
UC San Diego
Technical Reports

Title
ORION 2.0: A Fast and Accurate NoC Power and Area Model for Early-Stage Design Space
Exploration

Permalink
https://escholarship.org/uc/item/5jd3c1gv

Authors
Kahng, Andrew
Li, Bin
Peh, Li-Shiuan
et al.

Publication Date
2008-09-30

Peer reviewed

eScholarship.org Powered by the California Digital Library
University of California

https://escholarship.org/uc/item/5jd3c1gv
https://escholarship.org/uc/item/5jd3c1gv#author
https://escholarship.org
http://www.cdlib.org/

ORION 2.0: A Fast and Accurate NoC Power and Area Model for Early-Stage
Design Space Exploration

Andrew B. Kahng‡†, Bin Li+, Li-Shiuan Peh+ and Kambiz Samadi†

‡ CSE and † ECE Departments, University of California, San Diego, La Jolla, CA
+ EE Department, Princeton University, Princeton, NJ

Email: {abk,ksamadi}@ucsd.edu, {binl,peh}@princeton.edu

Abstract

As industry moves towards many-core chips, networks-on-chip
(NoCs) are emerging as the scalable fabric for interconnecting
the cores. With power now the first-order design constraint,
early-stage estimation of NoC power has become crucially im-
portant. ORION [2] was amongst the first NoC power models
released, and has since been fairly widely used for early-stage
power estimation of NoCs. However, when validated against re-
cent NoC prototypes – the Intel 80-core Teraflops chip and the
Intel Scalable Communications Core (SCC) chip – we saw sig-
nificant deviation that can lead to erroneous NoC design choices.
This prompted our development of ORION 2.0, an extensive en-
hancement of the original ORION models which includes com-
pletely new subcomponent power models, area models, as well
as improved and updated technology models. Validating against
the two Intel chips saw ORION 2.0 bringing a substantial im-
provement in accuracy over the original ORION. A case study
with these power models plugged within the COSI-OCC NoC de-
sign space exploration tool [11] confirms the need for, and value
of, accurate early-stage NoC power estimation. To ensure the
longevity of ORION 2.0, we will be releasing it wrapped within
a semi-automated flow that automatically updates its models as
new technology files become available.

1 Introduction

Power has become the most critical design constraint. Increas-
ing power consumption and design complexity have led design-
ers to adopt multi-core designs in chip multiprocessors (CMPs)
[16, 17] and multiprocessor systems-on-chip (MPSoCs) [35, 20].
As the demand for bandwidth increases in these systems, NoCs
have been introduced to meet the increasing communication de-
mand among cores [10]. However, with increasing demand for
network bandwidth, the power that an interconnection network
consumes will also be substantial [13]. The International Tech-
nology Roadmap for Semiconductors (ITRS) predicts that future
generations of high-end VLSI designs will operate in 10-20 GHz
range with the communication between cores in Gbit/s [39]. This
requires designers to work within a tight power budget. To aid
designers in early stages of design, architectural power models
were proposed for rough power estimations (see Section 2).

Architectural power estimation is extremely important in or-
der to (1) verify that power budgets are approximately met by the
different parts of the design and the entire design, and (2) eval-
uate the effect of various high-level optimizations, which have
been shown to have much more significant impact on power than
low-level optimizations. To tackle this problem, ORION, a set
of architectural power models for network routers, was proposed
in [2] in 2002, and have been fairly widely used for early-stage
NoC power estimation in literature [33] and industry. Despite
the increase in complexity of today’s designs, ORION’s original
power models have not been updated or enhanced. In a compari-
son between ORION 1.0 and the Intel 80-core Teraflops chip we
notice 6.8X difference in reported total power values (see Sec-
tion 5). This highlights the need for more accurate architectural
power models to aid designers in making early-stage NoC design
decisions.

In addition, since architectural design space exploration is
typically done for current and future technologies, models must
be derivable from standard technology files (e.g., Liberty for-

Interconnect Devices

ITRS

PTM

Building Blocks

INVX1

NOR2x1

NAND2x1

Rd

Cin

Ioff

MASTARInterconnect

Chapter

SPICE Sim.

T

HILD

Wmin

Smin

ILD

TIERS(L,I,SG,G)

Local

Intermediate
Global

Semi-global

LEF/ITF

.lib

Automatic

Extraction

Automatic

Extraction

circuit implementation &

buffering scheme

• SRAM/register FIFO
• MUX-tree/Matrix crossbar

• different arbitration scheme

• hybrid buffering scheme

floorplan
• location of all routers in

the design

architectural parameters

• # of ports; # of buffers
• # of xbar ports; # of VC

• voltage, frequency

technology parameters

FIFO

Arbiter

Crossbar

Clock
Link

Leakage

Dynamic

Area

ORION Model

Figure 1: ORION 2.0 modeling methodology.

Table 1: Highlighting of ORION 2.0 contributions beyond origi-
nal ORION 1.0

Component App-Specific Dynamic Leakage Area
Sizing Power Power

SRAM-FIFO Improved Orig Orig New
Reg-FIFO Improved New New New
Crossbar Improved Orig Orig New
Arbiter Improved Orig New New
Clock Improved New New New
Link Improved New New New

mat [37], LEF [38]), as well as extrapolatable process models
(such as, PTM (Predictive Technology Model) [36], or ITRS.
ORION 1.0 collects inputs from ad hoc sources to drive its in-
ternal power models. We see a clear need for a semi-automated
flow (i.e., using shell scripting) to extract technology inputs from
reliable sources, to ease the updating of models as new technol-
ogy files become available.

