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EPIGRAPH

Is it so bad, then, to be misunderstood?

Pythagoras was misunderstood, and Socrates, and Jesus,

and Luther, and Copernicus, and Galileo, and Newton,

and every pure and wise spirit that ever took flesh.

To be great is to be misunderstood.

— Ralph Waldo Emerson, Self-Reliance
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ABSTRACT OF THE DISSERTATION

Methods for Voice and Swallow Assessment through Laryngeal High-Density Surface
Electromyography

by

Gladys Ornelas

Doctor of Philosophy in Bioengineering

University of California San Diego, 2021

Professor Todd P. Coleman, Chair

Voice and swallow are complex functions made possible through the coordination of

multiple muscles of the throat. Unfortunately, these tasks are adversely impacted by aging,

neurologic disorders, nerve injuries, cancer, and stroke—yet lack the tools for objective and

non-invasive assessment. For instance, traditional surface electromyography (sEMG) of the throat

suffers from drawbacks of “cross-talk” contamination, skin-electrode impedance, and diminished

target-muscle specificity, which lead to performance variability and limited clinical utility. This

dissertation explores the use of high-density surface electromyography (HDsEMG) coupled with

novel implementation of array signal processing techniques to overcome limitations of traditional

xv



sEMG when studying the neck. During phonation in healthy subjects, results yielded power

spectrum density energy maps with the capacity to visually distinguish active regions associated

with the underlying cricothyroid and anterior strap musculature. Low-pitch and high-pitch

differentiation was accomplished using multivariate log likelihood ratio testing with an average

Receiver Operating Characteristic area under the curve of 0.97, which exceeds that of traditional

sEMG by 0.20. During swallowing in healthy subjects, HDsEMG energy maps confirmed lateral

symmetry and dominant activity in the suprahyoid region. Additional studies conducted on human

subjects utilizing various swallow textures and complexities demonstrated average EMG duration

that increased proportionally with increasing texture complexity. Multivariate analysis improved

automated detection of onsets and offsets of swallows and was able to classify one of five distinct

textures with an average probability error of 0.16. Preliminary results for validation against the

“gold-standard”, needle EMG, demonstrate HDsEMG’s ability to detect specific localized activity

similar to the needle electrode underneath. Lastly, we demonstrate the feasibility of using flexible

electronic sensor arrays, in lieu of standard needle and clunky electrodes arrays, to provide greater

subject comfort, mobility, and adhesion to the curvature of the neck.
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Chapter 1

Introduction

1.1 Prevalence of Swallow and Voice Disorders

Phonation and swallow are basic and necessary functions made possible through complex

interactions between the larynx, pharynx, upper aerodigestive tract, and respiratory system.

This system can be adversely affected by a variety of disorders, leading to voice or swallow

dysfunctions known as dysphonia or dysphagia respectively.

In the elderly, rates of dysphonia have been reported from 20-47% [135]. These disorders

can be debilitating and isolating [44, 88, 106], as they can negatively impact an individual’s

ability to communicate in person or via technology, subsequently reducing quality of life. Hyper-

functional disorders (e.g. overuse or misuse of voice muscles) and neurolaryngeal disorders (e.g.

Parkinson’s disease or nerve injuries) account for 18% of cases in the general population [22],

but increases to 50% for those whose voice is essential for their career such as educators [8].

Like dysphonia, dysphagia can be debilitating and lower the quality of a patient’s life.

Uncoordinated swallows, or diminished ability to swallow, restricts the patient to certain types of

foods and methods of eating, limiting their ability to lead independent and socially active lives.

Additionally, swallow disorders may become detrimental or life threatening to patients as they

1



are at risk for aspiration, pneumonia, and malnutrition [40, 143]. Dysphagia can result from a

variety of ailments such as stroke, neurologic disorders, and cancer affecting the head or neck

[21]. Aging is another factor, as the elderly rate of dysphagia has been reported to be 14-38%

[135].

1.2 Clinical and Therapeutic Assessment

Despite the high prevalence of voice and swallow disorders, their diagnosis and assessment

are dependent on subjective interpretation of a patient’s history and physical examination, often

involving invasive, highly technical, and uncomfortable techniques. Otolaryngologists and Speech-

Language Pathologists (SPLs) may use a variety of tools such as MRIs, CAT scans, laryngoscopy,

videostroboscopy, esophageal manometry, and needle eletcromyography, to diagnose voice

disorders, with the additional tools of esophagograms and videofluoroscopic swallow studies

for swallow disorders [12, 13, 100, 129] (Fig. 1.1). As one can imagine, the clinical expertise,

time, and costs required to use such methods limit their applicability and setting to the clinic.

Management of symptoms is typically done through medication or surgery that tackles the

underlying cause of the voice or swallow disorder, though it may not always help with the voice or

swallow disorder itself. Additionally, SPLs may utilize physiologic voice and swallow therapy to

help patients manage their symptoms through specialized maneuvers, their respiration, resonance,

and phonation. However, its effectiveness, especially in relation to swallow disorders, seems to

vary with the underlying disorder and types of therapeutic treatments [11, 19, 31, 53, 72, 97, 108].

In terms of understanding neuromuscular health and activity, needle and hookwire elec-

tromyography (nEMG) remain the gold-standard. nEMG’s capability to identify morphological

characteristics of the motor unit signal is a direct indicator of neuromuscular health and its relation

to voice and swallow disorders [14, 47, 57, 61, 63, 64, 66, 141, 55, 111, 78, 148]. However its

application is limited due to the high technical expertise required to place the needles, restricting

2



Figure 1.1: An illustration depicting some of the tools used for clinical assessment of voice and
swallow disorders. A) Laryngoscopy. B) Videostroboscopy. C) Needle Electromyography. D)
Videofluoroscopy.

its application to the clinic, and by patient comfort and pain levels, restricting the number of

electrodes that can be inserted, and the length of monitoring.

1.3 The Search for a Noninvasive Assessment Method

Voice and swallow disorders are not limited to the elderly or adult populations. Children

are also at risk of developing such disorders but their prevalence is difficult to estimate. In pediatric

swallow disorders, estimation is limited due to the lack of standardized assessment procedures and

variable definition of dysphagia for children [12]. When considering the vulnerable populations

involved with voice and swallow dysfunction, often as a result of other incapacitating disorders, it

becomes imperative to develop an objective, scalable, cost-effective, and easy-to-use assessment

system that can monitor treatment progression as well.

For voice, attempts have been made to design an objective acoustic assessment system.

With the advent of novel voice recognition technologies such as Microsoft Cortana and Amazon

Alexa, people increasingly use voice to complete tasks and transactions. However, those with

3



voice disorders struggle using such technologies, since vocal challenges impact speech patterns

and lead to irregularity in pronunciations [95]. Deep learning tools, which power these technolo-

gies, struggle to train on such unpredictable patterns, therefore limiting model robustness and

fitting interpretability. For example, although deep learning applied during vowel pronunciation

has shown promise as an objective classification of Parkinsonian voice [134] and two types of

speech dysphonia (laryngeal dystonia and muscle tension dysphonia)[114], its accuracy wavers

with different diagnoses and continuous speech [9, 86, 130]. Additionally, within the context of

classifying speech disorders, solely using voice is complicated as different disorders can share

similarly perceived vocal changes and patients often unknowingly adjust to vocal changes by

overcompensating with their muscle use. Therefore it’s likely a speech recognition approach that

incorporates an understanding of physiologic changes underlying voice disorders is necessary to

overcome these performance limitations.

As previously stated, nEMG is the diagnostic tool that can provide objective neurophysi-

ologic data regarding laryngeal dysfunction [140]. Zarzur et al. demonstrated the potential for

nEMG in the neck to serve as a diagnostic tool for Parkinson’s disease [149]. In their study,

nEMG detected hypercontractility during voice rest in 91.5% of their subjects regardless of the

PD severity. Despite the promising applications for nEMG, it does not capture voice quality, is

invasive and uncomfortable for patients, and requires a high degree of technical skill for applica-

tion and interpretation. In swallows, nEMG provides an in depth look into the health and pattern

activity during a swallow, allowing for both diagnostic and prognostic capabilities [62, 96, 98].

However, swallowing involves a dynamic set of interactions between various muscles of different

sizes and locations. The invasive nature of nEMG limits both the number of muscles, and overall

space of the neck, that can be monitored.

A non-invasive alternative capable of providing similar neuromuscular information as

nEMG, while simultaneously performing voice acoustic analysis or swallow therapeutic maneu-

vers, will enhance our understanding of voice and swallow disorders and improve assessment.

4



Such a tool would not only improve assessment of laryngeal disorders, but also our ability to

design speech recognition technology that can better serve the voice disorder population.

Studies have examined surface EMG (sEMG) as a tool to diagnose voice and swallow

disorders. Its noninvasiveness, ease-of-use, and availability make it an ideal and practical

alternative to study neuromuscular health. In laryngology, its application has been investigated for

hyperfunctional disorders, dysphagia, and as a biofeedback tool [17, 29, 34, 58, 56, 85, 124, 125],

but with limited success as researchers continue to struggle in finding significant difference

between healthy subjects and patients diagnosed with voice and swallow disorders [75, 123, 136,

137, 139, 140]. Notably, these studies were limited by a low number of sensors, variability in

sensor placement, and lack of voice acoustic analysis, common issues among previous sEMG

applications for speech and swallow and lack of standardization [123, 136]. Other studies and even

some on-the-market devices such as VitalStim, have investigated the use of sEMG biofeedback

during voice and swallow therapy. However, such applications are not standardized, extremely

susceptible to bias, and lack an objective assessment of swallow or phonation [20, 30, 105].

Surface EMG has struggled to secure a foothold in voice and swallow assessment due

to the lack of standardization, variable results, susceptibility to cross-talk contamination, lack

of target-muscle specificity, and loss of intramuscular information. In its traditional setting,

sEMG records aggregated muscle action potentials, which makes it difficult to achieve consistent

reproducibility and correlate the compounded signals to specific muscles underneath the skin. In

essence, its applicability is reduced to detecting binary on-off onset activity and muscle force,

features that are not enough to differentiate or assess either voice or swallow disorders due to

the overlapping nature and varying sizes of laryngeal muscles. We propose High-density surface

electromyography as an alternative and promising solution to traditional sEMG.
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1.4 High-Density Surface Electromyography

High Density Surface electromyography (HDsEMG) is a developing technique that places

a dense multi-electrode array over a target region. It is a non-invasive alternative that overcomes

certain limitations of traditional sEMG. HDsEMG enables acquisition of spatiotemporal patterns

allowing interelectrode comparisons to elucidate localized activity correlated to the muscles active

underneath. Muscle fiber conduction velocity measurements and single motor unit evaluations

are possible through HDsEMG, which enables detection of pathological changes (such as due to

neurogenic disorders) at the motor unit level [37, 93]. When using appropriately sized electrodes,

HDsEMG provides information regarding innervation zones, fiber length, fiber conduction

velocity, and wave activity of muscle contractions [42, 50, 52, 68, 89, 109, 115, 133, 146]. Fig.

1.2 taken from Drost et al. illustrates the scope of information obtained from the three different

EMG conventions.

Figure 1.2: This image taken from Drost et al. [37] shows the level of information obtained from
EMG configurations.

HDsEMG monitoring provides a large dataset that requires, and makes use of, advanced

signal processing techniques such as multivariate analysis, logistic regression, decomposition,

weights analysis, amongst others [48, 93]. In using information from all channels, signal quality

and robustness is improved while simultaneously providing quantifiable EMG features for an
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objective assessment. Though these qualities are exciting for researchers and applications of

brain- and human-computer-interfaces, it may in part explain why HDsEMG applications have

been limited in the clinic. In clinical applications, many neurophysiologists continue to rely on

visual inspection of onscreen signals and auditory evaluation of the discharging units, despite

the extensive effort made to quantify nEMG [37]. This is no longer possible with HDsEMG as it

requires signal processing and analysis to make use of the spatiotemporal information. Though

HDsEMG requires less technical expertise in application and is very easy to use, it does require

greater computational ability in order to process and analyze the data.

None-the-less, in research, its applications generate excitement for the possibility of

expanding our current day knowledge of neuromuscular disorders and its effects in every day

life. For instance, surface electrogastrogram (EGG) was once deemed unusable until studies

involving multi-electrode arrays demonstrated the ability to monitor in ambulatory settings,

detect peristalsis, and categorize the level of severity in patients with functional Dyspepsia and

Gastroparesis, something even clinicians struggle to do [4, 5, 38, 49, 50, 51, 52]. In voice and

swallow ongoing studies demonstrate how HDsEMG, coupled with advanced signal processing,

can observe the dynamic interplay of laryngeal muscles and differentiation task-specific activities

during phonation and swallow [152, 153, 154, 155, 158, 157]. HDsEMG continues to demonstrate

its value in monitoring and decoding complex muscular activities without patient discomfort and

pain.

The level of information garnered from HDsEMG is paradigm shifting and will change

the future of HDsEMG applications in clinical and therapeutics settings. This dissertation will

investigate its applications for phonation and swallow. Chapter 2 demonstrates the work done in

applying HDsEMG for phonation analysis. In our first publication [25] (Ch 2.1) we demonstrated

our ability to differentiate the cricothyroid muscle from the strap muscle during phonatory tasks

and detect symmetric activation of the neck. Section 2.2 demonstrates our ability to differentiate

low and high pitch phonation, an ability that is diminished with reduced electrodes, illustrating the
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importance of a multi-electrode array. The ability to detect low and high phonation is significant

as we would expect this distinction to be reduced in unhealthy patients, and therefore can be used

as a metric to monitor treatment progression.

Chapter 3 of this dissertation investigates the application of HDsEMG for swallow analysis.

Two modalities were used: the first used a 20-channel HDsEMG to study salivary swallows,

once again demonstrating symmetry in lateral muscle activity and greater activation energy in

the upper rows of the array; the second used a 64-channel to investigate varying swallows using

five different swallow complexities: saliva, water, applesauce, fruit cup, and cracker. In this

paradigm, we once again find symmetric activity and greater upper-array activity, but we are also

able to differentiate the types of swallow. This is significant as we can use this assessment to

monitor treatment progression over time, improve therapeutic modalities, and provide an objective

assessment of swallow disorders.

Chapter 4 of this dissertation investigates the validation of HDsEMG through concurrent

needle and surface electromyography with recordings from the forearm. In efforts to further max-

imize patient comfort and long-term monitoring, the second half of this chapter will investigate

the use of flexible electronic sensors in the neck.
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Chapter 2

Phonation

2.1 High-Density Surface Electromyography: A Visualization

Method of Laryngeal Muscle Activity

2.1.1 Introduction

Laryngeal electromyography (EMG) is a well-established means to evaluate the neuro-

muscular activity of both intrinsic and extrinsic laryngeal musculature.[14, 15, 16, 32, 47, 57, 58,

61, 63, 64, 66, 84, 112, 141] Two modalities of EMG have emerged over decades of electrophysi-

ologic inquiry: invasive needle-based electromyography (nEMG) and surface electromyography

(sEMG).

nEMG is an invasive test, potentially uncomfortable for patients, and requires technical

skill for placement of electrodes and interpretation of tracings. In most cases, the duration of

inquiry is also limited due to the necessity of clinical and/or lab settings for needles or hook

wires to collect electrophysiologic signal.[32, 65] It is, however, an excellent test for identifying

morphological characteristics of the motor unit signal and has applicability in numerous clinical

scenarios.[14, 47, 57, 55, 61, 63, 64, 66, 78, 141, 111, 148] The placement of needle electrodes
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directly into target tissues by experienced operators affords confidence that the signal obtained is

reflective of the interrogated target muscle. Practical concordance between nEMG signals of the

same laryngeal muscle have been found to be 95% in experienced hands.[32] Although extremely

informative, it is not practical for widespread use due to the aforementioned limitations.

sEMG within the field of laryngology has been used for evaluation of laryngeal hyper-

function and swallow with inconsistent results.[10, 34, 67, 127, 139, 152] Surface EMG has a

number of limitations that impair signal detection: (1) impedance of the skin-electrode interface,

(2) distance between the myoelectric source and surface electrode, (3) lack of specificity due to

interposed or neighboring active muscles resulting in cross talk, and (4) limitations in the ability

to describe wave morphology.[37] Its appeal, however, is ease of use, patient comfort, and ability

to collect data over extended periods of time.

