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Numerical Simulation of Single-Phase and Multiphase  

Non-Darcy Flow in Porous and Fractured Reservoirs 

 

Yu-Shu Wu 
Earth Sciences Division 

Lawrence Berkeley National Laboratory 
Berkeley CA 94720, USA 

 

Abstract 

A numerical method as well as a theoretical study of non-Darcy fluid flow of through porous and 

fractured reservoirs is described. The non-Darcy flow is handled in a three-dimensional, 

multiphase flow reservoir simulator, while the model formulation incorporates the Forchheimer 

equation for describing single-phase or multiphase non-Darcy flow and displacement. The 

numerical scheme has been verified by comparing its results against those of analytical methods.  

 

Numerical solutions are used to obtain some insight into the physics of non-Darcy flow and 

displacement in reservoirs. In addition, several type curves are provided for well-test analyses of 

non-Darcy flow to demonstrate a methodology for modeling this type of flow in porous and 

fractured rocks, including flow in geothermal reservoirs. 

 

Key words: Non-Darcy flow, numerical reservoir simulation, well tests, multiphase flow, porous 

and fractured reservoirs. 
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1. Introduction 

 

Darcy’s law of flow (or Darcy flow), describing a linear relationship between volumetric flow rate 

(Darcy velocity) and pressure (head or potential) gradient, has been the fundamental principle in 

flow and transport processes in porous media (Muskat, 1946).  Any deviations from this linear 

relation may be defined as non-Darcy flow. In this work our concern is only with the non-Darcy 

flow caused by high flow velocities. Even though Darcy’s Law has been used nearly exclusively in 

the studies of porous-medium phenomena, there is considerable evidence that high-velocity non-

Darcy flow occurs in many subsurface systems, such as in the flow near wells of oil or gas 

production, and liquid waste injection. 

   

The effects of non-Darcy or high-velocity flow regimes in porous media have been observed and 

investigated for decades (e.g., Tek et al., 1962; Scheidegger, 1972; Katz and Lee, 1990). However, 

theoretical, field and experimental studies performed so far on non-Darcy flow in porous media have 

focused mostly on single-phase-flow conditions that pertain to the oil and gas industry  (Tek et al., 

1962; Swift and Kiel, 1962; Lee et al. 1987). Some investigations have been conducted for non-

Darcy flow in fractured reservoirs (Skjetne et al., 1999) and for non-Darcy flow into highly 

permeable fractured wells (Guppy et al., 1981, 1982). Other studies have concentrated on finding 

and validating correlations of non-Darcy flow coefficients (Liu et al., 1995). 

 

In the studies of non-Darcy flow through porous median, the Forchheimer equation is generally used 
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to describing single-phase non-Darcy flow. Several studies reported in the literature extend the 

Forchheimer equation to multiphase flow and provide equations for correlating non-Darcy flow 

coefficients under multiphase conditions (Evans et al., 1987; Evans and Evans, 1988; Liu et al., 

1995). A recent study (Wang and Mohanty, 1999) has discussed the importance of multiphase non-

Darcy flow in gas-condensate reservoirs and presents a pore-scale network model for describing 

non-Darcy gas-condensate flow. Because of insufficient study in this area as well as the 

mathematical difficulty in handling highly nonlinear, non-Darcy flow terms in multiphase flow 

equations, our understanding non-Darcy flow through porous media is very limited.  

 

The objective of this study is to develop a numerical method for modeling single-phase and 

multiphase non-Darcy flow through heterogeneous porous and fractured rocks. The model 

formulation incorporates the Forchheimer equation, based on an integral finite-difference or a 

control volume numerical discretization scheme. The proposed model formulation is 

implemented into a three-dimensional, three-phase flow simulator and is applicable to both 

single-porosity porous media and fractured rocks. For flow in a fractured medium, fracture-

matrix interactions are handled using a dual-continua approach, such as double- or multiple-

porosity, or dual-permeability methods.  

 

This paper discusses the model formulation and the numerical schemes implemented for 

modeling non-Darcy flow in porous media. The numerical scheme has been verified by comparing 

its results against those of analytical methods. As application examples, numerical solutions are used 

to obtain some insight into the physics of flow involving non-Darcy flow effects in reservoirs. 
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Furthermore, several type curves are provided for non-Darcy flow well-test analysis to demonstrate 

the proposed methodology for modeling this type of flow in porous and fractured rocks. 

 

2. Governing Equations 

 

A multiphase system in a porous or fractured aquifer is assumed to be composed of three phases: 

NAPL (oil), gas (air), and water. For simplicity, the three fluid components, water, NAPL, and gas, 

are assumed to be present only in their associated phases.  Each phase flows in response to pressure, 

gravitational, and capillary forces according to the multiphase extension of Darcy's law for Darcy 

flow and the Forchheimer equation for non-Darcy flow.  In an isothermal system containing three 

mass components, three mass-balance equations are needed to fully describe the system, as 

described in an arbitrary flow region of a porous or fractured domain: 

