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ARTICLE

An NF-κB-microRNA regulatory network tunes
macrophage inflammatory responses
Mati Mann1, Arnav Mehta1,2, Jimmy L. Zhao3,4, Kevin Lee1, Georgi K. Marinov 1, Yvette Garcia-Flores1,

Li-Fan Lu5,6,7, Alexander Y. Rudensky8 & David Baltimore1

The innate inflammatory response must be tightly regulated to ensure effective immune

protection. NF-κB is a key mediator of the inflammatory response, and its dysregulation has

been associated with immune-related malignancies. Here, we describe a miRNA-based

regulatory network that enables precise NF-κB activity in mouse macrophages. Elevated miR-

155 expression potentiates NF-κB activity in miR-146a-deficient mice, leading to both an

overactive acute inflammatory response and chronic inflammation. Enforced miR-155

expression overrides miR-146a-mediated repression of NF-κB activation, thus emphasizing

the dominant function of miR-155 in promoting inflammation. Moreover, miR-155-deficient

macrophages exhibit a suboptimal inflammatory response when exposed to low levels of

inflammatory stimuli. Importantly, we demonstrate a temporal asymmetry between miR-155

and miR-146a expression during macrophage activation, which creates a combined positive

and negative feedback network controlling NF-κB activity. This miRNA-based regulatory

network enables a robust yet time-limited inflammatory response essential for functional

immunity.
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Inflammation is initiated by innate immune cells in response to
external stimuli such as pathogen-associated molecular pat-
terns or host-derived damage-associated molecular patterns.

These cells initiate signalling cascades that activate key tran-
scription factors and regulators such as NF-κB, AP1 and MAPKs,
all of which regulate inflammation-specific genes1,2. During an
acute inflammatory response, it is crucial that immune cells
respond quickly and efficiently to overcome the early expansion
of pathogens. It is also crucial for the inflammatory response to be
tightly regulated to avoid tissue damage and septic shock. Dys-
regulated innate inflammatory responses can also gradually
develop into chronic, low-grade inflammation by constant pro-
duction of cytokines and reactive oxygen species at low levels3.
With time, chronic inflammation may cause dysregulated adap-
tive immunity that precedes to autoimmunity, heart disease and
cancer (reviewed in refs. 3,4). To prevent this, many inflammatory
cascades have built-in feedback mechanisms to both positively
and negatively regulate inflammatory signalling, thus allowing a
pulsatile response with rapid induction of inflammation followed
by return of the response to pre-stimulation levels. One of the
best-described examples of such feedback regulation is in NF-κB
signalling5. Both positive and negative feedback mechanisms have
been described that ensure appropriate NF-κB activity during an
inflammatory response6–10.

It had become evident that microRNAs (miRNAs) are pivotal
regulators of many biological processes, including inflamma-
tion. We and others have shown that several miRNAs function
in both positive and negative regulation of the inflammatory
response, participating in various regulatory network motifs
(reviewed in ref. 11). Two particular miRNAs, miR-155 and
miR-146a, have been extensively characterized12–15. Both miR-
146a and miR-155 are transcriptionally regulated by NF-κB and
induced in macrophages following Toll-like receptor (TLR)
activation12,16. miR-146a functions as an anti-inflammatory
regulator in various immune cell types by repressing NF-κB and
AP1 signalling17, and has been shown to be involved in
the regulation of the acute inflammatory response and endo-
toxin tolerance18. We have shown that miR-146a-deficient
(miR-146a−/−) mice serve as a genetic model for low grade,
chronic inflammation because they have supraphysiological
levels of serum autoantibodies and interleukin (IL)-6 with age,
and develop myeloproliferative disorders and cancers13,17. miR-
155 expression, on the other hand, has been shown to be
essential for T-cell, B-cell and myeloid cell development and
function14,15,19–21. miR-155 was originally discovered as its
primary transcript, BIC, which was deregulated in B-cell
malignancies and leukaemia22. Similarly to what is observed in
miR-146a−/− mice, enforced expression of miR-155 in the bone
marrow compartment causes myeloproliferation and cancers23.
It was shown that miR-155 has an epistatic function over miR-
146a during T-cell antitumour responses and T-follicular
helper cell development24,25. However, the interrelationship of
miR-155 and miR-146a in the regulation of inflammatory
responses remains to be investigated.

Here, we aim to characterize the genetic and functional
interaction between miR-146a, miR-155 and NF-κB activity at
homeostasis, and during acute inflammatory stimuli in macro-
phages. We show that miR-155 and miR-146a coordinately reg-
ulate the macrophage inflammatory response by forming a
combined negative and positive regulatory loop that alters NF-κB
activity. This network architecture enables a defined inflamma-
tory response, beginning with robust induction of NF-κB sig-
nalling and a precisely timed shutdown dynamics. We also show
that dysregulated levels of miR-146a and miR-155 can cause a
suboptimal immune response following low doses of inflamma-
tory stimuli, or to the development of chronic inflammation,

which in turn may lead to the induction of myeloproliferation
and extramedullary haematopoiesis.