High-density sEMG (HD sEMG) has the potential to compensate for the previously

described spatial selectivity limitations by application of a large number of electrodes within

defined area. Each electrode results in a discrete detection volume defined by interelectrode

distance and electrode surface area. A multielectrode array that spans the anterior neck can

ensure a high number of electrodes concurrently capture the signal of interest during phonation.

Additionally, as detection volume decreases, the summative contents of the electromyographic

signal become more individualized. Although issues of impedance and identification of wave

morphology remain, high-density arrays potentially provide a means for differentiation of muscle

activation through electrode comparison. High-density arrays allow for evaluation of each point

in comparison to the other across phonatory tasks. Additionally, gross visualization of activity

can be intuitively displayed as power-density energy maps.[152, 153, 154] Task-specific muscle

activation is used to highlight differences between adjacent musculature. In this article, we

propose that we can differentiate cricothyroid (CT) muscle activity from rest, and that we can

identify different muscle activity patterns between low- and high-pitch phonation. Additionally,

we believe there to be a wide variety of diagnostic and therapeutic applications of this technology
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should the modality be adequately validated.

2.1.2 Materials and Methods

Figure 2.1: High-density surface electromyography array positioned on anterior surface of neck.
Central dot (between electrodes 10 and 11) indicates cricothyroid space. Inverted V inferior to
array indicates sternal notch. [Color figure can be viewed in the online issue, which is available at
www.laryngoscope.com.

Ten healthy adults (four females, six males, ages 22–51 years, median age = 33.4 years)

were enrolled. Inclusion criteria was greater than 18 years of age. Exclusion criteria included

a history of laryngeal pathology, a Voice Handicap Index (VHI-10) score of ¿10, subjective

dysphonia at the time of recording, previous neck surgery, or neurologic illness.

Ethical approval was granted for this study by the Institutional review board at University

of California, San Diego. All participants were seated in a 80 degree slightly reclined position

with the neck in slight extension to minimize strap muscle activity at rest. Surface landmarks,

specifically the cricothyroid space and sternal notch, were identified with digital palpation and

marked for reference. Skin preparation for all electrode sites included standard alcohol wipes

and exfoliating impedance-reduction gel (NuPrep Skin Prep Gel; Weaver and Company, Aurora,
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CO). Standard electrocardio monitoring electrodes (3 M Red Dot [REF: 2670-5]; 3 M, St. Paul,

MN) composed of silver/silver chloride were modified through circumferential removal of the

adhesive patch. Electrodes were organized to create a high-density, 20-channel array (five rows

by four columns) at 1.5 cm from each electrode center (electrode diameter = 5 mm). An occlusive

transparent dressing (Tegaderm; 3 M) was modified with a punch and template. The array was

centered on the CT space to ensure electrodes 10 and 11 were overlying the cricothyroid muscles

(Fig. 2.1).

Signal Acquisition

A differential amplifier (Brain Vision Device; BrainVision, LLC, Morrisville, NC) was

connected to the array, reference and ground electrode were placed overlying the volar surface

of the right forearm and left mastoid process respectively, and impedance values were recorded.

An audio prompt was played over a 5-minute period for each recorded task. Tasks included the

following: (1) rest, (2) low-pitch phonation, (3) high-pitch phonation. Subjects were able to

demonstrate adequate difference between low and high pitch as confirmed by the authors with

frequency analysis (Audio Frequency Counter; Keuwlsoft, London, United Kingdom). Each

task was paced to afford 5 seconds of phonation, on an /i/vowel, followed by 10 seconds of rest.

This was repeated for a total of 5 minutes, resulting in 20 recorded intervals of each phonatory

task for each participant. EMG data were recorded at a sampling frequency of 500 samples per

second using standard EMG recording software (Brain Vision Recorder; BrainVision, LLC). Data

were then transferred using EMG analysis software (Brain Vision Analyzer, v. 2.1; BrainVision,

LLC) to custom software written in Python programming language (Python Software Foundation,

Python Language Reference, v. 3.6.3, https://www. python.org/).
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Figure 2.2: Signal analysis method organized by key steps. EMG = electromyography; sEMG =
surface electromyography.

Signal Processing

Raw data were processed over a four-step workflow (Fig. 2.2). The average of all the

recordings for each dataset was used as a reference and subtracted from the original signals to

reduce ambient sources of noise common in all electrode sites.[87] During initial review of data it

was noted that in both low- and high-pitch recordings, periodic repetitions of 5-second phonation

followed by 10 seconds of rest manifested in oscillatory patterns. Signal analysis sought to

characterize EMG contraction only during phonation. Hence, only the segments of each task for

the rest, low pitch, and high pitch were considered. In addition, during the onset and offset of

phonation, muscles prepare to contract or relax, potentially producing large voltage alterations.

Therefore, only the central 3 seconds of each phonatory epoch were extracted. (Fig. 2.3).

Subtraction of rest data from low- and high-pitch data removed the spectral components

due to 60 Hz noise (created by the surrounding electrical environment), removed low-frequency

drift from electrode motion, and corrected for variability in noise between electrodes. From this,

we extracted the average power-density values across all frequency bands. After analysis, separate

energy animations of rest, low-pitch, and high-pitch phonatory tasks were created, representing

the entire recorded task (Fig. 2.4).
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Figure 2.3: Time series plot of signal from electrode 10 of subject 6. (Top) Tracing of a high-pitch
task over full 5-minute recording. Vertical dotted lines indicate 5-second phonatory interval.
(Bottom) Concatenated segments during high-pitch task. Three-second central intervals over 20
repetitions. sEMG = surface electromyography. [Color figure can be viewed in the online issue,
which is available at www.laryngoscope.com.]

Statistical analysis of power-density data from each electrode were compared by four

methods through one-factor analysis of variance (ANOVA) utilizing Fisher statistics and Pearson

coefficients of correlation. Statistical analysis was performed using Microsoft Office Excel

(Microsoft Corp., Redmond, WA). Graphical display utilized GraphPad Prism version 7.04

(GraphPad, San Diego, CA,). The first compared each electrode to every other electrode within

the same array within the same phonatory task. The second compared the same electrode to itself
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between phonatory tasks. The third compared the two left and two right columns by ANOVA

analysis. The fourth method compared the two left and two right columns for symmetry by

Pearson (r) correlation.

Figure 2.4: Voltage amplitude (µV ) energy maps demonstrate the relative intensity of muscle
activation within the coronally oriented spatial field. Red indicates increased muscle activation.
Blue indicates decreased muscle activation. These maps are representative samples from a
single moment in time during each task for subject 6. (A) Rest. (B) Low-pitch phonation. (C)
High-pitch phonation. [Color figure can be viewed in the online issue, which is available at
www.laryngoscope.com.]

2.1.3 Results

Enrollment VHI-10 scores ranged from 0 to 2, and 80% of subjects scored 0 of 40

reflecting healthy phonatory states. Three phonatory tasks (rest, low pitch, high pitch) resulted in

spatiotemporal matrices of average spectral power densities across the array. The values for each

electrode within the array were subsequently compared to evaluate for significant variance.

Each electrode was numbered and compared to every other electrode within the array for

the tasks of rest, low-pitch, and high-pitch tasking per subjects. Each electrode exhibited unique

power values despite the same task in 10/10 (100%) subjects (P < .001–.04), suggesting each

electrode is recording a unique underlying signal, despite the uniform task being performed by the

subject. Further evaluation compared each electrode to itself between phonatory tasks as follows:

15



Figure 2.5: Pearson (r) correlation of averaged data of all subjects by task and laterality demon-
strating symmetry across the overall array for all subjects. An r approaching 1.0 indicates strong
correlation.

rest to low, rest to high, and low to high, yielding rest versus low pitch (10/10, 100%, P < .001),

rest versus high pitch (10/10, 100%, P < .001), and low pitch versus high pitch (9/10, 90%, P <

.001–.085). Laterality of each array was then analyzed, anticipating symmetry in the context of

healthy participants. When the two left and two right columns of the array were considered, there

were no statistically significant variances in 9/10 (90%, P = .02–.94) of subjects during rest, 8/10

(80%, P = .03–.64)) during low-pitch phonation, and 10/10 (100%, P = .07–.91) during high-pitch

phonation. Pearson (r test) correlation additionally confirmed symmetry between the left and

right side at rest (r = 0.92, P < .001), low pitch (r = 0.89, P < .001), and at high pitch (r = 0.74,
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P = .015) (Fig. 2.5). Finally, most subjects, 8/10 (80%), demonstrated a pattern of high-pitch

phonation as the highest measured average power spectra compared to both rest and low-pitch

phonation (Fig.2.6 ).

Figure 2.6: Average power spectra for all subjects after isolation of phonatory data. Eight of 10
(overall) demonstrate a pattern in which high-pitchphonation resulted in the highest measured
amplitudes. HD sEMG = high-density surface electromyography. [Color figure can be viewed in
the online issue, which is available at www.laryngoscope.com]

2.1.4 Discussion

Laryngeal muscle function within the anterior neck is a complex and dynamic process,

summative of the interplay between both intrinsic and extrinsic laryngeal muscle activity.[63]

During phonation, these muscles may contract in isolation or in concert, depending on the task

and extent of recruitment in habitual, hyperfunctional, or hypofunctional states.[61, 67, 84, 139]
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sEMG has been explored in numerous medical applications (e.g., electrocardiography,

electroencephalography). Applications in laryngology have been varied and previously focused

on hyperfunctional disorders, dysphagia, and use as a biofeedback tool. [56, 58, 125] Prior

studies for laryngeal or anterior neck application have seen limited success with conflicting

data. [56, 58, 123, 124, 125, 126, 128, 159] One of the challenges of sEMG interpretation,

especially when only one or a few electrodes are used across a discrete surface area, is the

dynamic relationship of skin to underlying structures that occur with movement. This limits

interpretation due to uncertainties of muscle position. In other words, is the signal an accurate

reflection of activity or has the muscle of interest moved relative to the skin? An HD sEMG

array enables comparison of multiple sites and allows for improved spatial resolution. Further

visual representation of muscle activity within the anterior neck is possible through power-density

energy maps. [131, 152, 153, 159]

The CT muscle has been highlighted in this project due to its anterior position in relation

to the laryngotracheal apparatus and absence of overlying cartilage. Additionally, its increased

recruitment during high-pitch phonation allows for isolation during specific phonatory tasks.

As such, in this study, subjects were asked to maintain a target pitch above 300 Hz for males,

and 400 Hz females to ensure reliable CT activation. [69, 80] Contamination of signal by

muscles associated with swallowing was minimized, because concurrent swallowing would not

be expected within each central 3-second phonatory segment. Gross neck movement was limited

by volitional control and cervical support provided by the examination chair. Signal-to-noise ratio

(SNR) was reduced by subtracting the power spectral density of the rest task from that of the

corresponding low and high phonatory tasks. It is well established in signal detection theory that

that SNRs can be improved through evaluation of a repetition paradigm. Comparison of repeated

signal allows for noise variance reduction [46].

When electrodes were initially compared to one another within the array during the

same task, each electrode demonstrated unique power output. This indicated that each site
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was different from its counterparts within each task when comparing for difference in location

alone during the specific task. When each electrode was then compared to itself between tasks,

controlling for spatial location while changing the activity of underlying musculature, a significant

difference in power output was noted between rest versus low and rest versus high in all subjects.

When comparing low versus high, the majority still met statistical significance for variance,

demonstrating some loss in differentiation between low and high alone. This would be expected

compared to the stark contrast of rest and phonation, but demonstrated an ability to begin to

discriminate a difference between low and high phonation in comparison of power alone.

In this study, HD sEMG and power maps were used to identify CT muscle activation

preferentially during high-pitch phonation as compared to low pitch in nine of 10 subjects. It

is possible that in the remaining patient, the CT muscle was not adequately activated due to

subject compliance, or that the CT muscle in some individuals is just no more active in high-pitch

versus low-pitch voicing. We were also unable to account for potential contribution from the

intralaryngeal musculature during phonatory tasks as a result of the shielding provided by of the

thyroid cartilage.

Prior HD sEMG use on the anterior neck has been limited. The first publication of its use

focused on assessment of pharyngeal function during swallow of substances of different viscosity

[152, 154]. More recently, the same group, in a series of four patients, utilized high-density

arrays to evaluate energy distribution during vocal tasks. That study demonstrated identification

of muscle activity through evaluation of phonation at contrasting levels of loudness and pitch

glides [153] In all of these studies, there remain several limitations of HD sEMG that are inherent

to all forms of sEMG.

Impedance of the skin-electrode interface is a known limitation that negatively impacts all

forms of sEMG. Close adherence of the electrode grid to the contours of the anterior neck can

reduce interference. Even with high-level skin prep and careful electrode placement, this can

be a persistent problem. Specificity of muscle location and associated signal acquisition is also
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of concern. In this study, this issue is overcome by the broad acquisition area of the array and

preferential CT activation during high-pitched phonation. Strap muscle activation was reduced as

much as possible, with neutral supported head position during testing paradigms.

The next iteration of this study will include concurrent, fine-wire signal acquisition

to further support proof of concept. We also expect that acquiring data on individuals with

vagal lesions or high cervical plexus injury may allow for “knockout” conditions to allow for

visualization of discrete muscle function and dysfunction. We would emphasize that with the

current technology, specifics about wave morphology is not the goal of HD-sEMG. Rather,

its use is intended to be complementary to the finite morphological inquiry of nEMG. The

primary goal of this study’s utilization of HD sEMG is gross identification of muscle activity.

Analysis was focused on less-granular aspects of signal such as average power density and energy

map generation, but did not include a more detailed analysis of whether signalmorphology is

identifiable within the tracings. The authors believe that morphological description may be

possible through future iterations of array design and enhanced signal processing, but is beyond

current technologic capability of this device version.

Additional limitations of this study include a small sample size (n = 10). Due to technical

limitations, concurrent acoustic data were not captured with this subject series. Also, in their

current form, the electrode array profile and recording equipment are somewhat cumbersome

and would not be practical for extended durations. Future work could exploit recent develop-

ments in flexible and stretchable skin-mounted electronics [76] along with advances in scalable

fabrication procedures [73, 77], to produce high-density, high-fidelity, and minimally obtrusive

electrophysiologic monitoring systems.

