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Abstract
The maintenance of software distributed in its binary form
can become challenging over time, due to the lack of vendor
support or obsolete build environments. This can be costly
when dealing with critical security vulnerabilities that are
difficult to fix on a binary level. Moreover, advances in com-
piler technologies of the past decades remain unavailable
to the users of such legacy binaries for performing opti-
mizations and transformations. Binary recompilers aim to
bridge this divide by “lifting” binary executables to compiler-
level intermediate representations (IR) and “lowering” them
back again. But, current recompilers fail on that promise
as they rely on unsound heuristics or impose high tracing
overheads. Crucially, no existing recompiler addresses the
specific challenges imposed by multithreaded programs that
are ubiquitous in the modern software space.

To address these challenges, we present Polynima, a bi-
nary recompiler that supports the lifting and recompilation
of x86/x64 multithreaded binaries while introducing a mod-
erate 1.23x slowdown. We propose a hybrid control flow
recovery approach that combines the benefits of static and
dynamic techniques while providing an efficient strategy
to handle unknown paths. Polynima enables the use of the
rich LLVM compiler ecosystem to fix and improve legacy
multithreaded binaries, which we demonstrate by mitigating
a critical synchronization issue in a FTP server binary. We
also leverage its functional IR to introduce a novel dynamic
analysis to detect implicit synchronization primitives in bi-
naries, which we use to further improve performance of the
output. Finally, we evaluate the generality and correctness of
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1 Introduction
The maintenance of software distributed as binary executa-
bles becomes challenging over time. Due to obsolete build
environments, unavailability of the original source code or
the lack of vendor support, recompiling legacy programs
from source may not be possible. This denies the users of
such programs the substantial advances in modern compiler
technologies, like those relating to compile-time optimiza-
tions and security hardening. More importantly, the lack of
access to the compiler ecosystem can be costly when dealing
with critical security vulnerabilities that are difficult to fix at
a binary level. At the same time, replacing legacy software
can be very expensive and often infeasible.

Binary recompilation is a rewriting technique that enables
the use of the analysis and transformation infrastructure of
a compiler, by lifting machine code to a compiler-level inter-
mediate representation (IR). State-of-the-art recompilers [3,
5, 15, 16, 42] target LLVM IR [28] due to its active community,
modular design and the rich tooling support. But, most of
these tools have not seen widespread adoption in practice
due to their inability to handle complex binaries and the use
of unsound heuristics [29, 39].

Moreover, with the ubiquity of multicore processors, pro-
grams are designed to fully leverage the benefits of the un-
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derlying hardware. This is typically achieved through mul-
tithreading, which involves distributing work among par-
allelly executing program contexts known as threads. But,
multithreaded software is often plagued with an entirely new
class of issues, such as those relating to resource synchroniza-
tion, making their maintenance even harder. Unfortunately,
none of the state-of-the-art recompilers address the specific
challenges involved in the recompilation of multithreaded
binaries.

Existing recompilers are either entirely static [5, 15, 16,
42] or dynamic [3] in their approach toward control flow
recovery. Static disassembly is fast but employs heuristics
to predict targets of indirect control transfers which can
be imprecise [35]. Imprecision is acceptable for performing
analyses on top of the IR but program-wide transformations
require correct relocation of all code pointers, which can
be hard to perform statically. Dynamic recompilers [3], on
the other hand, analyze concrete executions of the target
program, enabling them to handle disassembly and indirect
control flows by design. However, their approach is ineffi-
cient due to the high tracing overhead required to generate
an output that supports a sufficient subset of the original
binary’s functionality. Current techniques also fail to imple-
ment effective strategies to handle novel control flows that
may be realised during execution of the recompiled binary.

After lifting to IR, the compiler is free to reorder shared
memory accesses, which may lead to erroneous and diver-
gent program outcomes that break original program seman-
tics [38]. Recent work shows that existing approaches that
insert memory fences to prevent such reorderings may be
overly conservative and therefore impede IR-level optimiza-
tions in some cases [8]. Besides, recompilers must also cor-
rectly handle constructs such as hardware-supported atomic
instructions, callback functions and most importantly, the
per-thread program stack.

We present Polynima, the first binary recompiler that sup-
ports the general lifting and recompilation of a wide range
of multithreaded x86/x64 binaries. Polynima enables the use
of LLVM’s mature analysis and transformation ecosystem
by recovering, and precisely representing, original program
semantics in the lifted IR. We generate standalone replace-
ments of input binaries while introducing a moderate 1.23x
average slowdown in performance.

We propose a novel technique to perform control flow re-
covery using a hybrid approach that combines the efficiency
of static analyses with the precision of dynamic analyses.
To reduce the tracing overhead imposed by dynamic lifting,
Polynima initially performs a fast static lift using a commer-
cial-off-the-shelf (COTS) disassembler. As this information
can be imprecise, we provide a lightweight tracer module
that enables resolving targets of indirect control transfers up-
front. Finally, to efficiently recover from unknown transfers
seen during recompiled binary execution, we implement a
control flow miss handling strategy that we call additive lift-

ing. Additive lifting iteratively reconstructs the control-flow
graph (CFG) by dynamically integrating newly discovered
control targets.

To address the unique challenges imposed during the lift-
ing of multithreaded binaries, Polynima implements tech-
niques to correctly handle crucial constructs such as callback
functions, hardware atomic instructions and the per-thread
program stack. Next, we present an innovative strategy to
detect implicit synchronization primitives in binaries, which
we use to remove superfluous fences inserted in the IR for
preserving memory access ordering. We implement this, and
other refinements, through dynamic analysis based instru-
mentation that leverages Polynima’s functional IR and the
low performance overhead of the recompiled output.

Finally, we evaluate Polynima’s recompilation capabilities
against a diverse set of complex multithreaded binaries that
includes real-world utilities and benchmark suites. We show
a compelling use-case where our prototype enables us to
retrofit protections against CVE-2023-24042 in a LightFTP
binary by leveraging LLVM’s transformation infrastructure.
We also evaluate the efficacy of our fence removal optimiza-
tion and show that it can notably improve output perfor-
mance by enabling further off-the-shelf compiler optimiza-
tions. To summarize our contributions:

• We present Polynima, the first practical binary recom-
piler for multithreaded x86/x64 binaries that intro-
duces a moderate 1.23x slowdown. We implement a
hybrid control flow recovery approach that combines
the benefits of static and dynamic techniques while
also providing an efficient miss handling strategy.

• Polynima supports a wide range of real-world utili-
ties and benchmark suites, demonstrating its ability to
correctly lift and recompile complex multithreaded ma-
chine code. Crucially, we demonstrate that Polynima
makes available the transformation ecosystem of the
compiler to perform modifications to multithreaded
binary programs.

• We leverage the functional IR to design an innovative
dynamic analysis for detecting implicit synchroniza-
tion primitives in binaries, that we use to remove super-
fluous fences inserted to prevent memory reorderings.

2 Related Work and Current Limitations
2.1 Control Flow Recovery
Precise recovery of the complete CFG is necessary for correct
recompilation. Failure to do so may lead to imprecise code
pointer relocations and, hence, run time crashes in the re-
compiled binary while realizing such paths. This is hard [22]
because compilers do not attach any labels to differentiate
between code and data pointers in machine code. Further,
control flow between basic blocks may use indirect jump and
call transfers whose targets are difficult to infer statically.