Results
miR-155 is required for miR-146a−/− pathology in aged mice.
To determine the miR-155 and miR-146a genetic hierarchy
at steady state, we followed wild-type (WT), miR-155−/−,
miR-146a−/−, and miR-155−/− miR-146a−/− (double knockout
(DKO)) mice for up to 12 months. As we and others previously
reported, miR-146a deficiency in aged mice leads to low-grade
chronic inflammation manifested by increased levels of serum IL-6,
elevated splenic TNF, IL-1β and IL-6 messenger RNA (mRNA)
expression, myeloid cell expansion, extramedullary haematopoiesis,
and enlarged spleens13,17 (Fig. 1a–f). These phenotypes do not
appear in young mice, and gradually progress with age beginning
with myeloid skewing at 4–5 months of age (Supplementary
Fig. 1A–D). Aged miR-155−/− mice were comparable to WT mice
with a slight but significant reduction in spleen CD11b+F4/80+

macrophages (Fig. 1e). Notably, aged DKO mice did not present
any of the phenotypes found in miR-146a−/− mice, and phe-
nocopied WT and miR-155−/− mice, thus implying that miR-155
expression is required for miR-146a pathology (Fig. 1a–f). Since the
first detectable haematopoietic phenotype in aging miR-146a−/−

mice is myeloid lineage cell excess, we examined if knocking out
miR-146a only in the myeloid lineage is sufficient to recapitulate the
total KO phenotype. For that, we established myeloid lineage-spe-
cific miR-146a-deficient mice by crossing miR-146a floxed (fl) mice
with LyzM-Cre mice. LyzM-Cre miR-146afl/fl mice breed normally
and present a normal immune cell panel comparable to WT
mice until 6 months of age (Supplementary Fig. 1A–D). Similar to
miR-146a−/− mice, deleting miR-146a just in the myeloid lineage
leads to a myeloid bias, an enlarged spleen and mild extramedullary
haematopoiesis with age (Fig. 1c–f). These results indicate that miR-
146a deficiency only in the myeloid lineage is sufficient for the
development of systemic chronic inflammation with age, albeit to a
lesser extent than the complete knockout. We therefore focused on
the myeloid lineage, and tried to decipher the interplay between
miR-155 and miR-146a in the regulation of acute and chronic
inflammation.

miR-155 is required for miR-146a−/− acute inflammatory
phenotypes. We next characterized the contribution of miR-155
and miR-146a to the acute innate inflammatory response. In an
effort to understand the initial contribution of miR-146a and
miR-155 to immune function, we used 8–10-week-old mice
(young mice), before the characteristic myeloproliferation or the
chronic inflammation phenotype is manifest in miR-146a−/−

mice. We infected cohorts of WT, miR-155−/−, miR-146a−/− and
DKO mice with a low, sublethal dose of an attenuated strain of
Listeria monocytogenes (strain 10,403 serotype 1, 10E5 c.f.u.). At
72 h after infection, the time of the maximal innate response and
before the onset of the adaptive response26, we collected the mice
and quantified the innate immune response by measuring IL-6
serum levels, CFUs of bacteria in the spleen and liver, and hae-
matopoietic cell populations using flow cytometry (fluorescence-
activated cell sorting (FACS)). While the numbers and percentage
of peripheral blood macrophages did not change significantly
between strains (Supplementary Fig. 2A), miR-146a−/− mice had
distinctly lower bacterial loads in both the spleen and liver, higher
serum IL-6 levels and lost more weight compared to WT mice
(Fig. 2a–c; Supplementary Fig. 2B). WT, miR-155−/− and DKO
mice displayed similar bacterial loads and weight indices. IL-6
serum levels in miR-155−/− mice were slightly but significantly
lower than in WT and DKO mice (Fig. 2c). Similar results were
also obtained using bone marrow-derived macrophages (BMMs)
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infected with Salmonella Typhimurium. Infection with live
Gram-negative bacteria had led to an elevated inflammatory
response in miR-146a−/− BMMs, manifested by elevated CD80
and MHC-II cell surface expression compared to WT, miR-155
−/− and DKO BMMs, which displayed similar response. No sig-
nificant difference in cell death or proliferation was observed
between strains (Supplementary Fig. 2C–F).

Endotoxin tolerance is a well-defined example of an intracel-
lular mechanism for inflammation resolution, where cells become
refractory to subsequent endotoxin challenge after an initial

challenge. Because miR-146a−/− mice demonstrated an elevated
acute inflammatory response to Listeria challenge and miR-146a
has been shown to participate in the regulation of endotoxin
tolerance18, we examined the interplay of miR-146a and miR-155
in this phenomenon. We assayed in vivo endotoxin tolerance by
three serial injections of 1 mg/kg lipopolysaccharide (LPS) every
24 h IP and monitored peripheral blood CD11b macrophage
activation as well as serum IL-6 levels. All strains demonstrated
endotoxin tolerance after the second and third injections with no
significant difference in cell proliferation, CD11b frequency or
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Fig. 1 miR-155 is required for myeloproliferation and extramedullary haematopoiesis in aged miR-146a−/− mice. a, b Twelve-month-old WT, miR-155−/−,
miR-146a−/− and double knock out (DKO) mice were analysed for serum IL-6 levels (a), spleen mRNA levels of IL-1b, IL-6 and TNF (b). c–f Twelve-month-
old WT, miR-155−/−, miR-146a−/−, DKO and LyzM-Cre miR-146afl/fl mice were analysed for spleen weight (c), relative macrophage percentage in peripheral
blood (d) and spleen (e), as well as extramedullary haematopoiesis by HSC quantification in spleen (f). N= 10 (a, b); N= 7 (c, d) per group, from at least
two independent experiments and are represented as mean± SEM. *p< 0.05, **p< 0.01 and ***p< 0.001 using one-way ANOVA
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cell death (Supplementary Fig. 3A–C). However, miR-146a−/−

mice presented a stronger and prolonged acute macrophage
response as measured by the activation markers CD80+ and MHC-
II, and by serum IL-6 levels in comparison to WT, miR-155−/− and
DKO mice. As with Listeria infection and the chronic
inflammatory phenotype, ablating miR-155 completely rescued

the miR-146a−/−-enhanced inflammatory response, leading to
WT levels of response in all measurements (Fig. 2d–f and
Supplementary Fig. 3A–C).

