Title
Towards membrane-electrode assembly systems for CO₂ reduction: a modeling study

Permalink
https://escholarship.org/uc/item/5jk029t1

Journal
Energy & Environmental Science, 12(6)

ISSN
1754-5692

Authors
Weng, Lien-Chun
Bell, Alexis T
Weber, Adam Z

Publication Date
2019-06-12

DOI
10.1039/c9ee00909d

Peer reviewed
Towards membrane-electrode assembly systems for CO₂ reduction: a modeling study†

Lien-Chun Weng,ab Alexis T. Bell,*ab and Adam Z. Weber* a

Membrane-electrode assemblies (MEAs) are an attractive cell design for the electrochemical reduction of CO₂ because they exhibit low ohmic loss and high energy efficiency. We describe here the development and application of a multiphysics model to investigate the fundamental limitations of two MEA designs: one with gaseous feeds at both the anode and cathode (full-MEA), and the other with an aqueous anode feed (KHCO₃ or KOH exchange solution) and a gaseous cathode feed (exchange-MEA). The total current density for the three cases follows the order: KOH-MEA > KHCO₃-MEA > full-MEA. This trend is established by examining the distribution of the applied voltage. We show that the main charge-carrying species are carbonate anions for an MEA that uses an anion-exchange membrane (AEM). The amount of CO₂ consumed but not converted to CO decreases with increasing current densities above 100 mA cm⁻² for a full-MEA, but converges to 50% for exchange-MEAs. The full-MEA becomes limited by ohmic resistance as the membrane dehydrates with increasing cell temperature, and eventually becomes limited due to water mass transport. The exchange-MEAs can maintain membrane hydration and the local ion concentration at the anode, but are limited by salt precipitation at the cathode, as well as a higher tendency to flood. Finally, we explore the effects of temperature and discuss the possibility of increasing water supply to the full-MEA to improve its performance at elevated temperatures. The MEA model and the understanding of MEA performance for the electrochemical reduction of CO₂ presented in this study should help guide the design of next-generation CO₂ reduction cells.

Broader context

CO₂ electrolyzers powered by solar energy, either directly or indirectly, have become increasingly attractive as solar prices decline and atmospheric CO₂ levels rise. The product formed by CO₂ reduction can be used as fuel or as precursors to fuel or chemical industry, thereby enabling the storage of intermittent solar radiation in chemical bonds. For CO₂ electrolyzers to be commercially viable, high current densities must be achieved with good selectivity at relatively low power inputs. The design and optimization of such devices require understanding the underlying physics, which includes transport phenomena, electrochemistry, heat transfer, and reaction kinetics. The work presented here describes a numerical model that accounts for the aforementioned physical phenomena occurring in membrane electrode assemblies (MEAs). The model reveals intrinsic tradeoffs and limitations of MEAs for the electrochemical reduction of CO₂ and establishes design and operating criteria for such systems. The model also confirms that ohmic losses in MEAs are low because charge transport through a liquid electrolyte is eliminated.

Introduction

Electrochemical reduction of CO₂ allows conversion of this greenhouse gas to value-added products under mild conditions. This process also provides a way to store excess electrical energy and tackle intermittency issues associated with renewable energy sources (e.g., wind and solar).¹,² For the electrochemical reduction of CO₂ to be commercially viable, it is necessary to carry out CO₂ reduction (CO₂R) at current densities >100 mA cm⁻², while minimizing the power input (or cell voltage).³ Such current densities require higher local concentrations of CO₂, which have been achieved predominantly with gas-diffusion electrodes (GDEs), architectures that allow for new avenues of exploration and efficiency.⁴ GDEs overcome the significant mass-transfer resistances associated with CO₂R carried out in aqueous electrolytes—a consequence of the large mass-transfer boundary layer near the planar electrodes.⁵⁻¹³ Minimizing cell ohmic overpotential requires increasing the conductivity of the electrolyte, and decreasing the distance...
between the anode and cathode. Membrane-electrode-assemblies (MEAs) satisfy these two requirements by removing the aqueous electrolyte compartments between the electrodes and utilizing an ion-conducting polymer (ionomer) as both the separator and electrolyte. Membranes used in electrochemical systems are typically on the order of 10 to 100 μm thick, with conductivities ranging from 10 to 200 mS cm⁻¹.¹⁴

There have been numerous reports demonstrating the feasibility of MEA-like cells attaining CO₂R current densities upwards of 100 mA cm⁻², an order of magnitude higher than can be achieved using typical aqueous architectures.⁵⁻¹¹,¹⁵ Various configurations and materials have been presented, with much debate as to which design is the most effective for scale-up and commercialization, as reviewed¹³ and discussed⁴ recently. Cook et al. first illustrated the electrochemical reduction of CO₂ to hydrocarbons in an MEA design, showing an approximately 0.5 V reduction in the cell potential at 10 mA cm⁻² when removing the anolyte compartment.¹⁶ Hori et al. found that an anion-exchange membrane (AEM) is more suitable for CO₂R than a cation-exchange membrane (CEM), as the CEM not only prevents transport of HCO₃⁻ and CO₃²⁻ anions, but also allows high proton concentrations that promote the competing hydrogen evolution reaction (HER).¹⁷ In agreement with Hori et al., Delacourt et al. noted the importance of minimizing proton concentration near the cathode to suppress HER. However, these authors did not observe CO₂R products over Ag using a CEM, but obtained an 80% CO₂R faradaic efficiency (FE) after adding a KHCO₃ buffer layer between the cathode and CEM. They found a FE of only 3% for CO₂R with an AEM but did not fully explain why the efficiency was so low.¹⁸ It is notable that Salvatore et al. also explored adding a buffer layer between the cathode and membrane to improve the CO₂R current efficiency for an MEA-like cell (aqueous anode feed and gaseous cathode feed, with no anolyte or catholyte compartments). These authors found that the buffer layer provided better hydration, since adding a water layer in place of the buffer layer also achieved a higher CO₂R FE than could be reached in the absence of such a layer.¹⁹ While it is tempting to draw general conclusions from the above studies, it is important to note that each one is performed using cell designs that differed from each other. Hori et al. retained the aqueous anolyte compartment but removed the aqueous catholyte compartment;¹⁷ Narayanan, Li, and Salvatore removed the aqueous electrolyte compartments and used an aqueous feed instead;¹⁰⁻²¹ and Delacourt, Kriescher, and Wang utilized pure gaseous feeds with no aqueous electrolyte.¹⁸,²²,²³ Without a quantitative understanding of the limitations of each design, it is difficult to compare the results reported in different studies and to draw general conclusions from them. To date, there has been limited analysis of an MEA performing CO₂R in the absence of aqueous electrolyte compartments at low temperature (as opposed to solid-oxide electrolysers²⁴,²⁵).

Delacourt et al. simulated an electrochemical cell with a cation exchange membrane and a catholyte (no anolyte), and briefly mentioned replacing the catholyte with an anion-exchange membrane to obtain a higher current density. They concluded that a fully solid-state MEA could enhance performance of a CO₂ electrolyzer, but did not go into details to describe MEA operation and limitations.

In this paper, we present a modeling framework that describes mass transport, electrochemical and homogenous reaction kinetics, and thermal effects for an AEM-MEA cell with pure gaseous feeds (full-MEA), and with a gaseous cathode feed but an aqueous anode feed (exchange-MEA). Our model differs from that for an alkaline fuel-cell/electrolyzer in two main aspects. First, there are competing electrochemical reactions occurring at the cathode (HER and CO₂R) and second, the CO₂ concentration is much higher in the CO₂R system (compared to a maximum of 400 ppm for fuel cell systems), which means that the homogeneous acid/base bicarbonate reactions are significant and must be accounted for, especially in an alkaline environment. We use our model to examine the performance of an MEA system for the CO₂ reduction over an Ag catalyst, which primarily produces CO and H₂. Based on our simulations, we discuss the advantages and limitations of different MEA cell designs for performing CO₂R, and examine potential methods for improving water management in the membrane and the overall cell efficiency. Finally, the presented model, methodology, and subsequent analysis provides a framework for investigating these and related electrochemical energy-conversion processes that involve complex and multiple reaction and transport processes.

