axis and center of gravity as per the unswept planform. However, the stiffening closest to the leading

edge root has vanished; as per the observations made for the unswept planform above, this area

pertains mainly to divergence control, which is not critical for this planform. The trailing edge

stiffening has also atrophied. By the previous analysis on the unswept planform, the trailing edge

structure appeared to be acting to reduce bend-twist coupling and increase flutter speed. However,

compared to an unswept planform of equal weight, the back-swept planform is naturally more flutter

resistant. It seems, then, that the backswept structure was able to reach an optimum design point

without requiring this mechanism.

In contrast, the reference forward-swept planform is initially divergence critical. Post-

optimization, the flutter and divergence speeds are matched at 14 m/s, and the divergence mode

has become notably hump-shaped, touching the stability axis at the constraint speed; such control

of the divergence behavior has required the notable presence of leading edge root stiffening. The

lack of stiffening at the trailing edge root, and indeed less material overall compared to the previous

(a) Optimized design thickness distribution; Vf = 3.5, Vd = 3.5 m/s; W = 28%.

Fig. 5: Results for the unswept AR = 30 wing
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(a) Reference design thickness distribution;

Vf = 21, Vd > 30 m/s; W = 100%.

(b) Optimized design thickness distribution;

Vf = 21, Vd = 24 m/s; W = 31%.

(c) Reference design damping (d) Optimized design damping

(e) Reference design frequency (f) Optimized design frequency

(g) Convergence history (h) Flutter (left) and divergence (right) mode shapes

Fig. 6: Results for backswept AR = 6 wing.
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planforms can be explained, since the flutter speed, which requires the mass balancing and trailing

edge root stiffening, has been allowed to reduce significantly compared to the reference.

It is worth noting that the divergence mode damping plots tend to be quite flat in relation to

velocity, such that the optimized designs have divergence γ values close to zero over a wide velocity

range; such is especially noticeable in Fig. 7d. Accordingly, the divergence speeds reported herein

can be said to be very sensitive to design changes. Such will also be true of the flutter speed in

planforms studied later in this article. This, however, can be addressed in the optimization problem

formulation: Herein, we simply require γ < 0, though in practice, one could apply the constraint at

some safety margin, requiring γ � 0 etc., though such would be expected to incur significant weight

penalties.

As noted above, these rectangular planforms have been subjected to optimization previously

by Stanford and Beran [13]. One key difference between that and the present work is that the

former formulated an unconstrained optimization problem: A weighted sum of the wing mass and

critical speed was used as the objective, which was then minimized and a Pareto front presented;

this work minimized mass subject to constraints on the critical speed (via the eigenvalues). This

difference notwithstanding, the topological features presented for the optimal designs in Ref. [13]

and those shown above are remarkably similar: The observations pertaining to the flexural axis

forward-shift and root stiffening could be applied equally to both works, and we consider this to

validate our methodology. A quantitative comparison can be made for only some of the results in

Ref. [13], namely those where the critical speed is exactly maintained (since this approximates our

formulation). In these cases, we report far lower optimal wing masses: The equivalent designs for

Figs. 4, 6 and 7 given in Ref. [13] had weights approximately 35, 40 and 20%. The primary reason

for this improvement is considered to arise from the chosen optimization methodology. Stanford

and Beran [13] employed a SIMP (Solid Isotropic Material with Penalization) topology optimization

algorithm [40], which struggled to obtain binary designs; in such algorithms, intermediate (gray)

elements are allowed to persist throughout the optimization, though are penalized such that binary

designs tend to emerge. Indeed, an explicit density penalty was added to force binary designs in

Ref. [13], which inevitably leads to some loss of performance. Such can clearly be observed in the
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(a) Reference design thickness distribution;

Vf = 28, Vd = 14 m/s; W = 100%.

(b) Optimized design thickness distribution;

Vf = 14, Vd = 14 m/s; W = 13%.

(c) Reference design damping (d) Optimized design damping

(e) Reference design frequency (f) Optimized design frequency

(g) Convergence history (h) Flutter (left) and divergence (right) mode shapes

Fig. 7: Results for forwardswept AR = 6 wing.
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convergence histories, e.g. Fig. 4 of Ref. [13]: when the explicit penalty is applied, a visible drop in

performance follows. Furthermore, the final designs, e.g. Fig. 6 of Ref. [13], display checkerboarding,

whereby adjacent elements oscillate between thick and thin material. Such is unlikely to be an

optimum phenomenon, and is considered more likely to be an inefficiency introduced by the penalty

terms.

A more exotic topology was retrieved upon consideration of a 45o, 0.6 m root chord delta wing

planform clipped at 95% span, as shown in Fig. 8b. Accompanying the marked 94% weight-reduction

are several constrained hump flutter modes as per Fig. 8d. In order to attain this degree of control

over the γj , we required 20 equally-spaced constraint velocities. As above, in order to ascertain the

role of each retrieved topological feature, we removed each individually and analyzed the behavior;

these results are shown in Fig. 9. As each feature is removed, it can be seen from the corresponding

damping curves that one or two modes become unstable, while the others remain largely controlled.

