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ABSTRACT OF THE DISSERTATION

Index Coding
Fundamental Limits, Coding Schemes, and Structural Properties

by

Fatemeh Arbabjolfaei

Doctor of Philosophy in Electrical Engineering
(Communication Theory and Systems)

University of California, San Diego, 2017

Professor Young-Han Kim, Chair

Originally introduced to minimize the number of transmissions in satellite

communication, index coding is a canonical problem in network information theory

that studies the fundamental limit and optimal coding schemes for broadcasting

multiple messages to receivers with different side information. The index cod-

ing problem provides a simple yet rich model for several important engineering

problems in network communication, such as content broadcasting, peer-to-peer

communication, distributed caching, device-to-device relaying, and interference

xviii



management. It also has close relationships to network coding, distributed stor-

age, and guessing games.

This dissertation aims to provide a broad overview of this fascinating prob-

lem, focusing on the simplest form of unicast index coding. A unified view on

coding schemes based on algebraic, graph-theoretic, and information-theoretic ap-

proaches is presented. Although the optimal communication rate, namely, the

capacity is open in general, several bounds and structural properties are estab-

lished. The relationships between index coding, distributed storage, and guessing

game on directed graphs are also discussed.

xix



Chapter 1

Introduction

1.1 Motivation and the Problem Definition

Consider the wireless communication system consisting of one server and

three receivers, as depicted in Figure 1.1. The server has three distinct messages

x1, x2, and x3. Receiver i ∈ {1, 2, 3} is interested in message xi and has some of

the other messages as side information. In particular, receiver 1 has message x2,

receiver 2 has x1 and x3, and receiver 3 has x1 as side information. We wish to

communicate all the messages to designated receivers using the minimum possible

number of broadcast transmissions.

One naive strategy is to send one message at a time, which takes overall

three transmissions. Alternatively, if the server transmits two coded messages

x1 + x2 and x3 (assuming that the messages can be represented in a common

finite field), then every receiver can recover its desired message using the received

coded messages and its side information. Indeed, receiver 1 can recover x1 from

the received message x1 + x2 and its side information x2. Similarly, receiver 2

can recover x2 from x1 + x2 and x1. Receiver 3 can clearly This simple example

1



2

shows that sending coded messages may decrease the number of needed broadcast

transmissions.

?

?

?

x1

x1

x1

x2

x2

x3

x3

Figure 1.1: An index coding example with three receivers.

Generalizing the above example, we study the communication problem de-

picted in Figure 1.2, which is commonly referred to as the index coding prob-

lem. In this canonical problem in network information theory, a server has a

tuple of n messages xn = (x1, . . . , xn), xi = (xi1, . . . , xiti) ∈ Fti
q , for some finite

field Fq, and is connected to n receivers via a noiseless broadcast channel. Re-

ceiver i ∈ [n] := {1, 2, . . . , n} is interested in message xi and has a set of other

messages x(Ai) := (xj , j ∈ Ai), Ai ⊆ [n] \ {i} as side information. Assuming that

the server knows side information sets A1, . . . , An, one wishes to characterize the

minimum amount of information to be broadcast from the server, and to find the

optimal coding scheme that achieves this minimum.

More precisely, a (t1, . . . , tn, r) index code is defined by

• an encoder φ :
∏n

j=1 F
tj
q → Fr

q that maps the message n-tuple xn to an index

y = (y1, . . . , yr) ∈ Fr
q and

• n decoders, where the decoder at receiver i ∈ [n], ψi : F
r
q ×

∏

j∈Ai
F
tj
q → Fti

q ,

maps the received index φ(xn) and the side information x(Ai) back to xi.
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x1, . . . , xn y
Encoder

Decoder 1

Decoder 2

Decoder n

x1

x2

xn

x(A1)

x(A2)

x(An)

Figure 1.2: The index coding problem.

Thus, for every xn ∈∏n
j=1 F

tj
q ,

ψi(φ(x
n), x(Ai)) = xi, i ∈ [n].

A (t, . . . , t, r) code is written as a (t, r) code. If the encoder of a code is a linear

function of xij , i ∈ [n], j ∈ [ti], and the decoders are linear functions of xij , i ∈ [n],

j ∈ [ti], and yj, j ∈ [r], the code is referred to as a linear index code. If ti = 1

for all i ∈ [n], then the linear index code is said to be a scalar linear index code.

Otherwise, the code is referred to as a vector linear index code.

A rate tuple (R1, . . . , Rn) is said to be achievable for the index coding

problem if there exists a (t1, . . . , tn, r) index code such that

Ri ≤
ti
r
, i ∈ [n].

The capacity region C of the index coding problem is defined as the closure of the
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set of all achievable rate tuples. One can also define the vanishing error capacity

region which is identical to the capacity region of the index coding problem (see

Appendix 1.A for rigorous definition and details).

Note that the definition of the capacity region depends on the finite field Fq

on which the messages are defined and it may well be denoted by C (q) to emphasize

this dependence. However, as we will prove in Appendix 1.B, the choice of Fq is

irrelevant to the actual capacity region itself.

Lemma 1.1. For any two finite fields Fq and Fq′,

C
(q) = C

(q′).

Therefore, for the rest of this manuscript, we assume WLOG that F2 is

used in a given index code.

One can define linearly achievable rate tuple and linear capacity region CL

similarly. As opposed to the capacity region, the linear capacity region of the index

coding problem may depend on the chosen finite field Fq.

Let λ = (λ1, . . . , λn) be a nonnegative real tuple. Define the λ-directed

capacity C(λ) of the index coding problem as

C(λ) = max{R : Rλ ∈ C }. (1.1)

Remark 1.1. The capacity region can be written in terms of λ-directed capacities.

C =
⋃

λ

{(R1, . . . , Rn) : Ri ≤ C(λ)λi, i ∈ [n]} . (1.2)

Note that if λ = cλ′ for some constant c, then C(λ)λ = C(λ′)λ′ and thus in (1.2),

it suffices to take the union only over normalized vectors, e.g., over λ such that
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∑n
j=1 λj = n.

The 1-directed capacity of the index coding problem is referred to as the

symmetric capacity (or the capacity in short), that is

Csym = C(1) = max{R : (R, . . . , R) ∈ C }.

The symmetric capacity can be equivalently defined as

Csym = sup
r

sup
(t,r) codes

t

r
= lim

r→∞
sup

(t,r) codes

t

r
, (1.3)

where equality follows by Fekete’s lemma [1] and the superadditivity

sup
(t,r1+r2) codes

t ≥ sup
(t1,r1) codes

t1 + sup
(t2,r2) codes

t2.

The reciprocal of the symmetric capacity, β = 1/Csym, is referred to as the broadcast

rate, which can be alternatively defined as

β = inf
t

inf
(t,r) codes

r

t
= lim

t→∞
inf

(t,r) codes

r

t
. (1.4)

Any instance of the index coding problem is fully determined by the side

information sets A1, . . . , An, and is represented compactly by a sequence (i|Ai), i ∈

[n]. For example, the 3-message index coding problem with A1 = {2}, A2 = {1, 3},

and A3 = {1} in Figure 1.1 is represented as

(1|2), (2|1, 3), (3|1).

An instance of the problem can be equivalently specified by a directed graph with

n vertices, commonly referred to as the side information graph. Each vertex of
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the side information graph G = (V,E) corresponds to a receiver (and its desired

message) and there is a directed edge j → i if and only if (iff) receiver i knows

message xj as side information, i.e., j ∈ Ai (see Figure 1.3). Hence, the number of

index coding problems with n messages is equal to the number of nonisomorphic

directed graphs with n vertices [2, Seq. A000273], which blows up quickly with

n. Throughout, we identify an instance of the index coding problem with its side

information graph G and often write “index coding problem G.” We also denote

the broadcast rate and the capacity region of problem G with β(G) and C (G)

respectively. Dependence on G may be omitted if it does not cause any ambiguity.

The goal is to characterize the capacity region or the symmetric capacity for the

general index coding problem and to determine the coding scheme that can achieve

it.

1

2 3

Figure 1.3: The graph representation for the index coding problem with A1 =
{2, 3}, A2 = {1}, and A3 = {1, 2}.

This dissertation is organized as follows. Section 2 reviews some mathemat-

ical preliminaries. In Section 3, we characterize the capacity of a general index

coding problem via asymptotic expressions involving graph theoretic quantities.

In Section 4, we investigate basic structural properties of index coding capacity.

In Section 5, we overview performance bounds and their relationships. In Sec-

tion 6, we discuss several coding schemes based on algebraic, graph-theoretic, and

information-theoretic tools. In Section 7, we introduce the notion of criticality

and present necessary and sufficient conditions for a problem to be critical. In
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Section 8, we exploit the coding schemes and structural properties to investigate

problems with small number of messages. In Section 9, we approximate the ca-

pacity for some classes of the index coding problem. In Section 10, we explore

the relationship between index coding, locally recoverable distributed storage and

guessing games.

Throughout the manuscript, the base of logarithm is 2.

1.2 Historical Remarks

The problem of broadcasting to multiple receivers with different side infor-

mation was first considered in the context of satellite communication by Birk and

Kol [3, 4] and later was named as index coding by Bar-Yossef, Birk, Jayram, and

Kol [5]. Slightly different formulations were also studied in the work by Celebiler

and Stette [6], Wyner, Wolf, and Willems [7, 8], and Yeung [9]. In addition to

satellite communication, index coding has applications in diverse areas such as mul-

timedia distribution [10], interference management [11], and coded caching [12, 13].

This problem has also been shown to be closely related to many other important

problems such as network coding [14, 15, 16], locally recoverable distributed stor-

age [17, 18, 19], guessing games on directed graphs [14, 20, 19], matroid theory

[21], and zero-error capacity of channels [22].

Due to this significance, the index coding problem has been broadly studied

over the past two decades. Tools from various disciplines including graph theory,

coding theory, and information theory are utilized to propose numerous interesting

coding schemes [3, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 11, 33, 20, 34] as well as

several performance bounds on the capacity region and the broadcast rate [25, 35,

36, 37, 38, 33]. However, the problem is still open in general and the capacity is
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only known for some special cases.

Chapter 1, in full, is a reprint of the material in the paper: Fatemeh Arbab-

jolfaei and Young-Han Kim, “Elements of index coding”, to be submitted to Foun-

dations and Trends in Communications and Information Theory. The dissertation

author was the primary investigator and author of this paper.

1.A Capacity Region Under Average Error Prob-

ability Criterion

Let Xi and X̂i be random variables representing the i-th message and its

estimate, respectively. Assume that (X1, . . . , Xn) is uniformly distributed over

[qt1 ] × · · · × [qtn ], i.e., the messages are uniformly distributed and independent

of each other. A rate tuple (R1, . . . , Rn) is said to be vanishing error achievable if

there exists a sequence of (⌈rR1⌉, . . . , ⌈rRn⌉, r) index codes such that the average

probability of error

P
(r){(X̂1, . . . , X̂n) 6= (X1, . . . , Xn)} → 0 (1.5)

as r →∞. The vanishing error capacity region Cv of the index coding problem is

the closure of the set of all vanishing error achievable rate tuples (R1, . . . , Rn).

For a general network communication problem, the vanishing error capacity

region and the (zero error) capacity region are not the same [39]. However, for a

single server broadcasting multiple messages these two regions are identical [40],

which is rediscovered by Langberg and Effros [41] for index coding.
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Lemma 1.2 (Langberg and Effros [41]).

C = Cv.

One can similarly define a vanishing error linearly achievable rate tuple.

The vanishing error linear capacity region CLv is then defined to be the closure of

the set of these rate tuples which is also the same as (zero error) linear capacity

region.

Lemma 1.3. CL = CLv.

To prove Lemma 1.3, we first prove the following.

Lemma 1.4. For any linear index code, if the probability of error Pe > 0, then

Pe = 1.

Proof: For any linear encoder φ there exists a matrix A ∈ F
r×

∑
i∈[n] ti

q that

encodes the vector of concatenated messages x ∈ F

∑
i∈[n] ti

q into an index y = Ax.

If Pe > 0, then there exist distinct x1,x2 ∈ F

∑
i∈[n] ti

q such that Ax1 = Ax2 and

x1(Ai) = x2(Ai) for some i ∈ [n]. Let xe = x2 − x1. Then xe 6= 0 and xe(Ai) = 0.

Then for every x, there exists x′ = x+ xe for which Ax = Ax′ and x(Ai) = x′(Ai)

and thus the error probability is 1.

Now we are ready to prove Lemma 1.3. Clearly CL ⊆ CLv. Thus, it suffices

to show that CLv ⊆ CL. Let R be a vanishing error linearly achievable rate tuple.

Then, by definition, there exists a sequence of (⌈rR1⌉, . . . , ⌈rRn⌉, r) index codes

for which (1.5) is satisfied. By Lemma 1.4, there exists a sufficiently large r such

that the error probability of the index code (⌈rR1⌉, . . . , ⌈rRn⌉, r) is zero and thus,

R is also a (zero-error) linearly achievable rate tuple. Hence, we have CLv ⊆ CL,

which completes the proof.
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1.B Proof of Lemma 1.1

Let I and I ′ be index coding instances defined over finite fields Fq and Fq′,

respectively, and let Aq and Aq′ be the associated sets of achievable rate tuples.

We consider two cases.

Case 1: logq q
′ is a rational number, i.e., logq q

′ = a
b
for some a, b ∈ N. To

show that the capacity regions are equal, it suffices to show Aq = Aq′ . Assume

R = (R1, . . . , Rn) ∈ Aq. Then, by definition, there exists a (t, r) code for problem

I such that Ri ≤ ti/r, i ∈ [n]. Repeat the (t, r) code a times to construct a (at, ar)

index code for problem I. Since the two instances are both defined on the same

set of side information, and qa = q′b, this leads to a (bt, br) code for problem I ′.

Therefore, R ∈ Aq′, and thus Aq ⊆ Aq′. By similar steps we can show Aq′ ⊆ Aq,

which completes the proof.

Case 2: logq q
′ is an irrational number. First, we show that Aq′ ⊆ Cq.

Assume R ∈ Aq′. Then, by definition, there exists a (t, r) index code for problem

I ′ such that Ri ≤ ti/r, i ∈ [n]. For any δ > 0, there exists a, b ∈ N such that

a/b < logq q
′ < a/b+δ. Construct a (bt, br) index code for problem I ′ by repeating

the (t, r) code b times. Since qa < q′b < qa+δb and the two problems are defined

on the same set of side information, a (at, (a + δb)r) code for problem I can be

constructed from the (bt, br) code for problem I ′. Letting δ → 0 proves that

R ∈ Cq, and thus Aq′ ⊆ Cq. Since Cq is convex, we have Cq′ ⊆ Cq. By similar

steps we can show Cq ⊆ Cq′ , which completes the proof.



Chapter 2

Mathematical Preliminaries

Throughout, unless specified otherwise, a graph G = (V,E) shall mean a di-

rected, finite, and simple graph, where V = V (G) is the set of vertices (nodes) and

E = E(G) ⊆ V × V is the set of directed edges. A graph G = (V,E) is said to be

unidirectional if (i, j) ∈ E implies (j, i) 6∈ E. Similarly, G is said to be bidirectional

if (i, j) ∈ E implies (j, i) ∈ E. Given G, its associated undirected graph U = U(G)

is defined by identifying V (U) = V (G) and E(U) = {{i, j} : (i, j) ∈ E(G)}. A bi-

directional graph G is sometimes identified with its undirected graph. The comple-

ment Ḡ of a graph G is defined by V (Ḡ) = V (G) and (i, j) ∈ E(Ḡ) iff (i, j) 6∈ E(G).

For any J ⊆ V (G), G|J denotes the subgraph induced by J , i.e., V (G|J) = J and

E(G|J) = {(i, j) ∈ E : i, j ∈ J}. A graph G = (V,E) is referred to as a cycle

if the set of vertices V can be listed in the order i1, . . . , in+1 such that in+1 = i1

and E = {(ij , ij+1), j ∈ [n]}. A graph is said to be acyclic if no induced subgraph

is a cycle. A tournament is a unidirectional graph in which every pair of distinct

vertices is connected by a single directed edge.

Lemma 2.1 (Stearns [42], Erdös and Moser [43]). Every tournament on n vertices

contains an acyclic induced subgraph on 1 + ⌊log2 n⌋ vertices.

11
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An independent set of a graph G is a set of vertices with no edge among

them. The independence number α(G) is the size of the largest independent set

of the graph G. A clique K of a graph G is a set of vertices such that there is a

(directed) edge from every vertex in K to every other vertex in K. Thus, K is a

clique of G iff it is an independent set of Ḡ. The clique number ω(G) is the size of

the largest clique of the graph G. It is easy to see that

ω(G) = α(Ḡ). (2.1)

For an undirected graph U , graph complement Ū , independent set, indepen-

dence number α(U), clique, and clique number ω(U) are similarly defined and (2.1)

also holds. Two vertices i and j of an undirected graph U are said to be adjacent if

{i, j} ∈ E(U). An automorphism of an undirected graph U is a bijective function

σ : V (U) → V (U) such that for any two vertices i, j ∈ V (U) we have σ(i) and

σ(j) are adjacent iff i and j are adjacent. An undirected graph U is said to be

vertex transitive if for any two vertices i and j of U , there exists an automorphism

σ : V (U)→ V (U) such that σ(i) = j.

A (vertex) coloring of an undirected (finite simple) graph U is a mapping

that assigns a color to each vertex such that no two adjacent vertices share the

same color. The chromatic number χ(U) is the minimum number of colors such

that a coloring of the graph exists. More generally, a b-fold coloring assigns a set

of b colors to each vertex such that no two adjacent vertices share the same color.

The b-fold chromatic number χ(b)(U) is the minimum number of colors such that

a b-fold coloring exists. The fractional chromatic number of the graph is defined

as

χf(U) = lim
b→∞

χ(b)(U)

b
= inf

b

χ(b)(U)

b
,
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where the limit exists by Fekete’s lemma [1] since χ(b)(U) is subadditive, i.e.,

χ(b1+b2)(U) ≤ χ(b1)(U) + χ(b2)(U). Consequently,

χf(U) ≤ χ(U). (2.2)

Let I be the collection of all independent sets in U . The chromatic num-

ber and the fractional chromatic number are also characterized via the following

optimization problem

minimize
∑

J∈I

ρJ

subject to
∑

J∈I:i∈J

ρJ ≥ 1, i ∈ V.

When the optimization variables ρJ , J ∈ I, take values in {0, 1}, then the (integral)

solution to the integer programming is the chromatic number. If this constraint is

relaxed and ρJ ∈ [0, 1], then the (rational) solution to this linear programming is

the fractional chromatic number [44]. As no independent set contains two vertices

of a clique,

ω(U) ≤ χf (U) ≤ χ(U) (2.3)

for any undirected graph U . The fractional chromatic number can be also related

to the independence number.

Lemma 2.2 (Scheinerman and Ullman [44]). For any undirected graph U ,

χf (U) ≥
|V (U)|
α(U)

,

with equality if the graph is vertex transitive.
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An undirected graph U = (V,E) is said to be perfect if for every induced

subgraph U |J , J ⊆ V , the clique number equals the chromatic number, i.e.,

ω(U |J) = χ(U |J). Perfect graphs can be characterized as follows.

Proposition 2.1 (Chudnovsky, Robertson, Seymour, and Thomas [45]). An undi-

rected graph U is perfect iff no induced subgraph of U is an odd cycle of length at

least five (odd hole) or the complement of one (odd antihole).

Let U = (V,E) be an undirected graph with V = [n]. For each clique K of

U , the incidence vector x(K) = (x1(K), . . . , xn(K)) is defined by

xi(K) =















1 if i ∈ K

0 otherwise.

Let K be the collection of all cliques of U . The clique polytope of U is defined as

the convex hull of the incidence vectors of cliques of U .

PK(U) = {
∑

K∈K

α(K)x(K) : α(K) ≥ 0, ∀K and
∑

K∈K

α(K) = 1}. (2.4)

Another (convex) polytope associated with U is defined as

P (U) = {x ∈ Rn
≥0 :

∑

i∈I

xi ≤ 1 for all independent sets I}. (2.5)

Since every incidence vector x = (x1, . . . , xn) of a clique satisfies
∑

i∈I xi ≤ 1 for

an independent set I, PK(U) ⊆ P (U) for every U . Lovász’s perfect graph theorem

states that equality holds iff U is perfect.

Lemma 2.3 (Lovász [46]). For any graph U the following statements are equiva-

lent:
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• U is perfect.

• PK(U) = P (U).

• Ū is perfect.

We now state a result on chromatic numbers that will be useful later. The

chromatic number of a graph can be upper bounded by decomposing it into smaller

graphs. The proof is presented in Appendix 2.A.

Lemma 2.4. Let U1 = (V,E1) and U2 = (V,E2) be two undirected graphs on the

set of vertices V . Consider the graph U = (V,E1 ∪E2) defined on the same vertex

set V in which each edge either belongs to E1 or E2. Then χ(U) ≤ χ(U1) + χ(U2).

Generally speaking, a graph product is a binary operation on two (undi-

rected) graphs U1 and U2 that produces a graph with the vertex set V (U1)×V (U2)

and the edge set constructed from the original edge sets according to certain rules.

In the following, i ∼ j denotes that there exists an edge between i and j.

Given two undirected graphs U1 and U2, the disjunctive (OR) product U =

U1 ∨ U2 is defined [47, 44] as V (U) = V (U1)× V (U2) and (i1, i2) ∼ (j1, j2) iff

i1 ∼ j1 or i2 ∼ j2.

We use the notion U∨k to denote the disjunctive product of k copies of U . The

fractional chromatic number of the disjunctive product is multiplicative.

Lemma 2.5 (Scheinerman and Ullman [44, Cor. 3.4.2]).

χf(U1 ∨ U2) = χf (U1)χf (U2).
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Note that the chromatic number satisfies the following relationship [44,

Prop. 3.4.4]:

χ(U1 ∨ U2) ≤ χ(U1)χ(U2). (2.6)

The chromatic and fractional chromatic numbers of the power of a graph scale in

the same exponential rate.

Lemma 2.6 (Scheinerman and Ullman [44, Cor. 3.4.3]). For any undirected graph

U we have

χf(U) = lim
k→∞

k
√

χ(U∨k) = inf
k

k
√

χ(U∨k).

The strong (AND) product U = U1 ⊠ U2 is defined [48] by (i1, i2) ∼ (j1, j2)

iff

(i1 = j1 and i2 ∼ j2) or (i1 ∼ j1 and i2 = j2) or (i1 ∼ j1 and i2 ∼ j2).

Again, U⊠k denotes the strong product of k copies of U . The disjunctive product

and the strong product are related as follows.

Lemma 2.7. U1 ∨ U2 = U 1 ⊠ U 2.

The Cartesian product U = U1 ∧ U2 is defined by (i1, i2) ∼ (j1, j2) iff

(i1 = j1 and i2 ∼ j2) or (i2 = j2 and i1 ∼ j1).

This product does not increase the chromatic number.

Lemma 2.8 (Sabidussi [49, Lemma 2.6]).

χ(U1 ∧ U2) = max{χ(U1), χ(U2)}.
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The lexicographic product U = U1 ◦U2 is defined [48] by (i1, i2) ∼ (j1, j2) iff

i1 ∼ j1 or (i1 = j1 and i2 ∼ j2) .

Note that the lexicographic product of graphs is not commutative. Nonetheless,

its fractional chromatic number is still multiplicative.

Lemma 2.9 (Scheinerman and Ullman [44, Cor. 3.4.5]).

χf(U1 ◦ U2) = χf(U1)χf(U2).

The lexicographic product can also be defined for directed graphs G0 and

G1: ((i1, i2), (j1, j2)) ∈ E(G0 ◦G1) iff

(i1, j1) ∈ E(G0) or (i1 = j1 and (i2, j2) ∈ E(G1)) .

In other words, each vertex in G0 is replaced by a copy of G1 and all vertices in

one copy of G1 are connected to vertices in another copy according to E(G0); see

Figure 2.1.

(a) (b) (c)

Figure 2.1: (a) A 6-node graph that is the lexicographic product G0 ◦ G1 of
two smaller graphs G0 and G1. (b) The 3-node graph G0. (c) The 2-node graph
G1.

