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Abstract 
Investigating the Impact of Simvastatin on Human Gut Bacteria 

Veronica Escalante 

Drugs intended to target mammalian cells can have broad off-target effects on the human 

gut microbiota with potential downstream consequences for drug efficacy and side effect 

profiles. Yet, despite a rich literature on antibiotic resistance, we still know very little about 

the mechanisms through which commensal bacteria evade non-antibiotic drugs. Here, 

we focus on statins, one of the most prescribed drug types in the world and an essential 

tool in the prevention and treatment of high circulating cholesterol levels. Prior work in 

humans, mice, and cell culture support an off-target effect of statins on human gut 

bacteria; however, the genetic determinants of statin sensitivity remain unknown. First, 

we confirmed that simvastatin inhibits the growth of diverse human gut bacterial strains 

grown in communities and in pure cultures. Drug sensitivity varied between phyla and 

was dose dependent. We selected two representative simvastatin-sensitive species for 

more in-depth analysis: Eggerthella lenta (phylum: Actinobacteriota) and Bacteroides 

thetaiotaomicron (phylum: Bacteroidota). Transcriptomics revealed that both bacterial 

species upregulate genes in response to simvastatin that alter the cell membrane, 

including fatty acid biogenesis (E. lenta) and drug efflux systems (B. thetaiotaomicron). 

Transposon mutagenesis identified a key efflux system in B. thetaiotaomicron that 

enables growth in the presence of simvastatin. Taken together, these results emphasize 

the importance of the bacterial cell membrane in countering the off-target effects of host-

targeted drugs. Continued mechanistic dissection of the various mechanisms through 

which the human gut microbiota evades drugs will be essential to understand and predict 
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the effects of drug administration in human cohorts and the potential downstream 

consequences for health and disease.  
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Chapter 1: Introduction 

1.1 Background 

The intricate relationship between pharmaceuticals and the human gut microbiota 

has come to light through comprehensive population-level surveys, revealing a notable 

connection with inter-individual variations in gut microbial community structure1,2. 

Remarkably, this connection transcends traditional boundaries, extending from drugs 

targeting infectious diseases to a diverse range of pharmaceutical interventions aimed at 

addressing chronic diseases. Pharmaceuticals employed in contexts as varied as cancer 

treatment3, management of rheumatoid arthritis4, and interventions for cardiovascular 

disease1,5 have all been implicated in shaping the complex landscape of the gut 

microbiota. Among these interactions, the influence of statins on the gut microbiome has 

stood as an intriguing subject. 

Statins rank as some of the top pharmaceuticals prescribed for their lipid-lowering 

capabilities, an important measure in the treatment and prevention of cardiovascular 

disease6. The fascination surrounding statin-gut microbiota interactions arises from the 

widespread use of statins among patients and the potential for the development of 

adverse events often unexplained by genetics or other environmental factors6,7. 

Gastrointestinal off-target effects, (bloating, diarrhea, and constipation) and other rare yet 

severe adverse events (muscle damage and diabetes) are often reported amongst statin 

users, suggesting that statins may induce alterations of the gut microbiome. The capacity 

of statins to perturb the composition and function of the gut microbiome holds clinical 

significance, prompting further investigation into the mechanisms at play. Moreover, 

recent studies have indicated a broader positive impact of statins on the gut microbiome. 

https://paperpile.com/c/Z8bSKW/bWWa+bQli
https://paperpile.com/c/Z8bSKW/6AKx
https://paperpile.com/c/Z8bSKW/2Oe2
https://paperpile.com/c/Z8bSKW/bWWa+Wo4z
https://paperpile.com/c/Z8bSKW/81bV
https://paperpile.com/c/Z8bSKW/81bV+8zRd
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For instance, one study5 has provided evidence suggesting that statins may reduce the 

risk of obesity. These observations underscore the urgency of delving into the intricate 

interplay between statins and the gut microbiome to gain insights into their roles in human 

health and disease. 

The interaction between statins and the gut microbiome finds substantiation in 

studies conducted on humans, murine models, and cell cultures. Initial investigations in 

humans have unveiled associations between bile acid metabolites produced by the gut 

microbiome and statin bioavailability and efficacy8. Metagenomic sequencing has recently 

illuminated connections between the gut microbiome and both statin efficacy and toxicity9. 

The implications of this interaction extend to murine models, suggesting a direct causal 

link between statins and the gut microbiome10–14. Additionally, intriguing insights have 

emerged regarding the potential role of the gut microbiome in contributing to the lipid-

lowering effects of statins15. Notably, evidence from the screening of human gut bacterial 

isolates suggests direct inhibition of bacterial growth by statins16. 

Despite the wealth of evidence highlighting the interaction between statins and gut 

microbiome, several fundamental questions remain unanswered. Of particular intrigue is 

the mystery surrounding the bacterial targets of statins, considering that their canonical 

target, 3-hydroxy-3-methylglutaryl coenzyme A (HMG-CoA) reductase, is seldom found 

within the human gut microbiome17. The limitations of previous in vitro studies, which 

focused solely on a single statin dose in monoculture, underscore the necessity for 

comprehensive investigations. Along those lines, the questions surrounding the minimal 

inhibitory concentration (MIC) and the applicability of observed growth inhibition to 

microbial communities warrant deeper exploration. Furthermore, a comprehensive 

https://paperpile.com/c/Z8bSKW/Wo4z
https://paperpile.com/c/Z8bSKW/cjLG
https://paperpile.com/c/Z8bSKW/hphE
https://paperpile.com/c/Z8bSKW/zFYF+N5rK+DUX9+q2pz+15pv
https://paperpile.com/c/Z8bSKW/OwF0
https://paperpile.com/c/Z8bSKW/ZPCj
https://paperpile.com/c/Z8bSKW/wTuK
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understanding of the effects of statins necessitates an exploration of their impact on 

bacterial physiology, gene expression, and metabolic activity. Moreover, until now, 

insights into the genes and gene products contributing to bacterial sensitivity to statins, 

as well as the extent of their prevalence across different bacterial phyla, have remained 

elusive. 

Herein, we undertake a comprehensive analysis of the interactions between a 

representative statin, simvastatin, and the human gut microbiome both in vitro. The 

selection of simvastatin stems from its clinical relevance and well-documented 

interactions with the microbiome in humans, mice, and cell cultures. As anticipated, the 

study unravels the dose-dependent effects of simvastatin on bacterial growth across 

diverse phyla. Leveraging a combination of transcriptomics and transposon mutagenesis, 

the work here identifies pathways conducive to growth in response to statins in 

representative bacterial strains from two distinct phyla—one Gram-positive and one 

Gram-negative. These findings carry implications that extend beyond statins, offering a 

conceptual and experimental framework to dissect the impact of a broader array of statins 

and other drugs on the human gut microbiome. 
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Chapter 2: Simvastatin impacts the growth and response of human gut bacteria.  

2.1 Introduction 

Population-level surveys of the human gut microbiota have revealed that 

pharmaceuticals are the top predictor of inter-individual variations in gut microbial 

community structure1,2. Surprisingly, this association extends beyond drugs for infectious 

disease to drugs used in a wide range of noncommunicable diseases, including cancer3, 

rheumatoid arthritis4, and cardiovascular disease1,5. The off-target of statins on the gut 

microbiota is of particular interest due to the ubiquity of the use of these drugs in patients 

and the existence of rare but potentially severe adverse effects, including muscle damage 

and diabetes6.  

