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ABSTRACT OF THE THESIS

Mobile Health Monitoring on Low-power Wearable Devices based on EEG and ECG Signals

By

Berken Utku Demirel

Master of Science in Computer Engineering

University of California, Irvine, 2022

Associate Professor Mohammad Al Faruque, Chair

The recent developments in signal processing, machine learning, and smart sensing technol-

ogy allow real-time monitoring and recording of bio-signals, especially the electrocardiogram

(ECG) and electroencephalogram (EEG) signals. However, continuous monitoring of those

signals is challenging in low-power systems such as wearable devices due to energy and

memory constraints. Therefore, in this work, I proposed a novel lightweight single-channel

EEG-based method to estimate arousal levels, defined as an individual’s degree of alertness

or responsiveness to stimuli at low-power wearable devices for brain activity monitoring.

Moreover, a novel resource-efficient template control based Convolutional Neural Network

(CNN) architecture is presented for cardiac activity monitoring. To evaluate the proposed

methodology performance for brain activity monitoring, I used scalp EEG recorded during

overnight sleep and intra-operative anesthesia with technician-scored hypnogram annotations

at the University of California at Irvine Medical Center. And, the well-known PTB diag-

nostic ECG database is used to assess the proposed methodology’s performance for cardiac

activity monitoring. Evaluation of real hardware shows that the proposed methodologies

can be implemented for devices with a minimum RAM of 512 KB while maintaining high

accuracy with low energy consumption compared to the state-of-the-art works.
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Chapter 1

Introduction

Recent advances in machine learning with signal processing have opened the gate to unveil

fundamental processes in the human brain and heart, such as a change in drowsiness level or

the effect of the heart rate variability in cardiovascular diseases. These research efforts have

become possible by recording and stimulating the human brain and heart activity in the

clinical setup by clinicians with very high accuracy. Clinical ECG and EEG is the primary

tool for monitoring a person’s health situation. However, they can only be used for a limited

time, and continuous monitoring of the patients’ condition is still required outside clinical

hours [6, 33]. Although some techniques were developed to monitor patients’ situations con-

tinuously, they have failed to provide enough caring systems. For example, ambulatory ECG

devices are traditionally used to monitor cardiac activity for a long duration to be further

investigated by clinicians. For example, the Holter [14], a battery-operated portable device,

is used to record and store long-term ECG signals. However, these devices cannot provide

real-time feedback to users, and cardiologists need to analyze long-term recordings, which is

a very time-consuming and expensive process.

These difficulties are also the same for monitoring neural activity even though EEG signals

are widely used for emotion recognition, epileptic seizures, and drowsiness. The nature of
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EEG signals makes it harder to process data near the sensor as it requires more channels

with a high sampling rate to get information about the different neural activities. Currently,

wearable device solutions for monitoring those two vital signals follow a cloud computing

architecture where the raw data from wearable devices is offloaded to fog (mobile phones) or

cloud (remote servers), where the processing takes place [31], using the recent developments

in IoT [8]. This offloading consumes a tremendous amount of communication energy which

reduces the battery life of wearable devices, as well as mobile phones [21, 23]. In addition

to that, it also introduces latency which hinders the real-time monitoring and detection in

healthcare applications [37]. Moreover, offloading the raw data to a mobile phone or cloud

makes the users’ data vulnerable to privacy breaches [10]. To overcome these limitations,

‘Edge Computing’ [19] architecture gained momentum in recent years where all the process-

ing is done on the wearable devices [32, 34], and only the analyzed results are sent to the

cloud for remote monitoring. Thus, it addresses the issues as mentioned earlier related to

energy consumption, latency, and vulnerability of privacy breaches.

The designed signal processing and machine learning algorithms for wearable devices should

be energy-efficient, memory-efficient, and provide acceptable performance within the pre-

vious two constraints. Most of the state-of-the-art works on monitoring these two signals

are not wearable device compatible as they prioritize performance and do not consider the

other two constraints. The state-of-the-art works can be roughly separated into two groups.

The first group tried to extract some handcrafted features, which is also called feature engi-

neering from the bio-signals manually [15, 7, 30]. For neural activity monitoring examples,

authors in [15] proposed to transform time-domain signals to frequency domain and then

extract 181 distinct frequency-domain features for classifying a person’s arousal while watch-

ing emotional content videos. Similarly, in [22], authors extract 104 features from different

frequency bands of electroencephalogram (EEG) to classify sleep stages. Also, these featre

extraction based algorithms used more than one EEG channel to extract features. How-

ever, as the number of extracted features and channels increases, the algorithms’ computa-
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tional complexity and memory requirement increase, making them unsuitable for wearable

devices with constrained memory and energy resources. The second group used complex

deep learning algorithms [1, 29], such as CNN or LSTM to extract features automatically.

Machine learning algorithms perform classification based on the extracted features from the

data. However, the feature extraction processes are often time-consuming and require a huge

amount of energy. Deep learning algorithms like Convolutional Neural Networks (CNN) do

not require manual feature engineering and extraction as they automatically extract features

through convolution layer. Moreover, the layered architecture of CNN provides flexibility to

design a network by adding or removing layers as necessary in the training phase. Later, this

trained architecture may be used to classify data during the inference phase. However, the

full architecture from the training phase may not be needed at the inference phase [24], as

many of the data can be correctly classified using only the first few layers of the architecture.

This early exit capability of CNN should help to avoid redundant operations during the in-

ference phase leading to energy efficiency for wearable device solutions while maintaining

the performance. The early exit architectures usually make the exit decision based on the

classification confidence at a particular exit (output) layer. If the classification confidence

at one of the exit layers is greater than a specific threshold, it exits the network and thereby

avoids further operations. Therefore, using an early exit CNN architecture where the net-

work portions can be used at the inference phase is more appropriate for wearable device

solutions than the entire architecture.

This work shows that both feature extraction and designing neural networks can be imple-

mented in resource-constrained (low-power, low-memory) systems if the application-specific

knowledge is also involved in designing the overall system. To show the resource-efficient

feature extraction, the arousal level estimation using EEG signals is chosen as an applica-

tion. It is shown that the proposed methodology discriminates wakefulness from reduced

arousal solely based on the neurophysiological brain state with more than 80% accuracy.

