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ORIGINAL RESEARCH • GASTROINTESTINAL IMAGING

The visual and quantitative assessment of abdomino-
pelvic hemodynamics is essential in the evaluation of 

many clinical entities. In abdominal imaging, this is pri-
marily undertaken with Doppler US and time-resolved  
two-dimensional phase-contrast MRI (1). Abdominal 
US is limited by sonographic windows, but targeted 
windows can be applied to interrogate postoperative 
vascular complications of transplantation, renal artery 
stenosis, and other indications (2–4). Because of the 
need to place precise imaging planes at the time of 
the scan, planar phase-contrast MRI is challenging to 
implement in the clinical environment but can be used 
to evaluate mesenteric ischemia, aortic dissections, and 
other vascular conditions (5,6). Time-resolved three-
dimensional (3D) phase-contrast MRI with three-
directional velocity encoding (four-dimensional [4D] 
flow MRI) addresses these limitations by providing 
comprehensive imaging of the entire abdomen, allow-
ing blood flow in any vessel to be retrospectively as-
sessed in any direction (1,7,8).

While applications of 4D flow MRI have grown rap-
idly (9,10), the correction of magnetic eddy current–re-
lated background phase error remains a challenge (11–
14). Partial phase error correction can be achieved using 
pre-emphasis techniques (15), incorporation of gradient 
nonlinearity in the image reconstruction process (16), 
and field derivation and correction via Maxwell equa-
tions (17); however, residual phase error may compro-
mise the accuracy of 4D flow measurements (13,18). Fur-
ther phase error correction is therefore required (Fig 1). 
Current methods primarily address residual phase error 
through one of two approaches: stationary phantom im-
aging and polynomial regression of phase error in static 
soft tissues (18). Phantom-based correction methods (19) 
require a second phantom scan after the patient scan with 
identical imaging parameters and are therefore imprac-
tical in a routine clinical setting (20). Image-based cor-
rection (14,21) can use pixel-based velocity thresholding 
throughout the cardiac cycle but often requires a human 
operator for reliable segmentation of static soft tissues.

Background:  Four-dimensional (4D) flow MRI has the potential to provide hemodynamic insights for a variety of abdominopelvic 
vascular diseases, but its clinical utility is currently impaired by background phase error, which can be challenging to correct.

Purpose:  To assess the feasibility of using deep learning to automatically perform image-based background phase error correction in 
4D flow MRI and to compare its effectiveness relative to manual image-based correction.

Materials and Methods:  A convenience sample of 139 abdominopelvic 4D flow MRI acquisitions performed between January 2016 
and July 2020 was retrospectively collected. Manual phase error correction was performed using dedicated imaging software and 
served as the reference standard. After reserving 40 examinations for testing, the remaining examinations were randomly divided 
into training (86% [85 of 99]) and validation (14% [14 of 99]) data sets to train a multichannel three-dimensional U-Net convo-
lutional neural network. Flow measurements were obtained for the infrarenal aorta, common iliac arteries, common iliac veins, and 
inferior vena cava. Statistical analyses included Pearson correlation, Bland-Altman analysis, and F tests with Bonferroni correction.

Results:  A total of 139 patients (mean age, 47 years 6 14 [standard deviation]; 108 women) were included. Inflow-outflow correla-
tion improved after manual correction (r = 0.94, P , .001) compared with that before correction (r = 0.50, P , .001). Automated 
correction showed similar results (r = 0.91, P , .001) and demonstrated very strong correlation with manual correction (r = 0.98,  
P , .001). Both correction methods reduced inflow-outflow variance, improving mean difference from 20.14 L/min (95% limits of 
agreement: 21.61, 1.32) (uncorrected) to 0.05 L/min (95% limits of agreement: 20.32, 0.42) (manually corrected) and 0.05 L/min 
(95% limits of agreement: 20.38, 0.49) (automatically corrected). There was no significant difference in inflow-outflow variance 
between manual and automated correction methods (P = .10).