Consider a graph U whose vertices represent input symbols of a noisy chan-

nel and two vertices are connected iff the corresponding channel inputs are con-
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fusable as they may result in the same channel output. The goal is to find the

zero-error capacity of the channel represented by the graph U . If we are limited

to use the channel only once, then we can send up to ⌊log(α(U))⌋ bits without an

error. However, if we are allowed to use the channel t times, then we can construct

the following graph to capture the confusabilities. Assign each t-tuple of the input

symbols to a vertex and the vertices for two tuples xt and zt connect iff for every i,

xi = zi or xi ∼ zi in U . We can easily check that the resulting graph is the strong

product U⊠t. Thus, by using the channel t times, we can send ⌊log(α(U⊠t))⌋ bits

without an error. Based on this observation [50], the Shannon capacity of a graph

U is defined as

Θ(U) = sup
t

t
√

α(U⊠t) = lim
t→∞

t
√

α(U⊠t). (2.7)

In other words, log(Θ) indicates the number of bits per input symbol that can be

sent through the channel without error. By definition,

α(U) ≤ Θ(U). (2.8)

Shannon [50] showed that for perfect graphs α(U) = Θ(U). The equality

does not hold in general, however. In fact, computing the Shannon capacity of a

general graph is a very hard problem. Lovász [51] derived an upper bound on the

Shannon capacity referred to as the Lovász theta function, which is easily com-

putable and results in determining the Shannon capacity of some graphs. Before

defining the Lovász theta function, we need the following definition. An orthonor-

mal representation of an undirected graph U with n vertices is a set of unit vectors

(v1, . . . , vn) such that if i and j are nonadjacent vertices of U , then vi and vj are

orthogonal, i.e., vTi vj = 0. For example, a set of n pairwise orthogonal unit vectors
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is an orthonormal representation of any undirected n-node graph. The value of an

orthonormal representation is defined as

min
c:‖c‖=1

max
i∈[n]

1

(cTvi)
2 .

The unit vector c attaining the minimum is referred to as the handle of the repre-

sentation. The Lovász theta function of U , denoted as ϑ(U), is defined to be the

minimum value over all orthonormal representations of U . A representation is said

to be optimal if it attains this minimum.

Lemma 2.10 (Lovász [51]). For any undirected graph U ,

Θ(U) ≤ ϑ(U).

By (2.1), (2.8), Lemma 2.10, and Theorem 10 in [51], the Lovász theta

function is sandwiched by other graph-theoretic quantities that are NP-hard to

compute.

Lemma 2.11. For any undirected graph U ,

ω(U) ≤ ϑ(Ū) ≤ χ(U).

However, the Lovász theta function ϑ(U) is polynomially computable in

|V (U)| [52].

Chapter 2, in part, is a reprint of the material in the paper: Fatemeh

Arbabjolfaei and Young-Han Kim, “Elements of index coding”, to be submitted

to Foundations and Trends in Communications and Information Theory. The

dissertation author was the primary investigator and author of this paper.



20

2.A Proof of Lemma 2.4

Let V ′ be the set of vertices incident to the edges in E2 \ E1 and let U ′ =

(V ′, E2 \E1). In order to color the vertices of U , we first color the vertices in V \V ′

with χ(U1) colors using the optimal coloring for U1. Next, we color U ′ with χ(U2)

additional colors using the optimal coloring for U2, which is valid since V ′ ⊆ V

and E2 \E1 ⊆ E2. This guarantees that any pair of adjacent vertices are assigned

different colors, whether both of them belong to V ′ or to V \ V ′ or one to each.

Therefore, there exists a proper coloring of U with at most χ(U1) + χ(U2) colors

and thus χ(U) ≤ χ(U1) + χ(U2).



Chapter 3

Multiletter Characterization of

the Capacity

The notion of confusion graph for the index coding problem was originally

introduced by Alon, Hassidim, Lubetzky, Stav, and Weinstein [53]. In the con-

text of guessing games, an equivalent notion was introduced independently by

Gadouleau and Riis [54]. The use of confusion graphs in information theory traces

back to the work by Shannon to characterize the zero-error capacity of a noisy

channel [50] and to the work by Witsenhausen [55], and Alon and Orlitsky [56]

to accurately convey information to a receiver who has some, possibly related,

prior knowledge. Consider a directed graph G = (V,E) with V = [n]. Let

Ai = {j ∈ V : (j, i) ∈ E}, i ∈ [n], and let t = (t1, . . . , tn) be an integer n-

tuple. Two binary n-tuples xn, zn ∈ ∏i∈[n]{0, 1}ti are said to be confusable at

position l ∈ [ti] of node i ∈ [n] if xil 6= zil and xj = zj for all j ∈ Ai. Hence, if

two tuples xn and zn are nonconfusable, then for each i ∈ [n] either xi = zi or

xi 6= zi and x(Ai) 6= z(Ai). If the directed graph G is the side information graph

of an index coding instance, then xn and zn are nonconfusable implies that these

21
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1

2 3

Figure 3.1: The graph representation for the index coding problem with A1 =
{2, 3}, A2 = {1}, and A3 = {1, 2}.

two message tuples can be assigned to the same codeword without causing any

problem in decoding. As an example, consider the index coding problem with side

information graph shown in Figure 3.1. Let ti = 1, i ∈ [3]. Two message tuples

(x1, x2, x3) = (0, 0, 0) and (z1, z2, z3) = (0, 1, 1) are confusable at position 1 of node

2. Since x2 6= z2 and x1 = z1, receiver 2 cannot correctly decode its message only

based on its side information set A2 = {1}.

Given a directed graph G and an integer n-tuple t = (t1, . . . , tn), the con-

fusion graph Γ
(il)
t (G) at position l of node i is an undirected graph with

∏

i∈[n] 2
ti

vertices such that every vertex corresponds to a binary tuple xn and two vertices

are connected iff the corresponding binary tuples are confusable at position l of

node i. (see Figure 3.2(a), (b), and (c)).

Aggregating over all positions, we say that xn, zn ∈ ∏i∈[n]{0, 1}ti are con-

fusable if they are confusable at some position l of some node i. The confusion

graph Γt(G) is defined as before based on confusion between each pair of vertices,

or equivalently,

E (Γt(G)) =
⋃

i∈[n]

ti
⋃

l=1

E(Γ
(il)
t (G)). (3.1)

The confusion graph Γt(G) corresponding to t = (1, 1, 1) for the graph of Figure 3.1

is shown in Figure 3.2(d). If t = (t, . . . , t), then Γt(G) is simply denoted by Γt(G).
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Figure 3.2: Confusion graphs for the directed graph G shown in Figure 3.1

corresponding to the integer tuple t = (t1, t2, t3) = (1, 1, 1). (a) Γ
(11)
t (G). (b)

Γ
(21)
t (G). (c) Γ

(31)
t (G). (d) Γt(G).

Alon, Hassidim, Lubetzky, Stav, and Weinstein [53] used the notion of

confusion graph to characterize the broadcast rate. Assume that each message has

length t bits. Consider a coloring of the vertices of the confusion graph Γ = Γt(G)

with χ(Γ) colors. This partitions the vertices of Γ into χ(Γ) independent sets. By

the definition of the confusion graph, no two message tuples in each independent

set are confusable and therefore assigning a unique codeword to each independent

set yields a valid index code. The total number of codewords of this index code

is χ(Γ), which requires r = ⌈log(χ(Γ))⌉ bits to be broadcast. Conversely, consider

any (t, r) index code that assigns (at most) 2r distinct codewords to message tuples.

By definition, all the message tuples mapped to a codeword form an independent

set of the confusion graph Γ = Γt(G). Moreover, every message tuple is mapped

to some codeword so that these independent sets partition V (Γ). Thus, χ(Γ) ≤ 2r,
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or equivalently, r ≥ ⌈log(χ(Γ))⌉.

This argument by Alon, Hassidim, Lubetzky, Stav, and Weinstein [53] char-

acterizes the minimum number of bits to be broadcast when messages are of t bits

as

βt(G) := inf
r

t
=

1

t
⌈log(χ(Γt(G)))⌉, (3.2)

where the infimum is over all (t, r) zero-error index codes. Thus, the broadcast

rate can be upper bounded as

β(G) ≤ 1

t
⌈log (χ (Γt(G)))⌉, (3.3)

for every positive integer t. Moreover, by taking limit

β(G) = lim
t→∞

1

t
log(χ(Γt(G))). (3.4)

Note that for any two integers t1 and t2 we have

E(Γt1+t2) ⊆ E(Γt1 ∨ Γt2).

Therefore,

χ(Γt1+t2) ≤ χ(Γt1 ∨ Γt2)

≤ χ(Γt1)χ(Γt2), (3.5)

where (3.5) follows by (2.6). Hence, the limit in (3.4) exists by Fekete’s lemma [1]
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and the subadditivity

log(χ(Γt1+t2)) ≤ log(χ(Γt1)) + log(χ(Γt2)).

It turns out that the broadcast rate can also be characterized via the clique

number of the confusion graph as

β(G) = lim
t→∞

1

t
log(ω(Γt(G))). (3.6)

Similar to (3.4), we can argue that the limit in (3.6) exists by Fekete’s lemma.

Recall that for a general graph Γ, ω(Γ) ≤ χ(Γ) so that one direction of (3.6),

i.e., “≥” always holds. We can exploit the special structure of the confusion graph

to prove the other direction. First we argue that neither Γ
(il)
t nor its complement

have any chordless cycle of length greater than four.

Lemma 3.1. Γ
(il)
t (G) does not have any chordless cycle of length greater than four.

Lemma 3.2. The complement of Γ
(il)
t (G) does not have any chordless cycle of

length greater than four.

The proofs of the lemmas are given in Appendices 3.A and 3.B. Therefore,

by Proposition 2.1 we have the following.

Proposition 3.1. Γ
(il)
t (G) is perfect.

Consequently, every confusion graph Γt is a combination of a small number

of perfect graphs (see (3.1)), which implies the following.

Proposition 3.2. Given a directed graph G and an integer n-tuple t = (t1, . . . , tn),
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the confusion graph Γt(G) satisfies

χ (Γt(G)) ≤





∑

i∈[n]

ti



 ω (Γt(G)) . (3.7)

Proof: Consider

χ(Γt(G)) ≤
∑

i∈[n]

ti
∑

l=1

χ(Γ
(il)
t (G)) (3.8)

=
∑

i∈[n]

ti
∑

l=1

ω(Γ
(il)
t (G)) (3.9)

≤
∑

i∈[n]

ti
∑

l=1

ω(Γt(G)) (3.10)

=





∑

i∈[n]

ti



ω(Γt(G)),

where (3.8) follows by Lemma 2.4, (3.9) follows by Proposition 3.1, and (10.27)

follows by (3.1).

We can relate the broadcast rate to other graph theoretic quantities for the

confusion graph Γt and its complement Γ̄t. For every undirected graph Γ, we have

ω(Γ) = α(Γ̄) ≤ Θ(Γ̄) ≤ ϑ(Γ̄) ≤ χ(Γ), (3.11)

where Θ(Γ) and ϑ(Γ) denote the Shannon capacity [50] and the Lovász theta

function [51] of the undirected graph Γ, respectively. This chain of inequalities

together with (2.3), (3.4), and (3.6) implies the following.
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Theorem 3.1.

β(G) = lim
t→∞

1

t
log(χ(Γt(G))) (3.12)

= lim
t→∞

1

t
log(χf (Γt(G))) (3.13)

= lim
t→∞

1

t
log
(

ϑ
(

Γt(G)
))

(3.14)

= lim
t→∞

1

t
log
(

Θ
(

Γt(G)
))

(3.15)

= lim
t→∞

1

t
log(ω(Γt(G))). (3.16)

Equation (3.12) can be generalized to characterize the capacity region C

of the index coding problem in terms of the chromatic number of the confusion

graph.

Proposition 3.3. The capacity region C of an index coding problem G with n

messages is the closure of all rate tuples (R1, . . . , Rn) such that

Ri ≤
ti

log(χ(Γt(G)))
, i ∈ [n], (3.17)

for some t = (t1, . . . , tn).

We now state a stronger result, in terms of the fractional chromatic number.

The proof is relegated to Appendix 3.C.

Proposition 3.4. The capacity region C of an index coding problem G with n

messages is the closure of all rate tuples (R1, . . . , Rn) such that

Ri ≤
ti

log(χf(Γt(G)))
, i ∈ [n], (3.18)

for some t = (t1, . . . , tn).
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Next, we extend the multiletter characterization in Proposition 3.4 to char-

acterize the capacity region in terms of the clique number of the confusion graph

asymptotically which will prove to be useful in establishing structural properties

of the capacity region. See Appendix 3.D for the proof.

Theorem 3.2. The capacity region C of an index coding problem G with n mes-

sages is the closure of all rate tuples (R1, . . . , Rn) such that

Ri ≤ lim
k→∞

kti
log(ω(Γkt(G)))

, i ∈ [n], (3.19)

for some t = (t1, . . . , tn).

We can also establish a nonasymptotic upper bound on the broadcast rate

via the Shannon capacity and the Lovász theta function of the confusion graph;

see Appendix 3.E for the proof.

Proposition 3.5. For any side information graph G and any positive integer t,

β(G) ≤ 1

t
log
(

Θ
(

Γt(G)
))

(3.20)

≤ 1

t
log
(

ϑ
(

Γt(G)
))

. (3.21)

By (3.11), the bounds in (3.20) and (3.21) are tighter than the upper bound

in (3.3). Unlike the chromatic number and the Shannon capacity, the Lovász theta

function can be computed in polynomial time in the number of vertices of the

confusion graph (see [52]).

Chapter 3, in part, is a reprint of the material in the papers: Fatemeh

Arbabjolfaei and Young-Han Kim, “Structural properties of index coding capacity

using fractional graph theory”, Proceedings of the IEEE International Symposium

on Information Theory, Hong Kong, June 2015; and Fatemeh Arbabjolfaei and
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Young-Han Kim, “Generalized lexicographic products and the index coding ca-

pacity”, submitted to IEEE Transactions on Information Theory ; and Fatemeh

Arbabjolfaei and Young-Han Kim, “Elements of index coding”, to be submitted

to Foundations and Trends in Communications and Information Theory. The dis-

sertation author was the primary investigator and author of these papers.

3.A Proof of Lemma 3.1

It suffices to show that every cycle of length greater than four has a chord.

Let vn1 , v
n
2 , . . . , v

n
k be the vertices (each associated with an n-message tuple) of a

length-k cycle of Γ
(il)
t (G) for k ≥ 5. Then vn1 ∼ vn2 , v

n
2 ∼ vn3 , . . ., v

n
k−1 ∼ vnk .

Therefore, v1i(l) 6= v2i(l), v2i(l) 6= v3i(l), . . ., v(k−1)i(l) 6= vki(l), and v1,Ai
= v2,Ai

=

· · · = vk,Ai
. If v1i(l) 6= v3i(l), then since v1,Ai

= v3,Ai
, we have vn1 ∼ vn3 and the

length-k cycle has a chord. Otherwise, since v1i(l) = v3i(l) 6= v4i(l) and v1,Ai
= v4,Ai

,

we have vn1 ∼ vn4 and again the cycle has a chord.

3.B Proof of Lemma 3.2

It suffices to show that every cycle of length greater than four has a chord.

Let vn1 , v
n
2 , . . . , v

n
k be the vertices of a length-k cycle of Γ̄ = Γ

(il)
t (G) for k ≥ 5. Then

vn1 ∼ vn2 , v
n
2 ∼ vn3 , . . ., v

n
k−1 ∼ vnk in Γ̄. If v1i(l) = · · · = vki(l), then v

n
1 , v

n
2 , . . . , v

n
k

form a clique in Γ̄ and thus the cycle is not chordless. Hence, assume without loss

of generality that v1i(l) 6= v2i(l), which implies v1,Ai
6= v2,Ai

. We now consider two

cases.

Case 1 (v2i(l) = v3i(l)): In this case, if v1,Ai
6= v3,Ai

, then vn1 ∼ vn3 in

Γ̄ and the length-k cycle has a chord. Suppose v1,Ai
= v3,Ai

and consider v4i(l).

If v4i(l) = v2i(l), then vn2 ∼ vn4 in Γ̄ which is a chord for the length-k cycle.
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Suppose v4i(l) 6= v2i(l). Then, since vn3 ∼ vn4 in Γ̄ we have v3,Ai
6= v4,Ai

and hence

v1,Ai
6= v4,Ai

. Therefore, vn1 ∼ vn4 in Γ̄ and the length-k cycle has a chord.

Case 2 (v2i(l) 6= v3i(l)): In this case, if v1i(l) = v3i(l), then vn1 ∼ vn3 in Γ̄

which is a chord. Suppose v1i(l) 6= v3i(l). If v1,Ai
6= v3,Ai

, then vn1 ∼ vn3 in Γ̄ which

is a chord. Suppose v1,Ai
= v3,Ai

. If v3i(l) = v4i(l), then the situation will be the

same as case 1. Otherwise, we have v3,Ai
6= v4,Ai

which implies v1,Ai
6= v4,Ai

and

thus vn1 ∼ vn4 in Γ̄ which is a chord.

3.C Proof of Proposition 3.4

The necessity follows by (2.2) and Proposition 3.3.

Let ǫ > 0. For each t = (t1, . . . , tn) and the corresponding confusion graph

Γt(G), Lemma 2.6 implies that there exists an integer k such that

k

√

χ(Γk
t(G)) ≤ χf(Γt(G)) + ǫ. (3.22)

It can be also checked that the set of edges of Γk
t (G) contains the set of edges of

Γkt(G), which, when combined with (3.22), implies that k
√

χ(Γkt(G)) ≤ χf (Γt(G))+

ǫ, or equivalently,

ti
log(χf(Γt(G)) + ǫ)

≤ kti
log(χ(Γkt(G)))

, i ∈ [n].

Thus, by Proposition 3.3, if (R1, . . . , Rn) satisfies

Ri ≤
ti

log(χf(Γt(G)) + ǫ)
, i ∈ [n],

then it must be in the capacity region. Since C is closed, taking ǫ→ 0 completes
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the proof.

3.D Proof of Theorem 3.2

First note that by (2.3) and Proposition 3.2,

lim
k→∞

kti
log(ω(Γkt(G)))

= lim
k→∞

kti
log(χf (Γkt(G)))

. (3.23)

Sufficiency. Let (R1, . . . , Rn) be a rate tuple satisfying (3.19). Then, by

(3.23),

Ri ≤ lim
k→∞

kti
log(χf(Γkt(G)))

, i ∈ [n].

This implies that for any ǫ > 0 there exists a sufficiently large k such that

Ri ≤
kti

log(χf(Γkt(G)))
+ ǫ, i ∈ [n],

and thus, by Proposition 3.4, (R1, . . . , Rn) ∈ C .

Necessity. Let (R1, . . . , Rn) ∈ C . Then, by Proposition 3.4, for any ǫ > 0 there

exists a vector t such that for all i ∈ [n],

Ri ≤
ti

log(χf (Γt(G)))
+ ǫ (3.24)

=
kti

log(χf(Γ∨k
t (G)))

+ ǫ (3.25)

≤ kti
log(χf (Γkt(G)))

+ ǫ, (3.26)

where (3.25) follows by Lemma 2.5 and (3.26) holds since E(Γkt(G)) ⊆ E(Γ∨k
t (G)).
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The inequality (3.26) holds for all k. Therefore, for any ǫ > 0 there exists a vector

t such that

Ri ≤ lim
k→∞

kti
log(χf(Γkt(G)))

+ ǫ, i ∈ [n].

This together with (3.23) completes the proof of the converse.

3.E Proof of Proposition 3.5

Consider

ω(Γtk) ≤ ω(Γ∨k
t ) = α(Γ∨k

t ) = α(Γ⊠k
t ), (3.27)

where the inequality holds since the set of edges of Γ∨k
t contains the set of edges

of Γtk, and the last equality follows by Lemma 2.7. Now for any t,

β(G) = lim
k→∞

log (ω (Γk))

k
(3.28)

= lim
k→∞

log (ω (Γtk))

tk
(3.29)

≤ lim
k→∞

log
(

α
(

Γ⊠k
t

))

tk
(3.30)

= lim
k→∞

log

(

k

√

α
(

Γ⊠k
t

)

)

t

=
1

t
log

(

lim
k→∞

k

√

α
(

Γ⊠k
t

)

)

=
1

t
log
(

Θ
(

Γt

))

, (3.31)
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where (3.28) follows by (3.16), (3.29) holds since the limit of a subsequence is

equal to the limit of the sequence, (3.30) follows by (3.27), and (3.31) follows by

the definition of the Shannon capacity in (2.7). Note that for any undirected graph

U we have

α(U⊠(k1+k2)) ≥ α(Uk1)α(Uk2).

Thus, the limit in (3.30) exists by Fekete’s lemma and the superadditivity

log
(

α
(

Γ
⊠(k1+k2)
t

))

≥ log
(

α
(

Γk1
t

))

+ log
(

α
(

Γk2
t

))

.

This completes the proof of (3.20). The upper bound in (3.21) follows by Lemma

2.10.



Chapter 4

Structural Properties of Index

Coding Capacity

In this section, we apply the multiletter characterizations of the capacity in

the previous section to derive the basic properties of the capacity. We start with

examples in which side information graphs can be decomposed into two parts with

no, one-way, complete one-way, or complete two-way interaction (see Figure 4.1)

and show that the capacity of such problems can be expressed as a simple function

of the capacities of the subproblems. To characterize the capacity for all these

cases in a unified manner, we introduce a new notion of graph product as follows.

Suppose that G0 is a graph with vertex set V (G0) = [m]. The generalized lexico-

graphic product G = G0 ◦ (G1, . . . , Gm) is defined by V (G) = ∪mi=1V (Gi) and E(G)

consisting of (i, j) such that

i, j ∈ V (Gk) for some k and (i, j) ∈ E(Gk),

or

34
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(a) (b) (c) (d)

Figure 4.1: Graph examples with (a) no interaction, (b) one-way interaction,
(c) complete one-way interaction, and (d) complete two-way interaction among
its two parts.

i ∈ V (Gk), j ∈ V (Gl) for some k 6= l and (k, l) ∈ E(G0).

In other words, vertex i ∈ V (G0) is replaced by a copy of Gi and every ver-

tex in the copy of Gk is connected to every vertex in the copy of Gl according

to E(G0) (see Figure 4.2). Note that if G1 = · · · = Gm, then the generalized

lexicographic product recovers the lexicographic product as a special case, i.e.,

G0 ◦ (G1, . . . , G1) = G0 ◦G1.

(a) (b)

(c) (d) (e)

Figure 4.2: (a) A 6-node graph that is the generalized lexicographic product
G0 ◦ (G1, G2, G3) (b) The 3-node graph G0 (c) The 2-node graph G1 (d) The
2-node graph G2 (e) The 2-node graph G3.

More concretely, suppose that G1 and G2 are two vertex-induced subgraphs

of G such that V (G1) = [n1] and V (G2) = [n1 + 1 : n] := {n1 + 1, . . . , n} partition

V (G) = [n] and G has no edge between V (G1) and V (G2) (see Figure 4.1(a)). Then
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G can be viewed as G0 ◦ (G1, G2), where G0 is the two-node graph in Figure 4.3(a).

Consider a message tuple xn = (x1,x2), where x1 ∈ {0, 1}tn1 corresponds to the

index coding problem G1 and x2 ∈ {0, 1}t(n−n1) corresponds to the index coding

problem G2. Similarly consider another message tuple zn = (z1, z2), where z1

and z2 correspond to G1 and G2, respectively. By the definition of confusability,

xn and zn are confusable iff they are confusable at some receiver i ∈ V (G1) or

confusable at some receiver i ∈ V (G2). Since there is no edge between G1 and G2,

these “local” confusability conditions are equivalent to the confusability of x1 and

z1 for the subproblem G1 and the confusability of x2 and z2 for the subproblem

G2, respectively. Thus, x
n and zn are confusable for G iff x1 and z1 are confusable

for G1 or x2 and z2 are confusable for G2. By the definitions of confusion graph

and disjunctive product, Γt(G) = Γt(G1) ∨ Γt(G2). Now by Lemma 2.5,

log(χf (Γt(G))) = log(χf(Γt(G1))) + log(χf (Γt(G2))),

which, along with Theorem 3.1, implies that

β(G) = lim
t→∞

1

t
log(χf (Γt(G)))

= lim
t→∞

1

t
log(χf (Γt(G1))) + lim

t→∞

1

t
log(χf(Γt(G2)))

= β(G1) + β(G2). (4.1)

In words, the broadcast rate is additive in those of subproblems with no interaction,

which is not surprising.