Therefore, our findings describe a common electrophysiological marker (feature) that tracks
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reduced arousal states, which can be applied to different applications (e.g., emotion detec-

tion, driver drowsiness). Evaluation on hardware shows that the proposed methodology can

be implemented for devices with a minimum RAM of 512 KB with 55 mJ average energy

consumption. For showing the efficient processing of neural networks, the Myocardial In-

farction (MI), also known as heart attack, detection using ECG signals is selected as another

application with different bio-signal. The baseline and proposed neural network architecture

outperform related works on the well-known PTB diagnostic ECG database. Both of our

architectures are suitable for wearable devices requiring only 20 KB of RAM. Evaluation of

real hardware shows that our methodology is faster and up to 53×more energy-efficient than

the state-of-the-art works on wearable devices.

1.1 Background

1.1.1 The Electrocardiogram

The Electrocardiogram (ECG) signals are the electrical activity of the heart cells. In the

heart, there are special cells that are adequate to generate their electrical impulse intrinsi-

cally. In the cardiac conduction system, the electrical stimulation is triggered by the cells

with the fastest inherent firing rate. The following parts of the heart play a role in the cardiac

conduction system, the sinoatrial (SA) node, the atrioventricular node, the atrioventricular

bundle branches and the Purkinje cells. Cardiac rhythm is initialized by the sinoatrial (SA)

node. The SA node is called the pacemaker of the heart. Electrical signals initialized from

the SA node is sent to the atrioventricular node through internal pathways. The electrical

signal’s travel time between the atrioventricular node and the SA node is approximately 50

milliseconds [4]. During this time, the atria pump the blood into the ventricles. The electri-

cal signal travels to the atrioventricular bundle branches and the Purkinje fibres after passing
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His bundle. With the help of Purkinje fibres, the ventricles receive the electrical signal and

contract. As the ventricles contract, the blood goes to the lungs from the right ventricle.

Meanwhile, the left ventricle pumps the blood to the aorta, and the blood is distributed to

the rest of the body.

1.1.2 Measurement of ECG

In clinical setups, the electrical activity of the heart is measured by using the standard

12-lead electrocardiography noninvasively. The output of the standard 12-lead electrocar-

diography is called an electrocardiogram. As seen in Figure 1.1, there are three main parts in

an electrocardiogram: Depolarization in the atria is reported as a P wave. Atrial anomalies

are detected by observing the P wave’s duration, amplitude, and frequency. The interval

between the beginning of the upslope of the P wave and the beginning of the QRS complex

is called the PR interval. The duration of the PR interval is approximately between 120

and 200 ms. The QRS complex, one of the most important parts of the ECG waveform,

reflects the repolarization of atria and the depolarization of ventricles. The QRS complex

comprises Q wave, R wave and S wave. The first negative deflection in the QRS complex is

called the Q wave, the first positive deflection is called the R wave, and the second negative

deflection is called the S wave. The QRS complex has a sharper form than the P wave due

to the fast conduction velocity in the bundle of His and the Purkinje cells. The change in

the duration of the QRS complex may indicate arrhythmias, ventricular 9 hypertrophy, or

myocardial infarction.

12-lead ECG is the primary tool for monitoring cardiac activity; however, the number of

channels with bulk electrodes makes it harder to implement in a mobile environment. There-

fore, single-channel ECG systems are recently used to detect myocardial infarction and sev-

eral arrhythmias. In this work, it is also shown that the myocardial infarction, which is also

called a heart attack, can be successfully detected using single-lead ECG.
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Figure 1.1: A complete heartbeat

1.1.3 The Electroencephalography

Electroencephalography (EEG) is a method for measuring electrical activity of a brain (neu-

ral activity) by placing an array of electrodes on the surface of a subject’s scalp. EEG signals

have been widely used in several clinical setups from its first recording by Hans Berger in

1924 [39]. For example, EEG is used as a diagnostic tool for epilepsy, brain damage and

sleep disorders and is commonly used in various research areas, such as emotion recognition

[16], sleep stage classification [26] or brain-computer interfaces.

Although, recently, classification and detection of different applications using EEG signals

draw significant attention from academia and industry, robust and real-time analysis of EEG

are challenging to achieve for many reasons. Firstly, EEG measurements are susceptible and

tend to have a low signal to noise ratio. The electrical activity observed on the scalp’s surface

is measured on the microvolt level, requiring excessively sensitive differential amplifiers and

low impedances between the electrodes and the scalp. Due to the small electrical potentials

involved, EEG is also very susceptible to contamination by various types of artefacts and
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noise. For example, different bio-signals from the human body, such as heart contraction

or muscle contraction and eye movements, can generate artefacts that dominate the signals

generated by brain activity. Moreover, the small movements of a subject can generate high

voltage spikes in the EEG signal which makes it harder to collect and process data. Also,

EEG suffers from low spatial resolution, as the electric fields generated by the brain are

smeared by the tissues, such as the skull, situated between the sources and the sensors.

Although EEG signals have some major drawbacks, there are some advantages of using EEG

signals as well. For example, EEG has an excellent temporal resolution thanks to the in-

credible speed at which electric fields propagate: events occurring at millisecond timescales

in the brain can typically be captured using EEG signals. As menrtioned before, the spatial

resolution of the EEG signals are low due to smearing by the skulls and tissues. However, as

a result of that EEG channels are often highly correlated spatially, which brings additional

problem types such as the source localization, or inverse problem. These topics are an active

area of research in which algorithms are developed to reconstruct brain sources given EEG

recordings.

1.1.4 Measurement of EEG

In clinical setups, the electrical activity of the brain is measured by using the standard 10-20

configuration noninvasively. The output of this setup is called an Electroencephalography

(EEG). Unlike the ECG signals, the EEG signal has no known pattern or determined points

(P, Q, R, S points). Therefore, different applications set a window length where the EEG

signals are assumed to be stationary. For example, in sleep stage classification, the EEG

signals are segmented as 30-second windows for processing. 10-20 setup is the primary tool

for monitoring neural activity in clinical setups; however, this monitoring system suffers

from preparation time (conductive gels or pastes) and large equipment (metal electrodes)

and prevents the EEG monitoring to be deployed in mobile devices. However, the advances in
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sensor technology allow a fully portable, wireless, long-term, flexible scalp electronic system,

incorporating a set of dry electrodes [20].