Conclusion:  Deep learning automated phase error correction reduced inflow-outflow bias and variance of volumetric flow  
measurements in four-dimensional flow MRI, achieving results comparable with manual image-based phase error correction.
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Convolutional neural networks (CNNs) are an emerg-
ing class of deep learning techniques that have been used for 
classification, localization, and segmentation and have broad 
potential to further benefit medical image analysis (22). Our 
objective was to develop a deep learning algorithm to gener-
ate phase error corrections without human intervention, sim-
plifying the analysis and interpretation of abdominopelvic 
4D flow acquisitions. We evaluated the feasibility of using a 
fully automated deep learning algorithm to perform image-
based background phase error correction in 4D flow MRI 
and compared its effectiveness relative to manual image-based 
correction, applying inflow-outflow consistency as a principal 
benchmark of algorithm performance.

Materials and Methods

Patients
This study was compliant with the Health Insurance Portabil-
ity and Accountability Act, and we obtained institutional review 
board approval, with waiver of informed consent. We retrospec-

Abbreviations
CNN = convolutional neural network, 4D = four-dimensional, 
LCIA = left common iliac artery, LCIV = left common iliac vein, 
RCIA = right common iliac artery, RCIV = right common iliac vein, 
3D = three-dimensional

Summary
Deep learning-based background phase error correction improved 
the consistency of flow measurements in abdominopelvic four-
dimensional flow MRI and simplified hemodynamic analysis for 
clinical use.

Key Results
	N A deep learning algorithm trained with 99 abdominopelvic four-

dimensional (4D) flow MRI examinations successfully generated 
phase error fields for automated correction.

	N In an independent sample of 40 patients, flow measurements after 
deep learning correction had very strong correlation with manually 
corrected measurements (r = 0.98, P , .001).

	N Automated correction reduced inflow-outflow bias and variance 
(P , .001), improving mean difference from 20.14 L/min uncor-
rected to 0.05 L/min deep learning corrected.

Figure 1:  Effect of background phase error correction on flow visualization and quantification. (A) Coronal images in a 
53-year-old man with cirrhosis and severe portal hypertension. Postcontrast four-dimensional (4D) flow MRI scans of the abdomen 
show portosystemic shunting through variceal vessels (solid arrows) that are difficult to discern prior to correction but are clearly 
seen after correction. The main portal vein (dashed arrows) is also better depicted. Adjacent anatomy is shown in the fast spoiled 
gradient echo (FSPGR) image. (B) Postcontrast 4D flow MRI scans in a 29-year-old woman with pelvic venous congestion, marked 
compression of the left common iliac vein (LCIV) under the right common iliac artery, and compensatory collateral flow connecting 
the LCIV to the right common iliac vein (RCIV). A large discrepancy in the amount of collateral flow (orange arrow) that passes to the 
RCIV is seen prior to correction. After correction, LCIV flow (0.60 L/min) is equal to the sum of flow within the compressed LCIV and 
the collateral vein (0.39 + 0.21 L/min). Line graph shows flow curves throughout one cardiac cycle for two locations in the LCIV, 
where right common iliac arterial flow (red line) suppresses venous return in the LCIV (dashed line and arrows). Venous flow in the 
LCIV before the collateral (solid line and arrows) remains unaffected.
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tively collected a convenience sample of 139 abdominopelvic 
4D flow MRI acquisitions performed at our institution between 
January 2016 and July 2020 as part of routine clinical MRI ex-
aminations, which also included contrast-enhanced MR angiog-
raphy and postcontrast fast spoiled gradient-echo imaging.

Data Acquisition
MRI examinations were performed on a 3-T MRI scan-
ner (Discovery MR 750; GE Healthcare) using a 32-channel 
phased-array coil. Postcontrast 4D flow MRI was performed 
with a 3D cartesian strategy in which Ky-Kz samples were 
grouped in spiral-like sets and were acquired with golden angle 
ordering (23,24), evenly spaced over time (25) with dense cen-
tral k-space sampling for respiratory soft gating (26). Imag-
ing parameters are summarized in Table 1. The 4D flow MRI 
scans were acquired as a coronal slab through the abdomen and 
pelvis, with the patient’s arms raised above his or her head to 
prevent soft-tissue wrapping in the right-left phase direction.

