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Abstract

Search is a fundamental process that illustrates adaptive, goal-directed behavior

across multiple scales and contexts: from organisms foraging for food independently

or collectively, to networked teams searching for solutions to a problem. Efficient

search in an environment or a problem-space requires managing a primary trade-

off between exploiting available options, resources, or information and exploring for

more. In collaboration with other co-authors, I present experimental and modeling

work on how individuals and groups can balance this and other related trade-offs

to search efficiently under different constraints, and the interplay between individual

and group search trade-offs and behavior.

Using a virtual game environment with ecologically-valid constraints, I show that

individual humans can efficiently search a previously unknown environment by bal-

ancing explorative and exploitative search modes and flexibly adapting this balance

based on their task and cognitive constraints (Chapter 2). However, as part of a

group, individuals are faced with another essential trade-off: whether to use social

information to find resources or search independently. Using an agent-based model of

collective foraging, I show that selective use of social information and high levels of

independent, explorative search can allow groups to simultaneously take advantage

of collective information while maintaining exploration for new resources (Chapter

3). Further, I show that groups may not always evolve to be composed of explorers

that maximize a group’s efficiency and that competition for resources can result in

less efficient groups composed of both explorers and exploiters. I further demonstrate

how simple heuristics like area-restricted search can benefit explorers and maximize

both individual and group search efficiencies (Chapter 4). Finally, a group’s abil-

ity to search for resources or solutions over a problem-space can also be affected by

patterns of social interactions between individuals. By simulating central-place for-

aging in early humans, I show that their movement patterns could have led them

to interact in ways that created social networks efficient at exchanging information

and balancing collective exploration and exploitation of solutions (Chapter 5). Taken



together, these results suggest that efficient search in individuals and groups is driven

by an adaptive balance between exploration and exploitation, which is further af-

fected by their physical and social environments. It also sheds light on the interplay

between individual and collective search that has implications for topics ranging from

decision-making, animal foraging, organizational learning to cultural evolution.

This dissertation, From individual to collective foraging and their interplay: effi-

ciently balancing trade-offs in search processes, is submitted by Ketika Garg in the

summer of 2022 in partial fulfillment of the degree Doctor of Philosophy in Cognitive

and Information Sciences at the University of California, Merced, under the guidance

of Prof. Christopher T. Kello.
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(NR) and resource distribution (β). Error bars indicate 95% confidence

intervals. (b) Effect of group size and individual search strategy on the

advantage of minimally-selective social learning strategy (α = 10−5)

relative to selective social learning (α = 10−2) for β = 3. Dashed

line indicates when the advantage of selective and minimally-selective

social learning are equivalent. . . . . . . . . . . . . . . . . . . . . . . 47

3.4 (a) Mean estimates of observed Lévy exponents (µ′) for different Lévy
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Chapter 1

Introduction

Foraging to find relevant resources like food, shelter, and conspecifics is a fundamen-

tal goal-directed behavior practiced by all living organisms, ranging from relatively

‘simple’ bacteria to cognitively-complex humans. Foraging research occupies a special

place in behavioral sciences that can link questions that scale up from cognition and

decisions at the level of an individual organism to the collective and population-level

phenomena. It also presents a unique perspective on understanding the effect of phys-

ical and social environments and their interplay on the individual- and group-level

decisions and behavior. In addition, since most of human evolutionary history has

been in foraging economies (Alden Smith, 1983), foraging behavior could likely have

had significant consequences on our cognitive, social and cultural evolution, and by

studying foraging, we can shed light on our evolutionary trajectory. While foraging is

an important behavior to study, it also presents a view into general and inter-related

phenomena like search, decision-making, problem-solving, and collective systems.

However, to efficiently forage for relevant resources, both individuals and groups

need to manage certain fundamental trade-offs in their foraging decisions and behav-

iors. One of the most ingrained trade-off is between exploiting known opportunities,

information or resources, and exploring for new, previously undiscovered information

or resources, and how foragers balance this trade-off can have significant consequences

for their search efficiencies. Further, the optimal balance between exploration and

exploitation may change depending upon the physical and social environmental, and
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task constraints. In this chapter, I discuss the main theories of foraging, the differ-

ent trade-offs that foragers face while searching independently and collectively, and

how individual and collective foraging behaviors can affect each other. The studies

presented in the dissertation build upon the theories discussed below and shows how

efficient foraging and search balances the different trade-offs at both the individual

and collective scales.

1.1 Theories of individual-level foraging

A primary, over-arching question in foraging theory is how a forager should search effi-

ciently to minimize its costs and balance various trade-offs that arise due to conflicting

costs and benefits of the many processes involved. In a hypothetical ideal world with

no constraining factors like energy, time, or effort, the optimal search process would

be the one that exhaustively explores every point in the search-space with maximum

time, effort, and engagement. However, that is not the case in the real world, where

extrinsic and intrinsic factors such as environmental structure, social groups, travel

time, mental effort, and attention constrain foragers. These constraints frame various

trade-offs like exploration vs. exploitation, speed vs. accuracy, etc. A constrained

forager with limited time and energy would need to decide how to spend its time

and energy exploiting already-found but diminishing resources with exploring new,

un-depleted resources at a greater risk. The resource environment directly affects

this balance between exploration and exploitation (for example, travel time between

patches, and the richness of patches).

Apart from extrinsic constraints of the environment or search-space, a forager

may be constrained intrinsically, too. Brains have limited capacity to process and

integrate information simultaneously and effectively, and attending to a large amount

of information might decrease performance quality. Attention is a limited resource,

and limited attention results in a restriction in the amount of information the brain

can process at a given time. Many studies have investigated the effects of limited

attention on animal and human target-selection decisions in visual foraging tasks

(Dukas, 2004). Similarly, integrating and processing information requires cognitive

2



effort, and previous studies have shown that animal and human decision-making is

influenced by the costs of mental effort (Kool and Botvinick, 2018). Such constraints

can underline other similar trade-offs, such as between speed and accuracy or speed

and perception.

As I outline below, most of the literature around this question is based mainly

upon two theories that address this problem from different but related angles. Opti-

mal Foraging Theory (OFT) focuses on the decisions that an optimal forager should

make regarding choices like which resource option to select from many, when to leave

a diminishing food patch, and which location to choose to settle a home-base. The

bedrock principle that this theory builds upon is that optimal foraging should max-

imize a given currency (such as energy) and modulate its decisions based on the en-

vironmental constraints. For example, using the Marginal Value Theorem (Charnov

and others, 1976), it predicts that an optimal forager should stop exploiting a patch

when the rate of energy intake at the current patch falls below the expected average

intake rate of the environment. It predicts that an optimal forager should switch from

exploiting a patch to exploring for more patches when the rate of finding food from

a patch is equal to the average expected gain rate from the environment, inclusive

of the travel time between patches. In other words, when the resource environment

is rich, the optimal strategy would favor shorter exploitative bouts. However, when

travel time is significant in sparse environments, foragers should allocate more time

and accuracy to exploit a patch. In addition to time, thorough exploitation of re-

sources can require effort, and depending upon the forager’s state, they may adjust

the amount of effort they invest in maintaining the accuracy of their decisions even

with a reduced amount of time available (de Froment et al., 2014).

Another perspective is offered by the random-walk theory, which follows the prin-

ciple of OFT and predicts how foragers should optimally search for resources. While

OFT assumes that foragers have complete knowledge of their environment - resource

distribution, travel times, etc., the random-walk theory assumes that foragers have

no prior information about the environment structure. Many empirical (Bartumeus

et al., 2003; Boyer et al., 2004; Brown et al., 2007; Da Luz et al., 2016; Focardi et al.,

2009; Namboodiri et al., 2016; Raichien et al., 2014; Reynolds and Frye, 2007) and
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theoretical studies (Bartumeus et al., 2014; Viswanathan et al., 1996) have shown

that a special class of random walks, Lévy Walks can represent optimal search pat-

terns that minimizes search costs and maximizes resource intake. Lévy walks (LW)

are comprised of frequent short movements interspersed with rare, longer movements

whose probability is governed by a power-law exponent, µ. In specific, the probability

of observing a given path length is inversely proportional to the length, P (l) ∼ l−µ
j

and the length of step j is lj, the power law exponent µ is bounded, 1 < µ ≤ 3, and

the movement steps refer to the distance traveled between two consecutive pauses or

turns.

The value of µ can modulate the exploration-exploitation trade-off based on the en-

vironmental constraints. For example, when resources are non-destructive or patchy,

µ ≈ 2 can balance revisiting or exploiting nearby targets (re-sampling areas), and

leaving a visited area to explore for new targets. But when resources are destructive

and it is disadvantageous to backtrack and re-sample an area, µ → 1 can increase

explorative search bouts and thereby increase search efficiency. Lévy-like patterns can

arise from decisions motivated by optimal foraging theory, too. For example, when

resources are plentiful but far apart, it would be optimal to spend a longer time ex-

ploiting a patch. This behavior would inevitably create a distribution of path lengths

leaning on short movements and quick turns (or µ→ 3). However, in the lack of prior

knowledge about the environment, a search pattern with µ ≈ 2 might be generally

beneficial due to the balance between movement bouts of high speed can help cover

(or explore) large distances quickly but at the cost of low detection (or exploitation)

of resources with slower bouts with more focused and thorough exploitation can give

rise to µ ≈ 2 (Bénichou et al., 2011; Campos et al., 2012).

In Chapter 2 (Efficient Lévy walks in human foraging), within the framework of

these theories, I present experimental data on human foraging in ecologically-valid

virtual environments to shed light on how humans move and forage in realistic en-

vironments and balance these various trade-offs in the face of extrinsic and intrinsic

constraints. Our results show the presence of µ ≈ 2 in efficient search behavior that

balanced exploitative and explorative modes of search, irrespective of task constraints.
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However, we also found that efficient foragers built upon these patterns and modi-

fied their search behavior to adapt to contextual and cognitive constraints. Further,

our results advocate integrating physics-based foraging theories with more cognitive

approaches to explain how cognition builds on more basic search processes to guide

foraging behaviors in humans and other complex organisms.

1.2 Transitioning to collective foraging

Individual foraging represents only a section of real-world foraging practices where

many animals are social and engage in collective foraging . Individual foraging can

represent a simpler approximation of a more complex problem: it assumes a single

active ’particle’ with internal properties. It interacts with its immediate environment,

akin to an ideal gas approximation that does not consider interactions between ran-

dom gas particles. A more realistic scenario has multiple active, moving ’particles’

that interact with each other. In collective foraging, the extrinsic constraints that af-

fect individual search behavior would now include the social environment in addition

to the physical one. In other words, search behavior could be affected by how group

members interact with each other and others’ search strategies. For instance, based

on MVT, we can predict that the optimal time to exploit a patch before switching to

exploration for new patches might decrease if many agents collectively exploit a patch

and deplete it faster. Furthermore, individual search strategies and their interaction

patterns can affect group-level performance, often in non-linear ways.

In collective foraging systems, at the level of individual foragers, an additional

trade-off arises between independently searching and using social information to

find resources. Information about the environment or the resources present can

be searched independently by an individual searcher, but when in a group, infor-

mation can be gained or learned from group members, too. Social information or

social learning can reduce costs and risks associated with searching independently

and facilitate information pooling. However, excessive use of social information can

decrease group-level discovery rate for new resources, amplify errors, cause informa-

tional cascades (Bikhchandani et al., 1992) and possibly have negative consequences
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for group adaptability. While collective foraging is directly related to understanding

the foraging behavior of various natural systems, it also represents a general problem

of collective or distributed search that underlines seemingly unrelated topics ranging

from problem-solving, organizational learning, to cultural evolution where individuals

can learn from others.

Some of the most common examples of collective foraging come from eusocial

insects, that share information about profitable food sources through various mech-

anisms such as honey-bee waggle dances (Seeley and Buhrman, 1999; Von Frisch,

2013) and pheromone trails in ants (Dornhaus and Chittka, 2004; Hölldobler et al.,

1990). These information-sharing or social learning mechanisms can also inadver-

tently trigger negative consequences of social information and learning. For example,

pheromones deposited by ants en route to resources can serve as social cues for others

to find food that can get amplified by positive-feedback loops and increase recruitment

to the food resource. However, such amplification can reduce group-level exploration

for new resources and thus, reduce the flexibility to quickly respond to another poten-

tially higher-quality resource (Beckers et al., 1990). Further, the physical and social

environment affects the optimal independent search and social learning strategies.

For example, some studies have shown that collective foragers like ants and bees pay

more information to social cues when acquiring personal information is difficult, and

time costs of exploration are high (Grüter and Leadbeater, 2014). The benefits of

social learning also increase in spatially auto-correlated or clustered resource environ-

ments (Luthra and Todd, 2021), and decrease when the problem-space is rugged and

not correlated, such that the probability of finding solutions in the vicinity of previ-

ously found solutions is low (Sloman et al., 2021). Similarly, the social environment

can affect how individuals should independently search and socially learn from others

to maximize group efficiency. For instance, if the groups are large with many social

learners, the benefits of social learning might further decrease due to excessive social

amplification, and it would be advantageous for individuals to be selective in social

learning. In addition, highly explorative strategies in groups that allow individuals

to decrease overlap in search-space with others might help groups escape from being

stuck in local minima and increase group performance and adaptability (Freeman and
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Huang, 2014; Hong and Page, 2004; Winterhalder, 1986).

In Chapter 3 (Individual exploration and selective social learning: balancing exploration-

exploitation trade-offs in collective foraging), I present a model of collective foraging

that studies the interplay of the two fundamental trade-offs: (a) whether to use so-

cial information to find resources or to independently search, and (b) whether to

independently explore distant areas or exploit near previously found resources. We

modeled individual search strategies as Lévy walks, where a power-law exponent (µ)

controlled the trade-off between exploitative and explorative movements in individ-

ual search. We modulated the trade-off between individual search and social learning

using a selectivity parameter that determined how agents responded to social cues in

terms of distance and likely opportunity costs. We found that selective social learn-

ing and high levels of independent exploration can modulate the disadvantages of

excessive social learning and give rise to an optimal combination of exploration and

exploitation at the group-level.

However, optimal strategies at the group-level may not be evolutionarily stable at

the individual-level. There is no guarantee that evolution through natural selection

will always lead to an increase in population fitness. In many settings, where the

fitness of a strategy is dependent on another strategy, the strategies selected over

time can shape the evolutionary fitness landscape and result in frequency-dependent

selection (Nowak and Sigmund, 2004). Further, previous studies have shown that

indiscriminate social learning can diminish population fitness instead of increasing it

(Rogers, 1988).

In Chapter 4 (Evolutionary dynamics of independent search strategies in collective

foraging), I present an extended version of the collective foraging model to study the

evolution of individual search strategies under different levels of social learning. In

this chapter, we asked how the evolution of different search strategies is affected by

their physical and social environment; and whether the optimal individual-level search

strategies observed in the previous chapter are evolutionarily stable or not. We found

that highly explorative search strategies are not evolutionarily stable, especially when

the explorer’s share is lower than that of exploiters (for example, in scarce resource

conditions). Instead, we found that under these conditions, the evolved groups are
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composed of mixed strategies with differing proportions of explorers and exploiters.

We further studied the effect of the evolved search strategies on group efficiency, and

found that groups with rare explorers are not as efficient as those with more frequent

explorers. We also modified the payoffs from exploratory strategies by adding a

simple heuristic (i.e., area-restricted search) that allows them to gain a larger share

of a resource patch and prevent being replaced by exploitative strategies.

1.3 From individuals to networks

Sharing social information can affect individual movements and increase a group’s

foraging efficiency. However, how individuals move and encounter each other can

affect how groups share information or the group’s social network, too. We can define

a network as a system of interacting individuals that communicate with each other,

where the interactions between the individuals is used to transfer information, and

the structure of the network influences how the information flows on the network

(Pinter-Wollman et al., 2011). Network structures and information transmission can

have significant effects on how quickly some stimuli/information spreads across the

group, the speed with which a group reaches a decision.

Network structures can modulate explore-exploit trade-offs in collective search,

too, and affect its overall search dynamics Fang et al. (2010); Lazer and Friedman

(2007). Too much connectivity within a network would lead to a rapid exchange of

information and decrease the exploration for new solutions. Conversely, very sparsely

connected networks will prevent the social group from accessing the solutions obtained

by others. As a solution to this trade-off, some studies have suggested that small-world

network topologies that have well-connected sub-groups within a sparsely connected,

more extensive network can balance exploration for new solutions and exploitation of

the solutions already found (Derex and Boyd, 2016b). In the context of humans and

on longer timescales, social network structures and efficient information exchange can

have important consequences for social structures and cultural systems.

Efficient information exchange in social networks of prehistoric and contemporary
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hunter-gatherer social networks has been suggested to be necessary for technologi-

cal evolution, cultural transmission, and complexity (Migliano et al., 2017; Romano

et al., 2020; Whallon, 2006). For most human early history, movement likely played a

significant role in determining interaction patterns such as the frequency and strength

of interactions and, thus, their social networks. In turn, movement and the spatial

distribution patterns of prehistoric hunter-gatherers would have primarily depended

upon movement driven by foraging and settlement decisions. As mentioned earlier,

human foraging and movement patterns have been shown to follow optimal foraging

decisions. Many studies on present-day hunter-gatherers have demonstrated that the

decisions of which food resource to harvest or which prey to capture can be driven by

predictions from OFT (Alden Smith, 1983; Pacheco-Cobos et al., 2019; Winterhalder,

1981). However, hunter-gatherer movement patterns are not limited to foraging trips.

Many hunter-gatherers are central-place foragers who conduct regular foraging trips

from a home-base within a foraging radius and periodically move their home-base to

different locations. A few studies have shown that the decision to move the home-base

can be driven by OFT, too (Venkataraman et al., 2017).

In Chapter 5 (Modeling hunter-gatherer social networks from individual-level for-

aging and movement patterns), I present an agent-based model that uses optimal

foraging rules to operationalize central-place foraging and movement, and tests the

resultant patterns of interaction for their efficiency to exchange information. We

found that heterogeneous environmental conditions could have led foraging groups

to stay localized in an area frequently and promoted long-distance residential move-

ments that could have connected dense clusters of bands to form a partially-connected

regional network. We further found that such a network structure could have been

efficient for local and global information exchange. In other words, it could have

a balanced exchange of information, cultural traits, and artifacts within sub-groups

alongside sharing at the regional scale. Such efficient information exchange would

not have only made collective foraging efficient, but it would have had a significant

effect on our species’ ability to collectively search for solutions on many complex

problem-spaces, and changed our evolutionary trajectory.
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Chapter 2

Efficient Lévy Walks in Virtual

Human Foraging

2.1 Preface

I begin by presenting a chapter on individual-level foraging where we conducted an

experimental foraging task with human participants in an ecologically-valid virtual

environment. The study shows that efficient foraging movements resemble theoreti-

cally optimum Lévy-walk patterns that balance long, explorative search bouts with

short, exploitative ones, irrespective of the shape of their overall search trajectories.

In addition to movement-based search, we also analyze how efficient foragers utilize

the time spent between moving by carefully scanning their environment to search for

resources and plan their future movements. Altogether, we demonstrate that humans

can forage efficiently by arranging and adjusting Lévy-distributed search activities in

response to environmental and task constraints.

2.2 Introduction

Human intelligence appears to have an evolutionary basis, at least in part, in foraging

and other search activities of our hunter-gatherer ancestors (Kuhn et al., 2016; Rosati,

2017). Presumably, survival depended not only on our ability to search effectively
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but also to flexibly adapt to goals and constraints as they arise and change. Goals

and constraints are influenced by environmental conditions–such as terrain features,

energy expenditure, and distribution of food and other resources–and by individual

and social factors, such as the need to return to home and participate in social

activities (Pacheco-Cobos et al., 2019). Efficient foragers need to manage the trade-

offs that these conditions and factors are likely to present. Our ancestors may have

used and honed their cognitive capacities for managing trade-offs and other foraging

functions. However, less sophisticated strategies can be effectively deployed when

knowledge or cognitive capacities are lacking. In particular, random search patterns

can be efficient without requiring much memory, planning, or decision-making.

walk	forward

turn	left

walk	backward

turn	right

look	up

look	down

click	on	

temples	

or	home

Home-base

Temple

Temple

Temple

Figure 2.1: Game Environment. Left: An illustrative view of the virtual foraging
game (key and mouse icons not shown during game play). Keys were used to move
forward or backward (‘w’ or ‘s’), turn left or right (‘a’ or ‘d’), or tilt the view (‘up’
or ‘down’). The mouse was used to click on temples or the home-base. The ’fuel
tank’ showed the current energy remaining, ‘reported’ showed a running count of
temples scored, and ‘recorded’ showed the current number of temples found but not
yet reported to home-base (home-range condition only). Right: Distribution of
selected temples in the Google Maps (Maps data ©2018) view of the Himalayan
terrain.

In random search, movement displacements and pauses between movements can

vary stochastically to effectively explore the environment (Bartumeus, 2007; Bar-

tumeus et al., 2016b; Sims et al., 2008; Viswanathan et al., 1999). Efficient random

search has been formalized in terms of Lévy walks in which displacement sizes are
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drawn from a heavy-tailed distribution, and the probability of observing a given dis-

placement is inversely proportional to its length(l), P (l) ∼ l−µ; 1 < µ ≤ 3. The

Lévy exponent µ = 2 generates superdiffusive search trajectories when directions are

chosen at random at every step. Lévy walks generate displacements over a large range

of scales that allow efficient sampling of an uncertain environment (Bartumeus et al.,

2003). Such trajectories can balance extensive exploration of the search space that

reduces the chances of revisiting areas with intensive coverage of immediate surround-

ings, as is beneficial when resources are scarce and their locations unknown. Studies

have reported evidence for Lévy-like foraging in many different species, including hu-

mans (Boyer et al., 2012). For example, Lévy walks were observed in hunter-gatherer

tribes in the Dobe Ju/’Ohoansi population (Brown et al., 2007), and the Hadza of

Tanzania (Raichien et al., 2014). The pauses between movements can have effects

on movement patterns (Bartumeus and Levin, 2008; Kölzsch et al., 2015; Kramer

and McLaughlin, 2001), and they can be essential for resting, resource detection, and

visual scanning. The lengths of pause durations can also be distributed akin to Lévy

walks (Bazazi et al., 2012; Grove et al., 2010; Reynolds, 2015), which we return to

later.

Lévy walks increase search efficiency under the assumption of perfect, effortless

detection of sparse resources. However, real perceptual systems are less than perfect

and perceptual accuracy requires effort and concentration. For instance, the propor-

tion of time and effort spent on relatively intensive search activities can increase with

the difficulty of resource detection (Bond and Kamil, 2006; de Froment et al., 2014;

Spaethe et al., 2006). Furthermore, the difficulty of resource detection can increase

with movement speed (Campos et al., 2012) as a form of speed/accuracy trade-off (Bo-

gacz et al., 2006; Chittka et al., 2009). More generally, attention is a limited resource

and must be selectively allocated based on prevalent foraging conditions (Chittka and

Raine, 2006; Nityananda and Chittka, 2015; Zhang et al., 2018). Thus, the flexibility

in search strategies necessary to adapt to diverse environments might stem from the

combination of locomotive and perceptual processes (Viswanathan et al., 2011), and

a full understanding of foraging behavior requires an integration of the two. Despite
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the interdependence of locomotion and perception, they need not be affected by sim-

ilar constraints. For instance, locomotion is inherently constrained by the landscape

and energy expenditure (Ross and Winterhalder, 2015; Wilson et al., 2012), whereas

perceptual accuracy is constrained by time and ability to concentrate (de Froment

et al., 2014).

The roles of perception and attention highlight how foraging is a multiscale pro-

cess: relatively local perceptual and attentional processes unfold on shorter timescales,

and these processes must be coordinated with movement and decision-making pro-

cesses that unfold over a broader range of temporal and spatial scales (Gameiro et al.,

2017; LaScala-Gruenewald et al., 2019). Previous studies illustrate how foraging deci-

sions in humans and other complex organisms are guided to minimize time and energy

expenditure. However, decision-making is itself a process that primarily expends time

and effort, and energy to a lesser degree (Mugan and MacIver, 2020). Despite this ra-

tionale, there is little research on how time and energy are managed to make foraging

decisions and movements. This research question is challenging to address in natural

foraging because of the lack of experimental control and inability to measure behavior

at a resolution needed for data on perceptual and decision-making processes. Some

studies of human foraging have used simplified tasks and games to run controlled ex-

periments (Kalff and Hills, 2006; Kerster et al., 2016b; Mart́ınez-Garćıa et al., 2017),

but these studies mostly lack essential features like energy costs (Kamil et al., 1987;

Korn and Bach, 2018) and multiscale interactions between perception, movement,

and decision-making that are the bases of efficient foraging.