Thanks to these advancements in sensing technologies and, in particular, tiny electrical

charges, the EEG signals can be measured using portable commodity devices. These sensors

track the brain’s electrical activity by placing electrodes on the scalp. These electrodes detect

the tiny electrical changes on the skin that originate from the neurons’ electrophysiologic

pattern of depolarization and repolarization. Therefore, single-channel EEG systems are

recently used to detect and classify different EEG signals. In this work, it is also shown that

the arousal level, which is defined as the level of consciousness, can be successfully estimated

using a single EEG channel.
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Chapter 2

Materials and Methods for Arousal

Level Estimation

This section explains the data collection for validating the algorithms and methods applied to

collected EEG signals for estimating the arousal level at low-power wearable devices using

single-channel of EEG. In the end, the estimation results are presented with energy and

memory calculations of each operation.

2.1 Materials

2.1.1 Data Collection

The scalp EEG was recorded during overnight sleep or intra-operative anesthesia at the

University of California at Irvine Medical Center. All patients provided informed consent

according to the local ethics committees of the University of California at Berkeley and at

Irvine and gave their written consent before data collection. We analyzed recordings from
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8 participants between 24 and 57 years old. The Polysomnography which is a comprehen-

sive test used to diagnose sleep disorders, was recorded for the sleep stages during 8 hours

and 5 min quiescent rest with eyes closed before and after sleep. Data were recorded on

a Grass Technologies Comet XL system (Astro-Med, Inc, West Warwick, RI) with a 19-

channel EEG using the standard 10–20 setup as well as three electromyography (EMG)

and four electrooculography (EOG) electrodes are used as additional bio-signals to facilitate

gold standard sleep staging. The EEG was referenced to the bilateral linked mastoids and

digitized at 1000 Hz. Sleep staging was carried out by trained personnel and according to

established guidelines.

The anesthesia EEG data were recorded from the induction of anesthesia to the recovery us-

ing a Nihon Kohden recording system (256 channel amplifier), analog filtered above 0.01 Hz,

and digitally sampled at 5 kHz. General anesthesia was induced intravenous with remifen-

tanil (100 µg) and propofol (150 mg). The awake state, which is also called the highest

level of consciousness, was defined as the time before the administration of propofol, and

anesthesia was defined as the time after inducing remifentanil and propofol.

2.1.2 Methods

Pre-Processing

Both sleep and anesthesia data are resampled to 200 Hz from 1000 and 5000 Hz for sleep

and anesthesia respectively, using a Finite Impulse Response (FIR) antialiasing lowpass

filter. Then, a 10 order low-pass Butterworth filter is used with 50 Hz cut-off frequency

for denoising. After filtering, sleep data is epoched into 30-second segments. In contrast,

the anesthesia is segmented as 10-second to increase the number of epochs as anesthesia’s

duration (1-3 hours or less) is shorter than sleep (6-10 hours). It is observed that the feature’s

discrimination performance is best amongst the electrodes Fz, Pz, and Cz. For this study,

10



we choose the Cz electrode for calculation of spectral slope and classification.

Feature Extraction

After artifact removal and segmentation, the Multitaper approach based on discrete prolate

Slepian sequences is used to compute the power spectral density (PSD) estimate from 0.5

Hz to 45 Hz with 0.5 Hz smoothing. Short-time Fourier Transform or Periodogram, which

utilizes the discrete Fourier transform to estimate the power spectral density (PSD) of a

signal, has been widely used in literature [28, 27] to extract more features from EEG signals.

However, these methods suffer from high variance and bias due to the finite duration of

the observed non-stationary random signal, ending with an inconsistent estimate of power

spectral density. The single taper methods are developed to reduce the bias and variance

using windowing techniques such as Hanning and Welch [40], but the resulting spectrograms

are still high variance due to used windows are not optimal for increasing the resolution of

PSD. We found that Thomson’s multitaper spectral estimation method [38] gives the best

result for EEG signals by reducing the variance and bias of the spectrum by averaging the

estimates from multiple tapers applied to the same window.

λ =
W
−W

∣∣X(f)
∣∣2df

Fs/2
−Fs/2

∣∣X(f)
∣∣2df (2.1) Fs/2

−Fs/2

∣∣X(f)
∣∣2df < ∞ (2.2)

These tapers, known as Discrete Prolepian Spheroidal Sequences (DPSS), are very useful as

they are not only designed to reduce bias, but they also have orthogonality property, which

enables them to extract uncorrelated single-taper spectral estimates from the same data. The

discrete prolate Slepian sequences (DPSS) arise from the following spectral concentration

problem. The discrete Fourier transform (DTFT) (X(f)) of a finite time series x[n], for

which a sequence maximizes the ratio given in Equation 2.1, subject to the constraint that

the sequence has finite power (Equation 2.2).
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Where Fs is the sampling rate of the sequence x[n] and
∣∣W ∣∣ < Fs/2. This ratio determines

an index-limited sequence with the largest proportion of its energy in the band [–W,W ].

This maximization leads to the eigenvalue problem is given in Equation 2.3.

N−1∑
m=0

sin(2πW (n−m))

π(n−m)
gk(m) = λk(N,W )gk(n) (2.3)

Where λk is the eigenvalues, and gk(n) is the DPSS values that correspond to kth Slepian

sequence. The eigenvectors of this equation, gk(n), are the DPSS values, which are mutually

orthogonal to each other. Since the resulting single-taper estimates are uncorrelated with

each other, they can be averaged together as if they were independent trials of the same

distribution, producing a spectrum with reduced variance. The estimated power spectra,

Sk(f), is calculated at frequency f as in Equation 2.4.

We have used 29 tapers for 30-second segments of sleep EEG and 9 tapers for 10-second

anesthesia segments, so the first 29 and 9 DPSS are used for multitaper PSD estimation.

After obtaining DPSS values, the modified periodograms are calculated in Equation 2.4 using

a different Slepian sequence for each window.