For flow of phase f (f = w for water, f = n for NAPL or oil, and f = g for gas), 

fffff q)S(
t

)( +ρ−∇=ρφ
∂
∂

• v         (2.1) 

where  is the density of fluid f; is the Darcy (or volumetric) velocity of fluid f;  S  is the 

saturation of fluid f; φ is the effective porosity of formation; t is time; and q is the sink/source term 

of phase (component) f per unit volume of formation. 

fρ fv f

f

 

Volumetric flow rate (namely Darcy velocity for Darcy flow) for non-Darcy flow of each fluid may 

be described using the multiphase extension of Forchheimer  equation (Evans and Evans, 1988; Liu 

et al., 1995): 
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( ) fffff
rf

f
ff kk

P vvvg ρβ+
µ

=ρ−∇−         (2.2) 

where Pf is the pressure of phase f;  g is the gravitational constant vector; k is the 

absolute/intrinsic permeability (tensor) of the formation; krf is relative permeability to phase f; 

and is the effective non-Darcy flow coefficient with a unit mfβ -1 for fluid f under multiphase flow 

conditions (Evans and Evans, 1988).  

 

Under single-phase flow conditions the coefficient, β , is traditionally called a turbulence 

coefficient or an inertial resistance coefficient (Tek et al., 1962; Lee et al. 1987). Note that to include 

multiphase effects on non-Darcy flow,  Equation (2.2) is modified by the following: 

f

• Pressure gradient is replaced by flow potential gradient [the left-hand-side term of (2.2)] to 

include gravity effects. 

• Absolute permeability is replaced by an effective permeability term (k krf). 

• is described as the effective non-Darcy flow coefficient for a flowing phase under 

multiphase flow conditions. 

fβ

 

Darcy law’s states that a linear relationship exists between volumetric flow rate and pressure (head or 

potential) gradient in porous media. The linear term, the first term 






 µ
f

rf

f

kk
v on the right-hand side of 

Equation (2.2), represents viscous flow; it is dominant at low flow rates. Additional pressure drop or 

energy assumption resulting from non-Darcy or high flow velocities is described by the second term 
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( ffff vvρβ ) on the right-hand side of (2.2) for the extra friction or inertial effects (Katz and Lee, 1990). 

Equation (2.2) indicates that the non-Darcy flow equation reduces to the multiphase Darcy law  

If the non-Darcy term ( ffff vvρβ ) can be ignored, when compared with the first term 






 µ
f

rf

f

kk
v , 

for low flow velocity, Equation (2.2) becomes a Darcy’s law. For high velocities, however, the 

second term becomes dominant and must be included. Therefore, Darcy flow can generally be 

considered as a special case of non-Darcy flow as described by Equation (2.2.). 

 

Equation (2.2) implicitly defines the Darcy velocity as a function of pressure gradient as well as 

saturation and relative permeability. A more general relation for the Darcy velocity in multiphase 

non-Darcy flow may be proposed as a function of pressure gradient, saturation, and relative 

permeability functions: 

 

( rfffff k,S,P∇= vv )              (2.3) 

 

With Equation (2.3), many other kinds of equations for non-Darcy flow in addition to the 

Forchheimer equation (e.g., Scheidegger, 1972) can be extended to multiphase non-Darcy flow 

situations. 

 

Equation (2.1), the governing of mass balance for three phases, needs to be supplemented with 

constitutive equations, which express all the secondary variables and parameters as functions of a set 
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of primary thermodynamic variables of interest. The following relationships will be used to 

complete the description of multiphase flow through porous media:  

1SSS gnw =++           (2.4) 

The capillary pressures relate pressures between the phases.  The aqueous- and gas-phase pressures 

are related by 

(P P P Sw g cgw w= − )

)

,          (2.5) 

where Pcgw is the gas-water capillary pressure in a three-phase system and assumed to be a function 

of water saturation only.  The NAPL pressure is related to the gas phase pressure by 

( nwcgngn S,SPPP −= ,         (2.6) 

where Pcgn is the gas-NAPL capillary pressure in a three-phase system, which is a function of both 

water and NAPL saturations.  For many aquifer formations, the wettability order is (1) aqueous 

phase,  (2) NAPL phase, and (3) gas phase.  The gas-water capillary pressure is usually stronger than 

the gas-NAPL capillary pressure. In a three-phase system,  the NAPL-water capillary pressure, Pcnw, 

may be defined as 

wncgncgwcnw PPPPP −=−=          (2.7) 

The relative permeabilities are assumed to be functions of fluid saturations only.  The 

 relative permeability to the water phase is described by 

( )k k Sr w r w w=           (2.8) 

to the NAPL phase by 

( )gwnrnr S,Skk =           (2.9) 
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and to the gas phase by 

( )k k Sr g rg g=            (2.10) 

 

The densities of water, NAPL, and gas, as well as the viscosities of fluids, can in general be treated 

as functions of fluid pressures. 