The above two factors prompted ORION 2.0 and its two key
goals: (1) To update and enhance ORION’s power and area mod-
eling accuracy; and (2) To encompass ORION 2.0 within a semi-
automated flow so that ORION can be continuously maintained
and updated easily. Figure 1 shows the usage model and model-
ing flow of ORION 2.0 with its main inputs and outputs.

In this paper, we substantially improve the original ORION
1.0, to allow it to accurately estimate power for designs beyond
the 65nm technology node. ORION 2.0 surgically tackles vari-
ous deficiencies of ORION 1.0 highlighted through our validation
with two Intel chips (Section 5) and our close interactions with
both the chip designers and developers of ORION 1.0. Table 1
summarizes the contributions of ORION 2.0 beyond the original
ORION 1.0, highlighting the extensive modifications:

New:

• Flip-flop and clock power models (both leakage and dy-

1

namic) are added. Flip/flop power models will enable the
faithful modeling of register-based FIFOs in addition to
the SRAM-based implementation in ORION 1.0. Clock
power is a major component of overall chip power espe-
cially in high-performance applications [13], but was omit-
ted in ORION 1.0.

• Link power models are added, leveraging accurate models
recently developed in [6] as links are a major contributor
to NoC power. Prior existing work on link power and de-
lay modeling [3, 5] focus on minimum-delay buffer inser-
tion, whereas we adopt a hybrid solution which minimizes
a weighted product of delay and power. ORION 1.0 did not
have a parameterized link model.

• Arbiter leakage power, previously not covered in ORION
1.0, is now modeled.

• An accurate area model is added, allowing for detailed
router floorplanning which enhances the accuracy of early-
stage power estimation.

• An automatic flow for extracting technology parameters
from standard technology files (e.g., Liberty format [37],
LEF [38]), as well as extrapolatable models of process (e.g.,
PTM [36], ITRS [39]) is added to allow ORION 2.0 to be
easily and continuously updated in the future.

Improved:

• Application-specific technology-level adjustments (i.e., dif-
ferent Vth flavors and transistor widths) are incorporated in
ORION 2.0 to significantly enhance power estimation for
SoC and high-performance applications. ORION 1.0 used
a single set of parameters for all designs at a given process
technology node.

Updated:

• Transistor sizes and capacitance values are updated in
ORION 2.0, with new process technology files – indus-
try SPICE models and ITF (interconnect technology file)
– rather than relying on fudge scaling factors as in ORION
1.0.

Our power model is validated against Intel 80-core Teraflops
chip and Intel Scalable Communications Core and is within 19%
and 24% of the corresponding total power values. We also in-
tegrated ORION 2.0 models in COSI-OCC communication syn-
thesis infrastructure and found that accurate models substantially
affect the NoC system-level design exploration.

The remainder of this paper is organized as follows. In Sec-
tion 2 we contrast against prior related work. Section 3 describes
ORION 2.0 dynamic and leakage power models, while Section 4
describes our proposed area model. In Section 5 we validate our
models against the Intel 80-core chip [13] and the Intel SCC chip
[14], and show the impact of the new models on achievable NoC
configurations. Finally, Section 6 concludes the paper.

2 Related Work

Power modeling can be carried out at different levels of fidelity,
trading off modeling time with accuracy, ranging from real-chip
power measurements [27], to pre- and post-layout transistor-level
simulations [32, 28], to RTL power estimation [34, 29], to early-
stage architectural power models [7, 31, 2, 30, 1]. Low-level
power estimation tools, even RTL power estimation, require com-
plete RTL code to be available, and simulate slowly, on the order
of hours, while an architectural power model takes on the order of
minutes. Circuit-level power estimation tools, though providing
excellent accuracy, have even longer simulation times, and re-
quire even more substantial development effort. These shortcom-
ings have prompted a plethora of early-stage architectural power
models and simulators, such as the widely-used Wattch [7] and
SimplePower [31] for uniprocessor power modeling. These mod-
els allow computer architects and designers to factor in power
when making early-stage design decisions.

Power models at different abstraction levels have also been
proposed for a variety of network fabrics. In [21], a RTL level
power model for NoCs was developed by first extracting the

SPICE level netlist from the layout and then integrating the char-
acterized values into the VHDL-based RTL design. In [22], an
accurate power characterization of a range of NoC routers was
performed through RTL synthesis and place and route using a
standard ASIC implementation flow. Both studies inherit limita-
tions of RTL-level power simulation: simulation time is slow and
requires detailed RTL modeling, making these approaches un-
suitable for early-stage NoC design space explorations. Besides,
power models cannot be targeted for future technology nodes.

At the architecture level, Patel et al. [4] first proposed a
power model for interconnection networks, deriving power esti-
mates based on transistor count. As the model is not instantiated
with architectural parameters, it cannot be used to explore trade-
offs in router microarchitecture design. ORION [2], an early-
stage architectural power model for NoCs, was originally pro-
posed and released in 2002, and has since been fairly widely used
in academia [33] and incorporated into industry toolchains (Intel,
AMD, IBM, Freescale). Bona et al. [23] also presented a method-
ology for automatically generating the energy models for on-chip
communication infrastructure at system level, but the focus is on
bus-based and crossbar-based communication for SoC. Bhat et al.
[26] proposed an architectural level regression analysis model for
different router components based on energy numbers obtained
from simulations using Magma tools. However, the router ar-
chitecture varieties and process technologies were limited com-
pared to ORION 1.0. Niyogi [25] proposed a SystemC-based
power modeling methodology for GALS-based interconnect sys-
tems. The focus of the work is on asynchronous communication
schemes such as mixed clock FIFOs and plausible clocks. Eisley
et al. [1] modeled power at a higher level, abstracting packets as
flows, and using utilization graph area propagation as an estimate
for contention. This speeds up power modeling significantly, but
sacrifices accuracy.