 Studies in humans, mice, and cell culture support a robust and clinically relevant 

interaction between statins and the gut microbiota. Early work in humans demonstrated 

that bile acid metabolites produced by the gut microbiome are positively associated with 

statin bioavailability and efficacy7, consistent with a recent metagenomic sequencing 

study demonstrating that the gut microbiome is associated with both statin efficacy and 

toxicity8. Statins may also have a broader beneficial effect on the gut microbiota; for 

example, by decreasing the risk of obesity5. While gold-standard data from double-

blinded longitudinal randomized controlled trials remains lacking, experiments in mouse 

models support a direct causal effect of statins on the gut microbiota9–13 and even a 

potential role of the gut microbiota in contributing to their lipid-lowering effects14. 

Furthermore, a screen of human gut bacterial isolates suggested that statins can directly 

inhibit the growth of gut bacteria15. 

https://paperpile.com/c/pc239i/riCPg+xcKKs
https://paperpile.com/c/pc239i/rD4hN
https://paperpile.com/c/pc239i/BKxem
https://paperpile.com/c/pc239i/riCPg+xkqFg
https://paperpile.com/c/pc239i/gv8ca
https://paperpile.com/c/pc239i/ECO1e
https://paperpile.com/c/pc239i/WA6r2
https://paperpile.com/c/pc239i/xkqFg
https://paperpile.com/c/pc239i/PQZkh+TtixG+s8Jp1+Yc5ml+mqjM7
https://paperpile.com/c/pc239i/Pbeqp
https://paperpile.com/c/pc239i/BR6sJ
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 However, despite the extensive literature supporting an important interaction 

between statins and the gut microbiome, multiple key questions remain. The bacterial 

targets of statins remain a mystery, given that their canonical target, 3-hydroxy-3-

methylglutaryl coenzyme A (HMG-CoA) reductase, is rarely found in the human gut 

microbiome16. The one prior in vitro study15 only evaluated a single dose of statins in 

mono-culture; thus, the minimal inhibitory concentration (MIC) and relevance of the 

observed growth inhibition to microbial communities remain unclear. Furthermore, 

although growth inhibition is a valuable starting point, far more work is needed to assess 

the impact of statins on bacterial physiology, gene expression, and metabolic activity. 

Perhaps most importantly, prior to this study we lacked any insight into the genes and 

gene products that contribute to bacterial sensitivity to statins or if these mechanisms 

were shared across phyla. 

 To address these major knowledge gaps, we conducted an in-depth analysis of 

the interactions of a single representative statin (simvastatin) and the human gut 

microbiota. Simvastatin was selected due to its clinical relevance and clear evidence for 

microbiota interactions in humans7, mice10,14, and cell culture15. As expected, we found 

that simvastatin has dose-dependent effects on bacterial growth across phyla. Further, 

we used a combination of transcriptomics and transposon mutagenesis to identify 

pathways in representative strains from two bacterial phyla (one Gram-positive and one 

Gram-negative) that support bacterial growth in the presence of statins. These results 

emphasize the parallels between pathways for resistance to antibiotics and host-targeted 

drugs15, while providing an experimental and conceptual framework to dissect the impact 

of a broader range of statins or other drugs on human gut bacteria.

https://paperpile.com/c/pc239i/UanlZ
https://paperpile.com/c/pc239i/BR6sJ
https://paperpile.com/c/pc239i/ECO1e
https://paperpile.com/c/pc239i/TtixG+Pbeqp
https://paperpile.com/c/pc239i/BR6sJ
https://paperpile.com/c/pc239i/BR6sJ
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2.2 Results  

2.2.1 Simvastatin directly inhibits gut bacterial growth in mixed cultures 
We used our established methods for the ex vivo incubation of the human gut 

microbiota4,17 to test the impact of simvastatin on gut microbial community structure in the 

absence of a host. Stool samples were selected from ImmunoMicrobiome cohort, an 

ongoing study of the microbiome and immune system of healthy participants. Growth was 

tracked longitudinally for 48 hours by optical density and 16S rRNA gene sequencing 

(16S-seq) was performed at the experimental endpoint. The simvastatin concentrations 

tested (≤25 μg/mL) were below the estimated maximum intestinal concentration (160 

μg/mL) even after accounting for absorption in the proximal gut (96 μg/mL in stool). 

Simvastatin had a significant impact on the gut microbiota across multiple metrics. 

Analysis of our growth curves revealed a dose-dependent delay in the overall growth of 

the human gut microbiota, resulting in a significant increase in the time it took to reach 

mid-exponential phase (Figure 2.1). Community-wide carrying capacity and growth rate 

trended lower in response to simvastatin but did not reach statistical significance 

potentially due to insufficient power (Figure S1). We also observed a significant and 

dose-dependent decrease in microbial diversity, as assessed by the Shannon diversity 

index (Figure 2.1) and the number of amplicon sequence variants (ASVs; Figure S1). 

Consistent with prior studies17, analysis of the full 16S-seq dataset revealed marked inter-

individual variations in the gut microbiota with a slight convergence based on simvastatin 

concentration (Figure 2.1). After stratifying the data by subject, we observed clear and 

statistically significant effects of simvastatin on gut microbial community structure (Figure 

2.1). At the phylum level, simvastatin significantly decreased Bacteroidota and increased 

https://paperpile.com/c/pc239i/LFQDT+BKxem
https://paperpile.com/c/pc239i/LFQDT
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Verrucomicrobiota (Figure 2.1). Significant differences were also apparent at the ASV 

level, including 7 depleted ASVs and 3 enriched ASVs (Figure 2.1). With the exception 

of an ASV identified as Eggerthella lenta, the remaining 6 depleted ASVs were 

significantly affected at both doses of simvastatin. An ASV identified as Bacteroides 

thetaiotaomicron was the most dramatically depleted ASV, with a 9-fold reduction in 

abundance. Taken together, these results show that simvastatin has a dramatic effect on 

the human gut microbiota in the absence of a host. 
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Figure 2.1 Simvastatin directly alters the growth and community structure of the 
human gut microbiota. Human ex vivo stool cultures (n=4 donors, n=3 biological 
replicates/concentration) were grown with simvastatin or a vehicle control for 48 hours 
and analyzed by 16S rRNA gene sequencing. (A) Time to mid-exponential growth in 
hours from the growth data. (B) Bacterial diversity decreases as the concentration of 
simvastatin increases based on the Shannon diversity index. (C) Principal components 1 
and 3 of Euclidean distances using center log2-ratio (CLR)-transformed values from 16S-
seq data colored by simvastatin concentration and shaped by donor sample to facilitate 
the visualization of their effects. (D) Principal components 1 and 2 of Euclidean distances 
using CLR-transformed values from 16S-seq data calculated for each donor. (E) 
Taxonomic data from all samples aggregated at the phylum-level, CLR-transformed and 
compared across simvastatin concentrations. (figure caption continued on the next page) 
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(figure caption continued from the previous page) (F) ASVs differentially abundant across 
all samples in response to simvastatin at 25 µg/mL that also show consistent directionality 
in response to simvastatin at 12 µg/mL (ALDEx2 comparing samples treated with each 
simvastatin concentration relative to the vehicle). Colors indicate the difference in CLR-
transformed values between simvastatin and vehicle groups; * indicates significance with 
a nominal p-value<0.05 (Wilcoxon rank test). Boxplots in panels A,E: top and bottom 
hinges are the first and third quartiles, horizontal lines denote the median, and whiskers 
extend to the maximum and minimum values. p-values represent Wilcoxon rank-sum 
tests (panels A,B,E) or PERMANOVA tests (panel C and D) between treatment groups.  
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2.2.2 Simvastatin directly inhibits gut bacterial growth in pure cultures 
Next, we sought to gain a more precise understanding of the growth inhibitory properties 

of simvastatin on human gut bacteria grown in isolation. We leveraged a previously 

generated collection of 39 human gut bacterial strains spanning 5 phyla3,4. Each strain 

was grown in rich media (brain heart infusion with supplements; BHICHAV), which we 

previously showed supports the robust growth of this entire collection3. Simvastatin was 

included at a range of concentrations (1.56-100 μg/mL) at or below the estimated distal 

gut concentration (96 μg/mL). The majority of the tested strains (29/39) had a measurable 

