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Abstract

Birth-death processes (BDPs) are continuous-time Markov chains that track the number of

“particles” in a system over time. While widely used in population biology, genetics and ecology,

statistical inference of the instantaneous particle birth and death rates remains largely limited to

restrictive linear BDPs in which per-particle birth and death rates are constant. Researchers often

observe the number of particles at discrete times, necessitating data augmentation procedures such

as expectation-maximization (EM) to find maximum likelihood estimates. For BDPs on finite

state-spaces, there are powerful matrix methods for computing the conditional expectations

needed for the E-step of the EM algorithm. For BDPs on infinite state-spaces, closed-form

solutions for the E-step are available for some linear models, but most previous work has resorted

to time-consuming simulation. Remarkably, we show that the E-step conditional expectations can

be expressed as convolutions of computable transition probabilities for any general BDP with

arbitrary rates. This important observation, along with a convenient continued fraction

representation of the Laplace transforms of the transition probabilities, allows for novel and

efficient computation of the conditional expectations for all BDPs, eliminating the need for

truncation of the state-space or costly simulation. We use this insight to derive EM algorithms that

yield maximum likelihood estimation for general BDPs characterized by various rate models,

including generalized linear models. We show that our Laplace convolution technique

outperforms competing methods when they are available and demonstrate a technique to

accelerate EM algorithm convergence. We validate our approach using synthetic data and then

apply our methods to cancer cell growth and estimation of mutation parameters in microsatellite

evolution.
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1 Introduction

A birth-death process (BDP) is a continuous-time Markov chain that models a non-negative

integer number of particles in a system (Feller, 1971). The state of the system at a given time

is the number of particles in existence. At any moment in time, one of the particles may

“give birth” to a new particle, increasing the count by one, or one particle may “die”,

decreasing the count by one. BDPs are popular modeling tools in a wide variety of

quantitative disciplines, such as population biology, genetics, and ecology (Thorne et al,

1991; Krone and Neuhauser, 1997; Novozhilov et al, 2006; Renshaw, 2011). For example,

BDPs can characterize epidemic dynamics (Bailey, 1964; Andersson and Britton, 2000),

speciation and extinction (Nee et al, 1994; Nee, 2006), evolution of gene families (Cotton

and Page, 2005; Demuth et al, 2006), and the insertion and deletion events for probabilistic

alignment of DNA sequences (Thorne et al, 1991; Holmes and Bruno, 2001).

Traditionally, most modeling applications have used the “simple linear” BDP with constant

per-particle birth and death rates, which arises from an assumption of independence among

particles and no background birth and death rates. When individual birth and death rates

instead depend on the size of the population as a whole, the model is called a “general”

BDP. Previous statistical estimation in BDPs has focused mainly on estimating the constant

per-particle birth and death rates of the simple linear BDP based on observations of the

number of particles over time. However, the simple linear BDP is often unrealistic, and

nonlinear dependence of the birth and death rates on the current number of particles

provides the means to model more sophisticated and realistic patterns of stochastic

population dynamics in a wide variety of biological disciplines (Novozhilov et al, 2006). For

example, populations sometimes exhibit logistic-like growth as their number approaches the

carrying capacity of their environment (Tan and Piantadosi, 1991). In genetic models, the

rate of new offspring carrying an allele often depends on the proportions of both individuals

already carrying the allele and those who do not (Moran, 1958). In coalescent theory, the

rate of coalescence changes with the square of the number of lineages (Kingman, 1982). In

addition, researchers may wish to assess the influence of covariates on birth and death rates

by fitting a regression model (Kalbfleisch and Lawless, 1985; Liu et al, 2007).

Analytic studies of general BDPs have provided insight into theoretical properties including

stationary distributions, moments, transition probabilities, and other quantities of interest.

Karlin and McGregor (1957a,b) introduce a representation of BDP transition probabilities

using orthogonal polynomials and spectral measure, but these can be extremely difficult to

derive for general BDPs (Novozhilov et al, 2006; Renshaw, 2011). Several authors have

characterized BDP transition probabilities and passage times in terms of continued fraction

expressions for the Laplace transform of these quantities (Murphy and O’Donohoe, 1975;

Jones and Magnus, 1977; Bordes and Roehner, 1983; Guillemin and Pinchon, 1998, 1999;
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Flajolet and Guillemin, 2000; Crawford and Suchard, 2012). However, none of these authors

address the task of statistical inference using data observed from a general BDP.

Progress in parameter estimation for general BDPs has also typically been limited to

continuous observation of the process (Moran, 1951, 1953; Anscombe, 1953; Darwin, 1956;

Wolff, 1965; Reynolds, 1973; Keiding, 1975). However, in practice researchers may

observe data from BDPs only at discrete times through longitudinal observations. Estimating

transition rates in continuous-time Markov processes using discrete observations is difficult

since the state path between observations is not observed. Furthermore, direct analytic

maximization of the likelihood for general BDPs remains infeasible for partially observed

samples since the likelihood usually cannot be written in closed-form. Despite these

challenges, several researchers have made progress in estimating parameters of the simple

linear BDP under discrete observation (Keiding, 1974; Thorne et al, 1991; Holmes and

Bruno, 2001; Rosenberg et al, 2003; Dauxois, 2004). However, none of these developments

provides a robust method to find exact maximum likelihood estimates (MLEs) of parameters

in discretely observed general BDPs with arbitrary birth and death rates.

A major insight comes from the fact that the likelihood of the continuously observed process

has a simple form which easily yields expressions for estimation of rate parameters. This

fact is the basis for expectation-maximization (EM) algorithms for maximum likelihood

estimation in missing data problems (Dempster et al, 1977). In finite state-space Markov

chains, the relevant conditional expectations (the E-step of the EM algorithm) can often be

computed efficiently (Minin and Suchard, 2008); Hobolth and Jensen (2011) discuss

eigendecomposition, uniformization, and integration of matrix exponentials. Using these

matrix-algebraic tools, several researchers have derived EM algorithms for estimating

transition rates in this context (Lange, 1995a; Holmes and Rubin, 2002; Hobolth and Jensen,

2005; Bladt and Sorensen, 2005; Metzner et al, 2007; Hobolth and Jensen, 2011).

Unfortunately, finding these conditional expectations for general BDPs poses challenges

since the joint distribution of the states and waiting times (or the corresponding generating

function) is usually not available in closed form. Notably, Holmes and Bruno (2001);

Holmes and Rubin (2002) and Doss et al (2013) are able to find analytic expressions or

numerical approximations for these expectations in EM algorithms for certain BDPs whose

rates depend linearly on the current number of particles. While these developments are

promising, there remains a great need for estimation techniques that can be applied to more

sophisticated infinite state-space BDPs under a variety of sampling scenarios. Indeed, more

complex and realistic models like those reviewed by Novozhilov et al (2006) may be of little

use to applied researchers if no practical method exists to estimate their parameters.

Here we seek to fill this apparent void by providing the first framework for deriving EM

algorithms for estimating the parameters of a discretely sampled general BDP. We first

formally define the general BDP and give an exact expression for the Laplace transform of

the transition probabilities in the form of a continued fraction. We then give the likelihood

for continuously-observed BDPs and outline the EM algorithm. Next, we describe a novel

method to efficiently compute the expectations of the E-step for BDPs with arbitrary rates.

Since these expectations are convolutions of transition probabilities, we perform the

convolution in the Laplace domain, and then invert the Laplace transformed expressions to
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obtain the desired conditional expectation. This technique obviates the costly numerical

integration, matrix computations, or repeated simulation that have plagued previous

approaches. We provide examples of the maximization step for several different classes of

BDPs and demonstrate a technique for accelerating convergence of the EM algorithm. We

show that our method for performing the E-step is faster than competing simulation methods

and matrix methods that require truncation of the state-space. We validate our method using

simulated data and conclude with two applications. First, we analyze lymphoma cell growth

under different treatment conditions by parameterizing the birth and death rates as a

generalized linear model. Next, we study the evolution of DNA microsatellites in humans

and chimpanzees to address an open question in evolutionary genomics.