3 Power modeling

In this section, we derive architectural-level parameterized power
models for major router building blocks including FIFO buffers,
crossbar switches, and arbiters. In addition, we model the power
due to clocking of router blocks and links between routers. These
power components form up to 94% of total power consumed in
a high-performance router used in the Intel 80-core Teraflop chip
[13] in the 65nm technology node (Figure 2). The communica-
tion power is significant at 28% of each processing tile’s total
power. As shown in Figure 5, clocking power, 33%, is the largest
component of router power, with the FIFO buffers the second
largest component at 22%. Power due to physical links, cross-
bar switch, and arbiter come next at 17%, 15% and 7%, respec-

tively.1 In ORION 2.0 we add (1) clocking and link power mod-
els, (2) register-based FIFO power models, and (3) arbiter leakage
model. For the rest of the components we enhance/update current
ORION models. In this section we first describe our dynamic
power modeling and then present our leakage power modeling
with specific analysis of arbiter leakage power model.

17%

15%

33%

22%

7%
6%

Links

Crossbar

Clocking

FIFO Buffers

Arbiter

MSINT

Figure 2: Router power breakdown at 4 GHz, 1.2 V, and 110◦C [13].

3.1 Dynamic power modeling

Dynamic power consumption in CMOS circuits is formulated as

P = E· fclk, where energy E = 1
2 αCV 2

dd , with fclk the clock fre-

quency, α the switching activity, C the switched capacitance, and

1Power breakdown numbers include both dynamic and leakage power values.

Vdd the supply voltage. We derive detailed parameterized equa-
tions for estimating switching capacitance of (1) register-based
FIFO buffers, (2) clocking due to routers, and (3) physical links.

3.1.1 Clock

Clock distribution and generation comprise a major portion of
power consumption in synchronous designs [19], representing up
to 33% of power consumption in a high-performance router [13].

We estimate the term Cclk, as shown in Equation 1. Through-
out our modeling approach it is assumed that all components are
built using static CMOS gates. Given that the load of the clock
distribution network heavily depends on its topology, we assume
an H-tree distribution style

Cclk = Csram− f i f o +Cpipeline−registers +Cregister− f i f o +Cwiring (1)

where Csram− f i f o, Cpipeline−registers, Cregister− f i f o, and Cwiring

are capacitive loads due to memory structures, pipeline registers,
FIFO registers, and clock distribution wiring respectively.

Memory structures. We adapt the original ORION model for
SRAM buffers for determining the precharge circuitry capacitive
load on the clock network. The pre-charging circuit is just the pre-
charging transistor, Tc, which commonly is just a single PMOS.
Hence, its capacitance, Cchg, is due to its gate and drain end ca-

pacitances, Cg(Tc) and Cd(Tc) respectively as shown in Equation
2 (Figure 4). In an SRAM FIFO with B buffers and flit size F ,
the total capacitance due to pre-charging circuitry can be derived
using Equation 3, with Pr and Pw being the number of read and
write ports, respectively.

Cchg = Cg(Tc)+Cd(Tc) (2)

Csram− f i f o = (Pr +Pw) ·F ·B ·Cchg (3)

Pipeline registers. Typical interconnection network routers have
different pipeline stages. To advance, each flit must proceed
through the steps of: (1) routing computation, (2) virtual-channel

allocation, (3) switch allocation, and (4) switch traversal.2 We
assume DFF as the building block of the pipeline registers. In
a router with flit size of F bits and Npipeline pipeline stages, the

capacitive load on the clock due to pipeline registers can be com-
puted as:

Cpipeline−registers = Npipeline ·F ·C f f (4)

where C f f is the flip-flop capacitance and is extracted from 65nm
HP (high-performance) and LP (low-power) libraries.

Register-based FIFOs. FIFO buffers can be implemented as a
series of flip-flops. We assume simple DFF to construct the FIFO.
In a B-entry register-based FIFO with flit size of F bits, the ca-
pacitive load on the clock can be computed as:

Cregister− f i f o = F ·B ·C f f (5)

For the registers we assume D flip-flop (DFF) is used as the
building block. We obtain the capacitance value across different
drive strengths from TSMC 65nm G and LP standard cell library

data sheets.3 Architectural parameters change the effective
loading of each gate in the design. Hence, to use the appropriate
drive strength for the registers we use their load capacitance and
timing requirements. In this work, we assume minimum-size
DFFs are used in all the registers.

2The number of pipeline stages can be different for various applications and is a
function of clock frequency. We assume this is input by the user.

3TSMC represents the high-performance domain with G library.

Wiring load. For an H-tree clock distribution with a clock level
of 5, then total wire capacitance is given in Equation 6, where Cint
is the per-unit-length wire capacitance and D represents the chip
dimension.

Cwiring = (
16

2
D+

1×8

2
D+

2×4

2
D+

4×2

2
D+

8×1

2
D) ·Cint (6)

3.1.2 Register-Based FIFO Buffers

FIFO buffers consume up to 22% of the total router power in
[13]. As mentioned earlier, FIFO buffers can be implemented as
either SRAM or shift registers. The ORION 1.0 model supports
only the use of SRAM-based FIFOs. We use flip-flops as the
building block of the shift registers. Hence, a B-entry FIFO
buffer can be implemented as a series of B flip-flops (FF).