Model development

This section aims to discuss the modeling approach, governing equations, and assumptions to give the reader a primer and methodology for tackling complex multiphysics problems common for electrochemical energy-devices. The discussion includes justifications, governing equation formulation, and determination of key parameter values. The MEA model comprises a 50 μm anion-exchange membrane (AEM), a 5 μm Ag cathode catalyst layer (CL), and a 100 μm cathode diffusion medium (DM), as shown in Fig. 1. The anode, an IrO₂ mesh pressed against the membrane, is treated as an interface. N₂ with 100% relative humidity (RH) is fed to the anode chamber for the full-MEA, and an aqueous solution is fed for the exchange-MEA; humidified CO₂ (100% RH) is fed to the cathode chamber for both MEA configurations.

At the anode, the oxygen evolution reaction (OER) occurs via both acidic and alkaline processes,

\[
2H₂O → O₂ + 4H^+ + 4e^- \quad (1)
\]
\[
4OH^- → O₂ + 2H₂O + 4e^- \quad (2)
\]

HER and CO₂R reaction occur at the cathode. Similar to the OER, both acidic and alkaline HER can occur,

\[
2H^+ + 2e^- → H₂ \quad (3)
\]
\[
2H₂O + 2e^- → H₂ + 2OH^- \quad (4)
\]

For a Ag cathode, CO has been shown to be the predominant CO₂R product formed, therefore, CO evolution reaction (COER) is equivalent to CO₂R reaction for our system.¹⁶,²⁶,²⁷ Shen et al. have observed a less prominent pH-dependence of the COER compared to the HER at low pH, suggesting that H₂O serves
as the proton source for the reaction. For this reason, the alkaline reaction is used for COER,

$$\text{CO}_2 + \text{H}_2\text{O} + 2\text{e}^- \rightarrow \text{CO} + 2\text{OH}^-$$ (5)

The ionomer membrane electrolyte has a fixed positive charge concentration, \(c_M\), determined by the product of its ion-exchange capacity, IEC, and its density, \(\rho_M\). We use properties of a Tokuyama A201 membrane, listed in Table 1. The water content, \(\lambda\), describes the extent of hydration of the membrane, and is defined as the number of water molecules per cationic group in the membrane. For simplicity, we use the water-uptake isotherm measured by Peng et al. for a HCO\(_3\)-AEM at 25 °C, and ignore its dependence on the anion type and temperature. Water-uptake isotherms reported for several Tokuyama A201 membranes show a weak dependence on temperature. Results of temperature-dependent membrane isotherms are discussed in the ESL. Additionally, the membrane is determined to be primarily in the HCO\(_3\) form (discussed later), making the HCO\(_3\) form of the isotherm a reasonable approximation. The water-uptake isotherm also describes the relationship between water concentration and water activity in the membrane.

Homogeneous reactions, including bicarbonate buffer and water-dissociation reactions, occur in the ionomer and aqueous phases,

$$\text{CO}_2(\text{aq}) + \text{H}_2\text{O} \rightleftharpoons k_1 \text{H}^+ + \text{HCO}_3^- \hspace{1cm} K_1 \hspace{1cm} (6)$$

$$\text{HCO}_3^- \rightarrow k_2 \text{H}^+ + \text{CO}_3^{2-} \hspace{1cm} K_2 \hspace{1cm} (7)$$

$$\text{CO}_2(\text{aq}) + \text{OH}^- \rightarrow k_3 \text{H}_2\text{O} + \text{CO}_3^{2-} \hspace{1cm} K_3 \hspace{1cm} (8)$$

$$\text{HCO}_3^- + \text{OH}^- \rightarrow k_4 \text{H}_2\text{O} + \text{CO}_3^{2-} \hspace{1cm} K_4 \hspace{1cm} (9)$$

$$\text{H}_2\text{O} \rightarrow k_w \text{H}^+ + \text{OH}^- \hspace{1cm} K_w \hspace{1cm} (10)$$

Here, \(K_n\) denotes the equilibrium constant for reaction \(n\), calculated from van't Hoff equation using the change of entropy, \(\Delta S_m\), and the heat of reaction, \(\Delta H_m\), listed in Table 1

$$K_n = \exp\left(\frac{\Delta S_m}{R}\right) \exp\left(-\frac{\Delta H_m}{RT}\right)$$ (11)

The kinetics of these reactions are described using the rate coefficients measured by Shultz et al. rounded to the nearest
<table>
<thead>
<tr>
<th>Parameter</th>
<th>Value</th>
<th>Unit</th>
<th>Ref.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Membrane</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>L_M</td>
<td>5×10^{-5}</td>
<td>M</td>
<td></td>
</tr>
<tr>
<td>BEC</td>
<td>1.7</td>
<td>mmol g$^{-1}$</td>
<td>29</td>
</tr>
<tr>
<td>ρ_M</td>
<td>1.2</td>
<td>g ml$^{-1}$</td>
<td>29</td>
</tr>
<tr>
<td>DM</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>L_{DM}</td>
<td>10^{-4}</td>
<td>M</td>
<td></td>
</tr>
<tr>
<td>γ_{DM}</td>
<td>0.8</td>
<td>M</td>
<td>38</td>
</tr>
<tr>
<td>$r_{p,DM}$</td>
<td>7.33×10^{-7}</td>
<td>M</td>
<td>39</td>
</tr>
<tr>
<td>$\kappa_{sat,DM}$</td>
<td>1.72×10^{-11}</td>
<td>m2</td>
<td>40</td>
</tr>
<tr>
<td>κ_{DM}</td>
<td>0.015</td>
<td>W m$^{-1}$ K$^{-1}$</td>
<td>41</td>
</tr>
<tr>
<td>CL</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>L_{CL}</td>
<td>5×10^{-6}</td>
<td>M</td>
<td></td>
</tr>
<tr>
<td>γ_{CL}</td>
<td>0.5</td>
<td>M</td>
<td>38</td>
</tr>
<tr>
<td>$r_{p,CL}$</td>
<td>25×10^{-7}</td>
<td>m$^{-1}$</td>
<td>42</td>
</tr>
<tr>
<td>σ_{CL}</td>
<td>100</td>
<td>S m$^{-1}$</td>
<td>39</td>
</tr>
<tr>
<td>$\kappa_{sat,CL}$</td>
<td>8×10^{-16}</td>
<td>m2</td>
<td>40</td>
</tr>
<tr>
<td>κ_{CL}</td>
<td>0.003</td>
<td>W m$^{-1}$ K$^{-1}$</td>
<td>41</td>
</tr>
<tr>
<td>Gas species properties</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>v_{p,H_2}</td>
<td>7.07</td>
<td>mmHg</td>
<td>43</td>
</tr>
<tr>
<td>v_{p,H_2O}</td>
<td>12.7</td>
<td>mM atm$^{-1}$</td>
<td>43</td>
</tr>
<tr>
<td>$v_{p,CO}$</td>
<td>18.9</td>
<td>cm2 s$^{-1}$</td>
<td>43</td>
</tr>
<tr>
<td>v_{p,CO_2}</td>
<td>26.9</td>
<td>cm2 s$^{-1}$</td>
<td>43</td>
</tr>
<tr>
<td>P_{vap}</td>
<td>$10^{5.07-1720.63/T_{K}}$</td>
<td>cm2 s$^{-1}$</td>
<td>46</td>
</tr>
<tr>
<td>H_{CO_2}</td>
<td>$34 \exp \left(2400 \left(1/T_{[K]} + 1/298\right)\right)$</td>
<td>cm2 s$^{-1}$</td>
<td>47</td>
</tr>
<tr>
<td>Aqueous species properties</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>D_{K^+}</td>
<td>$1.96 \times 10^{-5} \exp \left(-2300 \left(1/T_{[K]} + 1/298\right)\right)$</td>
<td>cm3 s$^{-1}$</td>
<td>45</td>
</tr>
<tr>
<td>D_{H^+}</td>
<td>$4.49 \times 10^{-5} \exp \left(-1430 \left(1/T_{[K]} + 1/273\right)\right)$</td>
<td>cm3 s$^{-1}$</td>
<td>46</td>
</tr>
<tr>
<td>D_{OH^-}</td>
<td>$2.89 \times 10^{-5} \exp \left(-1750 \left(1/T_{[K]} + 1/273\right)\right)$</td>
<td>cm3 s$^{-1}$</td>
<td>46</td>
</tr>
<tr>
<td>$D_{HCO_3^-}$</td>
<td>$7.016 \times 10^{-5} \exp \left(-2345 \left(1/T_{[K]} + 1/303\right)\right)$</td>
<td>cm2 s$^{-1}$</td>
<td>47</td>
</tr>
<tr>
<td>$D_{CO_3^{2-}}$</td>
<td>$5.447 \times 10^{-5} \exp \left(-1919 \left(1/T_{[K]} + 1/210.26\right)\right)$</td>
<td>cm2 s$^{-1}$</td>
<td>44</td>
</tr>
<tr>
<td>D_w</td>
<td>$2.17 \times 10^{-5} \exp \left(-2345 \left(1/T_{[K]} + 1/303\right)\right)$</td>
<td>cm2 s$^{-1}$</td>
<td>44</td>
</tr>
<tr>
<td>D_w</td>
<td>$9 \times 10^{-15} \exp \left(5.9a_w\right)$</td>
<td>cm2 s$^{-1}$</td>
<td>29</td>
</tr>
<tr>
<td>Homogeneous reactions</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>S_1</td>
<td>-96.31</td>
<td>J mol$^{-1}$ K$^{-1}$</td>
<td>44</td>
</tr>
<tr>
<td>S_2</td>
<td>-148.1</td>
<td>J mol$^{-1}$ K$^{-1}$</td>
<td>44</td>
</tr>
<tr>
<td>S_3</td>
<td>-80.66</td>
<td>J mol$^{-1}$ K$^{-1}$</td>
<td>44</td>
</tr>
<tr>
<td>H_1</td>
<td>7.64</td>
<td>kJ mol$^{-1}$</td>
<td>44</td>
</tr>
<tr>
<td>H_2</td>
<td>14.85</td>
<td>kJ mol$^{-1}$</td>
<td>44</td>
</tr>
<tr>
<td>H_w</td>
<td>55.84</td>
<td>kJ mol$^{-1}$</td>
<td>44</td>
</tr>
<tr>
<td>k_1</td>
<td>10^{-2}</td>
<td>s$^{-1}$</td>
<td>32</td>
</tr>
<tr>
<td>k_2</td>
<td>10^{-3}</td>
<td>s$^{-1}$</td>
<td>32</td>
</tr>
<tr>
<td>k_3</td>
<td>10^3</td>
<td>L mol$^{-1}$ s$^{-1}$</td>
<td>32</td>
</tr>
<tr>
<td>k_4</td>
<td>10^9</td>
<td>L mol$^{-1}$ s$^{-1}$</td>
<td>32</td>
</tr>
<tr>
<td>k_w</td>
<td>10^{-3}</td>
<td>mol L$^{-1}$ s$^{-1}$</td>
<td>32</td>
</tr>
<tr>
<td>Charge transfer reactions</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>H_{OER}</td>
<td>$240 T_{[K]}/298$</td>
<td>mV</td>
<td>41</td>
</tr>
<tr>
<td>H_{HER}</td>
<td>$13 T_{[K]}/298$</td>
<td>mV</td>
<td>Approximated</td>
</tr>
</tbody>
</table>
order of magnitude. Results by Divekar et al. suggest that these rate coefficients, as well as equilibrium constants, likely differ in an ionomer compared to those for an aqueous solution; however, to the best of our knowledge, the magnitudes of these differences have not been established, and are likely to vary with membrane hydration, counterion identity, etc. Such investigation is beyond the scope of the current efforts. The effects of varying the rate of reaction for eqn (8) are discussed in the ESI (Fig. S2).