Manual Background Phase Error Correction
Manual phase error correction was performed with dedicated 
imaging software (Arterys, version 26.7.6; Arterys) by two indi-
viduals (S.Y., a 4th-year medical student; A.H., a board-certified 
radiologist with more than 10 years of experience working with 
4D flow MRI). Manual correction was performed via segmenta-
tion of static tissue followed by patchwise linear regression of 
static tissue velocities. Raw uncorrected and corrected velocity 
data were exported from the imaging software.

Data Preprocessing
After 40 examinations were reserved for testing, the remain-
ing 1980 temporal volumes from 99 examinations were ran-
domly divided by examination into two cohorts, with 86% 
(85 of 99) for training and 14% (14 of 99) for validation. 
Maxwell terms and gradient field nonlinearity were corrected 

in-line during the image reconstruction process (16,17).  
After performing semiautomatic thresholding of magnitude 
images for exclusion of air pixels, velocity values corresponding 
to unexcluded pixels were used to generate a third-order poly-
nomial regression of the manual correction. Velocities were 
scaled by the encoding velocity for each examination, and all 
data were downsampled to 64 3 64 3 64 cubes due to antici-
pated GPU memory limitations.

Neural Network Training
Our 3D multichannel U-Net (27), a type of CNN whose ar-
chitecture is illustrated in Figure 2, was trained for 300 epochs 
using mean squared error loss, hyperbolic tangent activation, 
and Adam optimization with a learning rate of 1 3 10–4. Net-
work training used TensorFlow-GPU 2.1 (Google) on a work-
station running Ubuntu 18.04 (Canonical) equipped with 
four Nvidia Quadro GV100 GPUs (Nvidia). CNN design 
and training were performed by two authors (S.Y.; E.M.M., a 
doctoral student in his 6th year of training). The code for the 
model architecture and training routine is available on request 
(release version 1.0; https://github.com/AiDALabUCSD/Abdom-
inal-Phase-Error-Correction; GitHub login required).

Polynomial Regression and Application
Pixelwise velocity corrections generated by the CNN were 
supplied as input to third-order polynomial least-squares  
regression after intensity thresholding for exclusion of air pixels.  
A single-phase error correction was generated for each exami-
nation, computed as the average of corrections generated for 
each of the 20 time points in the 4D flow time series. The fully 
automated postprocessing pipeline is shown in Figure 2.

Volumetric Flow Measurements
Segmentation of vessels for flow quantification was performed 
by two observers (S.Y., A.H.) for the infrarenal aorta in tripli-

Table 1: Imaging Parameters for Time-resolved 3D Phase-Contrast MRI with 3D Velocity Encoding

Parameter Training Data Set (n = 85) Validation Data Set (n = 14) Testing Data Set (n = 40)
Temporal resolution (msec) 56 (38–175) 57 (45, 87) 56 (43, 74)
Spatial resolution (mm)
  Frequency 1.7 (1.3–2.5) 1.7 (1.6–2.0) 1.7 (1.6–1.9)
  Phase 2.1 (1.7–3.0) 2.0 (1.9–2.4) 2.0 (1.9–2.3)
  Section 3.0 (2.8–7.5) 2.8 (2.8–3.0) 2.8 (2.8–3.0)
Encoding velocity (cm/sec) 148 (80–200) 141 (80–250) 150 (80–250)
Acceleration factor
  Phase 3.0 (1.2–3.2) 3.0 (2.6–3.2) 3.0 (2.6–3.2)
  Section 1.8 (1.2–2.0) 1.8 (1.8–2.0) 1.8 (1.8–2.0)
Scanning time (sec) 674 (409–810) 707 (630–808) 674 (357–840)
Contrast agent (%)
  Gadobutrol 78 (66/85) 86 (12/14) 90 (36/40)
  Gadobenate dimeglumine 15 (13/85) 7 (1/14) 10 (4/40)
  Gadoxetate disodium 7 (6/85) 0 (0/14) 0 (0/40)
  Gadofosveset trisodium 0 (0/85) 7 (1/14) 0 (0/40)