Example 4.1. The side information graph G shown in Figure 4.1(a), is vertex-

partitioned by two-node subgraphs G1 and G2 with one edge and two edges, re-

spectively. The subgraphs G1 and G2 can be further partitioned by two one-node
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(a) (b) (c)

Figure 4.3: (a) A two-node graph with no edge, (b) a two-node graph with
one edge, (c) a two-node graph with two edges.

subgraphs with (complete) one-way and complete two-way interactions, respec-

tively. Thus, as we will see shortly, β(G1) = 1 + 1 = 2 (see (4.2)) and β(G2) =

max{1, 1} = 1 (see (4.7)). Therefore, by (4.1) we have β(G) = β(G1) + β(G2) = 3.

Example 4.2. If G = (V,E) with E = ∅, then by using (4.1) inductively, we have

β(G) = |V |.

Next, consider a graph G vertex-partitioned by subgraphs G1 and G2 such

that there exists an edge from every vertex in G1 to every vertex in G2 and no edge

from G2 to G1 (see Figure 4.1(b)) . Then G can be viewed as G = G0 ◦ (G1, G2),

where G0 is the two-node graph in Figure 4.3(b). Since every vertex in G2 has every

vertex (message) in G1 as side information and no vertex in G1 has any vertex in G2

as side information, xn = (x1,x2) and z
n = (z1, z2) are confusable for G iff x1 and

z1 are confusable for G1, or x1 = z1 and x2 and z2 are confusable for G2. By the

definitions of confusion graph and lexicographic product, Γt(G) = Γt1(G1)◦Γt2(G2).

Thus, by Lemma 2.9 and Theorem 3.1,

log(χf(Γt(G))) = log(χf(Γt1(G1))) + log(χf(Γt2(G2)))

and

β(G) = lim
t→∞

1

t
log(χf(Γt(G))) = β(G1) + β(G2). (4.2)

Example 4.3. For the side information graph G shown in Figure 4.1(b) we have
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β(G) = β(G1) + β(G2) = 3.

As a generalization of both (4.1) and (4.2), consider a graph G vertex-

partitioned by subgraphs G1 and G2 for which there exists no edge from G2 to

G1, while there may be some edge from G1 to G2 (see Figure 4.1(c)). Then, β(G)

can be sandwiched as β(G′′) ≤ β(G) ≤ β(G′), where G′ is the graph with no edge

between V (G1) and V (G2), whereas G
′′ is the graph for which there is an edge

from every vertex in G1 to every vertex in G2 but there is no edge from G2 to G1.

Thus, by (4.1) and (4.2),

β(G) = β(G1) + β(G2). (4.3)

Example 4.4. For the side information graph G shown in Figure 4.1(c) we have

β(G) = β(G1) + β(G2) = 3.

Now suppose the graph G can be vertex-partitioned by m subgraphs

G1, . . . , Gm, such that if i < j there exists no edge from Gj to Gi, while there

may be some edge from Gi to Gj . Therefore, G can be partitioned into two graphs

(G1, . . . , Gm−1) and Gm with no edges from the latter to the former. Hence, by

(4.3),

β(G) = β((G1, . . . , Gm−1)) + β(Gm).

Since (G1, . . . , Gj), j ∈ {2, . . . , m − 1}, can also be further partitioned by two

subgraphs with one-way interaction, by repeating the same argument we have the

following.

Proposition 4.1. Let G be a graph that can be vertex-partitioned by m subgraphs

G1, . . . , Gm, such that if i < j there exists no edge from Gj to Gi, while there may
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Figure 4.4: A 4-node acyclic graph.

be some edge from Gi to Gj. Then

β(G) = β(G1) + · · ·+ β(Gm). (4.4)

In particular, if G0 is an acyclic directed graph with V (G0) = [m],

β(G0 ◦ (G1, . . . , Gm)) = β(G1) + · · ·+ β(Gm). (4.5)

Remark 4.1. Let G be a graph as described in Proposition 4.1. Equation (4.4) can

be generalized to characterize the capacity region C of the index coding problem

G as

C =
{

(α1R1, . . . , αmRm) : Ri ∈ Ci, i ∈ [m],

m
∑

i=1

αi ≤ 1
}

. (4.6)

In other words, in this case, the capacity region of G is achieved by time division

between the optimal coding schemes for subproblems G1, . . . , Gm.

Example 4.5. For the index coding problem G with side information graph

depicted in Figure 4.4 we have β(G) = 4. In general, if G is acyclic, then

β(G) = |V (G)|.

Next, consider a graph G vertex-partitioned by subgraphs G1 and G2 such

that there are edges from every vertex in G1 to every vertex in G2 and vice versa.

Then G can be viewed as G = G0 ◦ (G1, G2), where G0 is the two-node graph in
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Figure 4.3(c). Since every vertex in G1 has every message in G2 as side information

and every vertex in G2 has every message in G1 as side information, xn = (x1,x2)

and zn = (z1, z2) are confusable for G iff x1 = z1 and x2 and z2 are confusable for

G2, or x2 = z2 and x1 and z1 are confusable for G1. By the definitions of confusion

graph and cartesian product, Γt(G) = Γt1(G1) ∧ Γt2(G2). Thus, by Lemma 2.8

and (3.4),

χ(Γt(G)) = max{χ(Γt1(G1)), χ(Γt2(G2))}

and

β(G) = lim
t→∞

1

t
log(χ(Γt(G))) = max{β(G1), β(G2)}. (4.7)

Example 4.6. For the side information graph G shown in Figure 4.1(d) we have

β(G) = max{β(G1), β(G2)} = 2.

Now supposeG0 is a complete graph withm vertices. Then, G0◦(G1, . . . , Gm)

can be partitioned into two graphs G0|[m−1]◦(G1, . . . , Gm−1) and Gm with complete

two-way interaction among the two parts. Hence, by (4.7),

β(G0 ◦ (G1, . . . , Gm)) = max{β(G0 | [m−1] ◦ (G1, . . . , Gm−1)), β(Gm)}.

Since G0|[j], j ∈ [m−1], is also complete, by repeating the same argument we have

the following.

Proposition 4.2. Let G0 be a complete graph with m vertices. Then

β(G0 ◦ (G1, . . . , Gm)) = max{β(G1), . . . , β(Gm)}. (4.8)

Remark 4.2. Let G0 be a complete graph with m vertices. Equation (4.8) can
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be generalized to characterize the capacity region C of the index coding problem

G0 ◦ (G1, . . . , Gm) as

C =
{

(R1, . . . ,Rm) : Ri ∈ Ci, i ∈ [m]
}

. (4.9)

In other words, the capacity region of G0 ◦ (G1, . . . , Gm) is achieved by simultane-

ously using the optimal coding schemes for G1, . . . , Gm.

We now consider the generalized lexicographic productG = G0◦(G1, . . . , Gm)

with an arbitrary directed graph G0 with m vertices.

Theorem 4.1. Let G0 = ([m], E) be a directed graph with m vertices and denote its

capacity region by C0. Let G1, . . . , Gm be m directed graphs with capacity regions

C1, . . . ,Cm, respectively. The capacity region C of the generalized lexicographic

product G = G0 ◦ (G1, . . . , Gm) is characterized as

C =
{

(α1R1, . . . , αmRm) : Ri ∈ Ci, i ∈ [m], (α1, . . . , αm) ∈ C0

}

. (4.10)

Remark 4.3. Since C0,C1, . . .Cm are compact, so is C (G).

Remark 4.4. If C0,C1, . . . ,Cm are polytopes of the form Ci = {R : AiR ≤ 1}, i =

0, 1, . . . , m, then C is also a polytope characterized by Fourier–Motzkin elimination

of m variables α = (α1, . . . , αm) from the linear inequalities

AiRi ≤ αi, i ∈ [m]

A0α ≤ 1.

Achievability of (4.10) is based on constructing a code for problem G by

concatenating the index codes for problems G1, . . . , Gm as the inner codes and
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the index code for problem G0 as the outer code (see Figure 4.5). The proof of

the converse is based on the clique number characterization of the capacity region

in Theorem 3.2 and the following lemma. The proof of the lemma is based on a

construction of a code for G0 from a code for G and is presented in Appendix 4.A.

Lemma 4.1. If the rate tuple

(

t1
r
, . . . ,

tm
r

)

is achievable for index coding problem

G0 ◦ (G1, . . . , Gm),

1

r
(⌊log(ω(Γt1(G1)))⌋, . . . , ⌊log(ω(Γtm(Gm)))⌋) ∈ C0.

The proof of Theorem 4.1 is presented in details in Appendix 4.B. The

following corollary, which is a generalization of the results of Remark 4.1 and

Remark 4.2, extends application of Theorem 4.1 beyond index coding instances

with side information graph in the form of generalized lexicographic product.

Corollary 4.1. For i = 0, 1, . . . , m, let G′
i and G

′′
i be side information graphs of

index coding problems such that V (G′
i) = V (G′′

i ), E(G
′
i) ⊆ E(G′′

i ), and C (G′
i) =

C (G′′
i ) = Ci. Suppose that |V (G′

0)| = |V (G′′
0)| = m and let

G′ = G′
0 ◦ (G′

1, . . . , G
′
m)

and

G′′ = G′′
0 ◦ (G′′

1, . . . , G
′′
m).

Then the capacity region of any index coding problem G such that

V (G) = V (G′) = V (G′′)
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Figure 4.5: Construction of an index code for index coding problem G0 ◦
(G1, . . . , Gm) by concatenating the index codes for problems G1, . . . , Gm as the
inner codes and the index code for problem G0 as the outer code.

and

E(G′) ⊆ E(G) ⊆ E(G′′)

is

C (G) = C (G′)

= C (G′′)

=
{

(α1R1, . . . , αmRm) : Ri ∈ Ci, i ∈ [m], (α1, . . . , αm) ∈ C0

}

. (4.11)

Setting G1 = · · · = Gm in Theorem 4.1, we see that the broadcast rate

is multiplicative under the lexicographic product of index coding side information

graphs.

Corollary 4.2. For any two directed graphs G0 and G1,

β(G0 ◦G1) = β(G0)β(G1).

The following demonstrates an application of Theorem 4.1.

Example 4.7. The graph in Fig. 4.6(a) can be viewed as the lexicographic product
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G = G0◦G1 of two smaller graphs G0 and G1 in Fig. 4.6(b) and 4.6(c), respectively,

with β(G0) = 2 and β(G1) = 2. Hence, by Theorem 4.1, β(G) = β(G0)β(G1) = 4.

(a) (b) (c)

Figure 4.6: (a) A 6-node graph that is the lexicographic product G0 ◦ G1 of
two smaller graphs G0 and G1. (b) The 3-node graph G0. (c) The 2-node graph
G1.

Chapter 4, in full, is a reprint of the material in the papers: Fatemeh

Arbabjolfaei and Young-Han Kim, “Structural properties of index coding capacity

using fractional graph theory”, Proceedings of the IEEE International Symposium

on Information Theory, Hong Kong, June 2015; and Fatemeh Arbabjolfaei and

Young-Han Kim, “Generalized lexicographic products and the index coding ca-

pacity”, submitted to IEEE Transactions on Information Theory ; and Fatemeh

Arbabjolfaei and Young-Han Kim, “Elements of index coding”, to be submitted

to Foundations and Trends in Communications and Information Theory. The dis-

sertation author was the primary investigator and author of these papers.

4.A Proof of Lemma 4.1

For i ∈ [m] let Γi = Γti(Gi). Let Ki = {y1, y2, . . . , y|Ki|} be a maximum

clique in Γi and let ki = ⌊log(|Ki|)⌋ = ⌊log(ω(Γi))⌋. It suffices to show that given

any (t1, . . . , tm, r) index code for problem G = G0◦(G1, . . . , Gm), a (k1, . . . , km, r0)

index code for problem G0 can be constructed such that r0 ≤ r.
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Let ni = |V (Gi)| and ti = (ti1, . . . , tini
). We denote a tuple of messages of

problem G by (x1, . . . ,xm), where xi = (xi1, . . . , xini
) and xij ∈ {0, 1}tij for i ∈ [m]

and j ∈ [ni]. Consider the one-to-one mapping

fi : {0, 1}ki → {y1, y2, . . . , y2ki}, i ∈ [m],

that maps the ki-bit binary representation of j − 1 to yj, j ∈ [2ki].

Let φG be the encoder of the (t1, . . . , tm, r) index code for problem G. For

any message tuple (v1, . . . , vm), vi ∈ {0, 1}ki, of problem G0 define

φG0(v1, . . . , vm) = φG(f1(v1), . . . , fm(vm)). (4.12)

The function φG0 in (4.12) is the encoder of an index code for problemG0 iff any two

message tuples to which the same codeword is assigned are nonconfusable. Hence,

it suffices to show that if φG0(v1, . . . , vm) = φG0(v
′
1, . . . , v

′
m), then (v1, . . . , vm)

and (v′1, . . . , v
′
m) are nonconfusable for problem G0. Suppose φG0(v1, . . . , vm) =

φG0(v
′
1, . . . , v

′
m). Then φG(f1(v1), . . . , fm(vm)) = φG(f1(v

′
1), . . . , fm(v

′
m)). By the

definition of the mapping fi, for every i ∈ [m], either fi(vi) = fi(v
′
i) or fi(vi) ∼

fi(v
′
i) in Γi. As φG is the encoder of an index code for problemG, (f1(v1), . . . , fm(vm))

and (f1(v
′
1), . . . , fm(v

′
m)) are nonconfusable for problem G and thus, if fi(vi) ∼

fi(v
′
i) in Γi, then fi(vj) 6= fi(v

′
j) for some j ∈ Ai(G0). Hence, since fi is one-to-

one, for every i ∈ [m], either vi = v′i or vj 6= v′j for some j ∈ Ai(G0). Therefore,

(v1, . . . , vm) and (v′1, . . . , v
′
m) are nonconfusable for problem G0 and (4.12) defines

the encoder of a (k1, . . . , km, r0) index code for problem G0 such that the set of

codewords is a subset of the set of codewords of the (t1, . . . , tm, r) index code for

problem G, which implies r0 ≤ r.
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4.B Proof of Theorem 4.1

Achievability: Consider any rate tuple (α1R1, . . . , αmRm), where Ri ∈ Ci,

i ∈ [m], and (α1, . . . , αm) ∈ C0. Let |V (Gi)| = ni, i ∈ [m]. Fix ǫ > 0. By

the definition of the capacity region, for each problem Gi there exists a (ti, ri) =

(ti1, . . . , tini
, ri) index code such that

Ri ≤
ti
ri

+ ǫ, i ∈ [m], (4.13)

and there exists a (t0, r0) = (t01, . . . , t0m, r0) index code for problem G0 such that

αi ≤
t0i
r0

+ ǫ, i ∈ [m]. (4.14)

We construct a code for problem G by concatenating the index codes for problems

G1, . . . , Gm and the index code for problem G0. Let

πi = Πj∈[m]:j 6=i rj .

Consider the message tuple (x1, . . . ,xm), where xi ∈
(

Πj∈[ni]{0, 1}tij
)πit0i , i ∈ [m].

First, for each i ∈ [m], the (ti, ri) index code for problem Gi is applied πit0i

times to encode xi into yi ∈ ({0, 1}ri)πit0i . (Note that for each i ∈ [m], πiri =

Πj∈[m]rj .) Next, the (t0, r0) code for problem G0 is used Πj∈[m]rj times to send

(y1, . . . , ym) ∈
(

Πi∈[m]{0, 1}t0i
)Πj∈[m]rj , which requires r0Πj∈[m]ri transmissions. As

for the decoding, first the decoder of the (t0, r0) code for problem G0 is utilized

to recover (y1, . . . , ym). Then, for each i ∈ [m] decoder of the (ti, ri) index code

for problem Gi is used to recover the message tuple xi from yi. Therefore, we
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constructed a (π1t01t1, . . . , πmt0mtm, r0Πj∈[m]ri) code for problem G such that

αiRi ≤
(

t0i
r0

+ ǫ

)(

ti
ri

+ ǫ

)

=
πit0iti

r0Πj∈[m]rj
+ δ(ǫ)1,

where δ(ǫ) → 0 as ǫ → ∞. Since for any ǫ > 0 the constructed code achieves

(α1R1 − δ(ǫ)1, . . . , αmRm − δ(ǫ)1), Letting ǫ → 0 implies (α1R1, . . . , αmRm) ∈

C (G).

Converse: Suppose (T1, . . . ,Tm) ∈ C (G). Then, by definition, for any

ǫ > 0 there exists a (t1, . . . , tm, r) index code for problem G such that

Ti ≤
ti
r
+ ǫ, i ∈ [m]. (4.15)

It suffices to show that ti/r can be written in the form of αiRi, where Ri ∈ Ci and

(α1, . . . , αm) ∈ C0. For any ǫ0 > 0, there exists sufficiently large k such that

kti
⌊log(ω(Γkti(Gi)))⌋

≤ lim
k→∞

kti
log(ω(Γkti(Gi)))

+ ǫ0, i ∈ [m].

Let

Ri =
kti

⌊log(ω(Γkti(Gi)))⌋
− ǫ01, i ∈ [m].

By Theorem 3.2, Ri ∈ Ci, i ∈ [m]. Also consider the (kt1, . . . , ktm) code for

problem G constructed by repeating the (t1, . . . , tm, r) code (the very same code

satisfying (4.15)) k times and let

αi =
⌊log(ω(Γkti(Gi)))⌋

kr
, i ∈ [m].
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By Lemma 4.1, (α1, . . . , αm) ∈ C0. Therefore, we have

Ti ≤
ti
r
+ ǫ =

kti
kr

+ ǫ = αi(Ri + ǫ01) + ǫ,

where Ri ∈ Ci, i ∈ [m], and (α1, . . . , αm) ∈ C0. The desired result follows by

letting ǫ→ 0 and ǫ0 → 0, and using Remark 4.3.



Chapter 5

Performance Limits

We discuss several lower bounds on the broadcast rate and outer bounds

on the capacity region.

5.1 Maximum Acyclic Induced Subgraph (MAIS)

Bound

The simplest lower bound on the broadcast rate is a direct corollary of the

structural properties established in the previous section. First note that the broad-

cast rate of any index coding problem G is lower bounded by the broadcast rate

of any vertex induced subgraph G0 of G. This fact together with Proposition 4.1,

implies that for any acyclic vertex induced subgraph G0 of index coding problem

G, we have |V (G0)| = β(G0) ≤ β(G). Considering all (maximal) acyclic subgraphs

of G, we establish the following lower bound on the broadcast rate [25].

Proposition 5.1 (Maximal acyclic induced subgraph (MAIS) bound). Any achiev-

able rate tuple for index coding problem G must belong to the outer bound RMAIS

49
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on the capacity region that consists of all rate tuples (R1, . . . , Rn) satisfying

∑

i∈J

Ri ≤ 1 (5.1)

for all J such that G|J is acyclic.

Remark 5.1. For any index coding problem G, the maximum acyclic induced

subgraph (MAIS) lower bound on the broadcast rate is

βMAIS(G) := max
J⊆V (G):G|J is acyclic

|J | ≤ β(G).

Remark 5.2. Since every independent set is acyclic, the MAIS bound in Re-

mark 5.1 can be relaxed as α(G) ≤ β(G).

Application of the MAIS bound is illustrated by the following.

Example 5.1. In the side information graph G as shown in Figure 5.1, the

subgraphs G|{1} and G|{2,3} are acyclic and thus β(G) ≥ βMAIS(G) = 2 and

C (G) ⊆ RMAIS(G), where RMAIS(G) consists of all rate tuples (R1, R2, R3) such

that

R1 ≤ 1,

R2 +R3 ≤ 1.

Similar to the broadcast rate, the MAIS bound is multiplicative under the

lexicographic product of side information graphs. The proof is relegated to Ap-

pendix 5.A.

Proposition 5.2. For any two side information graphs G0 and G1, βMAIS(G0 ◦

G1) = βMAIS(G0)βMAIS(G1).
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1

2 3

Figure 5.1: An index coding instance with three messages.

The MAIS bound is not tight in general (see Example 5.2). Using Corol-

lary 4.2 and Proposition 5.2, we can show that the gap between the MAIS bound

and the broadcast rate of the index coding problem can be magnified to a multi-

plicative factor that grows polynomially in the number of messages of the problem.

Proposition 5.3. Let G be the side information graph of an index coding problem

with n messages for which β(G)/βMAIS(G) = ρ > 1. Then

β(G◦k)

βMAIS(G◦k)
=

β(G)k

βMAIS(G)k
= ρk = N logn(ρ),

where N = nk is the number of vertices of G◦k.

5.2 Polymatroidal Bound

Let (R1, . . . , Rn) be an achievable rate tuple for the index coding instance

(i|Ai), i ∈ [n]. Then, there exists a (t1, . . . , tn, r) index code with encoding function

φ and decoding functions ψi, i ∈ [n], such that

Ri ≤
ti
r
.
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Let Xi be the uniform random variable over {0, 1}ti representing message i ∈ [n].

Therefore,

H(Xi) = ti, i ∈ [n]. (5.2)

Moreover, by the independence of the random variables X1, . . . , Xn,

H(X1, . . . , Xn) =
∑

i∈[n]

H(Xi). (5.3)

Let Y = φ(X1, . . . , Xn) be the random variable over {0, 1}r representing the en-

coder output. Then

H(Y ) ≤ r (5.4)

and

H(Y |X1, . . . , Xn) = 0. (5.5)

Since receiver i can recover its desired message based on the received codeword

and its side information, we also have the following decodability conditions

H(Xi |Y,X(Ai)) = 0, i ∈ [n]. (5.6)



53

Now consider

Ri ≤
ti
r

=
1

r
H(Xi)

=
1

r
(H(Xi)−H(Xi |Y,X(Ai))) (5.7)

=
1

r
(H(Xi |X(Ai))−H(Xi |Y,X(Ai))) (5.8)

=
1

r
I(Xi; Y |X(Ai))

=
1

r
(H(Y |X(Ai))−H(Y |Xi, X(Ai)))

≤ 1

H(Y )
(H(Y |X(Ai))−H(Y |Xi, X(Ai))). (5.9)

Define a set function f : 2[n] → [0, 1] as

f(J) =
1

H(Y )
H(Y |X(J̄)), J ⊆ [n]. (5.10)

Then (5.9) can be rewritten as

Ri ≤ f(Bi ∪ {i})− f(Bi), i ∈ [n].

In the following we investigate some properties of the set function f defined in

(5.10). First,

f(∅) = 1

H(Y )
H(Y |X([n])) = 0 (5.11)

and

f([n]) =
1

H(Y )
H(Y ) = 1. (5.12)
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Second, since conditioning reduces entropy,

f(J) = H(Y |X(J̄)) ≤ H(Y |X(K̄) = f(K), J ⊆ K. (5.13)

Finally,

H(Y )(f(J ∪K)− f(J))

= H(Y |X(J̄ ∩ K̄))−H(Y |X(J̄))

= I(Y ;X(J̄ \ K̄)|X(J̄ ∩ K̄))

= H(X(J̄ \ K̄)|X(J̄ ∩ K̄))−H(X(J̄ \ K̄)|Y,X(J̄ ∩ K̄))

= H(X(J̄ \ K̄)|X(K̄))−H(X(J̄ \ K̄)|Y,X(J̄ ∩ K̄))

≤ H(X(J̄ \ K̄)|X(K̄))−H(X(J̄ \ K̄)|Y,X(K̄))

= I(Y ;X(J̄ \ K̄)|X(K̄))

= H(Y |X(K̄))−H(Y |X(J̄ ∪ K̄))

= H(Y )(f(K)− f(J ∩K)), (5.14)

which shows that f is also submodular. In summary, if (R1, . . . , Rn) is achievable,

Ri ≤ f(Bi ∪{i})− f(Bi), i ∈ [n], for some submodular nondecreasing set function

f satisfying (5.11)–(5.14). This yields an outer bound on the capacity region (a

lower bound on the broadcast rate) referred to as the polymatroidal bound. This

bound has been introduced in [35], [36], and [37] in the context of distributed

source coding, network coding, and index coding, respectively.

Theorem 5.1 (Polymatroidal bound). Any achievable rate tuple for index coding

problem G must belong to the outer bound RPM on the capacity region that consists
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of all rate tuples (R1, . . . , Rn) satisfying

Ri ≤ f(Bi ∪ {i})− f(Bi), i ∈ [n], (5.15)

for some set function f : 2[n] → [0, 1] such that

f(∅) = 0, (5.16)

f([n]) = 1, (5.17)

f(J) ≤ f(K), J ⊆ K, (5.18)

f(J ∩K) + f(J ∪K) ≤ f(J) + f(K). (5.19)

Remark 5.3. Given an index coding instance, the polymatroidal bound RPM

is computed by eliminating the f variables from (5.16)–(5.15) through Fourier–

Motzkin elimination [57, Appendix D].

