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Abstract

Morphosyntactic assessments are important for characterizing individuals with nonfluent/

agrammatic variant primary progressive aphasia (nfvPPA). Yet, standard tests are subject to 

examiner bias and often fail to differentiate between nfvPPA and logopenic variant PPA (lvPPA). 

Moreover, relevant neural signatures remain underexplored. Here, we leverage natural language 

processing tools to automatically capture morphosyntactic disturbances and their neuroanatomical 

correlates in 35 individuals with nfvPPA relative to 10 healthy controls (HC) and 26 individuals 

with lvPPA.

Participants described a picture, and ensuing transcripts were analyzed via part-of-speech tagging 

to extract sentence-related features (e.g., subordinating and coordinating conjunctions), verbal-

related features (e.g., tense markers), and nominal-related features (e.g., subjective and possessive 

pronouns). Gradient boosting machines were used to classify between groups using all features. 
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We identified the most discriminant morphosyntactic marker via a feature importance algorithm 

and examined its neural correlates via voxel-based morphometry.

Individuals with nfvPPA produced fewer morphosyntactic elements than the other two groups. 

Such features robustly discriminated them from both individuals with lvPPA and HCs with 

an AUC of 0.95 and 0.82, respectively. The most discriminatory feature corresponded to 

subordinating conjunctions was correlated with cortical atrophy within the left posterior inferior 

frontal gyrus across groups (pFWE<.05).

Automated morphosyntactic analysis can efficiently differentiate nfvPPA from lvPPA. Also, the 

most sensitive morphosyntactic markers correlate with a core atrophy region of nfvPPA. Our 

approach, thus, can contribute to a key challenge in PPA diagnosis.

Keywords

primary progressive aphasia; morphosyntax; subordination production; Natural Language 
Processing; cortical atrophy

1. Introduction

Primary progressive aphasia (PPA) is a collection of clinical syndromes characterized 

by progressive language deficits due to the gradual loss of neurons in the dominant 

left-hemisphere perisylvian regions (Gorno-Tempini et al., 2011; Mesulam, 1987). Each 

syndrome is typified by distinct linguistic deficit patterns and neuroanatomical disruptions. 

For example, nonfluent/agrammatic variant PPA (nfvPPA) often presents with predominant 

morphosyntactic deficits associated with inferior frontal atrophy (see Thompson & Mack, 

2014 for a review), while logopenic variant PPA (lvPPA) involves anomia as well as 

phonological and verbal short-term memory impairments associated with temporo-parietal 

atrophy (e.g., Gorno-Tempini et al., 2008; Henry et al., 2016; Leyton et al., 2017; Lukic et 

al., 2019; Teichmann et al., 2013).

Despite their distinct profiles, these syndromes present several overlaps that complicate their 

clinical differentiation (Foxe et al., 2021). Evidence in support of the impaired syntactic 

processing includes results showing that individuals with nfvPPA perform particularly 

poorly on sentence comprehension and production tasks: they often lose the ability to 

build and/or process hierarchical syntax, such as the ability to form Wh questions or non-

canonical (object-before-subject) argument order sentences, correctly inflect verbs for tense, 

use subject pronouns, and to produce subordination conjunctions, while at the same time 

retain the ability to use canonical structures and produce coordination conjunctions (e.g., 

Rogalski et al., 2011; Thompson, Cho, et al., 2012; Thompson et al., 2013; Wilson et al., 

2010a, 2012, 2014; also see Thompson & Mack, 2014 for a review on PPA). However, 

individuals with lvPPA also show impaired syntactic comprehension (i.e. difficulties 

with complex syntactic structures, which contain embedded clauses and/or non-canonical 

argument order) and specifically with long, syntactically complex sentences (e.g., Wilson et 

al., 2012).
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Similarly, impaired inflectional morphology (i.e. difficulties with verb and/or noun 

inflections) was observed in both variants, however, difficulties with inflecting pseudowords 

and low-frequency irregular words were specifically observed in lvPPA, most likely due 

to their core phonological or lexical impairments (Wilson et al., 2014). In addition, more 

difficulty with the possessive marking (e.g., “Mary’s shoe”) over the plural (e.g., “two 

shoes”) was reported in both PPA variants using more constrained morphosyntax generation 

tasks (Stockbridge et al., 2021a, 2021b). Furthermore, a recent online EEG study by Barbieri 

et al. (2021) examined morphosyntactic and verb argument violations across PPA variants, 

and reported a lack of a P600 to morphosyntactic violations (e.g., *The actors was singing in 

the theater.) in individuals with nfvPPA, but impaired verb argument structure production in 

both PPA variants (e.g., *Ryan was devouring on the couch) (also see Grossman et al., 2005; 

Kielar et al., 2018; Manouilidou et al., 2021; Peelle et al., 2007). Overall, these findings 

suggest that although morphosyntactic impairments may appear in both variants, differential 

impairment patterns may help characterize the linguistic profile of each PPA variant.

While the above evidence stems mainly from receptive or tightly controlled elicited sentence 

production tasks, a promising alternative lies in studying morphosyntax in connected 

speech (see Boschi et al., 2017 for a review on connected speech in neurodegenerative 

diseases). Quantitative analyses of connected speech have documented reduced production 

of syntactically well-formed sentences, and the omission and erroneous use of verbal 

inflectional morphology in individuals with nfvPPA, in that function words, especially 

pronouns and particles, are often reduced or eliminated (Faroqi-Shah et al., 2020; 

Themistocleous et al., 2021; Thompson et al., 1997; Thompson, Cho, et al., 2012; 

Thompson et al., 2013; Wilson et al., 2010b). Similarly, a recent study by Lavoie et al. 

(2021) also examined morphosyntactic features of connected speech in individuals with 

lvPPA, in comparison with healthy controls, using three different speech elicitation tasks 

(i.e., picture description, story narration, and semi-structured interviews). Compared to 

healthy controls, individuals with lvPPA produced a reduced proportion of open-class words, 

a higher proportion of verbs and pronouns, and a lower proportion of well-formed sentences 

(in line with Ash and Grossman, 2015; Thompson et al., 2013; Wilson et al., 2010a). 