Note.—Data for imaging parameters are presented as means, with ranges in parentheses. Data for contrast agents are presented as percentages, 
with raw data in parentheses. 3D – three-dimensional.
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cate and individually for the left common iliac artery (LCIA) 
and right common iliac artery (RCIA), inferior vena cava, 
left common iliac vein (LCIV), and right common iliac vein 
(RCIV). The same manual segmentations were used for uncor-
rected, manually corrected, and automatically corrected data, 
such that measurements between the three data sets were spa-
tially consistent.

Performance Evaluation
Internal consistency of flow measurements was established by 
assessing conservation of mass in the 40 test cases. The average 
of the three aortic measurements was compared with the sum 
of the LCIA and RCIA, while the inferior vena cava was com-
pared with the sum of the LCIV and RCIV. Each arterial vessel 
was compared with its venous counterpart (aorta vs inferior vena 
cava, LCIA vs LCIV, and RCIA vs RCIV). A representative case 
from the test set is illustrated in Figure 3, showing the 24 total 
measurements per case.

Statistical Analysis
For the 40 test cases, t tests were performed with a difference 
of zero as the null hypothesis for the five comparisons assessing 
conservation of mass and a type I error threshold of P , .01  
(a = .05 with Bonferroni correction for multiple comparisons). 
Additional statistical comparisons were performed using the 
Bartlett test of homoscedasticity (28) followed by pairwise F tests 
with Bonferroni correction. These analyses were performed in 
RStudio 1.3.959 (R Foundation for Statistical Computing).

Inflow-outflow consistency in the test set was further as-
sessed using Pearson correlation and Bland-Altman analysis. The 
time required for manual versus automated correction was as-
sessed using a t test. We fitted a single-rater two-way random 
effects intraclass correlation model (29) to assess absolute agree-
ment between flow measurements made by two observers (S.Y., 

A.H.). These statistical analyses were performed using the Scipy 
1.4.1 and Pingouin 0.3.12 libraries in Python (version 3.7.7;  
https://www.python.org/).

Results

Patient Characteristics
We retrospectively collected abdominopelvic 4D flow MRI  
examinations from 140 patients (mean age, 47 years 6 14  
[standard deviation]; 108 women). Patient characteristics 
grouped by clinical indication are summarized in Table 2.

Performance of Manual Phase Error Correction
Prior to background phase error correction, there was poor 
inflow-outflow consistency for comparison of arterial flow with 
venous flow and for comparison of blood flow before bifurca-
tion with blood flow after bifurcation (Fig 3A, 3D). The mean 
absolute difference between flow measurements was 0.52 L/min  
6 0.55 (standard deviation), while the mean percentage differ-
ence was 37% 6 26. Correlation between flow measurements 
was moderate (r = 0.50, P , .001).

After manual correction (Fig 3B, 3E), the mean absolute 
difference improved to 0.15 L/min 6 0.12, with a correspond-
ing mean percentage difference of 14% 6 10. Corrected flow 
measurements also demonstrated very strong correlation be-
tween inflow and outflow measurements (r = 0.94, P , .001).

Clinical Application of 4D Flow
In Figure 4, we highlight two example cases in which manually 
corrected 4D flow MRI was helpful for diagnosis.