Remark 5.4. For any index coding problem G

βPM(G) := max
i∈[n]

1

f(Bi ∪ {i})− f(Bi)
≤ β(G),

for some set function f satisfying (5.16)–(5.19).

Remark 5.5. The quantity 1/βPM(G) is the solution to the following linear pro-

gram with 2n + 1 variables.

maximize R

subject to R ≤ f(Bi ∪ {i})− f(Bi), i ∈ [n],

f satisfies (5.16)− (5.19).

The number of constraints that the set function f in Theorem 5.1 needs to
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satisfy is O(22n). The following can reduce the number of constraints to O(n22n),

the proof of which is relegated to Appendix 5.B.

Lemma 5.1. The properties (5.16)–(5.19) of the set function f in the polyma-

troidal bound can be simplified to the following:

f(∅) = 0, (5.20)

f([n]) = 1, (5.21)

f(J) ≤ f([n]), |J | = n− 1, (5.22)

f(J ∩K) + f(J ∪K) ≤ f(J) + f(K), |J \K | = |K \ J | = 1. (5.23)

The polymatroidal bound contains the MAIS bound as a special case.

Proposition 5.4. For any index coding problem G, RPM(G) ⊆ RMAIS(G) and

consequently βMAIS(G) ≤ βPM(G).

The proof of the proposition is presented in Appendix 5.C. The inclusion

in Proposition 5.4 can be strict as illustrated by the following.

Example 5.2. For the index coding problem G shown in Figure 5.2 we have

βMAIS(G) = 2 and the MAIS outer bound is characterized by

R1 +R3 ≤ 1,

R1 +R4 ≤ 1,

R2 +R4 ≤ 1, (5.24)

R2 +R5 ≤ 1,

R3 +R5 ≤ 1.

However, it can be shown that the polymatroidal bound yields the tighter bound
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βPM(G) = 2.5 on the broadcast rate and the polymatroidal outer bound RPM(G)

is characterized by the inequalities in (5.24) and

R1 +R2 +R3 +R4 +R5 ≤ 2. (5.25)

In Section 6, we will see that for this example the polymatroidal bound is tight, i.e.,

β(G) = 2.5 and the capacity region C (G) is characterized by (5.24) and (5.25).

1

2

34

5

Figure 5.2: A 5-node index coding problem

Blasiak, Kleinberg, and Lubetzky [37] showed that the polymatroidal bound

satisfies the following structural property.

Proposition 5.5 ([37]). For any two graphs G0 and G1,

βPM(G0 ◦G1) ≥ βPM(G0)βPM(G1). (5.26)

Example 5.2 shows that there is a gap between the polymatroidal bound

and the MAIS bound. Using Proposition 5.2 and Proposition 5.5, the gap between

the MAIS bound and the polymatroidal bound of the index coding problem can

be magnified to a multiplicative factor that grows polynomially in the number of

messages of the problem.

Proposition 5.6 ([37]). Let G be an n-node graph such that βPM(G)/βMAIS(G) =
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ρ > 1. Then

βPM(G
◦k)

βMAIS(G◦k)
≥ βPM(G)

k

βMAIS(G)k
= ρk = N logn(ρ),

where N = nk is the number of vertices of G◦k.

Open problem 5.1. Does the inequality in Proposition 5.5 hold with equality?

5.3 Information Inequalities and Lower Bounds

For any joint distribution for the collection of n random variablesX1, . . . , Xn,

(2n − 1) joint entropies H(X(J)), J ⊆ [n], satisfy

H(X(J,K, L))−H(X(K,L)) ≤ H(X(J,K))−H(X(K)), (5.27)

or equivalently

I(X(J);X(L)|X(K)) ≥ 0. (5.28)

Any convex combination of these linear inequalities is a valid linear inequality on

H(X(J)), J ⊆ [n], and is referred to as a Shannon-type inequality. Surprisingly,

there are some linear inequalities on H(X(J)), J ⊆ [n], that cannot be written as

such convex combinations. These inequalities are referred to as non-Shannon-type

inequalities, including the following example discovered by Zhang and Yeung [58].

3H(X1, X3) + 3H(X1, X4) + 3H(X3, X4) +H(X2, X3) +H(X2, X4)

≥ 2H(X3) + 2H(X4) +H(X1, X2) +H(X1)

+H(X2, X3, X4) + 4H(X1, X3, X4) (5.29)
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Matus [59] showed that even for only four random variables, there are infinitely

many independent non-Shannon-type information inequalities.

Let (R1, . . . , Rn) be an achievable rate tuple for the index coding instance

(i|Ai), i ∈ [n]. Then, there exists a (t1, . . . , tn, r) index code with encoding function

φ and decoding functions ψi, i ∈ [n], such that

Ri ≤
ti
r
. (5.30)

A given (t1, . . . , tn, r) index code induces n+ 1 random variables X1, . . . , Xn, and

X0, where Xi, i ∈ [n], is the uniform random variable over {0, 1}ti representing

the ith message and X0 is the random variable over {0, 1}r that represents the

output of the encoding function. One can form an outer bound on the capacity

region (a lower bound on the broadcast rate) of the index coding problem by

considering all linear inequalities that hold for joint entropies of any tuple of n+1

random variables. However, as there are infinitely many such inequalities, we

instead consider all Shannon-type inequalities.

Define a set function h : 2{0}∪[n] → R+ as

h(J) = H(X(J)), J ⊆ {0} ∪ [n]. (5.31)

Noting that H(Xi) = ti, i ∈ [n], and H(X0) ≤ r, we can rewrite (5.30) as

Ri ≤
h({i})
h({0}) , i ∈ [n].



60

Moreover, by the independence of the random variables X1, . . . , Xn,

h([n]) = H(X1, . . . , Xn) =
∑

i∈[n]

H(Xi) =
∑

i∈[n]

h({i}). (5.32)

Since X0 = φ(X1, . . . , Xn), we have H(X0|X1, . . . , Xn) = 0 which implies

h({0} ∪ [n]) = h([n]). (5.33)

By the decodability assumption at each receiver i ∈ [n], we have H(Xi|Y,X(Ai)) =

0 which implies

h({i} ∪ Ai ∪ {0}) = h(Ai ∪ {0}), i ∈ [n]. (5.34)

Finally, rewriting inequality (5.27) in terms of the set function h, we get

h(K) + h(J ∪K ∪ L) ≤ h(J ∪K) + h(K ∪ L). (5.35)

This yields the following outer bound on the capacity region (lower bound on the

broadcast rate).

Theorem 5.2. Any achievable rate tuple for index coding problem G must be-

long to the outer bound RSh on the capacity region that consists of all rate tuples

(R1, . . . , Rn) satisfying

Ri ≤
h({i})
h({0}) , i ∈ [n],
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for some set function h : 2{0}∪[n] → R+ such that

h(∅) = 0, (5.36)

h([n]) =
∑

i∈[n]

h({i}), (5.37)

h({0} ∪ [n]) = h([n]), (5.38)

h({i} ∪ Ai ∪ {0}) = h(Ai ∪ {0}), i ∈ [n], (5.39)

h(K) + h(J ∪K ∪ L) ≤ h(J ∪K) + h(K ∪ L), J,K, L ⊆ {0} ∪ [n]. (5.40)

Remark 5.6. Since the joint entropies H(J), J ⊆ [n], satisfy a finite number of

inequalities, the resulting bound RSh on the rates can be computed by Fourier–

Motzkin elimination [57, 7, Appendix D].

Remark 5.7. For any index coding problem G

βSh(G) := h({0})max
i∈[n]

1

h({i}) ≤ β(G),

for some set function h satisfying Equations (5.36)–(5.40). The quantity 1/βSh(G)

is the solution to the corresponding linear program involving 2n+1 + 1 variables.

In the polymatroidal outer bound RPM, established earlier in Remark 5.4,

we did not explicitly use all Shannon inequlities. Nonetheless, RPM is as tight as

the apparently stronger bound RSh, as will be shown in Appendix 5.D.

Proposition 5.7. RSh = RPM.

The polymatroidal bound (which effectively uses all Shannon-type inequali-

ties) is not tight in general and can be improved by considering non-Shannon-type

inequalities, as illustrated by the following examples.
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Example 5.3. Sun and Jafar [33] showed that for index coding problem

(1|2, 3, 6, 7, 8, 9, 10, 11),

(2|1, 3, 4, 6, 7, 8, 9, 10, 11),

(3|1, 2, 4, 5, 6, 7, 8, 9, 10, 11),

(4|1, 2, 3, 5, 6, 7, 8, 9, 10, 11),

(5|1, 3, 4, 6, 7, 8, 9, 10, 11),

(6|1, 4, 5, 7, 8, 9, 10, 11),

(7|2, 4, 5, 6, 8, 9, 10, 11),

(8|1, 3, 5, 6, 7, 9, 10, 11),

(9|1, 2, 5, 6, 7, 8, 10, 11),

(10|1, 2, 4, 6, 7, 8, 9, 11),

(11|1, 2, 3, 5, 7, 8, 9, 10),

βPM = 2.5, whereas using the Zhang-Yeung non-Shannon-type information inequal-

ity (see (5.29)) yields a tighter outer bound of 28/11 = 2.5454.

Example 5.4. Baber, Christofides, Dang, Riis, and Vaughan [38] showed that for
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the index coding problem

(1|2, 3, 4, 5, 6, 7),

(2|1, 3, 7, 9, 10),

(3|1, 2, 4, 8, 9),

(4|1, 3, 5, 8, 10),

(5|1, 4, 6, 9, 10),

(6|1, 5, 7, 8, 9),

(7|1, 2, 6, 8, 10),

(8|3, 4, 6, 7, 9, 10),

(9|2, 3, 5, 6, 8),

(10|2, 4, 5, 7, 8).

which has an undirected side information graph, the polymatroidal bound is βPM =

56/17 = 3.2941, whereas using the Zhang-Yeung non-Shannon-type information

inequality yields the lower bound of 598/181 = 3.3038 and using the 214 non-

Shannon-type information inequalities given by Dougherty, Freiling, and Zeger

[60] yields the even tighter lower bound of 29523/8929 = 3.3064 on the broadcast

rate. Note that in [38] this example is discussed in the context of guessing games

[14], which is converted to the corresponding index coding instance (see Section 10

for the exact relationship between index coding and guessing games).

It still remains open to determine whether the polymatroidal bound is

within a constant factor from the broadcast rate or there exists a polynomially

large multiplicative gap between them. If the inequality in (5.26) holds with equal-

ity (see Open problem 5.1), then similar to Proposition 5.3, the gap between the
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broadcast rate and the polymatroidal bound (or equivalently, the gap between

Shannon-type and non-Shannon-type inequalities) can be magnified to a multi-

plicative factor that grows polynomially in the numner of messages.

Chapter 5, in full, is a reprint of the material in the papers: Fatemeh Arbab-

jolfaei, Bernd Bandemer, Young-Han Kim, Eren Sasoglu, Lele Wang, “On the ca-

pacity region for index coding”, Proceedings of the IEEE International Symposium

on Information Theory, Istanbul, Turkey, July 2013; and Fatemeh Arbabjolfaei

and Young-Han Kim, “Elements of index coding”, to be submitted to Foundations

and Trends in Communications and Information Theory. The dissertation author

was the primary investigator and author of these papers.

5.A Proof of Proposition 5.2

Let G = G0 ◦G1.

Proof of “≥”. Suppose S0 and S1 induce maximum acyclic subgraphs of G0 and G1,

respectively, i.e., βMAIS(G0) = |S0| and βMAIS(G1) = |S1|. Thus, S0 × S1 induces

an acyclic subgraph of G, which implies βMAIS(G) ≥ βMAIS(G0)βMAIS(G1).

Proof of “≤”. Let S∗ ⊆ V (G0)×V (G1) be a maximum set such that G|S∗ is acyclic,

i.e., βMAIS(G) = |S∗|. WLOG assume V (G0) = [m]. Then, S∗ can be partitioned

as S∗ = S1 ∪ · · · ∪ Sm, where Si induces an acyclic subgraph of G1 and thus,

|Si | ≤ βMAIS(G1), i ∈ [m]. (5.41)

Define I = {i : Si 6= ∅}. Since G|S∗ is acyclic, I induces an acyclic subgraph of G0

and thus,

|I | ≤ βMAIS(G0). (5.42)
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Hence, we have

βMAIS(G) =
∑

i∈I

|Si |

≤
∑

i∈I

βMAIS(G1) (5.43)

≤ βMAIS(G0)βMAIS(G1). (5.44)

where (5.43) follows by (5.41) and (5.44) follows by (5.42).

5.B Proof of Lemma 5.1

Clearly, (5.20)–(5.23) follow by (5.16)–(5.19). Hence, it suffices to show

that (5.16)–(5.19) can be deduced from (5.20)–(5.23). Assume (5.20)–(5.23) hold.

Proof of (5.19): Assume that |J \ K| = M and |K \ J | = N . Note that if

J ⊆ K we get a trivial inequality. So without loss of generality we can assume

that 1 ≤ M ≤ N . We use induction on N +M . As for the induction base we

have if N +M = 2, then M = N = 1 and (5.19) holds. Let k ≥ 3 and assume

that (5.19) holds for N +M ≤ k − 1. If N +M = k, then |K \ J | ≥ 2 and thus

there exists two distinct elements a, b ∈ K \ J . Considering J and K \ {b}, by the

induction hypothesis, we have

f(J ∩K) + f(J ∪ (K \ {b})) ≤ f(J) + f(K \ {b}). (5.45)
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Next, consider J ∪ (K \ {b}) and K. We have (J ∪ (K \ {b})) ∪K = J ∪K and

(J ∪ (K \ {b})) ∩K = K \ {b}. Therefore, by the induction hypothesis,

f(K \ {b}) + f(J ∪K) ≤ f(J ∪ (K \ {b})) + f(K). (5.46)

(5.19) follows by (5.45) and (5.46).

Proof of (5.18): We first use reverse induction on |K| to show

if J ⊆ K and |J | = |K | − 1, then f(J) ≤ f(K). (5.47)

As for the induction base we have if |K| = n, (5.47) follows by (5.22). Let N < n

and assume that (5.47) holds for all |K| ≥ N + 1. Hence, there exists a ∈ [n] \K.

Considering J ∪ {a} and K, by (5.19), we have

f(J) + f(K ∪ {a}) ≤ f(J ∪ {a}) + f(K). (5.48)

By the induction hypothesis,

f(J ∪ {a}) ≤ f(K ∪ {a}). (5.49)

Summing up (5.48) and (5.49) yields f(J) ≤ f(K). (5.18) follows by using (5.47)

multiple times.

5.C Proof of Proposition 5.4

We show that every inequality of the MAIS bound can be derived using the

inequalities of the polymatroidal bound, i.e, (5.16)–(5.15). By submodularity of
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set function f (see (5.19)) we have

f({i} ∪K)− f(K) ≤ f({i} ∪ J)− f(J), J ⊆ K ⊆ [n], (5.50)

for any i ∈ K̄. Suppose J ⊆ V (G) induces an acyclic subgraph of G. Then,

there exists a permutation π : J → J such that if π(i) < π(j), then j ∈ Bi. Let

Ji = {j ∈ J : π(i) < π(j)}. Note that by the definition of π, Ji ⊆ Bi. We have

∑

i∈J

Ri ≤
∑

i∈J

(f({i} ∪ Bi)− f(Bi)) (5.51)

≤
∑

i∈J

(f({i} ∪ Ji)− f(Ji)) (5.52)

≤ f({π−1(1)} ∪ Jπ−1(1))− f(Jπ−1(|J |)) (5.53)

≤ 1, (5.54)

where (5.51) follows by (5.15), (5.52) follows by (5.50), and (5.53) holds since if

π(i) < π(j), then ({j}∪Jj) ⊆ Ji and thus, by (5.19), f(Ji)−f({j}∪Jj) ≤ 0. (5.54)

follows by (5.16), since Jπ−1(|J |) = ∅. This completes the proof of the proposition.

5.D Proof of Proposition 5.7

We first show that RSh ⊆ RPM. Suppose (R1, . . . , Rn) ∈ RSh. Then there

exists h(J), J ⊆ {0} ∪ [n], satisfying (5.36)–(5.40) such that

Ri ≤
h({i})
h({0}) , i ∈ [n]. (5.55)
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For A,B ⊆ {0} ∪ [n], let J = A \ B, K = A ∩ B, and L = B \ A. Then (5.40)

implies that the set function h is submodular:

h(A ∩ B) + h(A ∪ B) ≤ h(A) + h(B). (5.56)

Let K = ∅. Then, by (5.36) and (5.40),

h(J ∪ L) ≤ h(J) + h(L). (5.57)

Now consider

h([n]) ≤ h(J) + h(J̄) (5.58)

≤
∑

i∈J

h({i}) +
∑

i∈J̄

h({i}) (5.59)

=
∑

i∈[n]

h({i}), (5.60)

where (5.58) and (5.59) follow by (5.57). Comparing (5.60) and (5.37) implies

h(J) =
∑

i∈J

h({i}), J ⊆ [n]. (5.61)

Define a set function f : 2[n] → [0, 1] as

f(J) =
h(J̄ ∪ {0})− h(J̄)

h({0}) . (5.62)
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Then (5.55) can be rewritten as

Ri ≤
h({i})
h({0})

=
1

h({0})(−h(Ai) + h({i} ∪Ai)) (5.63)

=
1

h({0})(h(Ai ∪ {0})− h(Ai)− (h(Ai ∪ {0})− h({i} ∪ Ai))) (5.64)

=
1

h({0})(h(Ai ∪ {0})− h(Ai)− (h({i} ∪Ai ∪ {0})− h({i} ∪Ai))) (5.65)

= f({i} ∪Bi)− f(Bi), (5.66)

where (5.63) follows by (5.61), (5.65) follows by (5.39), and (5.66) follows by the

definition of functione f in (5.62). We now show that the set function f defined

in (5.62) satisfies (5.16)–(5.19). First, by (5.38),

f(∅) = h([n] ∪ {0})− h([n])
h({0}) = 0

and

f([n]) =
h({0})
h({0}) = 1.
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Let J ⊆ K ⊆ [n]. Then we have

f(J) =
1

h({0})(h(J̄ ∪ {0})− h(J̄))

=
1

h({0})(h(K̄ ∪ (K \ J) ∪ {0})− h(K̄)− h(K \ J)) (5.67)

≤ 1

h({0})(h(K̄ ∪ {0}) + h(K \ J)− h(K̄)− h(K \ J)) (5.68)

=
1

h({0})(h(K̄ ∪ {0})− h(K̄)) (5.69)

= f(K), (5.70)

where (5.67) follows by (5.61) since J̄ = K̄ ∪ (K \ J), and (5.68) follows by sub-

modularity of the set function g in (5.56). Finally, for any J,K ⊆ [n] we have

h({0})(f(J ∪K) + f(J ∩K))

= h((J̄ ∩ K̄) ∪ {0})− h(J̄ ∩ K̄) + h(J̄ ∪ K̄ ∪ {0})− h(J̄ ∪ K̄)

= h((J̄ ∪ {0}) ∩ (K̄ ∪ {0})− h(J̄ ∩ K̄)) + h(J̄ ∪ K̄ ∪ {0})− h(J̄ ∪ K̄)

≤ h(J̄ ∪ {0})− h(J̄ ∩ K̄) + h(K̄ ∪ {0})− h(J̄ ∪ K̄) (5.71)

= h(J̄ ∪ {0})− h(J̄ ∩ K̄) + h(K̄ ∪ {0})− h(J̄)− h(K̄ \ J̄) (5.72)

= h(J̄ ∪ {0})− h(J̄ ∩ K̄) + h(K̄ ∪ {0})− h(J̄)− h(K̄ ∩ J) (5.73)

= h(J̄ ∪ {0})− h(J̄) + h(K̄ ∪ {0})− h(K̄) (5.74)

= h({0})(f(J) + f(K)), (5.75)

where (5.71) follows by (5.56), and (5.72) and (5.74) follow by (5.61).

Next, we show RPM ⊆ RSh. Assume (R1, . . . , Rn) ∈ RPM. Then there exists

a set function f satisfying (5.16)–(5.19). Define a set function h : 2{0}∪[n] → R+ as
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follows. For J ⊆ [n],

h(J) =
∑

i∈J

(f({i} ∪ Bi)− f(Bi)) (5.76)

and

h(J ∪ {0}) = h(J) + f(J̄). (5.77)

Property (5.36) follows by the definition of the set function h in (5.76). Hence, by

(5.77) and (5.17), h({0}) = 1 and thus,

Ri ≤
h({i})
h({0}) , i ∈ [n].

Property (5.37) follows by the definition of the set function h in (5.76). To prove

(5.38) consider

h({0} ∪ [n]) = h([n]) + f(∅) (5.78)

= h([n]), (5.79)

where (5.78) follows by the definition of the set function h in (5.77) and (5.79)

follows by (5.16). To prove (5.39), consider

h({i} ∪ Ai ∪ {0}) = h({i} ∪ Ai) + f(Bi) (5.80)

= h({i} ∪ Ai) + f(i ∪ Bi)− h({i}) (5.81)

= h(Ai) + f(i ∪Bi) (5.82)

= h(Ai ∪ {0}), (5.83)
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where (5.81) follows by the definition in (5.76) and (5.82) follows by property

(5.37) that we proved earlier. Before proving property (5.40), we prove that the

set function h is submodular. Consider three cases. First, suppose that A,B ⊆ [n].

Then

h(A ∩ B) + h(A ∪ B)

=
∑

i∈A∩B

(f({i} ∪ Bi)− f(Bi)) +
∑

i∈A∪B

(f({i} ∪Bi)− f(Bi))

=
∑

i∈A

(f({i} ∪Bi)− f(Bi)) +
∑

i∈B

(f({i} ∪Bi)− f(Bi))

= h(A) + h(B). (5.84)

Second, suppose that A,B ⊆ {0}∪[n] such that 0 ∈ A and 0 6∈ B. Let A′ = A\{0}.

Then 0 ∈ (A ∪ B) and 0 6∈ (A ∩B). Thus, we have

h(A ∩B) + h(A ∪ B) (5.85)

= h(A′ ∩ B) + h(A′ ∪B) + f(Ā′ ∩ B̄) (5.86)

= h(A′) + h(B) + f(Ā′ ∩ B̄) (5.87)

≤ h(A′) + h(B) + f(Ā′) (5.88)

= h(A) + h(B), (5.89)

where (5.87) follows by (5.84) and (5.88) follows by (5.18). Finally, suppose that
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A,B ⊆ {0} ∪ [n] such that 0 ∈ A ∩ B. Let A′ = A \ {0} and B′ = B \ {0}. Then

h(A ∩B) + h(A ∪ B) (5.90)

= h(A′ ∩ B′) + f(Ā′ ∪ B̄′) + h(A′ ∪ B′) + f(Ā′ ∩ B̄′) (5.91)

= h(A′) + h(B′) + f(Ā′ ∪ B̄′) + f(Ā′ ∩ B̄′) (5.92)

≤ h(A′) + f(Ā′) + h(B′) + f(B̄′) (5.93)

= h(A) + h(B), (5.94)

where (5.92) follows by (5.84) and (5.93) follows by submodularity of the set func-

tion f in (5.19). In summary, for any A,B ⊆ {0} ∪ [n],

h(A ∩ B) + h(A ∪ B) ≤ h(A) + h(B). (5.95)

Property (5.40) follows by (5.95) by setting A = J ∪K and B = K ∪ L, and the

following

h(K) ≤ h(K ∪ (J ∩ L)).

This completes the proof of the proposition.



Chapter 6

Coding Schemes

In this section, we review some of the most famous index coding schemes

based on algebraic, graph-theoretic, and information-theoretic approaches. Each

coding scheme corresponds to an upper bound on the broadcast rate or a lower

bound on the capacity (inner bound on the capacity region).

6.1 MDS Code

Consider the 3-message index coding problem represented by the side infor-

mation graph shown in Figure 6.1, in which every receiver has one piece of side

information. Consider a (5, 3) systematic MDS code (x1, x2, x3, p1, p2) over the fi-

nite field F4 = {0, 1, α, α+1}, where p1 = x1+x2+x3 and p2 = x1+αx2+(α+1)x3.