However, a recent study reported that individuals with lvPPA produced fewer tense-inflected 

verbs compared to individuals with amnestic Alzheimer’s disease (AD) (Cho et al., 2022). 

These and other findings highlighted morphosyntactic deficits during connected speech 

across the PPA variants, with some deficits distinctly related to each variant.

However, capturing morphosyntactic deficits that differentiate nfvPPA from lvPPA still 

remains an enduring challenge in clinical practice. The traditional morphosyntactic analyses 

in PPA prove suboptimal or insufficiently exploited, due to coexisting methodological 

issues. First, elicited sentence tasks are highly constrained (non-connected) production tasks 

which are suboptimal because they fail to capture the actual distribution of morphosyntactic 

patterns, and they prioritize detection of errors over detection of differential patterns 

(which may reveal syndrome-specific patterns irrespective of whether errors are made). For 

instance, studies on other neurodegenerative disorders presenting frontostriatal disruptions 

and grammatical deficits, such as Parkinson’s disease, show that detection of differential 

morphosyntactic patterns in unfolding discourse (rather than errors proper) offers robust 
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discrimination between patients and controls, irrespective of language typology (Eyigoz et 

al., 2020).

Second, the approach to measurement in connected speech data is labor-intensive and 

requires sometimes subjective decisions by speech-language pathologists or others with 

linguistic training, which are subject to inter-rater variability, calling for more objective 

approaches. While good agreements between manual coding and automated quantification 

of syntactic deficits in aphasia have been reported (Fromm, MacWhinney, & Thompson, 

2020), automation provides several benefits, such as being fast, replicable, and does 

not require extensive linguistic training. Furthermore, automatic methods were employed 

successfully in the automatic identification/diagnosis of individuals with amnestic AD 

(Bucks et al., 2000; Fraser et al., 2016; Rentoumi et al., 2014; Themistocleous et al., 2020) 

or individuals with PPA variants (Matias-Guiu et al., 2022; Themistocleous et al., 2021).

Third, the neuroanatomical substrates of morphosyntactic abilities in PPA are not completely 

clear, probably due to mixed receptive-expressive morphosyntax. For example, a recent 

study by Mesulam and colleagues (2021) identified a morphosyntactic cluster to be located 

predominantly within the left posterior Inferior Frontal Gyrus (IFG) using a composite 

of scores (the %Grammaticality of free narrative score thought to be more reflective of 

morphology compared to standardized NAT-NAVS scores related to sentence construction). 

Given that the neuroanatomical signature of morphosyntactic deficits in spontaneous speech 

has rarely been examined in individuals with PPA (Matias-Guiu et al., 2022; Mesulam 

et al., 2021; Wilson et al., 2014), automated analysis of different aspects of syntax 

(verb inflections, subject pronouns, and subordination conjunctions) in spontaneous speech 

individuals with nfvPPA in comparison with lvPPA is needed. In line with several current 

neurocognitive models (e.g., Friederici, 2011; Matchin & Hickok, 2020; Zaccarella & 

Friederici, 2015), where BA 44 or Pars Opercularis in the posterior IFG, which strongly 

connects to the temporal cortex via the dorsal pathway, appears to be particularly involved 

in a syntactic hierarchy (called hierarchy-Merge), we expect the reduction of syntactic 

embedding indicated through subordination conjunctions to be associated with the left 

BA44 integrity across individuals with PPA. In the transformational grammatical framework 

(Chomsky, 1995), syntax is comprised of lexical items and structure building operation, 

Merge, that creates structural dependencies and combines lexical items. While there are 

well-defined operations for structure building (aka Merge) as discussed under the “growing 
tree” rubric (MG; Friedmann et al., 2021) with the complexity of these structure-building 

processes being in BA44 and in a small pSTS cluster (Grodzinsky, Pieperhoff, & Thompson, 

2021), there are recent debates regarding the extent to which syntax is hierarchical or could 

be considered the cascade of expectations that higher functional domains require (e-MGs; 

Chesi, 2021). The crucial difference between the two approaches, among other things, is that 

structure building operates from bottom to top in MG and top-down in e-MG and thus the 

former cannot make “on-line” (word by word) predictions; however, we adopt the former 

MG measure of syntax in the current manuscript to reflect more common approaches in the 

literature.

Here, we introduce a novel framework to tackle these three challenges. First, we used a 

semi-spontaneous production task which elicits diverse morphosyntactic patterns and can 
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thus reveal which specific morphosyntactic features differentiate between groups. Second, 

we leveraged Natural Language Processing (NLP) tools, automatically capturing patterns of 

use of these fine-grained morphosyntactic features without the need for subjective decisions 

and without restricting outcomes to error counts. In particular, we targeted three strategic 

sets of morphosyntactic features, including (1) sentence-related features such as intercausal 

connectors, like subordination conjunctions, which connect one dependent clause to an 

independent clause, creating a complex sentence, (2) verbal-related features such as verb 

inflections, like tense, which inflect the verb for past, present, or future, and (3) nominal-

related features such as different types of pronouns, like subject pronouns (see Boschi et al., 

2017 for a review).

With this approach, we conducted the first automated study of morphosyntactic patterns in 

individuals with nfvPPA versus lvPPA. Specifically, we examined whether these features 

can (i) robustly classify individuals from each group and (ii) add to standard (language 

and neuropsychological) assessments in discriminating nfvPPA from lvPPA. Moreover, we 

explored whether the most discriminative morphosyntactic features thus detected correlated 

with syndrome-specific atrophy patterns in nfvPPA. This way, we aim to inform the ongoing 

quest for reliable, scalable markers to differentiate individuals with nfvPPA from those with 

lvPPA.