In the first example case (Fig 4A–4C), a 24-year-old woman 
with postural orthostatic tachycardia syndrome presented 
with orthostatic lightheadedness, left leg discomfort, and 

Figure 2:  Pipeline for automated phase error correction. A three-dimensional (3D) multichannel U-Net (a type of convolutional neural network) designed with (A) four 
input channels, including flow velocities encoded in three cardinal directions and corresponding magnitude volumes, and (B) three output channels to infer corrections for 
the same three velocity components. Architecture of the 3D multichannel U-Net is shown, with numbers indicating the total number of channels, operations (arrowheads), 
and kernel sizes and activation functions indicated in the legend. As a postprocessing step, pixelwise inferred corrections are smoothed with least squares regression to a 
third-order polynomial in (C). This correction is then added to the (D) original uncorrected data to generate (E) corrected flow data.
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abdominopelvic pressure that worsened throughout the day. 
She underwent multisequence MRI, including differential 
subsampling with cartesian ordering (30), which demonstrated 
dilated ovarian veins bilaterally and filling of pelvic venous col-
laterals. Further evaluation with 4D flow MRI enabled us to 
confirm retrograde flow in the left ovarian vein (280 mL/min) 
and anterograde flow in the right ovarian vein (230 mL/min). 
There was absent flow in the left renal vein as it passed under 
the superior mesenteric artery, indicating nutcracker physi-
ology. There was limited flow (270 mL/min) in the LCIV as 
it passed under the RCIA, which was inadequate to accom-
modate the retrograde ovarian venous flow, indicating May-
Thurner venous insufficiency.

The patient subsequently underwent catheter venography, 
which enabled us to confirm left ovarian vein reflux and left 
iliac venous insufficiency. This was followed by LCIV stent-
ing, resolution of May-Thurner venous insufficiency and left 
leg discomfort, and, later, left gonadal vein embolization with 
resolution of her abdominal bloating, urinary discomfort, and 
pelvic pain.

In a second example case (Fig 4D–4F), an 89-year-old woman 
with a history of ischemic colitis underwent abdominal MRI for 
evaluation of persistent abdominal pain and diarrhea. Quantita-
tive flow measurements using two-dimensional phase-contrast 

Figure 3:  Visual example of background phase error correction for four-dimensional flow MRI. Images show visual and quantitative reduction of back-
ground phase error after manual or convolutional neural network (CNN)-based correction. (A–C) Coronal MRI scans of the aorta and common iliac arter-
ies during peak systole. (D–F) Coronal MRI scans show the inferior vena cava and common iliac veins during mid-diastole. Flow velocity is represented by 
a color map ranging from blue (0 cm/sec) to red (80 cm/sec). For assessment of flow continuity, measurements (in liters per minute) were taken at multiple 
locations (arrows). Corrected velocity measurements showed improved consistency along the length of the infrarenal aorta and conservation of mass across 
bifurcations in the arterial and venous systems.

Table 2: Patient Characteristics

Parameter

Training  
Data Set  
(n = 85)

Validation  
Data Set  
(n = 14)

Testing  
Data Set  
(n = 40)

Total  
(n = 139)

Sex
  Female 63 10 35 108
  Male 22 4 5 31
Age (y)* 48 6 15 52 6 15 43 6 13 47 6 14
Clinical indication
  Liver disease 25 4 6 35
  Uterine bleeding 

and masses, 
including  
fibroids

30 3 21 54

  Venous  
congestion

15 5 9 29

  Mesenteric 
ischemia

6 0 0 6

  Renal artery 
stenosis

9 2 4 15

Note.—Unless otherwise indicated, data are numbers of 
patients.
* Data are mean 6 standard deviation.
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MRI demonstrated limited augmentation of mesenteric blood 
flow after a prandial challenge (5), with flow through the supe-
rior mesenteric vein increasing from 299 to 330 mL/min and 
flow through the superior mesenteric artery increasing from 386 
to 414 mL/min. Postprandial 4D flow MRI measurements were 
obtained to assess the feasibility of using 4D flow in place of two-
dimensional phase-contrast planes, and the 4D flow measure-
ments were found to be similar to the two-dimensional phase-
contrast flow measurements. We observed several additional 
findings on 4D flow MRI scans, including high-velocity systolic 
blood flow through the celiac (159.41 cm/sec) and superior mes-
enteric (136.33 cm/sec) arteries and prolonged diastolic forward 
flow through the stenotic celiac artery (Fig 4F). Taken together, 
these findings are consistent with hemodynamically significant 
celiac and superior mesenteric artery stenosis and chronic mes-
enteric ischemia.