The CL and DM are both porous structures. The solid fraction of the CL is composed of Ag nanoparticles in an ionomer binder, and the DM is a hydrophilic carbon-fiber structure. We assume that the thickness of the anionic ionomer coating the Ag nanoparticles within the CL is 10 nm, which is sufficient to provide an ionic pathway for anions between the catalyst nanoparticles and the membrane. The DM is assumed to remain liquid free, which is reasonable considering its hydrophilic nature and existence of a temperature gradient discussed later.

The MEA model is built upon framework of the GDE model we reported previously. The governing equations and a list of parameters are summarized in Tables 2–4. The model describes five main physical phenomena: transport of neutral and ionic species (including diffusion, migration, and convection), fluid flow through a porous medium, current and (over)potential distribution, chemical (homogeneous) and electrochemical (heterogeneous) reactions, and heat transfer. The model applies conservation of mass, momentum, charge, and energy to solve for the following state variables: mole fractions of gaseous species CO$_2$, H$_2$O, CO, and H$_2$ in the cathode GDE, concentrations of dissolved CO$_2$ and H$_2$O in the membrane and ionomer, concentrations of ionic species K$^+$, H$_3^+$, OH$^-$, HCO$_3^-$, CO$_3^{2-}$ in the membrane and ionomer, gas-phase velocity in the cathode GDE, potentials of the solid-phase electrode and ionic-phase electrolyte, and temperature of the MEA. Fig. 1 provides an overview of the boundary conditions imposed. Below, we discuss in further detail relevant equations used to obtain effective parameter values, the source terms in each phase, and the boundary conditions for the three cases studied in this paper: full-MEA, 0.5 M KHCO$_3$ exchange-MEA, and 0.5 M KOH exchange-MEA.

Electrolyte/ionomer membrane equilibrium

The fixed background charge of an ionomer membrane leads to an electric potential difference at the membrane (ϕ^M)/exchange solution (ϕ^E) interface, the Donnan potential: $\Delta \phi_D = \phi^M - \phi^E$. At equilibrium, the electrochemical potential of each species in the two phases must be equal, resulting in the following

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Value</th>
<th>Unit</th>
<th>Ref.</th>
</tr>
</thead>
<tbody>
<tr>
<td>h_{CL}</td>
<td>10^4</td>
<td>W m$^{-2}$ K$^{-1}$</td>
<td>Assumed</td>
</tr>
<tr>
<td>h_{DM}</td>
<td>10^3</td>
<td>W m$^{-2}$ K$^{-1}$</td>
<td>Assumed</td>
</tr>
</tbody>
</table>

Table 1 (continued)

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Value</th>
<th>Unit</th>
<th>Ref.</th>
</tr>
</thead>
<tbody>
<tr>
<td>H_{COER}</td>
<td>40 Γ</td>
<td>[K]</td>
<td>298</td>
</tr>
</tbody>
</table>

Table 2 Governing equations (see nomenclature for symbol definitions)

<table>
<thead>
<tr>
<th>Solid phase variable: ϕ_s</th>
<th>$\nabla \cdot \mathbf{i}_s = -\nabla \cdot \mathbf{i}_l = -\alpha_s \sum_i \mathbf{i}_l$</th>
<th>(12)</th>
</tr>
</thead>
<tbody>
<tr>
<td>$\mathbf{i}l = -\sigma{\text{eff}}^{l} \nabla \phi_s$</td>
<td>(13)</td>
<td></td>
</tr>
<tr>
<td>Aqueous phase variables: $j_{i,j} = CO_2(l), K^+, H^+, OH^-, HCO_3^-, CO_3^{2-}, CO_2, H_2O; \mathbf{n}s = R{CT,l} + R_{B,i} + R_{PT,l}$</td>
<td>(14)</td>
<td></td>
</tr>
<tr>
<td>$j_{i} = j_l + \rho_M \mathbf{u}_l$</td>
<td>(15)</td>
<td></td>
</tr>
<tr>
<td>$\mathbf{u}l = -\rho{l} D_{i}^{l} \nabla \phi_l - \rho_{l}^{L} D_{i}^{l} \nabla M_l \frac{\nabla M_l}{M_l}$</td>
<td>(16)</td>
<td></td>
</tr>
<tr>
<td>$\rho_{l}^{L} = \frac{k_{\text{eff}}^{l}}{k_{l}} \rho_{G}$</td>
<td>(17)</td>
<td></td>
</tr>
<tr>
<td>$\sum_{l} o_l = 1$</td>
<td>(22)</td>
<td></td>
</tr>
</tbody>
</table>