 

3. Numerical Formulation  

 

The multiphase non-Darcy flow equations, as discussed in Section 2, have been implemented into a 

general-purpose, three-phase reservoir simulator, the MSFLOW code [Wu, 1998].  As implemented in 

the code, Equation (2.1) can be discretized in space using an integral finite-difference or control-volume 

finite-element scheme for a porous and/or fractured medium.  The time discretization is carried out with 

a backward, first-order, finite-difference scheme.  The discrete nonlinear equations for water, NAPL, 

and gas flow at Node i are written as follows:   

( ) ( ){ } ( ) 1n
if

j

1n
jif

in
iff

1n
iff QF

t
VSS

i

+

η∈

++ +=
∆

ρφ−ρφ ∑            (3.1) 

where n denotes the previous time level; n+1 is the current time level; Vi is the volume of element i 

(porous or fractured block); ∆t is the time step size; ηi contains the set of neighboring elements (j), 

porous or fractured block, to which element i is directly connected; and Ff is a mass flow term 

between elements i and j, defined [when Equation (2.2) is used] as  
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( ) ( )























ψ−ψγ−








λ

+
λ

−
β

=
+

2/1

fifjij

2

ff2/1ijf

ij
f

11
k2

A
F          (3.2) 

where subscript ij+1/2 denotes a proper averaging of properties at the interface between the two 

elements and Aij is the common interface area between connected elements i and j.  The mobility of 

phase f is defined as 

f

fr
f

k
µ

=λ                 (3.3) 

and the flow potential term is 

i2/1ijfifi DgP +ρ−=ψ                (3.4) 

where Di is the depth to the center of element i. The mass sink/source term at element i, Qfi for phase 

f, is defined as 

iifif VqQ =             (3.5) 

 

In (3.2), transmissivity of flow terms is defined (if the integral finite-difference scheme is used) as, 

( )
ji

2/1ijff
2

ji dd
k4

+

βρ
=γ + ,          (3.6) 

where  di is the distance from the center of element i to the interface between elements i and j.  

 

In the model formulation, absolute permeability, relative permeability and effective non-Darcy flow 

coefficient are all considered as flow properties of porous media and need to be averaged between 

connected elements in calculating the mass flow terms. In general, weighting approaches used are 
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that absolute permeability is harmonically weighted along the connection between elements i and j, 

relative permeability and non-Darcy flow coefficients are both upstream weighted. 

 

Newton/Raphson iterations are used to solve Equation (3.1).  For a three-phase flow system, 3 × N 

coupled nonlinear equations must be solved (N being the total number of elements of the grid), 

including three equations at each element for the three mass-balance equations of water, NAPL, and 

gas, respectively.  The three primary variables (x1, x2, x3) selected for each element are gas pressure, 

gas saturation, and NAPL saturation, respectively.  In terms of the three primary variables, the 

Newton/Raphson scheme gives rise to  

( )( ) ( p,m
1n,

i1p,m
m m

p,m
1n,

i xRx
x

xR +β
+

+β

−=δ∑
∂

∂ )  for m = 1, 2, and 3       (3.7) 

where index m = 1, 2, and 3 indicates the primary variable 1, 2, or 3, respectively;  p is the iteration 

level; and i = 1, 2, 3, …, N, the nodal index.   The primary variables are updated after each iteration: 

 x             (3.8) 1p,mp,m1p,m xx ++ δ+=

A numerical method is used to construct the Jacobian matrix for Equation (3.7), as outlined by 

Forsyth et al. (1995). 

 

4. Treatment of Boundary Conditions and Fractured Media 

 

First-type or Dirichlet boundary conditions denote constant or time-dependent phase pressure, 

and saturation conditions. These types of boundary conditions can be treated using the large-

volume or inactive-node method (Pruess, 1991), in which a constant pressure/saturation node 

may be specified with a huge volume while keeping all the other geometric properties of the 
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mesh unchanged.  However, caution should be taken in (1) identifying phase conditions when 

specifying the “initial condition” for the large-volume boundary node and (2) distinguishing 

upstream/injection from downstream/production nodes. Once specified, primary variables will be 

fixed at the big-volume boundary nodes, and the code handles these boundary nodes exactly like 

any other computational nodes.  
 

Flux-type or Neuman boundary conditions are treated as sink/source terms, depending on the 

pumping (production) or injection condition, which can be directly added to Equation (3.1).  

This treatment of flux-type boundary conditions is especially useful for a situation where flux 

distribution along the boundary is known, such as dealing with a single-node well. More general 

treatment of multilayered well-boundary conditions is discussed in Wu (2000a).  

 

The technique used in the current model for handling flow and transport through fractured rock 

follows the dual-continuum methodology (Warren and Root, 1963; Pruess, 1991; Pruess and 

Narasimhan, 1985). The method treats fracture and rock matrix flow and interactions using a 

multi-continuum numerical approach, including the double- or multiporosity method (Wu and 

Pruess, 1988), the dual-permeability method, and the more general "multiple interacting 

continua'' (MINC) method (Pruess and Narasimhan, 1985). 

   

The model formulation involved in modeling non-Darcy flow is applicable to both single-

continuum and multi-continuum media. When handling flow through a fractured rock, the 

problem becomes essentially how to generate a mesh that represents both the fracture and matrix 

systems. Several fracture-matrix subgridding schemes exist for designing different meshes for 

different fracture-matrix conceptual models (Pruess, 1983). Once a proper mesh of a fracture-

matrix system is generated, fracture and matrix blocks are specified to represent fracture or 

matrix domains, separately. Formally, they are treated exactly the same in the solution by the 

model. However, physically consistent fracture and matrix properties and modeling conditions 

must be appropriately specified for fracture and matrix systems, respectively.    
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5. Model Verification Examples 

In this section we provide three examples to verify the proposed numerical schemes involved in 

handling non-Darcy flow of single-phase and multi-phase fluids in porous and fractured media. 