MIC (defined by a 90% decrease in carrying capacity), which ranged from 25-100 μg/mL 

(Figure 2.2). Of the strains with a measurable MIC, members of the Firmicutes and 

Actinobacteriota phyla had a significantly higher MIC relative to members of the 

Bacteroidota phylum (Figure S2). Within the tested Actinobacteriota, simvastatin 

sensitivity varied >3-fold, with Collinsella aerofaciens and Bifidobacterium longum 

tolerating higher levels than E. lenta and the other Coriobacteriaceae. Of note, both B. 

thetaiotaomicron and E. lenta were consistently affected by simvastatin in the context of 

a complex community and pure cultures. This fact, together with our extensive tools for 

B. thetaiotaomicron genetics18 and E. lenta functional genomics19 led us to focus on these 

two bacteria for more in-depth analysis. 

https://paperpile.com/c/pc239i/BKxem+rD4hN
https://paperpile.com/c/pc239i/rD4hN
https://paperpile.com/c/pc239i/5QWuc
https://paperpile.com/c/pc239i/GJNld
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Figure 2.2 Simvastatin directly inhibits the growth of human gut bacterial isolates. 
A diverse panel of 39 representative gut bacterial strains were incubated with varying 
concentrations of simvastatin (1.56-100 µg/mL in 2-fold increments, n=3 biological 
replicates/concentration tested) and the MIC determined. A phylogenetic tree using full-
length 16S rRNA gene sequences for each organism was constructed. MIC, minimum 
inhibitory concentration. The tree shows 37 of the isolates (2 additional Eggerthella 
strains were tested but only one of each species was included in the tree).  
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2.2.3 E. lenta upregulates genes for membrane biogenesis in response to 
simvastatin 
Given the lack of variation in simvastatin sensitivity within the Eggerthellaceae, we turned 

to transcriptional profiling (RNA-seq) to gain insights into the genes and metabolic 

pathways altered in response to simvastatin. We grew E. lenta in rich media and added 

3 concentrations of simvastatin [low, med, high; 0.1-1X MIC] or vehicle controls at mid-

exponential growth. Samples were collected 15 minutes later and used for RNA-seq and 

analysis.  

 Simvastatin induced a substantial change in E. lenta gene expression. Principal 

components analysis revealed clear grouping of the overall transcriptomes of the two 

higher doses relative to the lowest dose and vehicle controls (Figure 2.3). These 

differences were statistically significant (R2=0.393 and p=0.046, PERMANOVA; 

comparing simvastatin doses to vehicle controls). The number of differentially expressed 

genes (FDR<0.1 and |log2 fold-change|>1, DESeq2) was dose-dependent (Figure 2.3), 

ranging from 2-250 upregulated and 0-240 downregulated genes relative to vehicle 

controls. At the highest dose ~16% (490/3,086) of E. lenta protein-coding genes were 

differentially expressed. The set of differentially expressed genes was dose-dependent, 

with 294 genes unique to the highest dose (Figure 2.3). Pathway enrichment analysis 

demonstrated that the two higher doses of simvastatin consistently impacted 7 genes 

involved in fatty acid biosynthesis important for building lipids used in the cell membrane 

(Figure 2.3).  

 Interestingly, we observed 4 simvastatin-dependent genes annotated in NCBI as 

multiple antibiotic resistance transcriptional regulators (MarRs)20. MarRs typically repress 

their own promoter21,22. Ligand binding releases MarR from the promoter, inducing 

https://paperpile.com/c/pc239i/OmZzw
https://paperpile.com/c/pc239i/atqyD+des0M
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expression of MarR and neighboring genes (Figure 2.4). MarR has been implicated in 

stress responses as well as the degradation/export of phenolic compounds and 

antibiotics22. MarRs can bind to diverse ligands, including the antibiotics kanamycin, 

salicylate, and 2,4-dinitrophenol21–24, but direct binding to statins has not been reported.  

In total, the E. lenta genome contains 9 MarR homologs, of which 4 are 

upregulated with a high dose of simvastatin. These 4 gene clusters have diverse functions 

including ATP-binding cassette (ABC) drug transport, heat shock response, fatty acid 

biosynthesis, and multidrug and toxic compound extrusion (Figure 2.4). Of note, one of 

these putative MarR-regulated clusters encodes 6 genes involved in fatty acid 

biosynthesis (Figure 2.4), all of which are induced at the two higher doses of simvastatin, 

consistent with our pathway enrichment analysis (Figure 2.4). Taken together, these 

results support a working model in which simvastatin either directly or indirectly affects E. 

lenta MarR, lifting its repression of multiple gene clusters, including a suite of genes that 

are predicted to alter cell membrane lipid composition. Notably, all of the 9 MarR genes 

are also conserved across the E. lenta species, supporting their core importance for 

stress response (Figure S3). 

https://paperpile.com/c/pc239i/des0M
https://paperpile.com/c/pc239i/atqyD+des0M+XovNB+S9zFl
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Figure 2.3 Simvastatin has a dose-dependent effect on the E. lenta transcriptome 
and induces genes for cell membrane integrity. (A) PCA of E. lenta DSM 2243 RNA-
seq data comparing three doses of simvastatin to vehicle controls: low, low-dose (6 
μg/mL); med, medium-dose (30 μg/mL); high, high-dose (60 μg/mL). Statistical results of 
PERMANOVA are reported (n=3 biological replicates/group). (B) Number of differentially 
expressed genes (DEGs; FDR<0.1 and |log2 fold-change|>1, DESeq2) comparing each 
simvastatin dose relative to vehicle controls. (C) Overlap between DEGs across 
simvastatin doses. (D) Volcano plot of the medium and high simvastatin doses relative to 
vehicle controls: horizontal line, |log2 fold-change|>1; vertical line, FDR<0.1. Colored 
points represent fatty acid biosynthesis pathway genes found to be significantly enriched 
by a KEGG pathway enrichment using clusterProfiler (padj<0.2, Benjamini–Hochberg 
correction). The KEGG overview map for fatty acid metabolism (KEGG map01212), which 
the fatty acid biosynthesis pathway falls under, was also significantly enriched due to an 
overlapping set of genes between them. 
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Figure 2.4 Simvastatin induces multiple MarR-dependent gene clusters in E. lenta. 
(A) Diagram of a marR and its mode of gene regulation (created with BioRender.com). 
MarR acts as a transcriptional repressor of itself and neighboring gene clusters by binding 
to site-specific DNA regions upstream. When MarR is bound to a ligand, repression is 
released and allows for the transcription of previously repressed genes22. (B) Locus 
diagram showing 4 of the 9 differentially expressed marR genes (FDR<0.1 and |log2 fold-
change|>1, DESeq2) and their adjacent gene clusters across different doses of 
simvastatin. Colors are log2 fold-changes relative to vehicle controls. Significance is 
represented with an asterisk. Gene and gene cluster annotations shown where available. 
 

https://paperpile.com/c/pc239i/des0M
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2.2.4 B. thetaiotaomicron upregulates efflux systems that protect against 
simvastatin 
Next, we sought to assess the similarities and differences in simvastatin response in 

another drug sensitive bacterium. We selected B. thetaiotaomicron due to its robust 

genetic tools18 and to compare a Gram-negative bacterium to the Gram-positive E. lenta. 