Write operation. The write operation occurs at the tail of the
shift register. Assuming the new flit is fn and the old flit is fo, the
number of switched flip-flops is the Hamming distance between
them. Therefore, the write energy is:

Ewrite = H(fn, fo)E
f f
switch

(7)

where E
f f
switch

is the energy to switch one bit. To simplify the

analysis, let H denote the average switching activity; then, the
average write energy is:

Ewrite = H ·E
f f
switch (8)

Read operation. The read operation has two steps:

1. The flit stored at the header of the buffer is read into the
crossbar. Since the header of the buffer is directly connected
to the input port of the crossbar, this step does not consume
any energy in the buffer.

2. Subsequent flits in the buffer are shifted one position to-
wards the header. If the buffer holds n flits before the read
operation, n-1 flip-flop writes are performed to shift the
data.

Hence, the average read energy is:

Eread = (n−1) ·Ewrite (9)

We obtain the capacitance value across different drive strengths
from TSMC 65nm G and LP standard cell library data sheets.

3.1.3 Physical Link

The dynamic power of links is primarily due to charging and dis-
charging of capacitive loads (wire and input capacitance of next-
stage repeater). Internal power dissipation, arising from charging
and discharging of internal capacitances and short-circuit power,
is noticeable for repeaters only when the input slew times are ex-
tremely large. Link power is a major component of a router total
power (i.e., 17% [13]). Previous works such as [5, 3] only use
delay as the objective for buffer insertion. This results in large
repeaters and significantly increases the power consumption. In
this work, we use a hybrid buffering solution that minimizes a lin-
ear combination of delay and power. We exhaustively evaluate a
given objective function for a given number and size of repeaters,
while searching for the optimal (number, size) values. Dynamic
power is given by the well-known equations:

Plink = α ·Cl ·V
2
dd · fclk (10)

Cl = Cin +Cgnd +Ccc (11)

where Plink, α, Cl , Vdd and fclk denote the link dynamic power,
activity factor, load capacitance, supply voltage, and frequency,

Table 2: Vth flavors, Vdd , and temperature parameters used in
SPICE simulations for 65nm technology.

Vth flavor Vdd (V) Temperature (◦C)
HVT 1.2 110
NVT 1.08 80
LVT 0.8 25

respectively. The load capacitance is the sum of the input capac-
itance of the next repeater, Cin, and the ground (Cgnd) and cou-

pling (Ccc) capacitances of the wire driven. Cin can be reliably
obtained from industry Liberty files. The unit Cgnd and Ccc are

also extracted from industry LEF files.

3.2 Leakage Power Modeling

As technology scales to deep sub-micron processes, leakage
power becomes increasingly important as compared to dynamic
power. There is thus a growing need to characterize and optimize
network leakage power as well. Chen et al. [8] proposed an ar-
chitectural methodology for estimating leakage power. However,
[8] only considered subthreshold leakage whereas from 65nm
and beyond gate leakage gains importance and becomes a sig-
nificant portion of the leakage power. This is even more visible
for high-performance applications where gate oxides are much
thinner (i.e., ∼1.5nm in 65nm HP library).

We follow the same methodology proposed in [8] with addi-
tion of gate leakage in our leakage analysis. We also use different
Vth flavors to better represent leakage power consumption for dif-
ferent applications (i.e., high-performance vs. low-power).

To derive an architectural leakage model, we can separate the
technology-independent variables such as transistor width from
those that stay invariant for a specific process technology:

Ileak(i,s) = W (i,s) · (I′sub(i,s)+ I′gate(i,s)) (12)

where Ileak is total leakage current. I′sub and I′gate are subthreshold

and gate leakage currents per unit transistor width for a specific
technology, respectively. W (i,s) refers to the effective transistor

width of component i at state s. We measure I′sub and I′gate for a

variety of circuit components, input states, operating conditions
(i.e., voltage and temperature), and different Vth flavors (Table 2).
The modeling methodology is as follows.

1. Identify the fundamental circuit components, and derive
I′sub(i,s) and I′gate(i,s) for each at different input states,

operating condition, and Vth flavors. Examples are single
NMOS and PMOS transistors, 2-input NAND gates, etc.

2. Define major architectural building blocks. For intercon-
nection networks, typical building blocks will be buffers,
crossbar, arbiters and links [15].

3. Compose architectural leakage power model in a bottom-up
fashion for each building block.

3.2.1 Derivation of Ileak

For each component i and input state s, we simulate I′sub and I′gate

using HSPICE and 65nm foundry SPICE model with correspond-
ing technology parameters shown in Table 2. Table 3 lists I′sub and

I′gate simulated for each fundamental circuit component i (leakage

currents differ at different states due to stacking and body biasing
effects). Circuit structures can then be hierarchically composed
from these fundamental circuit components.

3.2.2 Arbiter Leakage Modeling

We applied our methodology to the major building blocks of in-
terconnection networks – buffers, crossbar, and arbiter. Here, we
walk through our arbiter modeling to demonstrate the method-
ology. We model three types of arbiters: (1) matrix, (2) round-
robin, and (3) queuing. Here, we explain just the matrix arbiter.