Finally, we are excited by the ever-advancing field of machine learning. EMG tracings

have prominent potential as a medium of input given their characteristics [46]. We believe it

likely that subtle nuances that may be imperceptible to gross visualization within energy maps

and/or tracings could be used as a means to train a computer to recognize clinically meaningful
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data such as difference between recurrent laryngeal nerve, superior laryngeal nerve, or proximal

vagal nerve palsies.

Despite these limitations, HD sEMG represents an exciting new variant of surface elec-

tromyography. Its promise lies in the improvement on existing sEMG modalities to compensate

for spatial selectivity loss and to globally monitor the anterior neck function through a dense

electrode configuration. Potential application includes diagnostic utility to identify laryngeal

nerve injury in the absence of endoscopic capabilities, to compare hyperfunctional states, or as a

visual biofeedback tool during rehabilitative efforts.

2.1.5 Conclusion

We demonstrate an ability to identify differences of power spectra within an HD sEMG

array during rest, lowpitch phonation, and high-pitch phonation across all subjects. Regions

of increased power density during high-pitch phonation correspond to those electrodes most

likely to be overlying or adjacent to the cricothyroid muscle. Furthermore, review of energy

maps generated for each subject afford gross recognition of the cricothyroid activity within the

anterior neck. HD sEMG and derived 2D coronal energy map interpretation demonstrates exciting

potential for clinical application as a diagnostic tool, therapeutic monitoring device, and visual

biofeedback medium of the activity of infrahyoid and cricothyroid muscles.

2.2 Laryngeal High-Density Surface Electromyography for

Pitch Differentiation during Phonation

2.2.1 Introduction

Voice is produced by complex interactions between the larynx, pharynx, upper aerodiges-

tive tract, and respiratory system. This system can be adversely affected by a variety of disorders,
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leading to voice changes known as dysphonia. In the elderly, rates of dysphonia have been

reported from 20-47% [135]. These disorders can be debilitating and isolating [44, 88, 106] as

they can negatively impact an individual’s ability to communicate in person or via technology,

subsequently reducing quality of life. Hyperfunctional disorders (e.g. overuse or misuse of

voice muscles) and neurolaryngeal disorders (e.g. Parkinson’s disease or nerve injuries) account

for 18% of cases in the general population [22], but increases to 50% for those whose voice is

essential for their career such as educators [8].

With the advent of novel voice recognition technologies such as Microsoft Cortana and

Amazon Alexa, people increasingly use voice to complete tasks and transactions. However,

those with voice disorders struggle using such technologies as vocal challenges impact speech

patterns and lead to irregularity in pronunciations [95]. Deep learning tools, which power these

technologies, struggle to train on such unpredictable patterns limiting model robustness and fitting

interpretability. For example, although deep learning applied during vowel pronunciation has

shown promise as an objective classification of Parkinsonian voice [134] and two types of speech

dysphonia (laryngeal dystonia and muscle tension dysphonia)[114], its accuracy wavers with

different diagnoses and continuous speech [9, 86, 130]. Fundamental frequency (F0) is necessary

for acoustic analysis of voice but many dysphonic voices (∼80% of patients) lack a clear F0 [81].

This reduces the success rate and range of application for dysphonic acoustic models [82, 120].

Another key component missing in voice disorders is the “periodicity” of sound. This, coupled

with the lack of a F0, are setbacks for traditional acoustic analysis.

Similarly, in the clinic, evaluation of treatment outcomes and symptom progression

rely on invasive tools to visualize the muscles of the larynx, or through auditory assessment

of voice quality by the clinician [12, 13, 100, 129]. The invasive tools such as laryngoscopy,

videostroboscopy, and needle electromyography are uncomfortable and require a high degree of

technical expertise to use. This limits their application and are therefore not typically used. For

assessing improvements in voice quality during treatment, the “trained clinical ear” is considered
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the “gold-standard”.

Within the context of classifying speech disorders, solely using voice is complicated as

different disorders can share similarly perceived vocal changes and patients often unknowingly

overcome changes by activating other muscles. Needle electromyography (nEMG) is the di-

agnostic tool that can provide objective neurophysiologic data regarding laryngeal dysfunction

[14, 47, 55, 57, 61, 63, 64, 66, 78, 111, 141, 148]. However, it does not capture voice quality, is

invasive, uncomfortable for patients, and requires a high degree of technical skill for application

and interpretation. Therefore it’s likely a speech recognition approach that incorporates an un-

derstanding of physiologic changes underlying voice disorders is necessary to overcome these

performance limitations.

A non-invasive alternative capable of providing similar neuromuscular information, while

simultaneously performing voice acoustic analysis, will enhance our understanding of voice

disorders and their assessment. Such a tool would also improve our ability to design speech-

recognition technology that can better serve the voice disorder population. Studies have examined

surface EMG (sEMG) as a tool to diagnose hyperfunctional voice disorders, but with limited

success: none have found a significant difference between normal and pathological patients

[75, 123, 139]. Notably, these studies were limited by a low number of sensors, variability in

sensor placement, and lack of voice acoustic analysis, common issues among previous sEMG

applications for speech [123]. During speech, deep structures move in reference to the surface,

potentially confounding the specificity of signal collection. Additionally, when working with

the elderly population, skin naturally degrades and becomes fairly loose, leading to something

called a “goose-neck”. Therefore, even when a limited number of electrodes are placed correctly

over the muscles, over time and with physical activities, the skin will move around. High Density

Surface electromyography (HDsEMG), which places a dense array of sEMG electrodes over a

target muscle region, combined with voice acoustic analysis, is a non-invasive alternative that

may overcome this barrier.
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HDsEMG enables acquisition of spatiotemporal patterns allowing interelectrode compar-

isons to elucidate localized activity correlated to the muscles hypothesized to be active during

vocal tasks. In Section 2.1 [25], (Fig. 2.4) we demonstrated our ability to differentiate the

cricothyroid (CT) muscle from the strap muscle during phonatory tasks. This section aims to

build from Section 2.1 and perform pitch differentiation through HDsEMG.

In literature, it is typically believed that the CT muscle is more active during high pitch

phonation and during pitch modulation, whereas the laryngeal adductor muscles (Thyroarytenoid

(TA) and Lateral Cricoarytenoid (CA)) are believed to be more active during low pitch phonation

[18, 39, 60, 90, 119, 132]. However, due to the placement of the adductors muscles being

encapsulated by the larynx, the ability to record them from the surface of the skin is reduced.

Nonetheless, we hypothesized low-pitch and high-pitch activity are distinguishable through

HDsEMG. Section 2.2 explores how the spatio-temporal data from HDsEMG will allow for pitch

differentiation.

2.2.2 Materials and Methods

Eleven healthy adults (four females, seven males, ages 22–51 years, median age 33.4

years) were enrolled. Inclusion criteria was greater than 18 years of age. Exclusion criteria

included a history of laryngeal pathology, a Voice Handicap Index (VHI-10) score of >10,

subjective dysphonia at the time of recording, previous neck surgery, or neurologic illness.

Ethical approval was granted for this study by the Institutional review board at University

of California, San Diego. All participants were seated in an ∼80 degree slightly reclined position

with the neck in slight extension to minimize strap muscle activity at rest. Surface landmarks,

specifically the cricothyroid space and sternal notch, were identified with digital palpation and

marked for reference. Skin preparation for all electrode sites included standard alcohol wipes

and exfoliating impedance-reduction gel (NuPrep Skin Prep Gel; Weaver and Company, Aurora,

CO). Standard electrocardio monitoring electrodes (3 M Red Dot [REF: 2670-5]; 3 M, St. Paul,
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MN) composed of silver/silver chloride were modified through circumferential removal of the

adhesive patch. Electrodes were organized to create a high-density, 20-channel array (five rows

by four columns) at 1.5 cm from each electrode center (electrode diameter = 5 mm). An occlusive

transparent dressing (Tegaderm; 3M) was modified with a punch and template. The array was

centered on the CT space to ensure electrodes 10 and 11 were overlying the cricothyroid muscles

(Fig. 2.1).

Figure 2.7: Block diagram depicting the signal analysis workflow for pitch classification.

Signal Acquisition

The signal acquisition system, a differential amplifier (Brain Vision Device; BrainVision,

LLC, Morrisville, NC) was connected to the electrodes. The reference and ground electrode were

placed over the volar surface of the right forearm and left mastoid bone respectively. Impedance

values were recorded to be within acceptable values (<10 kΩ). For the experiment, an audio

prompt was played over a 5-minute period for each recorded task. Tasks included the following:

(1) rest, (2) low-pitch phonation, (3) high-pitch phonation. Subjects were able to demonstrate

adequate difference between low- and high-pitch as confirmed by the authors with frequency

analysis (Audio Frequency Counter; Keuwlsoft, London, United Kingdom). Each task was paced

to afford 5 seconds of phonation, on an /i/vowel, followed by 10 seconds of rest. This was

repeated for a total of 5 minutes, resulting in 20 recorded intervals of each phonatory task for each

participant. EMG data were recorded at a sampling frequency of 500 samples per second using

standard EMG recording software (Brain Vision Recorder; BrainVision, LLC). Data was then
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Figure 2.8: Top: Signal tracings depicting all 20 channels during low-pitch phonation. Note
the smaller amplitudes of oscillation. Bottom: Signal tracings depicting 20 channels during
high-pitch phonation. At this point the oscillatory activity resembles a square wave like quality
and has greater amplitudes in certain channels (e.g. Channel 11).
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transferred using EMG analysis software (Brain Vision Analyzer, v. 2.1; BrainVision, LLC) to

custom software written in Python programming language (Python Software Foundation, Python

Language Reference, v. 3.6.3, https://www. python.org/).

Figure 2.9: A high pitch phonation from a single subject demonstrating the 10 seconds of rest
followed by 5 seconds of phonation. This cycle of 15 seconds appeared with greater amplitudes
in channels believed to sit over the laryngeal muscles.

Signal Processing

During initial review of the data it was observed that in both low- and high-pitch recordings,

periodic repetitions of the 5-second phonation followed by 10-seconds of rest manifested in

oscillatory patterns. These oscillatory patterns had greater amplitudes in electrodes nearest the

region of the laryngeal muscles (Fig. 2.8). This oscillation had a cycle of 15 s, or an engineered

frequency of 0.067 Hz, due to the 10 s of rest followed by 5 s of phonation (Fig. 2.9). Making

use of this engineered frequency, a novel method of artifact rejection was implemented [51] after

a low-pass butterworth filter with a cut-off frequency of 3 Hz. Following artifact rejection, the
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data was standardized using Z-normalization. The trapezoidal rule was used to calculate the area

under the curve only during phonation segments. This provided a total of 20 different areas, one

per repetition, for each of the 20 electrodes. Fig. 2.7 illustrates a block-diagram of the processing

used.

Log Likelihood Ratio Test

This data set contains 11 subjects, 3 phonation tasks (rest, low-pitch, and high-pitch), 20

channels, and 20 repetitions (or trials) of each tasks. Considering how the spatial patterns of

activation change during different phonations, we deem it sensible to estimate the distribution

of activity in different phonations and use them to perform hypothesis testing. In doing so,

this provides an approach to classify the phonation from the spatial patterns extracted from the

HDsEMG.

Our logic is as follows: the adductors are active during phonation, while the CT muscles

are active during high-pitch phonation and pitch changes. Therefore, during rest, the array should

capture minimal activity from both muscle groups. During low-pitch phonation, the array will

only capture activity in the adductor region. During high-pitch phonation, we expect both both

muscle sets should be active. This is further explained in Fig. 2.10 and Table 2.1.

We can now solve a statistical distribution for each of the tasks: Prest is our distribution for

the data at rest, Plow is the distribution for the data during low-pitch, and Phigh is the distribution

for the data at high-pitch. Our hypothesis is that in healthy subjects, the distribution of Rest

should not equal that of Low nor high, nor should the distribution of low equal that of high.

Therefore our null hypothesis is essentially: Prest = Plow = Phigh. This is detailed in Table 2.2.
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Figure 2.10: A) Illustration of the CT and adductor muscle sets in their respective region. B)
During rest, both muscle sets are expected to produce little to no activity, hence the red color. C)
During low-pitch activity, the CT muscles (red) are expected to be minimally active, while the
adductors (green) are producing high activity. D) During high-pitch activity, both muscle sets are
expected to be active (green).

Table 2.1: During rest, energy from both muscle sets should be low. During low-pitch phonation,
energy detected from CT region should be low, while adductor region should be high. During
high-pitch phonation, energy from both regions should be high.

Phonation: Rest Low-Pitch High-Pitch
Region: CT Adductors CT Adductors CT Adductors

Energy: low low low high high high

Table 2.2: Binary hypothesis testing for phonation. We have three statistical tests to perform:
1) a test pertaining to Prest = Plow, 2) a test pertaining to Plow = Phigh, and 3) a test pertaining
Prest = Phigh.

Test: Prest = Plow Prest = Phigh Plow = Phigh

Expected: No No No

We assume each of the m trials are length 20 vectors and are independent and identically dis-

tributed. Therefore we define the channels across the 20 m trials as: v(1),v(2), . . . ,v(m), where

each v(i) is length 20.

After mean-centering, the covariance structure K̂ and mean µ is estimated as:

K̂ =
1
m

m

∑
i=1

v(i)v(i)
T

µ =
1
m

m

∑
i=1

v(i)
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Assume each v(i) is a sample from a N (µ, K̂), given by the Gaussian random vector distribution

N (µ,K), given by

f (u) =
(

1√
2π

)20 1√
det(K)

exp
(
−1

2
(u−µ)T K−1(u−µ)

)
.

We then use the above procedure to compute µhigh, K̂high and similarly µlow, K̂low.

Using the Leave-One-Out Cross-Validation method, we train with 19 phonation trials, and leave

one out to test with. We then shift through these combinations so that each trials is left out once

to test. Using the vectors that were left out, we now test the log likelihood ratio test (LLR):

LLR(u) = log fhigh(u)/ flow(u)

= log


(

1√
2π

)20
1√

det(K̂high)
exp
(
−1

2(u−µhigh)
T K̂−1

high(u−µhigh)
)

(
1√
2π

)20
1√

det(K̂low)
exp
(
−1

2(u−µlow)
T K̂−1

low(u−µlow)
)


=
1
2

logdet(K̂low)−
1
2

logdet(K̂high)−
1
2
(u−µhigh)

T K̂−1
high(u−µhigh)

+
1
2
(u−µlow)

T K̂−1
low(u−µlow)

The LLR values were then put through a Receiver Operating Character curve.

2.2.3 Results

Qualitative inspection of the data demonstrates activity specific to channels, during certain

tasks. Additionally the amplitudes increased when nearest the laryngeal region. Though channels

10 and 11 were placed over the symmetric CT muscles, these channels did not always record the

greatest amplitudes. These shifts varied between subjects with no discernible pattern between

tasks.

Regarding pitch differentiation, two different ROC curves were obtained. The first used
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the features from the entirety of the multi-electrode array as shown by Fig.2.11, Top. This first

ROC demonstrated a distinction between low- and high-pitch phonation in all subjects with an

area under the curve (AUC) of 0.97. The second ROC (Fig.2.11, Bottom) was calculated using

only two electrodes over the general CT location to replicate what one might do in traditional

sEMG [123, 126]. This ROC curve demonstrated greater variation between subjects with a

lowered AUC of 0.77.