Table 3 Model parameter equations (see nomenclature for symbol definitions)

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Equation</th>
</tr>
</thead>
<tbody>
<tr>
<td>D_{i}^{l}</td>
<td>$D_{i}^{l} = \frac{D_{i}}{\sum_{i} D_{i} \left(1 + q_i\right)}$</td>
</tr>
<tr>
<td>D_{i}^{m}</td>
<td>$D_{i}^{m} = \frac{D_{i}^{m}}{D_{i}^{m} \left(\frac{1}{D_{i}^{m}} + \frac{1}{D_{i}^{e}}\right)^{-1}}$</td>
</tr>
<tr>
<td>D_{i}^{SM}</td>
<td>$D_{i}^{SM} = \frac{1 - \omega_l}{\sum_{i} \omega_{l_i}^{m} \frac{D_{i}^{m}}{D_{i}^{m}}}$</td>
</tr>
<tr>
<td>D_{i}^{K}</td>
<td>$D_{i}^{K} = \frac{2 p_{v,i}}{3 \sqrt{3 p R T}}$</td>
</tr>
<tr>
<td>D_{i}^{E}</td>
<td>$D_{i}^{E} = \frac{10^{-3} T [K]^{1.75} \left(M_i \left[g \text{ mol}^{-1}\right]^{-1} + M_e \left[g \text{ mol}^{-1}\right]^{-1}\right)^{0.5}}{p \left[\text{atm}\right]} \left(v_{p,i}^{0.53} + v_{p,E}^{0.53}\right)^2$</td>
</tr>
</tbody>
</table>
Table 4 Source terms (see nomenclature for symbol definitions)

$$R_{CT,i} = -M_i \sum_k \frac{S_{ik} \alpha_k a_k}{n_k F}$$

$$R_{B,i} = M_i \sum_j s_{ij} \left(k_a \prod_{j \neq i} c_j^{s_{ij}} - k_b \prod_{j \neq i} c_j^{s_{ij}} \right)$$

$$R_{PT,i} = -R_{TT,i} = \alpha_i M_i \frac{DP_{D}^{0}}{RT} \Delta \phi_{D}$$

Here, γ_k is the reaction order with respect to some reactant, $a_{c,k}$ is the cathodic transfer coefficient, and η_k is the overpotential for reaction k. The exchange current density, $i_{o,k}$, depends on the pre-exponential factor, A_k, and the apparent activation energy, $E_{a,k}$, according to the Arrhenius equation,

$$i_{o,k} = A_k \exp \left(-\frac{E_{a,k}}{RT} \right)$$

Studies have shown that the activation energy for the HER is pH-dependent, with a slope of approximately 1 (kJ mol$^{-1}$)/pH.$^{49-55}$ For the OER, we also assumed a linear dependence of E_a on pH and obtained a slope of, coincidentally, 1 (kJ mol$^{-1}$)/pH from a fit to the experimental data reported by Kuo et al.56 Designing electrocatalysts that lower the energy barrier for CO$_2$R products and improve CO$_2$R activity is an area of active research; the effects of $i_{o,COER}$ on MEA performance are described in the ESI.† We note that such rate expressions are used empirically to capture the pH-dependence observed in experiments. The pre-exponential factors were fit to the exchange current densities reported in the references listed in Table 5; all kinetic parameters, including the standard electrode potential relative to the standard hydrogen electrode (SHE) of reaction k, U°_k, are summarized in Table 5.

Charge-transfer reactions contribute to source terms, $R_{CT,i}$, as listed in eqn (30); they apply to aqueous species CO$_2$, OH$^-$, and H$^+$, and for gaseous species CO and H$_2$. The electronic potential is set to $\phi_i = 0$ at the cathode boundary, and varied from 2 to 4 V (cell voltage) at the anode boundary.

Ionic and neutral species transport and acid/base reactions in the ionomer

Mass conservation, eqn (14), and the Nernst–Planck equation, eqn (15), govern the transport of ionic and neutral species and the electrolyte potential profile, ϕ_i, in the ionomer. Commonly, Stefan–Maxwell diffusion is used to capture species/species interaction that become significant under non-dilute conditions. However, using the Stefan–Maxwell approach would introduce 28 additional degrees of freedom, and require that composition-dependent diffusion coefficients be determined (frictional interactions between six species, water, and membrane). Since this would considerably increase the uncertainty and the complexity of our numerical model, we resort to using Nernst–Planck equation for our system even though we are not necessarily under dilute conditions. For water, electro-osmosis replaces

<table>
<thead>
<tr>
<th>Species</th>
<th>R_{CT}</th>
<th>R_{B}</th>
<th>R_{PT}</th>
</tr>
</thead>
<tbody>
<tr>
<td>CO$_2$(g)</td>
<td>—</td>
<td>—</td>
<td>Gas/ionomer</td>
</tr>
<tr>
<td>H$_2$O(g)</td>
<td>—</td>
<td>—</td>
<td>Gas/ionomer</td>
</tr>
<tr>
<td>CO(g)</td>
<td>COER</td>
<td>—</td>
<td>—</td>
</tr>
<tr>
<td>H$_2$(g)</td>
<td>HER</td>
<td>—</td>
<td>—</td>
</tr>
<tr>
<td>CO$_2$(l)</td>
<td>COER</td>
<td>—</td>
<td>—</td>
</tr>
<tr>
<td>H$_2$O(l)</td>
<td>OER, HER, COER</td>
<td>Eqn (6) and (8)</td>
<td>Gas/ionomer</td>
</tr>
<tr>
<td>K$^+$</td>
<td>—</td>
<td>—</td>
<td>—</td>
</tr>
<tr>
<td>H$^+$</td>
<td>OER, HER</td>
<td>Eqn (6), (7) and (10)</td>
<td>—</td>
</tr>
<tr>
<td>OH$^-$</td>
<td>OER, HER</td>
<td>Eqn (8)-(10)</td>
<td>—</td>
</tr>
<tr>
<td>HCO$_3^-$</td>
<td>—</td>
<td>—</td>
<td>—</td>
</tr>
<tr>
<td>CO$_3^{2-}$</td>
<td>—</td>
<td>—</td>
<td>—</td>
</tr>
</tbody>
</table>

Table 5 Kinetic parameters for charge transfer reactions

<table>
<thead>
<tr>
<th>Species</th>
<th>U°_k (V)</th>
<th>A_k (mA cm$^{-2}$)</th>
<th>E_a (kJ mol$^{-1}$)</th>
<th>$a_{c,k}$</th>
<th>$\left(\frac{c_j}{c_i} \right)^{\gamma}$</th>
<th>Ref.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Anode</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>OER acid</td>
<td>1.23</td>
<td>9.40×10^{-7}</td>
<td>$11 + 1 \times $ pH</td>
<td>1.5</td>
<td>$\left[\text{OH}^- \right]/(1 \text{ M})$</td>
<td>56–58</td>
</tr>
<tr>
<td>OER base</td>
<td>1.23</td>
<td>1.23×10^{-4}</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Cathode</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>HER acid</td>
<td>0</td>
<td>2.77×10^{19}</td>
<td>$83 + 1 \times $ pH</td>
<td>0.44</td>
<td>$\left[\text{H}^+ \right]/(1 \text{ M})$</td>
<td>49–55</td>
</tr>
<tr>
<td>HER base</td>
<td>8.84</td>
<td>8.84×10^{6}</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>COER</td>
<td>-0.11</td>
<td>7.25×10^{8}</td>
<td>100</td>
<td>1</td>
<td>$\left[\left(\text{CO}_2 \right)/\left(1 \text{ M} \right) \right]^{2.5}$</td>
<td>26, 27 and 59</td>
</tr>
</tbody>
</table>
migration, represented by the second term on the right side of eqn (16), and thus some of the coupling between frictional forces is maintained. The electro-osmotic coefficients for water carried by ionic species \(i \) \((\zeta_i) \) have not been well characterized for AEMs in the presence of \(\text{CO}_2 \). Therefore, we adopt a value of one for the electro-osmotic coefficients, consistent with what is commonly used for a vapor-equilibrated CEM and close to the experimentally measured 0.61 ± 0.12 for a vapor-equilibrated, OH⁻ form of the Tokuyama A201 membrane.\(^{66,67}\) The electro-osmotic coefficient tends to be higher for a liquid-equilibrated membrane, and has been reported to range from 2 to 7 for a KOH-equilibrated AEM.\(^{30,62}\) We note that our model proved not to be strongly dependent on the value of the electro-osmotic coefficient (see Fig. S3, ESI†), so a value of one was used for all scenarios.