Static approaches to disassembly and control flow recov-
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ery try to identify function entry points and then employ
a recursive descent approach for exploring reachable ma-
chine code. Recompilers like McSema [16] and Rev.Ng [15]
often use a combination of heuristics and program analy-
ses, such as value-set analysis (VSA) [6], to predict an over-
approximate set of targets of indirect control transfers. These
heuristics achieve high accuracy for instructions that load
their destination address from jump tables [14, 43], but re-
solving other indirect transfers remains a challenge. For in-
stance, IDA Pro [23], which McSema relies on for recovering
control flow information, performs poorly when recovering
targets of indirect calls [35]. mctoll [42] employs heuristics
to identify jump tables and resolve a subset of indirect intra-
function control transfers. It cannot identify possible targets
of indirect calls precisely, either. Although fast, static ap-
proaches to lift binaries are forced to balance accuracy and
coverage. They produce programs that suffer from incom-
plete code discovery and generate code that fails to replicate
the original’s semantics.

BinRec [3] is a dynamic recompiler that handles precise
code and control flow recovery by design as it records infor-
mation about paths realized during concrete execution runs
of the input program. As enabling deobfuscation of input
programs is one of their goals, BinRec induces a tight cou-
pling between CFG recovery and the IR translator module as
a part of their lifting frontend. This imposes a notable lifting
overhead due to the time required for setting up and tracing
the input binary inside a processor emulator-like execution
environment.

A control flow miss occurs when, during its execution,
the recompiled binary attempts to perform a control flow
transfer to an address that was not discovered during lifting.
Such misses are frequently triggered by non-deterministic
program behaviors [3], which are particularly common in
multithreaded code. None of the existing static recompilers
implement support for such control flow misses. As achiev-
ing full coverage of the input binary for a dynamic recompiler
is hard, BinRec proposes incremental lifting. When a control
flow miss occurs, BinRec terminates execution of the run-
ning program and initiates a new trace of the original binary
using their lifting frontend. To keep the tracing overhead
manageable, this trace is started at the newly discovered
address instead of the beginning of the program. Since the
incremental trace is started at an arbitrary address, it is prone
to trigger runtime faults before discovering any new targets
due to uninitialized stack and heap memory. To mitigate
this, BinRec performs path exploration only until the next
conditional control flow which is inefficient.

Also, one of the core promises of recompilation is cross-
ISA (instruction set architecture) translation which is valu-
able for programs compiled for legacy architectures. But,
current dynamic approaches rely on access to the original
execution environment or an emulator to recover the CFG,
which is not guaranteed.

2.2 Lifting to Emulated IR
2.2.1 Handling stack memory. Recompilers typically
implement lifting by performing line-by-line translation of
machine code to LLVM IR. The lifted IR aims to faithfully em-
ulate the execution of each machine instruction on a virtual
CPU state that consists of registers, flags, and stack memory.
As a result, each low-level instruction may map to several
LLVM IR statements, leading to a verbose and unrefined IR.
Although compiler-level optimizations are sufficient to opti-
mize away some dead code, designing techniques to refine
the lifted IR is a topic of active research [17, 29, 36].

Stack memory is critical to program execution as it stores
function-local variables, spilled register values, and argu-
ments for calls. Recompiled programs usually work with two
stacks of execution, (1) the native stack, that contains vari-
ables and spills that are a byproduct of the emulation, (2) the
emulated stack, that includes variables and spills of the input
program. Recompilers such as McSema, BinRec, and Rev.Ng
model the emulated stack as a global array of bytes. However,
their implementation is not general as they do handle the
multithreaded case where each thread of execution needs to
work with its own emulated stack.

Using an emulated stack hinders transformations [29] that
rely on dataflow analysis of values in memory, as the com-
piler treats all accesses to the emulated stack opaquely. To
mitigate this, some recompilers split the emulated stack into
individual chunks and move them to the lifted program’s
native stack. For instance, mctoll performs static analysis to
identify themaximum bound on the per-function stack frame
size and creates a (function-) local allocation that represents
the original program’s stack frame. But, this approach is not
general as previous work has shown that statically inferring
the maximum frame size of functions in binaries is hard [13].
In fact, the frame may not be bounded at all for programs
that call alloca (or one of its many variants) with a dynam-
ically determined size argument or use Variable Length Ar-
rays (VLAs). Insufficiently allocated stack frames could lead
to runtime faults after recompilation due to out-of-bounds
frame local accesses reaching into unknown memory.

Moreover, this optimization of recovering the per-function
stack frame relies on precisely identifying and translating all
accesses to the local stack frame in the original program. Stat-
ically performing this procedure is largely heuristics-driven,
as identifying if any stack reference escapes is undecidable
in the general case. This issue is especially critical for lifting
multithreaded binaries as imprecision in identifying stack-
exclusive accesses may lead to erroneous and unsynchro-
nized shared memory writes. Due to the lack of generality of
this approach, previous work [38] that builds on mctoll could
not evaluate specific binaries from the Phoenix benchmark
suite [37].

2.2.2 Hardware atomic instructions. Multithreaded bi-
naries may leverage program constructs, such as those pro-
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vided by the programming language, compiler, or the un-
derlying hardware, that pose new challenges for recompi-
lation. Atomic instructions are critical for implementing
synchronization primitives, such as locks and semaphores,
in machine code. On the x86/x64 hardware, this includes
read-modify-write (RMW) operations (e.g., lock add, lock
inc) and compare-exchange operations (e.g., lock cmpx-
chg). Atomic memory accesses on the x86/x64 architecture
assert that all observers see the access as having happened
or not happened at all, and never partially happened [24].
The executing thread has exclusive ownership of the data
for the duration of the instruction to ensure that no partial
state is ever exposed to other observers on the system.

Precise lifting of such instructions to LLVM IR is hard for
multiple reasons. Consider the translation of the lock cm-
pxchg dword ptr [rsi], ecx instruction as a represen-
tative example. This instruction compares the value in the
eax register with the value stored in the destination operand
i.e., memory pointed to by rsi. If the two values are equal,
the second operand is loaded into the destination, else the
destination operand is loaded into eax. The instruction also
updates the zero bit of the EFLAGS register depending on the
result of the equality. Note that all of the sub-operations are
executed as part of the same hardware instruction. However,
the programming model and the set of available abstrac-
tions in lifted LLVM IR differ notably from that assumed
by the underlying hardware. For instance, it is not possible
to represent the update to the (virtual) eax register and the
compare-exchange as part of an indivisible IR instruction.

Of all the recompilers, only McSema supports the transla-
tion (binary to IR) of hardware atomic instructions to LLVM
IR by using the appropriate compiler intrinsics. Unfortu-
nately, its authors conveyed to us that its recompilation
capabilities (binary to IR to binary) are experimental and
need an expert operator to fix issues manually.

2.2.3 Callback functions. Correct handling of callback
functions is crucial to support multithreaded binaries that
use lightweight processes as a threading mechanism (as op-
posed to user-level threads). This is because the underlying
interface of clone which is used to spawn threads on Linux
requires an entry point for the new execution context. These
are considered to be external entry points, as the control
flows in to the binary program from external library code.
Full-program recompilation forces code layout changes, mak-
ing existing code pointers invalid. To ensure correct support
for external entry points, recompilers need to precisely iden-
tify and rewrite all instances of function pointers passed to
external procedures. They must also implement the sound
handling of the execution context switch from external li-
brary code to the recompiled binary, and back.

Rev.Ng supports external entry points through static link-
ing of libraries and treating them as indirect calls. However,
analyzing and rewriting statically-linked code is generally

std::atomic<bool> lock;
void thread_func2() {
  while (lock.load(std::memory_order_acquire));
  shared_data += 1;
  lock.store(true, std::memory_order_release);
}

.Loop_Header:
    mov     eax, dword ptr [lock]
    test    eax, eax
    jne     .Loop_Header
    add     dword ptr [shared_data], 1
    mov     dword ptr [lock], 1
    ret

Figure 1.Memory access reordering at the IR-level may lead
to erroneous outcomes. The write to shared_data may be
reordered across the critical section during recompilation
due to the lack of original ordering semantics.

infeasible, as it incurs a substantial performance overhead
and does not scale. McSema and mctoll try to statically iden-
tify function pointer arguments passed to external functions
to rewrite them. But, tracking pointer values in machine
code, especially if they are passed across function bound-
aries, can be hard. Also, it may be impossible to precisely
solve this problem statically if pointer values are materialized
in registers or memory during execution.