2 General BDPs and their EM algorithms

2.1 Formal description and transition probabilities

Consider a general BDP X(τ) counting the number of particles k in existence at times τ ≥ 0.

From state X(τ) = k, transitions to state k +1 happen with instantaneous rate λk, and

transitions to state k − 1 happen with instantaneous rate μk. The transition rates λk and μk

may depend on k but are time-homogeneous. In this paper, we assume that X(τ) is not

explosive, i.e. X(τ) does not “run away” to infinity in finite time. As we show below, it is

often necessary to evaluate finite-time transition probabilities to derive efficient EM

algorithms for estimation of arbitrary birth and death rates in general BDPs. This proves

useful both in completing the E-step of the EM algorithm and in computing incomplete data

likelihoods for validation of our EM estimates. For a starting state i ≥ 0, the finite-time

transition probabilities Pij(τ) = Pr(X(τ) = j | X(0) = i) obey the system of ordinary differential

equations

(1)

for j ≥ 1 with Pii(0) = 1 and Pij(0) = 0 for i ≠ j (Feller, 1971).

For some simple parameterizations of λk and μk, closed-form solutions exist for the

transition probabilities Pij(τ), but this is not possible for most models. Karlin and McGregor

(1957b) show that for any parameterization of λk and μk, it is possible to express the

transition probabilities in terms of orthogonal polynomials. However, in practice these

special polynomials are difficult to find, and even when they are available, they rarely yield

solutions in closed-form or expressions that are amenable to computation (Novozhilov et al,

2006; Renshaw, 2011). In contrast, the continued fraction method we outline below does not

require additional model-specific insight beyond specification of λk and μk.

To solve for the transition probabilities, it is advantageous to work in the Laplace domain

(Karlin and McGregor, 1957b). This transformation also proves essential in maintaining

numerical stability of transition probabilities in general BDPs and in computing the

conditional expectations necessary for the EM algorithm derived in a subsequent section.

Let
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(2)

be the Laplace transform of Pij(τ) and let δij = 1 if i = j and zero otherwise. Laplace

transforming equation (1) yields

(3)

Letting i = 0 and rearranging (3), we obtain the recurrence relations

(4)

We can inductively combine these expressions for j = 1, 2, 3, … to arrive at the well-known

generalized continued fraction

(5)

This is an exact expression for the Laplace transform of the transition probability P00(τ). In

(5), let a1 = 1 and aj = −λj−2μj−1, and let b1 = s + λ0 and bj = s + λj−1 + μj−1 for j ≥ 2. Then

(5) becomes

(6)

We can write this more compactly as

(7)

The kth convergent of f0,0(s) is

(8)

where Ak(s) and Bk(s) are the numerator and denominator of the rational function . The

transition probabilities Pij(τ) for i, j > 0 can be derived in continued fraction form by

combining (3) and (5) to obtain
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(9)

(Murphy and O’Donohoe, 1975; Crawford and Suchard, 2012).

Although the Laplace transforms of the transition probabilities are generally still not

available in closed-form, a continued fraction representation is desirable for several reasons:

1) continued fraction representations of functions often converge much faster than

equivalent power series; 2) there are efficient algorithms for evaluating continued fractions

to a finite depth; and 3) there exist methods for bounding the error of truncated continued

fractions (Bankier and Leighton, 1942; Wall, 1948; Blanch, 1964; Lorentzen and

Waadeland, 1992; Craviotto et al, 1993; Abate and Whitt, 1999; Cuyt et al, 2008). For an

arbitrary BDP, we recover the transition probabilities through numerical inversion of the

Laplace-transformed expressions. We evaluate the continued fraction to a monitored depth

that controls the overall error and generates stable approximations to the transition

probabilities unattainable by previous methods (Murphy and O’Donohoe, 1975;

Parthasarathy and Sudhesh, 2006; Crawford and Suchard, 2012). We derive approximate

error bounds for this computation in the Appendix.

The ability to compute transition probabilities for general BDPs with arbitrary rate

parameterizations proves useful in two ways. First, if we interpret finite-time transition

probabilities as functions of an unknown parameter vector θ, then Pab(t) given θ returns the

likelihood of a discrete observation from a BDP such that X(0) = a and X(t) = b, where the

trajectory in time t between states a and b is unobserved. Second, transition probabilities

play an important role in computing conditional expectations of sufficient statistics, as we

shall see below.

2.2 Likelihood expressions and surrogate functions

With a formal description of a general BDP and the finite-time transition probabilities in

hand, we now proceed with our task of estimating the parameters of a general BDP using

discrete observations. Given one or more independent observations of the form Y = (X(0) =

a, X(t) = b, t) from a general BDP, we wish to find maximum likelihood estimates of the rate

parameters λk and μk for k = 0, 1, 2, …. We will assume that the birth and death rates at state

k depend on both k and a finite-dimensional parameter vector θ, so that the form of λk(θ) and

μk(θ) is known for all k.

For a single realization of the process starting at X(0) = a and ending at X(t) = b, let Tk be the

total time spent in state k. Let Uk be the number of “up” steps (births) from state k, and let

Dk be the number of “down” steps (deaths) from state k. Let the total number of up and

down steps in a realization of the process be denoted by  and 

respectively. We also define the total particle time,
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(10)

that counts the amount of time lived by each particle since time τ = 0. The total elapsed time

is . We demonstrate these concepts schematically in Figure 1.

The log-likelihood for a continuously observed process takes a simple form when we sum

over all possible states k (Wolff, 1965):

(11)

However, when a BDP is sampled discretely such that only X(0) = a and X(t) = b are

observed, the quantities Uk, Dk, and Tk are unknown for every state k, and we cannot

maximize the log-likelihood (11) without them.

We therefore appeal to the EM algorithm for iterative maximum likelihood estimation with

missing data (Dempster et al, 1977). In the EM algorithm, we define a surrogate objective

function Q by taking the expectation of the complete data log-likelihood (11), conditional on

the observed data Y and the parameter values θ(m) from the previous iteration of the EM

algorithm (the E-step). Then we find the parameter values θ(m+1) that maximize this

surrogate function (the M-step). This two-step process is repeated until convergence to the

maximum likelihood estimate of θ. Taking the expectation of (11) conditional on Y and θ(m),

we form the surrogate function Q:

(12)

where for clarity we have omitted the dependence of the expectations on the parameter value

θ(m) from the mth iterate. In general, we assume that the maximum likelihood estimator

exists; see Bladt and Sorensen (2005) for a discussion of the issues of identifiability,

existence, and uniqueness. In the following, we always assume that the BDP is non-

explosive (see Karlin and McGregor, 1957a,b, for details) and that Σk λk (Uk|Y), Σk μk 

(Dk|Y), and Σk(λk + μk) (Tk|Y) are finite.

2.3 Computing the expectations of the E-step

Computing the expectations of Uk, Dk, and Tk in the E-step is difficult in birth-death

estimation since the unobserved state path and waiting times are not independent conditional

on the observed data Y. In addition, the state-space of a BDP is generally infinite, so the

process may visit states k ≫ max(a, b). It is tempting to approximate an infinite BDP as a

similar process on the finite state-space {0, 1, …, N}, where N is chosen so that the

probability of the process visiting states greater than N is small. That is, we could choose N

and ε so that
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(13)

A priori truncation of the state space would allow one to take advantage of the methods for

matrix-algebraic computation of conditional expectations such as eigendecomposition and

uniformization, as developed in Hobolth and Jensen (2011). This turns out to be infeasible

for two reasons. First, it is unclear how to evaluate (13) and whether knowledge of this

probability can provide error bounds on expectations of BDP statistics; this makes the

choice of N somewhat arbitrary. Second, as we demonstrate in section 3.1 using numerical

experiments, matrix methods for computation of expectations can suffer from catastrophic

roundoff error.