2. Materials and Methods

We report how we determined our sample size, all data exclusions, all inclusion/exclusion 

criteria, whether inclusion/exclusion criteria were established prior to data analysis, all 

manipulations, and all measures in the study.

2.1. Participants

The study comprised 71 participants, namely: 35 individuals with nfvPPA, 26 with lvPPA, 

and 10 healthy controls. All participants were recruited at the Memory and Aging Center 

(University of California, San Francisco). Patients were diagnosed based on a detailed 

medical history, comprehensive neurological, and standardized neuropsychological and 

language evaluations, and they were classified as nfvPPA or lvPPA according to the current 

international criteria (Gorno-Tempini et al., 2011). Inclusion criteria for PPA participants 

comprised a Mini-Mental State Examination (MMSE; Folstein et al., 1975) score ≥ 10, a 

Clinical Dementia Rating (CDR; Morris, 1993) score ≤ 2, an output of ≥15 words on the 

picture description task from the Western Aphasia Battery (WAB; Kertesz, 1982) and a 

structural MRI scan within one year of testing. All participants had normal or corrected-to-

normal vision.

Healthy controls (HCs) were recruited through the Hillblom Healthy Aging Network (with 

normal neurological, cognitive, and speech-language profiles). A group of 10 HCs was 

selected as they underwent the WAB picture description task and a structural MRI within 

a year of testing. All the HC participants had a CDR score of zero, an MMSE score ≥25, 

and were determined to be clinically normal based on a consensus conference that reviewed 

the neuropsychological tests completed by the PPA. This group was matched for age, sex, 

and education to both PPA groups. The study was approved by the UCSF Committee on 
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Human Research, and all participants provided written informed consent in accordance 

with the Declaration of Helsinki. The UCSF Human Research and Protection Program 

Institutional Review Board approved the three studies participants consented to (10-03946, 

10-00619, 12-10512). Demographics, neuropsychological scores, speech-language scores, 

and expected significant group differences are provided in Table 1. No part of the study 

procedures and analysis plans were pre-registered prior to the research being conducted. 

However, participant selection criteria were established prior to data analysis.

2.2. Materials

2.2.1. Standardized neuropsychological and language assessment—The 

standardized assessment comprised widely used neuropsychological and speech-language 

tests, collected as part of the protocol’s regular clinical visits (see Table 1 for a list 

of tests). Based on the current consensus criteria (Gorno-Tempini et al., 2011), this 

diagnostic assessment is proven to capture cognitive and speech-language disruptions across 

PPA variants. Comprehensive assessment of speech and language is part of the standard 

diagnostic evaluation of PPA and was recently summarized and described (see Europa et 

al., 2020). Because each PPA variant is associated with a particular pattern of deficits, 

the speech-language assessment covers several domains, such as semantics, morphosyntax, 

phonology, motor speech, and repetition. Comprehensive assessment of cognitive abilities is 

also standard practice in an evaluation of PPA assess to capture distinct neuropsychological 

patterns in the domains of memory, executive function, and visuospatial, that may emerge 

during the disease (Kramer et al., 2003; Staffaroni et al., 2019); also see Europe et al. 

2020 for examples of tasks for assessing each domain within the neuropsychological 

and speech-language assessments. Legal copyright restrictions prevent public archiving of 

clinical assessment tests which can be obtained from the copyright holders in the cited 

references (see Table 1).

2.2.2. Connected speech assessment—Connected speech samples were collected 

with the picture description task from the Western Aphasia Battery (WAB). All participants 

viewed a black-and-white drawing of a picnic scene and described it following this 

instruction: “Tell me what you see and try to talk in sentences”. Speech samples were 

recorded on a digital video camcorder (Wilson et al. 2010b). Speech samples were 

transcribed by experienced speech-language pathologists (SLP), who were blinded to the 

diagnosis. As in previous work (Berndt et al., 2000; Saffran et al., 1989; Wilson et al., 

2010b), false starts, repetitions, revisions, fillers, and unintelligible segments were annotated 

and removed from analysis. This resulted in the average exclusion of 14.0 ± 14.9 words 

for nfvPPA patients and 21.5 ± 15.6 words for lvPPA patients (t = −1.90, p = .063). The 

samples included, on average, the total number of words produced for nfvPPA: 113.71 ± 

102.35 and lvPPA: 129.69 ± 61.94 (t = −0.75, p =.453). This exclusion ensures that the 

following morphosyntactic analyses are not confounded by these unrelated word fragments 

or unintelligible speech.

2.2.3. Inter-rater reliability—Speech samples were transcribed by a licensed SLP 

supported by a trained research assistant. For reliability testing, data from 40% of 

participants (9 nfvPPA patients, 13 lvPPA patients, and 7 healthy controls) was transcribed 
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by an independent SLP. All transcribers were blind to the recordings’ group. The correlation 

between the number of total words recorded per participant across the two raters was r = 

0.99. Discrepant words across the two SLPs amounted to less than 6% of transcriptions 

(nfvPPA: 5.8%, lvPPA: 6.8%, CTRL: 4.6%). Importantly, most discrepant cases concerned 

omitting or substituting articles (e.g., ‘a’ with ‘the’), or prepositions (e.g., ‘in’ vs ‘on’), 

which were not included in the classification analysis below (see Table 2).

