UCLA

Posters

Title

Multihop Sensing and Communication Networks (SEN 5)

Permalink

https://escholarship.org/uc/item/5jj5q1hj

Authors

Satish Vedantam Urbashi Mitra Ashutosh Sabharwal

Publication Date

2006

Multihop Sensing and Communication

Networks

Satish Vedantam, Dr. Urbashi Mitra and Dr. Ashutosh Sabharwal Communication Sciences Institute, USC and Rice University

Introduction: Communicate and estimate variables intrinsic to given network

Standard Sensor Networks

- · Detect and estimate variables extrinsic to given network
- Communication and estimation are not coupled An optimal communication scheme can be used with an optimal estimation scheme to yield best results

Proposed Sensor Network System Model

- Variables of interest are intrinsic to the given network
 Example: Channel impulse responses between nodes
- Communication and estimation are coupled One needs poor communication schemes to generate good estimates and vice versa

Problem Description: Minimize sum distortion of channel estimates at the destination

An n-hop Linear Topology

Measure the fidelity of the estimate by : $D_i = \mathbb{E}[|\hat{h}_{i,d} - h_i|^2]$

Also define the distortion diversity by : $d: \lim_{\forall j \text{ SNR}_i \to \infty} D_i = \Theta\left(\text{SNR}_i^{-d}\right)$

Assumptions

- Time orthogonal communication one one node "Talks" at each point in time
- Block Fading channels with independent, Gaussian channel coefficients and noise

Problem Statement Minimize $D = \sum_{i=1}^{n} D_i$ given a fixed total time T

Proposed Solution: Employ either Estimate-and-Forward or Amplify-and-Forward

Overview of Results

Estimate and Forward

Final Result: The achievable distortion diversity for hop *i* given the Estimate and Forward scheme is upper bounded by

$$r_i = \min_{j>i} \frac{T_j}{T}$$

Amplify and Forward

$$\begin{array}{ccc} X_j & Y_j & X_j^i = \sqrt{P_j}\beta_j^i m_{j,i}, \ t \in I_j^i \\ & & Y_j = h_j X_j + Z_{j+1}, \ t \in I_j^i \\ & & & \\ & &$$

Final Result: The achievable diversity for the Amplify and Forward scheme is upper bounded by $\ensuremath{\mathbf{1}}$

Building Towards Arbitrary Topologies

Figures