BinRec does not attempt to rewrite function pointer argu-
ments and instead inserts trampolines at the original address
of function entry points. The trampolines divert control to
helpers that marshal native state into emulated state, execute
the lifted code and then translate the emulated state back to
native before jumping back into external library code. Al-
though this approach is sound, BinRec does not handle the
case where the entry point may be executing as part of a
different thread. Specifically, it does not correctly initialize
the virtual CPU state and the thread-local emulated program
stack on entry which may cause faults at run time.

2.2.4 Memory access reordering. Information about the
relative ordering of memory accesses, which may be speci-
fied implicitly using synchronization barriers or explicitly
using source annotations, is lost during program compilation.
Hence, the lifted IR obtained from such binaries contains no
ordering information. Failure to preserve the original pro-
gram ordering may lead to erroneous and divergent program
outcomes due to the compiler reordering shared memory
accesses at the IR-level.

Consider the example shown in Figure 1 which represents
a shared memory access that is synchronized using a spin-
lock. The source-level memory ordering semantics attached
to the acquire load and the release store of lock assert that
write to shared_data will not be reordered across the criti-

1129



Polynima - Practical Hybrid Recompilation for Multithreaded Binaries EuroSys ’24, April 22–25, 2024, Athens, Greece

cal section. However, the generated machine code implicitly
encodes these semantics due to the lossy nature of the compi-
lation process and the guarantees provided by the underlying
x86/x64 ISA. For instance, (1) as naturally aligned stores and
loads upto 64 bits are guaranteed to be atomic, the compiler
emits an ordinary mov for the load operation, (2) the strong
Total Store Ordering (TSO) model prevents the Store-Store
reordering between the add and the mov. But, after lifting,
the compiler is free to reorder these memory accesses in the
IR (such as in the case of shared_data) which may break
original program semantics.

To remedy this issue, Lasagne [38] formalizes the idea
of the LLVM IR Concurrency Model (LIMM) and discusses
a sound strategy to lift memory accesses in multithreaded
binaries to LLVM IR. They insert appropriate fences for each
memory access preventing the compiler from reordering
them. As fences can be costly for performance and hinder
off-the-shelf optimizations, they also propose optimizations
that remove fences for stack-exclusive accesses and merge
adjacent (redundant) fences.

Recent work [8] has shown that Lasagne’s fence place-
ment strategy may impose stricter restrictions than neces-
sary for specific programs, incurring a high performance
cost for recompiled binaries. Lasagne primarily targets cross-
ISA translation to ARM64 (a weaker memory model), which
requires that the IR impose the strict x86/x64 memory model
for all memory accesses, except those that target the thread-
local stack. But, when recompiling binaries for the same
architecture, almost all inserted fences are superfluous for
programs that synchronize shared memory accesses through
exclusive use of externally provided barriers and primitives
(e.g., those provided by the pthread library). This occurrence
is common, as correctly implementing custom primitives is
hard and programmers often rely on third-party libraries to
achieve this. In fact, all programs in the Phoenix benchmark
suite exhibit this property.

3 Design and Implementation
Polynima is a full-transformation recompiler consisting of
modules that perform control flow recovery, translation of
machine code to LLVM IR, optimization and lowering. Fig-
ure 2 gives an overview of the system architecture. Recom-
piled output generated through static-only analyses acts as
a functional replacement for the input binary. Although this
initial output representation only supports control flows that
are recovered through the COTS disassembler, we instrument
the lifted IR to handle unknown transfers at runtime. Our
optional dynamic analyses, such as those for optimizing the
lifted IR, build on top of this representation.

3.1 Compatibility
Our prototype supports a wide range of binaries, but we
impose certain reasonable restrictions on the input for imple-

mentation reasons. We support the recompilation of x86/x64
Linux-based C and C++ binaries for their original architec-
tures. We assume that the program stack grows downwards
and that the stack pointer register (esp/rsp) points to the
top of the thread-local stack.

We operate on inputs without relocation information.This
is typical of most legacy binaries which are primary applica-
tion targets for Polynima. To handle code and data pointer
relocations, we map the input binary at its original load ad-
dress as part of the output. Therefore, the output contains
the original binary code in addition to the recompiled lifted
code.

Binaries may use threading models and synchronization
primitives as exposed by POSIX threads (pthreads), C11
(thread.h), C++11 (std::thread) and OpenMP program-
ming models. Supported programs may also implement cus-
tom primitives provided by functions from any of the above
interfaces, such as C11 (atomic.h) or C++11 (std::atomic).
We also handle compiler builtins, such as the __sync_ vari-
ants, that typically lower to use hardware atomic instruc-
tions.

Linux threads, in this case defined as lightweight pro-
cesses, are spawned by calling the clone system call which
is wrapped by library functions such as pthread_create
or thrd_create. Polynima supports external library calls
with unknown interfaces through stack-switching, where
the native stack pointer points to the emulated stack for
the duration of the call. However, in the case that the call
enters a new thread context, it would work with its own
thread-local stack. Implementing stack-switching in such a
scenario would involve dealing with four stacks of execution,
making the implementation overly complex. For that reason,
we require the knowledge of signatures for library functions
that spawn threads, such that we can lift them to execute in
the context of the native stack. We do not support user-level
threads that can be achieved through get/setcontext(),
make/swapcontext(), and long/setjmp().

We do not handle lifting of the syscall instruction. This
occurrence is rare, as portable software usually relies on
the existence of native shared libraries (such as glibc) on
the target system to interact with the kernel. We currently
do not support binaries with self-modifying code. Additive
lifting enables us to recompile binaries with overlapping
instructions and obfuscated control flow by design, but we
do not evaluate our prototype on that capability barring a
hand-written example. We also assume that the underlying
memory model does not imply the support of precise ex-
ceptions as it requires that the recompiled binary preserve
semantics for instruction rollback when interrupted by the
CPU.

3.2 Control Flow Recovery
For the initial lift, Polynima consumes information about
function entry points, the basic blocks belonging to them,
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Figure 2. Overview of Polynima. Dashed lines indicate optional steps.

and the direct control transfers between identified basic
blocks from a COTS disassembler. We treat jump and call
instructions as basic block terminators and explicitly label
control transfers as jump-based or call-based in the CFG. Ba-
sic blocks are labeled as direct if the terminator instruction
encodes the transfer’s target address, and indirect otherwise.

For indirect control transfers, we assume a set of known
targets and lift them as switch statements, that select their
target based on the current value of the emulated program
counter (PC). Each switch case represents a possible value
that the PC could assume in the original program, and is
mapped to the corresponding lifted block in the IR. But, ob-
taining a set of possible targets for an indirect control transfer
is a hard problem. Polynima thus implements a hybrid ap-
proach that can use static as well as dynamic analysis results.
We currently support three distinct ways to achieve this.
Static. Modern disassemblers implement various heuristics
to resolve jump tables and infer targets of indirect calls.
Polynima uses but does not expect disassembler-provided tar-
gets for indirect jumps and calls, benefitting from advances
in static CFG recovery. As the control flow is conditioned on
the actual PC value at runtime, Polynima can also graciously
handle incorrectly predicted targets. However, as statically
collected information can be imprecise, we may observe pre-
viously unknown control flows during the execution of the
recompiled binary.
Additive. To support dynamically discovered targets, Polyn-
ima implements additive lifting. We achieve this by instru-
menting the terminating switch statements of all indirect
blocks to jump to a custom runtime after encountering an
unknown PC value. On encountering a new path, the run-
time updates the on-disk representation of the CFG with this
information and then stops program execution.