Several analytical solutions are used in these comparisons.  The sample problems include:  

• Single-phase, steady-state non-Darcy flow in homogenous porous media  

• Single-phase, transient flow through a double-porosity reservoir 

• Two-phase non-Darcy flow and displacement in homogenous porous media  

 

5.1 Single-Phase, Steady-State Radial Flow 

 

This problem is used to verify the numerical scheme for modeling steady-state, non-Darcy flow 

in homogeneous porous media. For the comparative study, an exact analytical solution for this 

problem is presented in Appendix A.  The test problem concerns steady-state, one-dimensional, 

and horizontal radial flow toward a well in a uniform and homogeneous system. A non-Darcy 

flow correlation from Tek et al. (1962) is used to evaluate the non-Darcy flow coefficient β versus 

porosity and permeability as follows: 

 

 4/34/5k
C

φ
=β β

             (5.1) 

 

where C is a non-Darcy flow constant with a unit (mβ
3/2) when converted to S.I. units.  

 

The numerical solution of this problem is performed by the multiphase flow code, MSFLOW, in 

which single-phase flow is handled as a special case of three-phase flow. A one-dimensional, 
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radial-symmetric grid of 2,200 elements was generated along the 1,000 meters of the radial flow 

direction. The parameters used for the comparison are listed in Table 5.1 for evaluating both 

analytical and numerical solutions. Comparisons of pressure distributions along the radial 

direction, calculated from the exact and numerical solutions, are shown in Figure 5.1. The 

agreement between the two solutions is excellent for different non-Darcy flow coefficients. In 

fact, many additional steady-state simulations have been performed and the numerical results are 

found to be in excellent agreement with the analytical solution in every case.  

 

5.2 Single-Phase Fractured-Medium Flow Problem 

 

This problem tests the numerical formulation for simulating transient flow in fractured media by 

comparison with an analytical solution. The example concerns transient flow towards a well that 

fully penetrates a horizontal, uniform, fractured, radially infinite reservoir. When non-Darcy flow 

effects are small or can be ignored, the analytical solution by Warren and Root (1963) can be used 

for this particular test.  

 

A radially symmetrical reservoir (r = 5 × 106 m) is discretized into a one-dimensional (r), primary 

grid. The r-distance of 5×106 meters is subdivided into 3,100 intervals in logarithmic scale. A 

double-porosity mesh is generated from the primary grid, in which a three-dimensional fracture 

network and cubic matrix blocks are used.  The matrix block size is 1 × 1 × 1 meter, and fracture 

permeability and aperture are correlated by the cubic law. Input parameters are given in Table 5.2. 

Note that 10-times-larger non-Darcy flow coefficients than those for fractures are used 
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correspondingly for flow in matrix to account for lower matrix permeability. A fully penetrating 

pumping well is represented by a well element with a specified constant water-pumping rate.  

 

Figure 5.2 shows a comparison of the numerical modeling results and the Warren and Root solution 

for the pressure response at the well, in which the dimensionless variables were defined by Warren 

and Root (1963).  Figure 5.2 shows that the simulated pressures at the well are in excellent 

agreement with the analytical solution, with a typical double-porosity behavior of two-parallel semi-

log straight lines developed on the plot. 

 

5.3 Two-Phase Non-Darcy Displacement  

 

In this problem, an analytical solution (Wu, 2000b) is used to examine the validity of the numerical 

method for modeling multiphase non-Darcy flow and displacement processes. The Forchheimer 

equation is also used for the comparison. The physical flow model is a one-dimensional linear 

porous medium, which is at first saturated uniformly with a nonwetting fluid (Sn = 0.8) and a wetting 

fluid (Sw = Swr = 0.2).  A constant volumetric injection rate of the wetting fluid is imposed at the inlet 

(x = 0), starting from t = 0.  The relative permeability curves used for all the calculations in this 

problem are shown in Figure 5.3, and rock and fluid properties are listed in Table 5.3.  

 

In this problem, the effective non-Darcy flow coefficient for multiphase flow is treated as a function 

of fluid saturation and relative permeability. The non-Darcy flow coefficient correlation, defined by 

Equation (5.1), is extended to the two-phase flow situation with replacing the absolute permeability 
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(k) by an effective permeability (k krf) and replacing porosity φ with φ(Sf - Sf r).  Then, we can derive 

the relationship for the non-Darcy flow coefficient as follows: 

 ( ) ( )[ ] 4/3
rff

4/5
fr

frwf SSkk
C

)k,S(
−φ

=β β       (5.2) 

where Sfr is residual saturation of fluid f. Equation (5.2) is incorporated into both the analytical and 

numerical calculations. 