As done previously for E. lenta, we grew B. thetaiotaomicron to mid-exponential phase 

then added 3 concentrations of simvastatin [low, med, high; 0.1-1X MIC] or vehicle 

controls at mid-exponential growth. Samples were collected 15 minutes later and used 

for RNA-seq and analysis.  

 Remarkably, B. thetaiotaomicron exhibited an even more dramatic transcriptional 

response to simvastatin than E. lenta. Principal components analysis revealed clear 

grouping of the overall transcriptomes of all three doses relative to vehicle controls 

(Figure 2.5); all three doses were statistically significant relative to vehicle controls 

(R2=0.47 and p=0.003, PERMANOVA; comparing simvastatin doses to vehicle controls). 

The number of differentially expressed genes (FDR<0.1 and |log2 fold-change|>1, 

DESeq2) was higher than E. lenta overall but still dose-dependent (Figure 2.5), ranging 

from 115-473 upregulated and 8-468 downregulated genes relative to vehicle controls. At 

the highest dose, 19% of B. thetaiotaomicron genes (879/4,650) were differentially 

expressed. 31 differentially expressed genes were independent of dose; whereas 619 

were consistently altered at the two higher doses (Figure 2.5). Pathway enrichment 

analysis demonstrated a dose-independent enrichment for differentially expressed genes 

involved in oxidative phosphorylation (Figure 2.5). The highest dose also affected genes 

involved in histidine, glyoxylate/dicarboxylate, and galactose metabolism pathways, 

https://paperpile.com/c/pc239i/5QWuc
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whereas the lowest dose affected genes involved drug (beta-lactam) resistance and the 

TCA cycle (Figure 2.5). 

Interestingly, many of the top differentially expressed genes encoded the subunits 

of 3 distinct multidrug efflux systems (Figures 2.6). All of these systems are homologous 

to the AcrAB-TolC system in E. coli, which enables the efflux of a wide variety of 

compounds, including antibiotics25. Similar to E. coli, each efflux system in B. 

thetaiotaomicron includes three major subunits, all of which are differentially expressed 

in response to simvastatin: (i) the hydrogen-dependent inner membrane transporter AcrB; 

(ii) the periplasmic membrane fusion protein AcrA; and (iii) the outer membrane channel 

protein TolC25. Gene order is conserved in the 3 putative B. thetaiotaomicron AcrAB-TolC 

efflux systems (Figure 2.6). Although the B. thetaiotaomicron systems remain 

uncharacterized at the biochemical level, we recently used transposon mutagenesis to 

implicate one of the 3 systems (encoded by the genes BT3337-9; referred to herein as 

AcrAB-TolC1) in resistance to the antibiotics fusidic acid and cefoxitin, and the 

antipsychotic chlorpromazine18.  

In order to test the impact of all three efflux systems on growth in presence of 

simvastatin, we turned to our previously published barcoded transposon sequencing 

library18. This barcoded transposon mutant library carries transposon insertions in 4,055 

non-essential genes whose change in abundance can be measured in the presence of a 

stressor, previously described as a genome-wide fitness assay18. We performed a fitness 

assay in which we grew up the transposon mutant library in the presence of low [0.1X 

MIC] levels of simvastatin or vehicle and then looked at the differential abundance of the 

gene insertions relative to the vehicle. In total, we identified 102 genes that have 

https://paperpile.com/c/pc239i/De68f
https://paperpile.com/c/pc239i/De68f
https://paperpile.com/c/pc239i/5QWuc
https://paperpile.com/c/pc239i/5QWuc
https://paperpile.com/c/pc239i/5QWuc
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significantly improved growth in simvastatin when disrupted and 117 genes whose 

insertions had significantly impaired growth (FDR<0.1, |log2 fold-change|>1, DESeq2). 

The genes that exhibited increased growth upon transposon insertion included cardiolipin 

synthetase (BT3978), potentially suggesting that cardiolipin incorporation into the inner 

membrane increases simvastatin sensitivity26. On the other hand, we noted multiple 

genes important for simvastatin tolerance, including the transporter system encoded by 

BT3337-BT3339 (referred to herein as AcrAB-TolC1), important for fusidic acid 

tolerance18 (Figure 2.6).  

We performed a more in-depth analysis of the three B. thetaiotaomicron AcrAB-

TolC systems that we had previously identified by RNA-seq. The greatest fitness defect 

was observed when AcrAB-TolC1 was disrupted (Figures 2.6), consistent with its high 

level of baseline gene expression (Figure S4). All three systems were significantly 

induced by low levels of simvastatin, with AcrAB-TolC2 and AcrAB-TolC3 showing the 

most dramatic upregulation (Figures 2.6 and Figure S4).  

Follow-up experiments confirmed that the sensitivity of B. thetaiotaomicron to 

simvastatin was increased in response to chemical and genetic disruption of drug efflux. 

We used phenylalanine-arginine β-napthylamide (PAβN), which inhibits RND family drug 

efflux systems, including AcrAB-TolC27. The B. thetaiotaomicron MIC for simvastatin 

significantly decreased in response to PAβN (Figure 2.7). We obtained stocks with 

transposon insertions in each of the three B. thetaiotaomicron tolC genes28. Transposon 

insertions in two of the loci (tolC1::Tn and tolC3::Tn) resulted in a lower MIC for 

simvastatin relative to wt (Figure 2.7). These results are generalizable to other species; 

disruption of the single tolC encoded by Escherichia coli (ΔtolC::KanR) led to a significant 

https://paperpile.com/c/pc239i/mStUg
https://paperpile.com/c/pc239i/5QWuc
https://paperpile.com/c/pc239i/XggeH
https://paperpile.com/c/pc239i/tRAor
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increase in simvastatin sensitivity (Figure 2.7). Interestingly, while AcrAB-TolC systems 

are prevalent in members of the Bacteroidota and Proteobacteria, they vary in copy 

number; Bacteroidota strains can have a maximum of up to 76 systems, while 

Proteobacteria a maximum of 2 (Figure S5). These results, together with another recent 

report15, highlight the key role of multi-drug efflux systems in bacterial resistance to both 

antibiotics and host-targeted drugs.

https://paperpile.com/c/pc239i/BR6sJ
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Figure 2.5 Simvastatin has a dose-dependent effect on the B. thetaiotaomicron 
transcriptome. (A) PCA of B. thetaiotaomicron DSM2079 RNA-seq data comparing three 
doses of simvastatin to vehicle controls: low, low-dose (5 μg/mL); med, medium-dose (25 
μg/mL); high, high dose (50 μg/mL). Statistical results of PERMANOVA are reported (n=3 
biological replicates/group). (B) Number of differentially expressed genes (DEGs; 
FDR<0.1 and |log2 fold-change|>1 DESeq2) comparing each simvastatin dose relative to 
vehicle controls. (C) Overlap between DEGs across simvastatin doses. (D) KEGG 
pathway enrichments for DEGs (padj<0.2, Benjamini–Hochberg correction): colors, log10 
padj; count, number of DEGs. (B-D) n=2-3 biological replicates/group; one sample from 
the high-dose simvastatin group was excluded due to low sequencing depth. 
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Figure 2.6 Simvastatin induces drug efflux systems in B. thetaiotaomicron that 
enable growth. (A) Schematic of a characterized Resistance-Nodulation-Division (RND) 
family efflux system [adapted from29]. (B-C) Volcano plots of RNA-seq (B) and RB-TnSeq 
(C) following exposure of B. thetaiotaomicron to a low dose of simvastatin relative to 
vehicle controls (5 µg/mL, 0.1X MIC, n=3 biological replicates/group). Genes homologous 
to the RND family efflux system BT3337-BT3339/AcrAB-TolC118 are labeled red. Points 
above the horizontal dotted line and to the right and left of the vertical dotted lines have 
an FDR<0.1 and |log2 fold-change|>1 (DESeq2). (D-E) Genomic loci in B. 
thetaiotaomicron containing RND efflux genes and neighboring genes. Asterisks indicate 
genes differentially abundant in the presence of simvastatin relative to vehicle controls. 
(B-E) AcrAB-TolC1 refers to BT3337-BT3339; AcrAB-TolC2 refers to BT1965-1967; 
AcrAB-TolC3 refers to BT2940-BT2942.  
  