Figure 2.11: Top: ROC curve with an AUC = 0.94, obtained using all the channels. Bottom:
ROC curve obtained with only two channels, replicating one of the traditional configurations of
laryngeal sEMG.

2.2.4 Discussion

There is no doubt regarding the complexity of voice disorders which has limited our

ability to implement non-invasive tools for assessment and monitoring of treatment progression

over time. When studying such a dynamic region, neuromusuclar information is needed to

distinguish between disorders and phonation activity. Though nEMG provides the needed

muscular information, it is uncomfortable and requires a high-level of expertise to administer.
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Acoustic analysis of dysphonic voice has been promising, but its applications are limited to

specific disorders and does not provide muscular information. A non-invasive alternative capable

of providing similar neuromuscular information, while simultaneously performing voice acoustic

analysis, will enhance our understanding of voice disorders and improve their assessment. Such a

tool would not only improve assessment of voice disorders, but also our ability to design speech

recognition technology that can better serve the voice disorder population.

This study sought to investigate the ability of HDsEMG to classify low vs high-pitch

phonation. The CT and adductor muscles have been highlighted in this project due to their roles

in high and low-pitch phonation. Additionally, the CT muscles’ relative closeness to the skin,

and increased recruitment during high-pitch phonation, allows its isolation during high-pitch

phonation. Subjects were asked to maintain a target pitch above 300 Hz for males, and 400 Hz

females to ensure reliable CT activation [69, 80]. Crosstalk contamination by muscles associated

with swallowing was minimized since concurrent swallowing would not be expected within each

central 5-second phonatory segment. Large neck movements were limited by volitional control

and cervical support provided by the examination chair.

The multi-electrode array (MEA) was centered such that electrodes 10 and 11 rested

over the CT muscle. Despite this placement, these electrodes did not always record the greatest

amplitudes during phonation. The largest recorded amplitude shifted without discernible pattern

in both low and high-pitch phonation. This confirms inconsistencies associated with traditional

laryngeal sEMG. Without a MEA, the traditional set-up comprised of a few electrodes runs the

risk of missing the phonation activty due to natural movements of the larynx, neck, and crosstalk

contamination. HDsEMG enables the use of spatio-temporal data to locate the muscles of interest

during tasks in which only those muscles are active.

This is further exemplified in the ROC results. The HDsEMG ROC curve had an AUC of

0.97. Across subjects, the AUC range was 0.93 - 1.0. The ROC from two channels, mimicking

traditional sEMG, had an AUC of 0.77. There was greater subject variability in AUCs, ranging
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from 0.51 - 0.99. An interesting observation is that Subjects 4, 7, 8 had low SNR and low

amplitudes during phonation across tasks. Nonetheless, through HDsEMG, their ROC-AUCs

were 0.99, 0.93, and 0.95 respectively. However their AUC dropped to 0.65, 0.7. and 0.51

respectively in the 2-ch ROC. This leads us to believe signal quality has a greater impact in

traditional sEMG. It would be interesting to observe how SNR impacts classification in a future

study.

Limitations of this study include a small sample size (n = 11) and lack of concurrent

acoustic data. Additionally, in its current form, the electrode array profile and recording equipment

are somewhat cumbersome and would not be practical for extended durations or ambulatory

settings. Future work could exploit recent developments in flexible and stretchable skin-mounted

electronics [76] along with advances in scalable fabrication procedures [73, 77], to produce

high-density, high-fidelity, and minimally obtrusive electrophysiologic monitoring systems. This

is explored in its infancy during Section 3.2.

Despite these limitations, HDsEMG represents an exciting new variant of surface elec-

tromyography. Its promise lies in the improvement on existing sEMG modalities to compensate

for spatial selectivity loss, signal quality, and to globally monitor the anterior neck function

through a MEA. Potential application includes assessment utility to identify laryngeal nerve

injury in the absence of endoscopic capabilities, to compare hyperfunctional states, or as a visual

biofeedback tool during rehabilitative efforts.

2.2.5 Conclusion

Spatiotemporal data from HDsEMG allows us to classify low- versus high-pitch phonation,

across all subjects, an ability that is reduced without the MEA. In the future, combining these

space and time-varying HDsEMG features with voice recording waveforms will allow binary or

multi-class characterization of vocal dysfunction across voice disorders. In addition, features

learned in pathology characterization may be utilized, through transfer learning, to improve
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existing voice recognition paradigms (e.g. Apple Siri, Google Alexa). Transfer learning involves

the use of information learned in one classification task for a separate but related task, typically

enabling breakthrough performance [6, 70] and in this case addressing the vulnerabilities in

existing voice recognition technology. Furthermore, state space modeling can characterize

relationships between features of voice recordings and the underlying latent state, HDsEMG

[79, 113]. With these relationships, voice classification tasks can be performed even when only

voice recording data is available, thus widely extending the reach of our applied methodology.
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Chapter 3

Swallow

3.1 High Density Surface Electromyography: Introductory

Applications to Dry Swallow Analysis

3.1.1 Introduction

Swallowing is a complex neuromuscular process critical to successful oral intake. Im-

paired swallow function has a physiologic and psychologic impact on health and quality of life

with a lifetime incidence of nearly 38% [107]. In the U.S.A. alone, nearly 10 million adults

reported symptoms of dysphagia, of whom only one-fifth sought care and only 37% were given a

diagnosis [99, 107]. The most common causes of dysphagia occur as a consequence of stroke

(11.2%), neurologic disorders (7.2%), and head and neck cancer (4.9%) [21].

Current oropharyngeal swallow function assessment involves behavioral and instrumented

examination. Common modalities of objective swallow assessments include endoscopic analysis

and contrast fluoroscopy, which can be considered a standard method due their prevalence

in clinical care and diagnosis. Additional procedures that provide a quantitative approach to

physiological inquiry during swallowing include pharyngeal manometry, electromyography,
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electroglottography, and mechanomyography [12, 29, 34, 116, 138] While these distinct methods

provide a broad collection of tools for diagnostic inquiry, only electromyography provides a direct

measurement of neuromuscular activity and ensures immediate access to muscular health data.

This is vital to move forward with the diagnosis and treatment of disorders such as dysphagia.

Electromyography applications towards swallowing assessment has an increasing body of

literature investigating both invasive and noninvasive methods of measurement [10, 35, 41, 107,

136]. Needle electromyography (nEMG), a method commonly used to analyze laryngeal function

remains the gold-standard for quantitative EMG due to its ability to identify discrete motor unit

action potentials and waveform morphology. This specificity of signal is achieved through small

detection volumes and directed anatomic placement. Therefore the recorded electromyographic

measurement is thought to specifically correlate to the intended muscle. Despite this specificity, it

is not a practical method for widespread clinical use in swallow evaluation due to the challenges of

analyzing concurrent target muscles required for a comprehensive study, the technical challenges

with accurate needle placement, the discomfort experienced by patients on insertion, and the

inherent limited duration of inquiry secondary to its indwelling nature. Surface electromyography

(sEMG) of the neck during swallow introduces a non-invasive method and has been typically

performed via bipolar electrode configurations. This modality yields an output of myoelectric

signal intensity, which is the sum of individual source voltages captured beneath the electrode on

the area of interest. The non- specific summative nature of traditional bipolar sEMG, compounded

by the neuromuscular density of the anterior neck, is a concern. Overlapping of relatively

small muscle bodies coupled with the dynamic relationship of muscles-to-skin surface change

during swallow can increase the likelihood of inadvertently recording adjacent muscle activity.

This phenomena known as “cross talk” can confound the interpretation of individual signal

sources. A more comprehensive consideration of limitations include: (1) impedance of the

skin-electrode interface, (2) distance between the neuromuscular junction (NMJ) and electrodes,

(3) lack of specificity due to interposed or neighboring active muscles, (4) dynamic changes
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between superficial and deep structures during activation and rest, and (5) limitations in the ability

to describe wave morphology [37].

Here we utilize 20-channel HDsEMG arrays to evaluate the anterior neck during dry

swallow tasks. This study aims to show proof-of-concept that HDsEMG can be utilized to

capture electromyographic swallow data and provide additional spatiotemporal information not

available with current bipolar configurations or non-EMG approaches (i.e. behavioral evaluation,

endoscopy, fluoroscopy, or high resolution manometry). Along with diagnostic applications and

further development of the proposed tool to measure anterior neck muscular function during

swallowing, we may be able to use this tool for rehabilitative and biofeedback applications. This

manuscript represents the first step in evaluating HDsEMG as a new method in diagnosis and

management of dysphagia.

3.1.2 Materials and Methods

Ethical approval for this study was granted by the Institutional Review Board at the

University of California, San Diego (IRB # 161477). Ten healthy adults (3 females, 7 males,

ages 22 -51yrs, median 33.4 yrs) were enrolled. Inclusion criteria was greater than 18 years of

age. Exclusion criteria included a history of dysphagia, dysphonia, previous neck surgery, or

neurological illness.

To minimize strap muscle activity at rest, all participants were seated in a semi-reclined

position (∼ 20 degrees from vertical) with the neck in slight extension and supported. The

cricothyroid (CT) space was identified with digital palpation and marked as a reference point

for grid orientation. Skin preparation with standard alcohol wipes and exfoliating impedance-

reduction gel (NuPrep Skin Prep Gel, Weaver and Company, Aurora, Colorado, USA) was

performed across the entire anterior neck.

A high density 20- channel array was fabricated from standard electro-cardiac monitoring

electrodes (3M Red Dot (REF: 2670-5), St. Paul, Minnesota, USA) composed of silver/silver
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chloride. Electrodes were organized into 5 rows and 4 columns at 1.5 cm from each electrode

center (electrode diameter 1 cm). An occlusive transparent dressing (Tegaderm™, 3M Medical,

Global) was modified with a punch and template to allow for exact confirmation to each electrode.

The array was centered on the CT space, with electrodes 10 and 11 overlying the cricothyroid

space. Electrodes 1-4 approximated the hyoid bone (Fig. 3.1).

Figure 3.1: 20-channel array oriented such that its center overlayed the cricothyroid space. Row
1 (electrodes 1-4) cranially oriented and juxtaposed to the hyoid bone.

Signal Acquisition

The HDsEMG array used a differential amplifier (Brain Vision Device, BrainVision, LLC,

Morrisville, North Carolina, USA) sampling at 500 Hz with a reference and ground electrode

placed over the volar surface of the right forearm and left mastoid process respectively. Subjects

were asked to perform self-paced dry swallows over an interval of 1 minute. Subjects were
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careful to limit mouth opening, maintain neutral neck positioning, and refrain from phonation

during recording. The number of swallow events and time of occurrence was noted grossly by

observation of the subject. Recorded data was transferred to EMG analysis software (Brain Vision

Analyzer, v. 2.1, BrainVision, LLC, Morrisville, North Carolina, USA) and subsequently to

custom software written in Python programming language (Python Software Foundation, Python

Language Reference, v. 3.7.1).

Signal Processing

Raw data was processed with a workflow composed of four key steps. First, a high-pass

filter (20 Hz) and notch-filter (60 Hz) were applied to remove cardiac myoelectric activity and

powerline noise respectively. The root mean square (RMS) of recorded voltages was obtained

and a linear envelope was generated using a window size of 1 ms and a cutoff frequency of 3 Hz

[144]. A threshold of EMG voltage deflection of greater than 3 standard deviations above a rest

baseline was used to define onset. Offset was defined as a greater than 3 standard deviation return

to rest baseline within each channel [10, 29, 30]. Onset and offset points were used to separate

RMS voltage data into rest and swallowing epochs. Data analysis was only performed on the

resulting swallowing epochs for each channel.

Data output included average and maximum voltage amplitudes (microvolts) and signal

duration (milliseconds) at each electrode within the array. Statistical analysis of voltage data

included one and two factor Analysis of Variance (ANOVA) and Pearson’s coefficients of correla-

tion. Statistical analysis was performed using Microsoft Office Excel (Microsoft Corporation,

Redmond, WA, USA) and GraphPad Prism (GraphPad, v7.04, San Diego, CA, USA). Statistical

analysis was performed in 3 groups: (1) Comparison of each electrode to all other single elec-

trodes within the array for each subject. This was performed across successive swallow events for

the purpose of assessing signal heterogeneity. (2) Comparison of row 1 (electrodes 1 – 4) and

row 3 (electrodes 9-12) for the purpose of cranial – caudal axis comparison. (3) Comparison of
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columns 1 and 2 against columns 3 and 4 as left and right columns respectively for the purpose of

evaluation of signal symmetry in normal subjects.

For the purpose of generating activation “energy maps”, power density was calculated

through analysis of RMS change over the cross sectional area with respect to time. A blue-to-red

color gradient was assigned to power density values during animation of signal data for ease of

muscle activity visualization.

3.1.3 Results

A 20-Channel HDsEMG array provided EMG data of swallowing events in 3 categories

of inquiry: (1) signal heterogeneity within subjects across the same electrodes; (2) cranial-caudal

axis variation; (3) and signal symmetry within the swallows of the same subject. These conditions

were chosen for the purpose of: (1) monitoring instances of EMG change or variation within

the same swallow task with respect to the “perspective” of each electrode’s detection volume

over consecutive swallows; (2) to monitor possible association of suprahyoid musculature to

pharyngeal swallow; and (3) to evaluate the presence of signal similarity with respect to laterality

in normal individuals.

Voltage outputs were not statistically significant for variance within subjects over con-

secutive swallows. The same recorded electrode for the same subject was similar and relatively

homogeneous (p=0.25). Evaluation of voltage difference with respect to cranial and caudal signal

acquisition perspective amidst the array used row 1 (electrodes 1-4) and row 3 (electrodes 9-12).

In 70% (7/10) of subject swallows, cranially oriented row 1 demonstrated greater voltage average

amplitude for each swallow compared to the caudally oriented row 3 during each swallow event

(Fig. 3.2). The correlation of left and right laterality, or symmetry of each array, was analyzed

comparing 20-channel electrode columns 1-2 vs 3-4. Pearson’s correlation (values of r=0.88-0.97)

demonstrated symmetry in 90% of subjects across all swallows (Fig. 3.3). While not a primary

output, the comparison of the onset/offset time periods as defined electromyographically for each
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Figure 3.2: Cranio-caudal comparison of average voltage output for each electrode across
swallows for each subject. Comparison of row 1 (electrodes 1-4) and row 3 (electrodes 9-12).

dry swallow showed a mean duration of 2.1 - 5.2 seconds (average 3.27 seconds). Statistically

significant outliers of single event durations were noted in Subjects 4 and 8 (standard deviation of

3.7 and 2.6) with maximum durations of 13 and 8 seconds respectively. The average swallow

duration for subjects 4 and 8 though were 4.9 and 3.5 seconds respectively.

Finally, voltage data over time was used to generate dynamic RMS power energy maps to

allow for gross visualization of muscle activity within the array (Fig. 3.4). These energy maps

were used to grossly visualize the area of maximal muscle activity and transit across the array

during single swallow events.

3.1.4 Discussion

Swallowing is a highly coordinated neuromuscular process involving the interplay of

multiple muscle groups concurrently and sequentially. The extent and order of neuromuscular
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Figure 3.3: Comparison of laterality, or symmetry of muscle activity, for all swallows by subject.
Right represents columns 1-2 and Left represents columns 3-4.