This code has the property that any three out of the five code symbols are sufficient

to recover the three message symbols. We can employ this code for the 3-message

index coding problem and transmit the parities p1 and p2. Then, every receiver

will have three code symbols and can successfully recover its desired message.
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1

2 3

Figure 6.1: A 3-message index coding problem with β = 2, which is achievable
by a (5, 3) MDS code.

For a general index coding problem G, let

minindeg(G) := min
i∈[n]
|{j : (j, i) ∈ E(G)}|

be the minimum number of side information messages over all receivers. Consider

a systematic (n + d, n) MDS code with n message symbols and d parity symbols.

Then, Given any n out of the n+d code symbols, one can recover all the messages.

Such MDS code exists over a sufficiently large alphabet size. As every receiver

has at least minindeg(G) messages as side information, if we employ the (n+ d, n)

MDS code and transmit d = n − minindeg(G) parities, then every receiver will

have n code symbols and thus can recover all the message symbols that it does not

have including its desired message. This establishes the following upper bound on

the broadcast rate.

Proposition 6.1 ([3]). For any G with |V (G)| = n, β(G) ≤ βMDS(G) = n −

minindeg(G).

Remark 6.1. If the graph G is a clique, then minindeg(G) = n− 1 and it suffices

to transmit the parity symbol x1+ · · ·+ xn of an (n+1, n) MDS code and achieve

β(G) = 1.



76

6.2 Clique Covering

Consider the side information graph G shown in Figure 6.2. Since receiver 3

has no side information we have minindeg(G) = 0. Therefore, using an MDS code

we need to transmit three symbols, which is no better than uncoded transmission

of the messages and is not optimal. Assume that xi ∈ F2, i ∈ [3]. We can partition

the vertices into two cliques, namely, {1, 2} and {3}, and transmit x1 + x2 and

x3. Then, receiver 3 receives its desired message x3 directly. Since receiver 1 has

message x2 as side information, it can successfully recover its desired message x1.

Similarly, receiver 2 can recover its desired message x2. This scheme requires two

transmissions, which matches the MAIS outer bound for this problem and is thus

optimal.

1

2 3

Figure 6.2: A three message side information graph with β = 2 that is achiev-
able by the clique covering scheme.

Generalizing this idea, we partition the vertices of the side information

graph G by cliques and transmit the binary sums (parities) of all the messages in

each clique. Since every receiver has all the other messages inside its clique as side

information, all the messages can be successfully recovered by their corresponding

receivers. This coding scheme, which can be viewed as time division over a clique

partition (one parity bit per clique), achieves the following clique covering bound

on the broadcast rate.

Proposition 6.2 (Birk and Kol [3]). The broadcast rate is upper bounded by the

minimum number of cliques that partition G (or equivalently, the chromatic number
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of the undirected complement of G) which is the solution βC to the integer program

minimize
∑

J∈K

ρJ

subject to
∑

J∈K:i∈J

ρJ ≥ 1, i ∈ [n],

ρJ ∈ {0, 1}, J ∈ K,

(6.1)

where K is the collection of all cliques in G.

Remark 6.2. For the problem with side information graph as shown in Figure 6.1,

using an MDS code requires two transmissions, whereas clique covering scheme

requires three transmissions and thus, MDS code outperforms the clique covering

scheme. Therefore, the clique covering scheme and the MDS code for index coding

are not comparable.

6.3 Fractional Clique Covering

Consider the side information graph shown in Figure 6.3. We can partition

the graph into three cliques, say {1, 2}, {3, 4}, and {5} and thus, by the clique

covering scheme, it suffices to make three transmissions. However, this scheme

is not optimal for this problem. Assume xi = (xi1, xi2) ∈ F2
2, and consider the

following vector linear coding scheme. If we transmit x11 + x21, x22 + x31, x32 +

x41, x42 + x51, x52 + x12, then every receiver can successfully recover its two bits.

This scheme achieves the bound of 5/2 on the broadcast rate, which matches the

polymatroidal bound (see Example 5.2).

In general, Blasiak, Kleinberg, and Lubetzky [23] extended (6.1) by consid-

ering time sharing over all cliques so that the combined rate of each message over

all parities it participates in is at least one. The resulting rate βF corresponds
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1

2

34

5

Figure 6.3: A five-message side information graph with β = 2.5 that is achiev-
able by the fractional clique covering scheme.

to the solution to the linear program obtained by relaxing the integer constraint

ρJ ∈ {0, 1} in (6.1), which is equivalent to the fractional chromatic number of the

undirected complement of G.

Proposition 6.3 (Blasiak, Kleinberg, and Lubetzky [23]). The broadcast rate is

upper bounded by the minimum number of cliques that fractionally partition G (or

equivalently, the fractional chromatic number of the undirected complement of G)

which is the solution βF to the linear program

minimize
∑

J∈K

ρJ

subject to
∑

J∈K:i∈J

ρJ ≥ 1, i ∈ [n],

ρJ ∈ [0, 1], J ∈ K,

(6.2)

where K is the collection of all cliques in G.

For the example at the beginning of this section, using the vector linear

code is equivalent to setting

ρ(J) =















1/2 J = {1, 2}, {2, 3}, {3, 4}, {4, 5}, {1, 5},

0 otherwise,

which satisfies the constraints of (6.2) and establishes the upper bound of 5/2 on
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the broadcast rate.

6.4 Fractional Local Clique Covering

Consider the index coding problem

(1|2, 3, 4), (2|1, 3, 4), (3|4, 5, 6), (4|3, 5, 6), (5|1, 2, 6), (6|1, 2, 5),

with side information graph G shown in Figure 6.4. Assume xi ∈ F2, i ∈ [6]. The

side information graph G can be partitioned into three cliques {1, 2}, {3, 4}, and

{5, 6}, and hence, by the clique covering scheme, it suffices to transmit parities

x1 + x2, x3 + x4, and x5 + x6. However, since only two of the three parities

are missing at each receiver, we can reduce the number of parity transmissions

by using a two-erasure correcting MDS code with two hyperparity symbols, say,

(x1 + x2) + (x3 + x4) and (x1 + x2) + (x5 + x6).

1, 2

5, 6 3, 4

Figure 6.4: A six-message side information graph for which βFL = 2 < βcomp =
3.

In general, Shanmugam, Dimakis, and Langberg [61] extended the clique

covering scheme to local clique covering, whereby an MDS code is applied to parity

symbols for cliques. This improves upon the clique covering scheme since each

receiver can recover some parity symbols from its side information and thus the to-

tal transmission time is now shared only among those parity symbols not available

locally at each receiver. Further extending this scheme with fractional coloring,
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yields the following.

Proposition 6.4 (Shanmugam, Dimakis, and Langberg [61]). The broadcast rate

is upper bounded by the solution βFL to the linear program

minimize max
i∈[n]

∑

J∈K:J 6⊆Ai

ρJ

subject to
∑

J∈K:i∈J

ρJ ≥ 1, i ∈ [n],

ρJ ∈ [0, 1], J ∈ K.

(6.3)

This coding scheme achieves the fractional local chromatic number [62, 63]

of the directed complement of G. The improvement over time sharing is captured

by the summation of ρJ over cliques J 6⊆ Ai compared to the summation over all

cliques J in (6.2).

6.5 Fractional Local Partial Clique Covering

Birk and Kol [3] extended the clique covering scheme in Section 6.2 by

performing time division over arbitrary subgraphs instead of cliques. A general

graph G with n vertices is referred to as a partial clique with parameter κ(G),

where κ(G) is the number of parity symbols needed to send the messages of index

coding problem G using an MDS code, i.e., κ(G) = n−minindeg(G). Note that a

partial clique with parameter 1 is a clique.

Consider the 5-message index coding problem G depicted in Figure 6.5.

It can be shown that the fractional local clique covering scheme yields the up-

per bound of βFL(G) = 4. This upper bound can be improved by performing

local time sharing over partial cliques instead of cliques. We have κ(G|{1,2}) =

κ(G|{1,5}) = κ(G|{4}) = 1 and κ(G|{1,3,4}) = κ(G|{2,3,5}) = 2. Setting ρJ = 1/2
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if J = {1, 2}, {1, 5}, {1, 3, 4}, {2, 3, 5}, and {4}, and ρJ = 0, otherwise, we can

achieve the upper bound of 7/2 on the broadcast rate.

In general, local time sharing over MDS codes of arbitrary subgraphs (par-

tial cliques) yields the following bound referred to as the fractional local partial

clique covering bound.

Theorem 6.1. The broadcast rate is upper bounded by the solution βFLP to the

linear program

minimize max
i∈[n]

∑

J⊆[n]:J 6⊆Ai

ρJ · κ(G|J)

subject to
∑

J⊆[n]:i∈J

ρJ ≥ 1, i ∈ [n],

ρJ ∈ [0, 1], J ⊆ [n].

(6.4)

1

2

34

5

Figure 6.5: An index coding problem with βFLP = 7/2 < βFL = 4.

Remark 6.3. The fractional local partial clique covering bound can be readily

extended to the corresponding inner bound on the capacity region. A rate tuple

(R1, . . . , Rn) is achievable by fractional local partial clique covering for the index

coding problem (i|Ai), i ∈ [n], if there exists (ρJ ∈ [0, 1], J ⊆ [n]) such that

max
i∈[n]

∑

J⊆[n]:J 6⊆Ai

ρJ · κ(G|J) ≤ 1

Ri ≤
∑

J⊆[n]:i∈J

ρJ , i ∈ [n].

(6.5)
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6.6 General Linear Codes

We revisit the index coding problem (1|2), (2|3), (3|1) with side information

graph shown in Figure 6.1. Consider any 3-by-3 matrix M such that

Mii = 1 and Mij = 0 if j 6∈ Ai. (6.6)

We can easily check that matrices

M1 =













1 1 0

0 1 1

1 0 1













and M2 =













1 0 0

0 1 0

1 0 1













satisfy such constraints. Consider the three linear combinations of the messages

generated by multiplying any such matrix M from left by the message vector

(x1, x2, x3)
T . For example, M1 generates x1 + x2, x2 + x3, and x1 + x3, and M2

generates x1, x2, and x1 + x3. If we transmit these three generated symbols,

receiver i can use the linear combination from row i to recover xi since it contains

only xi and x(Ai). Now note that M1 is of rank 2 and thus that any two of

the three linear combinations can determine the third; for example x1 + x3 =

(x1 + x2) + (x2 + x3). Thus, it suffices to transmit the first two generated symbols.

More generally, if M is of rank r, then we can transmit linear combinations of the

messages from r independent rows of M . Therefore, any matrix M satisfying (6.6)

and the associated generated symbols define a scalar linear code and rank(M) is

an upper bound on the scalar linear broadcast rate βL(G; 1, 2) and thus on the

broadcast rate. We can optimize over all matrices M satisfying (6.6) to minimize

the rank.

For a general index coding problem with side information graph G, its
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minrank, which is defined by Bar-Yossef, Birk, Jayram, and Kol [25] as

minrank2(G) = min{rank(M) : Mij ∈ F2,M satisfies (6.6)},

yields an upper bound on the broadcast rate, i.e.,

β(G) ≤ βL(G; 1, 2) ≤ minrank2(G). (6.7)

Lubetzky and Stav [26] extended this scheme by considering matrices on a larger

field Fq satisfying

Mii 6= 0 and Mij = 0 if j 6∈ Ai, (6.8)

and obtained a tightened upper bound as

β(G) ≤ βL(G; 1, q)

≤ minrankq(G) = min{rank(M) : Mij ∈ Fq,M satisfies (6.8)}.

Conversely, consider a scalar linear index code over the finite field Fq with

length r. Since each receiver i ∈ [n] can recover message xi, there is always a

linear combination of the codewords that contains only xi and x(Ai) and thus, we

can construct a matrix with rank r that satisfies (6.8). By the definition of the

minrank, r ≥ minrankq(G) which implies βL(G; 1, q) ≥ minrankq(G). Therefore,

minrankq(G) characterizes the scalar linear broadcast rate over the finite field Fq

for index coding problem G.

Proposition 6.5. For any index coding problem G,

βL(G; 1, q) = minrankq(G).
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Lubetzky and Stav [26] also demonstrated that for some index coding prob-

lems, the performance can be significantly improved by partitioning G into sub-

graphs and using fields of distinct characteristics over each subgraph. This leads

to the following which implies insufficiency of scalar linear codes.

Proposition 6.6 ([26]). For any ǫ > 0 and any sufficiently large n, there is an

index coding problem G with n messages so that βL(G; 1, q) = minrankq(G) ≥
√
n

for any field Fq, while β(G) ≤ nǫ.

Motivated by interference alignment coding schemes in wireless interference

channels [64, 65], Jafar [66, Section 4.10] proposed to extend minrank by using

message symbols in Ft
q, namely, using t-by-t matrices in place of Mij , 1 ≤ i, j ≤ n,

in (6.8). The rank of the resulting nt-by-nt matrix provides an upper bound on

the broadcast rate. Note that since t can be arbitrary, it is impossible to use this

idea to find the best (vector) linear code.

El-Rouayheb, Sprintson, and Georghiades [21] and Blasiak, Kleinberg, and

Lubetzky [37] presented examples where nonlinear index codes outperform vector

linear index codes for any choice of field and message length t. However, in these

examples it is assumed that a message may be requested by more than one re-

ceiver (multiple groupcast), whereas in our setup we assumed that each receiver

is interested in a unique message (multiple unicast). Maleki, Cadambe, and Jafar

[32] proved that linear coding is insufficient to achieve the capacity region of the

multiple unicast index coding problem by associating a multiple unicast problem

to an arbitrary groupcast setting.
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6.7 Flat Coding

In this and the next section, we use Shannon’s random coding idea [67] to

prove the existence of index codes of certain rates. Despite its conceptual simplicity,

this fresh angle allows for rather straightforward derivation of an achievable rate

region, i.e. an inner bound on the capacity region, without the complexity of code

construction.

We first illustrate a simple random coding scheme, referred to as flat cod-

ing, through an example. Consider the index coding problem (1|2), (2|1, 3), (3|1)

with side information graph depicted in Figure 6.6. We use the following random

coding argument to find conditions under which a rate triple (R1, R2, R3) ∈ [0, 1]3

is achievable. Fix an integer r and let ti = ⌈rRi⌉, i ∈ [3]. For each message triple

(x1, x2, x3) ∈ Π3
i=1[2

ti ], generate a codeword y(x1, x2, x3) drawn uniformly at ran-

dom from [2r]. Note that codebook generation is “flat” over all messages; hence

this scheme is called flat coding. To communicate message triple (x1, x2, x3), we

transmit y = y(x1, x2, x3).

1

2 3

Figure 6.6: A 3-message index coding instance for which the flat coding is
optimal.

Let Bi = [n] \ ({i} ∪ Ai) denote the set of interfering messages at receiver i,

i ∈ [n]. Each receiver uses the received sequence y and its side information x(Ai) to

uniquely recover all the messages that are not in its side information set, namely,

receiver i finds the unique (x̂i, x̂(Bi)) such that y(x̂i, x(Ai), x̂(Bi)) = y. Let Pi

be the probability of error at receiver i ∈ [3]. Assuming that the true message



86

triple is (x1, x2, x3), receiver i makes an error if there is another message triple

(x̂1, x̂2, x̂3) 6= (x1, x2, x3) such that y(x̂1, x̂2, x̂3) = y(x1, x2, x3). By symmetry, the

probability of error averaged over message triple and codebooks is equal to the

probability of error given a particular message triple (x1, x2, x3). For brevity, we

do not explicitly mention the condition. For example, receiver 1, which has x2 as

side information, finds the unique (x̂1, x̂3) such that y(x̂1, x2, x̂3) = y.

By the union bound,

P1 = P{y(x̂1, x2, x̂3) = y for some (x̂1, x̂3) 6= (x1, x3)}

≤ 2t12t3

2r
(6.9)

≤ 2rR1+12rR3+1

2r
, (6.10)

where (6.9) holds since the number of wrong triples is 2t12t3 − 1 and codewords

assigned to two different message triples are the same with probability 1
2r
. Thus,

P1 tends to zero as r → ∞ if R1 + R3 < 1. Similarly, P2 and P3 tend to zero as

r → ∞ if R2 < 1 and R2 + R3 < 1, respectively. Thus, by the union of events

bound, if R1 +R3 < 1, R2 < 1, and R2 +R3 < 1, the probability of error averaged

over codebooks tends to zero as r → ∞. Therefore, there must exist a sequence

of (⌈rR1⌉, . . . , ⌈rRn⌉, r) index codes such that the average probability of error P(r)

tends to zero as r → ∞. By invoking Lemma 1.2, this error probability can be

made to be zero. Therefore, the flat coding upper bound on the broadcast rate is

2 and the flat coding inner bound on the capacity region is characterized as the
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set of rate triples (R1, R2, R3) such that

R1 +R3 ≤ 1,

R2 ≤ 1, (6.11)

R2 +R3 ≤ 1.

Since the subgraphs G|{1,3} and G|{2,3} are acyclic, the inner bound in (6.11)

matches the MAIS outer bound, characterizing the capacity region of the prob-

lem.

In general, consider an index coding problem with n messages and let

(R1, . . . , Rn) ∈ [0, 1]n be a rate tuple. Fix an integer r and let ti = ⌈rRi⌉, i ∈ [n].

Codebook generation. For each (x1, . . . , xn) ∈ [2t1 ] × · · · × [2tn ], generate a

codeword y(x1, . . . , xn) drawn uniformly at random from [2r].

Encoding. To communicate message tuple (x1, . . . , xn), the sender transmits

y = y(x1, . . . , xn).

Decoding. Receiver i finds the unique (x̂i, x̂(Bi)) such that y(x̂i, x(Ai), x̂(Bi)) is

identical to the received sequence y, where Bi = [n] \ ({i} ∪Ai).

Analysis of the probability of error. Denote the probability of error at receiver

i ∈ [n] by Pi. Similar to (6.10), by the union bound,

Pi = P{y(x̂i, x(Ai), x̂(Bi)) = y for some (x̂i, x̂(Bi)) 6= (xi, x(Bi))}

≤ 2t1 × · · · × 2tn

2r
(6.12)

≤ 2rR1+1 × · · · × 2rRn+1

2r
.
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Therefore, Pi tends to zero as r →∞ if
∑

j 6∈Ai
Rj < 1. By taking similar steps as

before, we can argue that the flat coding scheme yields the following bound.

Proposition 6.7. The flat coding inner bound Rflat on the capacity region of

the index coding problem (i|Ai), i ∈ [n], is characterized as the set of rate tuples

(R1, . . . , Rn) such that
∑

j 6∈Ai

Rj < 1, i ∈ [n].

In particular, for any index coding problem G,

β(G) ≤ βflat(G) := max
i∈V (G)

(n− |Ai |) .

Remark 6.4. Note that for an index coding problem (i|Ai), i ∈ [n], represented by

side information graph G, we have minindeg(G) = mini∈[n] |Ai| and thus, the flat

coding upper bound on the broadcast rate is identical to the bound established by

the MDS codes (see Section 6.1), i.e., for any index coding problem G, βflat(G) =

βMDS(G).

6.8 Composite Coding

For the index coding problem (1|4), (2|3, 4), (3|1, 2), (4|2, 3), with side in-

formation graph G depicted in Figure 6.7, βflat(G) = 3 and the flat coding inner

bound is characterized by

R1 +R2 +R3 ≤ 1,

R3 +R4 ≤ 1,

R1 +R4 ≤ 1.
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However, flat coding is not optimal for this index coding instance. Assume xi ∈ F2,

i ∈ [4]. If we transmit y1 = x1 + x2 + x3 and y2 = x2 + x3 + x4, then every receiver

can recover its desired message. Thus, this linear coding scheme yields the upper

bound of 2 on the broadcast rate, which shows that flat coding is not optimal

in general. In this section, we propose a more powerful random coding scheme,

referred to as composite coding, that is built upon flat coding.

1 2

34

Figure 6.7: A 4-node index coding instance for which the flat coding scheme
is not optimal.

To illustrate the composite coding scheme, we revisit the index coding prob-

lem with side information graph depicted in Figure 6.7. Consider a message rate

tuple (R1, . . . , R4) ∈ [0, 1]4 and two composite rates S{1,4} and S{2,3,4}. Fix an

integer r and let ti = ⌈rRi⌉, i ∈ [4], and sJ = ⌈rSJ⌉, J ⊆ [4]. As the first step

of composite coding, we map (x1, x4) to an index w{1,4} = w{1,4}(x1, x4) drawn

uniformly at random from [2s{1,4} ] (as in flat coding). Similarly, map (x2, x3, x4)

into random index w{2,3,4} = w{2,3,4}(x2, x3, x4) ∈ [2rS{2,3,4} ]. As the second step of

composite coding, we map w{1,4} and w{2,3,4} to a codeword y = y(w{1,4}, w{2,3,4})

drawn uniformly at random from [2r] (as in flat coding) and transmit it.

Decoding is also performed in two steps. Each receiver i first recovers

(w{1,4}, w{2,3,4}) from y, which, by Proposition 6.7, is successful with vanishing

probability of error as r →∞ if

S{1,4} + S{2,3,4} < 1.
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Then receiver i recovers xi and some other messages simultaneously using w{1,4},

w{2,3,4}, and x(Ai). By Proposition 6.7, receiver 1 recovers x1 from w{1,4} and side

information x4 with vanishing probability of error if

R1 < S{1,4}.

Again by Proposition 6.7, receiver 2 recovers x2 from w{2,3,4} and side information

x3 and x4 with vanishing probability of error if

R2 < S{2,3,4}

and receiver 4 recovers x4 from w{2,3,4} and side information x2 and x3 with van-

ishing probability of error if

R4 < S{2,3,4}.

Receiver 3 recovers x3 and x4 from w{1,4} and w{2,3,4} and side information x1 and

x2. It can be shown by Proposition 6.8 stated later that the decoding is successful

with vanishing probability of error if

R3 +R4 < S{1,4} + S{2,3,4},

R3 < S{2,3,4},

R4 < S{1,4} + S{2,3,4}.

Summarizing these conditions, we can achieve any rate tuple (R1, R2, R3, R4) sat-
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isfying

R1 < S1,4,

R2 < S2,3,4,

R3 +R4 < S1,4 + S2,3,4,

R3 < S2,3,4,

R4 < S2,3,4

for some S1,4 > 0 and S2,3,4 > 0 such that

S1,4 + S2,3,4 < 1.

After Fourier–Motzkin elimination of (S1,4, S2,3,4), the resulting composite coding

inner bound on the capacity region is characterized by

R1 +R2 < 1,

R1 +R3 < 1,

R1 +R4 < 1,

R3 +R4 < 1.

In particular, the broadcast rate of 2 is achievable.

We now generalize the coding scheme by introducing composite indices for

each nonempty subset J of [n] and optimizing over the decoding set at each receiver.

Consider a message rate tuple (R1, . . . , Rn) ∈ [0, 1]n and a composite rate tuple

S = (SJ : J ⊆ [n], J 6= ∅) ∈ [0, 1]2
n−1. Fix an integer r and let ti = ⌈rRi⌉, i ∈ [n],

and sJ = ⌈rSJ⌉, J ⊆ [n]. We first decompose the encoder into 2n − 1 virtual en-
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coders. Virtual encoder J generates composite message wJ(x(J)) of rate SJ using

flat coding over x(J). Next, the composite messages are encoded into a single index

y using flat coding over all composite indices. Decoding is also performed in two

steps. First, each receiver i uses its side information x(Ai) to recover (wJ , J ⊆ [n])

from y. Next, receiver i recovers a subset of messages x(Di) including its required

message xi, from (wJ , J ⊆ [n]) and x(Ai). Figure 6.8 illustrates the composite

coding scheme. The details are as follows.

Codebook generation. Step 1. For each x(J), J ⊆ [n], generate a composite

message wJ(x(J)) drawn uniformly at random from [2sJ ].

Step 2. For each (wJ , J ⊆ [n]), generate a codeword y(wJ , J ⊆ [n]) drawn uni-

formly at random from [2r].

Encoding. To communicate message tuple (x1, . . . , xn), the sender transmits

y = y(wJ , J ⊆ [n]).

y
Encoder

Decoder 1Decoder 1

Decoder 2Decoder 2

Decoder nDecoder n

x(D1)

x(D2)

x(Dn)

x(A1)x(A1)

x(A2)x(A2)

x(An)x(An)

x1

x(J)

x1, . . . , xn

(wJ , J ⊆ [n])

(wJ , J ⊆ [n])

(wJ , J ⊆ [n])

w{1}

wJ

w[n]

Encoder {1}

Encoder J

Encoder [n]

Figure 6.8: Composite coding scheme

Decoding. Step 1. Receiver i finds the unique (ŵJ , J 6⊆ Ai) such that y((ŵJ , J 6⊆

Ai), (wJ , J ⊆ Ai)) is identical to the received sequence y. Step 2. Fix the decoding

set Di at receiver i such that i ∈ Di ⊆ [n] \ Ai. Assuming that (ŵJ , J ⊆ [n]) is
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correct, receiver i recovers x(Di) from (ŵJ , J ⊆ [n]) and x(Ai).