The effective diffusion coefficient for species other than \(\text{H}_2\text{O} \) in the membrane, \(D_{\text{eff},i}^{\text{SM}} \), is calculated using eqn (25) in Table 3 following Grew et al.\(^{63,64}\) The water mole fraction, \(x_w \), and water volume fraction in the ionomer, \(\varepsilon_w \), are defined as

\[
x_w = \frac{\lambda}{1 + \lambda}
\]

and

\[
\varepsilon_w = \frac{\lambda V_w}{\lambda V_w + V_M}
\]

respectively, where \(V_M = 1/\text{IEC} / \rho_M \) and \(V_w \) are the molar volume of the membrane and water, respectively. \(\zeta_i \) describes the ratio of species-water and species-membrane interaction and is approximated from kinetic theory to be\(^{65}\)

\[
\zeta_i = \frac{V_M}{V_w}^{2/3} \left(\frac{M_i / M_w}{M_i / M_M} \right)^{1/2}
\]

where \(M_{i,M} = \left(\frac{1}{M_i} + \frac{1}{M_M} \right)^{-1} \) is the reduced molar mass. Water diffusivity in the membrane, \(D_{\text{w,M}} \), is a function of ionomer water activity, \(a_w \), as measured by Peng et al., and fit to the expression listed in Table 1.\(^{28}\) Finally, source terms due to homogeneous reactions listed in eqn (6)–(10), discussed in the previous section, and phase-transfer reactions, \(\text{eqn (32)} \), discussed in the following section.

The flux for all species is set to zero at the CL/DM boundary at the cathode. At the anode boundary, \(\text{CO}_2 \) and \(\text{H}_2\text{O} \) are taken to be in equilibrium with the anode feed gas (inert gas \(\text{N}_2 \) with 100% RH). The flux for all ionic species is set to zero for the full-MEA case, and for the exchange-MEA cases, all species are taken to be in equilibrium with the exchange solution, which is assumed to be at constant concentration. The anode boundary condition assumes fresh exchange solution being circulated at a high flow rate in the anode channel.

Gas-phase species transport

Concentration profiles for gaseous species are determined within the CL and DM domains. The Stefan–Maxwell equation, eqn (20) and Darcy’s law, eqn (21) are used to describe the diffusion and convection terms, respectively. The effective diffusivity is an average of the Stefan–Maxwell diffusivity, \(D_{\text{SM}} \), and Knudsen diffusivity, \(D_K \) (assuming both forms of diffusion occur in parallel) and is corrected for the porosity, \(\epsilon_m \), and the tortuosity, \(\tau_m \), of medium \(m \) using Bruggeman’s relationship, eqn (26)–(28). The binary gas-phase diffusion coefficients are calculated using the expression derived by Fuller et al., eqn (29), where \(v_{ij} \) is the diffusion volume of species \(i \), listed in Table 1.\(^{44}\)

The source terms for gaseous species occur in the CL domain. They include the charge transfer reactions producing \(\text{H}_2 \) and \(\text{CO}_2 \) (eqn 30), and the adsorption/desorption of \(\text{CO}_2 \) and \(\text{H}_2\text{O} \) into/out of the ionomer, \(R_{\text{cT},i} \), eqn (32). The volumetric rate of gas dissolution into the ionomer phase is estimated using Fick’s law, where \(c_i \) is the concentration of species \(i \) in equilibrium with its gas-phase concentration. For \(\text{H}_2\text{O} \), \(c_{i,\text{w}} = c_{i,\text{w,vap}} \), where \(c_{i,\text{w,vap}} \) corresponds to the water content in equilibrium with water activity \(a_w = p_{i,\text{w,vap}} / p_{\text{w,vap}} \), obtained using the isotherm reported by Peng et al.,\(^{29}\) for \(\text{CO}_2 \),

\[
c_{i,\text{CO}_2} = H_{\text{CO}_2} / p_{\text{CO}_2}
\]

where \(H_{\text{CO}_2} \) is the temperature-dependent Henry’s constant for \(\text{CO}_2 \) listed in Table 1. It should be noted that the ionomer and salinity effects of the water vapor pressure are not accounted for, since these are estimated to be small. \(\text{H}_2 \) and \(\text{CO}_2 \) are neglected in the ionomer phase based on their limited solubility in water, an order of magnitude lower than \(\text{CO}_2 \).\(^{44}\) The fluxes of all gaseous species are set to zero at the membrane/CL boundary, and their mass fractions set to the cathode feed gas composition at the GDL/gas channel boundary.

Energy transport

There are three sources of heat generation in the system: heat generated from charge-transfer reactions at the two electrodes, \(Q_{\text{CT}} \), the heat of reaction from homogeneous bulk bicarbonate buffer reactions, \(Q_B \), and Joule heating, \(Q_J \). \(Q_{\text{CT}} \) consists of both irreversible losses and reversible heat generation,\(^{48}\)

\[
Q_{\text{CT}} = \sum_k (i_k \eta_k + i_k \Pi_k)
\]

where \(\Pi_k \) is the Peltier coefficient for reaction \(k \), listed in Table 1. \(\Pi_{\text{COER}} \) is approximated from the change in entropy for the overall reaction \(2\text{CO}_2 \rightleftharpoons 2\text{CO} + \text{O}_2 \),\(^{41,48}\)

\[
\frac{\Pi_{\text{COER}}}{T} = \frac{\Delta S}{nF} - \frac{\Pi_{\text{COER}}}{T}
\]

The term \(Q_B \) results from the change in enthalpy, \(\Delta H_m \), for homogeneous reactions listed in eqn (6)–(10),

\[
Q_B = \sum_n \Delta H_n \left(\prod_{\substack{j=1 \atop j \neq n}}^{n} \frac{c_{j,\text{a}}}{c_{j,\text{a}}^{<0}} - \frac{c_{j,\text{a}}}{c_{j,\text{a}}^{>0}} \right)
\]
Finally, Joule heating due to electrical resistance is determined by,

$$Q_J = \frac{i^2}{\sigma m}$$ \hspace{1cm} (42a)

or

$$Q_J = \frac{i^2}{\kappa l}$$ \hspace{1cm} (42b)

for the solid and ionomer phase, respectively. The ionomer-phase conductivity is derived from the Nernst–Planck equation,

$$\kappa_l = \frac{F^2}{RT} \sum_j z_j^2 c_j D_{j\text{eff}}$$ \hspace{1cm} (43)

A Robin boundary condition is set at the two boundaries using a heat transfer coefficient, h_T, to describe the heat flux, driven by the difference between the cell temperature at that boundary and room temperature, T_0.

$$q_T = -h_T (T - T_0)$$ \hspace{1cm} (44)

Numerical method

The governing equations are solved using the MUMPS general solver in COMSOL Multiphysics 5.3a with a relative tolerance of 0.001. The modelling domain has a maximum element size of 0.01 μm. Element sizes were decreased to 0.001 μm near the boundaries to capture sharp concentration gradients. The base-case model has been provided in the ESI.†

Results and discussion

Dependence of the ohmic drop on cell configuration

An order-of-magnitude improvement in the CO₂R current density occurs in moving from a planar cathode to a GDE cathode configuration due to the increased active surface area and decreased mass-transfer resistances associated with the latter configuration. ³⁷ Simply substituting the planar cathode with a GDE cathode (aqueous GDE cell shown in Fig. 2) results in an order-of-magnitude increase in the ohmic drop when the total current density is increased from 10 to 100 mA cm⁻², rendering such cell designs impractical for industrial application. By