Sk(f) = ∆t

∣∣∣∣N−1∑
n=0

gk(n)x(n)e
−j2πfn∆t

∣∣∣∣2 (2.4)

Here Sk(f) is the modified periodograms, each obtained using a different Slepian sequence

(gk(n)). Finally, the multitaper PSD estimate is calculated, by averaging the modified

periodograms using Equation 2.5.
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S(f) =
1

K

K−1∑
k=0

Sk(f) (2.5)

After obtaining the power spectral density estimation, we calculated the spectral slope by

fitting a linear regression line to the PSD in log-log space between 30 and 45 Hz. This range

was proved to correlate best with arousal changes in rodents and monkeys [11]. The best line

is obtained using the polynomial curve fitting method to the 30-45 Hz range of multitapered

power spectral density estimation. Figure 2.1 shows the PSD estimation of three different

EEG epochs obtained using curve fitting.

Figure 2.1: The power spectral density of three different EEG epochs

As shown in this figure, the spectral slope of the wakefulness and reduced arousals is different.

The slope for the reduced arousals tends to be more negative than the wake stage. To observe

these spectral slope differences better between sleep stages, the whiskey plot is shown in

Figure 2.2.

Figure 2.2 shows the spectral slopes’ distribution for three different sleep stages (Wake,
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Figure 2.2: The whisker plot for slope distribution of three different stage

NREM3, and REM). We observed the wake stage slope between -0.1 and -3 with a -2.08

median value and 0.6 standard deviations. On the other hand, the median of spectral slopes

for the REM stage is -3.45 with 0.5 standard deviations.

We have applied the same method to EEG data recorded under propofol anesthesia to

show that the spectral slope between 30-45 Hz can track the reduced arousal levels. In

these recordings, the wake stage is defined as the time before the start of propofol and

remifentanil, and anesthesia was defined as the periods when the patients were unresponsive

to verbal commands assessed by the attending anesthetist. Figure 2.3 shows the spectral

slopes obtained during wakefulness and anesthesia. We observed that the spectral slope

was higher during wakefulness (-1.9 median value with 0.5 standard deviations) than during

anesthesia (-2.77 median value with 0.8 standard deviations).

These results provide evidence that the spectral slope discriminates wakefulness from reduced

arousals. Moreover, it is observed that the more negative slopes of the wake stage are closer
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Figure 2.3: The whisker plot for slope distribution of wake and anesthesia

to state transitions, which can be explained as the subjects are still drowsy.

2.1.3 Results

2.1.4 Performance Evaluation

To evaluate the proposed methodology’s performance, we used sleep recording, specified in

Section 2.1.1, which has an associated hypnogram file scored by a specialist. The hypnogram

files contain labels identifying the sleep stages. The two different NREM stages (3 and 4)

are combined into one group as NREM3 since these two stages are considered as deep sleep,

whereas NREM1 and NREM2 are considered as light sleep [12]. Thus, the classification is

performed for three different sleep stages (Wake, NREM3, and REM).

Since we extracted spectral slope from one channel of the EEG signal, simple threshold values
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are used for discriminating sleep stages from each other instead of using machine learning

algorithms. For this study, the threshold value is chosen as -2.45 for separating wakefulness

from different sleep stages. If the calculated spectral slope of an EEG epoch is greater than

-2.45, this epoch is classified as Wake. If the slope is less than -3.2, the period is classified

as REM. Lastly, if the calculated spectral slope is between these two threshold values, the

epoch is classified as the NREM3 stage.

Figure 2.4: The normalized confusion matrix

Figure 2.4 shows the confusion matrix for three different sleep stages. As can be seen

from the figure, the confusion of Wake stage with NREM3 and REM stages are lower

than 15%, which indicates that the spectral slope feature can discriminate the wakefulness

with reduced arousal brain states. Since both NREM3 and REM stages are considered as

low arousal level, the algorithm’s discrimination performance for these two stages is not as

high compared to Wake classification. However, the confusion degree for reduced arousal

with wakefulness is as low as 7% (Wake-REM). As seen in these results, the spectral slope
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calculated from the power spectral density can estimate the human’s arousal level based

on neurophysiological brain state. Also, it is known that if the PSD estimates are obtained

from different electrodes with high sampling frequency and averaged across all electrodes, the

discrimination performance of the spectral slope increases for arousal level estimation [18]

or different methods and techniques can be applied to multitaper power spectra to obtain a

more accurate and fine estimation of frequency variations. However, the algorithm’s memory

requirement and energy consumption increase with the sampling rate and number of channels

used, making it unsuitable for wearable devices. Also, most of the wearable system try to use

as few channels as possible to increase the comfortability and acceptability amongst society

[9].

2.1.5 Memory and Energy Consumption Evaluation

The proposed methodology’s memory footprint, energy consumption and execution time

are evaluated using an STM32 Nucleo-144 (STM32H743Z), 32-bit ARM Cortex-M7 core

with 480 MHz maximum operating frequency, and 1 MB RAM. The energy profiling is

performed using STM32 Power Shield (LPM01A), an accurate power monitoring device

with a power consumption measurement range between 180 nW and 165 mW. Table 2.1

shows the execution time, energy consumption, and required memory for each operation.

The energy and memory calculation is performed using a 30-second epoch of EEG signal,

sampled at 200 Hz.
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Table 2.1: Memory and Energy Consumption on Nucleo Board

Operations
Exe.

Time (ms)

Avg.

Power (mW)

Avg

Energy (mJ)

Flash Memory

Footprint (kB)

RAM Memory

Footprint (kB)

Filtering 180 55 10 26.4 96.8

PSD Estimation 101 440 45 45 350

Overall 281 195.7 55 ≥ 64 KB ≥ 512 KB

The overall execution time for a 30-second epoch takes 281 ms in the device with 55 mJ

average energy consumption. The proposed methodology is also compatible with any devices

with a minimum RAM of 512 KB. When multitaper PSD estimation is calculated, the

discrete Prolepian sequences are represented as sparse matrices to save memory. Since the

first sequences contain a few non-zero elements, storing them as sparse matrices are more

efficient. The number of discrete Slepian sequences (29 tapers in this study) used for PSD

calculation can be decreased using fewer tapers to save more memory. However, the value for

frequency smoothing needs to be decreased, which would reduce PSD resolution and result

in a high-variance spectrum.
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Chapter 3

Materials and Methods for Real-time

MI Detection

This section explains the used public data for validating the proposed algorithm and methods

applied to ECG signals for detecting the myocardial infarction at low-power wearable devices.