Recently some authors have made analytic progress for infinite state-space BDPs. Doss et al

(2013) adopt an approach for linear BDPs that combines analytic results with simulations.

For some models, these authors are able to derive the generating function for the joint

distribution of U, D, Tparticle, and the state path conditional on X(0) = a and can manipulate

this generating function to complete the E-step. For a more complicated linear model, Doss

et al (2013) resort to approximating the relevant conditional expectations by simulating

sample paths, conditional on Y using the method introduced by Hobolth (2008).

Our solution is to recognize that we do not need to know very much about the missing data

to find the conditional expectations used in the sufficient statistics above. In fact, the

transition probabilities are all that we require. The following integral representations of the

conditional expectations in the EM algorithm will prove useful:

(14a)

(14b)

(14c)

These formulas have appeared in many types of studies related to EM estimation for

continuous-time Markov chains (Lange, 1995a; Holmes and Rubin, 2002; Bladt and

Sorensen, 2005; Hobolth and Jensen, 2005; Metzner et al, 2007). For general BDPs whose

transition probabilities must be computed numerically, numerical integration over the

product of the densities can be computationally prohibitive.

However, the numerators in (14) are convolutions of integrable time-domain functions.

Since the Laplace transforms fab(s) of these transition probabilities are available and easy to

compute, we take advantage of the Laplace convolution property, arriving at the

representations
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(15a)

(15b)

(15c)

where  denotes inverse Laplace transformation. Although these formulas are equivalent

to (14), they offer substantial time savings over computing the integral directly, and render

tractable the computation of expectations in the EM algorithm for arbitrary general BDPs.

The Appendix shows how to calculate (15) numerically and control the total error using a

discretized Laplace inversion method popularized by Abate and Whitt (1992b, 1995. This

approach allows us to terminate the continued fraction evaluation dynamically at a depth

that controls the error due to both truncation and discretization of the inversion integral. We

emphasize that we do not need to choose a truncation index a priori as would be required in

matrix truncation approaches.

2.4 Maximization techniques for various BDPs

In contrast to the generic technique outlined above for computing the expectations of the E-

step, the M-step depends explicitly on the functional form of the birth and death rates λk(θ)

and μk(θ). Here we give several representative examples of BDPs and techniques for

completing the M-step of the EM algorithm, such as analytic maximization, minorize-

maximize (MM), and Newton’s method.

2.4.1 Simple linear BDP—In the simple linear BDP, births and deaths happen at constant

per-capita rates, so λk = kλ and μk = kμ. The unknown parameter vector is θ = (λ, μ), and the

surrogate function becomes

(16)

Taking the derivative of (16) with respect to the unknown parameters, setting the result to

zero, and solving for λ and μ gives the M-step updates

(17a)

(17b)
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These updates correspond to the usual maximum likelihood estimators in the continuously

observed process (Reynolds, 1973). Note that the transition probabilities Pab(t) in the

denominators of the expectations in (14) cancel out in (17a) and (17b). When this is the

case, transition probabilities are not necessary to derive an EM algorithm.

2.4.2 Linear BDP with immigration—Sometimes populations are not closed, and new

individuals can enter; we call this action “immigration.” Another interpretation arises in

models of point mutations in DNA sequences. Suppose new mutations arise in a DNA

sequence via two distinct processes: one inserts new mutants at a rate proportional to the

number already present, and the other creates new mutations at a constant rate, regardless of

how many already exist. To model this behavior, we augment the simple linear BDP above

with a constant term ν representing immigration, so that λk = kλ + ν and μk = kμ. The log-

likelihood becomes

(18)

Unfortunately, if we take the derivative of the log-likelihood with respect to λ or ν, the

unknown appears in the denominator of the terms of the infinite sum. However, since each

summand is a concave function of the unknown parameters, we can separate them in a

minorizing function M such that for all θ, M(θ|θ(m)) ≤ ℓ(θ) and M(θ(m)|θ(m))= ℓ(θ(m)) as

follows:

(19)

where pk = kλ(m)/(kλ(m) + ν(m)). Then letting Q (θ|θ(m)) = (M(θ)|Y, θ(m)) be the surrogate

function, this minorization forms the basis for an EM algorithm in which a step of the

minorize-maximize (MM) algorithm takes the place of the M-step, and the ascent property

of the EM algorithm is preserved (Lange, 2010). Maximizing Q with respect to λ and ν

yields the updates

(20a)

(20b)

Expression (20a) is similar to (17a), the update for λ in the simple BDP. The difference lies

in that each (Uk|Y) in this case is weighted by the proportion of additions at state k due to

births, not immigrations. The update for μ is the same as (17b).
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2.4.3 Logistic/restricted growth—To illustrate an EM algorithm for more complicated

rate specifications in which no MM update is evident and the rates no longer depend on the

current state k in a linear way, we examine a model for restricted population growth. Typical

deterministic population models often incorporate limitations on population size due to the

carrying capacity K of the environment. One famous example is the logistic model of

population growth (Murray, 2002). Continuous-time stochastic analogs have previously

required a finite cap on population size (Tan and Piantadosi, 1991). These stochastic models

roughly mimic the behavior of the deterministic model for population sizes below K, but are

limited because they do not allow growth beyond K. Here we present a model which

supports transient growth beyond the carrying capacity, but where the population size tends

to a balance between restricted growth and death.

Suppose births are cooperative, requiring two parents, but fecundity decays as the number of

extant particles increases, and death remains an independent process such that λk = λk2e−βk

and μk = kμ. Here, we can interpret the carrying capacity roughly as the population size k > 0

at which λk ≈ μk. Ignoring irrelevant terms, the surrogate function becomes

(21)

Since λ and β appear together, we opt for a numerical Newton step. Denoting the gradient of

Q as F and the Hessian by H, we update these parameters by

(22)

The ascent property is preserved when a Newton step is used in place of an exact M-step

(Lange, 1995a). The update for μ is the same as (17b).

2.4.4 SIS epidemic models—Under a very common epidemic model, members of a

finite population of size N are classified as either “susceptible” to a given disease or

“infected” (Bailey, 1964; Andersson and Britton, 2000). Susceptibles become infected in

proportion to the number of currently infected in the population, and infecteds revert to

susceptible status with a certain rate independent of how many infecteds there are. This

idealized susceptible-infectious-susceptible (SIS) infectious disease model specifies a

general birth-death process in which we track the number of infecteds. Let λk = βk(N − k)/N

be the rate of new infections when there are already k infected in the population. Let μk =

γk/N be the rate of recovery of infecteds to susceptibles. Then if θ = (β, γ), we have

(23)

and the updates are
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(24)

2.4.5 Generalized linear models—Our general framework allows assessment of the

influence of covariates on the rates of a general BDP in a novel way. Suppose we sample

observations from independent processes Xi(τ), i = 1, …, N and observe Yi = (Xi(0), Xi(ti))

associated with d covariates zi = (zi1, …, zid)′. These processes may represent different

subjects in a study. We model the birth and death rates λik and μik for each process/subject Xi

as functions of zi and unknown d-dimensional regression coefficients θλ and θμ in a

generalized linear model (GLM) framework. We link

(25)

where g(·) and h(·) are scalar-valued functions. We note the possibility that covariates may

differ between θλ and θμ through trivial modification; to ease notation, we do not explore

this direction. Given N independent processes, we sum log-likelihoods to arrive at the

multiple-subject surrogate function:

(26)

Although we cannot usually maximize this surrogate function for all elements of (θλ, θμ)

simultaneously, a Newton step is often straightforward to derive.