https://paperpile.com/c/pc239i/8D2z1
https://paperpile.com/c/pc239i/5QWuc
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Figure 2.7 RND family drug efflux systems decrease simvastatin sensitivity in B. 
thetaiotaomicron and E. coli. (A) B. thetaiotaomicron simvastatin MIC is decreased in 
response to the efflux inhibitor PAβN (Spearman ρ=−0.81, p=0.00015; n=2 biological 
replicates/concentration). Regression line and 95% confidence interval are shown. (B) 
Transposon insertions in individual tolC genes decreases the MIC of simvastatin for B. 
thetaiotaomicron. (Kruskal-Wallis multiple comparison test; n=3 biological 
replicates/concentration). (C) TolC protects E. coli from simvastatin. The ΔtolC::KanR 
strain exhibits significantly lower carrying capacity in response to increasing 
concentrations of simvastatin (Spearman ρ=−0.97, p<2.2e−16; n=3 biological 
replicates/concentration). Regression lines and 95% confidence intervals are shown.
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2.3 Discussion  

Our results demonstrate that simvastatin elicits a direct antibacterial effect on a broader 

range of human gut bacteria than previously appreciated15,30. A prior in vitro screen 

identified a single dose of simvastatin (8.37 µg/mL, 20 µM) that affected the growth of 3 

gut bacterial isolates (P. distasonis, R. torques and R. intestinalis) in mono-culture15. In 

this study, we expanded the list of simvastatin-sensitive strains by testing a range of 

physiologically relevant drug concentrations on human gut bacterial communities and a 

panel of gut bacterial isolates. Drug sensitivity varied in the context of a community versus 

pure culture. However, common trends in susceptibility to simvastatin were observed from 

the phylum- to strain-level. Members of the phylum Bacteroidota were on average more 

susceptible to simvastatin. A subset of strains from multiple phyla had consistent 

susceptibility to simvastatin when present in either a community or in isolation, including 

B. thetaiotaomicron and E. lenta, which we chose for more in-depth follow-up 

experiments.  

It remains perplexing that simvastatin has direct antimicrobial effects given that 

HMG-CoA reductase, the canonical target of simvastatin, is rare in human gut bacterial 

genomes16,31. More work is needed to elucidate the mechanism(s) of action that leads to 

the observed inhibition of diverse gut bacterial species.  

Our results indicate that simvastatin has a broad impact on gut bacterial gene 

expression. These results mirror our prior work on the antimetabolite drugs methotrexate 

and 5-fluorouracil which demonstrate the marked effect drug exposure can have on gut 

bacterial transcriptional activity3,4. This suggests that simvastatin either directly or 

https://paperpile.com/c/pc239i/BR6sJ+fFKpt
https://paperpile.com/c/pc239i/BR6sJ
https://paperpile.com/c/pc239i/qXTRV+UanlZ
https://paperpile.com/c/pc239i/BKxem+rD4hN
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indirectly alters the core metabolic pathways of gut bacteria which are often essential and 

not reflected in loss-of-function screens. A gain-of-function screen using a barcoded 

overexpression bacterial shotgun expression library sequencing (Boba-seq), might help 

complement some of our findings and has the advantage of capturing essential genes32. 

Future studies utilizing affinity probes33 or other chemical biology tools could help to 

identify proteins that directly interact with simvastatin within bacterial cells, 

complementing the bacterial genetic and transcriptomic tools used in this study. 

The bacterial cell membrane and its changes in permeability from the incorporation 

of fatty acids play a key role in antibiotic resistance34,35. This has been established for 

antibiotics like ciprofloxacin35, but not for antibacterial statins. Here, we found that E. lenta 

responds to simvastatin via the upregulation of genes for fatty acid biosynthesis. More 

work is needed to explore exactly how the enhanced biosynthesis of fatty acids might 

contribute to simvastatin resistance. This can be studied by employing fatty acid 

biosynthesis inhibitors35 like triclosan and 2-aminooxazole in synergy with simvastatin to 

test how their combination affects simvastatin susceptibility and cell morphology. 

We also found that a subset of transcriptional regulators from the MarR family are 

upregulated by E. lenta in response to simvastatin. MarR-type regulators generally 

respond to environmental stress responses, including stress triggered by antibiotics, by 

controlling a small set of genes often located in the same gene cluster23,24,36,37. In E. lenta, 

these MarR homologs appear to regulate multiple gene clusters in response to 

simvastatin, including genes for membrane biogenesis (fatty acid biosynthesis), 

increased drug efflux (ABC and MATE transporters), and heat shock response (DnaK). 

More work is needed to further characterize how simvastatin interacts with MarR to affect 

https://paperpile.com/c/pc239i/Z6sxA
https://paperpile.com/c/pc239i/5dG1p
https://paperpile.com/c/pc239i/lM6vf+BxlxG
https://paperpile.com/c/pc239i/BxlxG
https://paperpile.com/c/pc239i/BxlxG
https://paperpile.com/c/pc239i/XovNB+S9zFl+aiZ1V+vjVWX
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these systems. Dissociation of its genetic target is triggered by ligand binding, which could 

be due to a direct binding to simvastatin or to another compound that is responsive to 

simvastatin exposure.  

Similarly, our data suggests that the gut bacterium B. thetaiotaomicron also uses 

the cell wall to evade the antibacterial effects of simvastatin. We identified three distinct 

AcrAB-TolC efflux systems, one of which had been previously characterized as important 

for the tolerance to the antibacterial fusidic acid which is lipophilic and structurally 

resembles simvastatin18. These systems are all homologous to E. coli, which only 

encodes a single AcrAB-TolC efflux system38. More work is needed to assess the 

substrate-specificity and expression level of B. thetaiotaomicron’s different AcrAB-TolC 

efflux systems and their relative impacts on growth in the presence of simvastatin and 

other drugs. While all three efflux systems were differentially expressed in the presence 

of simvastatin, only one of these efflux systems significantly impacted competitive growth 

in our transposon data, suggesting that system is more important for simvastatin 

tolerance.  

This study has multiple key limitations. The bacterial determinants of susceptibility 

to simvastatin at the cellular and community level remain to be fully elucidated, but likely 

involve mechanisms of resistance or other microbe-microbe and host-microbe 

interactions. Furthermore, it will be important to extend our paired transcriptomic and 

genetic analyses to additional human gut bacterial species; for example, the simvastatin 

resistant Bifidobacterium longum and Clostridium sporogenes, which are both genetically 

tractable. Of note, prior work has indicated that gut bacteria metabolize simvastatin39,40, 

which could potentially influence the variation in drug sensitivity we observed. It remains 

https://paperpile.com/c/pc239i/5QWuc
https://paperpile.com/c/pc239i/2rdjC
https://paperpile.com/c/pc239i/U6UKa+wSqaF
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to be explored whether any of the responses observed in this study could be attributed to 

simvastatin metabolites. While bacterial drug sensitivity was evaluated in vitro, more work 

is needed to assess the susceptibility of gut bacteria to simvastatin in vivo, including in 

gnotobiotic and conventionally raised mice or other model species.  