2.2.4. Connected speech analysis and feature extraction using NLP—The text 

transcripts were automatically tokenized for parts of speech using the spaCy 2 (Honnibal 

& Montani, 2017). The speech features were extracted using a pre-trained part-of-speech 

tagger and a dependency tagger trained on written English web text using a token-to-vector 

(tok2vec) model (https://spacy.io/models/en#en_core_web_lg). The part-of-speech tagger 

achieved a reported accuracy of 0.97 and the dependency tagger 0.92 (Honnibal & Montani, 

2017). The part-of-speech tagger and the dependency parser together extracted 15 pairs 

of token-level part-of-speech and dependency tags. However, 6 of those pairs had 0 or 

close to 0 values, indicating that they were rarely produced by the groups. Therefore, we 

defined our morphosyntactic features as the 9 pairs that were consistently used across 

groups and restricted our analyses to them (see Table 2). We analyzed their relative feature 

importance. In addition, words in the participants’ texts were matched with a corpus of 

stop words, which are common words that are purely functional and typically contain 

articles, prepositions, pronouns, and auxiliary verbs (e.g., a, and, they, and will). In order 

to control for the variation in the lengths of participants’ speech, the extracted count of 

morphosyntactic features was then converted to fractions of the total number of non-stop 

words. In addition, the standardized assessment (combined neuropsychological and language 

tests; see Table 1) is used to examine the relative robustness of our automated speech 

features that were aimed to capture morphosyntactic aspects of the speech samples. See 

Supplementary Material Table 1 and Figure 1 on relationships between syndrome-specific 

standardized measures and morphosyntactic features fractions.

2.3. Statistical Analyses

2.3.1. Machine Learning Classifications—The morphosyntactic features were used 

in different classification tasks of machine learning. We used Gradient Boosting Machines 

(GBM), a method that reduces overfitting, combines distinct decision trees’ predictions 

to generate final outcomes, handles many features simultaneously without manual feature 

selection, and is proven sensitive to sample size and a number of features (Myung, 2000; 

also see Eygioz et al., 2020 using morphological features). More importantly, to ensure that 

our results were not method-dependent, we replicated the analyses with other algorithms 

(Generalized Linear Models (GLM), Distributed Random Forest (DRF), and Extreme 

Gradient Boosting (XGBoost)). Our models are shown to be generalizable to unseen data by 

the metrics we report on the test set.

The area under the ROC (receiver operating characteristics) curve (AUC) was calculated to 

evaluate the predictive ability of learning algorithms using a 70-30% train-test split (Crimin 

et al., 2021; Sarawgi et al., 2020) with hyperparameters selected by automated machine 

learning package (H2O AutoML; LeDell & Poirier, 2020) on the training set. We reported 
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the AUC over accuracy for established theoretical and empirical reasons (Huang & Ling, 

2005). Accuracy (unlike AUC) may be substantially modified by even small changes in a 

sample’s predicted probability if close to the classification boundary (Guo et al., 2021). 

The ROC curves display the sensitivity and specificity of the classification model using the 

morphosyntax features across different thresholds, with an optimal model having an AUC 

closer to 1 (Carter et al., 2016; Chicco, 2017). They represent the predictive power of the 

model without the need for a specific threshold, thus giving the flexibility of choosing one 

that best fits the use cases. See Supplementary methods for more details on four classifying 

algorithms (GBM, GLM, DRF, XGBoost) and all metrics (e.g., AUC, accuracy, precision, 

recall).

Relative feature importance within the models was then calculated using the H2O AutoML 

package to establish the discriminatory weight of each morphosyntactic variable between 

HCs and the two PPA variants. Feature importance was calculated by evaluating whether a 

feature was employed for node splitting and the extent to which it decreased squared error 

across trees, taking into account weights to ensure accuracy in the variance of response 

values within nodes (Breiman, 2001). Thus, it is represented by the coefficient magnitudes 

of the features (i.e., percentages as compared to the top feature). The study’s sample size 

was established following a feature-to-sample ratio criterion of N-1 (Hua et al., 2004), which 

requires that the number of participants in the training set outnumbers the features fed to the 

classifier by at least one. Considering that our classifiers employed a total of nine features, 

this required a minimum of 10 participants in each classifier’s training set. Considering 

a 70/30 split, this minimum was satisfied even by the classifier with the fewest subjects 

(lvPPA patients vs. HCs), which involved 25 participants for training.

2.3.2. MRI data acquisition and image processing—A 3T Trio (Siemens) scanner 

was used to obtain structural 3D T1-weighted images at UCSF in each participant. The 

T1-weighted images were acquired using an MP-RAGE sequence with the following 

parameters: repetition time (TR) = 2300 ms, echo time (TE) = 2.98 ms, inversion time 

= 900 ms, flip angle 9°, matrix size = 256×240, voxel size 1 mm3 isotropic. Pre-processing 

of neuroimaging data was performed using the Computational Anatomy Toolbox (CAT12; 

http://dbm.neuro.uni-jena.de/cat) in Statistical Parametric Mapping software (SPM12; http://

www.fil.ion.ucl.ac.uk/spm/software/spm12) under Matlab 2019b. A standard voxel-based 

morphometry (VBM) approach was performed and included the following steps: tissue 

classification (GM, WM, CSF) using the unified segmentation (Ashburner & Friston, 2005), 

spatial normalization to a reference space using the Diffeomorphic Anatomical Registration 

using Exponentiated Lie Algebra (DARTEL) algorithm (Goto et al., 2013), modulation by 

the Jacobian determinant, and spatial smoothing using a 8mm full-width at half-maximum 

(FWHM) Gaussian Kernel. Prior to the imaging analyses, image quality control was 

performed on raw MRI acquisitions and pre-processed data. Quality parameters were 

generated for each subject under the module “Data Quality -> VBM data homogeneity” 

in the CAT12, such as the weighted overall image quality, which combines measurements of 

noise and spatial resolution of the image before preprocessing. All participants had a high 

weighted overall image quality above 90%, and, therefore, all participants were included in 

the statistical analyses reported below.
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2.3.3. MRI data statistical analyses—To assess the relationship between 

morphosyntactic performances (i.e., the top morphosyntax feature ‘subordinating 

conjunction’) and gray matter volume (i.e., atrophy) across participants, we conducted 

two analyses: (1) a targeted restrictive ROI analysis, focusing on multiple left hemisphere 

brain regions known to be involved in language processing previously associated with 

language (Hu et al., 2023), and (2) a whole-brain voxel-wise analysis to explore global 

brain behavior relationships. The ROI analysis included the anterior IFG, posterior IFG, 

middle frontal gyrus, the anterior and posterior temporal, and the angular gyrus, consistent 

with delineations from Fedorenko et al. (available at https://evlab.mit.edu/funcloc/; Hu et al., 

2023). We hypothesize, in line with prior neuroimaging research (Bulut, 2022, Leminen et 

al., 2019, and Zaccarella & Friederici, 2015), that the left posterior IFG (pars opercularis) 

is particularly implicated in morphosyntactic processing and the construction of syntactic 

hierarchies.