Performance of Automated Phase Error Correction
Neural network inference required a mean of 0.54 second 6 
0.01 per case, while postprocessing required a mean of 11.75 
seconds 6 0.61 per case. The mean total time for automated 
phase error correction was 12.29 seconds 6 0.61 compared with 
manual phase error correction performed by the most experi-
enced observer (A.H.), which required 152.3 seconds 6 52.58 
per case (P , .001).

The multichannel 3D U-Net led to an improvement in 
inflow-outflow consistency comparable to that of manual  
correction, with strong correlation between flow measurements  
(r = 0.91, P , .001). The average standard deviation for the three 
aortic measurements performed for each case was 0.07 L/min, com-
pared with 0.07 L/min after manual correction and 0.23 L/min  
for uncorrected cases. The CNN algorithm was successfully exe-
cuted in all 40 test cases, resolving phase error in all three principal 
directions (Fig 5). There were no technical failures.

A direct comparison of flow measurements obtained using 
manual and automated correction demonstrated very strong cor-
relation (r = 0.98, P , .001) (Fig 6A).

The multichannel 3D U-Net achieved an average  
difference between vessel measurements of 0.05 L/min overall 
(P , .001), an improvement over uncorrected measurements, 
which had an average difference of 20.14 L/min overall (P = .01). 
In comparison, manual correction had an average difference of 
0.05 L/min (P , .001). When considering only comparisons 
of arterial flow versus venous flow, both correction methods 
showed marked improvement over uncorrected data, with mean 
differences of 20.005 L/min (P = .79) after manual correction  
and 20.003 L/min (P = .89) after automated correc-
tion compared with 20.35 L/min for uncorrected data (P , 
.001). Comparisons between pre- and postbifurcation flow also 
showed an improvement in mean difference from 0.17 L/min  

Figure 4:  Clinical applications of abdominopelvic four-dimensional (4D) flow MRI. (A–C) Coronal oblique MRI scans obtained with postcontrast 4D flow MRI (A) 
and MR angiography (B) in a 24-year-old woman with Nutcracker syndrome and May-Thurner syndrome who had retrograde flow in an asymmetrically enlarged left 
ovarian vein (LOV) (red arrow) and antegrade flow in the enlarged contralateral ovarian vein (blue arrow). AO = aorta, IVC = inferior vena cava, LCIA = left common iliac 
artery, RCIA = right common iliac artery, RCIV = right common iliac vein, ROV = right ovarian vein. In C, both retrograde ovarian flow and left common iliac vein (LCIV) 
stenosis were confirmed during catheter angiography, with flow through the compressed LCIV (black arrow) being restored after stent placement. (D–F) Sagittal oblique 
images in an 89-year-old woman with a history of ischemic colitis and severe stenosis of the celiac artery and superior mesenteric artery at their origins, seen as focal vessel 
narrowing in the two-dimensional MR angiography image (D) and three-dimensional (3D) reconstruction (E). Postcontrast 4D flow MRI scan (F) shows similar narrowing 
and provides additional hemodynamic information: high flow velocity is shown in red, and persistent high-velocity flow in the celiac artery during diastole is reflected in the 
corresponding flow curves.
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uncorrected to 0.14 L/min manually corrected and 0.13 auto-
matically corrected, though the mean difference remained 
greater than zero for both correction methods (P = .02 for 
uncorrected, P , .001 for manually corrected, P , .001 for 
automatically corrected). Uncorrected data demonstrated 
a mean difference significantly different from zero for three  

of the five vessel comparisons (P , .001 for the differ-
ence between the LCIA and LCIV, the difference between 
the RCIA and RCIV, and the difference between the aorta 
and the sum of the RCIA and LCIA, while manually and  
automatically corrected vessel comparisons were significantly 
different from zero (P , .001 and P , .001, respectively) 

Figure 5:  Representative coronal sections of MRI scans from all 40 test cases. With velocity shown on a red-white-blue color scale, manual and automated correction 
methods show a similar reduction of soft-tissue phase error, seen as primarily white coloring (zero flow). Phase errors for each cardinal direction appear to follow fairly con-
sistent patterns but with slight differences from case to case. AP = anterior to posterior, RL = right to left, SI = superior to inferior.