![Graphical illustration for various cell designs and a breakdown of the applied voltage. There is a 44% reduction in applied voltage for MEA compared to the aqueous GDE cell at the same total current density.](image)

<table>
<thead>
<tr>
<th>Potential distribution</th>
<th>Planar (10 mA cm⁻²)</th>
<th>Aqueous GDE (100 mA cm⁻²)</th>
<th>Full-MEA & Exchange-MEA (100 mA cm⁻²)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Thermodynamic potential under normal conditions (V) (OER + COER)</td>
<td></td>
<td>1.34</td>
<td></td>
</tr>
<tr>
<td>Cathode overpotential (V)</td>
<td>1.1⁵⁹</td>
<td>0.7³⁷</td>
<td>0.7³⁷</td>
</tr>
<tr>
<td>Anode overpotential (V)</td>
<td>0.3*</td>
<td>0.4*</td>
<td>0.4*</td>
</tr>
<tr>
<td>Electrolyte ohmic potential (V) (0.5 M KHCO₃, 6 S m⁻¹)</td>
<td>0.2**</td>
<td>2**</td>
<td>0</td>
</tr>
<tr>
<td>Membrane ohmic potential (V) (50 μm, 0.5 S m⁻¹)</td>
<td>0.01</td>
<td>0.1</td>
<td>0.1</td>
</tr>
<tr>
<td>Total cell potential (V)</td>
<td>2.95</td>
<td>4.54</td>
<td>2.54</td>
</tr>
</tbody>
</table>

*assuming OER on planar IrO₂, approximated from Butler-Volmer equation fitted to experimental data⁶⁶
**assuming 1 cm distance between anode and cathode
comparison, both the full-MEA and exchange-MEA eliminate the large ohmic drop by removing the electrolyte compartments and significantly decreasing the anode–cathode distance, allowing the cell to maintain the 100 mA cm⁻² current density with a 44% reduction in the applied cell voltage. The values in Fig. 2 are first-order approximations and do not include effects such as concentration polarization, temperature changes, membrane dehydration, etc.; additional details on the approximation method are included in the ESI. A mesh-like structure or GDE is required for the anode in the full-MEA and exchange-MEA designs where OER occurs to prevent layer delamination caused by the evolution of oxygen bubbles.

While the full-MEA and exchange-MEA minimize the ohmic loss across the cell, reactant and product crossover becomes a concern due to the small distance between the two electrodes. For an Ag cathode, almost no liquid product is produced and concern due to the small distance between the two electrodes. The evolution of oxygen bubbles.

MEA designs where OER occurs to prevent layer delamination method are included in the ESI.

Fig. 2 are first-order approximations and do not include effects such as concentration polarization, temperature changes, membrane dehydration, etc.; additional details on the approximation method are included in the ESI. A mesh-like structure or GDE is required for the anode in the full-MEA and exchange-MEA designs where OER occurs to prevent layer delamination caused by the evolution of oxygen bubbles.

While the full-MEA and exchange-MEA minimize the ohmic loss across the cell, reactant and product crossover becomes a concern due to the small distance between the two electrodes. For an Ag cathode, almost no liquid product is produced and concern due to the small distance between the two electrodes. The evolution of oxygen bubbles.

MEA designs where OER occurs to prevent layer delamination method are included in the ESI.

Fig. 2 are first-order approximations and do not include effects such as concentration polarization, temperature changes, membrane dehydration, etc.; additional details on the approximation method are included in the ESI. A mesh-like structure or GDE is required for the anode in the full-MEA and exchange-MEA designs where OER occurs to prevent layer delamination caused by the evolution of oxygen bubbles.

While the full-MEA and exchange-MEA minimize the ohmic loss across the cell, reactant and product crossover becomes a concern due to the small distance between the two electrodes. For an Ag cathode, almost no liquid product is produced and concern due to the small distance between the two electrodes. The evolution of oxygen bubbles.

MEA designs where OER occurs to prevent layer delamination method are included in the ESI.

Fig. 2 are first-order approximations and do not include effects such as concentration polarization, temperature changes, membrane dehydration, etc.; additional details on the approximation method are included in the ESI. A mesh-like structure or GDE is required for the anode in the full-MEA and exchange-MEA designs where OER occurs to prevent layer delamination caused by the evolution of oxygen bubbles.

While the full-MEA and exchange-MEA minimize the ohmic loss across the cell, reactant and product crossover becomes a concern due to the small distance between the two electrodes. For an Ag cathode, almost no liquid product is produced and concern due to the small distance between the two electrodes. The evolution of oxygen bubbles.

MEA designs where OER occurs to prevent layer delamination method are included in the ESI.

Fig. 2 are first-order approximations and do not include effects such as concentration polarization, temperature changes, membrane dehydration, etc.; additional details on the approximation method are included in the ESI. A mesh-like structure or GDE is required for the anode in the full-MEA and exchange-MEA designs where OER occurs to prevent layer delamination caused by the evolution of oxygen bubbles.
Fig. 3 (a) The total current density and (b) the CO faradaic efficiency (FE) for the four cases considered and their applied voltage breakdown (AVB), (c) full-MEA, (d) H₂O-MEA, (e) KHCO₃ exchange-MEA, and (f) KOH exchange-MEA. Dashed line in (a) represent current densities at which salt precipitations and batch operation is required. Cathode feed composition is 97 mol% CO₂ and 3 mol% H₂O.
feeding liquid water to the anode in order to provide better hydration. A H$_2$O-MEA improves the total current density (but not the CO FE) of the full-MEA due to better membrane hydration, but does not provide the same advantage as an exchange-MEA with dissolved salt (Fig. 3d) because of its inability to exchange ions. Thus, exchange-MEAs exhibit low voltage for a given current density but the full-MEA allows achievement of higher current densities without consideration of additional engineering controls.

Ion transport and the charge-carrying species in a full-MEA

At equilibrium, an OH$^-$ form AEM exposed to CO$_2$ will convert to HCO$_3^-$/CO$_3^{2-}$ due to bicarbonate buffer reactions (6)–(9). The ratio of HCO$_3^-$/CO$_3^{2-}$ depends on the partial pressure of CO$_2$ in contact with the membrane and has been measured experimentally for an AEM exposed to 400 ppm CO$_2$. The distribution of anion fraction ($|z_{Cl}|/c_M$) across the MEA for low, medium, and high current densities. As the current density increases, the membrane gradually converts to the CO$_3^{2-}$ form, and eventually to the OH$^-$ form starting from the cathode side. This occurs because OH$^-$ is produced by the COER and HER (see eqn (4) and (5)) at the cathode. OH$^-$ reacts with the HCO$_3^-$ initially in the membrane to form CO$_3^{2-}$, OH$^-$ also reacts with dissolved CO$_2$ to form HCO$_3^-$ and eventually CO$_3^{2-}$. The CO$_3^{2-}$ then transports from the cathode to the anode, driven by its concentration gradient (diffusion), and the potential gradient (migration). At the anode, bicarbonate buffer reactions drive the conversion of CO$_3^{2-}$ to HCO$_3^-$ and eventually back to CO$_2$, which is released into the anode gas channel. As the current density increases, the rate of OH$^-$ production at the cathode also rises, eventually exceeding the homogeneous reaction rates, resulting in accumulation of OH$^-$ at 500 mA cm$^{-2}$ and 1 A cm$^{-2}$, as shown in Fig. 6c and d.

Regarding the transport and distribution of species across the MEA: (1) CO$_3^{2-}$ is the main charge carrying species for a full-MEA with an AEM performing CO$_2$R, consistent with experimental observations reported by Liu et al. The HCO$_3^-$ diffusion flux from anode to cathode is larger than its migration flux from cathode to anode, which means HCO$_3^-$ is moving against the flow of current. OH$^-$ begins to accumulate at high current densities and the membrane will eventually return to the OH$^-$ form as the charge-transfer rate exceeds the homogeneous reaction rates. (2) A portion of the CO$_2$ fed at the cathode is transported as CO$_3^{2-}$ and eventually released as CO$_2$ at the anode for a full-MEA. CO$_2$ in the anode gas outlet has also been observed by Liu et al. and Patru et al. For KHCO$_3$ exchange-MEA and KOH exchange-MEA, CO$_2$ can be flushed out as HCO$_3^-$/CO$_3^{2-}$ by the exchange solution. While helpful in terms of performance, this becomes a source of inefficiency for the system as discussed below.