2.3 Experiment

We designed a virtual environment to study human foraging in a natural setting

that engages multiscale processing while also affording experimental control and a

range of detailed measurements (links to the game can be found in Methods). We

aimed to investigate the extent to which efficient human foraging is founded on basic

search processes and how search processes are augmented by decision-making based

on trade-offs between effort expended on movement versus planning and perception.
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The primary trade-off occurs between local versus non-local search processes, i.e.,

those driven by sensory activity versus locomotive activity, akin to the trade-off be-

tween intra-patch versus inter-patch foraging (Pacheco-Cobos et al., 2019; Zollner and

Lima, 1999). The present study examines how this trade-off is managed for efficient

foraging under different task conditions.

We replicated a region in the foothills of the Himalayas using Google Maps and the

Unity 3D game engine (Fig 2.1). The region has several ancient temples whose loca-

tions we used to model the distribution of resources to be foraged for. These temples

are spatially distributed according to human on-foot movement patterns and various

socio-cultural and environmental factors (Zurick et al., 2014). Historically, they may

have served as waypoints for journeys of nomadic tribes of the region (Kaushal, 2001).

The region is heterogeneous in terms of terrain elevation and visibility, thereby in-

voking naturally complex decision-making about energy expenditure for locomotion

(Wilson et al., 2012) aimed at exploration versus reaching better vantage points for

visual search (Mugan and MacIver, 2020). Players foraged by moving through the

environment at a constant human-scale velocity, and energy was expended as an

empirically-based function of change in elevation (Minetti et al., 2002) (See Meth-

ods). Velocity was in the upper range of human athletic ability to increase the area

that could be searched per unit time.

Our virtual foraging game allowed us to examine the behaviors of more versus

less efficient human foragers, as gauged by the number of temples found (all players

started in the same location with the same energy budget). We also tested for adap-

tive behavior, i.e. efficient responsiveness to task and environmental constraints, by

manipulating the need to return to a home base, i.e. central-place foraging (Reynolds,

2008). This constraint is natural and variable in real-world conditions which suggests

that humans and other organisms may have evolved to adjust to central-place vari-

ability. The foraging game also elicited the coordination of perceptual search with

locomotive search in a relatively natural way. While players did not expend actual

physical energy to play the game, they had to decide when and where to look or

move to locate resources based on a simulation of the main functional constraints
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that apply in real human foraging.
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Figure 2.2: All search trajectories plotted for home-range players (Left) and free-
range players (Right), in a 2D plane (Top) and the full 3D terrain (Bottom).
Trajectories for low versus high scorers colored separately (blue versus red). The XY
coordinates are in meters.

Each participant played individually, and each player started on top of a hill where

a tower was placed as a home base. The hill was roughly in the middle of a 5x5 kilo-

meter terrain map of the Himalayas that contained 49 temples registered in Google

Earth (Fig 2.1). We populated the hilly terrain with scattered trees that made tem-

ples challenging to see from a distance due to occlusion and misidentification. In the

home-range condition, players needed to click on the tower to score any temples they

acquired up to that point. The players did not need to be next to the home-base to

click on it, they could do so from a distance within close vicinity. In the free-range

condition, temples were scored immediately when acquired, and players did not need
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Home-range | Low Scorers;      = 0.9   
Home-range | High Scorers;       
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Figure 2.3: Mean Squared Displacement as a function of energy expended for the
ensemble of trajectories in home-range and free-range conditions, separated by low
(blue) and high (red) scorers. Functions are also divided into local (left) and non-local
(right) scales by the vertical dashed black line, and anchors of normal diffusion and
ballistic and sub-diffusive limits are shown for comparison.

to return to the home-base. The game ended only after the energy budget was de-

pleted and the players were awarded 50 cents for finishing the game and an additional

20 cents for each temple scored. Only movements over the landscape cost energy, for-

ward and backward, and players were given an energy budget that enabled them to

approach the edges of the game space without reaching them. Energy expenditure

was constant for flat and downhill movement and increased linearly with the grade of

uphill movement. Given a constant velocity and limited energy budget, the duration

of the game was affected by the rate of energy expenditure, for example, more uphill

movement increased the rate of energy loss and decreased the total play time.

In typical foraging models, foragers expend energy to move near enough to a

resource to perceive it and then move additionally to access it. This additional
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movement is irrelevant for our purposes, given that the search process is complete

at the moment of perceptual detection. To avoid wasting time and energy to walk

close enough to physical resources to touch them, players obtained “informational”

resources by simply clicking on them upon visual detection.

This informational mode enabled us to measure the perceptual component of

foraging, as expressed in reorientations used to scan the landscape for resources visu-

ally. It also highlighted the trade-off between visual scanning via reorientations that

searched without energy expenditure versus locomotion that brought distant hillsides

and other unexplored areas into view. Visual scanning cost time but not energy,

whereas locomotion cost both time and energy. Players could increase their play time

by taking longer pauses at the cost of time and opportunity. Visual acquisition of re-

sources was reflected in player scores but did not replenish energy levels and the goal

was to record as many resources as possible, given a limited energy budget. This goal

is based on typical foraging models, where foraging efficiency is defined as maximizing

resources as a function of energy integrated over time (Ydenberg et al., 1994).

The game was hosted on Amazon’s Mechanical Turk, and 200 unique participants

completed the game without technical or other issues–100 in the free-range condition,

and 100 in the home-range condition. Players took an average of 12 minutes to expend

their energy budget, and the mean performance for the two conditions was the same at

7.0 temples scored. To assess how the efficiency in foraging behavior interacted with

the home-range constraint, we further divided the players based on their scores using

a median split, such that the players scoring less and more than the median of 4 were

labeled as ‘low-scorers’ and ‘high-scorers’ respectively. We tested how this median

split interacted with the manipulation of home base, and we show that bivariate

results are consistent with the underlying continuous relationships between measures

of foraging and score.
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Figure 2.4: Complementary Cumulative Distribution Function (CCDF or 1 - CDF)
for movement segments (top row) and pause intervals (bottom row) for all low
scorers and high scorers. The points represent the empirical data and solid lines show
the corresponding truncated power-law fits ( using Eqn(2.2) where µ is the maximum
likelihood estimate for a given empirical distribution, and xmin is set to 1 sec). Lines
are colored to show the boundaries of µ = 2 for movement segments and µ = 1 for
pause intervals.

2.4 Results

2.4.1 Efficient foraging was more adaptive in response to

home-range constraints

All individual search trajectories are shown in Fig 2.2 with and without the terrain

as the backdrop (top versus bottom) for home-range versus free-range players (left

versus right). Before proceeding with analyses, we can observe that foragers generally
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adapted their movements to task demands in that trajectories were less spread out in

the home-range condition. Moreover, this adaptation appears to be more pronounced

for high scorers in that the red trajectories appear to be less spread out than blue

trajectories in the home-range condition. In contrast, the opposite is true in the free-

range condition.

To quantify and test these apparent differences, we used diffusion analysis to mea-

sure the degree of spatial dispersion of search trajectories. Diffusion analysis is based

on change in mean squared displacement (MSD) over time (T ), whereMSD ≈ Tα and

α = 1 corresponds to a random Brownian walk. Subdiffusive (α < 1) and superdif-

fusive (α > 1) trajectories indicate anomalous diffusion, where the MSD can either

grow slower or faster than expected by a random walk. MSD is usually computed as

a function of time, but we computed it as a function of energy expenditure, which is

more directly linked with movement dispersal in our game as in real environments.

MSD functions were similar across conditions at local scales (see upcoming seg-

ment analyses), but they diverged at longer scales. We calculated MSD from an

ensemble average (see Methods) for each condition over all scales to estimate the de-

grees to which players ranged farther or less far compared with the normal diffusion

baseline of α = 1 (Fig 2.3). We simulated a random walk to confirm that the effect

of varying slopes on energy expenditure did not cause a bias away from the baseline

of regular diffusion.

We also calculated MSD for every trajectory separately (Fig 2.5) and found that

players were significantly superdiffusive in the free-range condition (α = 1.3, one-

sample t-test : t = 7.8, df = 99, p < 0.001), and significantly subdiffusive in the

home-range condition (α = 0.86, one-sample t-test : t = −3.1, df = 99, p = 0.002).

Moreover, the effect of home-range was exaggerated for high versus low scorers as

evidenced by a significant interaction between home-range condition and high/low

scorers, F (1, 196) = 11.5, p < 0.001. We calculated F statistics using two-way (home

condition x search efficiency) ANOVA and diffusion exponent estimates α for each

19



player as the dependent variable. Fig 2.6 shows the mean α values for each condition

separated by low versus high scorers. The MSD results confirm that players adapted

their overall search trajectories to range farther in the free-range condition, and this

adaptation was greater for high scorers.

The home-base served as a resource akin to a temple, i.e., a structure to be

located. However, unlike temples, it was a non-destructive resource that players

needed to return to, often repeatedly as players would go out on multiple excursions.

The memory of the home-base’s location presumably decays over time and distance

(Bracis et al., 2015), so it is beneficial to restrain the dispersal distance when return

trips are sufficiently valuable (Spencer, 2012). Efficient search in the home-range

condition meant staying closer to the home base, which conserved energy and lessened

the burden on memory by keeping the home base tower in view or not far from sight.

2.4.2 Efficient foraging followed Lévy walks regardless of home-

range constraints

The diffusion analyses show how movement trajectories are distributed over long spa-

tial and temporal scales to fit task constraints. Movement trajectories can also be

analyzed segment by segment to examine the distribution of movement segments and

the degree to which search activity is intensive versus extensive, i.e., relatively short

versus long movement segments. The distributions of movement displacements play

a role in the use of space and overall diffusion of foraging trajectories, but they can

also reveal different patterns at a smaller scale that provide additional information

about foraging processes (Bartumeus et al., 2016a).

We divided foraging trajectories into movement segments and pause intervals,

where the former were defined as continuous intervals of forward or backward move-

ment delineated by pauses in movement of any length. Pause intervals were continuous

periods of standing still and turning without locomotion. We analyzed the frequency
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distributions of both kinds of segment distributions by fitting the parameters of sev-

eral candidate models (see Methods for more details) using maximum-likelihood esti-

mation (MLE ). The best-fitting model was determined based on relative likelihoods

using Akaike Information Criteria (AIC ) and the Kolmogorov-Smirnov D goodness-

of-fit metric. The candidate models tested were those most commonly examined in

prior foraging studies, and each model was tested against the distribution of each

participant.

AIC results showed the large majority of movement segment distributions, 81%,

were best fit by the truncated power-law model. Therefore, we analyzed the best-

fitting parameters of the truncated power-law (Eqn 2.2) for all trajectories to quantify

and compare distributions across conditions (Fig 2.4). Estimated power-law expo-

nents were almost entirely within the range of Lévy walks, 1 < µ ≤ 3, and generally

close to the theoretical optimum of two, as many studies have found (Reynolds et al.,

2018; Sims et al., 2019; Viswanathan et al., 1999). µ ≈ 2 reflects a balance where

shorter, energetically cheaper movements intensively search areas that are reached by

longer, energetically more costly movements. The exponent also generates a broad

range of step distributions that could help in a judicious sampling of the environment,

especially under movement costs and uncertain conditions irrespective of how much

space is covered (Bartumeus et al., 2003; Seuront and Stanley, 2014). The relation-

ship between exponent and score (Fig 2.5) shows that foraging was generally most

efficient near µ ≈ 2.

In line with Figure 2.5, we found that the mean estimated exponents (Fig 2.6)for

high scorers (µ = 1.89) were reliably closer to optimal compared with low scorers

(µ = 1.70), F (1, 196) = 12.03, p = 0.05, without any no reliable effect of home-range,

F (1, 196) = 0.15, p = 0.7. Therefore, while the trajectory diffusion adapted to the

home-range/free-range manipulation, the distribution of efficient movement segments

resembled a Lévy walk regardless of task constraints. It is especially noteworthy

that even the subdiffusive home-range trajectories were composed of Lévy-distributed

movement segments. Lévy walks are mostly associated with superdiffusive trajectories
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and random heading directions that help avoid backtracking and reach unexplored

areas. Home-range players were restricted to areas near the home base, but by not

picking their headings at random, they were able to maximize their search efficiency

within the limited space. Altogether, our results add to previous evidence for the

prevalence of µ ≈ 2, even when the superdiffusive benefit of Lévy walks is nullified.

Movement	Segments

Pause	Intervals	

Figure 2.5: Individual scores as a function of truncated power-law exponents (left) for
movement segments and pause intervals, and diffusion exponents (right) for home-
range versus free-range foragers. The solid lines show the respective moving averages.

2.4.3 Efficient foraging benefited from concentrated bouts of

perception and planning

Foraging in humans and other complex organisms involves perception, memory, plan-

ning, and decision-making processes that can be difficult to perform while moving

(Kramer and McLaughlin, 2001), especially under challenging and uncertain condi-

tions. Pauses between movements are sometimes attributed as “handling times” to

retrieve and process resources in optimal foraging literature (Grove et al., 2010). In

our experiment, pauses between movements were times when players, at the expense

of time and effort, could plan their next moves or visually scan the environment for
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Figure 2.6: Mean truncated power-law exponents µ for movement segments and pause
intervals (left), and mean diffusion exponents α (right) for home-range versus free-
range foragers. Both measures shown separately for low versus high scorers, and error
bars show standard errors of the means.

distant resources that may be difficult to discriminate from trees and other environ-

mental features.

We first tested whether foraging-related activities were indeed engaged during

pause intervals as assumed. We did not have access to direct evidence, but this hy-

pothesis predicts that longer pauses should generally result in better performance

due to the value of mental processing. Consistent with this prediction, we found

moderately strong correlations between scores and summed pause intervals in both

conditions, rhome-range = 0.43, p < 0.001 and rfree-range = 0.60, p < 0.001 (see Fig 2.7

(left)). We can infer that at least some time spent during pauses was used for visual

scanning to detect temples or the home-base.

Intervals between foraging activities have been studied previously in sit-and-wait

ambush predators, where waiting times are distributed according to a power-law

(Wearmouth et al., 2014) analogous to the distribution of movement segments in

Lévy walks (Reynolds et al., 2015). Similar to previous studies, power-law analyses

of pause intervals showed that the majority of pause distributions, 76%, were best
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fit by one of the two power-law models, with 57% truncated Pareto and 19% pure

Pareto. We found that µ parameter estimates for the truncated power-law model were

closer to one than two (Fig 2.5), consistent with previous results showing evidence

for power-law waiting time distributions with µ ≈ 1. Moreover, scores were generally

highest when estimated exponents for pause intervals were close to µ ≈ 1, and expo-

nents for high scorers were closer to one than for low scorers, F (1, 179) = 3.8, p < 0.05

(see Fig 2.6).

To understand why efficient pause intervals approached µ = 1, we can compare

this result with the corresponding analysis of movement segments where the exponent

approached µ = 2, which balances energetically costly longer movements with shorter,

intensive clusters. For pauses, there is no such energetic cost (Raposo et al., 2003). To

the contrary, relatively long, continuous pauses help to integrate visual information

as the environment is scanned, integrate that information with prior knowledge, and

consider possible plans for next foraging movements. Such mental processing requires

sustained concentration that could be disrupted by too much task switching between

movements and pause intervals, or too much difficulty in integrating information

across the different viewpoints separated by movement segments. This explanation

may be related to previous work showing that µ ≈ 1 can result from memory effects

on task execution, such that humans perform an activity based on their past activity

rate (Vazquez, 2007). Better players may be more aware of their activity rates and

concentrate their mental efforts accordingly.

2.4.4 Efficient foraging traded more perception and planning

for less exploration with the home-range constraint

We designed our foraging game with an explicit, empirically-based cost to foraging

movements, but time and mental effort were inherent costs that players presumably

took into account. They could favor exploratory movements over perception and plan-

ning, thereby expending energy in exchange for less time and effort, or they could
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invest more time and effort on careful visual scanning to detect trees or path plan-

ning to increase their search efficiency. The home-range constraint favored the latter

because of the added energy costs of return trips (although players only needed to

see and click the home base to score temples found, some return movement was often

needed to bring it into view). The cost of these return trips is reflected in the diffusion

results that showed more restricted, subdiffusive search areas with the home-range

constraint. If one only takes movement-based search into account, then the need to

return to home base should hinder performance because return movements expend

the energy budget and thereby reduce the total amount of ground that can be covered.

On the contrary, as reported earlier, mean scores were nearly identical for home-

range and free-range foraging. This surprising equivalency implies that home-range

players could find almost as many temples as their counterparts without engaging in

superdiffusive search. This result indicates that efficient foragers switched their forag-

ing strategies in response to task constraints: Home-range players minimized ranging

farther to avoid the movement costs of return trips, but they maintained performance

by investing more time in planning or visual scanning. Analogously, optimal foraging

models predict that the time spent by foragers in a patch should depend upon travel

costs, among other factors (Stephens, 2008). Greater travel costs should increase the

probability of exploiting a current location rather than exploring others. We predict

that more significant travel costs in the home-range condition should lead players to

exploit the area near the home-base by spending more time on planning and visual

detection compared with free-range players (Bell, 1990).

In support of the predictions outlined above (see Fig 2.7 center), total time spent

on visual processing was 52.47 seconds longer on average in the home-range versus

free-range condition (one-tailed t-test: t = 1.52, df = 198, p = 0.06), and this ef-

fect was not reliably different for low versus high scorers. The extra pause time was

apparently used for visual search/mental processing helpful to foraging efficiency, as

evidenced by the correlation with scores reported earlier. To further corroborate that

this extra time spent between movements in the home-range condition was used for
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visual search, we can find indirect evidence in the frequency and rate of reorientations

(turns and head tilts while standing still) that are indicative of active visual scanning

and effort.

As predicted, we found that the rate of reorientation was higher in the home-

range condition (see Fig 2.7 (right)), M = 0.18 sec−1, than in the free-range condi-

tion, M = 0.15 sec−1 (one-tailed t-test: t = 1.77, df = 198, p = 0.035). Further-

more, high scorers (M = 0.19 sec−1) reoriented at a higher rate than low scorers

(t = 2.83, df = 198, p = 0.0025, and high scorers adapted their reorientation rates

somewhat more strongly to the home-range manipulation, F (1, 196) = 2.81, p = 0.09.

These results indicate that the home-range constraint encouraged players to increase

their investment in perception and planning, and better players made greater invest-

ments than worse players.

Figure 2.7: Left: Summed pause intervals plotted against score and separated by
home-range versus free-range foraging. Center: Means of summed pause intervals,
and Right: mean rates of reorientations. Error bars show standard error of the
means.

2.5 Discussion

In recent years, there has been a tension between physics-based theories and more cog-

nitive theories of foraging (Pyke, 2019). On the one hand, theories like Lévy walks
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seem plausible for relatively simpler organisms that search for resources relatively

uninformed, with little or no memory or directionality, akin to the random walks

of particles. These theories mostly focus on optimal movement and assume perfect

perceptual capabilities that allow automatic resource detection. On the other hand,

cognitive theories that invoke memory, learning, and decision-making seem more ap-

propriate for humans and other complex organisms (Namboodiri et al., 2016). Such

theories rooted in the optimal foraging framework emphasize trade-offs involving time

and energy constraints but devalue the role of spatial search in foraging under con-

straints on information and memory (Zollner and Lima, 1999).

Our results help resolve this tension in the context of a virtual foraging game with

realistic human foraging conditions. Foraging behavior looked like an undirected

Lévy walk at the level of individual movement segments, but like a directed series of

movements and pauses at the level of whole trajectories. Movement segments were un-

affected by task constraints and generally more efficient as their power-law exponents

approached µ = 2 and pause intervals approached µ = 1. However, movements were

clearly not generated by a purely random process when viewed as whole trajectories.

Their dispersal respected constraints of the environment and task conditions, and dif-

fusion exponents deviated purposefully from a random walk. To illustrate, the hilly

terrain in our virtual Himalayas afforded constraints and opportunities for foraging.

As can be seen in Fig 2.2, players tended to move along ridges rather than go down to

lower elevations, especially in the home-range condition. These trajectories respected

constraints of movement costs as well as opportunities for unobstructed visual search.

Lévy walks are generally indicative of superdiffusive search, but we found Lévy dis-

tributions in the movement segments of subdiffusive trajectories with the home-range

constraint, as well as superdiffusive trajectories without it. Alternatively, players

could have altered the diffusivity of search by changing the distributions of move-

ment segments and deviating from a Lévy distribution to a Gaussian distribution

with short or long step lengths. However, this method runs the risk of losing scale-

invariant search properties of Lévy walks that are beneficial for sampling a space at
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a large range of scales, especially in uncertain and heterogeneous environments (Bar-

tumeus et al., 2008; Humphries and Sims, 2014). Our results indicate that players

controlled movement directions, but not magnitudes, in a way that adapted Lévy-

distributed movements to the relevant range of search scales (Bartumeus et al., 2003;

Seuront and Stanley, 2014) given task constraints. The use of directionality also

created movement trajectories that varied in their degree of resampling prior loca-

tions, unlike a random Lévy walk. Instead, movements were directed to efficiently

over-sample the home-base location at the level of trajectories and thereby enact

central-place foraging. We did not test how movement might adapt to variations in

the distributions of resource locations, but previous studies have found changes in

movement segment distributions with respect to patchiness (Bartumeus et al., 2003;

Nurzaman et al., 2010). We only used known temples as resource locations for pur-

poses of ecological validity. However, it would be interesting to examine the effects of

different resource distributions and energy landscapes on movement segments versus

movement directions in a future study.

We found that pauses for perception and planning were also Lévy-distributed

regardless of task conditions (Wearmouth et al., 2014), and estimated parameters in-

dicated that efficient foraging benefited from concentrated search effort, as supported

by positive correlations between scores and time spent between movements. One role

of mental processing was demonstrated in the shift to more visual search in place

of less exploration in the home-range condition due to the energetic costs of return

trips. Although pauses did not cost energy in the game, they did incur time, effort,

and opportunity costs, e.g., spending the time earning money in another task on the

MTurk platform (Mason and Suri, 2012; Ross et al., 2010). In future research, it

would be informative to test different time costs and their effects on pauses.

The interleaving of movements with pauses for perception and planning is anal-

ogous to inter-patch versus intra-patch foraging, respectively (Kamil et al., 1987;

Pacheco-Cobos et al., 2019) – movements take foragers to each new patch i.e. van-

tage point, and visual search exploits the patch until the probability of finding a

28



resource is low enough to plan and execute the next movement. There is a trade-off

between the time and energy needed to move along with the opportunity to find new

resources, versus the time needed for visual search and planning to fully cover the

area. We found that, in the face of more considerable movement costs, home-range

players increased the time they spent on exploiting a ‘patch’. In general, more ef-

ficient foraging balanced these trade-offs to create movement trajectories that were

judiciously extended or contracted by way of concentrated bouts of visual scanning,

orienting, and planning. Less efficient foraging used relatively shorter pauses and

longer movement segments arranged in more random configurations, as evidenced by

diffusion exponents closer to a random walk. Our home-range constraint was percep-

tual and hence not energetic up to a certain distance, but more energetic constraints

might elucidate the role of memory and decision-making processes that assess prob-

abilistic costs and benefits of farther excursions while saving energy to return home

(Hamilton et al., 2016; Sakiyama and Gunji, 2016).

Our results advocate for integrating physics-based foraging theories with more

cognitive approaches to explain how cognition builds on more basic search processes

to guide foraging behaviors in humans and other complex organisms. For instance,

one approach might posit that Lévy-distributed movement segments serve as building

blocks for more cognitively-motivated activities to assemble into movement trajecto-

ries. Activities like resource detection, planning, visual scanning would unfold incre-

mentally in bursts of concentrated processing between movements. Previous theories

have explained pause intervals in terms of simple models assuming the probability

of local target detection increases with longer waiting times (Bénichou et al., 2005).