Starting at this target, we perform a static recursive de-
scent style exploration of the original binary control flow

and integrate back all the discovered paths into the known
CFG. This technique is useful for jump-table style control
transfers where the paths from the newly discovered block
eventually join with the rest of the known CFG through
direct transfers. We then rerun the recompilation pipeline
to generate a new binary that supports the additional paths.
The entire process can be thought of as a recompilation loop,
with each intermediate output supporting statically known
and dynamically discovered control flow. Discovering new
paths by natively executing the recompiled output is an ef-
ficient and complementary strategy to static CFG recovery
techniques for handling control flow misses.

Crucially, additive lifting enables on-device lifting. This
can be particularly useful for recompiling legacy binary pro-
grams without access to their original execution environ-
ment or a suitable emulator. Users can statically generate
a fully functional recompiled output, that supports known
control transfers, for their target environment through Polyn-
ima. This is possible as the recompilation process enables the
linking of new libraries, patching unsupported instructions
and compiling for a different ISA. With the newly gained
ability to natively run the program on the target architecture,
unknown paths can be additively recovered during program
execution.
Dynamic. We note that the performance of the above ap-
proach is directly proportional to the total time required for
each recompilation run. This can be inefficient when, (1) the
time required for an individual lift-and-lower step is high,
such as in the case of large binaries, (2) unseen control flows
are observed a long time from execution start.

To resolve this, we provide an optional and low-overhead
Indirect Control Flow Target (ICFT) tracer that can be used
upfront to augment the statically recovered CFG. Given a set
of inputs, it observes concrete executions of the program and
records all targets of indirect control tranfers. It then merges
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information recorded across the different runs, providing the
benefits of an entirely dynamic recompiler.

Note that additive lifting complements the ICFT tracer
module. Non-deterministic behaviors may lead to certain
program paths never being exercised even after extensive
tracing, which necessitates sound handling of the unknown
control flows in the recompiled binary. In fact, such behaviors
are particularly common in multithreaded machine code
due to the various thread interleavings that are possible
at runtime. Recent work also observed such behaviors in
binaries from the SPEC benchmark suite where pointers
were being used as keys into hashmaps [36].

3.3 Multithreading Support
3.3.1 Atomic Instructions. Support for hardware-pro-
vided atomic instructions is necessary to generally handle
multithreaded machine code. A naive approach to their trans-
lation is to decompose them into distinct loads and stores,
with all the accesses synchronized using a global (spin)lock.
This maintains all the guarantees in terms of exclusive ac-
cess to memory and the ordering of accesses. But, a major
drawback is that all threads executing an atomic instruction,
irrespective of whether the referenced memory locations
alias, have to (spin)wait.

To optimize this, we map atomic instructions to the appro-
priate compiler builtins at the LLVM IR-level during lifting.
Listings 1 and 2 show the translated IR blocks for both the
approaches. Here, we perform the write to the (virtual) eax
as part of a separate instruction that depends on the result of
the cmpxchg. However, we need to ensure that (1) the loads
from the virtual registers (eax, ecx) are not reordered after
the cmpxchg and before any other stores that target them. (2)
the conditional store to eax is not reordered after any use of
cmpxchg. To prevent such instruction reorderings, we mark
the cmpxchg as sequentially consistent (seq_cst) and sur-
round the translated IR block with compiler barriers. Since
registers are not accessed indirectly, we can be certain that
no other thread will race to write to the storage location of
the eax register. We manually check the correctness of such
translations for all supported hardware atomic instructions.

To preserve atomicity guarantees for memory operations
asserted by the ISA, we maintain original alignments for, (1)
global variables, by placing them at their original addresses,
(2) program stack, by initializing the emulated program stack
with the ISA mandated alignment.

3.3.2 Per-thread Stack. Polynima-lifted IR operates on a
virtual CPU state that consists of registers, flags and stack
memory, that are represented as global variables. For lifted
functions, we implement a conservative version of the pro-
totype recovery algorithm as described in Elwazeer et al.
in [17]. Functions take as arguments output registers (regis-
ters they may read and write to) and input registers (registers
they they may only read from). All functions only rely on

lock(@global_lock)
%temp = *%rsi
if %eax == %temp:
%flags.z = 1
*%rsi = %ecx

else:
%flags.z = 0
%eax = %temp
*%rsi = %temp

unlock(@global_lock)

Listing 1. Naive

compiler_barrier()
%old = %eax
%new = %ecx
%orig = cmpxchg *%rsi,

%old, %new seq_cst
%flags.z = %orig == %old
if !%flags.z:

%eax = %orig
compiler_barrier()

Listing 2. Optimized

the validity of the stack pointer register passed in as an ar-
gument, and do not make any other assumptions about the
stack.

To support multithreaded binaries, we mark variables that
represent the global state as thread_local ensuring that
each thread operates on its own copy of the virtual state. We
repurpose the callback wrappers to identify if the binary is
in a new thread of execution, and use it to initialize relevant
thread-local CPU state such as the segment registers and
flags. We allocate memory that acts as the emulated stack
for the call-graph starting at the thread-specific entry point,
and copy over caller-provided arguments from the native
stack into it. The emulated stack pointer then is initialized
to point into this allocation.

3.3.3 Callbacks. External library calls take function point-
ers as arguments when, (1) performing callbacks, such as
in the case of qsort that requires a user-defined compara-
tor function, (2) spawning new threads of execution, such
as in the case of pthread_create which requires an entry-
point in the new execution context. Statically identifying
the values of the arguments to such calls is hard, as function
pointers could be materialized in registers or loaded from
memory at run time. To remain general, recompilers that
recover functions must assume that any lifted function could
be used as an external entry point.

We insert trampolines at addresses of each of the function
starts in the original binary that jump to custom wrappers
that enable transition of the execution context from the li-
brary code to the lifted code. We implement them to also
support handling the case when the execution is part of a
new thread. This way, irrespective of whether we can stati-
cally identify if the original binary spawns new threads, we
perform correct recompilation. However, to achieve this we
need to mark all lifted functions as external at the IR-level
since LLVM could optimize away or inline functions that act
as possible external entry points. This increases the overall
code size as we need to preserve all function bodies and
their callback wrapper implementations during the recompi-
lation process. This approach also hinders interprocedural
compiler optimizations which affects the performance of the
recompiled binary.
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To that end, we implement a dynamic analysis based in-
strumentation pass, on top of the lifted IR, that records the
names of functions used as callbacks for a given set of in-
puts. We merge information collected across different runs
and subsequently remove wrappers for functions that are
not observed as external entry points and unmark them as
external. This makes them available to the compiler for
aggressive optimization, which benefits the recompiled out-
put in terms of code size and performance. Note that this
is an optional optimization step, and that the recompiled
binary provided as input to this stage is a fully functional
replacement of the original input.

3.3.4 Fence Insertion. We adopt the fence insertion strat-
egy formalized by Lasagne [38] for x86/x64 to handle mem-
ory access reordering at the IR-level. LLVM IR [30] provides
acquire and release fences with semantics as specified by
the C++ standard [25]. We insert, (1) an acquire fence after
every load, preventing successor loads and stores from being
reordered before it, (2) a release fence before every store, pre-
venting predecessor loads and stores from reordering after
it. We apply these rules to memory accesses executing in the
context of the original binary instead of those generated as a
byproduct of the lifting process. We also identify stack-local
accesses by tracking loads from and stores to locations de-
rived directly (addition and subtraction operations) from the
emulated stack pointer. We remove fences that were inserted
to protect such accesses.