CO$_2$ utilization efficiency and observed limitations

The CO$_2$ losses need to be defined and quantified as a function of operating conditions because a portion of the CO$_2$ is consumed homogeneously at the cathode, transported to and released at the anode (i.e., electrochemically pumped in a similar fashion as that observed in AEM fuel cells), as expected from reactions (6)–(10) and the transport equations in Table 2. Using the gaseous species fluxes obtained from the model and assuming a 50 scm CO$_2$ feed at 100% RH (97 mol% CO$_2$), the CO$_2$ consumption (the percentage of CO$_2$ feed that is consumed either electrochemically or by homogeneous reactions) and the CO$_2$ conversion (the percentage of CO$_2$ feed...
that is converted to CO) as a function of the TCD (Fig. 7a) is derived. More specifically,

\[
\text{CO}_2 \text{ consumption} = \frac{\text{Molar flowrate of CO}_2 \text{ into the DM from the gas channel}}{\text{Inlet molar flowrate into the cell}}
\]

and

\[
\text{CO}_2 \text{ conversion} = \frac{\text{CO partial current density converted to molar flowrate}}{\text{Inlet molar flowrate into the cell}}
\]

The CO₂ conversion for the three cases deviates slightly from each other at low TCD due to differences in the CO FE (not visible in figure), and eventually converges as CO FE approaches 100% for all three cases. At 100% CO FE, the CO₂ conversion scales linearly with the TCD (which is equal to the partial CO current density), as expected. CO₂ consumption is higher for the KOH exchange-MEA case at low TCD because CO₂ constantly reacts with the OH⁻ from the exchange solution, resulting in a lower CO₂ utilization efficiency (defined as the ratio of CO₂ conversion to consumption), shown in Fig. 7b. For the full-MEA and KHCO₃ exchange-MEA, since the membrane is in the HCO₃⁻ form (and does not consume CO₂ as the OH⁻ does) for TCD close to zero, the utilization efficiency starts at a higher value than that for a KOH exchange-MEA, and decreases with increasing TCD as more OH⁻ is produced. As the TCD increases, the OH⁻ concentration in the CL becomes comparable for a KHCO₃ exchange-MEA and a KOH exchange-MEA, but remains slightly lower for a full-MEA (Fig. 4b). The lower OH⁻ concentration in the full-MEA CL means less CO₂ consumption by homogeneous reactions, as shown in Fig. 7a, as well as a higher CO₂ utilization efficiency (Fig. 7b). The utilization efficiency for KHCO₃ exchange-MEA...
and KOH exchange-MEA converges to 50% for TCD > 500 mA cm$^{-2}$, a result that can be explained by considering the stoichiometry of the electrochemical and homogeneous reactions, listed in Fig. 7c. The reaction stoichiometry also suggests a 1:2 O$_2$ to CO$_2$ ratio at the anode gas outlet, consistent with measurements by Liu et al.68 To increase the utilization efficiency for exchange-MEAs, the consumption of CO$_2$ by OH$^-$ needs to be reduced, which could be achieved by a lower rate coefficient for the homogeneous reaction of CO$_2$ and OH$^-$ (Fig. S2, ESI†). However, this would also result in a more rapid pH change near the cathode, and a larger Nernstian overpotential. Understanding such tradeoffs is crucial to fine-tuning the cell design and maximizing efficiency.

In the model, the gas-channel composition is assumed to remain constant at the feed composition, which is valid only under conditions of low feed consumption (e.g., high feed flowrate). Note that CO$_2$ concentration varies in the CL, and its profile is plotted in Fig. S1 (ESI†). In practice, however, CO$_2$ consumption can be as high 30% for a feed flowrate of 50 sccm and 1 A cm$^{-2}$, as shown above. This means that the gas composition in the cathode gas channel will vary based on the rate of consumption of CO$_2$ and H$_2$O, and the rate of production of CO and H$_2$. Assuming that the gas channel is well-mixed, we estimate its composition from a simple mass balance:

$$y_{GC,i} = \frac{N_{F,i}}{N_F} - \frac{N_{R,i}}{N_R}$$ (47)

where $y_{GC,i}$ is the mol fraction of gaseous species i in the gas channel; N_F and N_R are the total molar flowrate of the feed gas going into and out of the gas chamber into the GDL, respectively; $N_{F,i}$ and $N_{R,i}$ are the molar flowrate of species i in the feed gas going into and out of the gas chamber, respectively. Fig. 8 shows the resulting gas chamber composition for the full-MEA.
(Fig. 8a) and the KOH exchange-MEA (Fig. 8b). At zero TCD, the gas composition in the cathode gas channel for the full-MEA is close to its feed composition since there are minimal reactions and crossover occurring. For the KOH exchange-MEA case, however, the CO₂ mole fraction is much lower than that in the feed (0.97) because CO₂ will be consumed by OH⁻ anions in the CL ionomer; the H₂O mole fraction is higher due to diffusion of H₂O from the anode chamber. The CO mole fraction increases steadily and the H₂ mole fraction is close to zero, as expected from the partial current densities. However,
two issues become apparent regarding water management. For the full-MEA, the \(\text{H}_2\text{O} \) mole fraction first increases slightly due to the temperature increase in the CL, as discussed in Fig. 5, and then drops to zero at approximately 750 mA cm\(^{-2} \), indicating that the full-MEA becomes limited by the supply of water before it is limited by the supply of CO\(_2\). On the other hand, the partial pressure for H\(_2\)O in the gas channel of the KOH exchange-MEA is significantly above its vapor pressure at ambient temperature (~0.03 atm), suggesting that flooding is likely to occur at the cathode GDE as water diffuses from the anode. Flooding in the cathode GDE will increase CO\(_2\) mass-transport resistances significantly and decrease catalyst utilization.\(^{37}\) Fig. 8 suggests a need for a higher-dimensional, integrated multiphase model to capture changes in the gas-channel composition, as well as additional physics to capture water condensation and multiphase flow in the GDE; studies of these effects are currently in progress.

Water management: temperature and membrane-thickness effects

To address issues concerning full-MEA dehydration and exchange-MEA flooding, we studied the effects of increasing the operating temperature and changing membrane thickness. In terms of the operating temperature, the water vapor pressure is ~0.46 atm at 80 °C, compared to ~0.03 atm at 25 °C. Thus, operating at 80 °C, a higher TCD can be achieved with more rapid kinetics (see eqn (35)), but the CO FE decreases below a cell potential of 3 V due to the lower solubility of CO\(_2\) at elevated temperatures (Fig. 9a and b). The gas-channel composition shown in Fig. 9c also indicates that a current density of 1 A cm\(^{-2} \) lies below the CO\(_2\)- or H\(_2\)O-limited current densities.

Fig. 9 (a) Total current density, (b) CO faradaic efficiency, (c) gas channel composition, and (d) CO\(_2\) utilization analysis for a full-MEA at 80 °C with CO\(_2\) feed at 100% RH (54 mol% CO\(_2\), 46 mol% H\(_2\)O). Operating the cell at higher temperature increases the exchange current density, as well as water feed to the system. However, CO\(_2\) solubility is compromised, resulting in lower CO faradaic efficiencies.
for a full-MEA. It should be noted that to obtain the same molar flowrate of CO₂ at 80 °C as at 25 °C for a feed flowrate of 50 sccm, the feed flowrate needs to be raised to 105 sccm in order to compensate for the higher vapor pressure of water. However, Fig. 9c shows that the full-MEA can operate up to 1 A cm⁻² even at a third of the CO₂ molar flowrate provided at 80 °C. This observation reinforces our finding that the cell is operating in a low CO₂ utilization regime up to 1 A cm⁻² at 50 sccm feed (Fig. 7).