 

To reduce the effects of discretization on numerical simulation results, we choose very fine, uniform 

mesh spacing (∆x = 0.01 m). A one-dimensional 5 m linear domain is discretized into 500 one-

dimensional uniform gridblocks. In the numerical simulation, the non-Darcy flow coefficient, Equation 

(5.2), is treated as a flow property and is evaluated using a full upstream weighting scheme such as that 

for the relative permeability function. 

 

Figure 5.4 shows saturation profiles after 10 hours from both analytical and numerical solutions.  The 

figure indicates that the numerical results are in excellent agreement with the analytical prediction of the 

non-Darcy displacement for the entire wetting-phase sweeping zone. Except at the shock, advancing 

saturation front, the numerical solution deviates only slightly from the analytical solution, resulting from 

a typical “smearing front” phenomenon of numerical dispersion effects that occurs when matching the 

Buckley-Leverett solution using numerical results (Aziz and Settari, 1979). 

 

6. Application and Discussion 
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In this section, we present several application examples and discuss single-phase, non-Darcy 

flow behavior to demonstrate the applicability of the present modeling approach to field 

problems. The application examples generate dimensionless pressures or type curves for non-

Darcy flow well test analyses, including: 

(1) Pressure drawdown and buildup analyses 

(2) Effects of finite boundaries of reservoirs 

(3) Pressure drawdown in fractured reservoirs 

(4) Well test determination of non-Darcy flow coefficients 

  

Before further discussing these application problems, we introduce several dimensionless 

variables for analyzing single-phase flow and well test results (Earlougher, 1977). Let us define 

the following group of dimensionless variables: 

 

The dimensionless radius, 

 
w

D r
rr =           (6.1) 

the dimensionless time, 

2
wti

D rC
tkt

µφ
=           (6.2) 

the dimensionless non-Darcy flow coefficient, 

µπ
β

=β
hr2

qk

w

m
D           (6.3) 

and the dimensionless pressure, 

kh2
q

PP
P

v

i
D

π
µ

−
=           (6.4) 

 

In these notations, the subscript referring to a phase is ignored, r is radial distance (coordinate), 

rw is wellbore radius, φi is the effective (or initial) porosity of formation at reference (initial) 
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pressure (P = Pi), Ct is total compressibility of fluid and rock, h is thickness of formation, qm is mass 

production or injection rate, and qv is volumetric production or injection rate. 
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6.1 Pressure Drawdown and Buildup Analyses 

 

This example presents a set of type curves for analyzing well tests of single-phase, slightly 

compressible non-Darcy fluid flow in an infinite-acting reservoir. The basic modeling 

parameters are summarized in Table 6.1. Non-Darcy flow is considered to occur into a fully 

penetrating well from an infinite-acting, homogeneous and isotropic, uniform and horizontal 

formation. Even though skin and wellbore storage effects are ignored in the results, they can 

easily be included if needed.  

 

The infinite-acting reservoir is approximated by a one-dimensional, radially symmetrical reservoir in 

the numerical model with age outer boundary radius of 5 × 106 (m), discretized into a one-

dimensional grid of 3,100 gridblocks in logarithmic scale. Initially, the system is undisturbed and at 

constant pressure. A fully penetrating injection well, represented by a well element, starts pumping at  

t = 0, specified at a constant water-pumping rate.  

 

A set of type-curves for pressure drawdown, calculated by the numerical model in terms of 

dimensionless pressure versus dimensionless time, is shown in Figure 6.1. Figure 6.1 clearly indicates 

that the non-Darcy flow coefficient is a very important and sensitive parameter to the pressure 

drawdown curves. When non-Darcy flow coefficients are sufficiently large, they affect pressure 

transient behavior during both earlier and later times. Note that in the simulation, the non-Darcy flow 

coefficient is evaluated to be uncorrelated with other parameters. Figure 6.1 indicates that the non-Darcy 

flow coefficient can be effectively estimated using the type curves with the traditional type-curve 

matching approach. Note also that for small non-Darcy flow coefficients, pressure declines at the well 
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during pumping are approaching those predicted by Theis solution, as it should be. This results from the 

diminishing effect of non-Darcy flow with flow behavior now tending towards to Darcy flow regime. 

 

Figure 6.2 presents simulated pressure drawdown and buildup curves, in which the well is 

pumped for one day only and then shut off. The well pressure variations during the entire 

pumping and shut-in period, as shown in Figure 6.2, indicate that pressure buildup is insensitive 

to the values of non-Darcy flow coefficients, as compared with drawdown in pumping periods. 

This is because of rapid reduction in flow velocity near the well after a well is shut off and non-

Darcy flow effects become ineligible. Many additional modeling investigations have verified this 

observation has been confirmed. This indicates that pressure-buildup tests are not suitable for 

estimating non-Darcy flow coefficients. On the other hand, the pressure-buildup method, 

following non-Darcy flow pumping tests, will be a good test for determining permeability values 

without significant non-Darcy flow. 

 

6.2 Effects of Finite Reservoir Boundaries 

 

For practical well tests, boundary effects or well interferences in finite, developed reservoirs will 

show up sooner or later. Two types of boundary conditions, closed and constant pressure 

conditions, are commonly used to approximate the effects of finite reservoir/well boundaries. In 

this section, effects of finite-system boundary conditions on pressure drawdown behavior will be 

discussed.  