These findings open the door to exploring how simvastatin’s antibacterial 

properties can contribute to changes in gut microbiome signatures and how they might 

explain adverse and beneficial effects from statin intake previously observed in 

metagenomics-based association studies2,5. Our current results clearly demonstrate the 

feasibility and utility of focused studies of individual non-antibiotic drugs, like simvastatin, 

that can have unintended effects for diverse members of the human gut microbiota. Such 

knowledge sets the foundation for further mechanistic dissection of these drug-

microbiome interactions while informing ongoing work in humans looking at cross-

sectional and longitudinal differences in the gut microbiome of patients on these widely 

used medications. 

  

https://paperpile.com/c/pc239i/xcKKs+xkqFg
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2.4 Supplementary Figures  

 

Supplementary Figure S1 Simvastatin alters the human gut microbiota. Human ex 
vivo stool cultures (n=4 donors, n=3 biological replicates/group) were analyzed by 16S 
rRNA gene sequencing. (A) Growth rate (hr-1). (B) Carrying capacity (k), which denotes 
the maximum OD600 reached by the population (C) Number of ASVs. (D) Principal 
components 1 and 2 of Euclidean distances using CLR-transformed values from 16S-seq 
data. Shapes denote different donors and colors denote different simvastatin doses. 
PERMANOVA revealed a significant interaction of donor with dose. 
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Supplementary Figure S2 Simvastatin sensitivity differs between gut bacterial 
phyla. MICs (minimum inhibitory concentrations) of isolates from 3 bacterial phyla. Bars 
represent mean and dots represent each strain. ns, p>0.05; **p<0.01; ***p<0.001, 
Wilcoxon rank-sum test. 
 



32 

 

Supplementary Figure S3 Conservation of marR genes across the Coriobacteriia. 
The heatmap shows the presence or absence of gene families annotated as marR genes 
in the E. lenta DSM2243 genome across gut Coriobacteriia isolate genomes, based on a 
previous pan-genome analysis19. Genes are labeled with their locus tag in the E. lenta 
DSM2243 genome. Gene labels in bold indicate those that were differentially expressed 
in response to simvastatin treatment. Blue text indicates strains within the E. lenta 
species, in which these genes were near-universally present. 
  

https://paperpile.com/c/pc239i/GJNld
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Supplementary Figure S4 RNA-seq coverage of B. thetaiotaomicron efflux systems 
in the presence or absence of simvastatin. (A-C) Base coverage of RNA-seq reads 
corresponding to the three sets of efflux systems and their neighboring genes is described 
in Figure 2.6. AcrAB-TolC1 refers to BT3337-BT3339; AcrAB-TolC2 refers to BT1965-
1967; AcrAB-TolC3 refers to BT2940-BT2942. The levels of AcrAB-TolC 1 (A) are high 
even in the absence of simvastatin, while AcrAB-TolC 2 and AcrAB-TolC 3 levels are 
increased with low levels of simvastatin.  
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Supplementary Figure S5 TolC-like systems are prevalent across representative 
human gut bacteria of the Bacteroidota and Proteobacteria phylum. (A-B) 
Percentage of tolC-like systems present in (A) 91 human gut Bacteroidota and (B) 129 
human gut Proteobacteria isolate genomes.  
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2.5 Materials and Methods  

Media, strains, and drugs used. BHICHAV: Bacto Brain Heart Infusion (BD Biosciences, 

37 g/L) supplemented with L-cysteine-HCl (0.05%, w/v), hemin (5 µg/mL), L-arginine 

(1.0%, w/v), vitamin K (1 µg/mL). BHICHV: Bacto Brain Heart Infusion (BD Biosciences, 37 

g/L) supplemented with L-cysteine-HCl (0.05%, w/v), hemin (5 µg/mL), vitamin K (1 

µg/mL). Simvastatin: Toronto chemicals S485000. DMSO (anhydrous, ≥99.9%): Sigma-

Aldrich Sure/Seal 276855. MeOH (anhydrous, ≥99.9%): Sigma-Aldrich Sure/Seal 

294829. 

Ex vivo incubations of human stool samples. Stool from four human donors, 

previously frozen at -80°C upon collection, was aliquoted into a pre-equilibrated cryovial, 

weighed, diluted in reduced BHICHV at 10 mL per 1 gram of stool (0.1 g/mL) and vortexed 

to homogenize. Each sample was allowed to settle for 5 minutes and 100 μL of the 

sediment-free supernatant aliquoted into a new pre-equilibrated cryovial. Growth was 

evaluated by inoculating sterile BHICHV with 1:10 dilution of this fecal slurry, with OD600 

readings performed every 15 minutes for 48 hours with a 1-min shake prior to each 

absorbance reading at 37 °C using an Eon Microplate Spectrophotometer (Biotek 

Instruments, Inc.). Simvastatin dilutions were made from a freshly prepared base stock 

of 2.5 mg/mL in DMSO. Samples were treated with either simvastatin (25 μg/mL and 12 

μg/mL) or an equal volume of 4% DMSO in a final volume of 100 μL prior to placing in the 

plate reader. Each donor’s stool inoculation and treatment were evaluated in triplicate (3 

replicates per treatment group). Samples were collected at the experimental endpoint to 

perform 16S rRNA gene sequencing (16S-seq) and analysis. All work described above 

was carried out in an anaerobic COY chamber. Growth curves were averaged by 
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treatment and individual, and growth parameters (time to mid-exponential, carrying 

capacity and growth rate) were estimated using the Growthcurver package41. ANOVA 

was used to determine changes in growth parameters between groups. The maximal 

intestinal concentration of simvastatin was calculated as previously described42: 40 mg 

recommended daily dose (source:simvastatin package insert) divided by 250 mL. Distal 

gut levels were estimated based on isotope labeling experiments indicating that 60% of 

the administered dose is excreted in stool43 (DrugBank accession: DB00641). 

16S-seq and analysis of ex vivo incubations with simvastatin. Bacterial pellets from 

the ex vivo incubations above (100 μL) were collected by centrifugation at 3,000 rpm for 

5 min and then stored at -80 °C. DNA was extracted using a ZymoBIOMICS 96 MagBead 

DNA Kit (Zymo D4308) as per the manufacturer's protocol, and 16S rRNA amplicon 

library was constructed following a dual-indexing approach44. Samples underwent 16S 

rRNA gene amplification using GoLay-barcoded V4 region V4-515F and V4-806R 

primers44 on a BioRad CFX 384 real-time PCR instrument with four serial 10 fold dilutions 

of extracted DNA template. Individual sample dilutions in the exponential phase were 

manually selected for subsequent indexing PCR using a dual GoLay index primers to add 

flow cell adaptors and indices as previously described44. DNA concentration was 

measured using a PicoGreen assay (P7589, Life Technologies) and samples were pooled 

at equimolar concentrations. Pooled libraries were purified and concentrated with 

MinElute PCR Purification kit (Qiagen #28004), run on 1% gel, size-selected (~427 bp) 

and purified using MinElute Gel Extraction kits (Qiagen, #28604). Libraries were 

quantified (NEBNext Library Quantification Kit; New England Biolabs) and sequenced 

with a 600 cycle MiSeq Reagent Kit v3 (paired-end reads set up for 250X8X8X250; 

https://paperpile.com/c/pc239i/j3zkS
https://paperpile.com/c/pc239i/sOPzQ
https://paperpile.com/c/pc239i/IRKvK
https://paperpile.com/c/pc239i/OG85t
https://paperpile.com/c/pc239i/OG85t
https://paperpile.com/c/pc239i/OG85t
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Illumina MiSeq) with 15% PhiX spiked in before sequencing at the UCSF Center for 

Advanced Technology. 