As an example, consider a generalized linear model extension of the simple linear BDP in

which

(27)

Taking the gradient of the corresponding surrogate function Q with respect to the parameters

θλ yields

(28)

and the second differential (Hessian) of Q is
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(29)

Combining these, we arrive at the Newton step for the parameter vector θλ:

(30)

A similar update can be found for θμ. These updates are examples of the gradient EM

algorithm for regression in Markov processes described by Wanek et al (1993) and Lange

(1995a). It is worth noting that the Hessian matrix  can become ill-conditioned, making

it difficult to invert for the Newton step in (30) for some problems. Unfortunately there is no

quasi-Newton option since in general  is unbounded. An alternative to

inversion of the Hessian matrix is cyclic coordinate descent in which a Newton step is

performed for each coordinate θj individually. This carries the advantage of avoiding matrix

inversion, but convergence is slower and the ascent property must be checked at each

Newton step.

2.5 Implementation

2.5.1 E-step error and acceleration—The E-step in these EM algorithms for BDP

estimation usually involves infinite weighted sums of the conditional expectations (Uk|Y),

(Dk|Y), and (Tk|Y). For example, when estimating λ in the simple linear BDP, we must

evaluate

(31)

We find an increase in computational efficiency by exchanging the order of Laplace

inversion and summation. Then (31) becomes

(32)

In practice, we can only evaluate a finite number of terms in the series, so we must truncate

the infinite sum in (32). This truncation approach bears some similarity to matrix truncation

methods, described further in Section 3.1 and Figure 3 below. The difference is that

truncation of the infinite sum in (32) is dynamic and may depend on the magnigude of the

summand at every step. In particular, we use a series acceleration method to compute (32)

that provides ready approximation of the remaining tail sum at each step (Levin, 1973;

Press, 2007). In contrast, the matrix approximation approach requires choosing the

truncation index a priori, and does not allow for dynamic choice of the truncation index.

The Appendix describes bounds for the numerical error in this computation in greater detail.
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2.5.2 Acceleration of EM iterates—EM algorithms are notorious for slow convergence,

especially near optima. Although our purpose in the present paper is limited to basic EM

techniques for analyzing general BDPs, we exploit the quasi-Newton acceleration method

introduced by Lange (1995b) in our implementations. Other acceleration methods exist, and

may give better results, depending on the problem (Lange, 1995a; Louis, 1982; Meilijson,

1989; Jamshidian and Jennrich, 1993; Liu and Rubin, 1994; Liu, 1998; He and Liu, 2012).

Figure 2 shows the log-likelihood function and iterates for the basic EM and accelerated EM

methods in the simple linear model. Since the quasi-Newton acceleration method does not

guarantee that the likelihood increases at each step, “step-halving” is occasionally necessary

to achieve ascent. Note that this requires likelihood evaluation at least once per iteration.

Our approach is advantageous in that we can efficiently calculate this likelihood (product of

transition probabilities) for any general BDP (Crawford and Suchard, 2012).

2.5.3 Asymptotic variance of EM estimates—Finding the observed information

matrix for an EM estimate can be challenging. Louis (1982) gives formulae for the observed

information, which Doss et al (2013) use to derive analytic expressions for the observed

information for very simple BDPs. Direct calculation of the information matrix via the

derivation given by Oakes (1999) is appealing, but the conditional expectations are usually

only available to us numerically, and hence we cannot find the necessary analytic

expressions. Analytic expressions for the asymptotic variance are generally hard to find for

more complicated models. In some such cases, Liu (1998) suggests a normal approximation.

We instead turn to the supplemented EM (SEM) algorithm of Meng and Rubin (1991),

which computes the information matrix of the EM estimate of θ after the MLE θ̂ has been

found. Although the SEM algorithm can be slow, it does not require that the expectations

have analytic expressions. The observed information is I(θ̂) = −d2Q(θ̂|θ̂)(I − dM(θ̂)), where

M(θ) is the EM algorithm map such that θ(m+1) = M(θ(m)). We numerically approximate the

differential dM at the termination of the EM algorithm.

We note also that since we are able to calculate transition probabilities directly, the observed

data log-likelihood is easily computed as

(33)

where ai = Xi(0) and bi = Xi(ti). As an alternative to the approaches outlined above, we can

calculate the Hessian using purely numerical techniques. If H(θ̂) = d2ℓ(θ̂) is the numerical

Hessian evaluated at the estimated value θ̂, then Î ≈ −H(θ̂).

3 Results

3.1 Laplace convolution E-step comparison

To illustrate the computational speedup that the Laplace convolution formulae (15) and their

acceleration in section 2.5.1 achieve over existing methods, we calculate conditional

expectations of the number of births using six different methods for various BDP models

and report computing times in Table 1. The Reject method employs rejection sampling of
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trajectories where we condition on the starting state, and reject based on the ending state

(Bladt and Sorensen, 2005). The Endsim method uses an endpoint-conditioned simulation

algorithm to sample trajectories on a truncated state space (Hobolth, 2008; Hobolth and

Stone, 2009). In both the simulation methods, we repeated the simulation until the Monte

Carlo error became small enough that we obtained the true value of the statistic to a certain

accuracy with high probability. We terminated the simulation when a 95% confidence

interval for the true value of the statistic has width less that 0.1. The TConv method involves

naïve numerical time-domain convolution (Equation (14)) using the integrate function in R.

The EDecomp method uses an eigendecomposition of the truncated rate matrix to compute

the conditional expectation (Hobolth and Jensen, 2011; Minin and Suchard, 2008). The Unif

method uses uniformization to compute the conditional expectations (Jensen, 1953; Hobolth

and Jensen, 2011). Finally, the Laplace method uses our Laplace-domain convolution

method outlined in section 2.3.

To adapt finite state space methods to the problem of computing the number of births in a

BDP, we choose a truncated rate matrix dimension of 100. We are aware that the size of the

rate matrix affects the speed of the simulation routine, so we wish to keep the matrix as

small as possible. On the other hand, the matrix must remain large enough to include states

that may be visited with high probability in a path from a to b over time t. However, it is not

practical to dynamically choose the dimension of the truncated rate matrix a priori. For

example, we might choose the dimension d such that the process visits states greater than d

> b with low probability, so Pak(t) < ε for k > d. However, rules for choosing the dimension

of the truncated matrix that themselves depend on computation of transition probabilities

can dramatically increase computational time.

In our implementation of all methods, we have made every effort to reuse as much shared R

code as possible, with the aim of making the routines comparable in numerical accuracy and

computational time. We consider four different BDPs: for the simple linear BDP and linear

BDP with immigration, we use the discrete observation Y = (a = 19, b = 27, t = 1). Under

the logistic and SIS models, the observation is Y = (a = 10, b = 12, t = 1) and Y = (a = 10, b

= 17, t = 1). We list all model parameter values in Table 1.

In these examples, the Laplace convolution method generally outperforms other methods

and remains stable even when the truncated rate matrix becomes ill-conditioned. The

EDecomp and Uniformization methods perform reasonably well, but as we show in the next

section, matrix decomposition methods can suffer from catastrophic numerical error when

the rate matrix becomes large or nearly singular, as is often the case for the SIS model.

While the simulation methods Reject and EndSim can provide quick estimates of the

relevant expectations, the Monte Carlo error decays extremely slowly and therefore a large

number of simulations are necessary to obtain convergence to a small interval about (U|Y)

with high probability. For example, in the simple linear model, the Reject method required

more that 6000 successful simulants to achieve a Monte Carlo standard error small enough

to terminate the simulation.

Finally, we give an example to illustrate one important benefit of our Laplace convolution

method: since it does not depend explicitly on a decomposition of the transition rate matrix,
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the method is much more stable when this matrix is ill-conditioned. Consider the SIS model

with N = 50 individuals and transition rates β = 1 and γ = 1. The top panel of Figure 3 shows

the values of (Uk|Y) for Y = (a = 20, b = 31, t = 1), with k = 0, 1, …, 50, calculated using

the Edecomp and Laplace methods. The eigendecomposition produces catastrophic

numerical error for larger states because the transition rate matrix becomes ill-conditioned.