These results were also replicated in BMMs stimulated with
LPS for up to 48 h in vitro, showing elevated and prolonged IL-6
and IL-1β mRNA expression, and elevated CD80 and MHC-II
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cell surface expression in miR-146a−/− BMMs compared to WT,
miR-155−/−, and DKO mice. No significant differences in cell
death or proliferation were observed between strains (Supple-
mentary Fig. 3D–I).

These results indicate that miR-146a functions as a negative
regulator of miR-155 expression and the innate inflammatory
response, and that miR-155 expression is essential for the
inflammatory phenotype observed in miR-146a−/− mice, which
can lead to enhanced myeloid proliferation at later stages. This
interdependency between miR-146a and miR-155 implies that
they co-participate in the regulation of the inflammatory response
and that miR-155 plays a dominant positive role in this
regulation.

miR-155 overexpression enhances NF-κB activity. Both miR-
146a and miR-155 are regulated through the activity of the NF-κB
transcription factor12, and since miR-146a attenuates NF-κB
activity, we wished to determine whether miR-155 expression is
affected by miR-146a repression. For that, we quantified miR-155
expression dynamics in BMMs of WT and miR-146a−/− mice
following a single dose of LPS. As shown in Fig. 2g, in WT
BMMs, miR-155 reaches a peak level by 12–24 h and returns to
near basal levels by 48 h. In miR-146a−/− BMMs, miR-155 rises
more rapidly and declines more slowly; miR-155 stays at what
would be peak WT levels even after 48 h, a time when WT
macrophages have returned to baseline. These results indicate
that miR-146a is a major controller of miR-155 expression during
the inflammatory response, and that elevated and prolonged
expression of miR-155 correlates with an elevated inflammatory
response and chronic macrophage activation. We next quantified
miR-146a expression dynamics in WT and miR-155−/− BMMs.
As shown in Fig. 2h, in WT BMMs, miR-146a levels rise slower,
starting at 8 h post stimulation, peak at 24 h and maintains peak
levels until 48 h. In miR-155−/− BMMs, miR-146a expression
dynamics followed that of WT BMMs with a slight attenuation
starting 36 h after stimulation. These results imply that miR-146a
functions at later stages following inflammatory stimulation, and
that miR-155 expression may contribute to maintaining pro-
longed, high levels of miR-146a.

To further elucidate the genetic hierarchy between miR-155
and miR-146a in the regulation of NF-κB and the inflammatory
response, and to understand whether miR-155 expression is
sufficient to drive the inflammatory response observed in miR-
146a deficient mice, we examined the effects of enforced
expression of miR-155, miR-146a, or both miR-155 and miR-
146a (dmiR) on myeloid proliferation and the inflammatory
response. Lethally irradiated mice were reconstituted with WT
bone marrow cells transduced with control (MG), miR-155, miR-
146a or dmiR expressing vectors. Similar to miR-146a deficiency,
we have shown that enforced miR-155 expression induces
myeloproliferative disorders, as well as extramedullary haemato-
poiesis23. As expected, mice reconstituted with miR-155-expres-
sing bone marrow displayed CD11b+ myeloproliferation and
enlarged spleens by 4 months post reconstitution (Fig. 3a, b).
miR-146a overexpression did not lead to altered spleen size or
mature immune cell composition in the spleen or peripheral
blood. Interestingly, overexpression of both miR-146a and miR-
155 led to enlarged spleens and myeloproliferation similar to
miR-155 expressing mice (Fig. 3a, b). These results indicate that
miR-155 expression plays a dominant role over miR-146a at
steady state, leading to a myeloid bias.

We next determined whether miR-155 overexpression also
leads to a prolonged inflammatory response and NF-κB
activation as in miR-146a−/− mice. We used bone marrow
from an NF-κB reporter mouse strain, which expresses GFP when

NF-κB-mediated transcription is activated. This mouse model
enables monitoring of the dynamics of NF-κB activity in vivo
(NF-κB-GFP, ref. 27). NF-κB-GFP donor bone marrow cells were
transduced with virus expressing miR-146a, miR-155, dmiR or
control, and reconstituted into lethally irradiated WT mice.
Peripheral blood from mice 3 months after reconstitution showed
elevated NF-κB activity in CD11b+ macrophages expressing miR-
155 and dmiR, and slightly lower NF-κB activity in miR-146a
expressing mice compared to WT (Fig. 3c). We next assayed the
innate acute inflammatory response and endotoxin tolerance by
three serial injections of LPS every 24 h and monitored peripheral
blood CD11b macrophage activation as well as serum IL-6 levels.
miR-146a overexpression led to attenuated NF-κB activity in
CD11b+ macrophages and serum IL-6 levels, while miR-155
overexpression led to increased and longer-lasting NF-κB activity
and IL-6 serum levels compared to control mice. Similarly,
overexpression of both miR-146a and miR-155 resulted in
increased NF-κB activity and IL-6 serum levels, comparable to
miR-155 overexpression (Fig. 3d, e).