Table 3: I′sub and I′gate (per-micron of gate width) for each funda-

mental circuit component i at different input state s, 110◦C and
for low Vth flavor.

i s I′sub (A) I′gate (A)

NMOS 0 1.097e-07 4.622e-09
PMOS 1 3.172e-07 3.291e-09

INV 0 1.097e-07 4.622e-09
1 3.172e-07 3.291e-09

NAND2 00 7.098e-08 3.549e-09
01 1.134e-07 5.103e-09
10 1.342e-07 1.194e-08
11 1.766e-07 1.625e-08

NOR2 00 1.971e-07 6.701e-09
01 1.034e-07 4.343e-09
10 1.412e-07 8.048e-09
11 7.245e-08 6.448e-09

Figure 5 shows a matrix arbiter with R requests. For an arbiter
with R requesters, you can represent its priorities by an R×R ma-
trix, with a 1 in row i and column j if requester i has higher prior-

ity than requester j, and 0 if otherwise. Let reqi be the ith request,

gntn the nth grant, and mi j the ith row and jth column elements in
the matrix. Using these variables [15],

gntn = reqn ×∏
i<n

(reqi +min)×∏
i>n

(reqi +mni) (13)

Input state probabilistic analysis. We analyze the probability
distribution of each input state of a circuit component by examin-
ing how architectural units function. Given the I′sub and I′gate, and

the probabilities of each input state Prob(i,s), the leakage current
for a building block is:

Ileak(Block) = ∑
i

∑
s

Prob(i,s) ·W (i,s) · (I′sub(i,s)+ I′gate(i,s)) (14)

Input state simulation. Input states can also be tracked through
network simulation.

Ileak(Block, t) = ∑
i

W (i,s(t)) · (I′sub(i,s(t))+ I′gate(i,s(t))) (15)

where Ileak(Block, t) is the leakage current at time t, and s(t) is
the state of circuit type i at time t within this circuit block. Finally,
we can estimate total leakage current of an arbiter (Equation 16)
while its power is leakage current multiplied by supply voltage
(Equation 17).

Ileak(arbiter) = Ileak(NOR2) · ((2R−1)R)+

+Ileak(INV) ·R+ Ileak(DFF) ·
R(R−1)

2
(16)

Pleak(arbiter) = Ileak(arbiter) ·Vdd (17)

3.2.3 Physical Link Leakage Modeling

The leakage power of links is due to repeaters inserted in them.
In repeaters, leakage occurs in both output states. NMOS devices
leak when the output is high, while PMOS devices leak when the
output is low. This is applicable for buffers also because the sec-
ond stage devices are the primary contributors due to their large
sizes. Leakage power has two main components: (1) subthresh-
old leakage, and (2) gate-tunneling current. Both components
depend linearly on device size. Thus, leakage power can be cal-
culated using [6]:

ps =
pn

s + p
p
s

2
(18)

pn
s = κn

0 +κn
1.wn (19)

P
p
s = κ

p
0 +κ

p
1 .wp (20)

Table 4: Coefficients for our model derived from TSMC 65nm
technology.

Technology κn
0 κn

1 κ
p
0 κ

p
1

65nm -6.034 26.561 1.238 27.082

Table 5: Process and technology input parameters used in the gate
area model [12].

Parameter Description
Hn−di f f Maximum height of n-diffusion
Hp−di f f Maximum height of p-diffusion

Hgap−same Minimum gap between diffusions of the same type
Hgap−opp Minimum gap between n and p diffusions

Hpower−rail Height of Vdd and Vss rails
Wpoly Minimum width of poly
Spp Minimum poly-to-poly spacing

Wcontact Contact width
Spc Minimum poly-to-contact spacing

where pn
s and p

p
s are the leakage power for NMOS and PMOS

devices, respectively, and κn
0, κn

1, κ
p
0 and κ

p
1 are coefficients de-

termined using linear regression against 65nm LP library. State-
dependent leakage modeling can also be performed using Equa-
tions (19) and (20) separately.

3.3 Application Specific Modeling

Original ORION models used a set of fixed transistor sizes and
capacitance values across designs with different target frequen-
cies (i.e., high-performance and low-power). In this work, we in-
clude data for three device types: (1) high-performance (HP), (2)
low standby power (LSTP), and (3) low operating power (LOP)
as defined in ITRS [39]. The HP transistors are fast transistors
with short gate lengths, thin gate oxides (i.e., for faster switch-
ing capability), low Vth, and low Vdd . These transistors are also
very leaky due to their high on-currents. The LSTP transistors
on the other hand have longer gate lengths, thicker gate oxides,
higher Vth, and higher Vdd . The LSTP transistors tradeoff high
on-current for low leakage current of 10 pA across the different
technology nodes. The LOP transistors have performance that lie
in between the HP and LSTP transistors. They use the lowest Vdd
to control the operating power. For wires we follow the approach
in [6] comprehending key interconnect circuit and layout design
styles, including a power-efficient buffering technique that over-
comes unrealities of previous delay-driven buffering techniques.
We also use our automated scripts to extract necessary technol-
ogy parameters from standard industry file to enable easy main-
tenance of the models through future technology nodes.

4 Area modeling

With the increase in number of cores on a single design, the area
occupied by the communication components such as links and
routers increases. As area is an important economic incentive in
IC (integrated circuit) design, it needs to be estimated early in the
design flow to enable design space exploration. In this section we
present accurate models for router and link area.