Given our study’s relatively small sample size, we adopted an ROI approach alongside 

whole brain analysis to enhance the detection of localized effects, thereby increasing our 

statistical power. While ROI analysis inherently decrease the multiple comparison burden, 

they can potentially limit explorations to predetermined areas. To counter this, we conducted 

comprehensive whole-brain voxel-wise analysis to ensure we captured all regions potentially 

related to morphosyntax. This dual approach also aimed to reduce the risk of inflated 

correlations often criticized in neuroimaging studies (Marek et al., 2022; Vul et al., 2009).

Input of the analysis were the smoothed gray matter images, with the ‘subordinating 

conjunction’ fractions as the main predictor. Participant demographics (age, sex, 

handedness) and total intracranial volume were included as covariates to account for non-

interest variance and brain size differences, respectively. The threshold of p < 0.001 and 

threshold-free cluster enhancement (TFCE) correction (Smith and Nichols, 2009; Salimi-

Khorshidi et a., 2011) were applied for multiple comparisons, and the family-wise error 

rate (FWE) was p < 0.05. The TFCE was used to correct multiple comparisons at the 

cluster level within the ROI analysis in which we used the left-brain regions described 

above as explicit mask. For the whole-brain analysis, we allowed an uncorrected threshold 

and resulting statistical maps are provided in the supplementary material as suggested in 

Poldrack et al. 2008. To mitigate multicollinearity in our brain-behavior correlation analysis 

and to focus on the most discriminative features, we applied methods utilized in recent 

nvfPPA studies (García et al., 2022).

3. Results

3.1. Classification results

A binary GBM classifier between nfvPPA and lvPPA using all nine morphosyntactic 

features was very robust in discriminating between PPA variants with an AUC of 0.95. 

Moreover, these nine morphosyntactic features revealed a high AUC of 0.82 for individuals 

with nfvPPA versus healthy controls, but a near chance AUC of 0.68 for individuals 

with lvPPA versus healthy controls. ROC curve classification between nfvPPA and lvPPA 

individuals was significantly higher for the morphosyntactic features than for standardized 

assessment (AUC of 0.95 versus AUC of 0.83; Chi-squared = 6.45, p = 0.011). Fig. 1 shows 
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receiver operating characteristic (ROC) curves with the mean area under the curve (AUC) 

and confusion matrices from the GBM classification models.

3.2. Feature importance

We extracted nine morphosyntactic features from the three categories: (1) sentence-related 

features such as clausal connectors (subordinating conjunctions and coordinators), (2) 

verbal-related features such as tense (present, past, be + progressive “-ing”), and (3) 

nominal-related features such as different types of pronouns (subjective/possessive). For 

the GBM algorithm, we calculated a feature’s “feature importance score” as the reduction 

in squared error between the node splitting on that feature and its children nodes (see 

Fig. 2). To describe differences in feature types between groups, we created weighted 

scores for each feature type. Firstly, the fraction score for each variable (e.g., pronouns) 

was multiplied by the “feature importance score”, of the variable derived from the GBM 

algorithm. Secondly, the resulting values, for the variables, were summed across sentence-

related, verb-related, or nominal-related features to derive each feature type weighted score. 

The weighted mean proportion (standard deviation) for each feature type for each group 

is displayed in Fig. 3. Feature importance analysis of the GBM model revealed the top 

morphosyntactic feature to be subordinating conjunction (e.g., like, while, if)] (see Figure 2 

for the nine features and their relative feature importance).

3.3. Association between the top morphosyntactic feature and brain atrophy

The ROI vowel-wise analysis targeted to the predefined language areas revealed the top 

morphosyntax feature – subordinating conjunction to be significantly correlated with gray 

matter loss in the left posterior IFG pars opercularis (x=−45, y=16, z=16), peak level 

pFWE = .032 FWE corrected and p<0.001 TFCE corrected (Fig. 4). These results align 

with our hypothesis and previous research suggesting the left posterior IFG’s involvement 

in morphosyntactic processing. The whole-brain voxel-wise analysis did not show any 

significant association between the subordinating conjunction and gray matter volume 

surviving at the cluster level, even when applying a liberal uncorrected threshold (p<0.05). 

The focused nature of the ROI analysis has therefore provided a sensitive means to observe 

the hypothesized neural correlates of syntactic function despite the limitations posed by our 

sample size. In Fig. 2 of Supplementary Material, we provide the scatterplots to illustrate the 

relationship between the average value within each ROI and the subordination conjunction. 

In Fig. 3 and Table 3 of supplementary Material, we also provide uncorrected threshold 

statistical maps resulting from whole-brain exploratory analyses.

4. Discussion

The current study aimed to establish differential signatures of nfvPPA/agrammatic 

(relative to lvPPA) using automated morphosyntactic measures of natural speech. Assorted 

morphosyntactic features classify between individuals with nfvPPA and lvPPA with high 

accuracy, surpassing the discriminatory power of standardized assessments. The most 

important feature for classification was the use of subordinating conjunctions, a feature that 

was significantly associated with atrophy of the left posterior IFG pars opercularis across 

participants. These findings indicate that multiple morphosyntactic categories are impaired 
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in agrammatic production and that subordination production may be a relevant target in 

differential diagnoses.