Figure 3.4: Power density, or energy map, for subject 2 over a single swallow events. Note
cranial dominant array activity. Signal originates cranially and centrally with lateral spread and
the resolution back towards cranially oriented center.

activation is commonly altered by neurologic illness, stroke, iatrogenic manipulation or injury

during surgery. sEMG offers a convenient, non-invasive, and time-efficient manner of studying

such changes in neuromuscular activation. To date, it has been used to study hyper-functional
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laryngeal disorders, dysphagia, applied as a biofeedback tool [56, 59, 124, 125] and allowed

comparisons of laterality, symmetry, and pattern of neuromuscular activation. Despite such

advancements, sEMG has struggled to secure a foothold as a robust method for swallow analysis

[41, 71, 117, 140, 142] due to a distinct set of limitations involving skin-to-electrode impedance,

risk of signal cross-talk, and diminished electrode-to-target muscle specificity.

In an effort to address some of the limitations of bipolar sEMG, high-density surface

electromyography (HDsEMG) uses an array of electrodes, each with their own small detection

volumes that provide simultaneous recording of muscle activity in a broad region of interest.

Each electrode’s discrete detection volume is defined by interelectrode distance and electrode

surface area. Consider that as detection volume decreases, the summative contents of each

electromyographic signal become more individualized, allowing for interelectrode comparison.

This ability to compare in a spatial and temporally oriented means across fixed points with known

orientation to surface anatomy demonstrates potential benefit of high-density configurations.

Given the dynamic nature and muscle recruitment patterns during normal physiologic swallow,

increased spatial resolution is critical towards accurate interpretation of muscle activation during

swallow events. While limitations of skin impedance, NMJ depth, and reliable wave morphology

detection remain, HDsEMG provides a means for differentiating muscle activation in a dense

neuromuscular region through increased spatial resolution of detection [25, 37, 152, 153, 154,

156].

In this study, ten patients performed sequential self-paced dry swallows with 20-channel

HDsEMG data revealing consistent signal activity within subjects, greater cranial vs caudal array

activity, and symmetric laterality of activity, and similar swallow durations. Each dry salivary

swallow resulted in similar voltage outputs from the perspective of each discrete detection volume

for the same subject. Greater degrees of variation were noted when comparing the same electrode

across subjects. As each individual is hypothesized to have variable NMJ density and anatomical

correlation, inter-subject variation would be expected.
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Greater voltage activity in the upper rows was seen across the majority of swallows. We

hypothesize this to correlate to suprahyoid muscle activity. This muscle group, known to be

prominent during hyolaryngeal elevation, is located above row 1 and more superficially oriented

compared to other muscles groups activated during swallow. It may be a dominant contributing

EMG source within its summative detection volume.

Symmetry analysis, or the ability to discriminate sEMG signal laterality, is critical to

clinical applications given the common occurrence and functional effects of pharyngeal or strap

muscle paralysis, or paresis, in disorders of swallowing. All subject trials demonstrated symmetry

in physiologic activity grossly. A confluence of factors may lead to isolated asymmetry over a

series of repetitions. Asymmetry in isolated occurrences may represent a normal variant within

the healthy adult population and should be considered in further studies. Pathologic conditions,

such as unilateral high vagal injury and hemispheric stroke, would provide unique opportunities

to enhance the system’s ability to identify clinically meaningful laterality differences. These

findings are consistent with prior work noting high concordance of muscle activation with regards

to laterality [154].

Previous authors have defined an electrophysiologic single swallow event by a myoelectric

onset and offset. Swallow onset was defined as an increase in voltage greater than a predetermined

standard deviation (SD) above rest. Offset was defined by return to resting voltage [30, 34, 138].

The durations between onset and offset during swallow, defined by the method stated above,

are longer than standard accepted physiologic norms of approximately less than 1 second. The

physiologic duration of the pharyngeal phase of swallow is readily visualized by current modalities

of radiographic or endoscopic inquiry. In our study the onset and offset of swallow was defined by

deflection in an electromyographic baseline, likely to occur both in preparation and after the event

itself, and may augment the duration defined through gross visualization alone. Two subjects

demonstrated a greater variability in duration between their own swallow events, indicating that

this may indeed vary to a greater degree within a larger patient cohort or even for an individual
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from swallow to swallow.

HDsEMG also lends itself towards intuitive visualization via power density energy maps.

Points of maximum muscle activity were indicated by a “red-out” of the spatial grid (Fig.

3.4). Central tendency of myoelectric source and gross symmetry were noted. Further analysis

techniques are needed for evaluation of power density maps for this purpose. This would include

determination of ideal sampling frequency, definition of critical thresholds and correlation to that

currently reported in bipolar systems. It is likely that these “maps” may be the most clinically

relevant components when considering HDsEMG as a tool for visual biofeedback and therapeutic

patient driven application.

Limitations of this study include its sample size, variable swallow bolus volume, and vari-

able subject self-pacing of swallows. Additionally, the array may have presented conformational

challenges in approximating the neck surface contour, which may yield outliers or artifactually

decreased amplitudes secondary to variable electrode-to-skin surface interface. While HDsEMG

lends itself to collection of signals over a defined region, it needs to be compared to needle EMG

in order to properly understand the source of recorded myoelectric data and its representation of

the muscles of interest.

HDsEMG array profiles and recording equipment remain cumbersome and not practical

for extended recording periods in its present form. Future work will exploit recent developments

in flexible and stretchable skin-mounted electronics along with advances in scalable fabrication

procedures to produce high-density, high-fidelity, and minimally obtrusive electrophysiologic

monitoring systems [73, 76]. In addition, further investigation towards the application of statistical

learning techniques such as EMG signal decomposition, pattern recognition, or wavelet analysis

for higher degrees of quantitative comparison and attempts to approximate the strengths of needle

EMG are critical [36, 48, 118, 147]. Signal quantity and pattern characteristics of HDsEMG

output lend themselves well to concepts in machine learning and are a focus of additional ongoing

work.

45



3.1.5 Conclusion

HDsEMG represents an exciting new variant of surface electromyography. Its promise

lies in improving existing sEMG modalities to compensate for spatial selectivity loss and to

globally monitor the anterior neck for function through a dense electrode configuration over

broader surface areas. Here, we demonstrate an ability to identify differences in voltage within

an HDsEMG array during swallow events. Cranial aspects of the array demonstrated higher

voltages consistent with the expected region of suprahyoid muscle activation during pharyngeal

swallow. Symmetry is commonly seen between the left and right of the array in healthy subjects.

Looking forward, there are numerous potential applications ranging from neuro-diagnostics to

biofeedback monitoring for rehabilitative tasks. With the addition of machine learning paradigms,

this technology holds significant promise to develop into a powerful clinical and diagnostic tool

[36, 48, 118].

3.2 From Thin Liquids to Dry Solids: Classification of Com-

plex Swallows using Laryngeal High-Density Surface Elec-

tromyography

3.2.1 Introduction

Swallow dysfunction may be caused by a variety of issues such as aging, neurologic

disorders, stroke, and cancer [21]. Issues in swallowing have both a physiologic and psychologic

impact on the patient’s health and quality of life [99, 107]. Dysphagia, or the diminished ability to

swallow, restricts the patient to certain types of food and methods of eating, limiting their ability

to lead independent and socially active lives. Additionally, dysphagia may become detrimental

or life threatening to patients as they are at risk for aspiration, pneumonia, and malnutrition
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[40, 143]. In the elderly population, the rate of dysphagia has been reported from 14-38%

[135]. In children, prevalence of dysphagia is difficult to estimate due to the lack of standardized

assessment procedures and variable definition of dysphagia for children [12].

Management of dysphagia relies on medication, surgery, or Botox injections to treat the

underlying cause of uncoordinated muscles. In a subset of the population, speech-language

pathologists often use swallow therapy as a common treatment option for dysphagia. Patients

are often asked to perform certain maneuvers or exercises to assist their swallowing. Others

may swallow substances of various consistencies that range from thin liquids to extremely thick

liquids. However, it lacks a non-invasive and easy-to-use objective measurement of treatment

success or patient compliance. Additionally, its effectiveness seems to vary with the underlying

disorder and types of therapeutic treatments [11, 19, 20, 31, 53, 72, 97, 108].

Biofeedback may be a recommended addition for swallow therapy to aid with error-based

learning [20]. A typical biofeedback tool is surface electromyography in which the subject

is asked to reach a set amplitude threshold during their swallow. The idea is that the signal’s

amplitude will increase with increased muscle contraction force [20, 33]. However, its efficacy

remains an ongoing question due to limitations in existing objective and non-invasive monitoring

modalities. Additionally, traditional sEMG is not capable of distinguishing individual muscles

[34, 37] and is faced with additional limitations. There is a lack of standardization in terms of

the number electrodes used, the location where electrodes are placed, and the mechanism of data

acquisition and processing [23, 26, 30, 91, 122, 136, 151]. These issues prevent sEMG from

addressing the unmet need for a non-invasive system capable of objectively monitoring patient

compliance and treatment progression over time. Such information would allow patients and

clinicians to better understand the swallow disorder and better treatment options. A solution may

lie with high-density surface electromyography (HDsEMG) through spatiotemporal data analysis.

HDsEMG has been used extensively in other physiological regions for effective muscle

disambiguation [37]. It is important to note that with the neck, we are dealing a multiple
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overlapping muscles, of various sizes, which are dynamically contracting at different points in time

to allow the food bolus to travel from the mouth to the esophagus. In voice and swallow, ongoing

studies demonstrate how HDsEMG, coupled with advance signal processing, can observe the

dynamic interplay of laryngeal muscles and differentiate task-specific activities during phonation

and swallow [25, 152, 153, 154, 155, 158, 157]. HDsEMG continues to demonstrate its value

in monitoring and decoding complex muscular activities without patient discomfort and pain.

Advances in signal processing and statistical learning of physiological signals have improved

their health care applications [43, 1, 101, 2, 3, 104, 94, 7, 145] leading us to believe HDsEMG

will be an effective monitoring option for swallow disorders in the clinic and therapy.

This paper explores the use of HDsEMG to classify swallows of various textures and

complexities ranging from thin liquids to dry solids. If successful, HDsEMG holds the capacity

to serve as an objective measurement of patient compliance. Through HDsEMG, we will be able

to monitor changes over long periods of time and understand a patient’s progress with physical

therapy. HDsEMG may pave the way for future diagnostic applications such as a secondary

evaluation in emergency rooms following a stroke for unilateral nerve paralysis and vocal fold

paralysis.

3.2.2 Materials and Methods

Ethical approval for this study was granted by the Institutional Review Board at the

University of California, San Diego (IRB # 161477). Three healthy adults (1 female, 2 males,

ages 20 - 40 yrs, average 25.7 yrs) were enrolled. Inclusion criteria was greater than 18 years

of age. Exclusion criteria included a history of dysphagia, dysphonia, previous neck surgery, or

neurological illness.

To minimize strap muscle activity at rest, all participants were seated in a semi-reclined

position (∼10 degrees from vertical) with the neck in slight extension and supported. The cricothy-

roid (CT) space was identified with digital palpation and marked as a reference point for grid
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orientation. Skin preparation with standard alcohol wipes and exfoliating impedance-reduction

gel (NuPrep Skin Prep Gel, Weaver and Company, Aurora, Colorado, USA) was performed

across the entire anterior neck. A prefabricated array (TMSi, HD sEMG Grid, International, the

Netherlands) with 64 channels (8 rows by 8 columns) and an interelectrode distance of 8.5 mm

(electrode diameter 4mm) was centered on the CT space, with electrodes 36 and 37 overlying the

cricothyroid space, and electrodes 1-8 overlying the hyoid bone. Fig. 3.5 demonstrates the array

on a subject.

Figure 3.5: A 64-channel array oriented such that its center overlayed the cricothyroid space.
Row 1 (electrodes 1-8) overlayed the hyoid bone.

Signal Acquisition

The HDsEMG array utilized the REFA 128-model system (REFA, TMSi, International,

the Netherlands) sampled at 1024 Hz and used the data average as a reference, while the ground

electrode was placed on the wrist. Impedance values were recorded for both arrays to evaluate for

technical flaw; all channels were within acceptable range (< 10 kΩ).

The subjects were asked to swallow substances of various textures each through a 1-

minute period of electromyographic signal recording. The swallow textures were as follows: (1)

dry/salivary (2) thin liquid (water), (3) puree (apple sauce), (4) mixed consistency (fruit cup),
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(5) dry solids (cracker). Subjects were careful to limit mouth opening, maintain neutral neck

positioning, and refrain from phonation during recording. The number of swallow events and

time of occurrence was noted by observation of the subject from the research coordinator.

The recorded data was transferred for EMG analysis through the system’s respective

software (Polybench, TMSi, International, the Netherlands) and subsequently to custom soft-

ware written in Python programming language (Python Software Foundation, Python Language

Reference, v.3.7.1.python.org/).

Signal Processing

Initially, the raw data was processed with a low-pass filter using a cut-off frequency of 3

Hz. Then it was rectified with a moving root-mean square using a window size of 1 s. A linear

envelope was generated using a window size of 1 ms and a cutoff frequency of 3Hz (Winter D.A.

2009).

The on and off time-points of a swallow were detected using two methods. The first

looked at the traditional method of setting a threshold and obtaining points that surpass the

threshold [30, 34, 138]. The threshold was calculated as 2 standard deviations above the average

resting baseline. The second method utilized the Mahalanobis distance through the following

rationale:

Our HDsEMG multivariate data is made of 64 channels therefore giving us 64 possible baselines.

Defining the baseline as noise, we can now compute the mean and covariance matrix of the noise

as µnoise and K̂ respectively. The K̂ covariance estimate is obtained with an L1-regularized model

fitting procedure.

To determine if a data point of the signal, x, is a swallow or noise, we can take the difference

between the mean and the data sample, divided by standard deviation to normalize, which is

formally known as Mahalanobis Distance metric.
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d(x,µnoise) =

√
(x−µnoise)

T K̂−1(x−µnoise)

The greater the difference a data point x is from µnoise, the more likely that point is a swallow and

not noise.

Thirdly, the mahalanobis distance metric results, were implemented a binary classification using

a One-Versus-All method.

This allows us to use a binary logistic regression model for multi-class classification.

We train M logistic regression models, where:

• M is the number of classes, 5, one for each type of swallow.

• Y is the yes or no that distinguishes one swallow type from the rest.

• R, regressors, is the information from swallow, in this case our amplitude after the RMS

(VRMS)

• x, weights

• N is our gaussian noise with a distribution of N(0,σ2)

Therefore given this information, where j = 1...M classes, we ask ourselves:

p(y|R( j),x( j))

y =


0 if sample is the same as the rest

1 if sample is different from the rest

Each swallow class is passed through M models and the largest value produced is the best class

estimate.
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3.2.3 Results

Figure 3.6: Time-series plot of the raw data of 5 swallows for a single subject and channel.

Visualization of the raw data illustrated distinct wave morphologies that appear to be

specific to each swallow task (Fig. 3.6). In all of the subjects, the dry/saliva swallows and water

swallows appeared to have the simplest forms of EMG activity, only exhibiting between one

to three peaks throughout the swallow epoch. As the complexity of food bolus increased, the

number of peaks present began to increase as well. In one subject, the swallow peaks during a

cracker swallow appeared continuous, with little “rest” in between the swallow epochs (Fig. 3.6).