4.1 Gate Area

We use a recent model by [9] and the analysis in [12] to esti-
mate the areas of transistors and gates such as inverters, NAND,
and NOR gates. This is a fast technique to estimate standard cell
characteristics before the cells are laid out. Figure 3 shows the
layout model that has been used in [9]. Table 5 shows the process-
and technology-level input parameters required by this gate area
model. When a transistor exceeds a certain maximum value, the
transistor assumed to be folded. Given the width of an NMOS,
Wn, the number of folded transistors can be calculated as follows:

N f olded−transistor = ⌈
Wn

Hn−di f f

⌉ (21)

The equation for total diffusion width of Nstacked transistors
when they are not folded is given by the following equation:

Wdi f f usion−area = 2(Wcontact +2Spc)+

NstackedWpoly +(Nstacked −1)Spp (22)

total diffusion width of Nstacked transistors when they are folded
is given by the following equation:

Wdi f f usion−area = N f olded−transistor(2(Wcontact +2Spc)+

NstackedWpoly +(Nstacked −1)Spp) (23)

and finally the height of a gate is calculated using the following
equation:

Hgate = Hn−di f f +Hp−di f f +Hgap−opp +2Hpower−rail (24)

Figure 3: Layout model of gates [9].

4.2 Router Area

To estimate the router area we basically compute the area of
each of the building blocks and sum them up with an addition
of 10% (rule of thumb) to account for global whitespace. For
each building block we first identify the implementation style
of the block and then decompose the block into its basic logical
elements (i.e., gate-level netlist). We then, use the gate area
model described earlier to estimate the area of the entire block.

FIFO buffers. Designers typically implement buffers as SRAM
arrays. Some on-chip networks, such as Raw microprocessor [18]
use shift registers due to less demanding buffer space. We model
the area of both implementations, but explain only the SRAM-
based model here. Figure 4 shows the structure of a SRAM-based
FIFO buffer. Equations (25) and (26) compute the word line and
bit line lengths of the FIFO, respectively.

Lword−line = F · (wcell +2(Pr +Pw)dw) (25)

Lbit−line = B · (hcell +(Pr +Pw)dw) (26)

where F , B, wcell , hcell , dw, Pr, and Pw are flit size in bits,
buffer size in flits, memory cell width, memory cell height,
wire spacing, number of read ports and number of write ports,
respectively. Hence, the total area for a B entry buffer with flit
size of F is calculated as follows. In this model, hcell and wcell
are computed using the gate area model described earlier.

Area f i f o = Lword−line ·Lbit−line (27)

Crossbar switches. We consider two common crossbar
implementations–multiplexer-tree and matrix. Here, we explain
just the matrix crossbar model. The area of a matrix crossbar with
I input ports, O output ports and flit size of F can be estimated as
follows.

Areacrossbar = (O ·F ·wt)× (I ·F ·ht) (28)

Figure 4: SRAM-based FIFO buffer with one read and one write port.
Tc is the pre-charging transistor, Twd the wordline driver, Tbd the write
bitline driver, Tm the memory cell inverter, and Tpr and Tpw the pass tran-
sistors connecting read and write ports to memory cells respectively [15].

Figure 5: Structure of a matrix arbiter. [15].

where wt and ht are track width and height, respectively.

Arbiters. We model three types of arbiters: matrix, round-robin,
and queuing. Here, we explain just the matrix arbiter model. For
a matrix arbiter with R requesters, its priorities can be represented
by an R×R matrix, with a 1 in row i and column j if requester i
has higher priority than requester j, and 0 if otherwise. Let reqi

be the ith request, gntn the nth grant, and mi j the ith row and jth

column elements in the matrix. Using these variables [15],

gntn = reqn ×∏
i<n

(reqi +min)×∏
i>n

(reqi +mni) (29)

In this arbiter there are 2(R− 1)R 2-input NOR gates, R in-

verters and
R(R−1)

2 registers. We assume that D flip-flops (DFF)

are used for registers. Hence, the area of a matrix arbiter with R
requests is

Areaarbiter = (AreaNOR2X1 ·2(R−1)R)+(AreaINV X1 ·R)+

(AreaDFF ·
R(R−1)

2
) (30)

4.3 Link Area

The area occupied by links are due to wires and repeaters. We use
the described gate area model to estimate the area of repeaters.
The area of global wiring can be calculated as

Arealink = F × (ww + sw)+ sw (31)

where Arealink denotes the wire area, F is the flit size in bits,
and ww and ss are the wire width and spacing computed from the
width and spacing of the layer (global or intermediate) on which
the wire is routed, and from the design style.

5 Validation and Significance Assessment

Table 7 lists all the architectural parameters used in ORION 1.0
and ORION 2.0 models. Npipeline, App, and D are three new

parameters added to ORION 2.0. We now show the validation of
the our ORION 2.0 model against the Intel 80-core Teraflops chip

Table 7: List of architectural parameters in ORION 1.0 and
ORION 2.0.

Parameter Description
ORION 1.0 ORION 2.0

B B No. of buffers
F F flit size
P P No. of ports
V V No. of virtual channels
X X No. of crossbar ports

tech tech technology node
fclk fclk clock frequency
Vdd Vdd supply voltage

- Npipeline No. of pipeline stages
- App application domain (i.e., HP, LP, etc.)
- D chip dimension

Table 8: Comparison of power and area models of ORION 1.0
and ORION 2.0 with post-layout simulation results of Intel 80-
core and pre-layout simulation results of Intel SCC.