The parameter values β and γ correspond to unit rates per unit time of susceptible

individuals becoming ill, and ill individuals reverting to susceptible status. These values are

not biologically unreasonable, and do not result in a process that is degenerate or ill-defined.

The Laplace method handles rate specifications like these that result in ill-conditioned rate

matrices without issue, and the continued fraction evaluation remains numerically stable.

The bottom panel shows the computed value of (U25|Y) as above, but with different

truncations of the rate matrix. It can be very difficult to determine a priori which truncations

of the matrix will result in poor approximations. In contrast, the Laplace method allows

evaluation of the terms of the sum (32) until the desired numerical accuracy has been

reached.

3.2 Synthetic examples

To evaluate the performance of our EM algorithms, we simulate discrete observations from

several of the BDPs outlined above. For each sample, we draw starting points Xi(0)

uniformly from the integers 0 to 20, and times ti uniformly from 0.1 to 3. We then simulate a

trajectory of the BDP and record the state Xi(ti). For the generalized linear model (GLM), we

employ the simple linear parameterization with a log link with d = 2 covariates. We specify

the covariates zi = (zi,1, zi,2) as follows: zi,1 ~ N (1, σ2), zi,2 ~ N (2, σ2) for i = 1, …, N/2, zi,1

~ N (2, σ2) and zi,2 ~ N (1, σ2) for i = N/2 + 1, …, N, where σ2 = 0.1.

Table 2 reports the number of simulated observations, true parameter values, point-

estimates, asymptotic standard error estimates for all model parameters. It is important to

note that the MLEs can differ substantially from the parameter values used to perform the

simulation, regardless of the algorithm used to find the MLEs. This is due to several factors,

including: 1) missing state paths; 2) stochasticity of the BDP generating the state paths; 3)

arbitrary choice of starting states Xi(0); and 4) finite sample sizes. Despite these limitations

inherent in learning from partially observed stochastic processes, the point-estimates match

the true parameter values rather well.

3.3 Application to Lymphoma cell growth

Cancer researchers often use in vitro experiments to evaluate the efficacy of novel therapies.

They subject cultured cancer cells to treatment and count the number of cells that survive.

Liu et al (2007) study the effect of a mixture of two monoclonal antibodies, chLym-1 and

rituximab, on proliferation of human lymphoma cells. These antibodies exhibit strong anti-

tumor cell effects (Liu et al, 2004; DeNardo, 2005). The data of Liu et al (2007) consist of

repeated experiments in which the outcome is the number of viable tumor cells in a test tube.

They count the number of lymphoma cells at antibody concentrations 0, 0.025, 0.25, 2.5,

and 10 μml and study the effects over incubation times of 1, 2, and 3 days. The data consist

of observations Yi = (Xi(0), Xi(ti), ti), where Xi(0) is the number of viable cells at the

beginning of the ith experiment, and Xi(ti) is the number of viable cells at time ti ∈ {1, 2, 3}
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days. Liu et al (2007) fit a model for the mean behavior of a simple linear BDP using the

antibody concentration as a covariate through a quasi-likelihood approach that models

conditional expected count at time ti:

(34)

Modeling the mean behavior of the BDP allows only the difference of θλ and θμ to be

estimated. The resulting log-linear model for the deterministic mean behavior of the BDP is

limiting because it is essentially equivalent to Poisson regression, and does not capture the

stochastic branching structure of the underlying BDP.

We now extend the work of Liu et al (2007) by using a full stochastic BDP model instead of

fitting the deterministic mean behavior. Although in the experiments described by Liu et al,

Xi(0) is unknown, they estimate its mean as 23 under one model. To avoid conditioning on a

random variable, we also follow Liu et al (2007) and treat Xi(0) = 23 as fixed in our analysis.

Since the concentration covariates vary nonlinearly, we transform them as log(1 + ci), where

ci is the concentration in the ith observation. Consider a GLM for the rates of a simple linear

BDP, as described in section 2.4.5. The rates for the ith observation are 

and . Here, the covariate vector is zi = (1, log(1+ ci))′, consisting of an

intercept and the log-transformed antibody concentration. The surrogate function is given by

(26). Table 3 shows the results of fitting this model, and Table 4 shows the estimated birth

and death rates for cells grown under each each antibody concentration.

We draw several tentative conclusions from our stochastic BDP analysis of these data. First,

both baseline birth and death rates, in the absence of antibody, are large. Birth rate is

dramatically decreased by higher concentrations of antibody. Interestingly, death rate also

decreases slightly with antibody concentration. At the highest experimental antibody

concentration, the death rate becomes larger than the birth rate, resulting in dramatic

reduction in cell counts. These observations agree with the known properties of cancer cells

in general – that they reproduce very rapidly when uninhibited by therapeutic agents.

However, since we are able to estimate the effect of antibody concentration on both birth

and death rates separately, our method provides additional insight into the branching nature

of the underlying process.

3.4 Application to microsatellite evolution

Microsatellites are short tandem repeats of characters in a DNA sequence (Schlötterer, 2000;

Ellegren, 2004; Richard et al, 2008). The number of repeated “motifs” in a microsatellite

often changes over evolutionary timescales. The molecular mechanism responsible for

changes in repeat numbers is known as “polymerase slippage” (Schlötterer, 2000). Several

researchers have proposed linear BDPs for use in analyzing evolution of microsatellite

repeat numbers (Whittaker et al, 2003; Calabrese and Durrett, 2003; Sainudiin et al, 2004).

However, many investigations demonstrate that microsatellite mutability depends on the

number of repeats already present, motif size, and motif nucleotide composition

(Chakraborty et al, 1997; Eckert and Hile, 2009; Kelkar et al, 2008; Amos, 2010). Exactly
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how these factors affect addition and deletion rates remains an open question (Bhargava and

Fuentes, 2010). To our knowledge, no previous study formulates or fits a general BDP in

which motif size and composition are treated as a covariates in a generalized regression

framework, despite the scientific interest in examining such effects on microsatellite

evolution.

Webster et al (2002) study the evolution of 2467 microsatellites common (orthologous) to

both humans and chimpanzees, providing an ideal dataset for studying the influence of

repeat number and motif size on addition and deletion rates. For each of these observed

microsatellites, Webster et al (2002) record the motif nucleotide pattern and the number of

repeats of this motif found in chimpanzees and humans, and estimate a mutability parameter

that controls the rate of addition and deletion. We now apply our BDP inference technique

to chimpanzee-human microsatellite evolution, drawing on the data in Table 6 of the

supplementary information in Webster et al (2002). We introduce several novel modeling

and inferential techniques relevant to the study of microsatellites, and deduce the effect of

motif size and composition on microsatellite addition and deletion rates. While the

likelihood takes a slightly more complicated form, our BDP regression technique is

straightforward to implement, yielding insight into the complicated process of microsatellite

evolution.

To analyze the data as realizations from a BDP, we must acknowledge the evolutionary

relationship between chimpanzees and humans. Suppose the most recent common ancestor

of chimpanzees and humans lived at time t in the past, so that an evolutionary time of 2t

separates contemporary humans and chimpanzees. We note that under mild conditions,

general BDPs are reversible Markov chains (Renshaw, 2011). Therefore, assuming

stationarity of the chimpanzee microsatellite length distributions, we stand justified in

reversing the evolutionary process from the ancestor to chimpanzee, so that for estimation

purposes we may regard humans as direct descendants of modern chimpanzees (or vice-

versa) over an evolutionary time of 2t. If c is the number of repeats in a chimpanzee

microsatellite and h is the number of repeats in the corresponding human microsatellite, then

the likelihood of the observation Y = (c, h, t) is

(35)

where πk is the equilibrium probability of the microsatellite having k repeats. The second

equality follows by reversibility and the third by the Chapman-Kolmogorov equality.

Therefore, the log-likelihood of the observation Y is now log πc(θ) + ℓ(θ; Y). Figure 4

shows a schematic representation of this reversibility argument.