First, we showed that NLP automatically extracted morphosyntactic features from connected 

speech (elicited through the WAB “Picnic Scene” task) were robust in discriminating 

nfvPPA from lvPPA and healthy controls. Morphosyntactic selectivity is manifested in 

the distribution of three types of features, sentence-related (clausal connectors), verbal-

related (tenses), and nominal-related features (pronouns) in distinguishing individuals with 

two different variants. This result is consistent with those studies primarily showing 

morphosyntax impairments in nfvPPA/agrammatic individuals using constrained production 

tasks (Thompson et al., 2013; Wilson et al., 2014), and/or connected speech (Thompson 

et al., 1997; Thompson et al., 2013; Wilson et al., 2010b). The findings contribute to 

a paucity of studies directly contrasting the nfvPPA and lvPPA variants using connected 

speech features (Matias-Guiu et al., 2022; Mesulam et al., 2021; Thompson et al., 2013) 

and provide direct evidence of the ability of these fine-grained morphosyntactic features to 

discriminate among the two PPA variants.

Another important finding regards the morphosyntactic features and the standardized 

screening batteries designed to assess the clinical features of frontotemporal dementia 

(FTD). For instance, in the current study, individuals with nfvPPA and lvPPA differ in 

their performance on verbal and visual memory tests and confrontation naming ability on 

the standardized (bedside) battery. The observed pattern of neuropsychological findings is 

consistent with previous reports; for example, Kramer et al. (2003) showed that verbal and 

visual memory were most impaired in the AD group relative to the FTD group and could 

successfully differentiate the two groups (Hodges et al., 1999). Similarly, recent studies 

showed that nfvPPA and lvPPA individuals differ on the tests of Uniform Data Set (UDS) 

battery (Staffaroni et al., 2021; Weintraub et al., 2018); for example, digit span forward 

best discriminated lvPPA from other PPAs, whereas phonemic:semantic fluency ratio was 

excellent in classifying nfvPPA compared to lvPPA and svPPA. However, the utility of 

these screening tests for discriminating between the nfvPPA and lvPPA remains unknown. 

Although, we demonstrated overall good classification for the standardized assessment 

(combined neuropsychological and language tests), the classification between nfvPPA and 

lvPPA was significantly higher for the morphosyntactic features than for the standardized 

assessment, suggesting that these automated features are clinically useful in differentiating 

the two PPA variants and can improve differential diagnosis when coupled with standardized 

assessment. Notably, because of a discrepancy between sensitivity and specificity, this tool 

still fails to have optimal discrimination but could be particularly important to ascertain 

nfvPPA diagnoses. Future studies should select theoretically-guided lexical features based 

on the epicenter of differential atrophy in lvPPA.

Notably, among all the features, we identified clausal connectors (particularly subordination) 

as the most highly ranked feature of connected speech for nfvPPA diagnosis. The causal 

connectors are a measure of syntactic complexity (Huddleston, & Pullum, 2006) and 

generally refer to two or more clauses related syntactically. However, while coordination 
(and, or, but) uses conjunctions to connect structures that link two units of the same 

grammatical status, such as two clauses or two noun phrases (a compound sentence), 
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subordination (like, while, if) uses conjunctions to connect one dependent clause to an 

independent clause or to adverb/adjective/noun clauses, creating a complex sentence. Thus, 

the subordination finding as a top-ranked feature is in line with previous studies showing 

that individuals with nfvPPA produced fewer complex sentences and shorter utterances 

than individuals with lvPPA (e.g., Thompson et al., 2013; Wilson et al., 2010b). However, 

this finding is in contrast with Matias-Guiu et al. (2022), who found that such syntactic 

parameters are not specific to nfvPPA; this could be likely due to the differences in the 

way this feature is computed (the subordination index versus only subordination fractions), 

and/or differences between Spanish and English participants in the two studies. Follow-

up studies should explore Minimalist Grammars (MGs) and expectation-based (e-MGs) 

approaches to syntax (Chesi, 2021), and compute these syntactic constructions in alternate 

ways which can be used to predict case checking, thematic role assignment, and memory 

tenure during syntax processing in PPA.

Another interesting finding is our brain-behavior correlation, which shows a correlation 

between a top feature subordination production and the left posterior IFG Pars Opercularis 

atrophy. This suggests that atrophy of the left posterior IFG impacts morphosyntax, 

especially aspects of hierarchical syntactic processing across PPA participants. The neural 

correlates of morphosyntax deficit in connected speech in PPA have not been systematically 

studied, with only a paucity of studies correlating connected speech features with MRI 

brain volumes (Mesulam et al., 2021 and Wilson et al., 2010b), CSF p-tau levels (Cho 

et al., 2022), and/or PET and DTI metabolism and fractional anisotropy (Matias-Guiu et 

al., 2022). Our brain-behavior correlation finding is consistent with these PPA studies. For 

instance, a recent study by Matias-Guiu et al. (2022) demonstrated that the subordination 

index was correlated with the metabolism of the left parietal-temporal lobe regions and 

frontal regions (middle and inferior frontal gyri). It is also in line with recent reviews 

on neuroimaging studies in healthy individuals, which implicated the left posterior IFG 

region in morphosyntactic processing (Bulut, 2022; Leminen et al., 2019), as well as a 

few intraoperative cortical stimulation mapping studies during sentence production (Chang, 

Kurteff, and Wilson, 2018) and comprehension (Riva et al., 2022), and stroke lesion-

symptom mapping studies of sentence production (Gleichgerrcht et al., 2021). Finally, our 

brain-behavior evidence from PPA contributes to the current neurocognitive models, where 

Pars Opercularis in the posterior IFG (BA44) appears to be mainly involved in a syntactic 

hierarchy (Friederici, 2011; Matchin & Hickok, 2020; Zaccarella & Friederici, 2015, 2017).