Together, we show that miR-155 functions as a positive
regulator, while miR-146a functions as a negative regulator of
NF-κB activity and the inflammatory response. Our results
indicate that miR-155 expression levels are regulated by miR-
146a, and that elevated miR-155 levels can overcome miR-146a-
mediated repression of NF-κB activity, suggesting that miR-155
acts downstream of miR-146a in the NF-κB signalling cascade.

SHIP1 and SOCS1 repression by miR-155 regulates inflam-
mation. As negative regulators with a short mRNA-binding
sequence, miRNAs have the potential to regulate numerous genes.
We next set out to decipher miR-155 and miR-146a’s role in the
regulation of the macrophage inflammatory response, and to
characterize their targets in this cell type. For that, we utilized
RNA-sequencing on samples derived from BMMs of WT,
miR-146a−/−, miR-155−/− and dKO mice at steady state and 8 h
after LPS stimulation. While we observed that both at steady state
and after LPS stimulation, the expression profiles of all strains
were broadly highly similar (Supplementary Fig. 4A, B), we also
observed that miR-146a−/− BMMs were a clear outlier. Gene
ontology analysis of genes upregulated in these cells revealed an
enrichment in genes involved in cytokine-related activity, pha-
gocytosis, cytokine production and the innate immune response
when compared to WT, miR-155−/− and dKO BMMs (Fig. 4b,
Supplementary Data 1). miR-155−/− macrophages were similar to
WT macrophages, but still presented a differential gene response
to LPS, mainly with genes related to cell motility and cell
migration (Supplementary Data 1).

We next analysed the expression of all known miR-155 and
miR-146a targets (based on TargetScan28). Irak1 and Traf6
were among the genes that were significantly upregulated in
miR-146a−/− vs. WT BMMs (Supplementary Table 1). miR-146a
is known to directly repress expression of Traf6 and Irak1, two
crucial adaptors for TLR-mediated NF-κB signalling1. Indeed,
we found that both Traf6 and Irak1 mRNA levels are higher in
miR-146a−/− and DKO mice compared to WT BMMs using
qPCR (Fig. 4c). Interestingly, although Traf6 and Irak1 levels are
high in DKO mice, these mice do not show NF-κB elevation or
myeloid activation, emphasizing the critical role of miR-155 in
producing these effects.

Analyzing miR-155-predicted targets, we found upregulation of
several genes in miR-155−/− cells, including Pu.1, Bach1, Ets1, Il21,
Socs1 and Ship1 (Supplementary Table 1). After verification of
differential expression using qPCR, we focused on Bach1, Ship1 and
Socs1 as the most robustly and significantly differentially expressed
genes in our system (Fig. 4c). In macrophages, it has been
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previously shown that miR-155 directly regulates the expression of
Ship1 and Socs1, two negative regulators of the macrophage
inflammatory response. Both genes were reported to regulate NF-
κB activity as well as endotoxin tolerance29,30. Indeed, both Ship1
and Socs1 mRNA and protein levels are higher in miR-155−/− and
DKO BMMs after LPS stimulation (Fig. 4c, d). Interestingly, SHIP1
and SOCS1 protein levels were slightly but significantly lower in
miR-146a−/− BMMs compared to WT, in line with the higher

expression of miR-155 in these cells (Supplementary Fig. 5A;
Fig. 2g). To examine whether Ship1 or Socs1 play a role in miR-155
regulation of NF-κB activity in vivo, we knocked down either Ship1
or Socs1 in WT, miR-155−/−, miR-146a−/− and DKO bone marrow
cells using short hairpin RNAs (shRNAs). These cells were then
used to reconstitute the immune system of lethally irradiated
C57BL/6 WT mice. The knockdown levels of both Ship1 and Socs1
were about 50%, similar to the levels of repression achieved in WT
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mice compared to miR-155−/− and DKO BMMS (Supplementary
Fig. 5B and Fig. 4c, d).

Three months after reconstitution, WT mice transduced with
Socs1 shRNA had elevated numbers of CD45+ GFP+ cells
compared to control mice, indicating a slight proliferative
advantage to haematopoietic cells with downregulated levels
of Socs1. Indeed, using proliferation markers, we showed

that CD45+, as well as CD11b+ cells from WT mice transduced
with Socs1 shRNA are more proliferative than cells from
control mice (Fig. 4e, f; Supplementary Fig. 5C). However, Socs1
downregulation did not lead to a myeloid bias since all cell types
proliferated to a similar extent. Downregulation of Ship1, on the
other hand, led to a slight decrease in engraftment compared to
control mice, leading to lower percentage of Ship1 shRNA cells
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(Fig. 4e). However, Ship1 downregulation led to a significant
myeloid bias in all backgrounds, as shown by an increase
in numbers and percentage of CD11b+ similar to control
miR-146a−/− reconstitution (Fig. 4g, h). Importantly, attenuating
Ship1 expression in DKO leads to an even higher myeloid
bias compared to miR-155−/− or WT donors, which resembled
miR-146a−/− Ship1 attenuation (Fig. 4h). These results imply that
Ship1 repression is key to the miR-146a−/− myeloid phenotype,
while Socs1 repression is important for the proliferative
phenotype.