3.4 Fence Optimization
Programs synchronize shared memory accesses through
primitives such as barriers, locks, mutexes and semaphores.
To achieve this, programmers often rely on external libraries
for the implementations of such primitives, like those pro-
vided by std::atomic, pthreads, and OpenMP. But, they
can also choose to implement custom or implicit synchro-
nization primitives when available constructs are too slow or
do not provide specific guarantees and control. Our key in-
sight is that demonstrating the absence of implicit primitives
in the binaries of data-race free programs can be leveraged to
remove superfluous fences during their recompilation. Note
that as we recompile binaries for the same architecture, we
care about memory access reorderings only at the IR-level.

3.4.1 Approach. Consider an analysis which identifies if
givenmachine code does not implement any implicit synchro-
nization primitives. We describe two scenarios where this is
the case, and discuss the issue of shared memory access re-
ordering during lifting in each case. Since all shared memory
accesses in a data-race free program must be synchronized,

• the code exclusively uses synchronization mechanisms
provided by external libraries: In this case, the com-
piler is prohibited from reordering memory accesses
across an external call as it is unaware of the possible

side effects it may have. Therefore, it conservatively
preserves the original access ordering irrespective of
whether fences are inserted in the IR.

• there exist no shared memory accesses that need syn-
chronization: If no two threads are racing to access the
same location, each memory access can be considered
to be synchronized. In this case, reorderings main-
tain original program semantics, making the inserted
fences redundant.

Hence, if it can be shown that the given program does not
implement any implicit synchronization primitives, we can
remove fences that are inserted to prevent reorderings in the
IR. To that end, we design a dynamic analysis based instru-
mentation pass to detect implicit synchronization primitives
in machine code.

Prior work [19, 26, 33, 34, 40] identifies that the basic
pattern necessary for implementing such a construct is a
spinloop. Since multiple definitions of a spinloop exist in
literature, we choose the most permissive one as described
in AtoMig [8].

For each loop that we identify in the lifted IR, our analysis
procedure checks if it is NOT a spinloop. We achieve this
by showing that it is possible to exit the loop due to the
influence of a local value that is, (1) not loop-constant and,
(2) lacks external dependencies. A value is defined to have
an external dependency if it depends on a shared memory
access through some data flow.

Note that AtoMig detects spinloops to identify potentially
racy memory accesses based on instruction influence analy-
sis of the spin controls. They transform such operations to be
sequentially consistent, to achieve the correct translation of
programs written for a stronger memory model (TSO) to a
weaker memory model (WMM). With Polynima, we aim to
identify spinloops to infer if the binary implements custom
synchronization primitives as part of its code.

We illustrate the various cases through examples in List-
ing 3. We assume that the value %op is one of the operands
for a loop termination condition and that the rest of the
statements for each of the examples belong to a loop body.

Let us first consider the spinloop cases. (a) has a direct
external dependency on @g and (b) has an indirect external
dependency (through store) on @g. In both of these cases,
external dependencies (@g) may be modified by other threads
between loop iterations, which may invalidate assumptions
about loop termination. This is usually how spinloops are im-
plemented, where one thread spins until it can get exclusive
access to a protected shared resource. (c), on the other hand,
has a local store of a constant value 1. Constant value stores
do not affect loop termination across different iterations. For
all of these cases, we mark the loops as potentially spinning.

Now, we consider the non-spinloop cases. (d) depends on
a local store of a non-constant value. This is seen in cases
where local program variables are accessed through memory
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@g = global i32 0
define void @samples() {

%1 = alloca i32
; (a) Spinloop
%op = load i32, i32* @g

; (b) Spinloop
%5 = load i32, i32* @g
store i32 %5, i32* %1
; ...
%op = load i32, i32* %1

; (c) Spinloop
store i32 1, i32* %1
; ...
%op = load i32, i32* %1

; (d) Non-spinloop
%7 = load i32, i32* %1
%8 = add i32 %7, 1
store i32 %8, i32* %1
; ...
%op = load i32, i32* %1

; (e) Non-spinloop
%3 = phi i32 [0, %entry],

[%op, %back]
; ...
%op = add i32 %3, 1

}

Listing 3. Examples of spinloops and non-spinloops

loads and stores instead of through registers, such as for
unoptimized IRs. Whereas, (e) depends on a loop-modified
value, which demonstrates a typical case of a locally-stored
loop index being used to execute a fixed number of itera-
tions. For both of these cases, we also ensure that there is no
dataflow of an external dependency into %op. The influence
of such an operand on the loop termination condition would
be sufficient to mark it as non-spinning according to our
definition above.

3.4.2 Analysis. We first recursively inline all lifted func-
tions in the body of their callers to enable data flow tracking
across procedure calls. Next, we perform the LLVM-provided
loop simplification pass to restructure loops such that they
have dedicated exit blocks. This enables the precise analysis
of their termination conditions. Polynima’s functional IR rep-
resentation enables us to rely on LLVM’s standard compiler
passes to perform these transformations.

We annotate and instrument all memory access sites i.e.
loads, stores, RMWs and CmpXCHGs to record the memory
location and the access type i.e. local or shared. Polynima
can differentiate between stack-local and shared memory
accesses as we control the allocations for each thread’s em-
ulated stack. We then run the recompiled binary with a set
of concrete inputs to record dynamic analysis information
for the instrumented memory accesses. After merging data
collected across various runs, we map each memory access
site to a list of tuples, each containing the observed location
and the access type.

Next, we iterate over all loops in the lifted IR and ana-
lyze them individually. Polynima performs an instruction
influence analysis, which we model as a backwards dataflow
analysis, for operands of each of the loop termination con-
ditions. The goal here is to identify if any of the operand
values are influenced by loop-modified local value. It is triv-
ial to perform this analysis for values that are not influenced

by memory accesses, by following their use-def chains in
the IR. We typically observe this for source-level variables
that are mapped to a register storage for the duration of the
loop body, such as loop indices. In this case, we benefit from
lifting general-purpose registers as SSA values.

Performing this analysis for source variables that are
stored in memory, and influence the loop termination condi-
tion, requires chasing memory loads and stores. We resolve
these queries using the dynamically recorded information.
For all sites that access shared memory locations, we assume
an external dependency and discard checking further. For
local accesses, we collect all intra-loop stores made to that
location and trigger another backwards dataflow analysis for
the stored values. If the stored value is, (1) not loop-constant
and, (2) lacks external dependencies, we can assert that the
loop is non-spinning.

Once we identify that all lifted loops in a binary are non-
spinning, we conclude that the fences that were inserted to
prevent IR-level memory reorderings are superfluous.

3.4.3 Limitations. False positives. Falsely asserting the
absence of implicit synchronization may lead to unsound
recompilation. Our approach can fail for programs that syn-
chronize shared memory accesses without spinning, using
only loads and stores. This occurrence is uncommon, as con-
struction of any non-trivial and wait-free synchronization
mechanisms requires the usage of atomic read-modify-write
accesses [20].

We do not support programs that use primitives based on
sleep-based contention, and other asynchronous methods
(signals and syscalls). But, we argue that through our dy-
namic analysis we can detect timeout-based synchronizing
loops in atleast one running thread because, (1) we assume
that the programs under analysis are data-race free, (2) for
progress to be made toward program completion, atleast one
of the spinning loops has to sucessfully exit. We did not find
evidence of the use of any of the above mechanisms as part
of our benchmarks.
False negatives. Our dynamic approach is limited by the loop-
coverage that is achieved through the provided inputs. We
may falsely identify that a program uses implicit synchro-
nization if we, (1) do not realise a loop body during the
execution runs, (2) identify a non-spinning loop to be spin-
ning. Polynima also does not build precise happens-before
relationships or perform lockset analysis to identify shared
memory accesses that belong to a loop but are already syn-
chronized. This may result in false negatives that are not
resolvable through dynamic analysis. In such a scenario, we
remain conservative and preserve all inserted fences in the
IR, possibly affecting performance but not correctness.