By contrast, our results call for explanations that involve mental processing (de Fro-

ment et al., 2014) and optimal foraging predictions (Kamil et al., 1987; Nathan et al.,

2008). For instance, concentrated bursts of perception and planning might aid at-

tentional focus (Hills, 2006) similar to area-restricted search. More generally, there

is a need to explain how task demands and constraints affect decision processes that

span spatial and temporal scales in which local choices over short timescales integrate

and interact with broader, longer-range orienting and planning (Brantingham et al.,
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2006; Farnsworth and Beecham, 1999; Purcell and Kiani, 2016). Models of efficient

foraging in natural environments should account for the trade-offs between extrinsic

constraints (e.g., energy landscapes, resource distributions, landscape heterogeneity)

and cognitive constraints (e.g., limited memory and attention, task switching costs,

information uncertainty).

In closing, it has been hypothesized that human intelligence partly evolved from

adaptations selected for efficient foraging behavior (Rosati, 2017; Wilke and Barrett,

2009). For example, selective attention may have resulted from the tendency of food

and other foraging resources to be clustered in time and space, thereby requiring focus

on those clusters and not other potentially distracting features in the environment

(Hills, 2006). Likewise, perception and planning decisions may have been shaped by

adapting Lévy walks in purposeful ways that adjust to varying conditions and con-

straints. Such an adaptation may have been co-opted for processes of memory search

(Kerster et al., 2016a) and visual search (Rhodes et al., 2014). Understanding the

behavioral bases of foraging at different scales (Levin, 1992) may serve as a foun-

dation for studying trade-offs between physical and cognitive costs involved in many

aspects of learning and decision-making (Mobbs et al., 2018; Schulz et al., 2018), with

implications for broader problems of optimal search and foraging (Hart et al., 2018;

Seuront and Stanley, 2014; Shlesinger, 2006).

2.6 Methods

2.6.1 Game environment

The foraging game was implemented in Unity 3D and primarily scripted in C#. The

game was modeled on a 5x5 kilometer area in the Himalayas (Top-Left - 32.6548,

76.056530, Bottom-Right - 32.54895, 76.194889). The relief of the terrain was down-

loaded from Google Earth and rendered in the Unity environment using Infinity Code.

Forty-nine temples were identified in the chosen area based on location data from

Google Maps. The coordinates of the temples were marked in the Unity landscape,
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and a model temple was placed at each location. The movement was only forward

and backward with turns to change direction, and movement speed was set to be

6m/s. This fast but realistic speed helped foragers cover a greater area and find more

temples in a shorter time that is ideal for MTurk studies. A visible energy bar was

depleted as a function of the slope approximated from prior studies on movement as-

sociated energy expenditure in humans (Minetti et al., 2002). Specifically, a constant

minimum was set per meter for flat and downhill surfaces, and the cost increased by

35% for each angular degree of increase in grade. This approximation is a simplifi-

cation of more realistic functions that consider higher-order effects of downhill slopes

on energy expenditure. We also simplified the game by excluding a resting metabolic

cost during pauses and turns, and excluding an energetic reward for finding temples.

These simplifications made it easy to measure and compare foraging efficiencies while

also controlling the length of game play.

Players used six keys to control movement and perspective (‘w,’ ‘a,’ ‘s,’ ‘d,’ ‘up

arrow,’ ‘down arrow’), the latter two tilting their line of sight up and down to adjust

for sloping terrain. Mouse movements were used for clicking on temples in view

when found, and auditory feedback was available with steps to indicate movement,

and clicks to indicate successful temple identification. Players were recruited on

Amazon Mechanical Turk and the study was approved by the University of California

Merced Institutional Review Board. All experiments and analyses were performed in

accordance with the guidelines of the review board. Informed consent was obtained

and players were given a guided practice trial to acclimate to the game, and its

rules and controls. They were instructed to find as many temples as possible before

depleting their energy, with the number of temples displayed in the corner of the

screen. In the home-range condition, where players clicked on the home-base to report

temples, the number of temples found and reported back to base were both displayed.

Player scores were based only on the number of temples reported, and to calibrate,

players were told that 49 temples existed in the game. Each player was paid a base

amount of 50 cents for completing the game, and an additional bonus of 20 cents was

awarded for every temple successfully recorded in free-range condition. However, for
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the home-range condition, the bonus was awarded for every temple reported back to

the home-base. Game can be accessed at Home-range and Free-range.

2.6.2 Trajectory Analysis

We computed MSD as a function of energy expended to characterize the type of

diffusion:

MSD =
1

n

n∑
j=1

< [r(e+∆e)− r(e)]2 >j (2.1)

where r(e) is the position vector of the player at energy e, ∆ e is the energy expended,

n is the total number of players.

2.6.3 Segment Distribution Analysis and Model Selection

The game play for each participant was divided into segments of continuous movement

(i.e. the forward or backward key was held down) interspersed with time intervals

of no movement, i.e. pause intervals. The length of each movement segment l was

the total amount of time spent moving during the segment, which was equivalent to

the amount of ground covered because velocity was constant. We discarded segments

where l was less than one second.

Distributions of individual movement segments or pause intervals were plotted and

analyzed directly, rather than binned into frequency histograms (Clauset et al., 2009).

We calculated complementary cumulative distribution functions (i.e. CCDF or 1-

CDF) for a given distribution functionX, evaluated at every observed segment length,

l, where CCDF(l) = P (X ≥ l) or the probability of observing segments in a given

distribution ≥ l. CCDFs were plotted simply by rank ordering individual segments

along the x-axis, with CCDF(l) on the y-axis. We calculated and plotted individual

CCDF for each participant instead of combining them into a single distribution.

We used Maximum Likelihood Estimation (MLE) to fit each distribution to the

probability density functions of the most commonly used models in behavioral and

foraging studies: Truncated power-Law, Pareto, lognormal, truncated Pareto with

an exponential cutoff, exponential, and bi-exponential distributions. MLE finds the
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PDF parameters that maximize a monotonic log-likelihood function L(µ) such that

L(µmax|x) > L(µother|x) where x is the data and µ is the fitted parameter.

We estimated the goodness-of-fit between data and model by calculating the log-

likelihood values for estimated model parameters, L =
∑n

i=1 L(µmax|xi), i.e. summa-

tion of the likelihood function L over all n data points in the distribution. We then

selected the best model using the Akaike Information Criteria (AIC) which prefers the

model with fewest parameters and maximum L. We used the small-sample correction

for the AIC when needed. We also calculated Kolmogorov-Smirnov (KS) D statistic

between CCDFs of empirical data and model estimates to further check the goodness-

of-fit. The KS statistic measures the maximum distance between two distributions,

KS results were in agreement with AIC results.

Truncated power-law, bi-exponential and Pareto were the best fitting probability

density functions (parameters were estimated numerically):

Truncated power-law:

p(x) =
µ(xµ

max − xµ
min)

xµ+1
i

(2.2)

where parameters estimated numerically were µ and xmax.

Power-law:

p(x) =
µ(xµ

min)

xµ+1
i

(2.3)

where µ was estimated numerically.

Bi-exponential:

p(x) = Aexp(−λ1xi) + (1− A)exp(−λ2xi) (2.4)

where A and 1−A are the relative weights of the two modes, and λ1 and λ2 are the

exponential decay rates.

The bi-exponential model provided good fits to the data, but it was not favored by

AIC because of its additional parameter. AIC results showed that a large majority of

distributions were best fit by the truncated power-law model. Therefore, as shown in

Fig2.4, we plotted CCDFs of each individual distribution and its best-fitted truncated
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power-law function.

34



Chapter 3

Individual exploration and

selective social learning: balancing

exploration-exploitation trade-offs

in collective foraging

3.1 Preface

In the previous chapter, we showed that an individual forager can efficiently search

for sparse targets by balancing explorative and exploitative search modes (through

µ ≈ 2), and further by adapting this balance according to their extrinsic and intrinsic

constraints. In this chapter, we scale up to the level of a group composed of multiple

foragers, and use an agent-based model to study how the optimal individual-level

search strategy changes when part of a group under different extrinsic conditions,

such as resource environment and group-size. In addition, we also look at the effect

of individual-level strategies on the group-level search efficiency.
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3.2 Introduction

Foraging is essentially a problem of exploration versus exploitation. The individual

forager must continually decide to either search close by and exploit known resources

or head out to explore new territory (Bartumeus et al., 2014; Kembro et al., 2019;

?). Social foragers face an additional choice once the decision to explore is made: to

use social information by heading towards other foragers to scrounge their gains in

knowledge or resources, or to search alone for unexplored resources. When foraging in

groups, individuals must balance the explore-exploit trade-off while also deciding how

to explore: whether by individually searching or by using information obtained by

others. These trade-offs can, in turn, affect group-level dynamics that should balance

the overall exploration of new resources and exploitation of the resources already

found.

The use of social information and exploiting the gains of fellow forgers is a type of

social learning, defined as observing and acquiring information from others. Models

of collective foraging (Barnard and Sibly, 1981; Dechaume-Moncharmont et al., 2005)

share much in common with more general work on social learning, which examines

the trade-offs between acquiring behaviors or information by observing others versus

through trial-and-error exploration (Afshar and Giraldeau, 2014; Boyd and Richerson,

1985; Grueter and Leadbeater, 2014; Kendal et al., 2009; Rieucau and Giraldeau,

2011; Rogers, 1988). Both classes of models have sought to examine the different

conditions under which social learning is more beneficial than independently searching

for resources. However, the interplay between asocial search and social learning, and

particularly how individual search strategies can affect the benefits of social learning,

has not been addressed. Understanding the use of social information in collective

search from this perspective has implications for a wide variety of systems, whether

they involve humans or other animals like bees (Von Frisch, 2013), fishes (Brown

et al., 2011) that use social cues to find resources in physical space or networked

teams searching a “problem space” for solutions to complex challenges.

In this chapter, we study a spatially-explicit agent-based model of collective for-

aging to investigate how social foragers should balance two trade-offs, one between
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exploitative and explorative movements in their individual search strategy, and an-

other between individual search and social learning. We ask how these explore/exploit

trade-offs may be combined to enhance the effectiveness of social learning and group

performance under different conditions like resource density and patchiness, and group

size that manipulated the value and prevalence of social learning in the environment.

Prior work on both classes of models has shown that social information is especially

valuable when the costs of individually searching in an environment are high (Kendal

et al., 2005; Laland, 2004; Muthukrishna et al., 2016), especially when resource distri-

butions are patchy and sparse. Social learning is also beneficial when social cues are

more reliable and can help to assess the quality of resources collectively, for example,

in clustered or correlated resource environments (Clark and Mangel, 1986; Ding et al.,

2020). However, social learning can be disadvantageous when the proportion of social

learners is high and when social cues are unreliable, outdated, and bear opportu-

nity costs (Webster and Laland, 2012). These results suggest that it is beneficial to

be selective in when and which social information to pursue (Giraldeau et al., 2002;

Laland, 2004).

Selective use of social information is necessary when too much social learning be-

comes detrimental. For example, finding resources after pursuing social cues may fail

due to high variability in resource distributions or the strong competition present in

larger groups(Smolla et al., 2015). In such cases, selective social learning can help in-

dividuals filter out costly and unreliable information (Giraldeau et al., 2002; Laland,

2004; Rendell et al., 2010). At the group-level, excessive reliance on social learn-

ing may cause foragers to overly converge on particular locations, especially when

social networks are densely connected or when there is unrestricted communication

(Barkoczi and Galesic, 2016; Bond, 2005; Toyokawa et al., 2019). Selective social

learning may mitigate this potential disadvantage by discouraging frequent exploita-

tion of social information and instead allowing for individual search. Of course, the

benefits of social learning also depend on the implementation of individual search

behavior when social learning is not employed.

Individual search strategies help organisms move efficiently and find relevant re-

sources, but in non-spatial domains, they can represent decision-making processes
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underlying various tasks such as problem-solving (Hills et al., 2012). Collective for-

aging allows foragers to share findings from individual search and socially learn from

conspecifics (Giraldeau and Caraco, 2018). It also represents socially-interacting sys-

tems that can act as distributed cognitive systems to improve search (Goldstone and

Gureckis, 2009). However, the interplay of individual search strategies and collec-

tive search remains largely unexamined. Given that individual search determines

the way a group samples and explores an environment, we propose that the benefits

and the optimal degree of social learning should depend not only upon the value of

social information, but also on implementation of individual search strategies. For

instance, explorative search behaviors can help individuals spread out and accelerate

the group’s search for new resources, and lack of exploration may diminish the value

of social information. However, explorative search can cause foragers to exit a patch

without fully exploiting it.

We further propose that reliance on social learning can affect the trade-off between

exploration and exploitation in individual search. Many theories predict that a soli-

tary forager should balance exploration of new resources with the exploitation of the

resources found to maximize their foraging returns (Krebs et al., 1978; Viswanathan

et al., 1999). However, in a group, it may be beneficial for individuals to trade in-

dividual exploitation of resources for socially-guided exploitation that allows groups

to aggregate and effectively search a cluster of resources. We formalize these propos-

als in an agent-based model to demonstrate how the explore/exploit and individual

search/social learning trade-offs may interact to affect collective foraging efficiency.

3.3 The Model

3.3.1 Model Overview

We modeled the explore/exploit trade-off in individual search using a Lévy walk

model. The Lévy walk is a well-studied random search model that can serve as a proxy

for how individuals search or sample an environment to find resources (Viswanathan
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et al., 1999) and has been widely documented in various search processes across do-

mains (Namboodiri et al., 2016; ?; ?). At each time step, an agent takes a step

in a random direction, where the size of the step is randomly drawn from a power-

law distribution. The shape of the distribution and the frequency of short and long

movements is determined by the parameter µ. Frequent long movements reflect an

explorative search strategy, while frequent short steps reflect an exploitative strat-

egy that focuses on searching within the neighborhood of previous locations. Prior

empirical and computational studies have found that µ ≈ 2 (Garg and Kello, 2021;

Viswanathan et al., 1999) can optimally balance exploration for new resources and ex-

ploitation of the resources already found in patchy environments. We tested whether

the optimal value of µ changes when agents employ social learning and how differ-

ent individual search strategies operationalized with different values of µ affect the

benefits and optimal selectivity of social learning.

We implemented social learning as the use of cues emitted by search agents when

finding resources. This form of social learning (similar to stimulus or local enhance-

ment (Pöysä, 1992)) is widely used to increase search efficiency in various species

from bees (Leadbeater and Chittka, 2007) to primates (Rapaport and Brown, 2008).

In our model, social cues attracted other agents with some probability to collec-

tively exploit the information provided by finding resources. In this way, foragers

followed a scrounger strategy when moving toward social cues, and a producer strat-

egy when searching for resources individually according to a Lévy walk process. In

our model, the value/reliability of social information or the expected pay-off from

social learning decreased as distance to the cue increased because resources were

likely to decrease or disappear entirely in the time needed to travel long distances

(Beauchamp, 2008; Seppänen et al., 2007). Therefore, we operationalized selectivity

in social learning or responsiveness to social cues through a parameter α, which

modulated the probability of scrounging as a function of distance to social cues

(Harpaz and Schneidman, 2020). Selectivity in the model represented social learn-

ing in naturalistic settings where organisms conditionally use social cues based on

their reliance and costs of social learning (Galef and Laland, 2005). The parameter

α also influenced the explore/exploit trade-off between individual foraging and social
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learning, where increased selectivity also increased the reliance on individual search.

The extent of social learning was also affected by the frequency of social cues and

the number of foragers pursuing them. We tested the effects of these factors on

explore/exploit trade-offs by manipulating foraging group size and resource density,

where larger groups with more resources produced more social cues and increased the

frequency of social learning.

We measured group performance in terms of collective foraging efficiency, defined

as the average rate of resource finding per agent and per unit distance moved. We

manipulated two parameters, µ and α, that affected the explore/exploit trade-offs at

the individual and social level, respectively. We also tested the advantage of selective

social learning (which avoids costly social cues) relative to more indiscriminate use

of social learning for different conditions of µ. Finally, we tested how the degree of

social learning affected the distribution of movement lengths and altered the original

Lévy walk exponent.

Given that Lévy walks are random whereas social cues are informative, we can

anticipate that responding to social cues will improve performance when resources

are sufficiently clustered, but only up to a point depending on the individual search

strategy and the degree of selectivity in social learning. Excessive exploitation of

social cues may cause agents to overlap with each other more often and reduce ex-

ploration for new resources. This problem may be exaggerated in larger groups and

avoided when the individual search is more explorative because agents are more likely

to avoid overlap by “diffusing” away from each other to find unexploited resources

at a faster rate. The agent-based model allowed us to examine the interplay of these

factors in producing more or less efficient collective foraging behaviors. We designed

this model with the goal to simulate coarse-grained collective foraging for exploring

the fundamental dependencies between social learning and independent, individual

search, and how they influence group performance. We did not simulate a specific

system or organism, instead we provide a basic framework that resembles many natu-

ral systems and which can be built upon to model a specific system and make explicit

predictions about it (Smaldino, 2017).
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Figure 3.1: A schematic of the model. Agents (blue triangles) decide between indi-
vidual exploration and using social information based on P (s) = exp(−αd) to copy
a resource location (green circles) found by another agent. For α > 0, P (s) will be
higher for d2 than d1. The level of individual exploration is dependent on µ, where
µ→ 1.1 results in high levels of exploration ( See Fig.A.2 for actual trajectories and
Fig.A.3 for the relationship between α and distance).

3.3.2 Model Details

The search space was a two-dimensional L × L grid, and simulations were run with

periodic boundaries, and continuous space. For each simulation, the space was pop-

ulated with NR number of resources, where NR was varied to manipulate resource

density, and resources did not regenerate after consumption (i.e, destructive). We

manipulated the initial spatial clustering of resources (Fig.A.1) using a power-law

distribution growth model. The space was initialized with 20 seed resources placed

in random locations. Additional resources were placed such that the probability of a

resource appearing a distance dr from previously placed resources was given by

P (d) = Cdr
−β (3.1)

where, dmin ≤ dr ≤ L, dmin = 10−3 is the minimum distance that an agent could

move and L = 1 is the normalized size of the grid. C is a normalization constant

required to keep the total probability distribution equal to unity, such that
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C =
1− β

(L)1−β − (dmin)1−β
(3.2)

β determined the spatial distribution of resources other than the resource seeds,

such that β → 1 resembled a uniform distribution and β → 3 generated an environ-

ment where resources were tightly clustered. The seeds created distinct patches, and

β determined the degree of clustering around those patches. The distinct patches

helped generate a complex environment that was well-suited for testing collective for-

aging and the advantages of social learning. Each simulation was also initialized with

NA agents placed at random locations with random directional headings, where NA

was varied to manipulate group size.

On each time step, each agent consumed a resource unit if one existed within

a radius, r = dmin, or in other words, if a resource was present at their current

grid location. Otherwise, the agent moved in search of additional resources. The

direction and distance (d) of agent movement were determined by either individual

search strategy or social learning (see below). Similar to a model by Bhattacharya

et al. (Bhattacharya and Vicsek, 2014), each agent was presumed to emit a signal

(or cue) each time it encountered a resource within a radius of that was immediately

detectable by every other agent. That is, at any given moment, agents could tell

which other agents were currently on resource patches across the whole environment.

In other words, we assume that the agents had a perceptual range limited to radius,

r (r = 10−3) for resources that did not emit signals other than direct visual cues,

whereas social cues are assumed to be similar to acoustic signals or chemical gradients

that can be perceived at long distances. This assumption models realistic foraging

scenarios where social cues can substantially increase the perceptual range of a forager

and improve prey detection or patch sensing over larger spatial scales (Ward and

Webster, 2016). For example, birds can detect the pecking behavior of a conspecific

from a greater distance than they can detect an individual seed, or scavenging birds

can detect a conspecific circling a carcass from many kilometers away.

An agent Ai detected the closest other agent currently on a resource, Aj. The
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probability of exploiting this social information and heading toward Aj was given by

PS = exp(−αdij), (3.3)

where dij was the distance between agents Ai and Aj, and α was the social selectivity

parameter determined how selective an agent was in pursuing social cues in terms

of distance costs and so affected how often agents pursued individual search versus

social cues. α→ 0 corresponded with minimally-selective/indiscriminate exploitation

of social cues (Fig.A.3) where agents were more likely to engage in social learning

irrespective of distance costs. In other words, the agents exploited social information

more frequently. Intermediate values (α ≈ 10−2 ) corresponded with selective social

learning, where exploitation of social information was less likely for more distant

signals.

And α→ 1 corresponded with extreme social selectivity that resulted in no social

learning or social information use i.e., pure Lévy walks. An agent could truncate its

movement before reaching its destination if it encountered a resource or another social

cue. If an agent detected a social cue while already heading towards a previous one,

then the agent only switched towards the new signal if the distance to the previous

signal was less than that to the newly detected signal. While pursuing a social cue,

an agent kept their target location fixed that did not change even if the agent that

emitted the cue moved to another location.

With the probability, 1−PS, the agents followed a producer strategy and chose a

target location based on their Lévy walk exponent. Individual search movements were

made according to the Lévy walk model, where the heading was chosen at random

and the length of movement was sampled from the following probability distribution,

P (d) = Cd−µ (3.4)

where, dmin ≤ d ≤ L, dmin = 10−3 is the minimum distance that an agent could

move, L = 1 is the grid size, and µ is the power-law exponent, 1 < µ ≤ 3. Similar to
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Eq. 3.5 C, is a normalization constant such that

C =
1− µ

(L)1−µ − (dmin)1−µ
(3.5)

The Lévy exponent µ modulated the search strategy as a continuum between

shorter, more exploitative movements and longer, more explorative movements. If an

agent encountered resources or social cues while moving along a path given by the

Lévy walk, the agent truncated its movement, and consumed the resource or followed

the social cue with the probability, PS, respectively. Multiple agents could occupy

a location simultaneously without any penalty. If multiple resources were present

at a given location, agents consumed one unit of resource per time-step. If multiple

agents were present at the location, they consumed the resources in the order of their

arrival at the location. This feature simulated realistic conditions where pursuing

distant social cues generally reduces their value. Model details are also outlined in a

flowchart in Appendix A (Fig.A.4).

Our model did not have any explicit fitness costs; however, there were various

costs associated with optimal searching and foraging, such as opportunity costs and

competition. For instance, the resources were limited and did not regenerate, and as

more agents reached a patch, the resources depleted, and the agents who followed a

cue to walk to that patch faced substantial opportunity costs. Each simulation ended

when 30% of the resources were consumed, which ensured that the initial degree of

clustering was mostly preserved throughout each simulation. Foraging efficiency η

was computed as the total number of resources found divided by the average distance

moved per agent. Efficiency was further normalized by dividing η by the total number

of resources available (NR) to facilitate comparisons across conditions. We varied

α to take values between 0 and 1, and µ as 1.1, 2, and 3. We further simulated

different conditions for resource density (NR = 1000, 10000), resource distribution

(β = 1.1, 2, 3), and group size (NA = 10, 20, 30, 40, 50). Five hundred simulations

were run for each parameter combination and averaged results are reported here.

Here we report parameter values that affected explore/exploit trade-offs in individual

search as well as social learning.
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Figure 3.2: Group search efficiency η for NA = 10 as a function of social selectivity
parameter α, Lévy exponent µ, resource density NR, and resource clustering β. Error
bars indicate 95% confidence intervals.

In the Appendix, we report results on the effects of resource environments, individ-

ual search strategies, and group sizes for groups composed of pure producers (α→ 0)

and scroungers (α → 1) (Figs. A.11a, A.11b). We also report the population-level

variability in observed Lévy exponents and search efficiencies (Figs. A.8). In addi-

tion, we illustrate how resources depleted over time in our simulations, and changes in

average Lévy exponents and search efficiencies over time for a few parameters (Figs.

A.9, A.10.