To determine the roles of Ship1 and Socs1 regulation by miR-
155 in the acute inflammatory response in vivo, we serially
injected 1 mg/kg LPS every 24 h for 3 days and monitored
peripheral blood CD11b+ macrophage activation 4 h after each
injection. Mice reconstituted with the control or Socs1 shRNA
vectors showed similar responses to the miRNA KO mice, where
miR-146a−/− mice displayed significantly more CD11b+ cells as
well as higher MHC-II and CD80 activation markers compared to
WT control mice (Figs. 1 and 5a, c, e). On the other hand, when
mice were reconstituted with the Ship1 shRNA vector, both miR-
146a−/− and DKO presented significantly higher activation
markers compared to miR-155−/− and WT control mice, showing
that Ship1 is a key target of miR-155 during the inflammatory
response (Fig. 5b, d, f). SHIP1 is an inositol polyphosphate-5-

phosphatase that hydrolyses the 5-phosphate of phosphatidyli-
nositol-3,4,5-trisphosphate (PtdIns(3,4,5)P3) to produce PtdIns
(3,4)P231. SHIP1 was described as a negative regulator of the
inflammatory response by negatively regulating the PI3K-AKT
(phosphoinositide 3-kinase) as well as other inflammatory
pathways29,32–34. PI3K-AKT signalling has been extensively
described as both a positive and negative regulator of NF-κB
activity depending on the cell type and environmental condi-
tions35–39. To further understand SHIP1 regulation of PI3K-AKT
signalling and NF-κB activity in our system, we measured the
protein levels of SHIP1, pAKT, pIKKα/β and phosphorylated p65.
We found that miR-146a−/− BMMs, which have lower levels of
SHIP1, expressed higher levels of pAKT as well as pIKKα/β and
phosphorylated p65 compared to WT BMMs. By contrast, miR-
155−/− and DKO BMMs express higher SHIP1 levels and have a
mild reduction in pAKT, pIKKα/β and phosphorylated p65 when
stimulated with LPS (Fig. 4d). Of note, TLR4 protein levels
remained similar in all strains after LPS stimulation, suggesting
that the regulation of NF-κB activity is downstream of the
receptor. Together, these results imply that in our experimental
setting, both Socs1 and Ship1 are primary targets of miR-155. We
show that SOCS1 functions as a proliferation repressor in all
haematopoietic cells examined, and that SHIP1 functions as a
repressor of the inflammatory response and NF-κB activity. Ship1
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downregulation by miR-155 enhances NF-κB activity, at least in
part, by alleviating the repression on PI3K-AKT signalling.
Attenuated PI3K-AKT signalling leads to reduced pIKKα/β
phosphorylation and reduced NF-κB activity following LPS
stimulation.

miR-155 and miR-146a combined regulation of NF-κB activ-
ity. We showed that miR-146a−/− mice and BMMs display a
stronger and longer inflammatory response to LPS, indicating the
crucial role of miR-146a in regulating the duration and amplitude
of this response. In addition, we observed minor changes in the
inflammatory response of miR-155-deficient mice and BMMs
when stimulated with LPS (Fig. 2), which indicate that this
positive regulator plays a minor role in the strength of the
inflammatory response in saturated stimulation conditions. To
better understand miR-155 function in the regulation of the
macrophage acute inflammatory response, we stimulated BMMs
with low levels of LPS (10 ng/mL) or Pam3csk4 (5 ng/mL), which
are closer to endogenous levels during sepsis40. We then com-
pared expression of TNF, IL-6 and IL-1β using qPCR. We found
that with low levels of inflammatory stimuli, miR-155-deficient
BMMs express lower levels of inflammatory cytokines compared

to WT controls (Fig. 6a, b). These results were also verified using
FACS quantifying intra-cellular levels of TNF and phosphory-
lated p65 (Fig. 6c). Taken together, these results now show that
miR-155 acts as an inflammatory amplifier in suboptimal stimuli,
enabling a robust innate response in a wide range of concentra-
tions and stimulations.

We next examined the temporal expression of miR-146a and
miR-155 during an inflammatory response using BMMs from
WT mice. We found that the dynamics of miR-155 and miR-146a
expression correlated with the acute response after exposure to
high levels of LPS or Pam3CSK4, whereby miR-155 levels rose
rapidly, reaching peak levels at 12 h and gradually decreased from
24 to 48 h post stimulation. miR-146a levels, on the other hand,
started to accumulate only after 8 h, reaching peak levels around
24 h and remained highly expressed for up to 72 h post
stimulation. In the time frame of 2–24 h post stimulation, we
observed most of the transcription of the inflammatory cytokines
IL-1β and IL-6, representing the macrophage inflammatory
response. By 40 h, IL-1β and IL-6 levels had fallen to near basal
levels (Fig. 7a, b). Similar relative kinetics, though with different
time scales, were observed with different kinds of inflammatory
stimuli, such as poly I:C and TNF (Supplementary Fig. 6A, B).
This orchestrated dynamics in the temporal expression of miR-
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146a and miR-155 with NF-κB activity during TLR activation
present a defined time frame for optimal macrophage inflamma-
tory response and its resolution.

To further establish the role of miR-146a in the resolution of
the inflammatory response at late stages, miR-146a was knocked
down in WT BMMs 2 h post LPS stimulation. miR-146a
knockdown BMMs expressed IL-1β and IL-6 mRNA comparably
to control for up to 8 h post stimulation. Starting 12 h post
stimulation, both IL-1β and IL-6 mRNA levels continued to
increase, and remained higher than control for up to 48 h post
stimulation, similarly to the behaviour of miR-146a−/− BMMs
(Fig. 7c, d).