Figure 6:  Analysis of volumetric flow continuity in the testing data set (40 examinations). (A) Panel shows a comparison of all manually and 
automatically corrected flow measurements. The slope of the regression is 1.01, and the correlation coefficient is 0.98. (B) Box-and-whisker plot 
grouped by vessel type compares uncorrected, manually corrected, and automatically corrected flow differences among the five vessel compari-
sons. Compared with uncorrected measurements, manually and automatically corrected measurements show an overall reduction in range, with 
mean values closer to zero. AO = aorta, IVC = inferior vena cava, LCIA = left common iliac artery, LCIV = left common iliac vein, RCIA = right com-
mon iliac artery, RCIV = right common iliac vein. (C) Bland-Altman plots with comparisons of arterial and venous flow (red) and comparisons of flow 
before and after bifurcation (blue) show greater flow consistency with narrower limits of agreement after both manual and automated correction.
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for only the difference between the aorta and the sum of the 
RCIA and LCIA (Table 3, Fig 6B).

Manual and automated correction methods also dem-
onstrated a reduction in variance of volumetric flow differ-
ences, with overall mean difference as follows: 20.14 L/min 
(95% limits of agreement: 21.61, 1.32) for uncorrected data,  
0.05 L/min (95% limits of agreement: 20.32, 0.42) for man-
ually corrected data, and 0.05 L/min (95% limits of agree-
ment: 20.38, 0.49) for automatically corrected data (Fig 6C).  
The Bartlett test of homogeneity of variances yielded an over-
all P , .001, and pairwise F tests with Bonferroni correc-
tion demonstrated no significant difference between manual 
and automated correction (P , .001 for manually corrected 
vs uncorrected data, P , .001 for automatically corrected 
vs uncorrected data, P = .10 for manual vs automatically  
corrected data).

Analysis of interobserver variability demonstrated excellent 
reliability both before and after background phase error correc-
tion. The intraclass correlation coefficient prior to correction was 
0.94 (P , .001). Manual and automated correction methods 
each improved the coefficient to 0.99 (P , .001 for both).

Discussion
Four-dimensional (4D) flow MRI has become increasingly valu-
able in the qualitative and quantitative assessment of blood flow. 
Since all measurements can be retrospectively obtained after im-
age acquisition without the need for targeted US windows or 
placement of two-dimensional phase-contrast planes at the time 
of the examination, 4D flow MRI provides versatility that can 
be essential in the diagnostic process. However, the correction of 
magnetic eddy current–related background phase error remains 
a challenge in abdominal applications.

In this study, we demonstrated the feasibility of automating 
background phase error correction using a multichannel 3D  
U-Net, with improved consistency in comparisons of  
arterial and venous flow as well as in comparisons of blood flow 
before and after bifurcations. In a test set of 40 patients, auto-
mated phase error correction demonstrated very strong correla-
tion with manually corrected measurements (r = 0.98, P , .001). 
Inflow-outflow bias and variance were also reduced, with mean 
difference and limits of agreement improving from 20.14 L/min  
(95% limits of agreement: 21.61, 1.32) (uncorrected) to 

0.05 L/min (95% limits of agreement: 20.38, 0.49) (automati-
cally corrected) and no significant difference in variance between 
manual and automated correction methods (P = .10, F test with 
Bonferroni correction).