 

The flow system and parameters for finite systems are similar to those in Section 6.1. Only two 

finite radial systems with outer boundary radii (re =1,000 and 10,000 m) are considered. Figures 
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6.3 and 6.4 show dimensionless pressure drawdown curves, for closed and constant-pressure 

boundaries as well as the two radii. For a smaller formation system with re = 1,000 m, Figure 6.3 

shows that significant boundary effects occur at about dimensionless time tD = 10 8 (1 day in real 

time), at which the well pressure responses deviate from the infinite-acting solution (say, the 

Theis solution for small non-Darcy flow coefficients). For the larger system with  

re = 10,000 m, boundary effects are very similar but show up much later (Figure 6.4). 

 

 

6.3 Analysis of non-Darcy Flow in Fractured Media 

 

This problem portrays non-Darcy flow through a fractured reservoir. The fracture-matrix 

formation is described using the Warren and Root double-porosity model. The physical flow 

model is the same as that in Section 5.2 for one-dimensional fracture-matrix system, with basic 

properties of rock and fluid also given in Table 5.2.  

 

For non-Darcy flow into a well from an infinite fractured system, well pressures type curves are 

shown in semi-log plots of Figure 6.5. The type curves on the figures show that well (fracture) 

pressures are extremely sensitive to the value of non-Darcy flow coefficients; therefore, well 

pumping tests will help determine this constant in a fractured reservoir. Furthermore, Figure 6.5 

indicates that the effects of non-Darcy flow on early transient pressure responses are very strong, 

such that the first semi-log straight lines may not develop when non-Darcy flow is involved. 

 

6.4  Determination of Non-Darcy Flow Coefficients 
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In addition to the type-curve matching method for determining non-Darcy flow coefficients (as 

discussed above), we may derive a simpler approach. Type-curves observation in Figures 6.1 - 

6.5 indicates that vertical displacement (difference in dimensionless pressures) at the same time 

between non-Darcy and Darcy flow solutions is always closely related to (dimensionless) non-

Darcy flow coefficients as long as closed boundary effects are insignificant. A close 

examination of Figure 6.1 or 6.5 reveals: 

 

              (6.5) DDP β≈∆

 

after the early transient times (tD = 105 or 1,000 seconds in real time). Is this true? This can be 

further illustrated using a simple steady-state solution, provided in Appendix A. At steady-state 

and if re >> rw, the solution (A.15) becomes 

 

 ( ) D
e
De

DD
D

D

e
D

D rln
r
1

r
1

r
rlnP β+≈








−β+








=          (6.6) 

 

at wells with r = rw  or rD = 1. The first term of (6.6), on the right-hand side, is identical to the 

solution for steady-state Darcy flow. Therefore, the difference in dimensionless pressure under 

steady state is approximately equal to a dimensionless non-Darcy flow coefficient, as defined in 

Equation (6.3). It is encouraging to note that this relation may provide a good approximation 

even for unsteady-state flow conditions after earlier transient periods, as shown in Figures 6.1 

- 6.5.  

 

The correlation of dimensionless non-Darcy flow coefficients with dimensionless pressures, as 

shown in Figure 6.1 and 6.5, as well as Equation (6.6), is equivalent to that of skin effects in a 

Darcy flow well-test analysis (Earlougher, 1977). This indicates that the non-Darcy flow effect 

is dominated mainly by the flow near the wellbore, because of the much higher flow velocities 
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there. In general, skin and non-Darcy flow effects cannot be separated from a single well test 

under non-Darcy flow condition. We recommend that skin effects be estimated using a low 

flow rate or Darcy flow test first. 

 

Here, an example demonstrates how to use Equation (6.5) to determine non-Darcy flow 

coefficients by well tests. This simple method can be demonstrated using the simulated well 

test of Section 6.1. From the simulation, at tD = 0.1243 × 108 (or t = 0.3778 × 105 sec.) the 

dimensionless well pressure PD = 18.53 for βD= 10, and PD = 8.52 for βD= 0.  Substituting 

these dimensionless pressure difference data into Equation (5.6), together with the definition 

(6.3), 
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µπ∆
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µπβ
=β   (6.3) 

 

The actual input value for β is 6.37 × 1012 in for the numerical test problem. The result indicates 

that the proposed well test method is very accurate for determining non-Darcy flow coefficients 

in this case.  

 

7. Summary and Conclusions 

 

This paper presents a numerical method and theoretical study for non-Darcy flow and displacement 

through porous and fractured media. A three-dimensional, three-phase flow reservoir simulator 

has been enhanced to include the capability of modeling non-Darcy flow. Model formulation 

incorporates the Forchheimer equation to describe single-phase and multiphase non-Darcy flow. 

The numerical scheme implemented has been verified by comparing numerical simulation results 
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with those of analytical solutions under single-phase and multiphase, steady-state and transient flow 

conditions. As application examples, numerical solutions are used to obtain some insight into the 

physics of flow involving non-Darcy flow effects in porous media. It has been found that pressure 

drawdown not buildup behavior is sensitive to effects of non-Darcy flow, therefore pressure 

drawdown testing will be a suitable approach for well-testing determination of non-Darcy flow 

coefficients. In addition, several type curves and a simplified method are provided for well test 

analyses of non-Darcy flow to demonstrate the proposed methodology’s usefulness for 

investigating non-Darcy flow in porous and fractured rocks. 
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Table 5.1 Parameters for the steady-state single-phase flow problem. 
 