QIIME245 was used to trim primer reads, denoise the data and create a feature table using 

the following: qiime cutadapt trim-paired, qiime dada2 denoise-paired, and qiime feature-

classifier classify-sklearn as in our lab pipeline 

(https://github.com/jbisanz/16Spipelines/blob/master/QIIME2_pipeline.Rmd). Taxonomy 

was assigned using DADA246 with implementation of the RDP classifier47 using the 

DADA2-formatted SILVA v128 training set. A phylogenetic tree was constructed using 

QIIME2 and the command phylogeny align-to-tree-mafft-fasttree. QIIME2 artifacts were 

imported into R using the qiime2R package (https://github.com/jbisanz/qiime2R). Low 

abundance taxa present in less than 3 samples and with less than 10 reads were filtered 

out. We assigned a unique ASV identifier that can be used to look up a full taxonomic 

assignment, from kingdom to species, associated with a sequence variant. Diversity 

metrics were generated using vegan48 and phyloseq49 packages in R. Principal 

coordinates analysis (PCoA) or Principal components analysis (PCA) were performed 

with ape50 or vegan packages, respectively. Analyses were carried out using the centered 

log2-ratio (CLR) normalized taxonomic abudances Aclr = [log2(A1/ga), log2(A2/ga),… 

log2(An/ga)], where A is a vector of read counts with a prior of 0.5 added and ga is the 

geometric mean of all values of A. Taxa were merged at different taxonomic levels using 

tax_glom from the phyloseq package before being CLR transformed where applicable. 

PERMANOVA was employed to detect changes in community composition from rarified 

counts or Bray-Curtis distances. Differential abundant ASVs were determined by 

employing ALDEx251,52 using 150 simulations. 

https://paperpile.com/c/pc239i/xSB3p
https://paperpile.com/c/pc239i/AYcEL
https://paperpile.com/c/pc239i/Hendu
https://github.com/jbisanz/qiime2R
https://paperpile.com/c/pc239i/aL5dt
https://paperpile.com/c/pc239i/HQxQD
https://paperpile.com/c/pc239i/Qq4A5
https://paperpile.com/c/pc239i/5x8Jd+583zV
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In vitro bacterial growth studies. Each of these strains was obtained from the Deutsche 

Sammlung von Mikroorganismen und Zellkulturen (DSMZ) culture collection. A single 

colony of each isolate was sub-cultured in 5 mL of BHICHAV for 48 hours in an anaerobic 

chamber (Coy Laboratory Products) at 37°C with an atmosphere composed of 2-3% H2, 

20% CO2, and the balance N2. This subculture was diluted down to an OD600 of 0.1, which 

was then further diluted 100-fold, and then used to inoculate a microtiter plate with 2-fold 

serial dilutions of simvastatin concentrations ranging from 1.5625 – 100 μg/mL or a 4% 

DMSO/MeOH vehicle control in a final volume of 100 μL. DMSO was used as a vehicle 

control for most of the isolates, except for the isolates from the Actinobacteria phylum 

which we found did not tolerate DMSO well and MeOH was used instead. Higher 

concentrations of simvastatin were not tested due to solubility limits in BHICHAV. Plates 

were incubated at 37°C over a 48-hour period in the anaerobic chamber and growth 

assessed by a final OD600 measurement. The minimal inhibitory concentration (MIC) was 

measured as the lowest concentration of simvastatin resulting in >90% growth inhibition 

after 48 hours of incubation. Absorbance of cultures in 96-well plates were read using an 

Eon Microplate Spectrophotometer (BioTek Instruments, Inc). 

Tree construction. Full-length ribosomal sequences for each isolate were extracted from 

the database greengenes53. Sequences were imported into Unipro UGENE54 and aligned 

using MUSCLE55. Gaps occurring in >50% of sequences were removed and a maximum 

likelihood tree generated using PhyML56. For trees generated from 16S-seq from ex vivo 

samples, we used the ggtree R package57. 

Bacterial incubations for transcriptional profiling. Bacterial isolates E. lenta DSM 

2243 and B. thetaiotaomicron DSM 2079 were grown anaerobically in previously 

https://paperpile.com/c/pc239i/nqWoi
https://paperpile.com/c/pc239i/z5bcQ
https://paperpile.com/c/pc239i/Bqdkq
https://paperpile.com/c/pc239i/uTyh6
https://paperpile.com/c/pc239i/vYyzS
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equilibrated BHICHAV at 37 °C. Cultures for each isolate were grown to mid-exponential 

phase, split into triplicates, and incubated for 15 min at a range of simvastatin 

concentrations (1X, 0.5X, and 0.1X MIC) or vehicle. Following incubations, cultures were 

removed from the anaerobic chamber in sealed Falcon tubes and placed immediately on 

ice. Cultures were centrifuged at 3,000 rpm for 5 min at 4 °C, the supernatant removed, 

and the bacterial pellets flash-frozen in liquid nitrogen for future RNA extraction.  

RNA extractions. Each bacterial pellet was incubated with 1 mL of Tri Reagent (Sigma 

Aldrich T9424) at room temperature for 10 minutes. The cell suspension was transferred 

into Lysing Matrix E tubes (MP Biomedicals, 116914050) and homogenized in a bead-

beater (Mini-Beadbeater-24, BioSpec) for 5 minutes at room temperature. The sample 

was incubated with 200 µL of chloroform at room temperature for 10 minutes, followed by 

centrifugation at 16,000 g for 15 minutes at 4 °C. Next, 500 µL of the upper aqueous 

phase was transferred into a new tube and 500 µL of 100% ethanol was added. To isolate 

RNA, we used the PureLink RNA Mini Kit (Life Technologies, catalog #: 12183025). This 

mixture was transferred onto a PureLink spin column and spun at ≥ 12,000 × g for 30 

seconds. The column was washed with 350 µL of wash buffer I as described in the 

PureLink manual. The column was incubated with 80 µL of PureLink DNase (Life 

Technologies, catalog #: 12185010) at room temperature for 15 minutes, and washed 

with 350 µL of wash buffer I. The column was washed with wash buffer II twice as 

described in the PureLink manual. Total RNA was recovered in 50 µL of RNAase-free 

water. A second round of DNAse treatment was undertaken. The RNA was incubated 

with 6 µL of TURBO DNAse (Ambion, ThermoFisher, catalog #: AM2238) at 37 °C for 30 

minutes. To stop the reaction, 56 µL of lysis buffer from the PureLink kit and 56 µL of 
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100% ethanol was added to the sample and vortexed. This suspension was transferred 

onto a PureLink column, and washed once with 350 µL of wash buffer I and twice with 

500 µL of wash buffer II. The RNA was recovered in 30 µL of RNAse-free water. 

rRNA depletion, library generation, and RNA sequencing. Total RNA was subjected 

to rRNA depletion using the RiboMinus Bacteria Transcription Isolation kit (ThermoFisher, 

catalog # A47335), following the manufacturer’s protocol. RNA fragmentation, cDNA 

synthesis, and library preparation proceeded using NEBNext Ultra RNA Library Prep Kit 

for Illumina (New England BioLabs, catalog # E7530) and NEBNext Multiplex Oligos for 

Illumina, Dual Index Primers (New England BioLabs, catalog # E7600), following the 

manufacturer’s protocol. All samples were paired end sequenced (2x150 bp) using an 

Illumina NovaSeq platform (NovaSeq 6000 v1.5) at UCSF’s Institute for Human 

Genomics. 