Performance of manual correction requires substantial time 
and expertise due to the need for manual vessel segmentation. 
Previous studies (18,31) have explored the effect of various pa-
rameters on the accuracy of image-based phase error correction, 
including the signal-to-noise ratio of the data itself, the percent-
age of stationary tissue used in the regression, and the spatial 
order of the regressed correction. In general, the quality of the 
correction decreases with decreasing percentage of static tissue, 
which means that manual tissue segmentation requires a delicate 
balance between excluding as many vessels as possible and maxi-
mizing inclusion of soft tissue. This deterioration is increasingly 
pronounced with regressions of higher spatial order; in fact, 
third- and sometimes second-order polynomial regressions are 
frequently rendered impossible due to insufficient soft-tissue se-
lection. CNNs are able to overcome this limitation because they 
learn relevant features of input images on their own.

Our study had limitations. First, our training and testing data 
were sourced using one MRI scanner from one vendor at one in-
stitution. Second, because many of our patients underwent 4D 
flow MRI for clinical evaluation of venous abnormalities, low 
encoding velocity (usually 80 cm/sec) created velocity aliasing 
within some high-flow arteries, limiting our ability to accurately 
measure blood flow in some vessels. Although we did not evalu-
ate the potential of CNNs to correct for velocity aliasing, it is 
plausible that they might be applied similarly for this purpose 
as well. Finally, performance evaluation of our neural network 
relied on inflow-outflow consistency in major abdominal vessels. 
We did not assess whether detection of intraabdominal shunts 
was impaired or improved with phase error correction, instead 
focusing primarily on the feasibility of using a CNN to perform 
this correction.

In conclusion, correction of background phase offset poses 
a challenge to the clinical application of four-dimensional (4D) 
flow MRI but can be accomplished using a single multichan-
nel three-dimensional U-Net, a type of convolutional neural 
network (CNN). We expect that similar results may be possible 
for other body territories, scanners, vendors, and institutions, 
which might be the subject of future investigations. This could 

Table 3: Effect of Manual and Deep Learning–based Automated Phase Error Correction on Inflow-Outflow Consistency for Five 
Vessel Comparisons

Vessel Comparison

Uncorrected Manually Corrected Automatically Corrected

Mean P Value Mean P Value Mean P Value
AO to IVC –0.27 (–0.62, 0.08) .13 0.08 (0.01, 0.15) .03 0.05 (0.03, 0.12) .21
LCIA to LCIV –0.38 (–0.52,–0.24) ,.001 –0.03 (–0.07, 0.02) .23 0.03 (–0.04, 0.10) .41
RCIA to RCIV –0.42 (–0.60,–0.24) ,.001 –0.07 (–0.12,–0.02) .01 –0.07 (–0.15, 0.01) .09
AO to sum of RCIA and LCIA 0.44 (0.24, 0.64) ,.001 0.22 (0.19, 0.26) ,.001 0.17 (0.12, 0.22) ,.001
IVC to sum of RCIV and 

LCIV
–0.10 (–0.25, 0.06) .22 0.05 (0.002, 0.10) .04 0.08 (0.03, 0.14) .005

Note.—Data in parentheses are 95% CIs. Listed P values correspond to t tests. AO = aorta, IVC = inferior vena cava,  
LCIA = left common iliac artery, LCIV = left common iliac vein, RCIA = right common iliac artery, RCIV = right common iliac vein.
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be accomplished by retraining the CNN using new 4D flow 
data sets or by using transfer learning to expand the generaliz-
ability of this CNN. Our proof-of-concept study demonstrates 
the feasibility of automating phase error correction, bypassing 
the segmentation that is generally required for manual correc-
tion. In essence, we have trained a CNN to perform a complex 
task, simultaneously capturing the phase error in static soft tissue 
while ignoring flowing blood in the arterial and venous systems. 
The feasibility of this work highlights the untapped potential of 
CNNs to accomplish complex visual and computational tasks 
that may not be readily performed by humans and may help 
bring advanced imaging technologies, including 4D flow MRI, 
into routine clinical care.
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