Parameter Value Unit 
Reference Pressure Pi = 10 Bar 
Reference Porosity φi = 0.20  

Reference Fluid 
Density 

ρi = 1,000 kg/m3 

Formation Thickness h=10 m 
Fluid Viscosity µ = 1×10-3 Pa•s 

Fluid Compressibility Cf=5 × 10-10 Pa-1 
Rock Compressibility Cr=5 × 10-9  Pa-1 

Permeability k = 9.869×10-13 m2 
Water Production Rate qm = 0.1 kg/s 

Wellbore Radius rw = 0.1 m 
Outer Boundary  

Radius 
re=1,000 m 

non-Darcy flow  
constant 

Cβ = 3.2 × 10-3 ,  
3.2 × 10-4, 3.2 × 10-9 

 
m3/2 
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Table 5.2 Parameters for the single-phase, fractured-medium flow problem. 
Parameter Value Unit 

Matrix Porosity φM = 0.30  
Fracture Porosity φF = 0.0006  

Reference Water Density ρw = 1,000 kg/m3 

Water Phase Viscosity µw = 1×10-3 Pa•s 
Matrix Permeability kM = 1.0×10-16 m2 

Fracture Permeability kF = 9.869×10-13 m2 
Water Production Rate qm = 0.1  kg/s 
Rock Compressibility Cr = 1.0×10-9 1/Pa 
Water Compressibility Cw = 5.0×10-10 1/Pa 

Dimensionless non-Darcy  
Flow Coefficient for fracture 

βD, f = 1 × 10-4, 1, 5, 
and 10  

 

Dimensionless non-Darcy  
Flow Coefficient for matrix 

βD, m= 1 × 10-3, 10, 50, 
and 100  

 

 Wellbore Radius rw = 0.1 m 
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Table 5.3 Parameters for the non-Darcy Displacement Example. 

Parameter Value Unit 
Effective Porosity φ = 0.30  

Permeability k = 9.869 × 10-13 m2 
Wetting Phase Density ρw = 1,000 kg/m3 

Wetting Phase Viscosity µw = 1.0 × 10-3 Pa•s 
Nonwetting Phase Density ρn = 800 kg/m3 

Nonwetting Phase Viscosity µn = 5.0 × 10-3 Pa•s 
non-Darcy Flow Constant Cβ = 3.2 × 10--6 m3/2 

Injection Rate qv = 1.0 × 10-5 m3/s 
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Table 6.1 Parameters for the pressure drawdown and buildup analysis. 
 

Parameter Value Unit 
Initial Pressure Pi = 10 Bar 
Initial Porosity φi = 0.20  

Reference Fluid Density ρi = 1,000 kg/m3 
Formation Thickness h=10 m 

Fluid Viscosity µ = 1×10-3 Pa•s 
Fluid Compressibility Cf=5 × 10-10 Pa-1 
Rock Compressibility Cr=5 × 10-9  Pa-1 

Permeability k = 9.869×10-13 m2 
Water Injection Rate q v = 0.1 m3/d 

Wellbore Radius rw = 0.1 m 
Outer Boundary  Radius re= ∞ ≈5× 10 6 m 
Dimensionless non-Darcy

Flow Coefficient 
βD = 1 × 10—3 , 1, 10, 100 
1 × 10 3, 1 × 10 4, 1 × 10 5 
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Nomenclature 
 

Cf fluid compressibility (Pa-1) 

Cr rock (porosity) compressibility (Pa-1) 

Ct total compressibility (Pa-1) 

Cβ non-Darcy flow constant (m3/2) 

di distance to the interface from gridblock i a (m) 

Di depth to the center of gridblock i (m) 

Ff mass flux of fluid f (kg/s) 

g, g gravitational constant (m/s2) 

h thickness of formation (m) 

k absolute permeability (m2)  

kF fracture permeability (m2) 

kM matrix permeability (m2) 

krf relative permeability to phase f 

P pressure (Pa) 

Pcgn gas-NAPL capillary pressure (Pa) 

Pcgw gas-water capillary pressure (Pa) 

Pcnw NAPL-water capillary pressure (Pa) 

PD dimensionless pressure (Pa) 

Pg gas pressure (Pa) 

Pn NAPL pressure (Pa) 

Pw water pressure (Pa) 

Qf mass sink/source term (kg/s) 

Rf
 mass residual term (kg/s) 

qf mass sink/source term (kg/s m3) 

qm mass injection rate (kg/s) 

qv volumetric injection rate (m3/s) 

Sg gas pressure (Pa) 
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Sn NAPL pressure (Pa) 

Sw water pressure (Pa) 

xm primary variables to residual equations 

r radial distance (m) 

rD dimensionless radius 

re outer boundary radius (m) 

rw wellbore radius (m) 

t time (s) 

tD dimensionless time, Equation (42) 

v Darcy or volumetric flow velocity (m/s) 

vr radial Darcy or volumetric flow rate (m/s) 

Vi volume of gridblock i (m3) 

β, βf non-Darcy flow coefficient of fluid f (m-1) 

γij transmissivity between gridblocks i and j (kg/ m3) 

λf mobility of fluid f (Pa•s)-1 

µ, µf viscosity of fluid f (Pa•s) 

ρf density of fluid f (kg/m3) 

ρi initial or reference fluid density (kg/m3) 

φ porosity 

φi initial or reference porosity 

ψf flow potential term (Pa) 

 

Figure Captions 

 
Figure 5.1 Comparison of dimensionless pressures calculated from exact and numerical 

solutions for steady-state non-Darcy flow with different non-Darcy flow 
coefficients. 