After processing, a linear envelope of the data smoothed the waveforms and better

illustrated the varying number of EMG peaks during their respective tasks. Fig. 3.7 demonstrates

a single epoch of swallow for each of the tasks in one subject and one channel. The overall

duration of these swallow epochs demonstrate a monotonically increasing duration proportional

with swallow complexity (Fig. 3.8).

Swallow detection performed via the traditional method showed performance varied

between channels when compared to the ground truth. Using Malahanobs distance as a metric
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Figure 3.7: A linear envelope of the 5 different swallows from a single channel and subject using
a low-pass filter with a cut-off of 3 Hz.

for swallow detection improved the ability to distinguish rest from activity. Moreover, it did not

require any input from the researcher. Classification of tasks using the one-versus-all method

provided promising results. Classification was significantly better in the raw data than with the

processed data.

3.2.4 Discussion

The process of swallowing requires the coordinated contraction of various muscles in

different locations and at different times. Neurologic disorders, stroke, nerve injury, and aging

can affect the level and order of the muscles’ activation. This impairs a patient’s ability ability

to swallow, therefore lowering their quality of life while increasing their risk of malnutrition,

aspiration, and pneumonia. A standard treatment option for patients can be swallow therapy

through speech-language pathologists. There, patients can learn about various positions and

exercises to minimize their risk of aspiration and encourage muscle coordination.

Biofeedback through surface EMG has been a potential method of increasing patient

engagement in the clinic [56, 59, 124, 125]. However it lacks standardization, is susceptible
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Figure 3.8: Averaged EMG activity across subjects per task.

to bias, and does not measure compliance. Moreover, in the clinic, sEMG has struggled to

secure a foothold due to its inability to robustly record specific muscle activity in such a dense

neuromusuclar area [41, 71, 117, 138, 142]. Notable limitations involving risk of signal cross-talk

and diminished electrode-to-target muscle specificity make its clinical applicability doubtful. In

research, flexible strain sensors were able to distinguish between types of swallow bolus and

dysphagic versus nondysphagic swallows [103]. When paired with sEMG, Ramirez et al. found

that it was possible to differentiate swallow activity from non-swallow activity.

In this study, three patients performed self-paced swallows using 5 different bolus texture

complexities ranging from dry (saliva), water, apple sauce, fruit cup, and cracker. Results indicated

a monotonic increase in EMG activity duration proportional to the increasing complexity of

the swallow bolus. In terms of duration, similarities were seen between swallows of similar

complexity. At times, the duration during a water swallow was similar to that of an apple sauce

swallow. This was similarly seen between fruit cup and cracker swallows. During classification

the average error probability was 0.16 in the raw data. The error though increased with complex
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Figure 3.9: Mahalanobis distance for swallow detection. The solid lines represent the “ground-
truth” epochs of swallow. The dashes lines represent the mahalanobis distance.

swallows such as fruit cup and crackers. This may be due to the nature of the swallow itself. A

swallow epoch was recorded through visual observation by the research coordinator. The start and

stop of a swallow was determined by the initiation of swallow until the full completion. However,

during fruit cup and cracker swallows, the subject does not swallow in one movement, but is

chewing and swallowing simultaneously. As a result, it could be argued that during complex

swallows, a swallow epoch contains many small swallow EMG peaks. Future studies could

mediate this discrepancy by having subjects perform swallows using a controlled set of increasing

volumes. If the number of peaks during a complex swallow increases with the volume, then it

may be possible to address this discrepancy.

Its interesting to note that typically in the clinic, the EMG data received is pre-processed

by the signal acquisition system. When we demonstrated our distinct morphologies to our

collaborating clinician, he stated he had never seen such signals before. Furthermore, classification

appeared to work best with raw data. Perhaps there is a unique aspect to the raw data which makes

it ideal for classification that is lost during processing. This could be a limitation that affected

previous research attempting to do the same. Limitations in this study include a low-number
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Figure 3.10: Probablity of error in classfictain using the one-versus-all method for the five
different types of swallows.

of subjects due to COVID-19, lack of volume control for the swallow bolus, and the lack of

time-controlled swallows. We chose for subjects to perform self-paced swallows as we found that

in the patient population, they struggled with swallow initiation. We desired a dataset that would

most fit an ambulatory setting, one in which a patient could go home, place a flexible electronic

sensor array, and eat at their own pace.

The use of different swallow textures was intended to mimic the different tasks they may

be asked to perform during swallow therapy. To develop en effective and objective biofeedback

and ambulatory monitoring system, it is critical to understand the extent of information that can be

obtained noninvasively. This will allow us to determine what therapists and patients will find more

pertinent towards managing their dysphagic symptoms. Though current swallow sEMG devices

in the market are sufficient to encourage increased contraction, this could be falsely reported at

home via an incorrect movement or other laryngeal activation. In developing a system capable of

distinguishing swallows, we can better determine a subject’s progress. For instance, perhaps at

the start of treatment, a subject is unable to initiate swallow. Therefore there is an increase of

preparatory movement across all types of swallows. We would then expect the swallow types are
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indistinguishable with a high error probability. Over time with HDsEMG, we can use energy maps

to monitor symmetric activity, duration of swallows, and classification of swallows to determine

improve treatment decision-making. Coupled with other non-invasive devices such as flexible

strain sensors, we anticipate a greater understanding of dysphagic swallows and their response

to medical and therapeutic treatment. Future studies should investigate the use of controlled

swallow volumes and improved feature detection for classification. It may also be useful to study

dimension reduction and investigate the contributions from individual electrodes to a swallow’s

classification.

3.2.5 Conclusion

Spatiotemporal data from HDsEMG improves the application of sEMG for clinical and

therapeutic purposes in swallow disorders. Section 3.2 demonstrates the ability to once again

detect lateral array symmetry of activity, and greater EMG activity in the upper rows of the array.

In using different textures of swallow, we found that the duration of EMG activity increases

proportionally with the complexity of the swallow texture. Using the RMS voltage and one-

versus-all classification, we were able to distinguish the five different classes of swallows with a

probability error of 0.16. These results demonstrate a promising application in the therapeutic

field for dysphagia. Currently the features used are common in the realm of clinical EMG

applications, but with improved feature detection, and dimensionality reduction, this technology

holds significant promise to develop into a powerful clinical and diagnostic tool with machine

learning paradigms.
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Chapter 4

Clinical Applications

4.1 Validation against the Gold Standard: A Study of the

Forearm

4.1.1 Introduction

Chapters 2 and 3 demonstrated the value of HDsEMG for voice and swallow healthcare

applications. However we are still dealing with an intricate muscular layout and significant

overlap of neighboring muscles. Many will undoubtedly ask, how can we prove our results are

consistent with the clinical “gold-standard”. Though the eventual goal is to produce a portable

ambulatory system, its necessary to first validate the protocol for both voice and swallow. To do

so, a sensible approach is to perform concurrent cutaneous and subcutaneous EMG recording of

the laryngeal muscles. Unfortunately, the initiation of this project occurred simultaneously with

the COVID-19 pandemic. In the clinical field of laryngology, clinical research involving human

subjects was restricted to only studies deemed necessary or related to COVID-19. Additionally,

the social-distancing and stay-at-home mandate restricted any recruitment of healthy subjects or

collaboration with research colleagues. As a result, the project was unable to recruit subjects for
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validation experiments in the neck. Though I was unable to conduct laryngeal related experiments,

I initiated a plan to design an analytical workflow using an alternative experiment: concurrent

nEMG and HDsEMG on the forearm.

Electromyography from the forearm has been studied extensively in the realm of human-

computer interface and prosthetic design [24, 102, 110]. Therefore, in the era of work-from-home,

the forearm was chosen for many reasons: 1) there is extensive literature to compare results with,

meaning that a self-taught researcher could easily validate the protocol; 2) I would be able to insert

the needles into one forearm using my other hand. This was especially important since I could

not rely on the presence of my research assistants or colleagues to help with needle insertion; 3) I

could study individual digits, allowing me to mimic task-specific activities such as the phonation

tasks used to separate the adductor and CT muscles; and 4) the forearm is also a muscularly dense

area, which once again, could approach a similar paradigm that may be experienced in the throat,

yet the muscles of the hand are relatively superficial and easy to find for an nEMG novice.

Figure 4.1: Illustration depicting the experimental paradigm A and hypothesis using concurrent
needle and surface channels for validation.

The goal of Section 4.1 is to produce an analytical workflow that would be applicable for

validation in the neck. The hypothesis behind this project is that data from the surface electrodes
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should have the greatest concordance to their nearest needle electrode. This concordance will

increase when the muscle of interest, in which the needle is inserted, becomes active. For instance,

the Extensor Digiti Quinti (DQ) is located laterally in the forearm, in the posterior compartment,

and can be activated through fifth-digit (pinky) extension. The Extensor Digitorum Communis

(DC) is a superficial muscle that runs near the middle of the forearm, in the posterior compartment.

It extends into the middle four digits, though extension of the third digit (middle-finger) is an

effective way of isolating it. My hypothesis is illustrated by fig. 4.1 in which eight surface

channels are placed along the forearm and two needle electrodes are inserted into the DQ (nDQ)

and DC (nDC) muscle. Specifically, during pinky-finger contraction, case 1, surface channels

3 and 4 are expected to have greatest similarity with nDQ. In case 2, during middle-finger

contraction, surface electrodes 5 and 6 will be most similar to the needle at DC (nDC).

Should this workflow be extrapolated to applications of the neck, a similar hypothesis will

apply. During phonation of a high-pitch tone, electrodes nearest the CT region should exhibit

greater concordance. During low-pitch phonation, we expect greater concordance in the adductor

region. These results could similarly be tested through the LLR hypothesis testing mentioned in

section 2.2.

4.1.2 Materials and Methods

The pilot experiment was conducted on a single subject, age 27. Two paradigms were

used. Paradigm A followed the paradigm depicted in Fig. 4.1. First the left-forearm skin was

prepared with standard alcohol wipes and exfoliating impedance-reduction gel (NuPrep Skin Prep

Gel, Weaver and Company, Aurora, Colorado, USA). Next the insertion sites were determined

using standard anatomical points from literature [92] as reference. By extending the pinky

and middle-fingers respectively, we searched for the most prominent area of contraction along

the forearm and marked the spots using a skin-safe medical marker. Paradigm B marked an

additional insertion point for a third needle electrode, this time inserted into the Extensor Pollicis
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Brevis which was activated by a thumb extension. The needles used were 0.38mm stainless steel

electrodes (Neuroguard Disposable Subdermal EEG Needle electrode (REF: S41-638), Neuro

Supply, Loveland, Ohio, USA).

The surface electrodes used were composed of standard silver/silver chloride electro-

cardiac monitoring electrodes (3M Red Dot (REF: 2670-5), St. Paul, Minnesota, USA). For

paradigm A, the electrodes were organized into 2 rows and 4 columns with an interelectrode

distance of 2 cm along the rows and 3 cm between the columns, center-to-center (electrode

diameter 1 cm). Paradigm B used an array of 3 rows and 6 columns, with the same spacing

mentioned for paradigm A. Fig. 4.2 is a picture depicting both electrode configurations. To

minimize movement artifact, the arm was rested over a table throughout the experiment.

Signal Acquisition

Signal acquisition for paradigm A used two machines. The needle data was obtained

through the Biopac MP150 using a gain of 1000 and with a 5 kHz low-pass set on DC (BIOPAC

Systems, Inc, Goleta, California, USA). The sampling frequency was 4000 Hz. The surface

data was collected through the OpenBCI Cyton device (http://openbci.com) with a sampling rate

of 250 Hz and a common ground electrode placed on the elbow. Paradigm B used a research

device called the WANDmini (Muller Lab, Department of Electrical Engineering and Computer

Sciences, UC Berkeley, California, USA) for both needle and surface channels. Sampling rate

was 1024 Hz.

A total of four tasks were performed by the subject: pinky extension, middle finger

extension, index finger extension, and thumb extension. The extensions were sustained for 5 s

in between 10 s of rest. This was repeated three times for each finger. The raw data was then

processed through through custom software written in Python programming language (Python

Software Foundation, Python Language Reference, v. 3.7.1).
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Figure 4.2: This figure depicts the two paradigms used for this validation experiment. Top picture
demonstrates the 8-channel paradigm with two needle channels, referred to as paradigm A in
this chapter. The bottom picture depicts the 18-channel HDsEMG configuration with 3 needle
electrodes, referred to as paradigm B.
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Signal Processing

Pearson’s Correlation

Both surface and needle data were first rectified with a moving root mean square (RMS)

using a window of 1 s. Then a linear envelope was generated using a low-pass Butterworth filter

with a cutoff frequency of 3Hz. In paradigm A, the needle data was then down-sampled to match

the length of the surface data. This was simply done by taking every 16th sample-point of the

needle data. An additional step used a threshold calculated from the average of the data. If a point

from the enveloped data surpassed the threshold, it was labeled 1. If the point was below the

threshold, it was labeled 0. This was done to determine on a binary scale, how often did surface

recording of muscle activity match that the needle-recorded EMG activity.

Two Pearson’s correlation (PC) statistics were calculated finally calculated after process-

ing. The first was called a “global” PC. This global PC was calculated by comparing the entire

nDQ data with each of the sEMG channels, then repeating this with the nDC data. This was done

to compare the two datasets across the duration of the experiment. The second PC, referred to as

a “local” PC, involved comparing the needle data to the surface channels only during specific

tasks. First the data was segmented by tasks. Then during each finger extension task, PC was

calculated between the surface channels and the needle inserted into the activating muscle.

Onset Detection

This method sought to count the number of onsets of EMG burst activity using the python

Biosppy EMG signal analysis module [27]. This module essentially processes the data with a

Butterworth high-pass filter using a cut-off frequency of 100 Hz and an order of 4. The filtered

signal is then rectified using the absolute value and smoothed with a moving average filter [121].

Finally, a threshold is calculated as two standard deviations from the average of the processed

data. Processed data points above the threshold for over 100 ms are labeled as onsets. It was

hypothesized that the surface channels will have a number of counts similar to those of the needle

near it. Fig. 4.3 is a block diagram depicting this process as well as a plot of the results for the
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Figure 4.3: The block diagram depicts the processing of the data to count EMG activity onsets.
The plot below is of nDQ during all extension tasks. The magenta lines are the onsets detected
with the baseline threshold.

nDQ data of paradigm A.

4.1.3 Results

For the Pearson’s correlation results, the global PC demonstrated some correlation between

a needle and the nearest surface channels. This is most evident in looking at the nDC vs HDsEMG

PC Fig 4.4. For pinky extension, concordance between needle and surface channels increased

with the local PC. However, during middle-finger extension, correlation was high throughout the

channels.

Fig. 4.5 depicts six different energy maps for the onset counts. The top three are from

paradigm A which used 8 surface channels and 2 needle electrodes. Here we see a strong similarity
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Figure 4.4: The global PC is was calculated across the entirety of the experiment between the
surface channels and needles. The local PC was calculated only with segmented tasks.

in onset counts between the needle channel and the surface channels closest to it. Performing

extensions in fingers without needles, such as the thumb and the index finger, served as great

negative controls. During the thumb extension, there is very little onset activity recorded by either

nDQ or nDC needles (Fig 4.5), as well as most of the surrounding electrodes, except for channels

7 and 8. Surface channels 7 and 8 recorded low onset counts (<40).