Intel 80-core Intel SCC
ORION1.0 ORION2.0 ORION1.0 ORION2.0

%diff (total power) -85.34 -19.41 202.40 20.24
%diff (total area) -80.88 -23.64 31.87 26.37

[13] targeted for high-performance CMPs. The router in this de-
sign is a 5.1GHz 5-port switched router that uses two virtual chan-
nels (VC) with 16 buffers within each VC for dead-lock free rout-
ing. The flit width is 39 bits. The router uses a 5-stage pipeline
with a round robin arbitration scheme. The supply voltage is
at 1.2V with the transistor junction temperature at 110◦C. The
crossbar switch is implemented using the popular multiplexer-
tree and the chip is taped out in 65nm technology. Our esti-
mated total power consumption per router is within 19% of the
Teraflops post-layout power estimation. Table 8 shows the dif-
ference between ORION 1.0 and ORION 2.0 with Intel 80-core
Teraflops chip post-layout power and area numbers. We observe
that ORION 2.0 has significantly improved the accuracy of the
power and area models compared with ORION 1.0.

We also validate our proposed models with the Intel Scal-
able Communications Core (SCC) chip [14] targeted for ultra-low
power Systems-on Chip (SoCs). The router in this design has five
ports with an arbitrated 5×5 crossbar and register-based buffers.
The router has only 1 stage. There are two 1-flit buffers per input
port with flit size of 32 bits. There are two input buffers per in-
put port and one output buffer at the output port. The operating
frequency is 250MHz and the supply voltage is 1.08V with tem-
perature at 25◦C. Our estimated power consumption per router
is within 20% of the SCC’s pre-layout simulation results. Table
8 shows the comparison results. We do not publish the abso-
lute numbers as they are still company-confidential. We attribute
the deviation of ORION 2.0 estimates from the real chip simula-
tions to: (1) difference in library files (i.e., between Intel’s and
the ones we used in our study), (2) our use of 6T SRAM vs. the
Intel 80-core chip use of 8T SRAM buffers, and (3) difference in
arbitration scheme.

Finally, to assess the impact of improved power models on
system-level design-space exploration, we integrate our models
in COSI-OCC [11]. We use two representative SoC designs as
test cases. The first design (VPROC) is a video processor with
42 cores and 128-bit data-width. The second design is based on
a dual video object plane decoder (dVOPD), where two video
streams are decoded in parallel by utilizing 26 cores and 128-bit
data-width. Table 6 shows the comparison of the network power,
area, total number of routers, and hop count when ORION 1.0 [2]
and ORION 2.0 models are used. The clock frequency used is
2.25 GHz for 65nm technology node. We can observe that with
ORION 2.0 models fewer routers with more ports are used. Since
ORION 1.0 models were missing a number of important power
components (i.e., clock power, link power, etc.) they tend to un-
derestimate the power. Also, we observe that relative power due
to an additional port (i.e., buffers and crossbar port) is not as high
in ORION 2.0 vs. 1.0. Finally, more accurate ORION 2.0 models
lead to a better-performing NoC (i.e., satisfying requirements at

Table 6: Comparison of network power (P), area (A), total number of routers, and hop count, using ORION 1.0 and ORION 2.0 models.
SoC P (mW) A (mm2) # of routers max. # of router ports Max. # of hops

ORION1.0 ORION2.0 ORION1.0 ORION2.0 ORION1.0 ORION2.0 ORION1.0 ORION2.0 ORION1.0 ORION2.0
VPROC 65nm 0.857 0.924 2.043 2.329 33 25 8 12 6 5
dVOPD 65nm 0.412 0.486 1.217 1.343 18 16 6 6 11 10

a lower hop count).

6 Conclusion

Accurate estimation of power and area of interconnection net-
work routers in early phases of the design process can drive ef-
fective NoC design space exploration. Existing power and area
models for interconnection network routers such as ORION 1.0
are inaccurate for current and future technologies (due to deep
submicron effects) and can lead to misleading design targets.
We have proposed accurate power and area models for network
routers (ORION 2.0) that are easily usable by system-level de-
signers. We have presented a reproducible methodology for ex-
tracting inputs to our models from reliable sources. ORION 2.0 is
in the form of a library of C files and shell scripts. By maintaining
the user interfaces of the original ORION 1.0 while substantially
improving its accuracy and fidelity, we see ORION 2.0 making a
significant impact on future NoC research and design.

7 Acknowledgments

We would like to thank Prof. Luca Carloni from Columbia Uni-
versity and Dr. Alessandro Pinto from UTRC for providing the
COSI-OCC tool and useful discussions. This research is sup-
ported by the MARCO Gigascale Systems Research Center.

References
[1] N. Eisley, V. Soteriou and L.-S. Peh, ”High-Level Power Analysis for Multi-

Core Chips,” in Proc. CASES, 2006, pp. 389-400.
[2] H. Wang, X. Zhu, L.-S. Peh and S. Malik, ”Orion: A Power-Performance

Simulator for Interconnection Networks,” in Proc. MICRO 35, 2002, pp. 294-
395.

[3] S. Heo and K. Asanovic, ”Power-Optimal Pipelining in Deep Submicron
Technology,” in Proc. ISLPED, 2004, pp. 218-223.

[4] C. S. Patel, S. M. Chai, S. Yalamanchili and D. E. Schimmel, ”Power
Constrained Design of Multiprocessor Interconnection Networks,” in Proc.
ICCD, 1997, pp. 408-416.

[5] S. Heo and K. Asanovic, “Replacing Global Wires with an OnChip Network:
A Power Analysis,” in Proc. ISLPED, 2005, pp. 369-374.

[6] L. P. Carloni, A. B. Kahng, S. Muddu, A. Pinto, K. Samadi and P. Sharma,
“Interconnect Modeling for Improved System-Level Design Optimization,”
in Proc. ASPDAC, 2008, pp. 258-264.