The operating temperature can also affect CO₂ utilization, as it changes the reactions rates of electrochemical reactions and homogeneous reactions, as well as the equilibrium constants of the bicarbonate and water reactions. Since limited data is available for the buffer reaction rate constants in an ionomer, we show results assuming the same forward rate constants at 80 °C as at 25 °C for reactions (6)–(10). The equilibrium constant will vary based on eqn (11), as well as the reverse rate constant \(k_{-n} = k_n/K_n \). As shown in Fig. 9d, better CO₂ utilization can be achieved at higher temperatures when operating below approximately 600 mA cm⁻² TCD, but the reverse is true when operating at higher TCDs. This effect is a consequence of increased diffusivity of ionic and neutral species, the shifted equilibria for reactions (6)–(10), and the relative rates of the homogeneous consumption of CO₂ and its electrochemical conversion at 80 °C. We note that the results shown here are based on the assumed temperature dependence of the various rate constants, which will vary based on the ionomer used. These results demonstrate the importance of studying homogeneous reaction rates of the bicarbonate buffer system in different ionomer environments under various temperatures; manipulation of the bicarbonate buffer reaction rates is a potential route to increase CO₂ utilization of CO₂R systems.

Finally, as noted, one can also decrease the membrane thickness to help alleviate the dehydration issue in full-MEAs (although perhaps not the flooding issue in exchange-MEAs). Fig. 10 shows the effects of membrane thickness on the full-MEA performance. As expected, the TCD increases with a thinner membrane, with the difference becoming more significant with higher cell potentials due to both enhanced water transport as well as less ohmic losses, thereby reinforcing the finding that the full-MEA is ohmic-limited. Unlike changing temperature, the CO FE is not strongly impacted. Of course, decreasing the membrane thickness will result in increased crossover and worse CO₂ utilization. This is another tradeoff to consider, and is more prominent when producing aqueous products that have high solubility in the membrane.

Summary

A multiphysics model describing the effects of species transport, heat transfer, and the kinetics of all electrode and electrolyte reactions occurring in an MEA was developed and used to explore the electrochemical reduction of CO₂ to CO over Ag. As the current density rises above 100 mA cm⁻², MEAs become advantageous relative to planar cells containing an aqueous electrolyte or an aqueous GDL cell because they minimize the ohmic drop across the cell. Full-MEAs with gaseous feeds to both the anode and cathode gas channels can achieve a current density of 100 mA cm⁻², with approximately 40% reduction in the cell potential compared to an aqueous GDE cell, a consequence of their lower ohmic potential drop. However, such cells suffer from concentration polarization and membrane dehydration. Circulating an exchange solution through the anode channel enables an exchange-MEA to better maintain the local environment at the anode, and hydrate the membrane. With a KOH-exchange-solution feed, a reverse OH⁻ concentration gradient develops across the cell, lowering the thermodynamic potential that needs to be overcome. The alkaline environment created by KOH also suppresses the HER. For exchange-MEAs, cation transport

Fig. 10 (a) Total current density, (b) CO faradaic efficiency for the full-MEA case simulated with a 25 µm membrane (red), 50 µm membrane (base case, blue), and 100 µm membrane (green).
down the potential gradient limits the current density due to precipitation of the salt used in the exchange solution. It should also be noted that flooding is likely to occur in the cathode GDE of an exchange-MEA, as water diffuses from anode to cathode. High-temperature operation of a full-MEA allows introduction of more water vapor into the system, thereby overcoming the water limitations observed at room temperature; this also improves the charge transfer kinetics, although the reduction in CO₂ solubility and the changes in the temperature; this also improves the charge transfer kinetics, allows introduction of more water vapor into the system, anode to cathode. High-temperature operation of a full-MEA cathode GDE of an exchange-MEA, as water diffuses from precipitation of the salt used in the exchange solution. It down the potential gradient limits the current density due to possible to minimize flooding in an exchange-MEA by increasing the temperature at the cathode GDE in order to evaporate condensed water.

List of symbols

Roman

- a_i: Specific surface area, m$^{-1}$
- a_k: Activity of species i
- A_k: Pre-exponential factor for reaction k, mA cm$^{-2}$
- c_i: Concentration of species i, mol m$^{-3}$
- D_i: Diffusivity of species i, m2 s$^{-1}$
- $E_{a,k}$: Activation energy for reaction k, kJ mol$^{-1}$
- F: Faraday’s constant, C mol$^{-1}$
- H_i: Henry’s constant of species i, M atm$^{-1}$
- ΔH_n: Change of enthalpy for reaction n, kJ mol$^{-1}$
- i_k: Current density for reaction k, mA cm$^{-2}$
- i_l: Electrolyte current density, mA cm$^{-2}$
- $i_{o,k}$: Exchange current density of reaction k, mA cm$^{-2}$
- i_s: Electrode current density, mA cm$^{-2}$
- IEC: Ion-exchange capacity, mmol g$^{-1}$
- J_i: Diffusive mass flux of species i, g m$^{-2}$ s$^{-1}$
- k_{n}: Rate constant for homogeneous reaction n, s$^{-1}$ or L mol$^{-1}$ s$^{-1}$
- $k_{T,m}$: Heat transfer coefficient of medium m, W m$^{-1}$ K$^{-1}$
- K_n: Equilibrium constant for reaction n
- M_i: Molar mass of species i, g mol$^{-1}$
- M_n: Average molar mass of gaseous mixture, g mol$^{-1}$
- n_i: Mass flux of species i, g m$^{-2}$ s$^{-1}$
- n_k: Number of electrons transferred in reaction k
- p_s: Total pressure in phase α, atm
- P_{vap}: Vapor pressure, atm
- q: Heat flux, J m$^{-2}$
- q_l: Electrolyte flow rate, ml min$^{-1}$
- r_p,m: Pore radius in medium m
- R: Gas constant, J mol$^{-1}$ K$^{-1}$
- $R_{0,i}$: Volumetric rate of reaction of species i from bulk reaction β, g m$^{-3}$ s$^{-1}$
- $s_{i,k}$: Stoichiometric coefficient of species i in reaction k
- ΔS_n: Change of entropy for reaction n, J mol$^{-1}$ K$^{-1}$
- T: Temperature, K
- u_0: Mass-averaged fluid velocity of fluid β, m s$^{-1}$
- u_i: Mobility of species i, s mol kg$^{-1}$
- U_k^0: Reference potential of reaction k, V
- $v_{p,i}$: Diffusion volume of species i
- V_i: Molar volume of species i, ml mol$^{-1}$
- x_i: Mole fraction of aqueous species j
- y_i: Mole fraction of gaseous species i
- z_i: Charge of species i

Greek

- α_k: Transfer coefficient of reaction k
- γ_k: Reaction order of reaction k
- δ_{TF}: Electrolyte thin film thickness
- ε_m: Porosity of medium m
- η_k: Species-water to species-membrane interaction ratio
- η_k: Surface overpotential of reaction k, V
- κ_m: Permeability of medium m, m3
- λ: Water content
- μ_β: Viscosity of fluid β, Pa s
- ζ: Electro-osmotic coefficient
- ρ_i: Mass density of species i, g cm$^{-3}$
- σ_m: Electronic conductivity in medium m, S m$^{-1}$
- τ_m: Tortuosity of medium m
- ψ_α: Electric potential of phase α, V
- ω_i: Mass fraction of species i
- Π_k: Peltier coefficient of reaction k, V

Subscript

- B: Bulk
- CT: Charge transfer
- g: Gaseous mixture
- i: Gaseous species
- A_i: Aqueous species
- k: Reaction
- l: Liquid phase
- n: Homogeneous reaction number
- p: Pore
- PT: Phase transfer
- s: Solid
- TF: Electrolyte thin film
- w: Water

Superscript

- o: Intrinsic value or standard state
- r: Reference
- eff: Effective
- E: Electrolyte
- K: Knudsen
- m: Mass-averaged
- M: Membrane

Acronyms

- AEM: Anion-exchange membrane
- CL: Catalyst layer
- CO₂R: CO₂ reduction
- COER: CO evolution reaction
- CT: Charge transfer
Conflicts of interest

There are no conflicts to declare.

Acknowledgements

This material is based upon work performed by the Joint Center for Artificial Photosynthesis, a DOE Energy Innovation Hub, supported through the Office of Science of the U.S. Department of Energy under Award Number DE-SC0004993.

References