3.4 Results

3.4.1 Social learning was more beneficial than individual Lévy

walks in clustered environments

We tested whether agents should trade-off individual search for social learning under

two different conditions of rich and scarce resources, and three levels of clustering. We

found that when resources were scarce ( NR = 1000; top row of Figs. 3.2 and 3.3)),
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irrespective of clustering, social learning (α ≤ 10−2) was more beneficial than individ-

ual search driven by Lévy walks (α > 10−2, or depicted by the rightmost two points

of each plot in Figs. 3.2 and 3.3). Scarce resources were not only challenging to find

through random independent search, but the opportunities to use social information

were also far and few. However, when environments were rich ( NR = 10000; bottom

row of Figs. 3.2 and 3.3)), social learning was only beneficial if resources at least were

moderately clustered (in β ≥ 2). By contrast, individual search rather than social

learning (α ≥ 10−2) was beneficial when resources were abundantly dispersed across

the landscape (β = 1.1) because the likelihood of encountering resources increased

by random sampling and decreased after following social cues. On the other hand,

groups benefited considerably from social learning when social information was more

reliable in highly clustered environments with dense clusters (NR = 10000; β = 3). In

clustered environments, the probability of finding more resources within the vicinity

of a social cue was high (Fig.A.1)), and pursuing social cues helped agents to find

resources while decreasing the costs of more error-prone individual search. Further-

more, it enabled a form of collective sensing where the individual agents could not

only perceive resources without directly finding them, but they could also stay within

the clusters to fully exploit them (Hein and McKinley, 2012). In the absence of others

on a cluster, agents were more likely to exit without fully depleting the resources.

3.4.2 Social learning affected the optimal Lévy exponent and

its benefits were maximized with explorative individual

search

When α values were high (rightmost two points of each plot in Figs. 3.2 and 3.3),

agents did not respond to social cues (or were highly selective), and Lévy walks drove

individual search. Our results show that Lévy walks with µ = 2 were most effi-

cient in the absence of social learning. This effect replicates and extends previous

modeling studies showing that µ = 2 implements the best trade-off for individuals

between exploitative and explorative search by generating a random walk that bal-

ances long, extensive movements with small movements resembling area-restricted
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Figure 3.3: (a) Group search efficiency η (NA = 50) as a function of social selectivity
parameter (α) for different Lévy exponents (µ), resource density (NR) and resource
distribution (β). Error bars indicate 95% confidence intervals. (b) Effect of group size
and individual search strategy on the advantage of minimally-selective social learning
strategy (α = 10−5) relative to selective social learning (α = 10−2) for β = 3. Dashed
line indicates when the advantage of selective and minimally-selective social learning
are equivalent.

search. As discussed above, when α decreased enough to drive social learning, group

search efficiency for clustered resources improved substantially compared with in-

dividual Lévy walks. However, the benefits of social learning depended upon the

individual search strategy, and the optimal value of the Lévy exponent shifted from

µ = 2. We found that with social learning, the optimal Lévy exponent decreased and

shifted to µ = 1.1. As agents responded to social information more frequently, group

search became more efficient when individual search became increasingly composed

of frequent exploratory, long movements with µ→ 1.1 (see section 3.4 for more de-

tails). High levels of individual exploration helped groups sample the environment

faster and created more opportunities for social learning. When individual explo-

ration was lacking (for example, µ = 3), social learning was not as efficient and led

to only a small increase in group performance. Moreover, groups with exploitative

search behavior and larger sizes benefited more from selective social learning relative

to minimally-selective social learning (Fig.A.5). We explain this result in the next

section.
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3.4.3 Selective social learning was beneficial with restricted

individual exploration and abundant social information

The degree of selectivity in social learning or responsiveness to social cues in the

model was controlled by α, where α → 10−5 corresponded to a minimally-selective

strategy that led the agents to follow another social signal irrespective of the costs

associated with traveling long distances. A more selective strategy (α = 10−2) allowed

them to only follow a signal if it was not very far. On the one hand, minimally-

selective and frequent social learning could decrease efficiency due to long-distance

movements, reducing the chances of finding resources after following a cue while

increasing movement costs. On the other hand, it could also cause agents to over-

exploit resource clusters by drawing too many agents while decreasing the number of

agents left to explore the environment independently.

To illustrate, imagine that an agent happens upon a cluster of resources. It sends

a resource signal, and another agent heads towards the cluster. They both find more

resources in the cluster, and that increases the time they spend there. In turn, chances

are increased of other agents responding to their signal and joining in at the cluster,

and so on. This snowballing effect of agent grouping can become counterproductive

if too many agents are drawn to the cluster as it is exhausted. The agents that join

later at the expense of time and opportunity costs cannot find any resources left at

the cluster. At the group level, the convergence of agents to a few resource clusters

also impeded their ability to disperse and explore the environment for unexploited

resources. The snowballing effect in our model closely resembles the positive feedback

loops and social amplification phenomenon observed in different collective systems

such as bees and ants (Detrain and Deneubourg, 2006).

When agents’ individual search strategy was closer to a Brownian walk (µ ≈ 3)

with frequent turns and short movements, minimal selectivity (or excessive social

learning) led to more substantial grouping between the foragers and restricted them

to small areas of the environment for longer durations (Fig.A.12b). Thus, a more

selective social learning strategy decreased the grouping between the agents and in-

creased group performance (Fig.A.5). In contrast, when individual search strategy

48



included fast, super-diffusive exploratory bouts (1.1 ≤ µ ≤ 2), agents could quickly

disband and disperse across the environment after depleting a resource cluster that

further increased their optimality (see previous section). However, when social infor-

mation was less prevalent in scarce clusters (NR = 1000; β = 1.1), selective social

learning was less efficient than minimally-selective social learning with high levels of

exploration (µ = 1.1).

We further manipulated the amount of social information available in the envi-

ronment by increasing the group size of agents (NA), where more agents increased

the number of overall social cues. We found that when the group size increased

(Fig.3.3), the benefits of minimally-selective social learning relative to selective so-

cial learning further decreased. A larger number of agents exaggerated the chances

of snowballing that further drove up the competition over resources, decreased the

value of social cues, and reduced the individual exploration for other resources. For

instance, over-exploitation of social information (α = 10−5) in larger groups caused

agents to aggregate together in bigger sub-groups (Fig.A.12a), and for longer du-

rations (Fig.A.12b), which decreased the group-performance (see Fig.A.9, A.10 for

temporal dynamics of this pattern).

By contrast, more selective responses to social cues (α = 10−2) helped to avoid

over-grouping and instead gave rise to multiple groupings around multiple clusters

(see Fig.A.12d (right) and A.12c). Multiple, simultaneous sub-grouping of agents ef-

fectively balanced collective exploration of new clusters with the exploitation of found

clusters. Moreover, the advantage of selective social learning relative to minimally-

selective social learning was stronger for µ = 3 than µ = 1.1 (Fig.3.3). An increase in

snowballing due to larger group sizes also decreased the exploration of new resources.

When agents were slow to disperse after aggregating, an increase in group size further

slowed down their dispersal, and more selectivity in social learning was required to

maintain exploration. This effect was further exaggerated for richer resource clusters

(NR = 10000).

Taken together, these results suggest that individual-level explore-exploit trade-

off (given by µ) affected the optimal trade-off between individual search and social

learning (given by α). If individuals had an exploitative search strategy (µ = 3), it was
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(a) (b)

Figure 3.4: (a) Mean estimates of observed Lévy exponents (µ′) for different Lévy
walks (µ), resource density (NR) and group size (NA) in clustered environments (β =
3). Dashed line shows the theoretical optimum of µ = 2. (b) Correlation between
search efficiency and the observed Lévy exponent for all simulations. Top: 10 agents.
Bottom: 50 agents.

beneficial for them to be selective and reduce exploitation of social information (α =

10−2) to maintain exploration at the group-level. Conversely, decreasing selectivity

(α = 10−5) was beneficial for individuals that had higher explorative tendencies

(µ = 1.1) when social information was not abundant. However, when social cues

were abundant in the environment (due to rich clusters and large groups), selective

exploitation of social information was necessary to prevent groups from snowballing

and effectively maintain a balance between group-level exploration and exploitation.

3.4.4 Combining individual exploration and social learning

yielded optimal Lévy walks

Our findings that show higher efficiency at µ = 1.1 compared to µ = 2 pose an

apparent contradiction with previous theoretical and empirical findings that have

repeatedly shown the general benefits of µ = 2. However, in our model, social learning
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modified a pure Lévy walk such that pursuit of social cues could truncate or add

long movements to an individual’s trajectory, and change its observed exponent. To

test how these exponents changed with social learning and whether the observed

exponents µ′ resembled the theoretical optimum of µ = 2, we analyzed the probability

distribution of movements in the emergent trajectories under different parameters (Fig

3.4a (top), see Supplementary Methods in Appendix A for details on this analysis).

Here we report the average values of µ′ across agents within a group. In the Appendix,

we also report examples of population-level values of µ′ in a group, the correlation

between individual agents’ µ′ and η (Fig. A.8), and how average µ′ changes over

time (Figs. A.9, A.10). These additional analyses show that the patterns reported

below are consistent across different simulations. To illustrate the distribution of

movements, we also provide the empirical probability distribution of path segments

and their corresponding fits for a few parameter combinations (Figs. A.7a, A.7b).

We found that with the use of social cues, exploratory walks (µ = 1.1) were

truncated, resulting in trajectories with µ′ closer towards the theoretical optimum of 2.

Thus, it was beneficial for social learners to engage in explorative, independent search

and replace exploitative movements driven by random Lévy walks with exploitative

search driven by more reliable social cues. When resources were sparse (NR = 1000),

the strategies that maximized search efficiency (µ = 1.1 and α < 10−2) resulted in

trajectories with µ′ ≈ 1.5 (Fig. 3.4a (top)). However, when the exploitative area-

restricted search was beneficial in dense resource clusters, the efficient trajectories

were composed of shorter movements (µ′ > 2). This result is in line with previous

findings that showed the advantages of more exploitative search in dense resource

environments (Humphries et al., 2010; Salvador et al., 2014).

These effects were also reflected in larger group sizes (Fig. 3.4a (bottom)). We

found that in richer resource patches (NR = 10000), efficient strategy (µ = 1.1 and

α = 10−2) corresponded with trajectories that accommodated more area-restricted

or exploitative search. The formation of multiple and simultaneous groups due to

a more selective social learning strategy increased the time agents had to exploit a

given cluster, resulting in µ′ > 2. Conversely, when agents were less selective and

moved longer distances only to coalesce into larger groups, a higher competition at
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patches decreased the time spent on exploitative/area-restricted search and decreased

µ′ closer to 2. These patterns were also reflected in the changes in µ′ over time (see

Figs. A.9, A.10). Moreover, we found that when the individual search strategy

was exploitative and comprised of short steps (µ = 3), social learning gave rise to

trajectories µ′ → 2 that corresponded with high search efficiency. Pursuing social

cues far away added long movements to agents’ trajectories and helped them explore

other areas. Taken together, these results suggest that social learning and individual

exploration generated movement patterns that balanced exploration-exploitation and

were close to the theoretical optimum of µ ≈ 2.

3.5 Discussion

Many studies have shown that social learning can improve a group’s collective capacity

to find resources (Boyd et al., 2011; Kameda and Nakanishi, 2002) but when relied

on excessively, it could be maladaptive by dampening exploration for new solutions.

Results from the current study show how independent exploratory search for resources

and selective use of social information can enable groups to reap the benefits of

social learning while minimizing its costs. In addition, we show that socially-guided

exploitation of resources can be substantially more beneficial than trial-and-error

based Lévy walks. In the following paragraphs, we first discuss the interplay between

individual search and social learning, and its relevance to the Lévy walk literature.

We then discuss the effect of selective social learning in modulating explore/exploit

trade-offs and its broader implications on collective foraging and problem-solving.

We modeled collective foraging where agents could either learn about resources

found by others and exploit them or independently search for resources by exploring

and exploiting areas where resources are found. In our model, agents independently

searched for resources based on their Lévy walk strategy, and they socially learned

about resource locations from successful foragers under different resource environ-

ments. In line with previous studies, we found that social learning was more beneficial

when resources were scarce and clustered (Egert-Berg et al., 2018; Rafacz and Tem-

pleton, 2003; Smolla et al., 2015). Scarce and clustered resources made it difficult for
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agents to independently/asocially find them while increasing the likelihood of finding

more resources after following social cues. This result also agrees with previous find-

ings on social insects that show the positive effect of social recruitment in spatially

clumped resource environments (Donaldson-Matasci and Dornhaus, 2012; Lemanski

et al., 2021). However, our results show that the benefits of social learning depended

on individual search strategy and could be maximized by explorative search. We

found support for previous studies (Garg and Kello, 2021; Viswanathan et al., 1999)

which have shown that independent search is optimal when individuals balance the

explore/exploit trade-off with the Lévy exponent of 2 (µ ≈ 2) in the absence of infor-

mation about the environment. We found that when social information was available

and could be effectively exploited in clustered environments (β = 3), it was optimal

to replace exploitation driven by Lévy walks with exploitation driven by social cues

and to balance it with high levels of random exploration. Exploratory agents diffused

quickly across the environment with minimal overlap, thereby covering territory at a

faster rate. Such high diffusion rates also permitted agents to disband from others

after exploiting a resource cluster and searching other parts of the environment, espe-

cially in larger groups. In this way, groups can balance finding new resources quickly

and accurately exploiting the resources found.

Furthermore, we found that the optimal combination between independent and

random exploration and collective and informed exploitation gave rise to trajectories

with µ′ ≈ 2. Although this result adds to the vast literature on Lévy walks that

show the general optimality of search patterns resembling µ = 2, it also demonstrates

that Lévy patterns from informed processes are more efficient than from random

processes (Ferreira et al., 2021), suggests an alternative heuristic that can be used

to optimize collective search, and contributes to understanding how information can

guide agents to increase their search efficiency (Salvador et al., 2014). It is possible

that in natural environments with cognitive foragers, informed foraging decisions

backed by memory, perception, and learning (Benhamou, 2007; Garg and Kello, 2021;

Kerster et al., 2016b; Miramontes et al., 2012; Ramos-Fernández et al., 2004) result

in similar Lévy patterns. Future models can also study informed decisions between

explore/exploit and their effect on the trade-off between social and asocial learning
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by simulating agents with such cognitive capacities. For instance, the reliance on

social cues would diminish if agents could adaptively switch between explorative and

exploitative search. To shed light on more realistic aspects of social foraging, it would

be helpful to model agents that can flexibly adjust between asocial search and social

learning based on the reliability and quality of social information relative to personal

information integrated over prior experience (Dall et al., 2005; Grüter et al., 2008).

Our model also tested the optimal degree of selectivity on the benefits of social

learning under varying conditions. The social selectivity parameter, α simulated a

minimal heuristic that modulated the use of social information based on its costs

(distance and opportunity). Similar to previous studies showing the detrimental

effects of social learning at the group-level when too many individuals resort to it

(Barnard and Sibly, 1981; Coolen, 2002; Dumke et al., 2016), we found that excessive

social learning could increase the chances of snowballing (or informational-cascades

(Bikhchandani et al., 1992) ), leading to large and prolonged subgroups of agents,

and suppress exploration for new resources. We found that selective social learning

(α ≈ 10−2 ) “filtered” out costly and unreliable social information, and reduced

overlap between agents. It also led to the formation of multiple subgroups on different

resource clusters that reduced over-exploitation of resources and competition between

agents, and increased the benefits of social learning.

Excessive convergence between individuals within a group and the formation of

optimal sub-groups can be modulated through other mechanisms, as well. For in-

stance, choosing options upon which other individuals have not converged (i.e., anti-

conformist social learning) (Toyokawa et al., 2019) or heterogeneity in individual

strategies can avoid excessive overlap. Adaptive sub-grouping between individuals

may also result from a “fission-fusion” social structure where groups can repeatedly

disperse (i.e. fission) and re-aggregate (i.e. fusion) into subgroups and benefit from

social foraging while avoiding many of the associated costs (e.g., intra-group competi-

tion) (Couzin, 2009; Grove et al., 2012b). Previous studies have shown that separation

and convergence between individuals can also be modulated by adjusting local inter-

action rules (such as alignment with others, range of interaction or communication)
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depending upon the context (Beecham and Farnsworth, 1999; Harpaz and Schneid-

man, 2020; Hoare et al., 2004; Mart́ınez-Garćıa et al., 2013). Similarly, the selectivity

parameter in our model can also represent different effective perceptual ranges where

lower and higher values of α simulate large and small perceptual or detection range,

respectively. The model can be extended with a hard-limit on how far an agent can

detect other agents in its environment, and test how that changes optimal strategies

and sub-grouping. Our results predict that groups can decrease competition, increase

discovery of new resources and their foraging returns by balancing overall inter-agent

separation (or exploration) and convergence (or exploitation).

Although we simulated collective foraging, our results can be generalized to shed

light on the general properties of collective problem-solving. In this context, the model

can be conceptualized as an interplay between individuals trying a novel solution

(individual search) or emulating a successful group member (social learning) (Lazer

and Friedman, 2007), in problem-spaces of varying complexity (given by the degree of

resource clustering and scarcity). Our results predict that high explorative/innovative

tendencies can improve a group’s problem-solving capabilities in a complex problem-

space where multiple solutions need to be discovered by mitigating over-imitation,

escaping being stuck in local optima and increasing informational diversity (Hong

and Page, 2004; Sloman et al., 2021; Toyokawa et al., 2019). However, we also predict

that pure exploratory strategies need to be balanced with social learning in complex

spaces to focus a group’s effort on the solutions already found and optimize the

search. By contrast, when the problem spaces are ‘simple’, where new solutions can

be easily discovered, and multiple individuals are not needed to assess the solutions,

independent exploration can be advantageous without social learning. Our results also

support the importance of optimal connectivity and information-flow in groups for

problem-solving and collective behavior (Barkoczi and Galesic, 2016; Bernstein et al.,

2018; Derex and Boyd, 2016a; Garg et al., 2021; Goldstone et al., 2013; Gomez and

Lazer, 2019). Like a densely connected group with unrestricted information-sharing,

excessive levels of overall social learning in a group can decrease exploration and cause

individuals to converge on sub-optimal solutions while preventing them from exploring

other profitable solutions (Bikhchandani et al., 1992; Giraldeau et al., 2002; List
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et al., 2009). However, we predict that selective social learning can mimic partially-

connected groups and balance the global search for new solutions (or innovations)

and local search near the solutions previously found.

Our model focused on group-level performance, determining the individual strate-

gies that maximize group efficiency. However, there is no guarantee that strategies

that optimize collective performance will be evolutionarily stable (Clark and Mangel,

1986). For example, Rogers (1988) analyzed a model in which naive social learn-

ers could invade a population of individual learners, initially increasing mean fitness.

However, the social learners continued to increase in frequency until the mean fit-

ness of the population decreased to its initial level, equivalent with a population of

entirely individual learners. The analyses presented here are unable to assess the

conditions under which a population will evolve to optimally extract resources from

the environment. We did conduct additional analyses, presented in the Appendix,

with heterogeneous groups in which individual agents differed in their propensity to

socially learn from others—i.e., the population contained a mix of producers and

scroungers. We found that different relative frequencies of producers and scroungers

led to optimal foraging outcomes at the population level under different assumptions

of population size and resource distribution (Fig. A.11a, A.11b). Nevertheless, fur-

ther extensions of the model with evolutionary dynamics would be required to assess

the evolutionary plausibility of these optimal group outcomes.It would also be inter-

esting to analyze if agents within a group vary from each other in terms of search

strategies and efficiencies, and how such inter-individual variability affects group-level

performance.

In conclusion, our results are applicable to various distributed, collective and socio-

cultural systems, and general search heuristics. Trade-offs between the exploitation

of previously found resources or solutions and exploration for new ones is fundamen-

tal to adaptive behavior in individuals and groups (Fang et al., 2010; Hills et al.,

2015; March, 1991). Our coarse-grained model explored this fundamental trade-off

at both individual and social level, and how they influence group performance. Al-

though different systems may modulate these trade-offs through different mechanisms,

our results predict that their modulation should be important across many systems.
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For example, social insect colonies can balance these trade-offs and increase effi-

ciency through division of labor (or task allocation) where individuals can specialize

in searching for new resources or exploiting the ones found (Lemanski et al., 2021).

Future models can test for the emergence of different mechanisms under varying phys-

ical and social environments, and further shed light on the evolution of group-living,

social learning, and cultural evolution.
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Chapter 4

Evolutionary dynamics of search

strategies in collective foraging

4.1 Introduction

As shown in the previous chapter, collective foraging and social learning can be ad-

vantageous in patchy resource environments for groups composed of individuals who

show high levels of independent exploration while using social information to minimize

search costs. However, strategies that increase performance at the population-level

may not always be evolutionarily stable and can get exploited by other lesser benefi-

cial strategies in groups. In this chapter, we ask how individual-level search strategies

evolve under different levels of social learning, resource environment, and, group size,

and whether the evolutionary stable strategies promote similar levels of group-level

search performance as in the previous chapter. We further show that both indi-

viduals and groups can improve their foraging efficiencies by employing simple and

widely-observed heuristics like area-restricted search.

For a solitary forager, it is essential to adopt search strategies that enable explo-

ration of an environment to sample new information along with sufficient exploitation

of the resources found. Multiple theories of optimal foraging have suggested that this

trade-off can give rise to movement patterns that modulate the balance between ex-

plorative and exploitative modes of search (Charnov, 1976; Viswanathan et al., 1996)
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based on the properties of the resource environments, such as patch richness, and

travel time between patches. For instance, when patches are rich but not easy to

find, then search strategies that prolong exploitation of a patch, such as movements

closer to a Brownian walk, would be optimal (Kölzsch et al., 2015). Conversely, a

faster rate of depletion of resources in a patch should favor strategies that allow early

departure from the patch (Charnov, 1976; Krebs et al., 1978). However, when a for-

ager is a part of a group of multiple foragers, and they aggregate together, patches

may deplete at an even faster rate and promote strategies with an even faster dispersal

to maximize the payoffs. On the other hand, collective foraging can help individuals

harvest a patch more effectively, accelerate the rate at which groups find resource

patches, decrease search costs. Thus, the optimal search strategies and the balance

between explorative and exploitative search in collective foraging would be influenced

by the resource environment structure as well as its social environment.

Collective foraging confers several benefits to an individual forager by making

available the information gathered by other group members at lesser personal search

costs, increase the rate of resource discovery if foragers do not overlap in their search

area, and even more effective exploitation of patches (Hein and McKinley, 2012).

However, on the other hand, these apparent advantages can increase the competition

for resources, cause overcrowding at patches and accelerate resource depletion, and

increase the costs of collectively foraging. Moreover, the costs and benefits of col-

lective foraging may not be equally distributed between group members. Individuals

with explorative search strategies, who are more likely to discover new resources and

contribute to the group’s overall performance, might be at a disproportionate disad-

vantage if they cannot fully exploit the patches they find, especially if their tendency

to explore decreases the time they spend in a patch. On the other hand, individuals

with exploitative search strategies who rarely discover new resources but thoroughly

exploit a patch might benefit the most from information sharing in groups, especially

when patches are dense with resources.

Such asymmetrical payoffs between different strategies can result in dynamics

similar to producer-scrounger games, where some individuals ‘produce’ information

by independently finding new resources while others ‘scrounge’ or exploit the patches
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found by producers without contributing to the discovery of new options (Barnard

and Sibly, 1981). These dynamics can often cause the payoffs of one strategy to

depend upon the frequency of the competitor strategy, such that the payoffs of a

strategy would be low if the number of agents practicing another strategy is high,

and result in a mixed evolutionarily stable strategy, where neither does better than

the other. Further, an increase in scroungers or social learners can decrease a group’s

overall performance (Rogers, 1988). Thus, an individual forager would need to adapt

its search strategy based on the behavior of its group members to ensure that it

maximizes its resource gain while decreasing the many costs associated with collective

foraging, such as competition, opportunity cost, and search cost (Rita et al., 1997).

Previous studies have shown that individuals in many animal groups can consis-

tently differ from each other in their search strategies, especially in terms of risk-

taking, bold or explorative behavior (Dingemanse et al., 2003; Mehlhorn et al., 2015;

Reader, 2015; Réale et al., 2007). Explorative individuals tend to be risk-prone, move

long distances, and often lead their groups. On the other hand, shy or exploitative in-

dividuals tend to be risk-prone and show high group cohesiveness (Aplin et al., 2014;

Ioannou and Dall, 2016; Ward et al., 2004). These characteristics of explorative and

exploitative individuals can affect many decisions relevant to foraging. For instance,

the speed of exploration could directly affect the rate of resource discovery, overlap

in search areas, and even the time spent exploiting a patch (Patrick et al., 2017). It

has been shown that individual differences along the explore-exploit continuum can

affect the social behavior such as flocking, coordination (Aplin et al., 2014), and have

important consequences for collective foraging (Dyer et al., 2009). However, how the

individual search strategies are in turn affected by social behavior and by the costs

and benefits of collective foraging has been understudied.