The observed data for microsatellite i are Yi = (Xi(0), Xi(1), 1), where Xi(0) is the number of

repeats observed in chimpanzees, Xi(1) is the number of repeats observed in humans, and the

evolutionary time separating humans and chimpanzees is scaled to unity. In addition to the

evolutionary relationship explained above, there are other complications: in the Webster et

al (2002) dataset, it is evident that microsatellites with small numbers of repeats are not
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detected. Rose and Falush (1998) argue that there is a minimum number of repeats necessary

for microsatellite mutation via polymerase slippage. Sainudiin et al (2004) interpret this

finding as justification for truncating the state-space of BDP at xmin, so that X(τ) ≥ xmin. To

avoid questions of ascertainment bias (see e.g. Vowles and Amos (2006)), and to make our

results comparable to those of past researchers, we define a microsatellite to be a collection

of more than xmin repeated motifs, where xmin is 9 for repeats of size 1, 5 for repeats of size

3 and 4, and 2 for repeats of size 5. Researchers have also observed that microsatellites do

not tend to grow indefinitely (Kruglyak et al, 1998). The maximum number of repeats in the

Webster et al (2002) dataset is 47. This suggests a finite nonzero equilibrium distribution of

microsatellite lengths. To achieve such an equilibrium distribution, we preliminarily view

the evolution as a linear BDP with immigration on a state-space that is truncated below xmin.

It is reasonable to assume that rates of addition and deletion depend linearly on how many

repeats are already present. Then for a microsatellite that currently has k repeats, the birth

and death rates are

(36)

This gives a geometric equilibrium distribution for the number of repeats:

(37)

when λ < μ (Renshaw, 2011). We choose this simple model so that the BDP has a simple

closed-form nonzero equilibrium solution that is easy to incorporate into the log-likelihood.

Note that the constraint λ < μ does not mean that the rate of microsatellite repeat addition is

always less than the rate of deletion, since it is possible that λk > μk for small k. Additionally,

λ < μ does not mean that the number of repeats in a microsatellite tends to zero over long

evolutionary times — the equilibrium distribution (37) assigns positive probability to all

repeat numbers greater than or equal to xmin. Now we augment the log-likelihood with the

log-equilibrium probability of observing Xi(0) chimpanzee repeats

(38)

where ℓ(θ; Yi) is equivalent to (11). Including the influence of the equilibrium distribution is

similar to imposing a prior distribution on λ and μ.

To incorporate and evaluate the influence of motif size and composition heterogeneity, we

now treat λ and μ in the ith observation as functions of the covariate vector zi in a general

BDP. Suppose microsatellite i has motif size ri. We code the vectors zi as follows:
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(39)

where px is the proportion of x nucleotides per repeat. We define a single parameter α that

controls the difference between λ and μ. Then in the ith microsatellite, the complete model

becomes

(40)

Therefore (α, θ)′ is the 6×1 vector of unknown parameters. Putting all this together, the

surrogate function becomes

(41)

where α < 0 since λ < μ. We use a gradient EM algorithm to find the MLE of (α, θ).

Table 5 reports the parameter estimates, along with asymptotic standard errors. From these

results, we infer that motifs of different sizes and composition have different characteristics

under our evolutionary model. As an example, a microsatellite consisting of AAC repeats has

z = (1, 1, 0.667, 0.333, 0), λ = 0.163 (0.082) and μ = 0.186 (0.087) where the standard errors

obtained by the delta method are given in parenthesis. Specifically, λ and μ are greatest for

dinucleotide repeats, as compared to motifs with one or at least three repeats. Motifs

consisting mostly of A nucleotides also give rise to higher λ and μ than those consisting of C

and T nucleotides. These conclusions are largely consistent with the descriptive results

obtained by Webster et al (2002). Our analysis also provides a natural probabilistic

justification for the existence of a finite nonzero equilibrium distribution of microsatellite

repeat numbers and a formal statistical framework for deducing the effect of motif size and

repeat number on mutation rates.

4 Discussion

Application of stochastic models in statistics requires a flexible and general approach to

parameter estimation, without which even the most realistic model becomes unappealing to

researchers who wish to learn from the data they have collected. Estimation for continuously

observed BDPs is straightforward and well-established. For partially observed BDPs, our

approach is unique because it requires only two simple ingredients: the functional form of

the birth and death rates λk(θ) and μk(θ) for all k, and an exact or approximate M-step. A

third ingredient is optional: the Hessian of the surrogate function is useful when asymptotic
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standard errors are desired. However, this matrix can often be approximated numerically

upon convergence of the EM algorithm, since the observed-data likelihood is available

numerically via (33). With these ingredients in hand, even elusive general BDPs become

tractable.

In previous work on estimation for BDPs, completion of the E-step typically relies on rate

matrix truncation, time-domain numerical integration or simulation of BDP trajectories. As

we show in Table 1, both rejection sampling and endpoint-conditioned simulation can

occasionally perform satisfactorily, especially in comparison to time-domain convolution.

However, endpoint-conditioning is designed for finite state-space Markov chains, and it

relies on a rate matrix eigendecomposition to calculate transition probabilities. In the logistic

and SIS models, this matrix can become nearly singular, causing the both simulation and

matrix exponentiation methods to fail, even when we choose parameter values that are not

biologically unreasonable. Matrix-algebraic approaches provide powerful methods for

computing conditional expectations in finite state-space processes, but have serious

drawbacks when used to approximate processes on infinite state-spaces. The Laplace

convolution in the E-step of our algorithm for BDPs is more generic and flexible than matrix

methods, and provides equivalent or better performance. This is partly due to the dynamic

nature of the continued fraction evaluation – we can descend in the fraction to a depth that

achieves acceptable truncation error without needing to specify this depth a priori. In

addition, continued fraction evaluation is numerically more stable than eigendecomposition

or uniformization operations on truncated rate matrices. For this reason, a variation on our

Laplace convolution method for computing the E-step may offer further use in estimation

for non-BDP finite Markov chains as well, such as nucleotide or codon substitution models.

For some linear BDPs, the availability of a generating function furnishes analytic E- and M-

steps yielding very fast parameter updates in closed-form (Doss et al, 2013). For some

models, these tools provide the asymptotic variance of the MLE in closed-form. However,

for the majority of BDPs, we must return to the Laplace convolution method outlined in this

paper.

If one cannot find analytic parameter updates in the M-step, several options remain

available. With a minorizing function as in section 2.4.2, an EM-MM algorithm is viable.

Further, one or more numerical Newton steps offers an alternative, as in sections 2.4.3 and

2.4.5. One may employ other gradient-based methods as well. Although the MM update

derived for the BDP with immigration (section 2.4.2) is appealing in its simplicity, multiple

minorizations of the likelihood can result in very slow convergence, since the surrogate

function lies far from the true likelihood for most values of θ. In addition, Newton steps that

require matrix inversion may suffer since the Hessian of the surrogate can become ill-

conditioned.

Even with the substantial speedup offered by our Laplace convolution method for

performing the E-step and quasi-Newton acceleration of the EM iterates, our algorithms can

move slowly toward the MLE. Here, naïve numerical optimization of the incomplete data

likelihood can sometimes run computationally faster. However, such techniques perform

very poorly when the number of parameters increases and they often require specification of

tuning constants in order to reach the global optimum. For BDP estimation problems, EM
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algorithms offer several other advantages over naïve numerical optimization, and these

benefits are especially stark when the M-step is available in closed-form. First, when the

log-likelihood is locally convex, the EM algorithm is robust with respect to the initial

parameter values near the maximum, and EM algorithms generally do not need tuning

parameters. Further, the ascent property ensures the iterates will approach a maximum.