[7] D. Brooks, V. Tiwari and M. Martonosi, ”Wattch: A Framework for
Architectural-Level Power Analysis and Optimizations,” in Proc. ISCA,
2000, pp. 83-94.

[8] X. Chen and L.-S. Peh, “Leakage Power Modeling and Optimization in In-
terconnect Networks,” in Proc. ISLPED, 2003, pp. 90-95.

[9] H. Yoshida, D. Kaushik and V. Boppana, “Accurate Pre-Layout Estimation
of Standard Cell Characteristics,” in Proc. DAC, 2004, pp. 208-211.

[10] W. J. Dally and B. Towles, “Route Packets, Not Wires: On-Chip Intercon-
nection Networks,” in Proc. DAC, 2001, pp. 684-689.

[11] A. Pinto, L. P. Carloni, A. L. Sangiovanni-Vincentelli, “A Methodology and
an Open Software Infrastructure for Constraint-Driven Synthesis of On-Chip
Communications,” Technical Report, UCB/EECS-2007-130, 2007.

[12] S. Thoziyoor, N. Muralimanohar, J. H. Ahn and N. P. Jouppi, “CACTI 5.1,”
Technical Report HPL-2008-20, HP Laboratories, 2008.

[13] Y. Hoskote, S. Vangal, A. Singh, N. Borkar and S. Borkar, “A 5-GHz Mesh
Interconnect for a Teraflops Processor,” in IEEE Micro, 2007, pp. 51-61.

[14] D. A. IIitzky, J. D. Hoffman, A. Chun and B. P. Esparza, “Architecture of the
Scalable Communications Core’s Network on Chip,” in IEEE Micro, 2007,
pp. 62-74.

[15] H. Wang, L.-S. Peh and S. Malik, “A Power Model for Routers: Modeling
Alpha 21364 and InfiniBand Routers,” in IEEE Micro, 2003, pp. 26-35.

[16] P. Kongetira et al., “Niagara: A 32-Way Multithreaded SPARC Processor,”
in IEEE Micro, 25(2), 2005, pp.21-29.

[17] M. B. Taylor et al., “Evaluation of the Raw Microprocessor: An Exposed-
Wire-Delay Architecture for ILP and Streams,” in Proc. ISCA, 2004, pp. 2-
13.

[18] M. B. Taylor et al., “The Raw Microprocessor: A Computational Fabric for
Software Circuits and General-Purpose Programs,” in IEEE Micro, 22(2),
2002, pp. 25-35.

[19] D. E. Duarte, N. Vijaykrishnan and M. J. Irwin, “A Clock Power Model to
Evaluate Impact of Architectural and Technology Optimization,” in IEEE
Transactions on TVLSI 10(6), 2002, pp. 844-855.

[20] D. Pham et al., “The Design and Implementation of a First-Generation Cell
Processor,” in Proc. ISSCC, 2005, pp. 184-185.

[21] N. Banerjee, P. Vellanki and K. S. Chatha, “A Power and Performance Model
for Network-on-Chip Architectures,” in Proc. DATE, 2004, pp. 1250-1255.

[22] A. Banerjee, R. Mullins and S. Moore, “A Power and Energy Exploration of
Network-on-Chip Architectures,” in Proc. NoCs, 2007, pp. 163-172.

[23] A. Bona, V. Zaccaria, and R. Zafalon, “System Level Power Modeling and
Simulation of High-End Industrial Network-on-Chip,” in Proc. DATE, 2004,
pp. 318-323.

[24] N. Muralimanohar, R. Balasubramonian and N. Jouppi, “Optimizing NUCA
Organizations and Wiring Alternatives for Large Caches with CACTI 6.0,”
in Proc. MICRO, 2007, pp. 3-14.

[25] K. Niyogi and D. Marculescu, “System-Level Power and Performance Mod-
eling of GALS Point-to-Point Communication Interfaces,” in Proc. ISLPED,
2005, pp. 381-386.

[26] S. Bhat, ”Energy Models for Network-on-Chip Components,” M.S. Thesis,
Dept. of Mathematics and Computer Science, Royal Institute of Technology,
Eindhoven, 2005.

[27] C. Isci and M. Martonosi, “Runtime Power Monitoring in High-End Proces-
sors: Methodology and Empirical Data,” in Proc. MICRO, 2003, pp. 93-104.

[28] http://en.wikipedia.org/wiki/SPICE
[29] http://www.synopsys.com/products/power/power ds.html

[30] N. Eisley and L.-S. Peh, “High-Level Power Analysis for On-Chip Net-
works,” in Proc. CASES, 2004, pp. 104–115.

[31] W. Ye, N. Vijaykrishnan, M. Kandemir and M. J. Irwin “The Design and Use
of SimplePower: A Cycle-Accurate Energy Estimation Tool,” in Proc. DAC,
2000, pp. 340-345.

[32] http://www.cadence.com/us/pages/default.aspx

[33] GoogleScholar , http://scholar.google.com
[34] http://www.synopsys.com/products/primetimepx/ .

[35] ARM Integrated Multiprocessor Core, 2006 http://www.arm.com/ .
[36] Predictive Technology Model, http://www.eas.asu.edu/∼ptm/ .

[37] Liberty File Format, http://www.synopsys.com/products/libertyccs/libertyccs.html

[38] LEF/DEF Exchange Format, http://openeda.si2.org/projects/lefdef .
[39] International Technology Roadmap for Semiconductors, http://www.itrs.net