4 Evaluation
Our evaluation is guided by the following research questions:
RQ1: Does Polynima make available the transformation in-
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frastructure, available as part of LLVM, to fix and improve
legacy multithreaded binaries?
RQ2: Can we recompile a diverse set of complex real-world
multithreaded binaries while maintaining correctness and
ensuring a reasonable performance cost?
RQ3: How effective is our fence optimization approach?
RQ4: Does our hybrid control flow recovery approach im-
prove state-of-the-art?

Environment and Software. We wrote a wrapper around
the radare2 [4] disassembler to output a static (JSON-based)
control flow graph representation that includes functions
and the basic blocks belonging to them. The ICFT tracer, im-
plemented as a Pin [31] tool, augments this representation
with dynamically collected indirect control transfers. We
then invoke the translator module, which is built on top of
S2E’s [11] RevGen [10] utility. This provides us the infras-
tructure to translate individual machine code basic blocks to
LLVM IR (LLVM 14). S2E achieves this by first translating ma-
chine code to QEMU’s TCG intermediate representation and
then to LLVM IR. Our translations for atomic instructions
are implemented on top of the upstream S2E.

In the lifted IR, we stitch together lifted basic blocks to cre-
ate functions based on the recovered control flows. Finally,
the rest of our lifting pipeline builds on top of BinRec [3],
leveraging passes that enable us to deinstrument the IR emit-
ted by the translator and its infrastructure for lowering the
lifted bitcode.

Polynima can be accessed through a single command-
line utility that provides facilities for project management,
disassembly, lifting and (additive) recompilation of binaries.
Users need only provide inputs that exercise control flows for
the optional dynamic analyses. Writing patches for binaries
using Polynima is akin to writing a compiler-level pass for
LLVM IR, with the option of adding a runtime component
that can be linked in. A custom transformation pass can
be integrated with the standard compiler infrastructure by
registering it with LLVM’s PassManager.

We conducted our experiments on a Ubuntu 20.04 LTS
system with an Intel i7-8700K CPU running at a base clock
of 3.70 GHz, 32 GB RAM, and 6 cores. To ensure stable per-
formance, we disabled frequency scaling, hyperthreading,
and frequency boosting. We ran each input five times for
performance experiments, summed up their means, and cal-
culated the normalized runtime as a fraction of the baseline.
We compiled all binaries with gcc-8, with stack-protector
and position-independent execution disabled (-fno-stack-
protector -no-pie), and optimization level O3, except for
ConcurrencyKit, which defaults to O2.

Comparison with other lifters. We tried running other
state-of-the-art lifters identified in Liu et al. [29] to lift the
binaries that we choose for our evaluation. The authors of
RetDec [27] suggest that the tool is designed as a binary lifter,
instead of a recompiler, and that the IR is unsuitable for re-

compilation. Likewise, McSema’s [16] authors conveyed that
the tool’s main focus is binary lifting and its overall recompi-
lation capabilities are experimental. To evaluate Rev.Ng [15],
we used musl-gcc and statically compiled a multithreaded
version of the simple “hello world” program. Although we
recover a translated binary, we observe faults during execu-
tion of the do_fork procedure, indicating a lack of support
for multithreaded machine code. Lasagne [38], which builds
on top of mctoll [42], supports the lifting and recompilation
of a subset of multithreaded binaries. However, we could
not lift any other binaries apart from those belonging to the
Phoenix benchmark suite using their prototype.

To our knowledge, Polynima is the only binary recom-
piler that supports real-world multithreaded programs while
maintaining original program semantics.

4.1 Exploit Detection (RQ1)
We focus on detecting andmitigating CVE-2023-24042 [12], a
recently discovered synchronization bug in LightFTP which
enabled path traversal and possibly other security issues.
The bug manifests because the variable (and the context)
used to track the requested file name and the session user
name is reused across the different threads creating a race
condition. Below is the sequence of steps a malicious user
would perform for a directory traversal exploit,

• Send the LIST command with an existing directory
name as the parameter, writing the path in context-
>FileName and spawning a blocked handler thread.

• Send theUSER commandwith a filename of choice (e.g.,
/etc/passwd) as the parameter, overwriting context-
>FileName with this value. Note that no checks are
performed for this write.

• Connect to the data socket which unblocks the handler
thread for the LIST command. The handler now uses
the value stored in context->FileName, which has
been overwritten in the previous step.

We identify that the program calls stat to check the
file status in function ftpLIST before spawning the han-
dler thread. The handler function list_thread then calls
opendir to open a directory stream corresponding to the
requested path and return a list of files. We write an LLVM
pass which records and compares the path arguments passed
to the stat and opendir calls. During benign execution of
the program, both would correspond to the same value, but
would be different in the case of an exploit.

The operator is enabled to take various actions in an ex-
ploit scenario with a Polynima-recompiled LightFTP binary.
They may divert the code to a custom runtime handler, writ-
ten in plain C/C++, similar to a “patch” in source programs.
They could also choose to log the event for forensics or stop
the server entirely. Since we lift external calls and their ar-
guments, it is also possible to replace the value stored in
context->FileName with the older value to protect against

1135



Polynima - Practical Hybrid Recompilation for Multithreaded Binaries EuroSys ’24, April 22–25, 2024, Athens, Greece

the exploit. Also, the operator has complete control over the
set of valid control transfers in the lifted IR.Theymay choose
to completely disable certain allowed commands by either
rewriting their handler implementations or by limiting the
available targets of a jump-table style command dispatch.

The actual fix for this bug involved major changes, main-
taining a per-handler context structure consisting of the
file’s username and path. We argue that in the cases where
fixes for such bugs are unavailable due to lost source or lack
of vendor support, Polynima’s capabilities to generate a re-
placement binary are demonstrably valuable. The compiler
pass and the runtime instrumentation code account for only
about 70 lines of C++. Thus, we enable a usable and powerful
interface for performing program-wide transformations that
can leverage the LLVM compiler infrastructure.

4.2 Compatibility and Performance (RQ2)
We test Polynima on a large and functionally diverse set of
binaries that comprises real-world utilities and benchmark
suites listed in Table 1. We report correct outputs across all
the test cases that we run.
memcached uses pthreads along with compiler builtins for
threading and synchronization. We use the tool memaslap to
check the correctness and benchmark the recovered binary
performance under load. We run memaslap for 2 minutes
with the default configuration of the get/set request pro-
portion (0.9/0.1) with 2 and 4 threads in each case. In both
cases, the recovered binary reports a less than a 1% difference
in the total number of operations performed.
pigz exclusively uses functions provided by pthreads. We
benchmark pigz by compressing two files with compression
levels fast, default and slow and across the use of 1 / 2 / 4
threads. We observe negligible differences in data processed
(in mbs per second) and the total time required for compres-
sion in each of the configurations.
mongoose. We compile the default multi-threaded web-
server example to test mongoose which uses pthreads. We
configure the siege utility to spawn 25 concurrent threads
sending requests to the server for 2 minutes. The average
response time for the original server binary is reported to be
2.02s v/s the 2.03s for the recovered one, indicating a minimal
performance difference.
LightFTP. For LightFTP, which also uses pthreads, we stress
test the upload and download speeds for the original and
recovered binary. We achieve this by sending concurrent
upload and download requests of 1 MB files for ~45 seconds.
The average upload times differ by a margin of 2.4% and the
download times differ by 9%.
Phoenix. Table 2 contains the results for the Phoenix bench-
mark suite, which contains map-reduce style programs that
are used to benchmark parallel executions. Phoenix also uses
pthreads for synchronization and threading. We use the pro-
vided small, medium, and large input datasets to evaluate
performance of the recompiled binaries.