In the following study, we study the evolution of different search strategies along

the exploration-exploitation continuum under several levels of social learning, group

size, and resource density that manipulate the costs and benefits of the search strate-

gies in collective foraging. As shown in the previous chapter, exploratory strategies

cover a greater area of space and have a higher chance of encountering new and

undepleted patches. However, they also tend to exit patches before exploiting it
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thoroughly. Thus, when competing for resources, exploitative strategies can take

advantage of the patches discovered and left largely unexploited by the explorers.

This effect could lead to a mixed evolutionary stable strategy (ESS) where neither

explorers nor exploiters can completely invade a population.

We predict that the proportion of explorers and exploiters in evolved groups would

depend upon the level of social learning, group size, and resource density. For exam-

ple, the payoff from exploiting would be higher in environments with rich patches,

but it may decrease if the frequency of social learning in the group is high. High

levels of social learning could increase the aggregation of agents on a few patches,

increasing competition and decreasing the benefits of exploiting while increasing the

payoffs from an explorative strategy that helps agents exit an increasingly crowded

patch faster. On the other hand, selective social learning may limit the ability of

exploiters to use social information, decrease their payoffs, and promote exploration.

Moreover, the degree of exploration or exploitation of the evolved strategies may de-

pend on their physical and social environments. For instance, rich patches with higher

expected return rates might promote explorer strategies that can balance exploration

with exploitation. Further, if explorers can effectively harvest a patch before others

join in, it would increase the proportion of explorers in a group. Finally, we predict

that groups may not always evolve to maximize their performance and could face

diminishing search efficiencies if many exploiters are present in a group.

4.2 Model overview

This study uses an evolutionary model of collective foraging and analyzes how indi-

vidual search strategies evolve in a group under different conditions that manipulate

the extent of competition and facilitation. Using the Lévy-walk model, we simulate a

suite of search strategies along the exploration-exploitation continuum. In the model,

a power-law parameter, µ, specifies the composition of long and short movements in

a search trajectory and can closely simulate the empirically observed features asso-

ciated with explorative and exploitative strategies. For example, agents with µ → 1

have a trajectory that is primarily composed of straight-line movements that helps
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them cover an area quickly and find new patches at a faster rate than less explorative

agents, but they also may cause them to exit a patch without sufficiently depleting

it.

We further test whether the evolved search strategies promote similar levels of

group-level search performance as in the previous chapter. We should expect an

increase in group search efficiency with an increase in exploratory individuals, which

is the most optimum strategy for groups. However, it is possible that the group

efficiency does not increase over time if the payoffs from exploratory strategies are

not higher than the exploitative ones. Finally, we modify the model to include a more

informed form of search to the strategies, namely area-restricted search that could

affect the payoffs from the strategies. Many studies have shown that animals and

humans perform an area-restricted search strategy (ARS) that can drive the switch

between exploration and exploitation in a more informed manner (Kareiva and Odell,

1987; Pacheco-Cobos et al., 2019). As a simple heuristic, ARS triggers slower and

exploitative movements after encountering a resource that intensifies the search in a

patch before continuing wide-ranging exploration for new resources. We predict that

in collective foraging, ARS could increase the payoffs from exploratory strategies that

can now get a greater share of resources after finding new, undepleted patches and

also affect group performance.

4.3 Model Details

4.3.1 Evolutionary model

Using the model described in Chapter 4, we tested the evolution of independent search

strategies for three values of social selectivity (α = 10−5, 10−2, 100 ) that represent

minimally-selective, selective, and no social learning, respectively. Instead of testing

for different resource distributions as in the previous chapter, we focused on the most

patchy environment (β = 3) because it represents an ideal framework to study the

effects of both the costs and benefits of collective foraging. To model search strate-

gies, we considered the following six alleles defined by µ: [1.1, 1.5, 2.0, 2.5, 3.0, 3.5],
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where µ → 1.1 represents a highly explorative strategy with fast, linear movements

and µ→ 3.5 results in a highly exploitative strategy composed of short displacements

and frequent turns.

Every simulation began with a group composed of agents with uniformly dis-

tributed values of µ and contained equal proportions of the six alleles. The evolution-

ary algorithm selected agents based on their efficiencies to generate a new population

after 30% of resources had been consumed. To do so, we normalized the efficiencies

of all agents and assigned each with a probability to replicate that was weighted by

their normalized efficiency values. For example, consider a group of 5 agents with the

following efficiencies at the end of a run: [0.5, 10, 3, 4], which would be then normal-

ized to [0., 0.61, 0.16, 0.23], and their normalized score would weight the probability

of each agent to reproduce. In addition, we added a mutation rate of 0.05, such that

with a probability 0.05, a randomly picked value of µ was assigned to a randomly

chosen agent at the time of selection. Every new group of agents started at random

locations with search efficiencies set to 0.

4.3.2 Area-restricted search model

To test the effect of more informed search strategies and of higher payoffs from dis-

covering an undepleted patch, we modified the agent search behavior such that upon

finding any resource, agents engaged in an area-restricted search. As a simple heuris-

tic, ARS triggers slower and more tortuous movements after encountering a resource

that intensifies the search in a local area before continuing wide-ranging exploration

for new resources. In the model presented above, agents could only perceive resources

that were present in their current location (rv = dmin) and not beyond that. How-

ever, many real-world organisms tend to search nearby areas after successfully finding

targets. We added a function where agents expanded their radius of vision (rv) after

encountering a target. More specifically, upon finding and depleting a resource patch,

agents first searched for resources in the cells neighboring theirs (rv = 2dmin) before

searching for other successful agents or drawing a step of random-length based on
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their value of µ. If they found a resource in the neighboring cells, they moved there

and consumed the resource.

4.3.3 Evolutionary analysis

The results presented here are from 40 simulations, and each simulation was run for

3000 generations. We measured the evolved values of µ for each parameter combina-

tion and for both models (non-ARS and ARS) and the group search efficiencies of the

evolved groups. The results below show both the mean evolved µ in populations and

their distribution across populations, mean search efficiencies (η), and the changes to

µ and η over generations. We would like to note that our model results in stochastic

evolutionary dynamics due to more realistic settings such as finite population sizes,

stochastic resource environment, stochastic search decisions, spatial interactions, and

mutations. The stochasticity prevents the groups from evolving to stable strategies,

and to corroborate our findings from the evolutionary model, we performed an inva-

sion analysis with the model to test the likelihood of a strategy invading a population

of another strategy based on their relative payoffs. We systematically tested whether

a population of composed of agents with a given µ can be invaded by a mutant agent

with another value of µ. To perform invasion analysis, we simulated homogeneous

populations of a µresident ranging between 1 and 3.5, and for each of the resident pop-

ulations, we added a mutant with another value of µmutant between 1 and 3.5. Each

of these populations was run for only one generation (i.e., they did not evolve), and

we tested the likelihood of a given µmutant invading µresident by calculating an invasion

index, i, for a pair of two different values of µ where:

i(µresident, µmutant) =
ηµmutant

ηµresident

(4.1)
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Figure 4.1: Distribution of the evolved values of Lévy exponents (µ) for different
levels of resource density (NR), group size (NA) and social learning (α). These data
represent group compositions over the last 10 generations out of a total of 3000.

4.4 Results

4.4.1 Intermediate levels of social aggregation led to a mixed

ESS between explorers and exploiters, but the degree

of exploration and exploitation depended upon the en-

vironment.

In the previous chapter, we found that groups composed of highly explorative searchers

(µ = 1.1) maximize group-level search efficiency. However, a high speed of exploration

might not be an optimal strategy at an individual-level. In our model, exploration

speed has a positive relationship with the rate of resource discovery and an inverse

effect with the time they spent exploiting a patch (or their ‘patch-residence’ time).

While highly explorative searchers will discover resources more efficiently, they will

also be more likely to exit the resource patch quickly without fully depleting it, which

exploiters can then access.

We found that in small groups where competition for resources is low, exploiters
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Figure 4.2: Mean estimates of invasion index for groups of size 10, different levels
of resource density (NR) and social learning (α) over 500 simulations. Index values
greater than 1 imply that the mutant µ will be over to invade the resident µ.
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can increase their foraging returns by reaching undepleted but discovered resource

patches and invade populations of fast explorers (Fig. 4.2). However, an increase in

the number of exploiters in a population decreases the benefits of collective foraging

because of the slower rate of resource discovery, fewer opportunities to scrounge,

and higher competition between them. Under such conditions, an explorer may be

able to invade a population of exploiters if the amount of resources it consumes

before others arrive is comparable with the exploiters’ share. However, an increase in

explorers can again increase the relative advantage of exploiters due to a higher rate of

resource discovery. We can see this pattern in the invasibility analyses where (Fig. 4.2

(top-row)) exploitative mutants can invade explorative populations, but exploitative

populations can in turn be invaded by explorers. Our results show that this dynamic

can lead to a mixed ESS, where evolved populations are composed of both explorative

and exploitative strategies (see Fig. 4.1 for overall composition of the evolved groups

and Figs. B.2, B.3 for composition of groups in individual simulations).

While exploratory and exploitative strategies could mutually invade each other un-

der certain conditions, the degree of exploration of the selected strategies can change

with resource environments (Figs. 4.1, 4.3). We found that in scarce conditions

(NR = 1000), where it was advantageous to exit a patch early and switch to ex-

ploring for other options, the evolved strategies were more explorative than in richer

conditions (NR = 10, 000) that favored spending longer exploitation time in patches.

In other words, the evolved groups in the scarce conditions were primarily composed

of exploitative agents (with µ = 2.5, 3) and explorative agents (with µ = 1.5, 2). By

contrast, in rich patches, the likelihood of fast explorers (µ < 2) invading a population

of exploiters decreased, especially slow exploiters (µ = 3.5). As a result, the evolved

groups were primarily composed of agents with µ = 3.5 and a smaller proportion of

explorers with µ = 2 that could increase their share of the patch before the arrival of

other agents.

Strategies with µ = 2 were also less likely to be invaded by other strategies under

conditions of very low or no aggregation at patches, for example, with selective or no

social learning (α = 10−2, 100). For selective social learning (α = 10−2), where agents
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(a) NR = 1000 (b) NR = 10000

Figure 4.3: Example of an evolutionary trajectory of the mean value of a group’s µ
(in blue) and η (in green) over 3000 generations for a single simulation of a group of
size 10 with α = 10−5.

only responded to social cues that were not very far, the likelihood of agents aggre-

gating at a resource patch decreased and led to very low levels of both competition

and aggregation at patches, especially in scarce conditions. Further, responding to

social cues in selective social learning depended upon the exploration speeds of agents,

where fast explorers quickly diffused away and could miss out on the transient social

cues. Exploiters remained confined to certain pockets of the space and were not able

to respond to cues in other locations.

Similar to conditions with no social learning (α = 100), we found that in scarce

patches, a search strategy close to µ = 2 that could sufficiently exploit the patch

before exiting it, and thus, was not very likely to be invaded by more explorative or

exploitative strategies (Fig. 4.2). However, richer patches increased the time agents

spend there, increasing the chances for other agents to respond to the social cues.

Thus, it increased the payoffs from more explorative and exploitative strategies and

µ = 2 became more likely to be invaded. Taken together, these results suggest that

when the aggregations at patches are not very low and can facilitate collective ex-

ploitation of the patches, both exploratory and exploitative strategies can mutually

invade each other and lead to a polymorphic equilibrium. However, excessive aggre-

gation and competition at patches can modify this equilibrium, as we discuss below.
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Figure 4.4: Mean estimates of invasion index for groups of size 50, different levels
of resource density (NR) and social learning (α) over 500 simulations. Index values
greater than 1 imply that the mutant µ will be over to invade the resident µ and are
represented by red hues.
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4.4.2 High levels of aggregation increased payoffs from ex-

ploratory strategies and decreased the likelihood of ex-

ploiters invading populations.

To understand the effect of competition on the search strategies, we considered a case

of large group size (NA = 50) under different levels of social learning. High levels

of social learning (α = 10−5) in large groups can cause agents to excessively over-

crowd at a patch, lead to a rapid depletion of patches and decrease the likelihood of

finding resources soon after its discovery. Under such conditions of high competition,

we found that rapid exploitation of patches led to higher payoffs for fast explorative

strategies (µ→ 1) that could not only increase the rate of discovery but also help the

‘producers’ exit the patch quickly to maximize their returns before others joined. In

addition, in larger groups, the higher number of exploratory agents likely increased

the rate of resource discovery and thus, further increased the payoffs from fast explo-

rations. Due to this, we observe that strategies µ ≈ 1.1 are not likely to be invaded

by other strategies, especially by exploitative ones (Figs. 4.4, 4.1).

The advantage of highly explorative strategies further increased in richer patches,

contrary to the effect we noted in small groups. As explained in the last chapter,

the chances of ‘snowballing’ or excessive aggregation of agents on a patch increase in

large groups that are further amplified in rich patches due to longer patch-residence

times. Therefore, under extremely high competition, exploratory strategies which

find a patch before anyone else and exit it before others arrive gain higher payoffs,

and exploitative strategies that arrive later to a patch receive lower payoffs.

However, when agents are selective social learners, the aggregation and subse-

quent competition at patches decreases, and the average values of µ shift towards

slightly larger values. In addition, exploitative strategies receive a higher payoff, and

highly explorative strategies’ payoffs decrease compared to the minimally-selective

case. Thus, as explained in the previous section, this effect leads to a mixed ESS

where explorative and exploitative strategies can regularly invade each other. How-

ever, in large groups, the likelihood of exploiters invading explorers is less than in

small groups and further decreases in richer patches.
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(b)

Figure 4.5: (a) Mean estimates of the evolved values of Lévy exponents (µ) for
different levels of resource density (NR), group size (NA) and social learning (α).
(b) Corresponding mean estimates of the group search efficiencies (η) of the evolved
groups. Dashed lines show the maximum group efficiency value obtained in the last
chapter for a particular parameter combination. The averages were taken over the
last 10 generations out of a total of 3000, for every parameter combination.
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4.4.3 Selective social learning decreased payoffs from exploit-

ing and increased group search efficiency.

In the previous chapter, our results showed that in small groups, group-level search

efficiency is maximized with explorative individuals (µ = 1.1) practising high levels of

social learning (α = 10−5) that was not sensitive to the costs of distance and opportu-

nity associated with following social cues far away. However, in large groups, we had

found that such indiscriminate social learning can result in excessive overcrowding at

resource patches, and thus, selectivity in pursuing social cues is essential to increase

group performance.

Contrary to these results, we found that selective social learning (α = 10−2) in the

evolutionary model results in groups with maximum group search efficiency, in both

small and large groups (Fig. 4.5b). In the results presented above, we showed that

in small groups with minimally-selective social learning, exploitative strategies had

high payoffs, and evolved groups were composed of exploiters in higher numbers than

explorers. Due to the low frequency of explorers, groups faced lower rates of resource

discoveries and overall group-level exploration, which in turn diminished group-level

search efficiency. We can see in Fig. 4.3 that when groups’ mean µ values were high,

their search efficiencies decreased.

However, when agents pursued social cues only selectively (α = 10−2), exploitative

agents had to resort to independently searching for resources and bear high search

costs, especially in scarce conditions, which decreased the proportion of exploitative

agents, and increased group efficiencies. On the other hand, in large groups, the higher

group search efficiencies in selective social learning conditions were not driven by high

proportions of exploratory individuals. By contrast, evolved groups in the α = 10−5

condition were more explorative than in the α = 10−2 condition. However, the overall

levels of independent exploration practised by agents were lower when they readily

and excessively pursued social cues than in the selective condition. Further, selec-

tive social learning allowed simultaneous discovery of multiple resource patches and

thus, reduced overcrowding at patches and increased group search efficiency. Taken

together, our results suggest that groups can improve their collective efficiencies when
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(b)

Figure 4.6: (a) Mean estimates of the evolved values of Lévy exponents (µ) from
the area-restricted search model for different levels of resource density (NR), group
size (NA) and social learning (α). (b) Corresponding mean estimates of the group
search efficiencies (η) of the evolved groups. The averages were taken over the last
10 generations out of a total of 3000, for every parameter combination.

exploratory strategies have higher payoffs than exploitative strategies. To further test

this effect, we modified the model to include area-restricted search, which we hypoth-

esized could increase the payoffs for exploratory agents and lead to the evolution of

more efficient groups.

4.4.4 Area-restricted search increased the payoffs from ex-

ploratory search and increased group search efficiency.

The addition of an area-restricted search component to the model had several con-

sequences for the foragers. First, it added informed movements to an agent’s search

behavior and, thus, decreased search costs associated with random movements. As

a consequence of this, the overall search efficiencies of the strategies increased (Fig.
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Figure 4.7: Distribution of the evolved values of Lévy exponents (µ) for different
levels of resource density (NR), group size (NA) and social learning (α). These data
represent group compositions over the last 20 generations out of a total of 3000.

B.1) for all values of µ and α. In contrast to the results from the previous chapter,

which showed that µ = 2 is more efficient than µ = 1.1 when there was no social

learning involved, we found that for ARS foragers, µ = 1.1 is better than µ = 2

even without any social learning. This effect is due to the fact that µ = 1.1 in ARS

foragers resulted in trajectories that adaptively switch from short, exploitative bouts

to straight-line, explorative movements only if there are no resources in their vicinity.

Secondly, it increased the payoff from discovering an undepleted patch farther

from others because ARS foragers were better at sensing resources at a patch than

non-ARS foragers, who needed others to be present at the patch in order to sense

and harvest the resources efficiently collectively. This effect also increased the time

agents, even the exploratory ones, spent at a resource patch, and in turn, could cause

stronger overcrowding than in the non-ARS case and increase competition between

agents due to faster rates of patch depletion. As a result, the payoffs from exploitative

strategies decreased drastically, and explorative strategies could resist invasions from

exploiters. We can see that the average µ values decreased closer to 1.1 (Fig. 4.6a),

and the evolved composition of the groups had a far lesser proportion of exploiters
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than in the non-ARS model (Fig. 4.7). However, as noted in the previous sections, the

degree of exploration or the proportion of explorers in the evolved groups depended

upon patch-richness, social selectivity, and group size. For instance, the average µ

in small groups with selective social learning was lower than with minimally-selective

social learning. Unlike in the non-ARS model with selective social learning, the

proportion of extreme explorers (µ = 1.1) was larger. This effect can be explained

by the increase in the patch-residence times of µ = 1.1 due to ARS behavior, which

allows the agents to exploit the patch before exiting it. We also found that the mean

efficiencies were also higher in the ARS model (Fig. 4.6b), and the difference between

solitary and collective foraging was smaller than in the ARS model, especially in

conditions with rich patches. Because resources were densely clustered together in

the rich conditions, ARS was a more effective strategy, and individual agents could

efficiently sense and exploit a patch.

4.5 Discussion

Many previous works have studied search strategies that an individual forager should

adopt to optimize its search efficiencies and maximize its fitness (Charnov, 1976;

Viswanathan et al., 1996; ?). Nevertheless, in many cases, search or foraging oc-

curs in groups where multiple foragers collectively search for resources and share the

information about their findings with each other. However, how individual search

strategies evolve in group foraging and which strategies maximize individual and

group fitness has been understudied. In this chapter, we develop an evolutionary

model of collective foraging where individual search strategies are selected in propor-

tion to their search efficiencies under different physical and social environments. We

further investigate whether the evolved individual strategies maximize mean group

fitness or not, and test how heuristics like area-restricted search can improve both

individual and collective efficiencies.

Foraging efficiency is determined by how well individuals can locate a resource

and whether they can optimally switch from exploiting a patch before facing di-

minishing returns to exploring for new patches. In collective foraging, individuals
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can integrate obtained by each other to efficiently find and exploit resource patches

(Giraldeau, 1984), and increase their individual and group-level fitness. However,

excessive grouping and social learning between individuals can decrease overall ex-

ploration for better resource patches or solutions. Further, at the individual level,

it can increase competition for resources, cause exploitation of others findings, and

prompt foragers to modify their strategies to accommodate such pressures. The last

chapter showed that high levels of exploration could increase group efficiencies in

social learning populations by helping groups discover new resource patches more

efficiently. Our results in this chapter show that individuals may not always evolve

highly explorative search strategies.

We found that when competition and aggregation at patches was not too high, for

example in small groups, exploitative agents could sufficiently gain from exploiting

a patch found by explorers and increase in population, but at the expense of mean

group efficiency. This effect prevented groups from being composed of only explo-

rative or exploitative agents, and instead they were composed of a mix of explorative

and exploitative agents. Further, the balance between explorative and exploitative

strategies in the evolved groups was affected by the patch richness, where exploita-

tive agents were higher in number in richer patches (Caraco and Giraldea, 1991).

However, when groups were larger and many agents aggregated at resource patches,

increased competition substantially decreased the payoffs from exploitative strategies,

and increased the payoffs from highly explorative strategies. Consequently, popula-

tions evolved to be primarily composed of explorers who were quick to exit a patch

quickly before facing diminishing returns due to excessive aggregation.

We also found that the benefits of explorative strategies could be further amplified

when agents could practise area-restricted search, which allowed them to exploit a

resource patch effectively before exiting it. Due to the non-random exploitation of

patches, we found that ARS decreased the relative advantage of collective foraging,

increased foraging efficiencies and the payoffs from discovering undepleted patches.

Moreover, our results show that such heuristics can help maximize both individual

and collective foraging efficiencies. This effect is similar to that of finder’s advantage

or producer’s share described in producer-scrounger models, where if producers gain
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a large share of a patch they discover, they are less likely to be invaded by scroungers

(Di Bitetti and Janson, 2001). Based on our results, we suggest that simple heuristics

like ARS that have been noted in many animals and humans (Pacheco-Cobos et al.,

2019; Wiesner et al., 2012) can help maintain explorers in a population and increase

individual and group efficiencies in environments with clustered resources.

Our model is similar to the classic producer-scrounger models where agents can

either independently search to find new patches or use social information to scrounge

the patches discovered by producers (Barnard and Sibly, 1981; Caraco and Giraldea,

1991), and neither strategy can invade the other under many circumstances resulting

in a mixed ESS. However, in our model, the difference in producer and scroungers

arises due to the differences in the rate of patch discovery, where explorative agents

(µ ≤ 2) are more likely to discover new patches and thus act as producers. In contrast,

exploitative ones (µ > 2) are less likely to find patches independently and resort to

scrounging. Our results thus highlight that producer-scrounger dynamics can emerge

due to differences in exploration speeds even in populations where every individual

practises social learning.

In addition, our model’s spatially-explicit framework helps consider the effect of

competition, which is often discounted in the PS models that generally assume that a

patch is consumed almost instantaneously after being located. PS models and related

studies have shown that an increase in group size decreases the proportion of produc-

ers because of reduced finder’s advantage (Coolen, 2002; Dumke et al., 2016; Vickery

et al., 1991) and increases the number of scroungers due to increased opportunities

to scrounge (Aplin and Morand-Ferron, 2017). In contrast to these predictions, we

found that an increase in group size increased the relative payoffs from exploratory

strategies and the proportion of explorers. In our model, an increase in group size

increased the overall use of social information and intensified the competition and the

penalty for the late-arriving scroungers. Moreover, an increase in group size acceler-

ated the rate at which resource patches are discovered and, thus, further increased

payoffs from exploratory strategies that quickly exit a patch.

Similar to the predictions from PS and social learning models, we also found that a

decrease in payoffs from exploratory strategies depresses group-level search efficiencies
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(Caraco and Giraldea, 1991; Rogers, 1988). Exploiters in our model had meager rates

of resource discoveries and overlapped with each other in the space they searched, thus

diminishing mean group fitness. By contrast, as shown in the last chapter, high levels

of independent exploration in groups with social learners maximized search efficiencies

by reducing overlap in search areas and a high rate of resource discoveries. In line

with predictions with social learning models, we found that selective social learning,

where individuals filter out costly and distant social cues, increased group efficiencies.