Perhaps the most important reason to consider EM algorithms is that they can accommodate

higher-dimensional parameter spaces without substantially increasing the computational

complexity of the algorithm. This is especially useful in models with many unknown

parameters when performing regression with covariates (section 2.4.5), or our microsatellite

example. Maximum likelihood approaches to regression can suffer in high-dimensional

regression problems, and the resulting estimates of the information matrix can be inaccurate

(DasGupta and Lahiri, 2012). One way to alleviate to this problem is regularization of

parameter estimates via L1 or L2 penalties, which may be interpreted equivalently as

maximum a priori estimation in a Bayesian context. Penalties or prior distributions can

easily be accommodated in our BDP regression formulation via modification of the M-step

(Green, 1990). We also note the potential for substantial computational speedup by

parallelizing the E-step. When discrete observations from a BDP are independent, the E-step

may be performed in parallel for every observation. For example, (U|Yi) can be computed

simultaneously for i = 1, …, N. When speed is an issue, graphics processing units may prove

useful in reducing the computational cost of EM algorithms (Zhou et al, 2010).

With regard to our examples, we present a novel way of studying the dynamics of count data

in laboratory experiments and the evolution of microsatellite repeats using a generalized

linear model. Previous efforts often ignore the branching nature of the underlying process,

use incomplete or equilibrium models of counts, or fit separate models for experiments or

observations of different types. In our lymphoma analysis, we use a realistic simple linear

birth-death model with covariates to discern the relationship of antibody concentration to

per-cell birth and death rates. This results in parameter estimates that have a natural

biological interpretation. In our microsatellite application, we treat motif size as a

categorical variable and incorporate motif nucleotide composition, allowing us to fit a single

regression model to all the microsatellite observations simultaneously. Although our

microsatellite example is limited in scope, it is easy to imagine a more comprehensive study.

For example, incorporating more sophisticated motif nucleotide composition covariates and

location of the microsatellite on the chromosome might provide additional insight into the

evolutionary process. Our EM framework is nearly ideal for these types of studies, since the

number of unknown parameters does not substantially increase the computational burden of

the M-step, and the E-step is completely unaffected by the number of parameters.

Interestingly, we attempted to use the generic nonlinear regression R function nlm to

validate the MLEs obtained by our EM algorithm for the microsatellite evolution problem,

starting at a variety of initial values, including the MLE found by our EM algorithm. This

naïve optimizer failed to converge in every case. We speculate that this is because the small

numerical errors in the likelihood evaluation have similar order of magnitude as the

curvature of the likelihood function near the maximum. Our EM algorithms take advantage
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of analytic derivatives of the surrogate function instead of the likelihood, and hence are less

susceptible to small errors in the numerical gradient.

Software

The R package birth.death, available at http://crawford.research.yale.edu/software provides

functions to calculate transition probabilities and conditional expectations used in this paper.

MATLAB routines providing the same functionality are available from the same page.
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A Appendix: Control of numerical error in the E-step

Completing the E-step in our EM algorithms requires several levels of numerical

approximation. Fortunately, the error in these computations can be controlled dynamically to

achieve the necessary numerical accuracy under fairly general conditions. In this Appendix,

we derive error bounds for transition probabilities Pab(t) and conditional expectations (Uk|

Y) and (U|Y) = Σk (Uk|Y) where Y = (a, b, t), and show how the overall error can be

controlled to provide accurate calculations for use in the EM algorithms outlined in this

paper. The bounds for conditional expectations of Tk and Dk are essentially the same.

Throughout this Appendix, we assume that the BDP is non-explosive and that the

expectations of the sufficient statistics are finite. We begin by stating several results that will

be useful in deriving overall error bounds.

In practice, infinite continued fractions such as (5) can only be evaluated computationally to

finite depth M. For such continued fractions fractions, we have the following truncation

bound.

Lemma 1

Without loss of generality, suppose a = 0 and b = 0, and  converges

to f00(s) as M → ∞. Then

(42)

when the denominator is nonzero (Craviotto et al, 1993).

Suppose we have a continuous real-valued function g(t) with Laplace transform G(s) and let

(43)

for j ≥ 1, where . The general inversion formula we will use is

(44)

where Re(s) is the real part of the complex variable s and A is a positive tuning constant that

we will set to control the error. When there is no error in the evaluation of the Laplace

transform G(s), we have the following bound for the discretization error.

Lemma 2

The discretization error in (44) is
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(45)

since g(t) ≤ 1 (Abate and Whitt, 1992a).

When computing infinite sums, acceleration methods can be useful if the series is slow to

converge. When the terms in the summand of (44) are alternating in sign and rapidly

decreasing in magnitude, a reasonable estimate of the remainder ωJ after J terms in (44) is

the first term in the tail sum (Levin, 1973; Weiger, 1989; Abate and Whitt, 1992a; Press,

2007). We assume assume that there exists a J large enough that

(46)

We now analyze the error that arises when evaluating BDP likelihoods and expectations in

the EM algorithms developed in this paper.

A.1 Transition probability error

To find the transition probability Pab(t), we set G(s) = fab(s) in (44). We can only evaluate

the infinite continued fraction fab(s) to a finite depth, so we approximate fab(sj) by the Mjth

convergent . Here, Mj is a positive integer chosen dynamically so that the error due

to truncation is  using Lemma 1, where we have selected ε > 0 in

advance. Let

(47)

be the discretized Laplace inversion (44) computed using the infinite continued fraction

fab(s). The discretization error is

(48)

by Lemma 2. Let

(49)
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be the inversion sum computed using the continued fraction truncated at depth Mj in the jth

term in the sum. The infinite sum in (47) has been replaced by a J-term sum in (49), where

the maximum summation index J is also chosen dynamically based on an estimate of the tail

sum (46). Now we consider the error due to truncation of the infinite continued fraction and

termination of the infinite sum after J terms, where J is chosen so that the remainder |ωJ| ≤ δ.

(50)

by Lemma 2 and (46). Both types of truncation occur dynamically: the continued fraction in

the jth term in the sum is terminated at depth Mj when the error given by Lemma 1 is less

than ε; likewise, truncation of the infinite sum happens when the estimated tail sum

remainder ωJ is smaller than δ. Putting these bounds together, we find that the overall error

is, by the triangle inequality,

(51)

Following Abate and Whitt (1995), a simple way to choose the constant A is to approximate

e−A/(1−e−A) ≈ e−A and put ε = δ = e−3A/2, resulting in

(52)

Then to achieve an error at most 10−γ, set A = log [10γ(1 + (3/2 + J)/t]. To provide a rough

bound, set t = 1 and γ = 8. Since the truncation index is determined dynamically and J is not

usually known in advance, we specify J = 100, giving A = 23 as a conservative choice of the

error tuning constant.

A.2 Error in computation of (Uk|Y)

Recall from (14a) that the numerator of (Uk|Y) is a convolution of transition probabilities.

Let

(53)

be the time-domain convolution integral and let Gk(s) = fak(s)fk+1,b(s) be its Laplace

transform. Let g̃k(t) be given by (44) and let ĝk(t) be the same quantity but with truncation of

the infinite sum (44) at the J th term. Fix a small error tolerance ε > 0 and suppose that for

each j, we evaluate the continued fractions fak(sj) and fk+1,b(sj) to depths Mj and Nj

respectively, so that the truncation error in the difference of these convergent products is less

than ε,
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(54)

using Lemma 1. Using Lemma 2, the discretization error in (44) is approximated by

(55)

since the integrand is less than one. The error due to truncation of the continued fractions

and infinite sum, analogous to (50), becomes

(56)

where J is chosen so that the remainder |ωJ| ≤ δ. Putting these together, we have the overall

numerator error

(57)

Now, recall that the quantity we wish to compute is (Uk|Y) = λkgk(t)/Pab(t), where the

numerator and denominator are evaluated separately. First we seek a lower bound for Pab(t)

in terms of P̂
ab(t) and A. Let

(58)

be the error bound for |Pab(t) − P̂
ab(t)| from (51). We assume that P̂

ab(t) − χ > 0 so that

P̂
ab(t) − χ is a lower bound for Pab(t), i.e.