 
Figure 5.2 Comparison of dimensionless pressures calculated from analytical and numerical 

solutions for transient flow in double-porosity, fractured rock. 
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Figure 5.3 Relative-permeability curves used in analytical and numerical solutions for non-
Darcy displacement. 

 
Figure 5.4 Comparison between saturation profiles calculated from analytical and numerical 

solutions after 10 hours of injection. 
 
Figure 6.1 Type curves for dimensionless pressures for non-Darcy flow in an infinite system 

without wellbore storage and skin effects. 
 
Figure 6.2 Dimensionless pressures for one-day pumping, followed by pressure buildup, of non-

Darcy flow in an infinite system without wellbore storage and skin effects. 
 
Figure 6.3 Type curves for dimensionless pressures for non-Darcy flow in a finite system with 

an outer boundary radius of 1,000 m. 
 
Figure 6.4 Type curves for dimensionless pressures for non-Darcy flow in a finite system with 

an outer boundary radius of 10,000 m. 
 
Figure 6.5 Type curves for dimensionless pressures for non-Darcy flow in an infinite fractured 

system without wellbore storage and skin effects (dimensionless non-Darcy flow 
coefficients for fracture systems). 
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Appendix A. Steady-State Solution for Single-Phase Flow 

 

The steady-state flow problem considered here is fluid production from a fully penetrating well 

in a finite, radial system, subject to a constant outer boundary pressure. 

 

 ( )[ ] 0vrP
r r =ρ

∂
∂

         (A.1) 

 

where vr is volumetric flow rate along the r-direction. At the outer boundary (r = re),  

 

ie P)rr(P ==     (constant)     (A.2) 

 

and at the inner boundary of the wellbore, r = rw, the fluid is produced at a constant mass rate,  

 

    (constant)      (A.3) [ ] mrrrw qvhr2
w

=ρπ =

 

 

Integrating Equation (A.1) leads to 

 

           (A.4) ( )[ ] CvrP r =ρ

 

and using (A.3), we have 

 

 

 ( )[ ]
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=ρ          (A.5) 

 

For the one-dimensional, horizontal, single-phase non-Darcy flow, can be determined from rv
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Equation (2.2) as 
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We have 
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To solve Equation (A.8),  we correlate the fluid density as a function of pressure 

 

( )[ ]ifi PPC1)P( −+ρ=ρ=ρ                   (A.9) 
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where , is the volumetric production rate at the reference pressure. In terms of 

dimensionless variables,  

imv /qq ρ=
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Finally, we have the steady-state solution: 
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where,  
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If we introduce a constant density in Equation (A.8), we arrive at the simple steady-state solution  
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Figure 5.1 Comparison of dimensionless pressures calculated from exact and numerical 
solutions for steady-state non-Darcy flow with different non-Darcy flow 
coefficients. 
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Figure 5.2 Comparison of dimensionless pressures calculated from analytical and numerical 
solutions for transient flow in double-porosity, fractured rock. 
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Figure 5.3 Relative-permeability curves used in analytical and numerical solutions for non-
Darcy displacement. 
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5.4 Comparison between saturation profiles calculated from analytical and numerical solutions 

after 10 hours of injection.  
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Figure 6.1 Type curves for dimensionless pressures for non-Darcy flow in an infinite system 
without wellbore storage and skin effects. 
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Figure 6.2 Dimensionless pressures for one-day pumping, followed by pressure buildup, of non-
Darcy flow in an infinite system without wellbore storage and skin effects. 
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Figure 6.3 Type curves for dimensionless pressures for non-Darcy flow in a finite system with 

an outer boundary radius of 1,000 m. 
 

  

 

 

42



105 106 107 108 109 1010 1011 1012 1013

Dimensionless Time (tD)

100

101

102

103

D
im

en
si

on
le

ss
P

re
ss

ur
e

(P
D
)

βD=0.1, Closed Boundary
βD=0.1, Constant Pressure
βD=1.0, Closed Boundary
βD=1.0, Constant Pressure
βD=10, Closed Boundary
βD=10, Constant Pressure

 

 

Figure 6.4 Type curves for dimensionless pressures for non-Darcy flow in a finite system with 
an outer boundary radius of 10,000 m. 
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Figure 6.5 Type curves for dimensionless pressures for non-Darcy flow in an infinite fractured 

system without wellbore storage and skin effects (dimensionless non-Darcy flow 
coefficients for fracture systems). 
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