Analysis of the probability of error. By Proposition 6.7, the probability of

error in the first step of decoding tends to zero as r →∞ if

∑

J 6⊆Ai

SJ < 1. (6.13)

To analyze the probability of error at the second step, we digress a bit to discuss

the communication problem depicted in Figure 6.9. Since this is a many-to-one

communication, it is “dual” to the index coding problem in some sense. Here

a set of (2n − 1) servers wish to communicate a message tuple (x1, . . . , xn) to a

common receiver through a noiseless multiple access channel (MAC), each encoding

a subtuple x(J) into a separate index wJ with rate SJ . The receiver has a set of

messages x(A), A ⊆ [n], as side information and wishes to recover another set of

messages x(D), D ⊆ [n]\A. The question is to characterize the capacity region as a

function of the rate tuple (SJ , J ⊆ [n]). When D = [n] and A = ∅, this problem is a

special case of the general multiple access channel with correlated messages studied

by Han [68] and the capacity region can be generalized to arbitrary A and D by

a straightforward adaptation of the result in [68]. Here we present an achievable

rate region for general A and D via flat coding that is tight for A = ∅ and D = [n]

and can be easily extended to multiple receivers with different decoding sets; see

Appendix 6.A for the proof.

Proposition 6.8. The capacity region of the dual index coding problem is the set

of rate tuples (R1, . . . , Rn) that satisfy

∑

i∈K

Ri ≤
∑

J⊆D∪A:J∩K 6=∅

SJ (6.14)
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x1

x(J)

x1, . . . , xn

x(D)

w1

wJ

w[n]

Encoder 1

Encoder J

Encoder [n]

Decoder

x(A)

Figure 6.9: The “dual” index coding problem.

for all K ⊆ D.

Now we return to the analysis of the second step of the composite cod-

ing scheme. Each receiver i in our composite coding scheme can be viewed as the

receiver in the “dual” index coding problem with side information set Ai and decod-

ing set Di. Hence, by the random coding proof of Proposition 6.8, the probability

of error at receiver i tends to zero as r →∞ if

∑

i∈K

Ri <
∑

J⊆Di∪Ai:J∩K 6=∅

SJ (6.15)

for all K ⊆ Di. Therefore, by the union of events bound and the standard ar-

gument as in the analysis of flat coding in Section 6.7, we can achieve any rate

tuple (R1, . . . , Rn) that satisfies (6.15) for some (SJ , J 6= ∅, J ⊆ [n])) satisfying

(6.13). For each S = (SJ , J 6= ∅, J ⊆ [n]) satisfying (6.13), let RDi|Ai
(S) be the

polymatroidal rate region defined by (6.15). Rewriting the achievable rate region

in terms of RDi|Ai
(S) and optimizing over Di, we have the following.

Theorem 6.2. The composite coding inner bound Rcomp on the capacity region of

the index coding problem (i|Ai), i ∈ [n], is the convex hull of the set of rate tuples
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(R1, . . . , Rn) in

⋃

(D1,...,Dn)∈∆

⋃

S∈Σ

⋂

i∈[n]

RDi|Ai
(S) (6.16)

where ∆ = {(D1, . . . , Dn) : i ∈ Di} and Σ = {S : S satisfies (6.13)}. In particular,

the broadcast rate is upper bounded by

βcomp = min
R:(R,...,R)∈Rcomp

1

R
. (6.17)

Remark 6.5. In computing the composite coding inner bound Rcomp, taking the

union over all vectors S ∈ Σ is equivalent to Fourier–Motzkin elimination of these

variables using linear inequalities (6.13) and (6.15).

Remark 6.6. It can be easily verified that the composite coding inner bound

Rcomp on the capacity region of the index coding problem (i|Ai), i ∈ [n], can also

be characterized as the convex hull of the set of rate tuples (R1, . . . , Rn) in

⋃

S∈Σ

⋂

i∈[n]

⋃

Di:i∈Di

RDi|Ai
(S) (6.18)

=
⋂

i∈[n]

⋃

Di:i∈Di

⋃

S∈Σ

RDi|Ai
(S) (6.19)

=
⋃

(D1,...,Dn)∈∆

⋂

i∈[n]

⋃

S∈Σ

RDi|Ai
(S), (6.20)

where ∆ = {(D1, . . . , Dn) : i ∈ Di} and Σ = {S : S satisfies (6.13)}.

Remark 6.7. For (D1, . . . , Dn) ∈ ∆, the broadcast rate is upper bounded by the
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solution βcomp(D1, . . . , Dn) to the linear program

minimize max
i∈[n]

∑

J⊆[n]:J 6⊆Ai

γJ

subject to min
K⊆Di

1

|K|
∑

J⊆Di∪AiJ∩K 6=∅

γJ ≥ 1, i ∈ [n],

γJ ≥ 0, J ⊆ [n],

(6.21)

and thus by

β ′
comp = min

(D1,...,Dn)∈∆
βcomp(D1, . . . , Dn). (6.22)

The upper bound in (6.22) can be strictly larger than the one in (6.17) as

illustrated by the following.

Example 6.1. For the index coding problem

(1|4, 5), (2|1, 6), (3|1, 2, 4), (4|1, 2, 3), (5|2, 3), (6|3, 4),

βcomp = 10/3, whereas β ′
comp = 3.5 which is achieved by the following two decoding

set tuples, (which only differ in D5),

D1 = {1}, D2 = {2, 5}, D3 = {3, 5, 6},

D4 = {4, 5, 6}, D5 = {5}, D6 = {6},

and

D1 = {1}, D2 = {2, 5}, D3 = {3, 5, 6},

D4 = {4, 5, 6}, D5 = {5, 6}, D6 = {6}.
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Remark 6.8. In the composite coding inner bound in Theorem 6.2 and Re-

mark 6.6, the choice of S = (SJ , J 6= ∅, J ⊆ [n]) does not depend on the chosen

decoding set tuple (D1, . . . , Dn). The scheme can potentially be enhanced by asso-

ciating a vector S(D1, . . . , Dn) to each decoding set tuple (D1, . . . , Dn) such that

(SJ , J 6= ∅, J ⊆ [n]), SJ =
∑

(D1,...,Dn)∈∆
SJ(D1, . . . , Dn), satisfy (6.13) [69].

Note that if Aj ⊆ {i} ∪ Ai for some i, j ∈ [n], then receiver i has enough

side information to use the decoding function of receiver j to recover xj . Thus,

there is no harm in adding j to the decoding set Di of receiver i. Generalizing this

concept, given an index coding problem G with side information sets A1, . . . , An,

Algorithm 1 generates a tuple of decoding sets which we refer to as the natural

decoding sets.

Algorithm 1: Construction of natural decoding sets

input: Side information sets A1, . . . , An

output: Natural decoding sets N1, . . . , Nn

Step 1) Set Ni = {i}, i ∈ [n].
Step 2) If there exists i, j such that Aj ⊆ Ai ∪Ni then Ni ← Ni ∪ {j}
and repeat step 2. Otherwise, done!

Remark 6.9. It can be easily shown that step 2 in Algorithm 1 is equivalent to

the following.

Step 2′) If there exists i, j such that Aj ⊆ Ai ∪Ni then Ni ← Ni ∪Nj and repeat

step 2′. Otherwise, done!

Example 6.2. For the index coding problem

(1|4, 5), (2|1, 6), (3|1, 2, 4), (4|1, 2, 3), (5|2, 3), (6|3, 4),
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the natural decoding sets are as follows:

N1 = {1}, N2 = {2}, N3 = {3, 5, 6}, N4 = {4, 5, 6}, N5 = {5}, N6 = {6}.

Given a decoding set tuple (D1, . . . , Dn), let R(D1, . . . , Dn) be the set of

all rate tuples satisfying (6.15) for some (SJ , J ⊆ [n]) satisfying (6.13).

Proposition 6.9. Let (D1, . . . , Dn) be a tuple of decoding sets such that Ni\Di 6= ∅

for some i ∈ [n]. Then, there exists a tuple of decoding sets (D′
1, . . . , D

′
n) satisfying

Ni ⊆ D′
i, i ∈ [n] (6.23)

such that R(D1, . . . , Dn) ⊆ R(D′
1, . . . , D

′
n).

The proof of the proposition is relegated to Appendix 6.B. We refer to a

decoding set tuple that satisfy (6.23) as a superset of the natural decoding sets.

In the composite coding scheme (see Theorem 6.2 and Remark 6.7), it suffices to

consider the collection of all supersets of the natural decoding sets instead of con-

sidering the collection of all valid decoding set tuples. This reduces the complexity

of computing the composite coding (inner) bound, specially for problems for which

the sizes of the

6.9 Recursive Codes

In this Section, we extend the fractional local partial clique covering scheme

in Section 6.5 by performing local time sharing over subproblem solutions recur-

sively.
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Theorem 6.3. The capacity region C of the index coding problem with side infor-

mation graph G contains the rate region RR(G) that is recursively defined as the

set of rate tuples (R1, . . . , Rn) such that

Ri =
∑

J([n]

Ti,J , i ∈ [n], (6.24)

for some (Ti,J : i ∈ J) and γJ , J ( [n], satisfying

∑

J([n]:J 6⊆Ai

γJ ≤ 1, i ∈ [n],

(Ti,J : i ∈ J) ∈ γJ ·RR(G|J), J ( [n],

γJ ≥ 0, J ( [n],

Ti,J ≥ 0, J ( [n], i ∈ J,

(6.25)

where RR(G|J) is the rate region for the subgraph G|J and RR(G|{i}) = [0, 1]. Here,

a ·R := {aR : R ∈ R}. In particular, the broadcast rate is upper bounded by

βR = min
R:(R,...,R)∈RR

1

R
. (6.26)

Remark 6.10. The broadcast rate β of an index coding problem with side infor-

mation graph G is upper bounded by β ′
R(G) which is recursively defined as the

solution to the linear program

minimize max
i∈[n]

∑

J([n]:J 6⊆Ai

ρJβ
′
R(G|J)

subject to
∑

J([n]:i∈J

ρJ ≥ 1, i ∈ [n],

ρJ ∈ [0, 1], J ( [n],

(6.27)
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where β ′
R(G|J) is the solution for the subgraph G|J and β ′

R(G|{i}) = 1, i ∈ [n].

Recursion over rate regions (Theorem 6.3) is richer than recursion over

broadcast rates (Remark 6.10); See Appendix 6.C for the proof.

Proposition 6.10. For the index coding problem with side information graph G,

we have

βR ≤ β ′
R. (6.28)

Remark 6.11. The recursive bound in Theorem 6.3 improves upon the fractional

local partial clique covering bound [30]. The improvement can be strict as illus-

trated by the 5-message problem in Figure 6.10.

1

2

34

5

Figure 6.10: An index coding problem with β′
R = 3 < βFLP = 7/2. Here the

bounds are computed by solving the respective linear programs.

Remark 6.12. The tightest inner bound on the capacity region of the index

coding problem achieved by local time sharing RLTS (and the associated upper

bound on the broadcast rate βLTS) is obtained by using the capacity region C (G|J)

of the subgraph G|J instead of RR(G|J) in (6.24). However, as illustrated by the

5-message example in Figure 6.11, even local time sharing over the capacity regions

of subproblems is not optimal in general, demonstrating a fundamental limitation

of the concept of local time sharing.

Figure 6.12 demonstrates the coding schemes that we discussed in this sec-

tion and their relationship.
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1

2

34

5

Figure 6.11: An index coding problem with β = 3 < β(RLTS) = βLTS = 7/2.
Here β is achieved by composite coding.

clique covering

clique covering

clique covering

partial clique covering

fractional

fractional local

fractional local

vector linear

MDS flat coding

composite coding

recursive

Figure 6.12: A summary of the coding schemes.

Chapter 6, in part, is a reprint of the material in the papers: Fatemeh

Arbabjolfaei, Bernd Bandemer, Young-Han Kim, Eren Sasoglu, Lele Wang, “On

the capacity region for index coding”, Proceedings of the IEEE International Sym-

posium on Information Theory, Istanbul, Turkey, July 2013; and Fatemeh Arbab-

jolfaei, Bernd Bandemer, Young-Han Kim, “Index coding via random coding”,

Proceedings of the Iran Workshop on Communication and Information Theory,

Tehran, Iran, May 2014; and Fatemeh Arbabjolfaei and Young-Han Kim, “Local

time sharing for index coding”, Proceedings of the IEEE International Symposium
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on Information Theory, Honolulu, HI, USA, July 2014; and Fatemeh Arbabjolfaei

and Young-Han Kim, “Elements of index coding”, to be submitted to Foundations

and Trends in Communications and Information Theory. The dissertation author

was the primary investigator and author of these papers.

6.A Proof of Proposition 6.8

Following the standard steps in random coding proofs in information the-

ory [67, 57], we prove the theorem by describing a randomly generated code ensem-

ble and showing that the average probability of error of the random code ensemble

tends to zero as r →∞, provided that the rate tuple (R1, . . . , Rn) satisfies (6.14).

Let r > 0, ti = ⌈rRi⌉, i ∈ [n], and sJ = ⌈rSJ⌉, J ⊆ [n].

Codebook generation. For each J ⊆ [n], generate wJ(x(J)) uniformly at ran-

dom from [2sJ ].

Encoding. To communicate message tuple (x1, . . . , xn), encoder J ⊆ [n] trans-

mits wJ = wJ(x(J)).

Decoding. The receiver finds the unique x̂(D) such that wJ = wJ(x̂(D), x(A))

for every J ⊆ D ∪ A. If there is more than one such tuple, then it declares an

error.

Analysis of the probability of error. We partition the error event according

to the nonempty subset K ⊆ D of erroneous message indices, i.e., x̂i 6= xi iff i ∈ K.
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Therefore,

Pe = P
{

wJ(x̂(J)) = wJ for all J ⊆ D ∪ A for some x̂(D) 6= x(D)
}

=
∑

K⊆D

∑

x̂:
x̂i 6=xi, i∈K
x̂i=xi, i 6∈K

P

(

⋂

J⊆D∪A
J∩K 6=∅

{

wJ(x̂(J)) = wJ

}

)

≤
∑

K⊆D

2
∑

i∈K ti−
∑

J⊆D∪A:J∩K 6=∅ sJ (6.29)

≤
∑

K⊆D

2
∑

i∈K rRi+1−
∑

J⊆D∪A:J∩K 6=∅ rSJ ,

where (6.29) holds since for each K the number of erroneous tuples is 2
∑

i∈K ti − 1,

and for each erroneous tuple with x̂i 6= xi iff i ∈ K, the probability that two distinct

message tuples are mapped to the same wJ for all J ⊆ D ∪ A with J ∩K 6= ∅ is

2−
∑

sJ . Thus, the error probability Pe tends to zero as r →∞, provided that

∑

i∈K

Ri <
∑

J⊆D∪A:J∩K 6=∅

SJ

for all K ⊆ D.

6.B Proof of Proposition 6.9

The proposition is proved by applying the following lemma at most n times.

Lemma 6.1. Let (D1, . . . , Dn) be a tuple of decoding sets such that Ni \ Di 6= ∅

for some i ∈ [n]. Then R(D1, . . . , Dn) ⊆ R(D′
1, . . . , D

′
n) for some (D′

1, . . . , D
′
n)

satisfying

Ni ⊆ D′
i and D′

k = Dk, ∀k 6= i.
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Proof of the Lemma: Let Ni \Di = {i1, . . . , im}. Assume that i1, . . . , im are

added to Ni using Algorithm 1 in order. Therefore, we have

Aik ⊆ Ai ∪Di ∪ {i1, . . . , ik−1} ⊆ Ai ∪Di ∪Di1 ∪ . . . ∪Dik−1
, k ∈ [m]. (6.30)

Define (D′
1, . . . , D

′
n) by

D′
k =















Dk k 6= j

Di ∪Di1 ∪ . . . ∪Dim k = i.

Since ik ∈ Dik , k ∈ [m], we have Ni ⊆ D′
i = Di ∪Di1 ∪ . . . ∪Dim and thus

it suffices to prove the following claim.

Claim: R(D1, . . . , Dn) ⊆ R(D′
1, . . . , D

′
n).

Proof of the claim: Let (R1, . . . , Rn) ∈ R(D1, . . . , Dn), i.e., there exists

(SJ , J ⊆ [n]) such that (6.13) and (6.15) are satisfied. For k 6= i the inequalities in

(6.15) are the same for R(D1, . . . , Dn) and R(D′
1, . . . , D

′
n). Therefore, it suffices

to show that (R1, . . . , Rn) together with (SJ , J ⊆ [n]) satisfy the following.

∑

k∈L′

Rk ≤
∑

J⊆Ai∪D′
i:J∩L

′ 6=∅

SJ , ∀L′ ⊆ D′
i \ Ai. (6.31)

Consider the following partition of L′.

L′ = L ∪ L1 ∪ . . . ∪ Lm,
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where

L ⊆ Di \ Ai,

L1 ⊆ Di1 \ (Ai ∪Di),

L2 ⊆ Di2 \ (Ai ∪Di ∪Di1),

...

Lm ⊆ Dim \ (Ai ∪Di ∪Di1 ∪ . . . ∪Dim−1).

So the LHS of (6.31) is

∑

k∈L′

Rk =
∑

k∈L

Rk +
∑

k∈L1

Rk + . . .+
∑

k∈Lm

Rk.

By (6.30) we have

Lk ⊆ Dik \ Aik , k ∈ [m].

Hence, by (6.15),

∑

k∈L

Rk ≤
∑

J⊆Ai∪Di:J∩L 6=∅

SJ , (6.32)

and for k ∈ [m]

∑

i∈Lk

Ri ≤
∑

J⊆Aik
∪Dik

:J∩Lk 6=∅

SJ

≤
∑

J⊆Ai∪Di∪Di1
∪...∪Dik−1

∪Dik
:J∩Lk 6=∅

SJ (6.33)

=
∑

J⊆Ai∪Di∪Di1
∪...∪Dik−1

∪Dik
:J 6⊆Ai∪Di∪Di1

∪...∪Dik−1
,J∩Lk 6=∅

SJ .
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Summing up the RHS of (6.32) and (6.33) for k ∈ [m] yields (6.31).

6.C Proof of Proposition 6.10

We use induction on the number n of messages. The induction base is

trivially true. Assume that (6.28) holds for all index coding problems with n − 1

or less messages. Let (ρJ , J ( [n]) be a feasible solution to (6.27) such that

βR(G) = max
i∈[n]

∑

J([n]:J 6⊆Ai

ρJβR(G|J).

For all J ( [n], define

γJ =
ρJβR(G|J)
βR(G)

,

Ti,J =















ρJ
βR(G)

i ∈ J,

0 otherwise.

Then, for all i ∈ [n] we have

∑

J([n]:J 6⊆Ai

γJ =
∑

J([n]:J 6⊆Ai

ρJβR(G|J)
βR(G)

≤ 1, (6.34)

Ri =
∑

J([n]

Ti,J =
∑

J([n]:i∈J

ρJ
βR(G)

≥ 1

βR(G)
. (6.35)

In addition, since (1/βR(G|J), . . . , 1/βR(G|J)) ∈ RR(G|J) and γJ/βR(G|J) = ρJ/βR(G),

by the induction hypothesis, we have (Ti,J : i ∈ J) ∈ γJ ·RR(G|J), which completes

the proof.



Chapter 7

Criticality

Let e be an edge of side information graph G = (V,E). We denote the

graph resulting from removing e from G by Ge, i.e.,

V (Ge) = V (G) and E(Ge) = E(G) \ {e}.

Given the index coding problem G, the edge e ∈ E is said to be critical if C (Ge) 6=

C (G), or in other words, if the removal of e from G strictly reduces the capacity

region. The index coding problem G itself is said to be critical if every e ∈ E(G)

is critical. Thus, each critical graph (= index coding problem) cannot be made

“simpler” into another one of the same capacity region.

The notion of criticality was first introduced by Tahmasbi, Shahrasbi, and

Gohari [70], In this Section, we present sufficient and necessary conditions for

criticality of an index coding problem.

107
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7.1 A Sufficient Condition

A Hamiltonian cycle in a graph is a cycle, if any, that visits each vertex

exactly once. Given a graph G = (V,E), the vertex induced subgraph G|J is

referred to as a unicycle if its set of edges is a Hamiltonian cycle in G|J . As an

example, in Figure 7.1(a), G|{1,2,3} is a unicycle, but G itself is not a unicycle. As

another example, for the graph in Figure 7.1(b), G|{1,2,3} and G|{1,3,4} are both

unicycles. Note that if the subgraph G|J is a unicycle, then G|J ′ cannot be a

unicycle for any J ′ that is a proper subset or superset of J .

1 4

32
(a)

1 4

32
(b)

Figure 7.1: (a) G|{1,2,3} is a unicycle, but G is not a unicycle. (b) G|{1,2,3}
and G|{1,3,4} are both unicycles.

Let e be an edge of G|J , where J ⊆ V and G|J is a unicycle. The rate tuple

(R1, . . . , Rn) such that

Ri =















1
|J |−1

, i ∈ J,

0, i 6∈ J,
(7.1)

is achievable for index coding problem G, for example, using an MDS code over

J . The vertex-induced subgraph Ge|J , however, is acyclic (since the Hamiltonian

cycle in G|J is broken and by definition there is no other cycle). Therefore, by

the MAIS outer bound in Remark 5.1, any rate tuple (R′
1, . . . , R

′
n) ∈ C (Ge) must
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satisfy

∑

i∈J

R′
i ≤ 1. (7.2)

The rate tuple in (7.1), however, does not satisfy (7.2) and thus is not in C (Ge).

This implies that removing edge e from G strictly reduces the capacity region

(C (Ge) 6= C (G)), establishing the following sufficient condition for the criticality

of a problem.

Theorem 7.1 (Union-of-unicycles condition). If every edge of G belongs to a vertex

induced subgraph that is a unicycle, then G is critical.

Example 7.1. Consider the index coding problem G with side information graph

depicted in Figure 7.1(b). Since every edge of G belongs to a unicycle, by Theo-

rem 7.1, G is critical.

The union-of-unicycles condition, however, is not necessary for criticality of

a graph, as illustrated by the following.

Example 7.2. The capacity region of the index coding problem with side infor-

mation graph shown in Figure 7.2 is characterized by

R1 +R2 ≤ 1,

R1 +R3 ≤ 1,

R1 +R4 ≤ 1,

R2 +R4 ≤ 1,

R2 +R5 ≤ 1,

R3 +R5 ≤ 1,
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which is achievable by the composite coding scheme (Theorem 6.2). Although the

edge 2→ 5 does not belong to any unicycle, removing it from the side information

graph reduces the capacity region to

R1 +R2 ≤ 1,

R1 +R3 ≤ 1,

R1 +R4 ≤ 1,

R2 +R4 ≤ 1, (7.3)

R2 +R5 ≤ 1,

R3 +R5 ≤ 1,

R1 +R2 +R3 +R4 +R5 ≤ 2,

which is also achievable by the composite coding scheme.

1

2

34

5

Figure 7.2: A critical 5-message index coding problem. Although the edge
2 → 5 does not belong to any unicycle, it is critical. The capacity region is
achieved by composite coding with or without the edge 2→ 5.

Remark 7.1. The union-of-unicycles condition captures “criticality” with respect

to the MAIS outer bound, that is, edge e belongs to a unicycle iff RMAIS(Ge) (

RMAIS(G). If RMAIS(Ge) ( RMAIS(G), then there exists a subset J ⊆ V such that

G|J contains a cycle and Ge|J is acyclic. Let Jmin be a minimal such subset. Then,

G|Jmin
is a unicycle that contains e. Conversely, let G|J , J ⊆ V , be a unicycle that

contains e. By the definition of unicycle, Ge|J is acyclic. Therefore, by the MAIS
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outer bound, any rate tuple (R1, . . . , Rn) ∈ C (Ge) must satisfy

∑

i∈J

Ri ≤ 1. (7.4)

However, since G|J is not acyclic, (7.4) is not an inequality of RMAIS(G).

7.2 Necessary Conditions

Tahmasbi, Shahrasbi, and Gohari established the following necessary con-

dition.