Together, these results indicate that miR-155 and miR-146a
form a combined positive and negative regulatory loop control-
ling NF-κB activity, where inflammatory stimuli activate NF-κB,
which rapidly activates miR-155 expression. miR-155 then acts as
an amplifier and positive regulator to ensure robust and
strong NF-κB activity. With time, miR-146a levels rise to
negatively regulate NF-κB activity, leading to attenuation of
miR-155 expression and resolution of the inflammatory response
(Fig. 7e).

Discussion
The innate immune response functions as the first line of defense
against pathogens. In many cases, pathogens are cleared solely by
the innate system without the requirement of the adaptive
response. In order to do so, it is crucial that the inflammatory
response be efficient and fast, responding optimally to various
pathogens in a wide range of concentrations. At the same time,
the inflammatory response has to be self-limited to ensure
resolution.

In this work, we characterized a miRNA-based regulatory
network that enables tight regulation of an ‘on’ and ‘off’ switch
of NF-κB activity and the macrophage inflammatory response.
We show that an inflammatory stimulus leads to the activation
of NF-κB, which in turn activates miR-155 transcription. The
rapidly and highly transcribed miR-155 represses the expres-
sion of SHIP1 and SOCS1 (among other potential targets),
amplifying NF-κB activity and enabling a proliferative state for
robust and strong macrophage activation. As the inflammatory
response develops, miR-146a levels accumulate in a delayed
manner leading to the repression of IRAK1 and TRAF6, thus
attenuating the signals to NF-κB activation. NF-κB activity is
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therefore reduced, leading to abrogation of the transcription of
inflammatory genes as well as miR-155. miR-155 levels
diminish within 24 h after stimulation, while miR-146a levels
remain high and stable for the entire duration of the response.
The rapid attenuation of miR-155 levels enables upregulation of
SHIP1 and SOCS1 expression, enforcing the repression of NF-
κB activity and the inflammatory response, ensuring resolution
(Fig. 7e).

Previous investigations using mathematical modelling and
bacterial experiments have described a similar regulatory network
architecture, where a rapid positive regulator precedes a delayed
negative feedback. In these systems, this regulatory network was
shown to create a pulse response with a defined ‘on’ and ‘off’
characteristic41,42. We show that in our case, two miRNAs par-
ticipate in a combined positive and negative regulatory loop to
enable a precise, pulse-like acute inflammatory response, which
shortens the time to maximum inflammation levels, as well as the
time to resolution.

As the negative regulator, miR-146a contributes to the reg-
ulation that determines the amplitude and duration of the
response. miR-155 functions as an amplifier, providing a strong
initiation of a response even in the face of noise, different kinds of
stimuli and various concentrations, as well as a general amplifi-
cation in suboptimal stimulus conditions.

Our work also emphasizes the importance of the interaction of
the two miRNAs because of miR-146a-mediated regulation of
miR-155 expression, and the dominant role miR-155 expression
has on the development of chronic inflammation. We show that
when miR-146a is ablated, miR-155 levels are elevated during the
inflammatory response as well as in steady-state conditions
(Supplementary Fig. 6C). miR-155, in turn, represses the
expression of SHIP1 and SOCS1 and prevents their repression of
the inflammatory response. This constant expression of miR-155
contributes, with time, to the low-grade inflammatory status
found in miR-146a−/− mice.

It has been shown that miR-146a deficiency can contribute to
several human diseases, such as 5q-syndrome, and various types
of cancer such as prostate, breast and ovarian43–46. Elevated miR-
155 expression was also shown to correlate with multiple kinds of
cancers, as well as autoimmune and diseases neurologic disorders
such as Alzheimer’s disease47–51. Our work now shows that these
two similar phenotypes appear to be different sides of the same
coin.

We and others have shown that in miR-146a−/− mice, several
cell types contribute to the myeloproliferative and cancer phe-
notype. Among them Th1, T regulatory and myeloid cells have
been described13,52,53. We show here that deleting miR-146a in
the myeloid lineage alone can recapitulate these phenotypes
found in total KO mice. This implies that the myeloid lineage
plays an essential role in the initiation and progression of the
pathologies found in the total KO mouse model.

It is known that expression of both miR-155 and miR-146a is
dependent on NF-κB activity12,54, but we now show that there is a
temporal separation in their expression dynamics, which enables
this specific regulatory architecture. We show that during an
inflammatory response, although the entire response is mediated
by NF-κB, individual induced genes may have very different
kinetics of response. The exact mechanism of temporal control
for these miRNA genes remains to be fully determined, but could
involve combinatorial binding of several transcription factors in
addition to NF-κB, as well as different half-life kinetics and sta-
bility, chromatin modifications and nuclear architecture around
these two miRNAs55–57. Further studies are required to better
understand the mechanisms regulating this temporal expression
that ensures a tight regulation on NF-κB activity in different cell
types.

Using a short seed recognition sequence, miRNAs are capable
of negatively regulating the expression of several genes simulta-
neously, enabling regulation of several components within a
signalling pathway in the same cell. miRNAs can also regulate
different genes and pathways in different cell types, depending on
the transcriptome milieu. This regulatory network of NF-κB,
miR-155 and miR-146a can therefore be utilized in different cell
types and different conditions, potentially resulting in different
consequences. Indeed, several targets for both miR-155 and miR-
146a have been described, depending on the cell type and
condition23,24,44,51,53,58.