RNA sequencing analysis.  Reads were trimmed using fastp58. Reference genomes 

were obtained from NCBI’s genome assembly database under the following accession 

numbers: ASM2426v1 for E. lenta and ASM1106v1 for B. thetaiotaomicron. Reads were 

mapped to reference genomes using Bowtie259 using the following options: q, --met-file, 

--end-to-end, --sensitive. HTSeq60 was used to count the number of transcripts mapping 

to genes using the following options: --type=CDS, --idattr:ID, --stranded=no, --

minaqual=10. Differential abundance of gene transcripts in the simvastatin treated (low, 

med, high) and untreated samples was assessed using DESeq261 (v1.26.0) with the 

DeSeqDataSetFromHTSeqCount and ddsHTSeq functions and their default options. 

Different FDR thresholds ranging from 0.01 to 0.1 were used to determine the number of 

differentially expressed genes, and irrespective of the threshold used, consistent 

https://paperpile.com/c/pc239i/RDh7y
https://paperpile.com/c/pc239i/ZYb4K
https://paperpile.com/c/pc239i/L6AjA
https://paperpile.com/c/pc239i/VqTBA
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percentages of each bacterial genome were affected by simvastatin. Ultimately, a 

threshold of FDR<0.1 and |log2 fold-change|>1 was chosen to determine significance. 

BlastKOALA62 was used to map protein sequences from each organism to KO terms 

using the “species_prokaryote” database. KEGG pathway enrichment was carried out 

using clusterProfiler63 (v3.14.3) and the enrichKEGG function. KO terms for all 

differentially abundant barcodes (both up- and down- regulated with a padj<0.1, DESeq2 

and |log2 fold-change|>1) were provided and the organism parameter was set to “ko”. 

Heatmaps and volcano plots were generated using the ggplot2 R package64 (v3.3.5). 

In vitro transposon mutant fitness assays and barcode sequencing. We performed 

B. thetaiotaomicron transposon mutant fitness assays as described previously18. For B. 

thetaiotaomicron, we thawed an aliquot of the full transposon mutant library, inoculated 

the entire aliquot into 50 mL of BHIS supplemented with 10 μg/mL erythromycin, and grew 

the library to mid-log phase. We then collected 6 cell pellets of ~1.0 OD600 unit each (the 

“Time0” sample). We used the remaining cells to inoculate competitive growth assays in 

the presence of simvastatin or a vehicle control. All fitness assays were performed in 1.2 

mL of growth medium in a 24-well transparent microplate (Greiner) at a starting OD600 of 

0.02. We grew cultures until the vehicle group reached stationary phase, and then 

collected cell pellets (the “Condition” sample). We extracted genomic DNA from the Time0 

and Condition samples in a 96-well microplate format with a ZymoBIOMICS 96 MagBead 

DNA kit (ZymoResearch, catalog # D4302). We performed barcode sequencing (BarSeq) 

as previously described18,65. We used BarSeq oligos with both P1 and P2 indexed to 

minimize the impact of incorrectly assigned indexes in Illumina HiSeq4000 runs 66. Strain 

and gene fitness scores were calculated as previously described and can be found within 

https://www.sciencedirect.com/topics/immunology-and-microbiology/bacterial-genome
https://paperpile.com/c/pc239i/3rYGV
https://paperpile.com/c/pc239i/wD2Zr
https://paperpile.com/c/pc239i/ND4LI
https://paperpile.com/c/pc239i/5QWuc
https://paperpile.com/c/pc239i/HdXLM+5QWuc
https://paperpile.com/c/pc239i/YEB9o
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the Fitness Browser (https://fit.genomics.lbl.gov)67. Fitness values are log2 ratios that 

describe the change in abundance of mutants in that gene during the experiment. For 

most of the fitness experiments, which are growth experiments, the change reflects how 

well the mutants grow relative to the “Time0” samples. The “Time0” samples also serve 

as a control to ensure the number of mutants across an experiment are consistent with 

previous fitness assays.  

Transposon sequencing analysis. Barcoded transposon insertions were summed for 

each gene. Differential abundance of the individual genes in the treated and untreated 

mutant populations was assessed using DESeq261 (v1.26.0) with the 

DeSeqDataSetFromMatrix and dds functions and their default options on the gene count 

matrix. A threshold of FDR<0.1 and |log2 fold-change|>1 was used to determine 

significance. BlastKOALA 62 was used to map protein sequences from each organism to 

KO terms using the “species_prokaryote” database. KEGG pathway enrichment was 

carried out using clusterProfiler63 (v3.14.3) using the enrichKEGG function. KO terms for 

all differentially abundant barcodes (both up- and down- regulated with a FDR<0.1, 

DESeq2 and |log2 fold-change| > 1) were provided and the organism parameter was set 

to “ko”. Heatmaps and volcano plots were generated using the ggplot2 R package 64 

(v3.3.5). 

Comparative genomics. A previous pan-genome analysis19 was used to assess 

conservation of marR genes across gut Coriobacteriia isolate genomes defined using 

ProteinOrtho v6.0.668, with gene family cutoffs of 60% identity and 80% coverage. marR 

gene families were defined based on annotation of the E. lenta DSM 2243 genome using 

InterProScan69. Our results were largely unchanged when using a looser sequence 

https://fit.genomics.lbl.gov/cgi-bin/myFrontPage.cgi
https://paperpile.com/c/pc239i/8BF9b
https://paperpile.com/c/pc239i/VqTBA
https://paperpile.com/c/pc239i/3rYGV
https://paperpile.com/c/pc239i/wD2Zr
https://paperpile.com/c/pc239i/ND4LI
https://paperpile.com/c/pc239i/GJNld
https://paperpile.com/c/pc239i/2u4RY
https://paperpile.com/c/pc239i/fOp35
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identity cutoff (40%). The United Human Gastrointestinal Genome collection (v2.0.1) was 

used to assess conservation of tolC-like systems across human gut microbes. The 4,744 

species representative genomes and corresponding eggNOG-db annotations 

(https://doi.org/10.1093/nar/gky1085) were downloaded from the MGnify database, 

including 619 assigned to the Bacteroidota phylum (91 isolates and 528 metagenome-

assembled genomes) (https://doi.org/10.1016/j.jmb.2023.168016). The following phylum-

level eggNOG gene families were used to define the B. thetaiotaomicron-like tolC gene 

cluster:  4NEXN (BT_3339), 4NDZG (BT_3338) and 4NDZK (BT_3337). All 3 gene 

families were required to be adjacent to each other to be counted as a complete system, 

as in the B. thetaiotaomicron genome. The following phylum-level eggNOG gene families 

were used to define the E. coli-like tolC genes in Proteobacteria: 1MU78 (b0463), 1MU48 

(b0462), and 1MWCJ (b3035). These were not required to be adjacent.
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Chapter 3: Conclusion 

 
In conclusion, our study's investigation into simvastatin's impact on human gut 

bacteria has uncovered significant insights into drug sensitivity mechanisms. Our 

analysis, spanning both individual strains and microbial communities, revealed the 

upregulation of drug-responsive genes related to membrane biogenesis and drug efflux, 

demonstrating the intricate strategies employed by bacteria to counter host-targeted drug 

effects. 

This research lays a foundation for understanding the dynamic interplay between 

pharmaceutical agents and the human microbiota. As personalized medicine advances, 

our findings carry implications for tailoring interventions and optimizing treatment 

strategies based on individual patient profiles. By comprehending microbial responses to 

drugs, we are poised to enhance therapeutic outcomes, minimize unintended 

consequences, and navigate the complex landscape of drug-microbiota interactions in 

the pursuit of improved health and well-being.  
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