Proposition 7.1 (Union-of-cycles condition [70]). If G is critical, then every edge

belongs to a directed cycle.

The necessary condition in Proposition 7.1 can be viewed as a direct appli-

cation of Remark 4.1 which implies that every edge that lies on a directed cut can

be removed without affecting the capacity region. Therefore, if G is critical, then

by Farkas Lemma [71, Th. 2.2] (that is, each edge in a directed graph either lies

on a directed cycle or belongs to a directed cut but not both), every edge belongs

to a directed cycle.

Side information sets A1, . . . , An of an index coding problem G are said to

be degraded if there exist i, j ∈ V (G) such that j ∈ Ai and Aj ⊆ Ai. In this

case, the edge j → i can be removed since xj can be recovered at node i. This

observation leads to the following necessary condition.

Proposition 7.2 (Nondegradedness condition). If G is critical, then side infor-

mation sets must be nondegraded.

Next, we present another necessary condition by establishing a partial con-

verse to Theorem 7.1. Suppose G is critical. Then, for every e ∈ E(G) we have
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C (Ge) ( C (G). If the MAIS bound is tight for Ge,

RMAIS(Ge) = C (Ge) ( C (G) ⊆ RMAIS(G).

Thus, as discussed in Remark 7.1, the edge e belongs to a unicycle. This implies

the following partial converse to Theorem 7.1.

Proposition 7.3. If G = (V,E) is critical, then

• every edge e ∈ E belongs to a unicycle, or

• the MAIS bound is not tight for Ge, i.e., RMAIS(Ge) 6= C (Ge), for every

e ∈ E that does not belong to any unicycle.

In other words, edge e is not critical if it does not belong to any unicycle

and the MAIS bound is tight for Ge. Recall that the edge 2 → 5 in Figure 7.2 is

critical and does not belong to any unicycle. As is suggested by Proposition 7.3

and verified by (7.3), the MAIS bound is not tight for the side information graph

resulting from removing this edge.

The following summarizes all the necessary conditions for the criticality of

a problem that we know so far.

Theorem 7.2. If G = (V,E) is critical, then

1. every edge belongs to a directed cycle, and

2. side information sets are nondegraded, and

3. for every edge e ∈ E either e belongs to a unicycle, or the MAIS bound is

not tight for Ge, i.e., RMAIS(Ge) 6= C (Ge).

The next three examples demonstrate that these necessary conditions are

mutually independent.



113

Example 7.3. The six-message problem

(1|5, 6), (2|6), (3|6), (4|6), (5|1), (6|2, 3, 4, 5)

satisfies the union-of-cycles and nondegradedness conditions. However, it does

not satisfy the necessary condition in Proposition 7.3, as the edge 5 → 6 does

not belong to any unicycle and the MAIS bound is tight (and is achieved by the

composite coding scheme) after removing this edge.

Example 7.4. The six-message problem

(1|4, 5), (2|5, 6), (3|5), (4|1, 6), (5|1, 2), (6|2, 3, 4, 5)

satisfies the union-of-cycles condition and the necessary condition in Proposition 7.3.

However, A3 ⊂ A6 and thus it does not satisfy the nondegradedness condition.

Example 7.5. The six-message problem

(1|4, 6), (2|5, 6), (3|5), (4|1, 6), (5|1, 2), (6|2, 4, 5)

satisfies the nondegradedness condition and the necessary condition in Proposi-

tion 7.3. However, the edge 5 → 3 does not belong to any cycle and thus the

problem does not satisfy the union-of-cycles condition.

Satisfying all the necessary conditions in Theorem 7.2 at the same time,

however, is still not sufficient for criticality, as illustrated by the following.

Example 7.6. The side information graph G shown in Figure 7.3 satisfies union-

of-cycles and nondegradedness conditions. The edge 4 → 1 is the only edge that

does not belong to a unicycle and the MAIS bound is not tight for the index
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coding problem with side information graph resulting from removing this edge (see

Example 5.2). Therefore, G satisfies the necessary condition in Proposition 7.3 as

well. However, index coding problem G is not critical as the capacity region is

characterized by

R1 +R3 ≤ 1,

R1 +R4 ≤ 1,

R2 +R4 ≤ 1,

R2 +R5 ≤ 1,

R3 +R5 ≤ 1,

R1 +R2 +R3 +R4 +R5 ≤ 2,

with or without the edge 4→ 1.

1

2

34

5

Figure 7.3: A 5-message noncritical index coding problem that satisfies all the
three necessary conditions in Theorem 7.2. The capacity region is the same with
or without the edge 4→ 1 and is achieved by the composite coding scheme.

Remark 7.2. If a graph satisfies the union-of-unicycles condition, it trivially sat-

isfies the union-of-cycles condition and the necessary condition in Proposition 7.3.

We now argue that, as expected, satisfying the union-of-unicycles condition also

implies the nondegradedness condition. Assume that G has degraded side informa-

tion sets. Then, there exists an edge j → i such that Aj ⊆ Ai. We show that this

edge cannot belong to a unicycle. If the edge j → i does not belong to any cycle,
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then trivially it does not belong to any unicycle. Otherwise, it suffices to show

that none of the cycles that contain this edge is a unicycle. Assume that j → i

lies on a cycle C = (j, i, . . . , v), which by degradedness must have at least three

vertices. Then, by definition, v ∈ Aj and, by the assumption, v ∈ Ai. Therefore,

(i, . . . , v) is also a cycle and C is not a unicycle.

7.3 Application

In this section, we use the results of the previous sections to relate the ca-

pacity of index coding problem G and its MAIS bound to those of simpler problems.

Consider the graph G = (V,E) and let G′ be the graph resulting from removing

all edges of G that do not belong to any unicycle, i.e.,

V (G′) = V (G),

E(G′) = {e ∈ E(G) : e in a unicycle of G}. (7.5)

Proposition 7.4. RMAIS(G
′) = RMAIS(G).

In words, the set of edges of G that do not belong to any unicycle, is the

(maximum) set of edges that can be removed from G without changing the MAIS

bound. The proof of the proposition, which is implied by Remark 7.1, is presented

in Appendix 7.A.

This observation leads to a condition under which the capacity of index

coding problem G is equal to the capacity of the simpler problem G′. If the MAIS

bound is tight for G′, then

RMAIS(G
′) = C (G′) ⊆ C (G) ⊆ RMAIS(G),
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and thus, Proposition 7.4 implies the following.

Proposition 7.5. If the MAIS bound is tight for G′, then

RMAIS(G
′) = C (G′) = C (G) = RMAIS(G).

Consequently, if the MAIS bound is tight for G′, then G is not critical and

all the edges that do not belong to any unicycle can be removed without reducing

the capacity.

Remark 7.3. It can be similarly shown that the result of Proposition 7.5 also

holds for the broadcast rate. If βMAIS(G
′) = β(G′), then βMAIS(G) = β(G) =

β(G′) = βMAIS(G
′).

Example 7.7. Consider the side information graph G shown in Fig. 7.4, where

edges 5 → 3, 3 → 1, and 6 → 5 do not belong to any unicycle. It can be shown

that the capacity region for problem G′ is achieved by composite coding [27] and

is characterized by

R1 +R3 +R4 ≤ 1,

R1 +R3 +R5 ≤ 1,

R2 +R3 +R4 +R6 ≤ 1,

R2 +R3 +R5 +R6 ≤ 1, (7.6)

which is equal to its MAIS bound. Thus, by Proposition 7.5, G is not critical and

its capacity is also characterized by (7.6).

Note that when G is bidirectional (undirected), the polytope associated

with G in (2.5) is equivalent to the MAIS outer bound in (5.1). It is also easy to
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3

45

6

Figure 7.4: A noncritical 6-message index coding problem with nondegraded
side information sets. The edges 5 → 3, 3 → 1, and 6 → 5 lie on a directed
cycle, but do not belong to any unicycle.

see that the rate tuple given by each incidence vector of cliques in G is achievable

by clique covering and thus the polytope associated with G in (2.4) is achievable

by fractional clique covering (see Section 6.3). Therefore, by Lemma 2.3, if G

is bidirectional and perfect, then the capacity region is equal to the MAIS outer

bound in (5.1), which is achieved by fractional clique covering [20]. This together

with Proposition 7.5, implies the following.

Proposition 7.6. If G′ is bidirectional and U(G′) is perfect, then C (G) = RMAIS(G)

which is achieved by the fractional clique covering scheme.

This result can be recast to an earlier result by Yi, Sun, Jafar, and Gesbert

[20], using the following two lemmas that are proved in Appendices 7.B and 7.C.

Lemma 7.1. Consider G = (V,E) and let G′ be the graph as defined in (7.5). The

following statements are equivalent.

(1) For each clique K in U(Ḡ), G|K is acyclic.

(2) For each S ⊆ V (G), if G|S contains a cycle, then there exists a bidirectional

edge in G|S, i.e., ∃ i, j ∈ S such that (i, j) ∈ E(G) and (j, i) ∈ E(G).

(3) No unidirectional edge of G belongs to a unicycle.

(4) G′ is bidirectional.

Lemma 7.2. If G′ is bidirectional, then U(G′) = U(Ḡ).
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By Lemma 2.3 (U is perfect iff Ū is perfect), Lemma 7.1, and Lemma 7.2,

we can now restate Proposition 7.6 as follows.

Proposition 7.7 (Yi, Sun, Jafar, and Gesbert [20]). If U(Ḡ) is perfect and for

each clique K in U(Ḡ), G|K is acyclic, then C (G) = RMAIS(G) which is achieved

by the fractional clique covering scheme.

Chapter 7, in full, is a reprint of the material in the papers: Fatemeh

Arbabjolfaei and Young-Han Kim, “On critical index coding problems”, Proceed-

ings of the IEEE Information Theory Workshop, Jeju Island, Korea, Oct. 2015;

and Fatemeh Arbabjolfaei and Young-Han Kim, “Elements of index coding”, to be

submitted to Foundations and Trends in Communications and Information Theory.

The dissertation author was the primary investigator and author of these papers.

7.A Proof of Proposition 7.4

Remark 7.1, together with the following, implies Proposition 7.4.

Lemma 7.3. If e1 and e2 do not belong to any unicycle of G, then e2 does not

belong to any unicycle of Ge1.

Proof: If e2 does not belong to any cycle of G, then it trivially does not

belong to any unicycle of Ge1. Suppose e2 belongs to some cycle in G. It suffices to

show that for every cycle C of G that contains e2, C\e1 is not a unicycle of Ge1 . Let

e1 = (u1, u2), e2 = (vl, v1), and C = (v1, . . . , vl) be a cycle of G that contains e2. By

the assumption, C is not a unicycle and thus l ≥ 3. If |{u1, u2} ∩ {v1, . . . , vl}| < 2,

then removing e1 does not affect C and hence C \ e1 is not a unicycle of Ge1 .

Suppose |{u1, u2} ∩ {v1, . . . , vl}| = 2 and consider three cases.

Case 1: e1 = (vi, vi+1) for some i ∈ [l− 1]. In this case, removing e1 breaks
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the cycle C and hence C \ e1 is not a unicycle of Ge1.

Case 2: e1 = (vi, vj) for some 1 ≤ i < j ≤ l, (i, j) 6= (1, l). In this case,

(v1, . . . , vi, vj, . . . , vl) is a cycle of G that contains both e1 and e2 and thus, by the

assumption, is not a unicycle and has a chord, which is also a chord of C \e1. Thus,

C \ e1 is not a unicycle of Ge1.

Case 3: e1 = (vj, vi) for some 1 ≤ i < j ≤ l, (i, j) 6= (1, l). In this case,

(vi, . . . , vj) is a cycle of G that contains e1 and thus, by the assumption, is not a

unicycle and has a chord, which is also a chord of C \ e1. Thus, C \ e1 is not a

unicycle of Ge1.

7.B Proof of Lemma 7.1

(1) ⇒ (2): Assume that (2) does not hold. Then there exists a subset S

such that G|S contains a cycle but does not have any bidirectional edge. By the

definition of U(Ḡ), S is a clique of U(Ḡ), which contradicts (1).

(2) ⇒ (1): Assume that (1) does not hold. Then there exists a clique

K in U(Ḡ) such that G|K has a cycle. By the definition of U(Ḡ), G|K has no

bidirectional edge, which contradicts (2).

(2) ⇒ (3): Assume that there exists a unidirectional edge e and S ⊆ V ,

|S| ≥ 3, such that G|S is a unicycle and e ∈ E(G|S). By the definition of unicycle,

all of the edges of G|S are unidirectional, which contradicts (2).

(3) ⇒ (2): Assume that (2) does not hold. Then there exists a subset S,

|S| ≥ 3 such that G|S has a cycle but does not have any bidirectional edge. A

minimal such S forms a unicycle and hence all of its unidirectional edges belong

to a unicycle, which contradicts (3).
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(3) ⇒ (4): To form G′, every edge of G that do not belong to a unicycle

is removed. Hence, if (3) holds, then all unidirectional edges of G are removed to

form bidirectional G′.

(4) ⇒ (3): G′ is formed by removing edges of G that do not belong to

any unicycle. Hence, G′ is bidirectional implies that no unidirectional edge of G

belongs to a unicycle.

7.C Proof of Lemma 7.2

Since G′ is bidirectional and every bidirectional edge belongs to a unicycle,

we have

{i, j} ∈ E(U(G′)) ⇐⇒ (i, j) ∈ E(G) and (j, i) ∈ E(G).

By definition,

{i, j} 6∈ E(U(Ḡ)) ⇐⇒ (i, j) ∈ E(G) and (j, i) ∈ E(G).

Thus, U(G′) = U(Ḡ).



Chapter 8

Index Coding Capacity For Small

Problems

The composite coding scheme matches the polymatroidal bound for all 9,608

index coding problems with up to five messages [27]. In [72] it is shown that linear

codes are optimal for all index coding instances with five or fewer messages. The

number of instances of the index coding problem with n messages, which is equal

to the number of nonisomorphic directed graphs with n vertices [2, Seq. A000273],

blows up quickly with n. Even when n is as small as six, there are 1,540,944

nonisomorphic instances. In this section, we utilize the criticality conditions and

the structural properties discussed earlier to identify the 6-message index coding

instances for which the capacity can be characterized via the capacities of “simpler”

problems. By Theorem 4.1, if G can be decomposed into smaller graphs, then the

capacity of G can be expressed as a simple function of the capacities of smaller

problems with five or fewer messages, for which the capacity is known [27]. At the

same time, by Propositions 7.1, 7.2, and 7.3 (see also Theorem 7.2), if the graph

G does not satisfy the three necessary conditions, then a violating edge e can be

121
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removed to form a new graph Ge of the same capacity (which may or may not be

known as Ge still has 6 vertices).

Among the above conditions for simplification, we focus on the following

four properties on G. If any of them is satisfied, then G can be simplified.

P1: G is not strongly connected.

P2: The complement of G is disconnected.

P3: G is not a union-of-unicycles (G 6= G′) and the MAIS bound is tight for G′.

P4: G has degraded side information subsets.

Note that if the complement of G is disconnected, then G is strongly connected.

Hence, P1 and P2 are mutually exclusive. The properties P1 and P2 allow decom-

position into smaller problems, while P1, P3, and P4 allow removal of some edge.

Finally, P1, P2, and P3 (for the case of n = 6) lead to simpler problems with known

capacity, while P4 may result in a simpler problem with still unknown capacity.

Table 8.1 shows the number of 6-message instances that satisfy each of the

mentioned properties.

Table 8.1: The number of 6-message index coding instances that satisfy prop-
erties P1-P4.

Structural Property Number of six-message instances
P1 493,936
P2 10,101
P3 ≥ 1,513,890
P4 1,336,566

¬(P1 ∨ P2 ∨ P3 ∨ P4) ≤ 10,634

It can be easily checked that the side information graphs corresponding to

the six-message instances in Examples 7.3 to 7.5 have connected complement and
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thus do not satisfy property P2. This proves that there are instances satisfying

(P1 ∧ ¬P2 ∧ ¬P3 ∧ ¬P4) or (P3 ∧ ¬P1 ∧ ¬P2 ∧ ¬P4), or (P4 ∧ ¬P1 ∧ ¬P2 ∧ ¬P3).

Moreover, the six-message problem

(1|6), (2|6), (3|6), (4|6), (5|6), (6|1, 2, 3, 4, 5)

satisfies P2 but not P1, P3, or P4. Therefore, checking all of these four properties

is useful in removing instances that do not need further investigation.

For the remaining 10,634 instances that are not simplified, the polyma-

troidal bound in Theorem 5.1 is achieved by either composite coding or a scalar

linear code on F2. Therefore, the capacities of all 1,540,944 index coding instances

with 6 messages are established.

Chapter 8, in full, is a reprint of the material in the paper: Fatemeh Arbab-

jolfaei and Young-Han Kim, “Elements of index coding”, to be submitted to Foun-

dations and Trends in Communications and Information Theory. The dissertation

author was the primary investigator and author of this paper.



Chapter 9

Approximate Capacity for Some

Classes

In this Section, we first review some results in Ramsey theory which we will

use in the rest of the section to approximate the broadcast rate.

9.1 Ramsey Numbers

Given a class G of undirected graphs and two positive integers i and j, the

Ramsey number RG(i, j) is defined as the smallest positive integer such that every

graph in G with at least RG(i, j) vertices has a clique of size i or an independent set

of size j. If G is the class of all undirected finite simple graphs, then the Ramsey

number is denoted by R(i, j). In general, determining Ramsey numbers for most

classes G is quite difficult, but they are easily computed for very small values of i

and j.

Lemma 9.1 (Belmonte, Heggernes, Hof, Rafiey, and Saei [73]). For any nonempty
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graph class G of undirected graphs,

RG(1, j) = RG(i, 1) = 1, i, j ≥ 1.

If G contains all edgeless graphs, i.e., all U = (V,E) with E = ∅, then

RG(2, j) = j, j ≥ 1.

Similarly, if G contains all complete graphs, i.e., all U = (V,E) with E = {{i, j} :

i 6= j ∈ V }, then

RG(i, 2) = i, i ≥ 1.

The following upper bound on the Ramsey number is well-known.

Lemma 9.2 (Erdős and Szekeres [74]). For any i, j ≥ 1

R(i, j) ≤
(

i+ j − 2

i− 1

)

.

For some classes of graphs, this upper bound can be tightened.

A graph is said to be planar if it can be drawn on a plane without edges

crossing each other. Figure 9.1 shows examples of a 4-node planar graph and a

5-node nonplanar graph. Note that an edgeless graph is planar. Let P be the

class of undirected planar graphs. The Ramsey number for this class is completely

determined and is given in Table 9.1.

The line graph of an undirected graph U is obtained by associating a vertex

with each edge of the graph U and connecting two vertices with an edge iff the

corresponding edges of U have a vertex in common. Figure 9.2 shows a graph and
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Figure 9.1: (a) A 4-node planar graph (the edge {1, 3} can be drawn such that
it does not cross {2, 4}). (b) A 5-node nonplanar graph.

Table 9.1: Ramsey numbers for planar graphs

(i, j) RP(i, j) Reference
i = 1, j ≥ 1 1 Lemma 9.1
i = 2, j ≥ 1 j Lemma 9.1
i = 3, j ≥ 1 3j − 3 [75]

i ≥ 4, j ≥ 1, (i, j) 6= (4, 2) 4j − 3 [75]
(4, 2) 4 [75]

its line graph. It is easy to see that edgeless graphs and complete graphs belong

to the class of line graphs. Let L be the class of line graphs (of some undirected

graphs). The Ramsey number for this class is known (see Table 9.2).

1 2

34

a

b

c

d
e

(a)

a

b

c

d
e

(b)

Figure 9.2: (a) A 4-node graph with 5 edges. (b) The corresponding 5-node
line graph.

An undirected graph U = (V,E) is said to be a fuzzy circular interval

graph [77] if there exists a set F of closed intervals of a circle C, none including

1The exact value is known and is given in [73].
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Table 9.2: Ramsey numbers for line graphs

(i, j) RL(i, j) Reference
i = 1, j ≥ 1 1 Lemma 9.1
i = 2, j ≥ 1 j Lemma 9.1
i ≥ 1, j = 1 1 Lemma 9.1
i ≥ 1, j = 2 i Lemma 9.1
i = 3, j ≥ 3 ⌊(5j − 3)/2⌋ [76]
i ≥ 4, j ≥ 3 ≤ i(j − 1) + 21 [73]

another, such that no point of C is an endpoint of more than one interval in F ,

and a mapping φ : V → C such that if {i, j} ∈ E, then φ(i) and φ(j) belong

to a common interval of F , and if {i, j} 6∈ E, then either there is no interval in

F that contains both φ(i) and φ(j), or there is exactly one interval in F whose

endpoints are φ(i) and φ(j). Note that an edgeless graph is a fuzzy circular interval

graph (F = ∅) and a complete graph is a fuzzy circular interval graph (F = {C}).

Figure 9.3 shows a more interesting example of C6. Let F be the class of fuzzy

circular interval graphs. The Ramsey number for this class is given in Table 9.3.

1 4

32

5 6

(a)

a b

cd

(b)

Figure 9.3: (a) The complement of C6. (b) The fuzzy circular interval model
of C6 where the intervals are shown by dotted arcs and φ(1) = φ(2) = a,
φ(3) = φ(4) = b, φ(5) = d, and φ(6) = c.

We summarize these results as a simple bilinear upper bound on the Ramsey

number for the classes of planar, line, and fuzzy circular interval graphs.
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Table 9.3: Ramsey numbers for fuzzy circular interval graphs

(i, j) RF(i, j) Reference
i = 1, j ≥ 1 1 Lemma 9.1
i = 2, j ≥ 1 j Lemma 9.1
i ≥ 1, j = 1 1 Lemma 9.1
i ≥ 1, j = 2 i Lemma 9.1
i ≥ 3, j ≥ 3 (i− 1)j [73]

Lemma 9.3. For G = P,L, or F ,

RG(i, j) ≤ ij, i, j ≥ 1.

9.2 Approximate Capacity for Some Index Cod-

ing Classes

Blasiak, Kleinberg, and Lubetzky [23] stated the following approximation

result for index coding instances with bidirectional side information graphs.

Proposition 9.1 (Blasiak, Kleinberg, and Lubetzky [23]). For any bidirectional

(undirected) graph U with n nodes, the clique covering scheme approximates the

broadcast rate of the index coding problem U within a multiplicative factor of

O(n/ logn).

To prove this, consider the following lemma that indicates a relationship be-

tween the independence number of an undirected graph and the chromatic number

of its complement via Ramsey numbers.

Lemma 9.4 (Alon and Kahale [78]). Let U = (V,E) be an undirected graph

with |V | = n. Let ti(m) = max{j : R(i, j) ≤ m}. If χ(Ū) ≥ n/i + m, then an

independent set of size ti(m) can be found in U .
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Let i = 1
2
log n and m = n

i
. If χ(Ū) < 4n

logn
, then χ(Ū)

β(U)
≤ χ(Ū) < 4n

logn
. If

χ(Ū) ≥ 4n
logn

, then for sufficiently large n

α(U) ≥ max

{

j : R(
1

2
logn, j) ≤ n

i

}

(9.1)

≥ max

{

j :

( 1
2
log n+ j − 2
1
2
log n− 1

)

≤ n

i

}

(9.2)

≥ 1

2
log n,

where (9.1) follows by Lemma 9.4, and (9.2) follows by Lemma 9.2. Hence, using

Remark 5.2, we have χ(Ū)
β(U)

≤ n
β(U)

≤ n
α(U)

≤ O( n
logn

), which completes the proof.

The approximation result has also been generalized for directed graphs.

Proposition 9.2 (Blasiak, Kleinberg, and Lubetzky [23]). For any index coding

problem with n messages, the fractional clique covering scheme approximates the

broadcast rate within a multiplicative factor of O(n log logn/ log n).

To the best of our knowledge, the above approximation is the only algorithm

to approximate the broadcast rate of a general (directed) index coding problem.

In particular, no O(n1−ǫ) approximation exists for any ǫ > 0. In the following, we

present such approximation for some classes of graphs. We first use a technique

similar to the one used in the proof of Proposition 9.1 to present a condition under

which there exists an approximation of the broadcast rate of an index coding

problem U within a factor of O(n1−ǫ) for some ǫ > 0; see Appendix 9.A for the

proof.