We submit this behavior to be unintuitive and complex, highlighting the ability of the proposed

method to uncover useful design strategies previously unknown.

The last planform considered is that of the common research model (CRM) planform [41] as

shown in Fig. 10. The wing was scaled in order to have a mean chord of 0.3 m. Akin to the delta

wing, hump flutter modes are present in the damping plots of the optimized design, and we again

required constraints at 20 equally-spaced velocities in the range shown. This planform does not have

a divergence speed, and akin to the backswept planform discussed above, employs a forward-shifted

flexural axis and center of gravity, though no root or trailing edge stiffening remains.

We also utilized this planform to investigate the effect that mass and stiffness in the maximum-

thickness plate have on flutter control. This planform is most appropriate of all considered since

as mentioned, the CRM does not register a divergence speed in the velocity range; flutter behavior

can thus be studied in isolation. It is worth noting that under the simulation method utilized here,

the mass matrix cannot affect the divergence speed (at divergence, p = 0 + 0i and [M ] drops-

out of the flutter equation (1)). We proceeded to undertake a weight minimization problem in

two ways: the first assigned structural stiffness and mass matrices according to the plate thickness

distribution as for all cases above; the second only assigned mass matrices according to the thickness

20



(a) Reference design thickness distribution;

Vf = 62, Vd > 70 m/s; W = 100%.

(b) Optimized design thickness distribution;

Vf = 62, Vd > 70 m/s; W = 6.4%.

(c) Reference design damping (d) Optimized design damping

(e) Reference design frequency (f) Optimized design frequency

(g) Convergence history (h) Flutter mode shapes at 39 (upp. left), 55 (upp.

right), 58 (low. left) and 62 (low. right) m/s.

Fig. 8: Results for Delta wing.
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(a) (b)

(c) (d)

Fig. 9: By removing one topological feature at a time, its role in flutter prevention is visualized.

distribution, while retaining the stiffness matrices from the minimum thickness plate. This situation

thus simulates adding non-structural mass to the planform in order to control flutter. The constraint

was set such that no flutter could occur prior to 8.5 m/s; higher flutter speeds could not be obtained

using mass distribution only.

The results are depicted in Fig. 11. While both designs have equal flutter speeds, more than

40% more weight is required by the design utilizing mass distribution only. It is therefore considered

that the mass-balancing effect observed in the optimized designs above is not sufficient in itself to

provide low-weight, flutter-controlled wing structures. Also salient is the stiffness in the maximum

thickness plate, and the accompanying changes in flexural axis.

Lastly, in order to demonstrate the ability of the proposed method to not only maintain, but

indeed increase critical speed while reducing weight, the CRM planform was optimized using fc =

1.5 and 2.0; that is, minimize mass subject to 50% increase and 100% increase in critical speed

22



(a) Reference design thickness distribution;

Vf = 21, Vd > 30 m/s; W = 100%.

(b) Optimized design thickness distribution;

Vf = 21, Vd > 30 m/s; W = 14%.

(c) Reference design damping (d) Optimized design damping

(e) Reference design frequency (f) Optimized design frequency

(g) Convergence history (h) Flutter mode shapes at 18 (upp. left) and 21

(upp. right and low. left) m/s.

Fig. 10: Results for CRM wing.

respectively. As shown in Fig. 12, even when the critical speed was required to double (Fig. 12b),
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(a) Stiffness and mass distribution;

Vf = 8.5, Vd > 45 m/s; W = 4.0%.

(b) Mass distribution only;

Vf = 8.5, Vd > 45 m/s; W = 46%.

Fig. 11: Influence of mass and stiffness distribution

(a) Optimized design with fc = 1.5;

Vf = 32, Vd > 45 m/s; W = 27%.

(b) Optimized design with fc = 2.0;

Vf = 42, Vd = 43 m/s; W = 56%.

Fig. 12: Increasing flutter speed of CRM planform.

weight is was still reduced to 56% with respect to the reference.

VI. Conclusions

This article demonstrates an application of the level set method to the structural topology

optimization of plate-like wings under flutter and divergence constraints. It is shown that apply-

ing said constraints on the eigenvalues of the flutter equation results in a robust design strategy,

capable of significantly reducing weight while maintaining or increasing flutter and/or divergence

speed. The optimum solutions obtained for the rectangular planforms are explicable in terms of

known aeroelastic phenomena, comprised the features identified by the previous works, and allowed

significantly more weight reduction. Moreover, the extension to the CRM and delta planforms,

where multiple flutter modes must be simultaneously controlled, demonstrated the versatility of the

proposed method. The strategy can offer new insights into optimal aeroelastic wing structures, and
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could be used to complement research that considers other relevant design criteria (stress, buckling,

fatigue etc.). Future work will incorporate these other relevant constraints, as well as more realistic

3D wing geometries.
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