In summary, our data suggest that miR-155 and miR-146a
form a unique regulatory network motif to ensure a precise
macrophage inflammatory response via regulation of NF-κB
activity. It also sheds light on the molecular hierarchy and
interaction of these two miRNAs during an inflammatory
response, where miR-146a is essential for downregulating miR-
155, preventing the deleterious effects of its constant elevated
expression.

Methods
Mice. The California Institute of Technology Institutional Animal Care and
Use Committee approved all experiments. C57BL/6 WT, LyzM-Cre miR-146afl/fl,
miR-146a−/−, miR-155−/− and DKO as well as NF-κB reporter mice were bred and
housed in the Caltech Office of Laboratory Animal Resources facility in specific
pathogen-free conditions. Bone marrow reconstitution experiments were per-
formed as described below and in ref. 23 with the mentioned vectors. Recipient
mice were monitored for health, and peripheral blood was analysed for mature
blood cell types and activation markers each month or after 4 h after each LPS
injection up till the experimental end point at either 16 or 36 weeks post recon-
stitution. At each end point, immune organs were collected for further analysis as
described. The number of mice for each experimental cohort and number of
experimental repeats are described in the figure legends.

Listeria monocytogenes infections. Listeria monocytogenes (strain 10,403 serotype
1) were grown in brain heart infusion media. A total load of 10E5 c.f.u. were
injected to each mouse using retro-orbital injections. Mice were housed for 3 days,
then culled using CO2. Liver, blood and spleen tissues were collected for bacterial
load quantification, haematopoietic cell frequencies and IL-6 serum levels.

S. Typhimurium infection. Bone marrow cells were cultured for 6 days in BMM
media and differentiated to BMMs. On day 6, BMMs were infected with and S.
Typhimurium at a 10:1 ratio. One hour post S. Typhimurium infection, BMMs
were washed and media was replaced to BMM media with gentamicin (100 µg/mL)
to kill extracellular bacteria. BMMs were collected 24 h post infection and subjected
to FACS analysis.

DNA constructs. For in vivo miR-155, miR-146a overexpression and SHIP1 as
well as SOCS1 shRNA experiments, the mature miR-155 and miR-146a, or SHIP1
and SOCS1 shRNA sequence was synthesized in the miRNA-155 loop-and-arms
format59 and cloned into the MSCV-eGFP (MG) or MSCV-IRES- Th1.1 vectors.
dmiR vector was constructed by inserting miR-146a and miR-155 in the pre-miR-
17-92 cluster sequence. All miRNAs and shRNA sequences are depicted in Sup-
plementary Table 2.

Bone marrow reconstitution. WT C57BL/6 or NF-κB reporter mice were treated
with 5-fluorouracil (10 µg; Sigma) for 5 days to enrich for haematopoietic stem and
progenitor cells (HSPCs) in the bone marrow. After 5 days, bone marrow cells were
collected, red blood cells (RBCs) were lysed with RBC lysis buffer (BioLegend), and
cells were plated in HSPC media, which was comprised of complete RPMI with
mouse SCF (50 ng/mL), IL-3 (20 ng/mL) and IL-6 (50 ng/mL). Cells were then
cultured in 24-well plates for 24 h and spin-infected with PCL-ecotropic pseudo-
typed gamma-retrovirus expressing the construct of interest, which was either a
miRNA or shRNA, as described in main text. Spin infections were performed by
removing supernatant carefully from cell culture plates and adding virus with 8 µg/
mL polybrene (Santa Cruz Biotechnology). Plates were then placed in a centrifuge
for 2 h at 30 °C and 2500 r.p.m. Immediately following infection, virus supernatant
was removed and replaced with HSPC media. Twenty-four hours later, a second
identical spin infection was performed. After another 24 h, recipient mice were
lethally irradiated (1000 rads from Cs137 source) and 250,000 to a million virus-
infected HSPCs were retro-orbitally delivered to reconstitute the immune system.
Recipients were maintained on Septra and in autoclaved cages for at least 1 month
post reconstitution.
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Cell culture. Cells were cultured in a sterile incubator that was maintained at 37 °C
and 5% CO2. Primary cells were cultured in complete RPMI supplemented with
10% FBS, 100 U/mL penicillin, 100 U/mL streptomycin, 50 µM β-mercaptoethanol
and appropriate growth cytokines as needed for the experiment (see below). 293T
(ATCC, CRL-3216) cells were cultured in DMEM supplemented with 10% fetal
bovine serum, 100 U/mL penicillin and 100 U/mL streptomycin. L929-conditioned
media, containing macrophage colony-stimulating factor (M-CSF) essential to
BMM maturation, prepared by plating 1.5e6 L929 cells (ATCC, CCL-1) in a 150-
cm2

flask in 125 mL D10 (DMEM, 10% FBS and 1% Pen/Strep), was grown for
7 days at 37 °C and 5% CO2.