However, our results suggest a different mechanism behind this relationship: in our

model, selective social learning decreased the probability of social learning and thus

reduced the payoffs from exploitative strategies, promoted exploratory strategies, and

increased group fitness.

Many previous studies have shown consistent differences in exploratory behavior

between individuals in groups. Our model suggests that these differences may not

always be adaptive, and a high proportion of exploiters can decrease the mean fitness

of a population. However, in many natural conditions, explorative strategies may

have additional risks (such as predation or high search costs) that could decrease

efficiencies in groups composed solely of explorers. For instance, in a variable envi-

ronment, if the most rewarding option is associated with high risk, then explorative

strategies that continue searching for better options would be selected against (Ar-

billy et al., 2011). In addition, if the tendency to explore is negatively associated

with the likelihood to socially learn (Kurvers et al., 2010), then groups would benefit

from a mix of asocial explorers that find resource patches and social exploiters who

harvest a found patch. It would be interesting to test the effects of costly and risky

exploration, and the association between exploration and sociality by extending the

current model. Further, individual differences in the degree of exploration or bold-

ness may be necessary for coordination in movement and decision-making in groups

(Johnstone and Manica, 2011; Jolles et al., 2015; Kurvers et al., 2009).
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In conclusion, the present work studies the evolution of explorative and exploita-

tive search strategies in collective foraging and shows how the differences in ex-

ploratory speed can form the basis of various behavioral syndromes like producer-

scrounger. We further highlight the role of physical and social environments in deter-

mining the costs and benefits of exploratory and exploitative strategies, the resultant

composition of foraging groups and their mean efficiencies. Moreover, we show that

strategies like area-restricted search can increase explorers’ payoffs and consequently,

group efficiencies.

Different social systems may employ other mechanisms to maintain explorers or

producers in a population, for example, patents, social prestige, synchronized food-

sharing in hunter-gatherers (Giraldeau et al., 2017; Winterhalder, 1996). Future mod-

els can compare the effect of these different mechanisms on the evolution of search

strategies. Future models can also study the evolution of social learning strategies as

a factor of search strategies or the co-evolution of social learning and search strategies

under different contexts to shed light on the interplay between search behavior and

sociality.
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Chapter 5

Modeling hunter-gatherer social

networks from individual-level

foraging and movement patterns

5.1 Preface

In the final study of this dissertation, I present work that offers a different yet re-

lated perspective on the effect of individual-level foraging behavior on group-level

behavior under various environmental factors. In mobile organisms, movement pat-

terns are one of the key factors that influence how they socially interact with each

other. Over the course of our evolutionary history, movement driven by foraging

likely played a significant role in shaping the social interactions of our ancestors

and subsequently, their social networks and group-level behavior. In this study, we

simulate hunter-gatherer foraging behavior and under different environmental condi-

tions, we test whether movement patterns generated from such behavior could have

resulted in social networks that positively affected our species’ social and cultural

abilities. We build an agent-based model of central-place foraging, where foragers

return to a central location (or home) and periodically move their homes to other

locations. The agents foraged within a given radius or moved their home to an-

other location according to a simple optimal foraging rule, and could encounter other
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agents as they moved across the space. We analyzed the interaction networks arising

under different conditions, and found that, at intermediate levels of environmental

heterogeneity and mobility, central-place foraging increased global and local network

efficiencies as well as the rate of contagion-based information-transmission. We also

found that central-place mobility strategies can further improve information transmis-

sion in larger populations. Our findings suggest that the combination of foraging and

movement strategies, as well as the environmental conditions that characterized early

human societies, may have been a crucial precursor in our species’ unique cultural

abilities to collectively search for solutions.

5.2 Introduction

One of the pivotal transitions in human evolution is our ability to generate, accu-

mulate and rely on complex, cumulative culture (Derex and Boyd, 2016b; Hill et al.,

2011, 2014; Muthukrishna et al., 2014). Recent evidence from hunter-gatherer so-

cieties (Migliano et al., 2017, 2020) suggests that changes in our ancestors’ social

networks and connectivity could have promoted such a transition by facilitating an

efficient exchange and transmission of cultural information. Given that the frequency

and nature of social interactions between hunter-gatherers would have been affected

by their movement and spatial distribution patterns, researchers have proposed that

divergences in foraging behavior, coupled with ecological changes, could have led to

changes in the dynamics of social interactions and hence patterns of social organi-

zation (Dyble et al., 2015; Foley and Gamble, 2009; Kuhn, 2020). However, the

impact of hunter-gatherer foraging and movement behavior on emergent social net-

works and their ability to transmit information is still not thoroughly understood

(but see Premo2015, Dyble2018).

Central-place foraging marks a critical behavioral change between the foraging

styles of early hominins and our closest great ape relatives that would have modified

their movement and consequently spatial and social patterning (Isaac, 1978; Layton

and O’Hara, 2010; Marlowe, 2005). Non-human Great Apes (henceforth Great Apes)

tend to consume food when they find it (‘point-to-point’ foraging), make sleeping
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nests at variable locations and have short foraging trips (Jang et al., 2019). On

the other hand, hunter-gatherers establish residential camps or central places around

which they systematically forage and bring the food they collect during foraging trips

(or logistical forays) back to their camps to share and process it with camp members

(’central-place’ foraging) (Binford, 1980; Kelly, 1983). In addition, human foragers

can make longer foraging trips and periodically move the location of their residential

camps to access new resource areas with little overlap in the foraging-radii between

successive camps. These properties result in an expansion of their overall home-

ranges during their lifetimes (Jang et al., 2019) compared to other primates who

spend most of their adult lives within the same area, leading to a more restricted use

of space (Herbinger et al., 2001; Kelly, 2013; Kouakou et al., 2011; Marwick et al.,

2003; Povinelli and Povinelli, 2001).

Such differences in mobility could have altered spatial patterns and dynamics

of social interactions and led to more complex social structures. In particular, we

hypothesize that central-place foraging could have played an essential role in the

subsequent development of multi-level sociality. In multi-level organizations, sets

of multiple core units (such as nuclear families) repeatedly coalesce, intermix and

disperse, giving rise to relatively fluid local bands that are embedded in higher-level

interconnected regional networks(Bird et al., 2019; Grove, 2009; Grove et al., 2012a;

He et al., 2019; Layton and O’Hara, 2012; Romano et al., 2020). These extended,

flexible, and fluid social landscapes would have increased the likelihood of interactions,

and consequently opportunities social learning, and information exchange compared

to the rest of the Great Apes (Grueter and White, 2014; Hill et al., 2014).

However, hunter-gatherer foraging and mobility decisions (e.g. daily trips, resi-

dential movements) are influenced by their resource environments as well as various

costs (e.g., traveling costs) and benefits (e.g., resource abundance) of their foraging

activities (Pacheco-Cobos et al., 2019; Winterhalder, 1981). For example, in rich en-

vironments where there are plenty of resources available within their foraging-radii

(or home-ranges), hunter-gatherer bands may be able to afford greater sedentism

(Hamilton et al., 2018b). In contrast, unproductive landscapes may require bands to
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move their camps multiple times a year due to resource depletion within their for-

aging radii (Venkataraman et al., 2017). In addition, if resources are homogeneously

distributed, ethnographic studies have shown that bands tend to predominantly rely

on short and frequent residential moves (Binford, 1980). In these settings, the fre-

quency of encounter with other bands and thus, the inter-connectivity between them

could decrease. Conversely, if resources are heterogeneously distributed and some

areas are more resource-rich than others, bands may aggregate in key locations from

which they conduct daily trips to procure resources (Winterhalder, 1981), potentially

generating more opportunities for interactions (Henrich, 2004).

In this chapter, we model and compare point-to-point and central-place foraging

(with different home-range radii) behavior across a range of environments. We in-

vestigate the effect of central-place foraging and mobility on the interaction patterns

between foraging units and the subsequent social networks that are formed due to

foraging units coinciding on resources. We then test the efficiency of information

transmission in the networks that emerge from the different mobility regimes and en-

vironments. Previous theoretical and computational models have explored the effects

of environmental heterogeneity on social networks emerging from foraging behavior

across different environments (Ramos-Fernández et al., 2006) and hunter-gatherer

mobility on cultural transmission (Perreault and Brantingham, 2011; Premo, 2015).

However, models explicitly linking foraging strategies, environmental features, and

hunter-gatherer interaction networks remain lacking. Our work illustrates a direct

connection between environmental conditions, foraging behavior, and information

flow in hunter-gatherer social networks, thereby providing insights into the evolution-

ary origins of our species’ unique ability to innovate, accumulate and rely on complex

culture.
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Figure 5.1: Model Description. (a): A schematic representation of agent movement
in the model. Agents can make foraging movements (mF ) within a radius r from
their home (ph) to a new patch (pj) or residential movements (mR) to a new home
(ph′). (b): An illustration of the variations in resource environments modulated
by the parameter β. A low value of β results in a rich (dark-green patches) and
heterogeneous environment (left), whereas a very high value of β results in a scarce
(yellow patches) and homogeneous environment (right). When food depletes within
an agent’s radius (yellow patches), it moves its residence (a → b). Otherwise, it
continues to forage within its radius (c↔ d).

5.3 Methods

5.3.1 Model Description

We investigated how central-place-foraging behavior would affect the emergent in-

teraction networks across environments. Previous work by Ramos-Fernández et al.

(Ramos-Fernández et al., 2006) modeled the effect of environmental heterogeneity on

the interaction networks that emerge from multiple agents foraging independently

(representing spider monkeys). The authors showed that a complex social structure

with fission-fusion properties, resembling those observed in field studies among real

spider monkey societies, could emerge simply from optimal foraging rules in hetero-

geneous environments.

Our model (henceforth central-place model), like the model from Ramos-Fernández
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et al. (Ramos-Fernández et al., 2006) (henceforth point-to-point model), was executed

in a two-dimensional environment spatially ranging from 0 to 1, and comprising 50,000

uniformly distributed patches. Each patch was initially assigned resource content,

ki ≥ 1, drawn from a normalized power-law probability distribution, P (k) ≈ Ck−β

where the exponent β determined the distribution of resource content and the total

resource abundance, and C = 1/
∑∞

k=1 k
−β was the normalization constant. Following

this equation, the richness of an environment (or abundance) and its heterogeneity

(or distribution) co-varied and were determined by β.

When β ≈ 1, k had a broad range with high values, patches varied widely in

their resource content, and the environment was abundant with many rich patches.

Conversely, β ≫ 1 corresponded to smaller values and a restricted range of k that

resulted in an environment composed of scarcer resources that are homogeneously

distributed across patches. Patches were depleted by a unit in their resource content

(k) every time-step that a foraging-unit spent at it, and they did not regenerate (see

Fig. C.1 for more information on resource depletion).

Each agent in our simulation represented a monogamous, nuclear family/foraging

unit (adult male, female and dependent offspring) which are the core, indivisible units

of social organization across hunter-gatherer societies (Lewis et al., 2014). Since ties

between individuals from different families would result in a tie between the families,

agents were assumed to forage and move as a single foraging-unit. The model was

initialized with agents independently and randomly distributed across the patches.

Foraging-units followed a rule whereby they move to a new patch (pj) from a depleted

patch (pi) such that it minimized the cost/gain ratio (dij/kj), where dij is the distance

between the patches and kj is the resource content of pj. Our model (Fig 5.1a)

modified this resource-maximization rule to implement central-place foraging and

distinguished between foraging (or logistical) and residential moves (Binford, 1980;

Kelly, 1983).

In our model, foraging-units moved to fixed home locations from which they ex-

ploited the surrounding local environment in their foraging radius before moving to

another home location. Every foraging-unit had a complete knowledge of resources,

a randomly allocated home location (i.e. central place), and a foraging area with a
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given radius, r. Foraging-units could forage and change their home location based

on the following rules: When foraging-units were on a patch with no food left, they

made foraging moves (mF ) to a patch (pj) within r such that the cost/gain ratio

(dhj/kj) was minimized, where dhj is distance from the current home (ph), and kj

is the resource content of pj (Fig 5.1b (right)). Before every move, foraging-units

compared the cost/gain ratio of patches outside the radius to patches within the

radius. When the resource quality within r diminished compared to the rest of the

environment (Fig 5.1b (left)), instead of making a foraging move to profitable patches

outside their radius, foraging-units made a residential move. Residential moves (mR)

allowed foraging-units to select a new home (ph′) that minimized (dhh′/kh′) but was

far enough from the current base (dhh′ ≥ 2 ∗ r) to avoid overlap (Premo, 2015). Each

time-step that a foraging-unit coincided with another foraging-unit on a patch, they

formed a social network tie or added a unit of weight to an existing tie. This can

therefore be considered to represent a tie between two core family units. In the liter-

ature, hunter-gatherer family units have been well-documented to regularly interact,

fuse and disband to form a higher level of organization (bands or camps), which

our model simulates (Binford, 1980; Kelly, 2013; Migliano et al., 2017, 2020) . At

the same time, such bands have been shown to share the same home-bases (or cen-

tral places) and often co-reside. In our model, when two family-units coincide on a

home-patch, they share the same home range and forage together. In contrast, if two

foraging-units share a foraging-patch (as opposed to a home-patch), they will have

overlapping home ranges which can also increase the likelihood of interactions and

result in larger communities (Hamilton et al., 2007, 2018a).

To assess how the combination of environmental heterogeneity and central-place

foraging strategies affect the emergent social networks, we varied the resource ex-

ponent, β parameter to take values between 1.5 and 4.5 and the foraging radius, r

to assume values of 1, 0.1, 0.01, and 0.001. We ran the point-to-point model by

setting the radius to 0 after verifying this was equivalent to the framework from

Ramos-Fernández et al. (Ramos-Fernández et al., 2006). We also tested the effect of

population size by running the model with 50, 100, and 200 foraging-units. Whilst our
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main motivation with this manipulation was to explore the effect of changing popula-

tion sizes on our model results, the values we chose are ethnographically meaningful.

We mostly focused on population sizes of 100 foraging units/families (that corre-

spond to 500 individuals) which have been widely documented (Steward, 1968) and

are assumed to represent the average size of hunter-gatherer regional bands or groups

(Kelly, 2013). Populations of size 200 correspond to prevalent estimates of the size

of entire ethnic populations (or metapopulations) (as compiled in Lehmann et al.

(Lehmann et al., 2014) ). Finally, populations of 50 families (200-250 individuals)

represent of a lower limit for hunter-gatherer populations to remain viable (Wobst,

1974). We ran 50 simulations for each parameter combination and the point-to-point

model and extracted the weighted social networks formed throughout the simulation

as well as at the end of the simulation. To ensure that our results are not an artifact

of the chosen time-steps, we conducted sensitivity analyses, running each parameter

combination for 1000 time-steps (see Appendix). We found the results to be consis-

tent over longer time-steps and thus, report the results from the first 100 time-steps

in the following text.

5.3.2 Networks

We extracted the final networks formed from the sum of all interactions by the end of

each run. As a robustness check (Appendix C), we also looked at how the networks

developed across the simulations. For 100 time-steps, we examined the networks after

each interval of 10 time-steps. For 1000 time-steps, we increased that window to a

100 time-steps.

Efficiency

We tested the networks for their ability to transmit information by measuring their

global and local efficiencies (Latora and Marchiori, 2001). The efficiency measures

have been used across various studies to investigate the transmission of social and

cultural information in various networks, including hunter-gatherer social networks

(Migliano et al., 2017). Global efficiency indicates a network’s ability to transmit
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information across the entire network and is inversely related to the characteristic

path length (or the average distance between nodes). Latora and Marchiore (Latora

and Marchiori, 2001) define a graph’s global efficiency as the inverse of the sum of

the shortest paths between all nodes i and j:

E =
1

n

∑
i∈N

∑
j∈N,j ̸=i d

−1
ij

n− 1
(5.1)

Where N is the set of all nodes in the network, n is the total number of nodes,

and d is the shortest distance between two nodes. On the other hand, local efficiency

relates to the clustering coefficient of a network (i.e., the degree to which a node’s

local neighborhood is inter-connected). It measures the average global efficiency of

subgraphs and denotes how well each local neighborhood can exchange information

within itself. We modified the efficiency measures to incorporate weights (for a more

detailed description, see Appendix C).

Contagion simulations

We conducted contagion simulations on the extracted networks, and calculated the

proportion of agents that acquired the diffusing information. Each simulation con-

sisted of 5000 time-steps and we conducted 50 simulations on each network to ac-

count for variation across runs. For each simulation, we randomly chose one agent

and seeded it with the behavior to be transmitted. As the simulation proceeded,

other agents adopted the behavior with a probability proportional to the number

of their neighbors that had already acquired it and the strength of their ties with

them. However, the way this probability was calculated varied for simple and com-

plex contagion, and we explored both conditions in our analyses. Simple contagion

models a transmission where the probability with which an agent (Pr(A)i) acquires

information is dependent upon the strength of ties and number of neighbors with the

information. This can be expressed as :

Pr(A)t+1
i =

∑
wi × dt∑

wi
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Where wi is a vector of the edge weights that i shares with its neighbors and d is

a vector of same length containing 1 if the corresponding neighbor has acquired the

information or 0 otherwise at time, t.

To illustrate, consider that the agent, Ai has 3 neighbors (Aj, Ak, Al) and the ties

with them have different weights (2, 5, 10). If Al has information then the probability

of Ai acquiring it (P (Ai) ≈ 0.59) is higher than if Aj had information (P (Ai) ≈ 0.12).

We also modeled a more restricted mode of transmission (complex contagion) that

increases the dependence on how many of an agent’s neighbors have the information

and the strength of their ties. Complex contagion is more suited to capture the

diffusion of costly or difficult behaviors that are socially acquired (such as cultural

traits) and need reiterated affirmation (Centola, 2010; O’Sullivan et al., 2015). Here,

the probability of acquisition now rises exponentially as more neighbors acquire the

information:

Pr(A)t+1
i =

(∑
wi × dt∑

wi

)2

Given this type of contagion, the probability of Ai acquiring information from

Al reduces to P (Ai) ≈ 0.34 and thus, stronger ties and more neighbors with the

information would be required to increase the likelihood of transmission.

5.4 Results

5.4.1 Environmental factors affect the efficiency of informa-

tion transmission in networks

In line with the results from Ramos-Fernández et al. (Ramos-Fernández et al., 2006),

we found that environmental heterogeneity strongly influenced the networks formed,

with β = 2.5 generating the most efficient networks (Eglobal = 0.13, Elocal = 0.65). In

environments of (β ≈ 1) where many rich resource patches were available, foraging-

units had very low mobility (see next section for mobility results) and stayed fixed

at a rich resource patch for long durations. In the homogeneous environment of

β = 4.5, every patch had low resource value, and foraging-units depleted patches
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(a) (b)

Figure 5.2: Network Efficiencies after 100 time-steps. (a) The plot shows the average
global (left) and local (right) efficiencies of the networks as a function of environmental
heterogeneity for each radius. (b) The plot shows the relationship between efficiencies
and radius for β = 2.5. Shaded region corresponds to intermediate radii that balances
global and local efficiencies.

quickly. They frequently moved across the environment resulting in low interaction

rates (as evidenced by density of connections) with other foraging-units. However,

at intermediate heterogeneity and resource abundance (β = 2.5), foraging-units coin-

cided at many different rich patches available in the environment and formed stronger

social ties. This can be evidenced by the high number of total interactions between

foraging-units per time-step (Fig. C.2) that increased the network’s local efficiency.

On the other hand, an intermediate number of rich patches also enabled more move-

ment and unique interactions between the foraging-units that made the network more

expansive and increased its global efficiency (Figs. C.8, C.9). Higher population sizes

further increased the rate of interactions between the foraging-units and thus, the

network efficiencies.

5.4.2 Central-place foraging increases global and local net-

work efficiency

We found that point-to-point foraging created networks comprised of isolated foraging-

units with very high local efficiency (or clustering) but low global efficiency. These

networks contained strongly connected small sub-groups of foraging-units that were
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distributed across the environment with few to no connections between them. In

contrast, central-place foraging increased the number of unique interactions between

foraging-units (Figs. C.8, C.9) and created ties between otherwise unconnected sub-

groups (or components) that resulted in a more inter-connected and expansive net-

work (Fig. C.3). A completely disconnected graph has a number of components equal

to its nodes, while a fully connected graph has a single component. We found that the

ties between sub-groups decreased the number of components and increased networks’

global efficiency while maintaining high local efficiency. On the one hand, this formed

strongly bonded local groups, and on the other hand, large-scale, interconnected re-

gional networks such as the ones observed among ethnographic hunter-gatherers (Bird

et al., 2019; Hill et al., 2014; Migliano et al., 2017; Wiessner, 2002)
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Figure 5.3: Emergent networks from 100 foraging-units after 100 time-steps. The
plot shows an example of weighted networks that emerge from different foraging be-
haviors in β = 2.5 environment (from (a) to (e): point-to-point, r = 0.001, r =
0.01, r = 0.1, r = 1). Node colors depict the different sub-groups detected by Lou-
vain community-detection method (see Appendix C). Different communities and the
overlap between them are also shown by circles around each community. Edge widths
depict the edge weights, with thicker edges representing stronger bonds, and finer
edges representing weaker bonds. Distance between nodes also depict the strength of
connections.

To explore the effect of different radii of central-place foraging, we compared

the different mobility regimes (frequency and magnitude of residential and foraging

moves) across environments and radii (Fig.5.4).
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Figure 5.4: Mobility regimes across different environment and radii. Top: The plot
shows the mean distance moved in residential moves (dr) against foraging moves(df ).
Bottom : The plot shows the frequency of residential moves(nr) and the frequency
of foraging moves(nf ).

When the foraging radius was small (r = 0.001), at intermediate levels of en-

vironmental heterogeneity (β = 2.5), the observed foraging pattern closely resem-

bled point-to-point foraging (Jang et al., 2019), where foraging-units don’t return

to a central-place, make short residential moves (nr = 26, dr = 0.022) and fewer

and shorter foraging moves (nf = 3, df = 0.001). The resulting networks from

r = 0.001 comprised many (≈ 24) densely connected sub-groups of high local ef-

ficiencies (Elocal = 0.73). Nonetheless, these dense sub-groups lacked connections

between them with a maximum of 3 sub-groups connected to each other.

Increasing the foraging radius to intermediate values (r = 0.01 and r = 0.1)

resulted in foraging-units making longer, and more frequent foraging moves combined

with longer but fewer residential moves. At r = 0.01, a small increase in residential

mobility (nr = 16, dr = 0.048 ) created a few longer connections between the dense

sub-groups. These connections resulted in more sub-groups being connected (4 − 5)

and a more expansive network that increased the global efficiency (Eglobal = 0.11).

However, the network still remained highly cliquish with high local efficiency (Elocal =

0.75).
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As the foraging radius and use of space further increased (r = 0.1), foraging-units

moved less frequently (nf = 20, nr = 2) but undertook longer moves (df = 0.03, dr =

0.23). This change in mobility increased the long-range connections between fewer

(≈ 15) but larger and interconnected sub-groups (6 − 8). The resultant sub-group

structure made the network substantially more efficient at the global scale (Eglobal =

0.24) while maintaining considerable local efficiencies (Elocal = 0.50). However, we

found that both efficiencies decreased compared to intermediate radii ( Elocal = 0.44,

Eglobal = 0.12) when the foraging-units had a very large foraging radius (r = 1). In the

absence of residential moves, the foraging-units remained tethered to their original

home and traversed longer foraging moves (df = 0.05) to find food. The longer

moves helped create long-range connections between foraging-units that resulted in a

large number of connected sub-groups (7− 11) and a more globally efficient network

than the point-to-point model (Eglobal = 0.07). Nonetheless, the strong tethering

decreased the overall use of space and the probability of coinciding with others for

longer durations, resulting in fewer and weaker connections between sub-groups with

low local efficiencies.

In environments where the habitat quality was lower and patches were more homo-

geneous in their resource content, foraging-units coincided on patches less frequently

and for a shorter amount of time, which resulted in fewer interactions. At β = 3.5

when fewer patches were rich, foraging mobility increased with many shorter moves

within agents’ foraging-radii for all radii, while residential mobility increased with

longer moves (nr = 2, dr = 0.56) for r = 0.1, but decreased for smaller radii with

shorter and similar number of moves (r = 0.01: nr = 15, dr = 0.041), or shorter

and more frequent moves (r = 0.001: nr = 70, dr = 0.006). This effect led to a

decrease in both global and local efficiencies across radii (Eglobal = 0.04, Elocal = 0.3)

from β = 2.5. However, for radius r = 0.01, the decrease in the local efficiencies was

lesser when compared to the other radii. For r = 0.01, foraging-units moved within

a space that was small enough to increase the rate of interactions but large enough

to find rich patches. When the radius increased (r = 0.1, 1) or decreased (r = 0.001),

foraging-units either traveled longer distances and were dispersed in a larger area or

were too restricted in their space use to find enough food and continually changed
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their residence.