In the end, the results are presented with energy and memory calculations of each operation

similar to the previous sections.

3.1 Experimental Setup

3.1.1 Database Used

To make a fair comparison with the state-of-the-art works, the well-known PTB diagnostic

ECG database [5] from PhysioNet [13] is used. This database contains MI data from 148

subjects and normal healthy control data from 52 subjects. Each record includes 15 simulta-

neously measured signals: the conventional 12 leads (I, II, III, aVR, aVL, aVF, V1, V2, V3,
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V4, V5, V6) together with the 3 Frank lead ECGs (Vx, Vy, Vz). As the proposed method

is designed for the wearable device or mobile health monitoring we use the single lead ECG

data from the 11th lead (V5). Each signal segment is digitized at 1000 samples per second (1

kHz). Table 3.3 shows the summary of data distribution and the specific lead used in each

of the related works.

3.1.2 Performance Metric

As the number of segments (heart beats) for different classes (MI and Normal) in the dataset

is highly imbalanced, reporting only the classification accuracy is not appropriate and enough

to measure classification performance of the proposed method. Thus, we use additional

both the sensitivity and specificity metric. Also, by that way the proposed method can be

compared with other related works in a fair way as shown below:

Se =
TP

TP + FN
(3.1) Sp =

TN

TN + FP
(3.2)

Ac =
TP + TN

TP + TN + FN + FP
(3.3)

Where TP , TN , FP and FN refer to True Positive, True Negative, False Positive and

False Negative, respectively. The respective definitions of these four standard metrics using

true positive (TP), true negative (TN), false positive (FP), and false negative (FN) are as

follows: Accuracy is the ratio of the number of correctly classified beats to the total number

of beats classified, Acc = (TP+TN)/(TP+TN+FP+FN); Sensitivity is the rate of correctly

classified events among all events, Sen = TP/(TP+FN); Specificity is the rate of correctly

classified nonevents among all nonevents, Spe = TN/(TN+FP). In other words, sensitivity

is the true positive rate that measures the portion of the positive class (MI segments) that

is classified correctly. Likewise, specificity metric is the true negative rate that measures the
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portion of the negative class (Normal segments) that is classified correctly.

3.1.3 Training CNN Classifier

To validate the performance of proposed CNN classifier, we use data from 200 subjects (52

Normal, 148 MI) from PTBDB [5]. The total of 62306 (51880 MI, 10426 Normal) heartbeat

segments are obtained after pre-processing steps from Lead 11 ECG data. As mentioned

before, the dataset is highly imbalanced since the number of abnormal MI segments is ap-

proximately 5 times the normal segments. For providing a proper training on the highly

imbalanced dataset, the class weights are utilized to each class during training using the

following formula dk = 1
Nk

∗ N
nc
. In this equation, dk, and Nk represent the class weight and

the number of segments belonging to class k, respectively. N is the total number of segments

from all classes and nc is the number of output classes which are MI and normal heartbeats

in this case.

The classifier is trained with a batch size of 500. The models are trained for 150 epochs

and select the best model is chosen considering the minimum validation loss. We use Binary

Crossentropy as the loss function for each output block. Adam optimizer is used to train

the models with a learning rate of .001. Similar to the state-of-the-art works, the 5-fold

cross-validation is performed on the dataset where 80% data (4 folds) is used for training

and 20% is used for testing. Also, the training data is further splitted by 20% for validation

during training.
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3.2 Proposed Method

The following sections explain the details of the proposed methodology. The overview of our

proposed methodology is demonstrated in Figure 3.1.

Figure 3.1: Overview of Our Proposed Methodology

3.2.1 Pre-processing Steps

ECG Lead Selection This study only used the modified 11th lead (v5) from PTB dataset

[5]. Automatic cardiac activity classification based on ECG is beneficial for portable or

wearable devices, and it is known that few channel numbers (even single-channel) would be

found in these devices. Hence, we developed our algorithm to run with a single channel of

ECGs.

Filtering After selecting the lead, the raw ECG signals are filtered using a tenth-order

Butterworth bandpass filter with cut-off frequencies f1=1Hz and f2=45Hz. It is observed

that since the butterworth filter is designed to have a frequency response that is as flat as

possible in the passband range, the morphological waveform of the filtered ECG heartbeats

are better compared to other filters.
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R-peak Detection There are several robust available methods for R peak detection in

ECG signals such as Pan-Tompkins algorithm [25] based on signal processing or CNN-LSTM

architectures [41] based on deep learning. However, in this study, the Pan-Tompkins algo-

rithm is used to detect the R peaks, and the algorithm for improving R-peak detection is

beyond the scope of this manuscript.

Segmentation Similar to other related works [2], the ECG signals are segmented to beats

by taking 250 points before the peak (R-point) and 400 points after the peak.

Downsampling This processing step in our proposed method saves huge amount of energy

consumption by reducing the number of samples to be processed by the CNN architecture

for each heartbeat. The real motivation behind decreasing the number of samples in the

ECG beats is that there are many published works investigates the role of sampling rate in

classifying ECG signals into different cardiac diseases. For instance, to determine the effects

of input size or resolution on the performance, Zhai et al. [42] compared six different input

sizes of CNN classifiers for detecting arrhythmic beats. It is found from that study that

the classification performance for some specific abnormal beats (Supraventricular ectopic

beats) is the lowest degree at a small input size (downsampling) which is likely due to the

low resolution of input to capture the necessary information of the original ECG signal.

However, detection performance for V-type (Ventricular ectopic beats) beat stays relatively

high, probably because that kind of beats are usually well distinguished from other beat

types thanks to their waveform morphology. While determining how much downsampling

is possible without decreasing the classification performance, the power spectral density

estimation (PSD) is used to observe the important frequencies of the heartbeat segments.