BMMs culturing. Mice were culled using CO2. Femur and tibia bones were col-
lected and bone marrow flushed with DMEM. Collected cells were pelleted and
resuspended in 10 mL of 1× RBC lysis buffer for 5 min. Cells were resuspended in
20 mL of fresh DMEM. 2e6 bone-marrow cells were plated in a 15-cm tissue
culture (TC) dish in 20 mL of BMM media (DMEM, 20% FBS, 30% L929 condition
media and 1% Pen/Strep), and grown at 5% CO2 and 37 °C. BMM media was
completely replaced on day 3. On day 6, BMMs were replated at a concentration of
1e6 cells per well in a six-well plate and incubated for 16 h. Stimulations and
treatments began at day 7.

miRNA inhibitors transfection. Bone marrow cells were cultured for 6 days in
BMM media and differentiated to BMMs. On day 6, cells were LPS-stimulated
(100 ng/mL). Two hours after stimulation, cells were transfected with either miR-
146a inhibitor (mirVana miRNA MH10722) or negative control (mirVana miRNA
Inhibitor, Negative Control #1) using Lipofectamine RNAiMAX Transfection
Reagent (Invitrogen cat: 13778030) according to manufacturer instructions. Cells
were then collected at different time points for RNA extraction and quantitative
PCR (qPCR) analysis.

Virus production. To generate retrovirus for bone marrow cells infection, 10
million HEK293T (ATCC CRL-3216) cells were first plated in a 15 cm plate.
Twenty-four hours later, cells were transfected with both the pCL-Eco vector and
either the pMG vector or the relevant variant described above for gene delivery. For
transfection, we used BioT (Bioland Scientific cat: B01-01) as per the manu-
facturer’s protocol. Thirty-six hours after transfection, virus was collected, filtered
through a 45 µM syringe filter and used for infection of HSPCs.

Expression profiling and qPCR. We performed real-time qPCR (RT-qPCR) with a
7300 Real-Time PCR machine (Applied Biosystems). Taqman qPCR was per-
formed for miR-155 (002571), miR-146a (478399 miR) and snoRNA-202 (001232
control) detection as per manufacturer’s instructions using Taqman MicroRNA
Assays (Life Technologies). SYBR Green-based RT-qPCR was performed for
mRNA of specific mouse genes. Primers used for qPCR are listed in Supplementary
Table 2. The quantification of miR-146a and miR-155 targets following com-
plementary DNA (cDNA) synthesis was done using qScript cDNA SuperMix
(Quanta cat: 95048-100) and detection with PerfeCTa qPCR Fastmix with ROX
(Quanta cat: 95119-012) as per manufacturer’s instructions.

Sample preparation for RNA sequencing. BMMs from WT, miR-155−/−, miR-
146a−/− and DKO were cultured and treated as described above. Cells were lysed
using an RNeasy kit (cat no: 74104 Qiagen) with DNAseI digestion (cat no: 79254
Qiagen) as per manufacturer’s protocol. RNA-seq libraries were prepared from
polyA+-selected RNA using the TruSeq RNA Sample Preparation kit (Illumina RS-
122-2001) at the Millard and Muriel Jacobs Genetics and Genomics Laboratory at
Caltech. Libraries were sequenced on the Illumina HiSeq 2500 generating single-
end 50 bp reads. The refSeq annotation for the mm9 version of the mouse genome
was used to create a transcriptome Bowtie (version 0.12.7)60 index. Gene expres-
sion levels were estimated using eXpress (version 1.5.0; ref. 61), and DESeq62 was
used for evaluating differential expression. The raw sequencing reads have been
made available under Gene Expression Omnibus (GEO) accession number
GSE88791.

Western blots. BMM samples were prepared as described for RNA preparation.
Cell extracts were collected using RIPA lysis buffer (Sigma cat: R0278-50ML), and
were subjected to gel electrophoresis and transfer onto a PVDF membrane. Pro-
teins were detected using the following antibodies: anti-Phospho-Stat3 (#9131 Cell
Signaling 1:250), anti-Ship1 (#2728 Cell Signaling 1:200), anti-Phospho-NF-κB p65
(#3033 Cell Signaling 1:300), anti-rabbit IgG HRP (#7074 Cell Signaling 1:10,000),
anti-Phospho-AKT (#4060 Cell Signaling 1:250), anti-Phospho-IKKα/IKKβ (#2078
Cell Signaling 1:300), anti-Socs-1 (sc-9021 1:100) and anti-TLR4 (sc-29072 Santa
Cruz 1:250). Uncropped images of western blots shown in Fig. 4d are depicted in
Supplementary Fig. 8.

Flow cytometry. Cells were stained with fluorophore-conjugated antibodies (all
from BioLegend unless indicated) in various combinations to characterize relevant
haematopoietic cell populations. Intracellular staining was performed by first
performing surface staining of cells, followed by fixation and permeabilization

(Cytofix/Cytoperm kit; BD Biosciences) according to manufacturer instructions,
and subsequent staining with either Ki67 (BioLegend) and Hoescht33342 (Life
Technologies) for cell-cycling analysis, or p-p65 and TNF antibodies (BioLegend)
for inflammatory response. Samples were analysed on a MACSQuant10 Flow
Cytometry machine (Miltenyi). Gating and analysis was performed using FlowJo
software. Gating strategies are depicted in Supplementary Fig. 7.

Statistical tests. All statistical analysis was done in Graphpad Prism software
using an unpaired Student’s t test, one-way or two-way analysis of variance. Data
was reported as mean± SEM. Significant measurements were marked as follows:
*p< 0.05, **p< 0.01, ***p< 0.001 or NS for not significant.

Data availability. The authors declare that the data supporting the findings of this
study are available within the article and its Supplementary Information files, or are
available upon reasonable requests to the authors. The raw sequencing data of WT,
miR-146−/−, miR-155−/− and DKO BMMs before and 8 h after LPS stimulation
have been deposited in GEO database under the accession number GSE88791.
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