It is also worth mentioning that this study has substantial clinical implications. Our findings 

can provide an additional tool for better discrimination between individuals with a clinical 

diagnosis of nfvPPA and lvPPA, where the clinical similarities between the two variants 

pose a considerable challenge for clinicians. Up to this point, no individual test can 

discriminate between nfvPPA and lvPPA (Harris et al., 2019). This study discovered subtle 

syndrome-specific morphosyntactic differences between variants and utilized them through a 

new automated testing tool to better discriminate between nfvPPA and lvPPA in conjunction 

with other clinical tests. Each of these tests may be useful in analyzing particular aspects 

of the variants, but differentiation between nfvPPA and lvPPA in clinical testing is still 

very challenging. Though we diagnose patients as discrete syndromes based on the original 

consensus criteria (Gorno-Tempini et al., 2011), overlap is common across neurobiological 
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and pathophysiological levels (those presenting with mixed PPA; i.e., a proposed fourth 

subtype of PPA; see Mesulam et al., 2021). Given the lack of a one-to-one match between 

symptoms and pathology, there have been ongoing efforts towards modifications to the 

diagnostic criteria to improve diagnostic classification. Our study, first, may contribute to 

the discrimination of these syndromes based on these novel speech markers, and second, 

it could be further reassessed in additional cohorts with typical and atypical pathology to 

enable further validation.

Though, the semi-structured interview is suggested to be more sensitive in highlighting 

abnormalities of morphological and syntactical structure than the picture description, our 

study and others found that picture description and semi-structured interview tasks can be 

employed interchangeably for the assessment of lexico-semantic and syntactic domains in 

subjects with clinical diagnoses of PPA (also see Ash et al., 2013); yet, future studies should 

test these language markers across the two tasks. Moreover, recent research showed that 

Correct Information Units (CIU) are sensitive markers for PPA variants, in that nfvPPA 

scored lower than lvPPA or svPPA (e.g., Faroqi-Shah et al., 2020); however, these findings 

were limited by a small number of participants and variations in the literature on how to 

segment utterances into communication units. Although our study did not focus on CIUs and 

a number of errors, but rather on theory-driven morphosyntax features, further work could 

consider the additional CIU analysis with bigger sample sizes. These and other tools that 

enable automatic identification of nfvPPA and lvPPA may optimize individualized treatment, 

prognosis, and monitoring of the patients.

Though there is a long-standing interest in morphosyntactic production in PPA, research 

has not led to conclusive morphosyntactic patterns for the systematic classification of PPA 

variants (e.g., Faroqi-Shah et al., 2020; Themistocleous et al., 2021). Previous studies on 

PPA demonstrated morphological deficits in both nfvPPA and lvPPA, though with different 

degrees, using constrained production tasks (Thompson et al., 2013; Wilson et al., 2014) 

and connected speech (Thompson et al., 1997; Thompson et al., 2013; Wilson et al., 

2010b). Moreover, while most PPA studies on connected speech compared nfvPPA and 

svPPA (Ash et al., 2006; Fraser et al., 2014; Meteyard & Patterson, 2009; Sajjadi et 

al., 2012), studies differentiating nfvPPA and lvPPA are limited and remain an enduring 

challenge (Matias-Guiu et al., 2022; Wilson et al., 2010b). Our findings show substantial 

sensitivity of morphosyntactic production in individuals with nfvPPA compared to lvPPA 

and healthy controls. Finally, the use of subordinating conjunctions, which was ranked as a 

top feature, was correlated with the integrity of crucial brain regions implicated in syntactic 

processing, the left inferior frontal region, particularly Pars Opercularis, that are typically 

compromised in nfvPPA compared to lvPPA. In the current study, we focused solely on 

syntax production during connected speech given that the majority of studies have focused 

on sentence comprehension, with fewer in the domain of sentence production. However, 

future studies that aim to test comprehension of naturalistic narratives that more closely 

resemble our natural dynamic environment will contribute to a functional subdivision of the 

PPA.
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Limitations

We also identify potential limitations in our study. While the sample size was relatively 

small for machine learning analysis, the number of participants in the lvPPA and nfvPPA 

groups are relatively large for these diagnoses, and the application of NLP methods on 

connected speech compared to previous literature and the prevalence of these syndromes. 

Another limitation of our study is that our sample is based on specialized clinic-based 

recruitment, which increases selection bias and results in relatively highly educated and 

predominantly white participants. This sample composition may limit generalizability to the 

general population. Future research is required to assess whether morphosyntactic features 

are equally sensitive to diagnosis group classification in more educationally and racially/

ethnically diverse samples as well as across those with typical and atypical pathology. 

Further research validating the metrics as sensitive to a given syndrome is the first necessary 

step before clinical implementation is possible. Recent tools, such as the TELL app (García 

et al., 2023), allow incorporating automated pipelines initially validated in scientific papers 

for ulterior use in clinical settings. For example, after its initial version (García et al., 2023), 

TELL has incorporated novel metrics capturing specific motor speech (García et al., 2021) 

and lexico-semantic (Ferrante et al., 2023) alterations. The present work paves the way 

for similar developments in the morphosyntactic domain. Connected speech studies often 

lack deep cognitive and biomarker phenotyping of participants in addition to the analysis 

of linguistic features. One of the strengths of our study is the analysis of brain regions in 

relation to connected speech features to validate observed behavioral differences against 

neuroimaging biomarker evidence of atrophy patterns.

5. Conclusion

Using connected speech, a highly ecologically valid approach to language assessment, and 

an automated natural language processing technique, we demonstrated the sensitivity of 

morphosyntactic production for the systematic classification of nfvPPA compared to lvPPA 

and healthy controls and provided evidence for its neural substrates in the left posterior 

IFG volume. Beyond that, we showed that the automated features are clinically useful 

in differentiating nfvPPA and lvPPA and have the potential to improve the differential 

diagnosis of PPA variants.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Fig. 1. 
Mean receiver operating characteristic (ROC) curves with the mean area under the curve 

(AUC) and confusion matrix from the GBM classification model of two PPA variants. 

The best mean AUC resulted from GBM for nfvPPA versus lvPPA using morphosyntactic 

features.
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Fig. 2. 
Feature importance results show subordinating conjunction as a top feature (a) and an 

example of subordinating conjunction with the POS tagger and the dependency tagger (b).