Taken together, these data illustrate that central-place foraging-units were re-

stricted in their movements, which in turn led to strongly connected sub-groups.

However, the longer residential moves allowed connections to form between the such

sub-groups to varying extents, whilst this was not possible in the point-to-point model.

We found that intermediate levels of overall mobility (n = 23, d = 0.04) with few

long moves and many shorter moves, for example in β = 2.5 and r = 0.1, created net-

works that were efficient at both global and local scales. As the frequency of overall

movement decreased with longer moves( r = 1, β = 2.5 : n = 15, d = 0.05) or in-

creased with shorter moves (r = 0.01, β = 2.5 : n = 34, d = 0.02; r = 0.001, β = 2.5 :

n = 28, d = 0.02, ), networks lacked dense, long-range connections necessary for global

efficiency with either highly locally efficient but fragmented networks or sparsely con-

nected sub-groups. Finally, when rate of mobility was very low (highly frequent but

very short moves, or rare and and short moves), for example in β = 1.5 and β = 4.5

(all radii), foraging-units rarely interacted with each other, and both global and local

efficiencies tended to 0. Altogether, based on our results, we show that central-place

foraging with an intermediate radius/mobility regime (between 0.01 - 0.1) maximizes

both efficiencies (Fig 5.2 inset). Furthermore, our sensitivity analyses indicate that

this result remains robust over longer time-scales (see Appendix C).

5.4.3 Population size and mobility affect network efficiency

We also tested the effect of varying population sizes on the resultant networks by

simulating populations of 50, 100, 200 foraging-units. We found that as population

size increased, regardless of the radius, the local efficiencies of the networks also

increased (Fig.5.5a). An increase in population size led to a higher rate of coincidence

between foraging-units on patches that created denser connections. This effect was

stronger when the radius was smaller (r ≤ 0.01) because the agents were restricted

within smaller areas, which led to repetitive interactions and added weight to local

connections. Moreover, when the environment was more abundant and heterogeneous

(β = 2.5) and agents could spend longer times on rich patches and formed more locally

95



(a) Local Efficiency

(b) Global Efficiency

Figure 5.5: Network efficiencies as a function of population sizes after 100 time-steps
for β = 2.5 and β = 3.5. Error bars indicate 95% confidence intervals.
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efficient networks.

On the other hand, we found that the effect of population size on global efficiency

was not as straightforward (Fig.5.5b). In environments with β = 2.5, global efficiency

increased with an increase in population size. This increase was more exaggerated

for central-place foraging (r > 0.001) and most substantial for intermediate radius

(r = 0.1). The longer residential moves enabled more foraging-units to interact and

helped create a more connected network. It is also important to note that the networks

generated by populations of a small size (n = 50) and intermediate foraging-radii were

more efficient and connected than networks from large population sizes (n = 200) that

engaged in ‘point-to-point’ (or r ≤ 0.001) foraging.

However, for less abundant and more homogeneous environments (β = 3.5), the

effect of population size was diminished and only in the larger radii (r ≥ 0.1) did

it lead to an increase in global efficiencies. When the radii were small or foraging

was similar to ‘point-to-point’, the foraging-units experienced lower encounter rates

due to shorter residential moves. Without an increase in long-range connections

which would have decreased the path length between network nodes, an increase in

population size (or number of network nodes) decreased the global efficiency (Eq. 5.1)

of the networks. When foraging-units moved longer distances and foraged within

larger radii, long-range connections compensated for a larger network and maintained

global connectivity even as population sizes increased. Overall, our results suggest

an important role of mobility strategies in mediating the effect of population sizes on

information transmission.

5.4.4 Central-place foraging networks are efficient at infor-

mation transmission

To directly test the networks for their capability of transmitting information, we con-

ducted both simple and complex contagion simulations on the most globally efficient

networks that resulted from each model and parameter combination (Acerbi et al.,

2020).

In line with efficiency results (see previous section), we found that central-place
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Figure 5.6: Simple and complex contagion trajectories. The plot shows the spread and
speed of contagion over time for different radii (columns) and beta (rows). Shaded
regions show the 25th and 75th percentiles of the distribution of trajectories at each
time-step.

foraging strategies characterized by a combination of residential and foraging moves

(e.g. r = 0.1 and β = 2.5) formed networks that allowed a rapid diffusion of infor-

mation, reaching almost every node. We found that information spread more readily

in networks with more extensive and well-connected subgroups when compared to

sparser or fragmented networks. For instance, in the point-to-point model, informa-

tion reached a maximum of around 50% of the population across environments.

In complex contagion, where multiple novel interactions were required for success-

ful transmission of information, we observed a greater effect of network structures

and a slower rate of transmission across networks. For example, for r = 0.1 and

β = 2.5, simple contagion tended to reach 75% of the nodes much faster and more

reliably (± SD) (t = 16± 7) than complex contagion which took longer time to reach

similar proportions (t = 81±67). This effect was magnified for less efficient networks

(for example, r = 1) where the transmission was much slower and more variable

(t = 207± 299) than in simple contagion (t = 33± 16) to reach the same proportion
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(75%) of nodes. In summary, we found that the networks that have high global and

local efficiencies (such as those emerging from β = 2.5 and r = 0.1) can maximize

both the reach and speed of contagions that resemble cultural transmission.

5.5 Discussion

Recent work on prehistoric and contemporary hunter-gatherer societies has shown

that their social networks are efficient at information transmission and could have

propelled cultural evolution (Migliano et al., 2017, 2020; Sikora et al., 2017). How-

ever, the different factors that could have affected the formation of efficient social con-

nectivity are not well understood. In this chapter, we assessed how hunter-gatherer

foraging patterns could have played a role in the emergence of such efficient social

networks. We modeled spatial patterns and mobility regimes emerging from central-

place foraging, a derived feature in our lineage, under different environments and

tested their implications on the emergence of social networks that are efficient at

information transmission.

Central-place foraging is characterized by foragers bringing back food to central

places (homes) while periodically changing the location of such homes according to

the availability of resources. Our results reveal that this foraging pattern under most

mobility and environmental conditions could have created social networks that are

particularly well-suited for information exchange. Previous works have suggested

that a change in spatial and residence patterns could have caused unique expansions

in early hominin social networks (Hill et al., 2011; Sikora et al., 2017). We show

that, compared to point-to-point foraging, central-place foraging could have modi-

fied spatial and residential patterns in ways that would have increased our ancestors’

social interactions, made their networks more expansive and improved their ability

to exchange information (Marwick et al., 2003). The main finding from the model

by Ramos-Fernandez et al. (Ramos-Fernández et al., 2006) showed that interactions

between ‘point-to-point’ foragers following a basic resource-maximisation rule could

result in structured networks with fission-fusion dynamics. Moreover, previous works
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have hypothesized that fission-fusion in non-human primates could have been a pre-

cursor for multi-level human social networks (Aureli et al., 2008; Grove et al., 2012a;

Grueter et al., 2020; Layton and O’Hara, 2012). Our results show that the addition

of central-place foraging can result in a more extensive fission-fusion, larger and more

efficient networks, and suggest one possible pathway that could have partly driven

such a transition.

We also find support for the idea that environment-driven variability between the

mobility regimes employed by different hunter-gatherer societies has significant conse-

quences for their social networks and hence cultural transmission (Collard et al., 2013;

Kelly, 2013; Premo, 2015; Read, 2008). Similar to Perreault and Brattingham (Per-

reault and Brantingham, 2011), we find that mobility regimes which combine short-

scale foraging and long-scale residential movements can create more efficient networks

as opposed to regimes that are primarily residential or sedentary. In heterogeneous

environments, when central-place foragers’ movements are restricted within an inter-

mediate radius with occasional long residential moves to richer resource patches, the

networks formed contain densely connected sub-groups embedded in more extensive

regional networks. Our results predict that an intermediate mobility regime (Fig 5.2

inset), thus, could balance the trade-off between networks that are highly cliquish

at the expense of global efficiency and sparser large networks with low clustering.

Such networks, similar to small-world topologies, can support information processing

at local and global scales (Derex and Boyd, 2016b; Fang et al., 2010; Vining et al.,

2019).

In line with previous research highlighting the importance of demography for cul-

tural evolution, we show that, under most circumstances, an increase in population

density can result in more efficient networks and a larger capacity for information

exchange (Grove, 2016; Powell et al., 2009; Reali et al., 2018). At the same time, we

find support for previous predictions that mobility, in addition to population density,

plays an important role in affecting cultural transmission (Grove, 2016; Pearce, 2014).

We show that residential mobility and central-place foraging can improve connectiv-

ity even in small populations (Grove, 2018), and can generate networks that are as

efficient as the networks from large populations engaged in ‘point-to-point foraging’.
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Hunter-gatherer groups with low population densities could have therefore increased

their mobility to maintain encounter rates that would have kept them viable by al-

lowing better connectivity, promoting exogamy, efficient exchange of information and

resilience to climatic variation (Brooks et al., 2018; Sikora et al., 2017). Thus, our

results also emphasize the importance of optimal connectivity and mobility within a

population to offset the adverse effects of demographic collapses on cultural trans-

mission (Henrich, 2004; Powell et al., 2009).

Our work reveals that ecologically-driven foraging and mobility decisions can gen-

erate networks that resemble the structure and composition of networks observed in

real-hunter gatherer societies. The agents or foraging units in our model represented

nuclear families which across hunter-gatherer societies normally comprise around 4-5

individuals (Binford, 2019; Lewis et al., 2014). We found that in environments with

intermediate heterogeneity (β = 2.5), central-place foraging with intermediate radii

(r = 0.1) which afforded local interactions within overlapping foraging-radii and

global interactions due to longer residential moves formed networks with multiple

and nested levels. More specifically, the emergent networks fused foraging-units into

different (≈ 15) sub-groups (analogous to bands of co-residing family units) that were

composed of 5-7 foraging-units each, and on an average half of these sub-groups (7 -

9) were inter-connected with sparse ties forming a higher level of organization of ≈ 40

foraging-units (analogous to communities or mega-bands). Such network organization

is similar to ethnographic reports across 336 contemporary hunter-gatherer societies

(Binford, 2019; Lewis et al., 2014) and estimations based on energetic constraints

(Hamilton et al., 2007, 2018b; Kelly, 2013; Marlowe, 2005; Migliano et al., 2017) that

show hunter-gatherer regional metapopulations of 100 families that can be fragmented

into co-residing bands of ≈ 10 families, which are in turn interconnected and form a

larger community (≈ 3 − 4 co-residing bands or ≈ 30 families) within the metapop-

ulation. For better comparisons with empirical data on social organization, future

studies can base their models on empirical ecological or mobility data and investigate

the emergence of multi-level sociality in more detail.

These findings hold significant implications for our species’ evolutionary history
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and the ability to develop cumulative culture (Boyd and Richerson, 1995). The de-

gree and strength of intra-and inter-regional group interactions among prehistoric

hunter-gatherers and their spatial distribution have been proposed to be key factors

for cultural transmission (Romano et al., 2020). The focus of our model was on social

network patterns that can arise solely from the derived features of hunter-gatherer

foraging-related mobility in different environments, as we wished to unravel their

implications for information transmission. Accordingly, we did not consider other

social factors that could have shaped their mobility decisions (such as cooperative

breeding, resource sharing or joint ritual participation), further structured their in-

teraction networks or potentially resulted in greater incentives and/or efficiency of

information transmission. Nonetheless, the model sheds light on the mechanisms by

which the regional-scale connectivity generated by individual central-place foraging

despite low population sizes throughout our species history. Such connectivity could

have maintained cultural diversity and complexity by allowing cultural recombina-

tion, transmission of innovations, and preventing the loss of existing culture (Creanza

et al., 2017; Dyble, 2018; Hill et al., 2014; Hovers and Belfer-Cohen, 2006; Migliano

et al., 2017).

Further research could elaborate on more complex portrayals of physical (for ex-

ample, resource distribution, traveling costs, seasonality) and social (for example,

demography, inter-forager competition, cooperation, sociality, kinship, learning) en-

vironments that would have characterized early hunter-gatherer communities. These

factors would have potentially interacted with foraging and mobility decisions and

cultural complexity (Apicella et al., 2012; Grueter and White, 2014; Shott, 1986;

Smaldino and Schank, 2012; Strassberg and Creanza, 2021). Moreover, these fac-

tors would have also interacted with the cognitive capacities of our early ancestors

(e.g. spatial memory, longer-range planning, larger neocortex, theory of mind, sym-

bolic communication) (??). Such cognitive factors would have affected the ability

to explore larger spaces, engage in central-place foraging and maintain more exten-

sive social networks, and possibly created selection pressures that paved the way for

present-day human cognition and culture (Garg and Kello, 2021; Grove and Dunbar,

2015; Hill et al., 2009; Laland and Seed, 2021; Whiten and Erdal, 2012).
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Although additional studies should also address potential selection pressures ex-

perienced by our ancestors that would have led them to start using and returning to

central places, our study corroborates early claims that central-place foraging would

have had important implications for the accumulation and transmission of tools and

other types of information (Isaac, 1978). However, our work highlights the role of mo-

bility and spatial patterns that stem from central-place foraging in our evolutionary

history. We suggest that mobility-driven networks could have led to positive feed-

back whereby a more efficient transmission of social and/or ecological information,

increased food-sharing, better resource-defenses, and a greater accumulation of ma-

terial culture at a few places would have been advantageous to central-place foragers

(Cartmill et al., 1986; Lehmann et al., 2014). This advantage could have further pro-

moted reliance on increasingly complex culture and encouraged adaptations to social

networks (for example, through kinship or trade) to efficiently generate, transmit and

sustain such culture (Cantor et al., 2015; Dyble, 2018; Grove, 2018; Hamilton et al.,

2007; Smolla and Akçay, 2019; Whallon, 2006).
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Chapter 6

Conclusion

Foraging illustrates the general problem of searching for solutions in a problem-space

that holds important implications for understanding search heuristics relevant to mul-

tiple topics like robotics, reinforcement learning, memory, and decision-making. Fur-

ther, collective search, where multiple agents interact to collectively work towards

finding a solution or accomplishing a common goal, can help us understand how

agents can optimally search for solutions together.

Efficient or optimal search behavior is dependent on how individuals or groups

balance the various trade-offs associated with search decisions. Through this disser-

tation, I have presented work spanning from individual-level to group-level foraging

and how they can efficiently search for resources under several constraints that pose

fundamental trade-offs, between exploring for new information and exploiting previ-

ously found information. It further studies how individual and group foraging affect

each other and their trade-offs. Below I first summarize the important findings from

each study presented here, their significance and broader implications, and then, dis-

cuss their overarching contributions and the missing gaps that they highlight.

Study 1

Efficient search for resources with no or limited prior knowledge requires individuals

foragers to make a series of decisions regarding how to move to find resources, how
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much time to spend exploring new areas versus exploiting the areas already accessed,

and how much effort to expend in finding resources. We began the dissertation with

an experimental study (Chapter 2) (Garg and Kello, 2021) on individual human

foragers and how they manage these trade-offs and efficiently search for resources

under various constraints. Foraging decisions can be constrained by the properties of

their physical environments, for example, resource distribution, and energy landscape.

But intrinsic and cognitive constraints such as time, mental effort, prior knowledge,

the need to return to a home-base can affect how efficient foragers manage the various

trade-offs like exploration vs exploitation, speed vs accuracy of resource detection, or

even between movement-based search that costs physical energy but at low mental

effort vs perception-based search that can cost more mental effort and planning but

preserve energetic reserves.

To test how humans manage these trade-offs to efficiently search in natural en-

vironments, we built an ecologically-valid virtual game set in the Himalayas, where

players had to find as many resources as possible given a limited energy budget that

decreased as they moved across the landscape. They could pause between their move-

ments and carefully scan their surroundings for resources which were often occluded

by trees and thus, efficient exploiting required effortful detection. We further created

a condition that increased the need for effort and planning by adding a ‘home-range’

constraint where the players need to return to a home-base to get rewarded for the

resources found. We found that irrespective of the home-range constraint, efficient

players moved in patterns that closely resembled theoretically optimum Lévy walks

with the exponent of 2 and balanced long, exploratory movements with short, ex-

ploitative ones.

However, efficient players arranged their Lévy-like displacements into trajectories

that were adaptive based on their task condition, with ‘home-range’ players moving

in subdiffusive patterns that confined their search near the home-base, while the ‘free-

range’ players showed quick, super-diffusive patterns that led to extensive exploration

of the landscape. Furthermore, this distinction in their movement-based search led

to differences in how they expended their time and mental effort in perception-based

search and planning their movements. We found that home-range players who were
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restricted in their overall exploration of the landscape, intensified their exploitative

bouts by pausing and perceptually-searching for longer durations than free-range

players. By contrast, non-efficient players of the two conditions did not differ much

in their search behavior and followed trajectories resembling a random-walk. Taken

together, Chapter 2 added important results to the foraging literature that is often

divided between optimal foraging theories (Benhamou, 2004) and random-walk based

theories (Bartumeus et al., 2005; Viswanathan et al., 1996), and showed that Lévy-

like patterns can be generated by non-random, cognitively driven search, and that

these basic patterns can be further built upon to adapt to various task constraints

and generate behaviors that are not different from OFT predictions. It also highlights

the importance of considering the role of mental effort in search decisions (de Froment

et al., 2014) and can guide future studies seeking to explore these trade-offs under

different task conditions.

Study 2

In the second study (Chapter 3) (Garg et al., 2022), we scaled up from individual-

level foraging to group-level. We built an agent-based model to study how groups

can efficiently search for resources and how individual-level search behavior affects

their performance. When collectively foraging, individual searchers can independently

search for resources at potentially higher search costs or use social information to

follow a resource patch found by others. In general, groups can benefit from such

exchange of information due to reduced search costs but excess information exchange

and social learning between individuals can reduce overall levels of exploration and

cause groups to get stuck with sub-optimal resource patches or solutions (Clark and

Mangel, 1986; Giraldeau et al., 2002; Toyokawa et al., 2019; Webster and Laland,

2012).

However, this balance between group-level exploration and exploitation can de-

pend upon the search strategies of individual foragers and their propensity to socially
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learn from each other. We found that when in groups, individual foragers should in-

crease their levels of explorative search instead of balancing explorative and exploita-

tive modes that we noted in the last chapter in order to maximize group performance.

Furthermore, our results showed that the frequency of social learners in a group can

affect the optimal level of social learning individuals should practice. We found that

in large groups where the chances of groups being stuck in local minima become more

significant, groups can increase their performance when individuals only selectively

copy other agents, thus maintaining sufficient exploration levels. We argue that these

results hold general implications for any group of multiple interacting individuals that

seeks to maximize its efficiency in searching for solutions to a problem and highlight

the importance of independent search strategies in studies of collective foraging and

problem-solving.

Study 3

While our results showed that the explorative individual strategies are optimal for

group search efficiencies, they may not maximize individual-level fitness and be evo-

lutionary stable strategies. In Chapter 4, we extended the collective foraging model

to study evolutionary dynamics of different individual search strategies distinguished

by their speed of exploration. We found that explorative strategies are generally at a

disadvantage and can be invaded by exploitative strategies that can take advantage

of the resources found by the former, and result in inefficient groups. Further, rich

patches promote higher levels of exploitation in search strategies to increase the time

spent near a resource patch than when patches are scarce, which favor faster exit from

the resource area due to a high level of competition. However, in conditions of ex-

cessive competition such as in large groups, exploitative strategies face lower payoffs

and explorative strategies can be evolutionary stable because they allow individuals

to separate from other group members, reduce the competition faced, and increase

the rate of discovering patches away from others. Furthermore, when agents could

efficiently exploit a patch through area-restricted search, explorative strategies have

even higher payoffs because they can gain a sufficient share from their findings and
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then quickly exit to find more patches. Our model adds to the social foraging and

producer-scrounger literature and shows that such dynamics can result from the com-

monly observed variation in animals and humans along the exploration-exploitation

axis (Mehlhorn et al., 2015). Further, we show how competition for resources and sim-

ple heuristics like ARS can increase payoffs from explorative strategies and increase

group efficiencies.

Study 4

In the previous two chapters, we observed the importance of social interactions and

movement patterns in modulating group and individual search efficiencies. Movement

patterns can affect social interactions and the social networks, too. In the final study

(Chapter 5) (Garg et al., 2021), we took a step back and investigated how move-

ments of individual agents driven by foraging decisions can affect social interactions

and networks, and subsequently a group’s ability to efficiently search and exchange

information. We simulated foraging-based movement patterns of hunter-gatherers,

a particular case of foragers which represents a significant portion of human evolu-

tionary history (Marlowe, 2005). In general, hunter-gatherers practice central-place

foraging where they forage within a home-range and periodically, move the location

of their home-bases to maximize their foraging returns (Venkataraman et al., 2017).

We found that short-range movements within home-ranges can create strong social

communities with frequent and long social interactions, and long-range residential

movements can help connect these different communities and result in networks that

are efficient at both global and local scales. Our work shows how central-place for-

aging could have created social networks that were efficient at information-exchange,

cultural transmission, and collective search efficiency. It adds an important dimen-

sion to the literature on hunter-gatherer networks and highlights how movement and

foraging decisions could have played in our ancestors’ social networks.

108



Final remarks

Taken together, the work presented here examined the trade-offs that arise in indi-

vidual and collective foraging, and how they can be managed under different physical

and social environments. Our work demonstrates that explore-exploit (EE) trade-offs

can manifest in different forms, and interact across scales. We show that efficient

individual-level foraging needs to balance global exploration of a landscape and local

exploitation of the areas found, and that this balance shifts based on the task and

cognitive constraints. We further highlight how EE behaviors can frame other trade-

offs like speed vs accuracy, physical search vs mental effort, and how Lévy-like search

patterns can balance these trade-offs.

However, at the level of collective foraging, we found that efficient foragers need to

balance a different trade-off between independently searching and using social infor-

mation, in addition to managing EE in their independent search strategies. We found

that in groups where exploiting social information is useful, individuals should bal-

ance social learning with explorative independent search. Furthermore, we show how

these individual-level decisions can affect group-level EE balance: excessive social

learning by individuals can reduce the group-level exploration and diminish group

performance. Our evolutionary model further investigated the evolution of explo-

rative and exploitative search strategies in groups and showed that competition for

resources can lead to groups composed of explorers and exploiters. It also shed light

on how heuristics like area-restricted search that help explorers to effectively exploit

resource patches can promote the evolution of explorative strategies and increase col-

lective gains. Finally, we looked at the effect of exploitative and explorative foraging

movements in hunter-gatherers on the structure of their social network and its abil-

ities to balance exploitation and exploration of cultural knowledge. This work thus

demonstrates how EE trade-offs can interact across scales and give rise to adaptive

behavior.

Although the studies presented in this thesis thoroughly investigated the topics at

hand, certain general caveats remain to be addressed. The general theme of the work

here is based on the principle of optimality, which considers intelligent human and an-

imal behavior as optimizing various costs and benefits associated with it. While this
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principle aids tractable modeling, it may not represent actual, real-world behavior.

Many theories suggest the presence of ‘rules of thumb’ or simple heuristics that are

favoured by natural selection and can help a forager approximate optimal strategies

without the need of ”calculating the exact solutions” (Krebs et al., 1983). Animals

and humans may practise satisficing heuristics that are not optimal but economical

to achieve fast and frugal solutions (Gigerenzer, 2011; Gigerenzer and Sturm, 2012;

Simon, 1956). In terms of the work presented here, it is possible that actual human

and animal behavior does not closely follow optimal patterns and rather adopts sim-

pler approximations of the optimal behaviors. Our work on the costs of mental effort

suggests a possible bridge between optimality and satisficing theories: by including

costs of mental effort such as planning, cognitive processing, and attention, optimality

theories may be able to more closely approximate real-world behavior.