Figure 3.2 given in below shows the PSD of a filtered heartbeat segment, the frequency

components which carry more information compared to the other frequency ranges or bands

are included the resampled signal. As can be seen from this Figure all the necessary frequency
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components are present within 125 Hz of the signal which means a sampling frequency of 250

Hz should be enough based on Nyquist theorem [17]. This sampling frequency corresponds

to one-fourth of the frequency used in the PTBDB which is 1 kHz. Therefore, each heartbeat

segment which consists of 600 samples is resampled by one-fourth which is 150 samples. The

resampling is done by applying an anti-aliasing low pass filter to each segment using Kaiser

window method. Then the segments are downsampled by 4 times. We use the resample

function which is available in MATLAB (MATLAB and Signal Processing Toolbox Release

R2020b,The MathWorks, Inc, USA).

Figure 3.2: The Power Spectrum of Filtered ECG Heartbeat

3.2.2 Proposed CNN Architecture

As shown in Figure 3.1, the proposed CNN architecture has three main parts. The first

part is the multi-output CNN architecture that classifies the heartbeat segments into MI or

normal, the second is the template control that decides which exit should be used based on

the cross-correlation of each heartbeat segment against the template beat, the final part of

the proposed system is the decision algorithm that uses the correlation coefficient from the

template control as an additional exit condition along with the classification confidence of

the first output block.
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Table 3.1: Multi-output CNN Architecture Details

Layer Kernel Stride Activation Output # of
Name Size Size Function Shape Param.

Input - - - 159x1 0
Conv 1 31 1 ReLU 120x3 96
Pooling 1 2 2 - 60x3 0

Batch Norm. - - - 60x3 12
Fc 1 - - Sigmoid 2x1 181

Total Number of Parameters Before the First Output 289

Conv 2 7 1 ReLU 54x8 176
Pooling 2 2 2 - 27x8 0

Batch Norm - - - 27x8 32
Dense 2 - - Sigmoid 2x1 217

Total Number of Parameters for the Architecture 533

Multi-output CNN Architecture

While designing the CNN architecture, the constraints of resource-impoverished wearable

devices are considered. Therefore, It has 2 convolution blocks and 2 classification (exits)

blocks which are placed after each convolution block. Figure 3.1 shows the overall architec-

ture of the designed CNN architecture. Each convolution block consists of one convolution

layer which is passed through ReLU activation, one max-pooling layer, and one batch nor-

malization layer. Each output block consists of one flattening layer, and one linear (dense)

layer which is passed through sigmoid activation for final decision. As given in Table 3.1,

the total number of parameters required to classify a heartbeat segment after the first, and

second output block is 289, and 533, respectively. The baseline classifier is considered as the

whole architecture only with the last output.

Template Control

Traditionally, the early exit deep learning architectures utilize brute force search to find

which exit should be used. However, in this work, the Template Control is used to avoid this.
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This control block utilizes the template matching mechanism using the Pearson correlation

coefficient to determine whether the CNN architecture should exit from first output or not.

While creating a template, we have used 20 random MI beats. These beats are aligned

according to their R-peak and averaged, then the correlation is calculated [3] using Equation

3.4.

ρ(T, x) =
1

N − 1

N∑
n=1

(
T [n]− µT

σT

)(
x[n]− µx

σx

)
(3.4)

Where σT and µT are the standard deviation and mean of the template beat (T) and σx and

µx are the standard deviation and mean of the incoming beat, respectively.

If the absolute value of the Equation 3.4, |ρ(T, x)|, is greater than the correlation threshold,

ThCorrelation, which implies the morphological waveform of the segment is similar to template

beat and have a higher chance to be correctly classified by the early exit. Therefore, the ar-

chitecture utilizes the early exit to classify the heartbeat instead of using whole architecture.

However, if the |ρ(T, x)| is lower than threshold, it directly uses the baseline architecture to

classify a particular segment. However, it should be emphasized that even if the template

control decides to use the early exit, it does not guarantee early exit. The early exit decision

is made by the algorithm as discussed in next Section 3.2.2.

Early Exit Algorithm

In order to decide whether the early exit should be used or not, an additional algorithm

is developed and used. Figure 3.3 shows the overall flowchart of the developed algorithm.

As the extracted template beat is created using MI heartbeats, 1− |ρ(T, x)| can be used to

measure the similarity of the coming beat with the normal heartbeats. Also, as the sigmoid
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Figure 3.3: Flowchart of the proposed algorithm

function is used at the output, Outputconfidence represents the classification confidence for

MI beats. Therefore, 1−Outputconfidence can be represented as the classification confidence

for normal beats. Using these both correlation coefficient and confidences, the proposed

algorithm makes the final decision. The reason why the confidence and correlation coefficient

are used at the same time is that this allows us to overcome the limitations of architectures

which purely depend on classification confidence. For example, when the exit decision is

solely based on confidence and output block misclassifies a hearbeat with high confidence it

will exit without investigating the beat more. However, in the proposed design, there is an

additional control mechanism.
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Table 3.2: Correlation and Confidence Threshold Analysis of the Architecture

ThCorrelation ThConfidence Performance (%) Output Block Used
Template control Early exit Accuracy Sensitivity Specificity First Second Both

0.5

0.5 98.84 99.06 97.78 39740 0 22566
0.6 98.88 99.06 97.98 39494 0 22812
0.7 98.92 99.06 98.20 39238 0 23068
0.8 98.95 99.08 98.31 38855 0 23451
0.9 98.99 99.10 98.44 38140 0 24166

0.6

0.5 98.88 99.10 97.78 36097 7271 18938
0.6 98.91 99.10 97.98 35866 7271 19169
0.7 98.95 99.10 98.20 35618 7271 19417
0.8 98.99 99.12 98.33 35264 7271 19771
0.9 99.02 99.13 98.46 34599 7271 20436

0.7

0.5 99.05 99.15 98.59 30006 20548 11752
0.6 99.08 99.14 98.77 29814 20548 11944
0.7 99.11 99.14 98.94 29607 20548 12151
0.8 99.13 99.15 99.05 29304 20548 12454
0.9 99.16 99.16 99.15 28727 20548 13031

0.8

0.5 99.19 99.17 99.32 17723 39500 5083
0.6 99.20 99.16 99.39 17621 39500 5185
0.7 99.21 99.16 99.44 17509 39500 5297
0.8 99.22 99.17 99.52 17326 39500 5480
0.9 99.24 99.18 99.54 16953 39500 5853

0.9

0.5 99.22 99.12 99.71 1260 59670 1376
0.6 99.22 99.12 99.71 1256 59670 1380
0.7 99.23 99.13 99.72 1251 59670 1385
0.8 99.24 99.14 99.74 1241 59670 1395
0.9 99.25 99.16 99.74 1229 59670 1407

3.3 Experimental Results and Analysis

3.3.1 Performance Evaluation of CNN Architecture

The accuracy for each output block of our multi-output CNN classifier is given in Figure

3.4, which is 94.82% and 99.33% for the early exit and whole architecture respectively.