We first highlight the performance of Polynima recom-
piled binaries for the O0 baseline. For unoptimized binaries,
recompiled binaries perform at par or better than the input
with an average speedup of 0.98x, with a maximum speedup
of 0.90x in the case of histogram. In these cases, we observe
performance benefits as the compiler, (1) is effective in opti-
mizing the lifted IR, (2) is free to choose SIMD instructions
available as part of the underlying hardware for efficient
lowering. These results show that Polynima could be useful
as a post-release optimizer, for binaries that were originally
compiled with little to no optimizations for an older CPU
version.
gapbs. The gapbs benchmark suite contains reference im-
plementations of various graph processing algorithms. Pro-
grams use OpenMP for parellelization, specifically annotat-
ing loop bodies with #omp parallel pragmas for concur-
rent execution. They also use primitives from std::atomic,
that lower to x86/x64 hardware atomic instructions, for syn-
chronization.

We evaluate all gapbs binaries (Table 3) on integer inputs,
for which we use uniform-random graph inputs of size 220
for each binary. With gapbs, we observe similar trends as
Phoenix i.e. close to original performances for unoptimized
binaries and slowdowns for the optimized versions.

Performance Discussion. We use the geometric mean
of the results for the unoptimized (O0) and optimized (O3)
Phoenix and gapbs benchmark suites to compute the over-
all 1.23x slowdown. We now discuss the major reasons for
degradation in recompiled output performance for optimized
binaries (O3) in gapbs and Phoenix.

Recompiled output performs memory accesses which are
part of the original binary onto an emulated stack, which
helps Polynima remain general in its approach to lifting bi-
naries. However, note that most optimizations in the LLVM
ecosystem are designed to work with an IR that contains pro-
gram variables along with their type information. Since we
do not recover this, LLVM has to treat the emulated stack as
entirely opaque, which prevents off-the-shelf optimizations
from being fully effective.

We also notice the cost introduced due to the non-optimal
lifting of SIMD instructions and floating point operations.
Polynima relies on QEMU [9] helpers to provide translations
for such instructions, which are based on emulating them
on the virtual CPU state. For certain vector instructions,
LLVM can resynthesize them into intrinsics after lifting, but
this translation is not optimal. Also, we represent the XMM
/ YMM registers as globals (as opposed to being function-
local) in the IR, which prevents further optimizations. The
performance impact is most visible in the linear_regression
benchmark, where the core algorithm is implemented as a
packed sequence of SIMD instructions in the original binary.

Finally, with OpenMP, each of pragma-annotated loops
compile into a distinct function which acts as an entry point
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Table 1. Supported Benchmarks. Lasagne builds on top of mctoll.

Benchmark Description LOC Polynima Lasagne McSema BinRec Rev.Ng

memcached [41] Key-Value Store 24.4k 3 7 7 7 7
mongoose [32] Web Server 7.4k 3 7 7 7 7

pigz [1] Compression Tool 6.4k 3 7 7 7 7
LightFTP [21] FTP Server 2.4k 3 7 7 7 7
Phoenix [37] Data Processing 4.4k 7/7 5/7 0/7 0/7 0/7
gapbs [7] Graph Processing 2.8k 8/8 0/8 0/8 0/8 0/8

CKit (spinloops) [2] Sync. Primitives 1.3k 11/11 0/11 0/11 0/11 0/11

Table 2. Performance of Polynima recompiled binaries on
the Phoenix benchmark suite. Results in the FO column
report performance after application of the fence removal
optimization.

Benchmark O0 O0 FO O3 O3 FO

histogram 0.90 0.82 1.01 1.01
kmeans 0.91 0.58 1.43 1.11

linear_regression 1.07 0.97 3.71 3.60
matrix_multiply 0.98 0.94 1.25 1.25

pca 0.98 0.72 (7) 2.46 2.46 (7)
string_match 1.08 1.07 1.34 1.29
word_count 0.97 0.92 1.03 0.89

Geomean 0.98 0.85 1.56 1.46

Table 3. Performance of Polynima recompiled binaries on
the gapbs benchmark suite.

32-bit 64-bit

Benchmark O0 O3 O0 O3

bc 1.20 2.48 1.26 1.17
bfs 0.87 1.02 0.94 1.01
cc 0.93 0.97 0.88 1.02

cc_sv 0.92 0.97 0.88 1.04
pr 1.90 2.94 1.37 1.81

pr_spmv 2.03 3.08 1.45 1.92
sssp 0.85 1.06 0.89 1.01
tc 1.30 1.42 1.40 1.41

Geomean 1.18 1.55 1.12 1.32

into a new thread context. This involves handling a large
number of callbacks, 19 on average, which we identify to
be another reason for the performance slowdown. Callback-
handling includes marshaling of the native registers, copying
arguments to the emulated stack, and copying returned reg-
isters back to the native state after execution of the lifted
function.

We could not reliably recompile most of our benchmark

programs with other recompilers. Polynima builds on top of
BinRec which outperforms McSema and Rev.Ng recompiled
binaries on single-threaded benchmarks [3]. As a result, we
expect Polynima to perform better than or atleast as well as
BinRec in comparison to them. Lasagne reports performance
results for a subset of binaries from the Phoenix benchmark
suite for the downstream task of cross-ISA translation to a
different architecture (ARM64), which we do not support
yet.

ckit. ConcurrencyKit implements custom concurrency prim-
itives using compiler builtins (C99) that compile down to use
hardware atomic instructions. We first successfully perform
correctness checks for all 11 spinlock implementations using
the validation test suite. We then use the latency benchmark
test as part of the regressions suite to compute the average
latency (in terms of number of clock cycles required) for
each spinlock. Each individual test consists of a sequence
of lock and unlock operations, executed in a loop. As these
involve the lifting and lowering of various hardware atomic
instructions, the results help us evaluate our approach to
their translation. We report that the recompiled binary per-
formance is close to the original in almost all cases (Appen-
dix A Table 5), which validates our earlier claims of efficiency
and correctness.

4.3 Implicit Synchronization Detection (RQ3)
Next, we evaluate the precision of Polynima’s spinloop de-
tection as well as the performance improvements that we
derive due to the subsequent fence removal. We first validate
our approach on the various spinlock implementations in
ConcurrencyKit as representative examples of implicit syn-
chronization primitives. Then, we evaluate it on the Phoenix
benchmark suite, which explicitly uses external synchroniza-
tion primitives, where we benefit the most by proving the
absence of implicit synchronization. Recompiled binaries
are run against provided inputs with instrumentation that
records information for all memory accesses.
False positives. We do not observe any false positives in the
experiments that we perform.
False negatives. In histogram, we fail to cover one loop body
that swaps data bytes depending on the endianness of the
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underlying architecture. Since no inputs we provide would
cover this loop (on x86/x64), we manually analyze it as a
non-spinloop and report the results.

We observe a false negative in the case of the pca binary, as
it requires a precise happens-before analysis for proving that
a certain loop is non-spinning. This does not affect correct-
ness however, as we default to preserving already inserted
fences. We still report the results after performing fence
removal to demonstrate the impact on recompiled binary
performance.
True positives. Apart from the two cases mentioned above,
we cover and check that all other loops from Phoenix are
correctly identified as non-spinning.
True negatives. We correctly identify all spinloops in bina-
ries compiled from the validation test suite for the various
spinlock implementations in ConcurrencyKit.

We refer to Table 2 for performance discussion of this
optimization. We observe that removing superfluous fences
leads to a notable improvement in performance for nearly
all test cases. The average speedup observed for unoptimized
binaries is improved to 0.85x, further pushing the case for
using Polynima as a post-release optimizer. Removing fences
enables off-the-shelf compiler optimizations to be more ef-
fective. Crucially, we observe an astounding 27% improve-
ment in performance for kmeans after removing redundant
fences. Improvements are also observed for optimized bina-
ries, where the slowdown is improved to 1.46x.