The promising onset-count results from paradigm A encouraged me to increase the

number of surface channels and add an additional needle, leading to paradigm B. Onset counts

from paradigm B are depicted as the bottom three images in Fig 4.5. Here we once again see

similar numbers between the surface and needle data that validate the results from paradigm A.

Additionally, adding the third needle (nT) allowed the thumb extension task to go from being a

negative control to serving as a positive control and further validating our hypothesis.
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Figure 4.5: The top three figures represent results from 3 tasks (pink, middle, thumb extension)
using paradigm A. Paradigm A consists of 8 surface channels and two needles. The bottom
three depict results from paradigm B, now using 18 surface channels and 3 needle electrodes. In
paradigm B, the thumb extension task is now a positive control.

Figure 4.6: The two images above represent the averaged onset counts for low and high-pitch
phonation from the previous dataset (chapter 2). Note the significant difference in amplitudes
between forearm and the neck.
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Lastly, though we were unable to perform the experiment on the throat, we applied the

onset-count workflow to the phonation data from chapter 2. This dataset was put through the same

signal analysis using the Biosppy python module. Using the same rationale from the log likelihood

ratio (LLR) test from Ch. 2.2, the onset counts from the low vs high pitch differentiation were

used to evaluate their LLR and ROC curve. The pulse counts averaged across trials and subjects

are shown in Fig 4.6 while Fig 4.7 is the resulting ROC curve. Though the variance between

subjects has increased, the average AUC was calculated to be 0.84.

Figure 4.7: Though visually there doesn’t appear to be a significant difference between the counts
for low and high-pitch phonation when averaged across subject and task, the ROC curve shows a
positive distinction between the two with an averaged AUC of 0.84.

4.1.4 Discussion

The throat is a complex region with many muscles working together to initiate various

activities: swallowing, speaking, maintaining stability, and physical movement. The muscles are

of different sizes, located at various depths from the surface of the neck, and operate at different

times. With the number of nerves, muscles, tendons, and bones, there is no doubt regarding
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the complexity of the neck and throat, and the difficulties in trying to monitor it non-invasively.

Therefore historically only invasive methods and subjective qualitative methods have been used

to diagnose, assess, and monitor disorders of the throat. Nonetheless, HDsEMG may provide an

objective non-invasive assessment tool for voice and swallow disorders of the neck.

Though laryngeal HDsEMG research is promising, it is necessary to confirm results

against the clinical “gold-standard”, needle or hookwire EMG, before its implementation in the

clinic or therapeutic settings. Unfortunately the COVID-19 pandemic hampered the initiation of

this study. Not only was human-subject research restricted to critical or COVID-related projects,

but the stay-at-home mandate made it difficult to perform invasive experiments single-handedly.

A compromise was found with using the forearm. Performing simultaneous HDsEMG and nEMG

on the forearm was possibly while alone. I was able to still use one hand freely while the other

was readied for the experiment. Additionally, the forearm is a highly studied area. In the absence

of expert training or supervision, this allowed me to compare my results with existing studies to

ensure my needle placement and monitoring was correct.

The hypothesis of this project posited there would be greater concordance between the

spatially-related needle and surface channels, especially when the target muscle (in which the

needle was inserted) became active. For nDQ, we expected greater similarities to surface channels

3, 4, and 7 (paradigm A) and 3, 4, 9, and 10 in paradigm B. For nDC, we expected surface

channels 1, 5, 6, and 7 (paradigm A) and 1, 7, 8, and 9 (paradigm B). The nT needle was only

present in paradigm B, and we expected it to be most similar to surface channels 17 and 18.

Pearson’s correlation was first used to study the concordance between nEMG and HD-

sEMG due to its simplicity and widespread use. A global PC demonstrated a stronger correlation

between HDsEMG and the nDC channel. This correlation significantly increased in the local

PC (calculated only during the middle-finger extension) exhibited by a “reddening” of the entire

map. This may be a due to the fact that the DC muscle is large and extends into three of the five

digits. As a result, many of the sEMG channels laid over, or near the muscle. Therefore, when the
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Figure 4.8: Processed time-series data for paradigm A. Each plot contains a single finger-
extension repetition across all channels. The voltages have been normalized and centered at
0.

DC muscle is activated, it is recorded by many of the channels, hence the high correlation (see

Middle Extension plot Fig. 4.8). For nDQ, there is a low correlation in the global PC comparison.

However this correlation increases when using the local PC. Unlike the DC muscle, the DQ

muscle is small and located deeper in the forearm. This may explain why the correlation is only

evident during the pinky-finger extension. The time-series plots in Fig. 4.8 demonstrate how the

normalized amplitudes compare to the needles during specific finger extension tasks.

Though the PC results supported our hypothesis, the concordance was weaker then

expected. This could potentially be a problem in translating this workflow to laryngeal EMG. The

neck is much more complex than the forearm and the target muscles are smaller and deal with

significant overlap of neighboring muscles. Therefore, the PC method may be weak when applied

to the neck and a better analysis method may be needed. This led to the use of onset detection,

which proved to be fruitful. In paradigms A and B, both nDC and nDQ recorded similar counts of
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onset activity as those of their neighboring surface electrodes (Fig. 4.5). Through onset detection,

a greater spatial specificity was achieved across all tasks and supported our hypothesis. Pinky

extension sees similar counts between nDQ and surface channels 3 and 4 (paradigm A) and 4

and 10 (paradigm B). Though in paradigm B we expected channels 3 and 9 to also detect the

same number of onsets as nDQ, the lack of detection could be due to the direction of muscle

fiber activation (down the forearm towards the fingers). Similarly for nDC, in paradigm A we see

the expected results in the predicted surface channels, however in paradigm B, it is restricted to

surface channels 8 and 9. This is an interesting result as it demonstrates that volume conduction

at the surface of the skin is not as big of an issue as typically depicted by literature. In essence,

detecting similar onset counts at the surface, in less of the expected channels, tells us that sEMG

is much more specific than we believed, but requires an HDsEMG to detect across space. This is

promising for applications in complex surface regions such as the neck. Moreover, these results

were further verified through the addition of a third needle, nT, in paradigm B. Though nT was

inserted into the Extensor Pollicis Brevis which extends into the middle of the forearm, only the

surface channels closest to the edge, and near the needle, detected similar counts as nT.

When applying the onset-activity detection workflow to the voice data, we continued

to see greater counts in the central regions hypothesized to be where the laryngeal muscles are

located. However its important to note that the exact channels that detected the greatest counts

weren’t consistent between subjects. This can be seen with the averaged counts depicted in Fig.

4.6. The averaged results illustrate a grid array skewed towards the reader’s right. This could

be a result of human error when placing the electrode grid, noisy electrodes due to improper

skin-preparation, or a natural tendency of the subject to activate one side more than the other.

Nonetheless, there were quantitative differences in counts detected between low- and high-pitch

detection that produced an ROC curve with an AUC of 0.84 (Fig. 4.7). This implies that in

these two types of pitches, there is unique activity at the neuromusuclar level that is still captured

non-invasively. Perhaps in unhealthy subjects, this wouldn’t be the case. Another important
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characteristic is the significant difference in amplitudes between forearm and the neck onset-

counts. On the forearm, onsets were detected in the quantity of 100 in a single subject, whereas

in voice, the number of counts detected were less than 20, and around six when averaged across

all 10 subjects. This may be due to the loss of signal as it transverses the many layers between

the muscle and skin in the neck. This may be a set-back in future studies, but could also be used

as another metric for healthy vs unhealthy subject comparison.

4.1.5 Conclusion

HDsEMG improves existing sEMG modalities by compensating for spatial selectivity

loss and globally monitoring the anterior neck through a dense electrode configuration. The

results from this study were a positive direction towards validating our hypothesis and results

from chapter 2. Through onset-activity detection, we demonstrate the spatial correlation between

needle and HDsEMG. Though the results come from a different anatomical region, the project

itself helped design an experimental workflow for laryngeal EMG. Despite the lower number of

counts detected from the neck, there were sufficient distributional differences to distinguish low

from high-pitch phonation using the log likelihood ratio test. Moreover, the spatial relevance for

surface monitoring of laryngeal muscles is evident from this study.

4.2 Flexible Sensors Electronics for Laryngeal Ambulatory

Monitoring

4.2.1 Introduction

Though HDsEMG provides the necessary spatiotemporal data to non-invasively monitor

complex muscular regions, its applications are limited by the amount of time needed to prepare

the multi-electrode array (MEA), large and costly signal acquisition systems, and complex data
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analysis [37, 157]. In rehabilitory and clinical settings, the limitations may be compensated by

the benefits of HDsEMG. However, in emergency and ambulatory settings, clinicians and patients

are limited by time, and therefore require a ready-to-use MEA. A solution may involve having

assistants prepare the arrays before hand, or having the arrays be mass-produced by a medical

company. Unfortunately, this solution falls short in ambulatory monitoring. A system capable

of at-home-monitoring should be easy for the patient to use. Additionally, if we want to ensure

compliance, the monitoring process should be as comfortable and unobtrusive as possible. In its

current stage, both the machine and arrays are bulky and complicated to use. Moreover, the cables

connected to the arrays are heavy and pull at the skin, making them obtrusive for everyday use.

Though HDsEMG is relatively more comfortable and easy-to-use than nEMG, the system can

be significantly improved with Flexible Electronic Sensors (FES) and smaller signal acquisition

devices.

Figure 4.9: The BrainVision shown to the left is biopotential system made especially for elec-
troencephalography monitoring. This system was used to record the data in Chapters 2 and
Section 3.1. To the right is the TMSi REFA system made to record various types of biopotential
signals. This device was used to record data from Section 3.2.

FES are thin electrodes that are developed over Polydimethylsiloxane (PDMS) through a

process of metal deposition and photolithography. This microfabrication process creates thin and
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stretchable electrodes which adhere to the curvature of the skin and provider greater user-comfort.

In recent years, fabrication of flexible sensors has improved, making them a feasible and scalable

option for the near future [73, 77]. Through custom-made layouts using micro-fabrication, we can

generate various designs to conform to an individual’s anatomy. This allows for a customizable

electrode interface at a relatively low cost. Fig. 4.10 is of two types of FES made in Dr. Todd

Coleman’s Neural Interaction Lab (Department of Bioengineering, UC San Diego, La Jolla,

California).

Figure 4.10: Picture A depicts a flexible electronic sensor from Kang et al. [73]. Picture B is of
the FES customized to replicate the MEA used in Chapter 2 for the neck.

This dissertation has used five different types of biopotential signal acquisition systems:

BrainVision (Chapters 2 and Section 3.1), TMSi REFA (Section 3.2), BIOPAC MP150 (Section

4.1), OpenBCI Cyton (Section 4.1), and WANDmini (Section 4.1). In fig. 4.9, the BrainVision

and TMSi are shown. These two systems have a wide sampling range and are exceptional for

monitoring a variety of biopotential signals with a high number of channels (>20-channels). A
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setback though is in their high-cost (>$ 30,000.00), bulkiness, and complicated user-interface.

The BIOPAC device is similar in terms of cost, but is further limited by the low number of

channels it can record from (<10 channels), and even bigger size– requiring a cart to move the

many chained channel amplifiers. The OpenBCI Cyton is an ideal size, however its sampling rate

is limited to 250 Hz using eight channels. The sampling rate drops to 125 Hz if recording from

eight to 16 channels. Though its relatively affordable at <$1,500.00, the low sampling rate and

number of channels does not make it an ideal solution for laryngeal monitoring. The WANDmini,

a system in development by Dr. Rikky Muller’s research lab (Muller Lab, Department of Electrical

Engineering and Computer Sciences, UC Berkeley, California, USA) boasts a sampling rate of

1024 Hz and a 64-channel capacity. This system is derived from their previous design [74, 150]

and was a suitable fit for this project.

This project investigates the use of FES coupled with a miniaturized signal acquisition

system for HDsEMG in the neck. Unfortunately, COVID-19 prevented the enrollment of research

subjects and therefore this pilot study was only performed on a single subject.

4.2.2 Materials and Methods

Ethical approval for this study was granted by the Institutional Review Board at the

University of California, San Diego (IRB # 161477). The pilot experiment was conducted on

a single subject, age 27. Inclusion criteria was greater than 18 years of age. Exclusion criteria

included a history of dysphagia, dysphonia, previous neck surgery, or neurological illness.

To minimize strap muscle activity at rest, all participants were seated in a semi-reclined

position (∼ 20 degrees from vertical) with the neck in slight extension and supported. The

cricothyroid (CT) space was identified with digital palpation and marked as a reference point

for grid orientation. Skin preparation with standard alcohol wipes and exfoliating impedance-

reduction gel (NuPrep Skin Prep Gel, Weaver and Company, Aurora, Colorado, USA) was

performed across the entire anterior neck.
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Figure 4.11: This figure shows the customized FES HDsEMG array over the neck. Channels 10
and 11 were placed over the CT muscle and are marked by the green dots.

The high density 20-channel FES array was composed of silver/silver chloride and was

fabricated using the same process depicted in a recently published method to fabricate stretchable

silver/silver-chloride multi-electrode arrays by our research group [83]. For this application, the

FES were organized into 5 rows and 4 columns with an electrode spacing of 1.5 cm between

each electrode center (electrode diameter 1 cm). The array was centered on the cricothyroid (CT)

space, with electrodes 10 and 11 overlying the CT space, marked by green circles in fig. 4.11.

Signal Acquisition

The HDsEMG array used a research device called the WANDmini (Muller Lab, Depart-

ment of Electrical Engineering and Computer Sciences, UC Berkeley, California, USA). The

sampling rate was 1024 Hz and used an average reference from all the channels when recording. A

ground electrode was placed on the left mastoid bone behind the ear (3M Red Dot (REF: 2670-5),

St. Paul, Minnesota, USA). An audio prompt was played over a 5-minute period for each recorded

task. Tasks included the following: (1) rest, (2) low-pitch phonation, (3) high-pitch phonation.

The subject was able to demonstrate adequate difference between low and high pitch as confirmed
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by the authors with frequency analysis (Audio Frequency Counter; Keuwlsoft, London, United

Kingdom). Each task was paced to afford 5 seconds of phonation, on an /i/vowel, followed by

10 seconds of rest. This was repeated for a total of 5 minutes, resulting in 20 recorded intervals

of each phonatory task for each participant. The data was analyzed via custom software written

in Python programming language (Python Software Foundation, Python Language Reference, v.

3.7.1).

Signal Processing

The data was processed using the same workflow described in Chapter 2. In particular, the

goal was to compare the ROC results using the log likelihood ratio test on the FES data, with the

results from Section 2.1. Though there is a significant difference in the number of subjects, there

is a merit in understanding the potential of FES when compared to a traditional HDsEMG set-up.

4.2.3 Results

Typical preparation of the traditional HDsEMG array from Chapter 2 took about 45

minutes per array. This included cutting the electrodes, placing them into their orientation, and

placing the 3M Tegaderm over it then cutting to allow a connection with the DIN snap electrode

leads. This did not include the time spent connecting the electrodes to their individual cables.

This time was not recorded as they were connected while the subject’s skin was being prepared.