Furthermore, the early exit reaches a sensitivity, and specificity of 94.21%, and 97.83%,

respectively while the complete architecture achieves higher sensitivity, and specificity of

99.25%, and 99.74% respectively. The results prove and motivate that each output block has

similar performance for all three metrics that are used in this work. Therefore, it guarantees
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that the trained CNN model is not biased to any specific class, MI or normal.

Figure 3.4: Exit-wise Statistics of Multi-output CNN Architecture

3.3.2 Correlation and Confidence Threshold Analysis

The correlation threshold, ThCorrelation of the template control, and the confidence thresh-

old, ThConfidence of the early exit play a significant role in the proposed CNN architecture.

Therefore, the different combinations of these two threshold values and their effect on the

classification performance with the early exit decision are investigated. The threshold value

of the last output of the CNN architecture is set to 0.5 as it is general value of the confidence

threshold for the complete CNN architectures. Table 3.2 shows the performance and the

different output blocks used to classify the beats. The beats that are initially chosen for

the early exit by the template control but do not exit after first output and end up using

both the output block. Table 3.2 shows that the classification performance of the archi-

tecture improves with the increase of ThCorrelation. This can be explained by investigating

the behaviour of the template control. When it is observed, it can be easily seen that the

template control picks more beats to be classified by the last output block which has better

performance. For each ThCorrelation value the performance also increases with increase of the

ThConfidence value. This event occurs because the developed algorithm does not allow early

exit after first output as it examines the classification confidence and if it is lower than the

threshold value, it rejects the usage of early exit and the beats are sent to the second output
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block which has better performance. This is the reason why the number of beats which are

classified by early exit decreases and increases the value for both output blocks in Table 3.2.

If the majority of the segments ends up using both output block, our proposed architecture

may require to spend more energy than the baseline model which has no early exit. Thus,

the purpose of this threshold value optimization is to find the best best mixture that pro-

vides a similar performance of the developed method with the baseline architecture while

keeping energy consumption low. As shown in Table 3.2, ThCorrelation = 0.8 and ThConfidence

= 0.9 achieves the best performance considering all three metrics and it gives a good bal-

ance among different output blocks used to classify the segments. Therefore, we use those

two values for the correlation threshold of template control and the confidence threshold of

early exit in our proposed architecture. Moreover, the proposed architecture provides a huge

stretchability to designers as the two threshold values can be lowered to save energy more

while achieving better performance.

3.3.3 Overall Performance Evaluation

As shown in Table 3.3, our baseline architecture that uses all convolutional blocks reaches an

accuracy of 99.33%, sensitivity of 99.25%, and specificity of 99.74%. Our proposed CNN

architecture (for ThCorrelation = 0.8, ThConfidence = 0.9) provides a similar performance as the

baseline with an accuracy, sensitivity, and specificity of 99.24%, 94.18%, 99.54%, respectively.

Also, both CNN architectures which are introduced in this work significantly outperform the

other related works [2, 35, 36, 1, 29] in all three metrics, except the sensitivity of the [2] is

the best amongst all works. Furthermore, SVM and RF models, in general, are not suitable

for edge devices (wearable in general) in terms of memory footprint which is discussed in the

next Section ??. The work proposed in [1] using deep CNN achieves comparatively better

performance compared to other solutions where the target platform is wearable [35, 36, 29].

However, architectures from our proposed solutions still provides better performances. The
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Table 3.3: Performance Comparison of Related Works

Works
Classifier Performance (%)

Type Accuracy Sensitivity Specificity

[2] k-NN 98.80 99.45 96.27

[35]
Full SVM 95 – –

2-level SVM 90 – –

[36]
Full RF 83.26 87.95 78.82

5-level RF 80.32 81.02 79.63

[1] CNN 95.22 95.49 94.19

[29] BCNN 90.29 90.41 90.16

Ours
Baseline CNN 99.33 99.25 99.74

Proposed CNN 99.24 99.18 99.54

work [1] which is developed for clinical setups. The work [2] reaches the highest performance

amongst the related works with accuracy, sensitivity, and specificity of 98.80% and 99.45%,

and 96.27% respectively. However, the classifier type of this work, k-NN, is not a feasible

solution for the wearable devices since during the inference (classification of MI and normal

beats), all the training data should be stored in the memory, which makes it impossible for

deploying the model in the resource constrained devices.

3.3.4 Memory Footprint Evaluation on Real Hardware

The memory footprint of all works given in Table 3.3 except for the work [2] that uses

k-NN classifier are evaluated. Because as it was mentioned in the previous section the k-
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NN classifier is not suitable for wearable devices as no effort has been spent to implement

algorithm for evaluating memory. For the traditional machine learning approaches in [35, 36]

the evaluated memory requirements is for the feature extraction and classification process.

For the deep learning approaches using CNN [1, 29], the memory footprint of the classification

is evaluated as the deep learning models automatically extracts features during classification,

there is no separate feature extraction process.

The SVM [35] and RF [36] works use multi-level classifiers with 2-level SVM and a 5-level RF

classifier respectively. Both works have three major drawbacks in terms of memory. Firstly,

when the number of samples in the training dataset increases, the model size of the SVM

and RF increases as well. Secondly, both methods require to deploy all level of classifiers to

device during the runtime (2 for SVM and 5 for RF). Thirdly, as the SVM and RF are used

for inference, they have an additional feature extraction step which requires extra memory

and energy consumption.

Moreover, the work [35] requires 2 of the SVM models and the work requires 5 of the RF

models to be loaded into the memory which gives us the perspective of the second drawback.