4.4 Lifting Time (RQ4)
Overall lift time. We now compare the performance of
our control flow recovery approach with that of BinRec and
McSema. As neither of the above recompilers support multi-
threaded binaries, we apply Polynima to O3-compiled bina-
ries from the SPECint 2006 benchmark suite.

For Polynima, we statically collect the CFG and augment it
with information from the ICFT Tracer, which is driven with
the ref inputs for each binary. We ensure the correctness of
our control flow recovery process by checking the output of
the recompiled binary against the ref inputs. Our prototype
was unable to handle 403.gcc and 483.xalancbmk due to
failed IR translation for certain superfluous code paths.

We report the total time taken to disassemble, trace, and
recompile with Polynima in Table 4. We refer to the Bin-
Rec paper [3] for relevant numbers for BinRec and McSema.
Polynima performs orders of magnitude faster than BinRec
while also providing the same precision in terms of the re-
covered control flow. Also, our performance is comparable
to McSema, an entirely static lifter.

To highlight the importance of our hybrid approach, we
also report the number of indirect control flows recorded
during the tracing process for each program. Consider the
case of 429.mcf and 462.libquantum that contain no indi-
rect transfers. In such a case, an entirely static approach is
efficient and preferable as the disassembler generated output

Table 4. Lifting Times (in s) the for SPEC INT 2006 binaries
against ref inputs and the total number of ICFTs (indirect
control flows) recorded in the process

Benchmark Polynima BinRec McSema ICFTs

401.bzip2 47 69389 3385 21
403.gcc 1380 28468 7378 2350
429.mcf 130 227999 8 0

445.gobmk 634 72307 1063 1241
456.hmmer 427 144529 189 34
458.sjeng 1399 548342 368 69
462.libq. 425 176536 16 0

464.h264ref 1885 65202 586 116
473.astar 265 119436 18 2
483.xalanc. – – 17103 –

Geomean 445 137074 238 –

can be considered precise and complete. However, BinRec
performs poorly for both the benchmarks as it needs to trace
through the entire program before being able to generate
the recompiled output.

On the other hand, for a program such as 445.gobmk it
is difficult for a static disassmbler to precisely resolve such
a large number of indirect control transfers (1241). Recent
work was unable to functionally verify McSema-recompiled
binaries for more than half of the SPEC benchmark suite [29].
In this case, Polynima’s hybrid approach performs notably
better than BinRec, while providing the same precision.
Additive lifting.We lift all of our multithreaded benchmark
binaries using additive lifting to test the scalability and ro-
bustness of the approach. To evaluate its performance, we
compare against BinRec’s incremental lifting and report the
results in Figure 4. We use the 401.bzip2 binary from the
SPEC benchmark suite as it was chosen as the demonstrative
example in the original paper. We start our measurements
by considering a recompiled binary that supports the SPEC
test inputs. We then measure the time taken (represented
by the Y-axis) by both approaches for increasingly complex
input files (represented by X-axis).

To summarize, Polynima decouples the process of CFG col-
lection from translating machine code to IR. Performing the
IR translation offline is key for recompilation to scale to large
binaries. Unlike BinRec, that executes the input program in-
side a full-scale processor emulator, we run the recompiled
output natively. That way, we leverage the relatively low
overhead of the recompiled output and do away with the
long startup times and emulation cost. Whenever Polynima
discovers a new control transfer, it statically explores the
CFG starting at this block and retrofits discovered paths
backs into the known CFG. As a result, we see recompila-
tion loops only triggered for chicken.jpg and input.program,
where we explore yet unknown sections of the input CFG.
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Figure 4. Lifting times for BinRec’s Incremental lifting v/s
Polynima’s Additive lifting for 401.bzip2

5 Discussion
5.1 Stack-Variable Recovery
Compiler passes are designed to be used with refined IRs
with higher-level constructs such as program variables that
partition the program’s stack memory into distinct objects.
This is typically seen in IRs that are compiled down from
source code. Our prototype does not recover a mapping be-
tween stack slots and variable objects, which would enhance
optimizations and enable fine-grained transformations such
as AddressSanitizer and SafeStack. SecondWrite [17] deter-
mines such a mapping using a heuristics-driven conservative
static analysis. On the other hand, WYTIWYG [36] decom-
poses the problem of local variable recovery into a series of
instrumentation-based dynamic analyses.

Fences, inserted to prevent IR-level memory reorderings,
can prevent aggressive compiler optimizations and thus com-
pletely defeat the purpose of stack variable recovery. In such
a case, our fence optimization approach would effectively
“unlock” optimizations when recompiling multithreaded ma-
chine code. We leave the integration of such an approach
within Polynima as future work.

5.2 Coverage
Polynima’s dynamic analyses rely on inputs that provide
comprehensive coverage of the program. These analyses
include removing unncessary callback wrappers to reduce
code size, and determining if our fence optimization is safely
applicable to the lifted program. The ICFT tracer module
also benefits from inputs that drive coverage as it reduces
the total number of recompilation runs required through
additive lifting. Reliance on such inputs is a limitation that
is typical of dynamically-driven analyses across literature.

But, we emphasize that the above analyses are optional for
generating a functionally compatible recompiled binary with
Polynima. Our hybrid control flow recovery approach, con-
servative callback handling and fence insertion (which we
adopt from Lasagne) ensure that correct recompilation can
be achieved through static-only techniques. This way, Polyn-
ima benefits from the availability of extensive test-suites

for known programs and advancements in techniques such
as fuzzing and symbolic execution that recover coverage-
inducing inputs for unknown binaries.

5.3 SIMD instructions
First-class support for SSE / AVX / AVX512 instructions and
consequently XMM / YMM / ZMM registers is crucial for
achieving close-to-original performance when recompiling
binaries optimized for modern architectures. Lasagne [38]
implements such translations for certain SSE-based float-
ing point instructions. Instrew [18] optimally lifts SIMD in-
structions and vector registers in machine code to LLVM IR
for dynamic binary translation. With Polynima, we aim to
achieve ahead-of-time recompilation to generate a function-
ally compatible and performant replacement of the original
binary. Precisely translating individual SIMD instructions
by mapping them to the relevant LLVM intrinsics at the
IR-level, similar to how we handle hardware atomic instruc-
tions, is key to solving this problem. Finally, most of the
limitations that we impose upon input binaries (Section 3.1)
can be resolved with additional engineering effort.

6 Conclusion
We presented Polynima, the first practical binary recom-
piler for multithreaded x86/x64 binaries. We implement a
hybrid control flow recovery approach that combines the
benefits of static and dynamic techniques while also pro-
viding an efficient miss handling strategy. Our tool makes
available the rich LLVM compiler ecosystem to fix and im-
prove legacy binaries, which we demonstrate by mitigating
a recently published synchronization issue in a vulnerable
FTP server binary. Polynima is evaluated on a wide range of
real-world utilities and benchmark suites, demonstrating its
ability to correctly lift complex multithreaded machine code.
Finally, we leverage the functional IR to design an innova-
tive dynamic analysis for detecting implicit synchronization
primitives in binaries, which we use to remove superfluous
fences and improve recompiled binary performance.
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A CKit Performance

Table 5. Performance of the original and the recompiled
output (in terms of number of clock cycles required) on the
latency tests in CKit

Spinlock Native Recovered

ck_anderson 31 25
ck_cas 26 25
ck_clh 26 26
ck_dec 26 24
ck_fas 26 25
ck_hclh 57 57
ck_mcs 56 54

ck_spinlock 26 25
ck_ticket 36 49

ck_ticket_pb 36 35
linux_spinlock 26 23
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