Preparing the FES took about 20 minutes. This involved connecting the electrodes to the system,

spraying the FES array with a skin-safe medical adhesive, and then lifting it from its substrate to

place on the skin. Placement of the FES on the skin was much easier since in the old array, the

DIN snap leads connected to the electrodes were a visual obstruction in placing the electrodes

over their designated landmarks.

The 20-Channel FES HDsEMG array and the miniaturized signal acquisition system

provided EMG data during two types of phonation: low- and high-pitch. Figure 4.12 presents the
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two types of phonation and their processed time-series data. Channels 1, 14, and 20 appeared to

have abnormally high peaks. During low-pitch activity, channels 9 and 13 recorded the clearest

oscillatory pattern we expected during phonation. In high-pitch phonation, this pattern was

detected in channels 9, 13, and 19.

Figure 4.12: Both plots depict the entirety of the low- and high-pitch data recorded from the FES
and miniaturized system after processing.

An energy map during a single time-point of high-pitch phonation can be seen in fig. 4.13

side A. Greater amplitudes were seen in the upper rows of the array throughout all phonation

segments. However unlike the previous dataset, the energy seemed skewed towards the sides

instead of the center. Applying the LLR method from Ch. 2.2 produced an ROC curve shown in

fig. 4.13, side B. The calculated AUC was 0.73.

Removal of the array was relatively less painful than the traditional array and much

quicker to clean up (<5 minutes). Readying the system for the next experiment was significantly

faster as well. In the traditional array set-up, an additional 10 minutes were spent disconnecting

the electrodes and wiping down the cables for the next experiment. If the traditional HDsEMG
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Figure 4.13: A: This is the energy map of the high-pitch amplitudes across all channels during a
single time-point. Note how it is skewed to the sides. B: This is the ROC curve between low and
high-pitch phonation. The AUC was 0.73

arrays were pre-made, the wait time between experimental subjects was about 30 minutes. For

the FES and miniaturized system, the wait time reduced to about 15-20 minutes, depending on

the user’s dexterity. This is due to the fact that the FES electrodes are wired to one connector, so

disconnecting from the system simply involved pulling a single connector, instead of individual

wires.

4.2.4 Discussion

The 20-channel FES coupled with the miniaturized signal acquisition system was capable

of monitoring the neck during low and high-pitch phonation. Section 2.2, section Signal Process-

ing, discusses the presence of oscillatory patterns that appeared to have larger amplitudes in areas

near the laryngeal muscles during phonation (Fig. 2.8). Additionally, the channels detecting these

patterns varied between the two types of phonation. Taking advantage of these properties, an

LLR was used to compare the two distributions and solve for an ROC curve. This same method

was applied to the data recording from the FES. In the processed time-series data in Figure 4.12,
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the phonation segments are evident. The AUC of the ROC curve between low and high-pitch is

0.73 for a single subject, much lower than the AUC of Section 2.2 of 0.97 for the full array. Its

also 0.04 lower than the AUC obtained from only two channels.

This brings about questions regarding the utility of an FES array. Given these two AUCs

of 0.73 (FES) and 0.77 (2-ch traditional electrodes), it may seem easy to simply say a 2-ch system

is more convenient than an FES HDsEMG array given the complexity of its fabrication and lack

of availability in the clinic. However its important to take a step back and understand the big

picture. Yes, the 2-ch traditional set-up produced a higher AUC, but this was the averaged AUC

across all subjects’ ROC curve. If one looks at the legend of Fig. 2.11’s 2-ch ROC, the range of

AUCs varies from 0.51 to 0.99. Two subjects had an AUC just above chance. The 0.73 AUC of

the FES ROC is of a single subject. Though this is a significant limitation to this pilot study, there

may be a possibility that when more subjects are recruited, the averaged AUC of the FES ROC

will be competitive with the 2-ch configuration. Moreover with an array, there is a negligible

risk of “missing” the laryngeal muscles as compared to only monitoring the muscles with a few

channels. Therefore, the possibility of getting an AUC near 0.5 is low in an FES array and should

still be considered for monitoring laryngeal EMG non-invasively.

Experimental preparation was an additional benefit to using an FES array. In emergency

settings, an FES array can be envisioned as a “patch” that can quickly be placed on the subject

and connected to a system. In an ambulatory setting, one can imagine the time it takes to prepare

an array composed of traditional electrodes to be unappealing, or even an impossible task, for

the elderly or populations dealing with voice and swallow disorders. Moreover, the subject

reported the FES array to be significantly more comfortable to wear than the traditional array,

describing the FES to feel like “those moisturizing peel-off face masks”. They also stated not

to feel discomfort, or pull at the skin, from the array cable, as compared to the slight irritation

and tug they felt with the old array. The ease-of-use, quick placement and removal, and greater

comfort gained through an FES array will likely maintain patient compliance for a laryngeal
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ambulatory monitoring system and increase its applicability for a variety of settings.

A limitation to the FES array is its delicateness and more fragile polymore substrate

when compared to Tegaderm. Much like when working with the “peel-off face masks”, those

placing the array must be dexterous and quick, therefore the training period may increase slightly.

However this can be addressed with future improvements to the substrate on which the FES

is made. Another limitation is the inability to manage or remove faulty electrodes. In a old

HDsEMG array, a bad electrode could easily be switched out. This is not possible with the FES

array. A bad electrode, if its deemed to be in a critical location (over the laryngeal muscles) would

require a replacement of the whole array. This issue is believed to have caused the noisy and

drifting in channels 1 and 20 in Fig. 4.12.

The signal acquisition system used in this experiment was simple to set-up, manage, and

record from. However, this research device is still in development. It also transmits data via

Bluetooth, which is always at risk of signal loss. Despite this set-back, the system is promising, a

novel step towards miniaturizing biopotential recording systems, and was still able to detect the

oscillatory phonation patterns needed for pitch differentiation.

4.2.5 Conclusion

FES HDsEMG is a far more comfortable experience for both patient and clinicians. It

is capable of providing the necessary spatiotemporal information without the constraints of

a traditional array. With further developments, FES used in conjunction with a miniaturized

signal acquisition system, has the potential to revolutionize the applications of noninvasive

laryngeal EMG. Whether in the clinic, therapy, or at home, the ability to accurately measure

laryngeal muscles during voice and swallow will help improve treatment decision-making and

our understanding of voice and swallow disorders.
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Chapter 5

Conclusion

Voice and swallow disorders can arise from a myriad of reasons such as overuse in educa-

tors and singers, nerve injury, neuromuscular disorders, stroke, cancer, or aging. Unfortunately,

the complexity of such origins and anatomy of the throat means that diagnosis is time-consuming,

costly, and uncomfortable, relying on subjective and invasive techniques. When possible, treat-

ment for voice or swallow disorders tackles the underlying condition. However in instances such

as aging or neuromuscular disorders, treatment may be limited to blocking the dysfunctional

muscle through Botox, or managing symptoms through voice and swallow therapy. In the elderly,

these solutions may not be possible depending on other limitations such as expense, time, traveling

difficulties, or prioritization of other health issues. Moreover in swallow disorders, Ekberg et

al. found that 39% of those surveyed thought that dysphagia was untreatable [40]. As a result,

some elderly may resign themselves to accept their speech and swallow difficulties, leading

to under-treatment and potentially increasing the risks of developing further complications. In

children, studying these disorders via traditional methods is difficult due to their fear of invasive

equipment, or intolerance to pain and discomfort. Lastly, not all those with voice and swallowing

problems are affected enough to seek medical attention [135]. In neuromuscular disorders such as

Parkinson’s disease, early diagnosis leads to an improved quality of life compared to those who

83



were diagnosed later [28, 45]. Therefore ignoring symptoms of voice and swallow dysfunction,

which could be indicative of a worst underlying condition, can worsen a patient’s prognosis.

Even primary care physicians may not understand the significance of such symptoms, or may be

dealing with multiple medical issues in their elderly patients that they may not discuss voice and

swallowing problems, and fail to provide the patient with proper early-care intervention [135].

There is a need for improved screening tools and better education of voice and swallow

disorders in both the general public and primary care physicians. These tools should be capable of

monitoring the symptoms over time and during treatment to understand the outcomes for voice and

swallowing problems. This thesis presents the use of HDsEMG for monitoring voice and swallow

disorders. HDsEMG overcomes some of the limitations encountered by traditional sEMG through

a multi-electrode array (MEA). In providing spatiotemporal data, clinicians are reassured that one

of the many electrodes is capturing the muscle of interest and not cross-talk contamination from

neighboring muscles. Improvements in MEA analysis have increased HDsEMG’s applications

and widened the breath of information they can detect [37].

Chapter 2 of this thesis presented high- and low-pitch phonation data recorded from a

20-channel MEA in 10 and 11 subjects. In the first half of the chapter, HDsEMG recorded lateral

symmetric EMG activity, reflective of the laryngeal muscles’ orientation. Additionally, there were

visual differences in the time-series data after processing. Energy maps of the amplitudes also

presented local active regions hypothesised to be the laryngeal muscles. The second half of this

chapter confirmed the detection of pitch differences through HDsEMG using the log likelihood

ratio (LLR) hypothesis testing. In solving for the distributions of low and high-pitch data, we

were able to train and test the LLR across the 20 phonation trials for each channel and subject.

The resulting receiver operating curve (ROC) had an area under the curve (AUC) of 0.97. To

compare against a traditional SEMG set-up, only the two electrodes on one side placed over the

cricothyroid muscle (CT), were used for the LLR. The AUC of the ROC dropped to 0.77. There

was also an increased variance across subjects and two of the subjects had a AUC just above
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chance. These results illustrate the issues with traditional sEMG in which a few electrodes can

miss the target muscles, therefore experience a greater risk of cross-talk contamination, and be

more affected by low signal quality. Limitations in this study include a small subject population,

and no data from unhealthy subjects. It is important to verify these results with the gold-standard

of invasive EMG. Nonetheless, HDsEMG has the potential to not only revolutionize how it is used

in the clinical and therapy, but when combined with acoustic analysis, could improve applications

of speech recognition through deep learning models (e.g. LSTM) [6, 70].

In deep learning models, different types of variables can be simultaneously used as

model inputs. Therefore future studies could combine time-varying HDsEMG features with

voice recording waveforms for binary or multi-class characterization of vocal dysfunction. In

addition, features learned in pathology characterization may be utilized, through transfer learning,

to improve existing voice recognition paradigms (e.g. Apple Siri, Google Alexa). Transfer

learning involves the use of information learned in one classification task for a separate but

related task, typically enabling breakthrough performance [6, 54, 70], and in this case addressing

the vulnerabilities in existing voice recognition technology. Furthermore, state space modeling

can characterize relationships between features of voice recordings and the underlying latent

state, HDsEMG [79, 113]. With these relationships, voice classification tasks can be performed

even when only voice recording data is available, thus widely extending the reach of our applied

methodology.

Chapter 3 investigated the use of HDsEMG for swallow analysis. Section 3.1 studied

“dry” or saliva swallows performed by the same cohort of chapter 2. Results indicated the presence

of symmetric activity, much like in voice, as well as higher energy in the upper rows of the array.

The second half of chapter 3, section 3.2, investigated swallow classification of five different

types of swallows. This was achieved with an average probability error of 0.16. This error

was higher for complex swallows such as fruit cup and cracker swallows. The error was much

lower on simple swallows such as water and apple sauce. These results give credence towards
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a potential application in the swallow therapeutic realm. Currently there is a lack of objective

assessment tools that can determine the success of swallow therapy across various swallow

disorders. Attempts have been made through sEMG as a biofeedback tool, but the results are

susceptible to bias and lack standardization. Though limited by a small population size, the

swallow classification results demonstrate speech and language pathologists could use HDsEMG

during therapy to better understand a subject’s swallow disorder and treatment progression. If

made portable to be used at home, such a system could monitor patient compliance to their

therapy exercises, and provide continuous information about their symptoms and response to

various types of food. This knowledge will help in treatment decision making, and will shed light

on the outcomes of treatment for voice and swallow disorders.

Chapter 4 aimed to validate the HDsEMG laryngeal protocol and begin development of

an ambulatory system. Unfortunately the COVID-19 pandemic prevented subject recruitment and

restricted laboratory work. Section 4.1 demonstrated my attempt to work around the pandemic by

designing a data analysis workflow through forearm EMG. This study placed an HDsEMG array,

along with a few needle electrodes, to record the forearm during finger extension. The needles

were placed in the muscles associated with pinky, middle finger, and thumb extension. Results

demonstrated strong concordance of EMG onset detection between the needle electrode and its

nearest surface electrodes. The concordance increased during activation of the target muscle, thus

supporting our hypothesis that spatiotemporal data detects localized regional activity. Though we

lacked the necessary invasive information from the throat, when applying this same workflow

to the phonation dataset from chapter 2, we were able to see some distinction between low and

high-pitch phonation counts. The AUC of the ROC was 0.84 and the amplitude of the onset

counts were smaller (<20). This may be due to the small size of the laryngeal muscles, significant

overlap of surrounding muscles, and depth of muscles relative to the skin. Therefore additional

processing may be required for the laryngeal data. Its important to note the forearm data was from

a single subject subject, a major limitation due to COVID-19. Nonetheless, the results still hold
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promise: HDsEMG can differentiate low and high-pitch phonation with onset counts in addition

to the results from chapter 2. This is novel for applications in unhealthy subjects as we would

expect little pitch differentiation or symmetry in the cases of nerve injury and other disorders. It

is our hope that future studies will validate these results with needle EMG on the throat.

The second half of chapter 4, section 4.2 focused on the use of Flexible Electronic

Sensors (FES) and a miniaturized signal acquisition system, for ambulatory monitoring. Not

accounting for the time needed to fabricate the array, the FES were much quicker to prepare,

apply, and remove, than the array composed of standard 3M electrodes. During experimentation,

the FES was more comfortable and painless than the traditional array, especially upon removal. A

limitation to the array was the frailness of the FES. Some training will be required to teach future

researchers how to handle the delicateness of the FES, but future refinements on the substrate

can mediate this. Other issues include signal loss during Bluetooth transmission of the device,

large drift in some of the channels, and an increased susceptibility to movement and electrical

noise. The signal loss could be due to Bluetooth and can be avoided through other forms of

data transmission such as WiFi, or by recording the data in the device and not transmitting it at

all. This of course may be an issue for real-time data analysis, but at the moment that is not a

priority. Additionally, the system is a research device in development and is not housed within

any container. This may be why the signal quality was lower. Though only restricted to one

subject (also due to COVID-19), the AUC of the low and high-pitch differentiation LLR ROC

was 0.73. By improving the acquisition system, we predict the ROC will improve and lead to

the development of an ambulatory monitoring system. This system can be applied for voice and

swallow disorders to disambiguate treatment success and symptom progression.

In conclusion, HDsEMG is a crucial ingredient for recording noninvasive laryngeal

activity. It is able to differentiate low and high pitch phonation, as well as classify different types

of swallows. Its applications are not restricted to a clinical expert and can be used in a variety

of settings. Information from HDsEMG can be used to inform the general public about voice
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and swallow disorders through a cost-effective, comfortable, and easy-to-use assessment system.

Coupled with novel processing tools, machine learning algorithms, and miniaturized recording

devices, HDsEMG will improve our understanding of voice and swallow disorders, as well as

speech recognition tools.
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