Satisficing behaviors might be prevalent in groups, too. Our results from collective

foraging also suggest that groups may not always evolve to maximize their perfor-

mance, especially when less optimal strategies have similar payoffs as the optimal

ones. For instance, innovations should generally always increase the performance of

social groups by finding new solutions. However, innovations can be costly and risky,

while social learning can provide reasonably good solutions at lower costs. In addi-

tion, certain social learning strategies such as conformist learning may be generally

adaptive but not across all contexts and may cause individuals to learn irrelevant or

even maladaptive behaviors, for example, the spread of fake news or panic rushes in

crowds(Kendal et al., 2018; McGuigan, 2012). Nevertheless, such strategies might

be maintained in population despite their adverse effects. For example, some studies

have shown that nonhuman primates sometimes copy only instrumental behaviors,

but humans tend to copy both relevant and irrelevant behaviors (Horner and Whiten,

2005; Jagiello et al., 2022), which might form the bedrock of our highly adaptive cul-

tural abilities.

The other major caveat of these studies is that they focus on pattern-level behav-

ior and largely ignore the underlying mechanisms. The thesis cements the optimality

of Lévy-like patterns in general search processes, but the mechanisms that can gener-

ate such patterns need further investigation. We mention a few putative mechanisms,

110



such as trade-offs between exploration and exploitation, speed and accuracy, and

optimal foraging behavior. However, while they provide a way to model foraging de-

cisions, they do not provide details on the mechanisms that underlie them. Similarly,

the role of individual learning and cognition in the efficient exchange of information

and social learning needs to be given more attention. For example, a better under-

standing of the goals of other members, a better ability to estimate payoffs from an

option would lead to more efficient social learning, information exchange, and even

communication (Heyes, 2016; Laland et al., 2011), and in turn, affect the optimal

social learning strategies.

Finally, the studies presented here consider behavior at different levels, from in-

dividuals to groups and networks, and to an extent, considers the interplay between

them. However, the interplay between these levels has been so far understudied.

For instance, optimal foraging and Lévy walk theories have primarily focused on

individual-level behavior, but, as the thesis suggests, the predictions from these theo-

ries change when we consider group-level behavior. Thus, it is essential to extend these

theories to incorporate social contexts. Further, the interplay between individual-level

behavior on social networks and structures has been largely overlooked, too. For ex-

ample, variation between individuals in their exploratory behavior might affect the

positions they acquire in social networks and determine how information is exchanged

across the networks. Conversely, social environment, or the immediate social neigh-

borhood of an individual may affect the strategies it adopts.

In conclusion, the dissertation began with a study on individual foraging and

the various trade-offs of exploration and exploitation, speed and accuracy that an

individual forager faces. It then scaled up to group foraging and looked at how

individuals in groups face modified trade-offs and how their search strategies affect

group efficiency. In addition, it looked at the evolution of explorative and exploitative

search strategies in groups and its implications for group behavior. Finally, it also

considered the effect of individual foraging and movement decisions on social networks

and their consequences on human cultural and social evolution. Going forward, future

studies can build upon the work presented here and address their gaps towards a

clearer picture of foraging and search processes, and adaptive behavior at multiple
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levels of organization.

.
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Appendix A

Appendix for Chapter 3

Figure A.1: Examples of the resource distributions generated by the power-law growth
algorithm. The color-map indicates the density estimates (calculated using Gaussian
Kernel Density Estimation) of resources present at a location. Clockwise: NR =
1000, β = 1.1; NR = 1000, β = 2; NR = 1000, β = 3; NR = 10000, β = 1.1; NR =
10000, β = 2; NR = 10000, β = 3.

.
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Figure A.2: The different individual search strategies used in the model after 1000
time-steps.

A.1 Methods

Trajectory Analysis

We defined a step as a continuous straight-line movement which could be truncated

by finding a resource, finding another agent, or completing a random walk. For every

run, we calculated the observed Lévy exponent (µ′) for every individual trajectory and

took their average to estimate the lévy exponent at the group-level (see Figs. A.7a

and A.7b for examples of the path distributions). We used the powerlaw package in

Python to fit the trajectories to truncated power-laws alstott2014powerlaw.
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Figure A.3: The effect of α and distance from another agent on the probability to
use social information (P (s)).

.

Cluster Analysis

We used DBSCAN (Density-based spatial clustering of applications with noise) to

detect sub-groups/clusters of agents at every time-step during the simulation. A

cluster was defined as a group of minimum of 3 agents with a maximum distance

threshold (d) of 0.1. If a cluster detected at time, t was also detected at t + 1,

we counted that as a single cluster, added a unit to the duration of the cluster, and

updated the number of agents in it. A new cluster at time, t was defined if its centroid

was not within d of any of the clusters detected at the previous time-step, t - 1.
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Figure A.4: A flowchart describing the rules that agents followed in the model.

Figure A.5: The advantage of minimally-selective social learning (α = 10−5) relative
to more selective social learning (α = 10−2) for different Lévy walks and in different
resource environments. Dashed line indicates when the two levels of social learning
selectivity are equivalent.
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Figure A.6: Proportion of informed turns taken by agents, for β = 3. Error bars
indicate 95% confidence intervals.

A.2 Results

Lévy distribution plots

Our results show that under most conditions, the observed Lévy exponents remain

similar across agents within a given run (Figs. A.7a, A.7b). A larger group size

increases the variability within the population because not every agent explores or

exploits equally. Similarly, an intermediate value of α ≈ 10−2 increases variability be-

tween group-members because not every agent is likely to either produce or scrounge

which alters their movement patterns.

Population-level variability and correlations between observed Lévy expo-

nents and search efficiencies

When the original search strategy was explorative with µ = 1.1, agents increased

their efficiency by adding short steps to their trajectories that helped them exploit

resources and caused µ′ → 2 (Fig. A.8(a)). However, when resources were rich

(NR = 10000) and agents needed to engage in exploitative search more, higher search

efficiencies corresponded with µ′ → 3 (Fig. A.8(b)). Furthermore, in conditions with
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(a) NA = 10 (b) NA = 50

Figure A.7: Example of CCDF plots of displacements (l) from individual agents’
trajectories in a simulation. Different colors show the probability distribution for in-
dividual agents. Dashed lines depict the theoretical power-law fit. µ′, σ, D represents
the mean observed Lévy exponent ± standard deviation, mean MLE error estimate,
mean Kolmogorov-Smirnov distance of all agents in the simulation, respectively.
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dense clusters and large groups (NA = 50) (Fig. A.8(d)), agents with µ′ > 3 were

more efficient than agents with µ′ ← 2 because it was advantageous to invest in

exploiting rich resource clusters than explore the environment with long steps.

These plots also show the population-level variability in search efficiencies and

µ′. We can see that agents within a population varied more when groups were large

(NA = 50) (Fig. A.8(d)). Since we stopped the simulation when a group finished

30% of resources, our simulations did not ensure that every agent consumed the

same amount of resources. This variability was further exaggerated in large groups

because there was higher competition for resources between agents and consumption

of resources by a few agents could quickly end simulations. In addition, we can

see higher variability in µ′ and search efficiency when social learning strategy was

selective (α = 10−2) than when they were minimally-selective (α = 10−5) or only

searched independently (α = 100). The inherent variability in selectively using social

information can explain this effect.

Temporal analyses

To understand how resources deplete during the course of simulations and how that

affects group performance and agent movements, we plotted percent of resources

depleted, mean search efficiency and observed Lévy exponent (µ′ ) as a function of

time (Figs A.9, A.10). The amount of resources depleted and cumulative mean search

efficiency were calculated at every time-step and every 50 time-steps, respectively. We

calculated µ′ by analyzing path-length distributions within bins of 200 time-steps. In

other words, µ′ value for time, t represents agents’ movement patterns only between

the period of t− 200 and t.

Our results indicate that in highly clustered environments, resources depleted in a

saltatory fashion, where once a resource cluster was discovered, agents engaged in ex-

ploitative search that increased their µ′, and increased their search efficiency. On the

other hand, when a resource cluster was depleted, agents’ shifted back to exploratory

search that decreased their µ′ and search efficiency. However, these patterns were

affected by group size (NA), resource density (NR), and social learning strategy (α).

For instance, when resource density (NR = 1000) and the amount of social learning
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(a) NA = 10; NR = 1000 (b) NA = 10; NR = 10000

(c) NA = 50; NR = 1000 (d) NA = 50; NR = 10000

Figure A.8: Correlation between individual search efficiency (y-axis) and observed Lévy
exponent (µ′) in different simulations for β = 3 and different values of α and µ. Different
colors are used to distinguish between different runs/simulations

low (NA = 10, α = 10−2), resource clusters were not exploited instantaneously in the

beginning of the simulation (see Fig. A.9b). In contrast, for α = 10−5, agents readily

exploited social information and resources depleted faster right from the beginning of

the simulation (Fig. A.9a). Furthermore, the saltatory pattern or alternating periods

of exploration and exploitation were more pronounced in rich clusters (NR = 10, 000)

than in less dense clusters (NR = 1000) because agents had to spent more time

exploiting resource clusters when they were dense and rich.

The temporal dynamics also show the effect of excessive social learning in large

groups (NA = 50) and dense resource clusters (NR = 10, 000). In these conditions,
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our results (see main text, section 3.4) show that minimally-selective social learning

(α = 10−5) is less efficient than a selective strategy (α = 10−2) because the former

causes agents to excessively converge onto one or two resource clusters while leaving

others unexplored. In the plots of temporal dynamics (Fig. A.10c), we can see that

when resources depleted initially (between 0-1000 time-steps), the Lévy exponent

increased rapidly as agents converged to a cluster. This increase was then followed by

a shift to explorative search and slower resource depletion. On the other hand, when

agents were selective in their social learning strategy (Fig. A.10d), resources depleted

steadily and continuously, and agents exhibited a more exploitative search because

they simultaneously exploited multiple resource clusters which decreased competition

and allowed them to exploit clusters for a longer time.

subsectionProducer-scrounger

We found that when individuals were exploratory, small groups (NA) could afford

to be composed of purely scroungers (Fig. A.11a). But as individual exploration

decreased, the optimal composition involved a mix of producers and scroungers (with

µ → 3 or large group sizes). We also found that in cases when more social learners

were present (NA = 50; β = 3) (Fig. A.11b), the search efficiency of a group with

a mix of producer-scroungers (η ≈ 2) was lower than a group composed of selective

social learners (η10−2 ≈ 3).

Cluster analysis

We found that subgroup sizes and their duration increased with an increase in group

size and resource abundance. Subgroup size was inversely proportional to how selec-

tive agents were in using social information, with largest subgroups for minimally-

selective social learning (α = 10−5). When compared to the most efficient strategies,

we can see that the optimal subgroup size was ≈ 5− 6 agents in the model. The du-

ration was substantially affected by the individual search strategy given by µ, where

µ = 3 caused convergence between agents for the longest durations. However, this

effect was more significant when the group size was smaller (NA = 10) because the

agents spent more time exploiting a resource cluster than when there were more agents

present.
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(a) Minimally-selective social learning (b) Selective social learning

(c) Minimally-selective social learning (d) Selective social learning

Figure A.9: Example of temporal dynamics of resource depletion (blue), mean search
efficiency (green) and observed Lévy exponent (µ′) (red) from one simulation/run for β = 3,
NA = 10.

We also looked at how many sub-groups were formed simultaneously under dif-

ferent conditions. We found that when group size was large (NA = 50), less selective

social learning (α → 0) created larger (8-10 agents) and fewer(2-3) sub-groups than

selective social learning (α = 10−2). Selective social learning created smaller (6-8

agents) and multiple (3-4) sub-groups. We would like to note that although the plot

shows largest number of sub-groups formed even when there was no social learning

(α → 1), this effect is merely an artifact of larger group sizes. When groups were

large, the probability of multiple agents being close to each other was higher than
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(a) Minimally-selective social learning (b) Selective social learning

(c) Minimally-selective social learning (d) Selective social learning

Figure A.10: Example of temporal dynamics of resource depletion (blue), mean search
efficiency (green) and observed Lévy exponent (µ′) from one simulation/run for β = 3,
NA = 50.

when group were small.
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(a) NA = 10 (b) NA = 50

Figure A.11: Performance of groups with different producer-scrounger proportions.

124



(a) Mean size of clusters/sub-groups (b) Mean duration of clusters/sub-groups

(c) Mean number of simultaneous
clusters/sub-groups (d) Screenshot

Figure A.12: (a-c) Mean size, duration and simultaneous number of clusters/subgroups
of agents that formed during simulations, for β = 3. (d)Sub-grouping in groups of size 50
(β = 3;Nr = 10000). Left: When agents use a minimally-selective strategy, they eventually
coalesce into a large group of agents. Right: A more selective use of social information
allows agents to form multiple sub-groups of agents that increase the group’s efficiency.
Agents are depicted in blue and resources in green.

125



Appendix B

Appendix for Chapter 4
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Figure B.1: Group search efficiency η for the ARS model as a function of social
selectivity parameter α, Lévy exponent µ, resource density NR. Error bars indicate
95% confidence intervals.

Figure B.2: Mean percentages of different search strategies (columns) over the last
1000 generations for 10 runs (rows) and for α = 10−5

.
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Figure B.3: Mean percentages of different search strategies (columns) over the last
1000 generations for 10 runs (rows) and for α = 10−2

.
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Appendix C

Appendix for Chapter 5

C.1 Methods

In the original formulation, weights represent distance, meaning information travels

more slowly along heavier edges. In our models, weights represent social proximity

and, therefore, we use their inverse when calculating efficiency. The underlying logic

is the same: networks where all nodes are close to one another are more efficient

than those where larger distances must be traveled before connecting any two given

vertices.

Global efficiency:

Let N be all sets of nodes in the network, n the number of nodes in the network,

and w the edge weights.

Ew =
1

n

∑
i∈N

∑
j∈N,j ̸=i(d

w
ij)

−1

n− 1

Local efficiency:

Let nodes i and j be connected through edges with weight wij, let ki be the degree

of node i, and let djh(Ni) be the length of the shortest path between j and h, including

only i’s direct ties.

129



Ew
loc =

1

n

∑
i∈N

∑
j,h∈N,j ̸=i(wijwih[d

w
jh(Ni)]

−1)
1
3

ki(ki − 1)

The original formulation of shortest distance calculations consider weights as dis-

tance (e.g. an edge of weight (wij) 4 between two nodes(i, j) will be considered to

have a longer distance, dij = 4 than another edge with lower weight, wik = 1 ). In our

model, weights represent social proximity, and larger weights should decrease path

length and speed up information transmission. To correctly represent this, we take

the inverse of edge weights and add a unit to the inverses (e.g., dij would change to
1
4
+ 1 = 1.25, and dik = 2), such that each edge has a weight 1 and the maximum

efficiency of an unweighted equivalent network is 1. It is important to note that we

only use this transformation when calculating efficiencies. The contagion simulations

below use the weights as the simulations produce them without any transformations.

Louvain community detection:

Louvain detection method is a hierarchical clustering algorithm, that recursively

merges communities into a single node to find clusters with high modularity. It

compares the density of connections within a community to the density of connections

expected from a random network.

C.2 Results

Resource depletion To better describe the workings of the model, we calculated

a metric to show how the resources deplete within an environment for different for-

aging strategies. First of all, the environments not only vary in their heterogeneity

but also in their total resource content. Environments with lower beta values are

more abundant overall (see β = 1.5) than the environments with higher beta values

(see β = 4.5). Secondly, when the environment is abundant (β = 1.5), foragers do

not move or coincide much causing the patches to deplete in a linear fashion. How-

ever, when the environment is heterogeneous and some patches are richer than others

(β > 1.5), foragers coincide at those rich patches more frequently and the patches

deplete in a non-linear fashion. These patterns are congruent with realistic trends,

130



whereby resource clustering leads to agents coinciding in the same patches and thus

making them deplete disproportionately faster than the surrounding ones. We also

found that the foraging strategy with different radii also effects the rate of resource

depletion. When the radius is large (r = 1), foragers are not constrained within their

foraging/logistical radius and can move longer distances to consume rich patches,

the resources deplete at very fast rate. But when the radius is smaller, the patches

deplete at a lower rate.

Sensitivity analyses

To check the robustness of our results, we ran the simulation for 1000 time-steps

and calculated network metrics (number of total interactions, number of unique in-

teractions, number of components, local and global efficiency) every 100 time-step.

We found that our results were consistent regardless of the number of time-steps that

the models ran, and the networks created by central-place foragers with intermediate

radius in heterogeneous environments were both globally and locally efficient.

We found that in most of the environments, the efficiency parameters plateaued

after certain time-steps. In environments with intermediate to low heterogeneity

(β ≥ 2.5), the number of interactions between foragers grew quickly at first and then

decayed as foragers depleted the resources. As resources depleted, patches could no

longer sustain large numbers of foragers, and the local efficiency remained relatively

constant after 100-time steps (Fig. C.1).

However, we found that the global efficiency continued to grow for a longer dura-

tion, especially in β = 2.5 (Fig. C.7). As the foragers continued to move across the

landscape and interacting with previously unconnected foragers (see number of unique

interactions in Figs. C.9, C.8), the number of sub-groups/components decreased (Fig.

C.6) and the network grew in size that made the networks more globally efficient.

When the environment was abundant with many rich patches (β = 1.5) and the rate

of patch depletion was low, foragers moved less frequently and continued interacting

with previously connected foragers (with negligible unique interactions across 1000

time-steps). This caused local efficiency to continue growing over the 1000 time-steps

but global efficiency stayed constant at a minimal value.
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Figure C.1: Resource depletion in the model environment with 100 foragers over 1000
time-steps.
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Figure C.2: Interaction per turn for all parameter combinations.
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Figure C.3: Components per turn for all parameter combinations.
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Figure C.4: Interactions per turn for 1000 time-steps.
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Figure C.5: Cumulative local efficiency for 1000 time-steps.
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Figure C.6: Components per turn for 1000 time-steps.

137



Figure C.7: Cumulative global efficiency for 1000 time-steps.
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Figure C.8: Median of unique number of interactions per turn for 1000 time-steps.

139



Figure C.9: Average number of unique interactions per turn for 1000 time-steps.
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Adjusting searching statistics to resource availability in microzooplankton. Pro-

ceedings of the National Academy of Sciences of the United States of America, 100

(22):12771–12775, 2003. ISSN 00278424. doi: 10.1073/pnas.2137243100. URL

www.pnas.orgcgidoi10.1073pnas.2137243100.

F. Bartumeus, M. G. Da Luz, G. M. Viswanathan, and J. Catalan. Animal search

strategies: A quantitative random-walk analysis. Ecology, 86(11):3078–3087, 11

2005. ISSN 00129658. doi: 10.1890/04-1806. URL http://doi.wiley.com/10.

1890/04-1806.

142

www.nature.com/naturecommunications
www.nature.com/naturecommunications
http://www.worldscientific.com/doi/abs/10.1142/S0218348X07003460
http://www.worldscientific.com/doi/abs/10.1142/S0218348X07003460
https://www.pnas.org/content/pnas/105/49/19072.full.pdf
https://www.pnas.org/content/pnas/105/49/19072.full.pdf
www.pnas.orgcgidoi10.1073pnas.2137243100
http://doi.wiley.com/10.1890/04-1806
http://doi.wiley.com/10.1890/04-1806


F. Bartumeus, P. Fernández, M. G. da Luz, J. Catalan, R. V. Solé, and S. A. Levin.
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K. Garg and C. T. Kello. Efficient Lévy walks in virtual human foraging. Scientific

Reports, 11(1):5242, 12 2021. ISSN 20452322. doi: 10.1038/s41598-021-84542-w.

URL https://www.nature.com/articles/s41598-021-84542-w.

K. Garg, C. Padilla-Iglesias, N. Restrepo Ochoa, and V. B. Knight. Hunter–gatherer

foraging networks promote information transmission. Royal Society open science,

8(12):211324, 2021.

K. Garg, C. T. Kello, and P. E. Smaldino. Individual exploration and selective

social learning: Balancing exploration-exploitation trade-offs in collective foraging.

Journal of the Royal Society Interface, 19(189):20210915, 2022.

G. Gigerenzer. Heuristics - The foundations of adaptive behavior. 2011. ISBN

9780199744282.

151

http://dx.plos.org/10.1371/journal.pone.0006587
https://www.nature.com/articles/s41598-021-84542-w


G. Gigerenzer and T. Sturm. How (far) can rationality be naturalized? Synthese,

187(1):243–268, 2012.

L. A. Giraldeau. Group foraging: the skill pool effect and frequency-dependent learn-

ing. American Naturalist, 124(1):72–79, 1984. ISSN 00030147. doi: 10.1086/284252.

L.-A. Giraldeau and T. Caraco. Social foraging theory. Princeton University Press,

2018.

L.-A. Giraldeau, T. J. Valone, and J. J. Templeton. Potential disadvantages of using

socially acquired information. 2002. doi: 10.1098/rstb.2002.1065.

L.-A. Giraldeau, P. Heeb, and M. Kosfeld. Investors and Exploiters in Ecology and

Economics: Principles and Applications, volume 21. MIT Press, 2017.

R. L. Goldstone and T. M. Gureckis. Collective behavior. Topics in cognitive science,

1(3):412–438, 2009.

R. L. Goldstone, T. N. Wisdom, M. E. Roberts, and S. Frey. Learning Along

With Others. In Psychology of Learning and Motivation - Advances in Re-

search and Theory, volume 58, pages 1–45. Academic Press Inc., 1 2013. doi:

10.1016/B978-0-12-407237-4.00001-3.

C. J. Gomez and D. M. Lazer. Clustering knowledge and dispersing abilities enhances

collective problem solving in a network. Nature Communications, 10(1):1–11, 12

2019. ISSN 20411723. doi: 10.1038/s41467-019-12650-3. URL https://doi.org/

10.1038/s41467-019-12650-3.

M. Grove. Hunter-gatherer movement patterns: Causes and constraints. Journal of

Anthropological Archaeology, 2009. ISSN 10902686. doi: 10.1016/j.jaa.2009.01.003.

M. Grove. Population density, mobility, and cultural transmission. Journal of Ar-

chaeological Science, 2016. ISSN 10959238. doi: 10.1016/j.jas.2016.09.002.

M. Grove. Hunter-gatherers adjust mobility to maintain contact under climatic vari-

ation. Journal of Archaeological Science: Reports, 2018. ISSN 2352409X. doi:

10.1016/j.jasrep.2018.04.003.

152

https://doi.org/10.1038/s41467-019-12650-3
https://doi.org/10.1038/s41467-019-12650-3


M. Grove and R. Dunbar. Local objects, distant symbols: fission-fusion social systems

and the evolution of human cognition. 2015.

M. Grove, S. J. Lycett, and P. R. Chauhan. The Quantitative Analysis of Mobility:

Ecological Techniques and Archaeological Extensions. 2010. ISBN 9781441968609.

doi: 10.1007/978-1-4419-6861-6.

M. Grove, E. Pearce, and R. I. Dunbar. Fission-fusion and the evolution of hominin

social systems. Journal of Human Evolution, 2012a. ISSN 00472484. doi: 10.1016/

j.jhevol.2011.10.012.

M. Grove, E. Pearce, and R. I. Dunbar. Fission-fusion and the evolution of ho-

minin social systems. Journal of Human Evolution, 62(2):191–200, 2 2012b. ISSN

00472484. doi: 10.1016/j.jhevol.2011.10.012.

C. Grueter and E. Leadbeater. Insights from insects about adaptive social information

use. Trends in ecology & evolution, 29(3):177–184, 2014.

C. C. Grueter and D. R. White. On the emergence of large-scale human social

integration and its antecedents in primates. Structure and Dynamics, 7(1), 2014.

C. C. Grueter, X. Qi, D. Zinner, T. Bergman, M. Li, Z. Xiang, P. Zhu, A. B. Migliano,

A. Miller, M. Krützen, J. Fischer, D. I. Rubenstein, T. N. Vidya, B. Li, M. Cantor,

and L. Swedell. Multilevel Organisation of Animal Sociality, 2020. ISSN 01695347.

C. Grüter and E. Leadbeater. Insights from insects about adaptive social information

use. Trends in Ecology and Evolution, 29(3):177–184, 2014. ISSN 01695347. doi:

10.1016/j.tree.2014.01.004.
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