(59)

Then the error in the ratio is given by
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(60)

Now using the transition probability error (51), the lower bound for Pab(t) (59), and the error

for gk(t) (57), we find that

(61)

To find the tuning constant A that keeps the error less than 10−8, we again approximate e−A

≈ e−A/(1−e−A) and put δ = ε = e−3A/2, J = 100, and P̂
ab(t) = 1/2 to obtain A = 25.

A.3 Error in computation of (U|Y)

We use a slightly different approach for  because the expectation

itself incorporates an infinite sum that can only be evaluated to finitely many terms in

practice. Let

(62)

be the infinite sum of time-domain convolutions from (32) and let

(63)

be its Laplace transform. Recall from (54) that we can choose continued fraction truncation

depths Mjk and Njk so that

(64)

for every j and k. First, note that the product Pak(u)Pk+1,b(t − u) ≤ 1 for all k. To proceed, we

must make two weak assumptions about the decay of the transition probabilities and the

growth of the birth rates λk. Fix a number η > 0 and C > max(a, b) such that
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(65)

for k > C. Assume also that there exists Λ > 0 such that λk ≤ Λk2 for k ≥ C, meaning that the

birth rates do not grow too rapidly. These assumptions are intuitively reasonable and agree

with our empirical observations of the decay of (65) with k. Indeed, a process whose birth

rates increase faster than O(k2) for large k is likely to be explosive. These assumptions imply

a bound for g(t):

(66)

where we have used (65), λk ≤ Λk2 for k ≥ C, and

(67)

Note that (66) holds for Σk λkg̃(t) as well. Since the birth rates λk are known in advance, Λ

can be readily determined or a tighter bound than Λk2 can be found.

The discretization error for the numerator is given by

(68)

The truncation error for the numerator is
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(69)

where we have truncated the inversion sum at J and the innermost sum at k = D > C so that

the remainder estimate e−ηD ξD is small. Putting these together, we find that

(70)

Similar to (61), the overall error for the numerator obeys the following inequality:

(71)

where χ is given by (58) and |g(t) − ĝ(t)| is given by (70). Then to find the constant A such

that we achieve a total error less than 10−8, we again approximate e−A ≈ e−A/(1 − e−A). As

an example, suppose λk = 2k, so Λ = 2. Setting C = D = J = 100, P̂
ab(t) = 1/2, and e−ηC ξC <

1 we find that a very generous value of A (resulting in a loose bound and more than enough

numerical precision) is A = 34.
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Figure 1.
A sample path from a birth-death process (BDP) X(τ). The process starts at state X(0) = 1

and is at state X(t) = 4 at time t. At right are schematic representations of the time spent in

each state Tk, the number of up steps Uk, and the number of down steps Dk. These quantities

are the sufficient statistics for estimators of rate parameters in general birth-death processes.
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Figure 2.
Effect of quasi-Newton acceleration on iterates of the expectation-maximization (EM)

algorithm for a simple linear BDP with birth rate λ and death rate μ. Contour lines sketch the

log-likelihood from N = 50 discrete samples. Iterates are shown with the “+” symbol. On the

left, ordinary EM iterates converge very slowly in the neighborhood of the maximum, for a

total of 36 iterations. On the right, EM iterates using quasi-Newton acceleration make large

jumps and converge rapidly in 15 iterations.
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Figure 3.
Ill-conditioned transition rate matrix causes the eigendecomposition method to fail. In the

top panel, we calculate (Uk|Y) for Y = (a = 20, b = 31, t = 1), β = 1, γ = 1, and k = 0, 1, …,

50. The open circles denote values calculated by the Laplace method, and the line represents

the values calculated using the EDecomp method. While not biologically unreasonable,

these parameter values cause the transition rate matrix to become ill-conditioned, and

eigendecomposition suffers from catastrophic numerical error. The Laplace method remains

stable and is unaffected by matrix conditioning. In the bottom panel, we show (U25|Y) for

the same Y as above, computed using the EDecomp method with different matrix truncation

indices. The true value (approximately 1.038596) is shown in gray. The first group of

inaccurate values is due to truncation of the matrix below states that are likely to be reached

by the chain on its path from 20 to 31. The second group of inaccurate values (from about 95

to 100) is due to the numerical instability involved in inverting a large matrix.
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Figure 4.
Reversibility of the BDP implies that the evolutionary relationship between contemporary

chimpanzees and the most recent common ancestor can be inverted. On the left, the most

recent common ancestor of chimpanzees and humans lived at time T in the past. At a certain

locus, chimpanzees have a microsatellite consisting of 2 repeats of the motif AAC, and at an

orthologous locus, humans have 3 repeats of the motif. The number of repeats in the

ancestor is unknown. On the right, using a probabilistic justification explained in the text,

we may interpret the evolutionary relationship between chimpanzees and humans as

unidirectional, while “integrating out” the number of repeats at the ancestral locus.
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Table 2

Point-estimates and their standard errors (SE) for simulated observations under various BDPs. We report the

text section describing each of the models in parentheses. The method for generating the rates in the

generalized linear model (GLM) BDP is described in the text.

Model Parameter True Estimate SE

Simple linear (N = 500) (2.4.1) λ 0.5 0.5039 0.0269

μ 0.2 0.1981 0.0254

Immigration (N = 800) (2.4.2) λ 0.2 0.2182 0.0129

ν 0.1 0.1016 0.0213

μ 0.25 0.2488 0.0231

Logistic (N = 1500) (2.4.3) λ 0.3 0.2917 0.0035

α 0.5 0.4942 0.0397

μ 0.05 0.0456 0.0633

SIS (N = 1000) (2.4.4) β 0.1 0.1025 0.0048

γ 2.0 2.1374 0.0367

GLM (N = 1000) (2.4.5) θλ,1 0.25 0.2585 0.0393

θλ,2 0.1 0.1143 0.0402

θμ,1 0.2 0.1973 0.0457

θμ,2 0.05 0.0877 0.0457
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Table 3

Parameter estimates and asymptotic standard errors for the cancer cell model. We fit the simple linear BDP to

the data of Liu et al (2007) using the regression framework outlined in section 2.4.5. The covariate ci is the

concentration of antibody added to the lymphoma cell culture. Standard errors were obtained using the

numerical Hessian of the log-likelihood.

Parameter

θλ θμ

Estimate SE Estimate SE

Intercept 1.4719 0.1614 1.2038 0.2134

log(1 + ci) −0.1190 0.0753 −0.0018 0.0927
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Table 4

Birth and death rates stratified by different concentrations of antibody, where  and . We

obtained asymptotic standard errors by applying the delta method to the asymptotic variance matrix of our

estimate of θ. Note that the birth rate λ decreases much more rapidly than death rate μ as antibody

concentration increases.

Antibody Concentration

λ μ

Estimate SE Estimate SE

0 4.357 0.703 3.333 0.711

0.025 4.345 0.696 3.333 0.705

0.25 4.243 0.643 3.331 0.66

2.5 3.754 0.478 3.325 0.488

10 3.276 0.494 3.319 0.505
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Table 5

Maximum likelihood estimates of parameters in the microsatellite evolution model and their asymptotic

standard errors. The first two elements of θ correspond to the motif size ri, and the last three correspond to the

motif nucleotide composition. The parameter α controls the difference between the birth and death rates. The

ith microsatellite birth rate is then  and the death rate is . Estimated birth and death

rates are higher for dinucleotide repeats than for mononucleotide repeats or microsatellites whose motifs have

3, 4, or 5 nucleotides. Microsatellites whose motif consists, for example, of A nucleotides have higher birth

and death rates compared to C and T nucleotides.

Parameter Covariate birth Estimate SE

α −0.132 0.007

θ1 ri = 2 0.063 0.107

θ2 ri ≥ 3 −1.390 0.127

θ3 pa 0.224 0.261

θ4 pc −1.510 0.370

θ5 pt −0.355 0.054
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