Besides, both the approaches in [35, 36] require a huge amount of memory for the feature

extraction process of their full level classifiers which brings us to the third drawback. We

demonstrate the third drawback using the RAM footprint for each level of the SVM and RF

classifier on the EFM32 Giant Gecko microcontroller which has 128 KB of RAM and 1 MB of

flash memory. As our goal is to evaluate the memory requirement for the feature extraction

of different levels of SVM and RF, we train the SVM with only 20 training samples and RF

with only 100 training samples so that they can fit within the 128 KB of RAM. Also, for

the RF model, we use only 10 weak learners with a fixed split of 10. As shown in Table 3.4,

both the full level classifier in [35] and [36] requires almost 83 MB of RAM making them

incompatible for wearable devices with lower memory.

A significant advantage of the deep learning approaches [1, 29] over the machine learning ones
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Table 3.4: Memory Footprint and Energy Consumption Evaluation on EFM32 Giant Gecko
Development Board

Works
Classifier RAM Exe. Avg. Energy
Level Footprint (KB) Time (ms) Power (mW) (µJ)

SVM[35]
First (5 Features) 78.8 347.03 46.57 16161
Full (47 Features) Not Compatible: RAM Overflowed

RF[36]

First (5 Features) 78.8 345.35 46.57 16082
Second (10 Features) 85.9 3556.37 46.58 165655
Third (15 Features) 87.3 7669.7 46.81 359018
Fourth (20 Features) 88.1 8188.21 46.48 380588
Full (72 Features) Not Compatible: RAM Overflowed

CNN[1] No feature extraction 114.1 2036.82 46.97 95669
BCNN[29] No feature extraction 3.5 253.73 44.45 11278

CNN[Ours]

Template control 2.6 3.18 44.98 143
Early Exit 11.8 107.32 44.54 4780

Baseline (w/o Early exit) 20.1 150.77 46.75 7048
Proposed 20.1 142.12 45.64 6486

[35, 36] is that the number of the parameter in the CNN architecture is constant and does not

affect by the number of training samples. However, the memory requirement of those models

still depends on the architecture size, parameters, and input size. For example, the proposed

CNN architecture presented in [1] has 11 layers and requires 114 KB of RAM. In contrast,

the work in [29] targets low memory wearable devices and requires only 3.5 KB of RAM.

The approach in [29] focused on memory and energy efficiency while sacrificing performance.

Although this behavior, decreasing memory requirement while sacrificing classification per-

formance, achieved better performance compared to other machine learning works [35, 36]

for resource-constrained devices, it is still problematic for the myocardial infarction, which

requires more accurate detection. This paper emphasizes the performance while still being

energy and memory-efficient compared to all the state-of-the-artwork [35, 36, 1] except for

memory efficiency against [29].

Table 3.4 shows the RAM footprint our baseline architecture is 20 KB. The template control

requires only 2.61 KB of RAM without adding extra memory overhead to the proposed

algorithm. The RAM footprint of our complete architecture, which is given as Proposed,

is also 20 KB which is the maximum of RAM footprints of the template control and each
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of the output blocks. Thus, our proposed algorithm is compatible with any device with a

minimum RAM of 32 KB. As shown in Table 3.4, our proposed architecture has much less

memory requirement than all the state-of-the-art works [35, 36, 1] except [29].

3.3.5 Energy Consumption Evaluation on Real Hardware

While evaluating the energy consumption of proposed method, the same EFM32 Giant Gecko

microcontroller is utilizied which is used for memory evaluation. For the traditional machine

learning approaches [35, 36], the energy for the feature extraction and classification are

calculated. For deep learning ones using CNN, we evaluate the classification energy only as

they automatically extract features during classification. The detailed analysis of execution

time, power, and energy for one heartbeat of the data using the 48 MHz clock speed of the

microcontroller are given in Table 3.4.

For the energy evaluation of work [35], the SVM classifier is trained with only 20 training

samples of heartbeats to fit the SVM model in the memory. Similarly, the RF classifier in

[36] is trained with 100 training samples. While training the RF classifier, the number of

weak learners are set to 10 with a fixed split of 10 to fit the model into the RAM.

Figure 3.5: Comparison of Energy Consumption with respect to Baseline Classifier
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Figure 3.5 shows the energy consumption of various works reported in Table 3.4. Also, to

demonstrate the contribution of the proposed method, the results are given by normalizing

with respect to the energy consumption of our proposed complete CNN architecture without

early exit. As shown in Figure 3.5, RF first, second, third, and fourth level classifiers in [36]

require 1.28×, 22.50×, 49.93×, and 52.99× more energy compared to our CNN classifier. All

the 20 features calculated in RF fourth level are the same as the first 20 features out of the

47 features in full SVM classifier of [35]. This indicates that the full SVM and RF classifiers

will consume much more energy compared to our baseline classifier. Even the first level SVM

classifier in [35] consumes 1.29× more energy compared to our baseline classifier. Moreover,

it should be noted that while training the SVM and RF models, random training samples

are chosen instead of whole dataset to fit the models in the wearable device. Althoygh, the

BCNN [29] which consumes the lowest energy compared to the related works also consumes

60% more energy than the our CNN classifier. However, the proposed architecture with

early exit consumes 8% less energy compared to complete architecture as shown in Figure

3.5 which proves the energy efficiency of proposed method.
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Chapter 4

Conclusion

In this study, two different algorithms are presented to provide the continuous real-time

monitoring of human health based on electroencephalogram (EEG) and electrocardiogram

(ECG) signals. A novel lightweight single-channel EEG-based method is presented to es-

timate the arousal level, defined as an individual’s degree of alertness or responsiveness,

at wearable devices. The validation of the presented method is done using the scalp EEG

recorded during overnight sleep and intra-operative anesthesia with technician-scored hypno-

gram annotations at the University of California at Irvine Medical Center. Also, a novel

resource-efficient template control-based Convolutional Neural Network (CNN) architecture

is presented for detecting myocardial infarction using the ECG signals. To validate the

CNN architecture, the well-known PTB diagnostic ECG database is used. Evaluation of

real hardware shows that the proposed methodologies can be implemented for devices with

a minimum RAM of 512 KB while maintaining high accuracy with low energy consumption

compared to the state-of-the-art works.
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