Theorem 9.1. Let G be a class of undirected graphs for which RG(i, j) ≤ ciajb

holds for some constants a, b, and c. Then the clique covering scheme approximates

the broadcast rate of every n-node problem in G within a multiplicative factor of

2
a+1

a+b+1 c
1

a+b+1n
a+b

a+b+1 .
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As stated in Lemma 9.3, planar graphs, line graphs and fuzzy circular in-

terval graphs are three classes that satisfy the condition of Theorem 9.1 with

a = b = c = 1.

Corollary 9.1. If G is a planar graph or a line graph or a fuzzy circular interval

graph with n nodes, the clique covering scheme approximates the broadcast rate

within a multiplicative factor of (2n)2/3.

Next, we consider the four-color theorem that states that the chromatic

number of any planar graph is upper bounded by four.

Theorem 9.2 (Appel, Haken, and Koch [79]). Every planar graph U is four-

colorable, i.e., χ(U) ≤ 4.

The four-color theorem for planar graphs makes it possible to provide a

better approximation of the broadcast rate using simple lower and upper bounds.

If U(G) is planar,

n

4
≤ n

χ(U(G))
(9.3)

≤ n

χf(U(G))
(9.4)

≤ α(U(G)) (9.5)

≤ β(U(G)) (9.6)

≤ β(G) (9.7)

≤ n,

where (9.3) follows by the four-color theorem, (9.4) by (2.2), (9.5) by Lemma 2.2,

(9.6) by Remark 5.2 and (9.7) holds since adding side information decreases the
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broadcast rate. If U(Ḡ) is planar,

1 ≤ β(G) ≤ χ(U(Ḡ)) ≤ 4.

The following summarizes these results.

Theorem 9.3 ([80]). If either U(G) or U(Ḡ) is planar, the broadcast rate can be

approximated within a multiplicative factor of four.

By Theorem 9.3, if U(G) (U(Ḡ)) is planar then uncoded transmission

(clique covering) is within a multiplicative factor of four from optimal. Note that

Berliner and Langberg [81] showed that for index coding problems with outerpla-

nar side information graph (which is a special case of planar graphs), the best

performance over all scalar linear codes is achieved by the clique covering scheme.

Next, consider the class of unidirectional graphs. By Lemma 2.1, for any

unidirectional graph G on n vertices

log(n) ≤ β(G′) ≤ β(G),

where G′ is the tournament resulting from adding edges with arbitrary direction be-

tween the vertices that are not connected in G. This implies that for unidirectional

graphs, uncoded transmission is within a factor of n/ logn from optimal.

Chapter 9, in full, is a reprint of the material in the papers: Fatemeh

Arbabjolfaei and Young-Han Kim, “Approximate capacity of index coding for

some classes of graphs”, Proceedings of the IEEE International Symposium on

Information Theory, Barcelona, Spain, July 2016; and Fatemeh Arbabjolfaei and

Young-Han Kim, “Elements of index coding”, to be submitted to Foundations and

Trends in Communications and Information Theory. The dissertation author was
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the primary investigator and author of these papers.

9.A Proof of Theorem 9.1

Let U ∈ G. By Proposition 6.3, 1 ≤ χ(Ū)
β(U)

. Let k be a positive real number

and consider two cases.

Case 1: If χ(Ū) < 2n/k, then χ(Ū)
β(U)

< 2n/k.

Case 2: If χ(Ū) ≥ 2n/k, then

( n

cka+1

)
1
b

= max
{

j : ckajb ≤ n/k
}

≤ max {j : RG(k, j) ≤ n/k} (9.8)

= tk(n/k) (9.9)

≤ α(U) (9.10)

≤ β(U) ≤ χ(Ū) ≤ n,

where (9.8) follows by the assumption of the theorem, and (9.9) and (9.10) by

letting m = n/k in Lemma 9.4. Thus,

χ(Ū)

β(U)
≤ n

β(U)
≤ n1− 1

b (cka+1)
1
b .

As k increases, the upper bound on χ(Ū)
β(U)

decreases in the first case, and increases

in the second case. Hence, to minimize the upper bound on the multiplicative gap

between χ(Ū) and β(U), we choose k = 2
b

a+b+1 (n/c)
1

a+b+1 , which makes the upper

bounds in both cases to be equal to the desired multiplicative gap.



Chapter 10

Index Coding Versus Distributed

Storage and Guessing Games

The index coding problem is closely related to the locally recoverable dis-

tributed storage problem, which studies fundamental limits and coding schemes for

reliable data storage on a set of interconnected servers. The need to store data on a

reliable distributed storage network is becoming increasingly urgent as the amount

of data to be stored continues to expand. The locally recoverable distributed stor-

age problem is equivalent to guessing game on directed graphs, which is a problem

in recreational math area. In this section, we first overview the locally recoverable

distributed storage problem and the problem of guessing game on graphs. Next,

we elaborate on the relationship between these two problems and the index coding

problem.

133
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10.1 Locally Recoverable Distributed Storage

Problem

In the locally recoverable distributed storage problem, which hereafter will

be referred to as the distributed storage problem, a set of servers collectively store

data such that if a server fails, its contents can be efficiently reconstructed from

the contents of the other servers (among many others, see [82, 83, 84]). The goal is

to design a distributed storage code that maximizes the amount of data that can

be stored while satisfying the single-failure recovery constraint. Mazumdar [17]

considered a distributed storage system in which each server has only access to a

subset of the other servers and model the topology of the system by a directed

graph. The same model was also considered in an independent concurrent work

by Shanmugam and Dimakis [18].

Assume that there are n servers in the system and data is exactly recover-

able by accessing all of the servers. Let xi ∈ {0, 1}ti denote the content of server

i ∈ [n]. Each server has access to the contents of a subset of other servers, x(Ai),

Ai ⊆ [n] \ {i}. The set Ai is referred to as the recovery set of server i. The goal

is to find the maximum amount of data that can be stored in the network so that

if any single server fails, its content can be still recovered from the contents of its

recovery set. Any instance of the distributed storage problem is fully represented

by the storage recovery graph G = (V,E) in which each vertex represents a server

and there exists a directed edge j → i iff server j is in the recovery set of server

i, i.e, j ∈ Ai. We identify an instance of the distributed storage problem with its

storage recovery graph G and often write “distributed storage problem G.”

A (t1, . . . , tn, r) distributed storage code is defined by

• a message set [2r],
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• a one-to-one encoding function xn : [2r]→ ∏n
i=1{0, 1}ti that assigns a distinct

codeword xn(m) to each message m ∈ [2r], (the set C = {xn(1), . . . , xn(2r)}

is referred to as the codebook), and

• n recovery functions, where the recovery function at server i ∈ [n], fi :
∏

k∈Ai
{0, 1}tk → {0, 1}ti maps the contents of the recovery set x(Ai) to xi.

Thus, for every xn ∈ C,

f(x(Ai)) = xi, i ∈ [n].

A rate tuple (R′
1, . . . , R

′
n) is said to be achievable for the distributed storage prob-

lem G if there exists a (t1, . . . , tn, r) distributed storage code such that

R′
i ≥

ti
r
, i ∈ [n].

The optimal rate region R of the distributed storage problem is defined as the

closure of the set of achievable rate tuples.

For any nonnegative real tuple λ = (λ1, . . . , λn), the λ-directed optimal rate

R(λ) of the distributed storage problem G is defined as

R(λ) = min{R′ : R′λ ∈ R}. (10.1)

The 1-directed optimal rate of the distributed storage problem G is referred to as

the symmetric coding rate,

Rsym = R(1) = min{R′ : (R′, . . . , R′) ∈ R}.

The reciprocal of the symmetric coding rate is sometimes referred to as the nor-

malized rate.
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Remark 10.1. The optimal rate region can be written in terms of λ-directed

optimal rates.

R =
⋃

λ

{R′ ∈ Rn : R′ ≥ R(λ)λ} . (10.2)

Note that if λ = cλ′ for some constant c, then R(λ)λ = R(λ′)λ′ and thus, it

suffices to take the union in (10.2) only over normalized vectors, e.g., over λ such

that
∑n

j=1 λj = n.

For any nonnegative real vector µ = (µ1, . . . , µn), the µ-weighted optimal

sum-rate R̄(µ) of the distributed storage problem G is defined as

R̄(µ) = min

{

n
∑

j=1

µjR
′
j : (R

′
1, . . . , R

′
n) ∈ R

}

.

The 1-weighted optimal sum-rate R̄(1) is simply referred to as the optimal sum-

rate

Rsum = R̄(1) = min

{

n
∑

j=1

R′
j : (R

′
1, . . . , R

′
n) ∈ R

}

.

Given a storage recovery graph G and an integer tuple t = (t1, . . . , tn),

consider the confusion graph Γ = Γt(G) as defined in Section 3. By definition, no

two n-tuples in a maximal independent set of the confusion graph Γ are confusable

and therefore, for these α(Γ) n-tuples, contents of each server is a function of the

contents of its recoverability set. Therefore, it is possible to use these α(Γ) n-tuples

to store r = ⌊log(α(Γ))⌋ bits in the distributed network. This proves the existence

of a (t1, . . . , tn, ⌊log(α(Γt(G)))⌋) distributed storage code. Conversely, consider

any (t1, . . . , tn, r) distributed storage code, which has at least 2r distinct n-tuples

that satisfy the required function relationship. By definition, these n-tuples form

an independent set of the confusion graph Γ = Γt(G). Thus, α(Γ) ≥ 2r, or
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equivalently, r ≤ ⌊log(α(Γ))⌋. Therefore, any achievable (R′
1, . . . , R

′
n) must satisfy

R′
i ≥

ti
⌊log(α(Γt(G)))⌋

, i ∈ [n],

for some t = (t1, . . . , tn). This establishes the following.

Proposition 10.1 ([17, 19]). The optimal rate region R of the distributed storage

problem G is the closure of all rate tuples (R′
1, . . . , R

′
n) such that

R′
i ≥

ti
log(α(Γt))

, i ∈ [n],

for some t = (t1, . . . , tn).

10.2 Guessing game on Directed Graphs

Given a directed graph G = (V,E), V = [n], consider the following cooper-

ative game among n players. Player i ∈ [n] is associated to vertex i and is assigned

a value xi ∈ {0, 1}ti independently from the other players. Assume that player i

can observe x(Ai) assigned to the players in her neighbor set Ai ⊆ [n] \ {i}. The

players guess simultaneously their own value and win if all of them guess their value

correctly. No communication is allowed between the players, but they can agree

on a strategy beforehand. The goal is to find the maximum winning probability

and the strategy that achieves this maximum. This mathematical riddle, named

the guessing game on a graph, was introduced by Riis [14]. The setting presented

here is slightly different from his in that the range of the values assigned to the

players can be different.

As an example, consider the guessing game on a complete graph with n

vertices and assume that ti = 1, i ∈ [n]. If every player guesses her value randomly,
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then the players win with probability 1/2n. Consider the following strategy. Each

player guesses her own value assuming that the sum of all the values is even. Since

every player can observe the values of all other players, the players win iff their

assumption is correct, which happens with probability 1/2. This strategy makes a

significant improvement over the random guessing and is optimal, as the probability

that a single player guesses her value correctly is also 1/2.

Now we formalize the problem with the following definition. A (t1, . . . , tn,W )

guessing strategy consists of

• n guessing functions, where the guessing function of player i ∈ [n], hi :
∏

j∈Ai
{0, 1}tj → {0, 1}ti, maps the values of the neighbors x(Ai) to xi and

• a set W of n-tuples that can be guessed correctly using these functions,

W :=
n
⋂

i=1

{

xn ∈
n
∏

j=1

{0, 1}tj : hi(x(Ai)) = xi

}

.

Let Pwin be the probability of winning, namely, the probability that everyone

guesses her value correctly. If the players adopt a (t1, . . . , tn,W ) strategy, then

Pwin =
|W |

∏n
i=1 2

ti
.

Let Prand be the probability of winning if every player guesses her value randomly.

As player i ∈ [n] is correct with probability 1/2ti independent of others, we have

Prand =
1

∏n
i=1 2

ti
.

The performance of a given guessing strategy can be measured by the notion of

guessing number (see [14] for the symmetric case).
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Definition 10.1. Given a directed graphG, the guessing number of a (t1, . . . , tn,W )

guessing strategy is

k(G, t) = logs

(

Pwin

Prand

)

=
n log |W |
∑

i∈[n] ti
, (10.3)

where s = 2
1
n

∑
i∈[n] ti .

Note that for the case in which ti = t, i ∈ [n], we have k(G, t) = log(|W |)/t.

The optimal guessing number k(G) of a directed graph G is defined as

k(G) = sup
t

sup k(G, t), (10.4)

where the second supremum is over all (t1, . . . , tn,W ) strategies. The following is

an alternative way to measure the performance of adopting a strategy.

Definition 10.2. Given a directed graph G, the complementary guessing number

of a (t1, . . . , tn,W ) guessing strategy is defined as

k′(G, t) = logs (1/Pwin) , (10.5)

where s = 2
1
n

∑
i∈[n] ti and Pwin is the probability that the players win if they adopt

that strategy.

The optimal complementary guessing number is defined in a similar way.

k′(G) = inf
t
inf k′(G, t), (10.6)

where the second infimum is over all (t1, . . . , tn,W ) guessing strategies.

Remark 10.2. For any (t1, . . . , tn,W ) guessing strategy, we have k′(G, t) = n −
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k(G, t), and thus

k′(G) = n− k(G). (10.7)

As in index coding and distributed storage problems, the confusion graph

Γt(G) defined in Section 3 for a given directed graph G and an integer tuple

t = (t1, . . . , tn) is useful in characterizing the optimal guessing number of the

guessing game on graph G. Using an argument similar to the proof of Proposition

10.1, for any t = (t1, . . . , tn) the optimal guessing strategy has winning probability

Pwin = α(Γt)/Πi∈[n]2
ti and thus,

k(G, t) =
n log (α(Γt))
∑

i∈[n] ti
,

which implies the following.

Proposition 10.2. For the guessing game on directed graph G on n vertices we

have

k(G) = sup
t

n log (α(Γt))
∑

i∈[n] ti
.
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10.3 Equivalence Between Distributed Storage

and Guessing Games

For any integer tuple t = (t1, . . . , tn), let s(t) = 2
1
n

∑
i∈[n] ti , then

Rsum = min
R′∈R

n
∑

i=1

R′
i

= inf
t

∑

i∈[n] ti

log(α(Γt))
(10.8)

=
n

supt
log(α(Γt))
log(s(t))

=
n

k(G)
, (10.9)

where (10.8) follows by Proposition 10.1, and (10.9) follows by Proposition 10.2.

Hence, for any directed graph G, the optimal guessing number of the guessing

game on G is inversely related to the optimal sum-rate of the distributed storage

problem G.

Theorem 10.1. For any directed graph G on n nodes

k(G) =
n

Rsum
.

In fact the guessing game is equivalent to the distributed storage problem

in the following strong sense, which can be used to prove Theorem 10.1 without

involving confusion graphs.

Theorem 10.2. Given any directed graph G, a (t1, . . . , tn,W ) guessing strategy

exists iff a (t1, . . . , tn, r) distributed storage code exists with r = ⌊log |W |⌋.

To prove this, consider a (t1, . . . , tn,W ) guessing strategy. We can construct

a (t1, . . . , tn, r) distributed storage code by using the set of n-tuplesW as the set of

codewords to store 2r, r = ⌊log |W |⌋, messages and using guessing functions hi, i ∈
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[n], as the recovery functions. Conversely, consider a (t1, . . . , tn, r) distributed

storage code. Setting W = {xn(m) : m ∈ [2r]} and using the recovery function

fi as the guessing function of player i ∈ [n], we can construct a (t1, . . . , tn,W )

guessing strategy with |W | = 2r.

10.4 Complementarity Between Index Coding

and Distributed Storage

For any length-n integer tuple t, the confusion graph Γt is vertex transitive.

Therefore, by Lemma 2.2,

log(χf (Γt)) =
∑

i∈[n]

ti − log(α(Γt)). (10.10)

Based on (10.10) and the following, we can establish a complementarity relation-

ship between the λ-directed capacity C(λ) and the λ-directed optimal rate R(λ),

for any nonnegative real tuple λ.

Proposition 10.3. For any directed graph G on n nodes and any λ ∈ Qn
≥0,

C(λ) = sup
r:rλ∈Zn

≥0

r

log(χf(Γrλ(G)))
, (10.11)

R(λ) = inf
r:rλ∈Zn

≥0

r

log(α(Γrλ(G)))
. (10.12)

The proof of the Proposition is relegated to Appendix 10.A. Now for λ ∈
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Qn
≥0, we have

C(λ) = sup
r:rλ∈Zn

≥0

r

log(χf(Γrλ(G)))
(10.13)

= sup
r:rλ∈Zn

≥0

r

r
∑n

i=1 λi − log(α(Γrλ(G)))
(10.14)

=
1

∑n
i=1 λi − 1

R(λ)

, (10.15)

where (10.13) and (10.15) follow from Proposition 10.3, and (10.14) follows by

(10.10). By the continuity of the functions C(λ) and R(λ) and Q being dense in

R we have the following.

Theorem 10.3 ([19]). For any directed graph G on n nodes and any λ ∈ Rn
≥0

1

C(λ)
=

n
∑

i=1

λi −
1

R(λ)
. (10.16)

By (1.2) and (10.2), the above theorem establishes the complementarity

between the two problems in the strong sense that given the capacity region of

the index coding problem G (more precisely, given the boundary points of the

capacity region), Theorem 10.3 completely determines the optimal rate region for

the distributed storage problem G and vice versa. This includes as an special case

the complementarity between the symmetric capacity of the index coding problem

and the symmetric coding rate of the distributed storage established by Mazumdar

[17], and by Shanmugam and Dimakis [18].

Corollary 10.1. Setting λ = 1 in Theorem 10.3 yields

1

Csym
= n− 1

Rsym
. (10.17)

Equation (10.10) can also be used to show how the sum-capacity of the
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index coding problem is related to the optimal sum-rate of the distributed storage

problem.

Theorem 10.4 ([19]).

1

Csum

= 1− 1

Rsum

. (10.18)

To see why (10.18) holds, consider

1

Csum
=

1

maxR∈C

∑n
i=1Ri

=
1

supt

∑
i∈[n] ti

log(χf (Γt))

(10.19)

= inf
t

∑

i∈[n] ti − log(α(Γt))
∑

i∈[n] ti
(10.20)

= 1− 1

minR′∈R

∑n
i=1R

′
i

= 1− 1

Rsum
, (10.21)

where (10.19) follows by Proposition 3.4, (10.20) follows by (10.10), and (10.21)

follows by Proposition 10.1.

Combining Theorems 10.4 and 10.1, and (10.7) yields the inverse relation-

ship between the optimal complementary guessing number and the index coding

sum-capacity.

Corollary 10.2. For any directed graph G on n nodes

k′(G) =
n

Csum
.

The relationship between index coding, distributed storage, and guessing

game on directed graphs is summarized in Figure 10.1. Note that by Theorem 10.2,

distributed storage and guessing game are equivalent; however, optimal guessing
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number and complementary guessing number, by definition, consider only a specific

direction.

Index coding

Distributed storage Optimal guessing number

guessing number

Optimal complementary

Figure 10.1: The relationship between index coding, distributed storage, op-
timal guessing number, and optimal complementary guessing number.

Chapter 10, in full, is a reprint of the material in the papers: Fatemeh

Arbabjolfaei and Young-Han Kim, “Three stories on a two-sided coin: index cod-

ing, locally recoverable distributed storage, and guessing games on graphs”, Pro-

ceedings of the 53rd Annual Allerton Conference on Communication, Control, and

Computing, Monticello, Illinois, Oct. 2015; and Fatemeh Arbabjolfaei and Young-

Han Kim, “Elements of index coding”, to be submitted to Foundations and Trends

in Communications and Information Theory. The dissertation author was the pri-

mary investigator and author of these papers.

10.A Proof of Proposition 10.3

To prove Proposition 10.3, we first need to prove two lemmas. By Proposi-

tion 3.4, C = cl(C ◦), where

C
◦ = {(R1, . . . , Rn) ∈ Rn

≥0 : Ri ≤
ti

log(χf(Γt(G)))
for some (t1, . . . , tn) ∈ Zn

≥0}.
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The following lemma shows that the λ-directed capacity defined in (1.1), can also

be defined in terms of C ◦.

Lemma 10.1. For any non-negative real tuple λ,

C(λ) = sup{R : Rλ ∈ C
◦}. (10.22)

Proof: Let R∗ = sup{R : Rλ ∈ C
◦}, then R∗λ ∈ C and by the definition

of C(λ) we have R∗ ≤ C(λ).

Assume that R∗ < C(λ). Let

ǫ =
1

2
(C(λ)− R∗) min

i:λi>0
λi,

and define the ǫ-neighborhood Nǫ(C(λ)λ) as

Nǫ(C(λ)λ) =
⋂

i:λi>0

{

R ∈ Rn : eTi (C(λ)λ−R) < ǫ
}

,

where all of the components of the n× 1 vector ei are zero, except the i-th compo-

nent, which is one. If Nǫ(C(λ)λ)∩C
◦ = ∅, then it contradicts the fact that C(λ)λ

belongs to C . Alternatively, if Nǫ(C(λ)λ) ∩ C ◦ 6= ∅, then there exists R > R∗

such that Rλ ∈ C ◦, which contradicts the definition of R∗. Therefore, R∗ = C(λ)

and the proof is complete.

The following lemma shows that given any directed graph G, the confusion

graph corresponding to a larger integer tuple has a larger fractional chromatic

number.

Lemma 10.2. Let s = (s1, . . . , sn) and t = (t1, . . . , tn) be two integer tuples such



147

that s ≤ t. Then for any directed graph G with n vertices, we have

χf(Γs(G)) ≤ χf (Γt(G)). (10.23)

Proof: First assume that si + k = ti for some i ∈ [n] and some positive

integer k and sj = tj, ∀j 6= i. In this case, we will prove the lemma by contradic-

tion. Assume that (10.23) does not hold. Then as any confusion graph is vertex

transitive, by Lemma 2.2, we have

α(Γt(G)) > 2kα(Γs(G)). (10.24)

Each vertex of Γt is associated with an n-tuple that has tj bits for user j ∈ [n].

Consider the α(Γt) n-tuples in a maximal independent set of Γt and partition them

into (at most 2k) subsets based on the first k bits of user i. As these k bits are the

same for all the members of each partition, after removing these k bits from all

the n-tuples, each partition will correspond to an independent set of Γs. However,

there are at most 2k partitions and hence if (10.24) holds, due to the pigeonhole

principle, there exists a partition with more than α(Γs) members, i.e., there exists

an independent set of size more than α(Γs) in Γs, which contradicts the definition

of the independence number of a graph. Therefore, (10.23) holds if the two integer

tuples differ only at one element. Applying this (at most n times) to length-n

tuples that differ only at one element, completes the proof of the lemma.

Now we can proceed with the proof of Proposition 10.3. Let λ = (a1
b
, . . . , an

b
)T ,

b ∈ N, and a1, . . . , an ∈ Z≥0. If rλ ∈ Zn
≥0, then by Proposition 3.4, we have

rλ

log(χf (Γrλ(G)))
∈ C .
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Therefore, we have

C(λ) ≥ sup
r:rλ∈Zn

≥0

r

log(χf(Γrλ(G)))
.

Next, let R be any real number such that Rλ ∈ C 0. Then, there exists integer

tuple t such that Rλ ≤ t/ log(χf (Γt)), and hence R ≤ ti
λi
/ log(χf (Γt)), for all i

such that λi > 0. Let

j = arg min
i:λi>0

ti
λi
, (10.25)

then we have

R ≤ q

aj log(χf (Γt))
, (10.26)

where q = tjb. By (10.25), ajt ≥ qλ = tj(a1, . . . , an)
T ∈ Zn

≥0 and we have

log(χf(Γqλ)) ≤ log(χf (Γajt)) (10.27)

≤ log(χf (Γ
aj
t )) (10.28)

= aj log(χf(Γt)), (10.29)

where (10.27) follows by Lemma 10.2, (10.28) follows by the fact that the set of

edges of Γajt is a subset of the set of edges of Γ
aj
t , and (10.29) follows by Lemma

2.5. Combining (10.26) and (10.29), we have

R ≤ q

log(χf(Γqλ))
≤ sup

r:rλ∈Zn
≥0

r

log(χf(Γrλ(G)))
,

which together with Lemma 10.1 yields

C(λ) ≤ sup
r:rλ∈Zn

≥0

r

log(χf(Γrλ(G)))
,
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and hence (10.11) holds. Following similar steps as above, one can show that

(10.12) also holds.
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