Lukic et al. Page 22

Cortex. Author manuscript; available in PMC 2024 July 14.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Fig. 3. 
The weighted mean proportion (standard deviation) for each feature type for each group.
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Fig. 4. 
Gray matter loss correlates with the top morphosyntactic feature – subordinating conjunction 
in the left posterior IFGs pars opercularis across all participants using left language network 

regions a priori defined in Hu et al., 2023.
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Table 1.

Demographic, neuropsychological, and speech-language data for individuals with nonfluent agrammatic and 

logopenic PPA variants (nfvPPA and lvPPA) and a group of healthy controls (HC). Group differences (p < .05; 

one-way ANOVA and Tukey HSD Test); Superscript letters indicate the group showing significant differences 

in pairwise TukeyHSD test: a: nfvPPA; b: lvPPA; c: HC. Sex, handedness, and ethnicity were compared with 

χ2 tests; MMSE: Mini-Mental State Examination (Folstein et al., 1975); CDR: Clinical Dementia Rating 

(Morris, 1993); CVLT-SF: California Verbal Learning Test-UCSF version (Delis et al., 1987); WAB: Western 

Aphasia Battery (Kertesz, 1982); VOSP: Visual Object and Space Perception (Warrington & James, 1991); 

ND = normative data used for the following tests: CVLT-SF (scores extracted from a normative sample in our 

center with mean age: 54.7 ± 14.1 and education: 16.7 ± 2.2), PPVT: Peabody Picture Vocabulary Test (Dunn 

& Dunn, 1981; scores extracted from a normative sample in our center with mean age: 67.7 ± 4.1 and 

education: 18.0 ± 1.2), the WAB Repetition Total (scores extracted from the WAB-Revised manual), Syntax 

Comprehension (Wilson et al., 2010a; scores extracted from a normative sample in our center), and BDAE 

Sentence Comprehension (Goodglass, Kaplan, & Weintraub, 2001).

nfvPPA lvPPA HC p-value

Demographics 

N 35 26 10

Age, mean (SD) 69.1 (8.1) 65.8 (8.6) 68.5 (6.2) 0.27

Education, mean (SD) 16.4 (2.4) 16.5 (2.4) 17.2 (1.4) 0.60

Sex, n (%) female 24 (68%) 15 (57%) 7 (70%) 0.63

Handedness, n (%) right 30 (86%) 19 (73%) 7 (70%) 0.52

Ethnicity, n (%) non-hispanics 32 (91%) 23 (88%) 10 (100%) 0.54

MMSE (max 30) 26.3 (2.6) 21.8 (5.0)ac 28.9 (2.2) <.001

CDR Total 0.4 (0.3) 0.5 (0.2) 0.0 (0.0)ab <.001

CDR Language 1.2 (0.6) 1.0 (0.5) 0.0 (0.0)ab <.001

Neuropsychological assessment 

Digit Span Forwards 5.0 (1.1) 4.3 (0.8)a 7.6 (1.2)ab <.001

Digit Span Backwards 3.7 (1.3) 3.2 (0.8) 5.4 (1.6)ab <.001

Modified Trials (total time in seconds) 71.4 (36.4)b 95.8 (31.7) 23.5 (13.4)ab <.001

Modified Trials (# of correct lines) 12.1 (3.7) 9.4 (4.9)ac 14.0 (0.0) <.003

CVLT-SF Trials 1-4 (40) 24.1 (6.2) 14.0 (7.4)a 29.8 (3.4)ND <.001

CVLT-SF 30 sec free recall (10) 6.7 (2.4) 3.4 (2.7)a 8.0 (1.1)ND <.001

CVLT-SF 10 min free recall (10) 6.4 (2.1) 2.8 (2.8)a 7.5 (1.3)ND <.001

Visuospatial: Benson figure copy (17) 14.9 (1.5) 14.9 (1.9) 15.3 (0.7) 0.76

Visual Memory: Benson figure recall (17) 10.5 (3.3) 6.3 (3.8)ac 10.9 (2.5) <.001

Visual Object and Space Perception (10) 8.7 (1.5) 7.8 (1.8)a,c 9.1 (1.3) <.001

Speech-language assessment 

Motor Speech rating (1-7) 2.1 (1.2) 0.0 (0.0)a --- <.001

Boston (object) naming test (%) 87.6 (12.0) 66.4 (24.8)a 98.0 (3.2)ab <.001

Phonemic (D-letter) fluency 6.4 (3.8) 8.7 (4.6) 15.3 (5.2)ab <.001

Semantic (animal) fluency 12.3 (6.3) 9.7 (5.3) 22.0 (4.3)ab <.001
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nfvPPA lvPPA HC p-value

Peabody Picture Vocabulary Test (16) 14.7 (1.2) 13.8 (2.0)a 15.6 (0.5)ND 0.03

WAB Repetition (100) 88.5 (11.5) 73.4 (11.1)a 99.0 (1.0)ND <.001

WAB Sequential Command (100) 70.9 (12.5) 66.0 (11.8) --- 0.12

Syntax Comprehension (%) 92.4 (8.6) 87.0 (11.6)a 98.6 (1.8)ND 0.04

Sentence Comprehension (BDAE 60-64 cards) (5) 4.0 (1.0) 3.8 (1.1) --- 0.33
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Table 2.

Parts of speech tags selected as features in the classification analysis.

Tag Meaning Example

SCONJ IN subordinating conjunction if, that, while, like

VERB VBZ verb, 3rd person singular present appears, looks

PRON NN pronoun noun, singular or mass something, someone

CCONJ CC conjunction, coordinating and, or, but

PRON PRP pronoun personal I, it, they, them

VERB VB verb, base form know, say

DET PRP$ determiner pronoun, possessive his, her, their

VERB VBG verb, gerund or present participle drinking, getting

VERB VBP verb, non-3rd person singular present see, drink
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