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ABSTRACT OF THE DISSERTATION 

          

New insights into 3D chromatin organization and function 

     

   

by 

 

Lina Zheng 

 

Doctor of Philosophy in Bioinformatics and Systems Biology 

University of California San Diego, 2022 

 

Professor Wei Wang, Chair 

Professor Gene Yeo, Co-Chair 

 

Precise and delicate 3D genome organization is fundamental to cellular 

homeostasis. Big data generated by high-throughput technologies has granted great 

opportunities to deepen our understanding of chromatin organization and function, 



 xxi 

particularly for non-coding DNA sequences which have long been considered “junk 

DNAs”. This dissertation aims at illuminating the structural importance of the non-coding 

DNA sequences and elucidating the modular organization of the 3D genome from histone 

modifications. First, I performed network analysis on Hi-C 3D contact data to identify non-

coding DNA regions forming many spatial contacts with other regions (“hubs”) without 

epigenetic signals that could maintain the global 3D chromatin structure. Furthermore, I 

employed a small-world network on epigenetic histone modification data to identify a 

group of active enhancers and promoters harboring many 3D contacts (“hotspots”) which 

can maintain broad 3D chromatin organization beyond enhancer-promoter interactions. 

Deletion of hubs and hotspots can produce a profound impact on 3D chromatin 

organization and cell viability. In addition, through investigation of the histone modification 

across cell types, I identified the regulation associated modules (“RAMs”) that can not 

only reflect the modular organization of the 3D genome but also be better aligned with the 

chromatin function. These studies provide new insights into 3D genome organization and 

function, navigating future efforts in the mechanistic investigation of the 3D genome. 
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INTRODUCTION 

In eukaryotes, chromatin is efficiently packaged and organized in the nucleus. 

Generally, 3D chromatin organization is formed in a hierarchical structure starting from a 

DNA double helix: the DNA double helix firstly winds around histones to form 

nucleosomes; the nucleosomes are further packaged with the help of cellular components 

to form higher-order structures, such as chromatin loops(1–4), topologically associated 

domains (TADs)(5, 6), compartments(2, 7), and chromosome territories(8). 3D genome 

organization is fundamental to cellular homeostasis(5, 6, 9–12). Aberrant chromatin 

organization has been reported to be associated with human diseases(13–15).  

 

Non-coding DNA sequences, barely encoding any proteins but accounts for most 

of the human genome, have been known to play important roles in many biological 

processes recently(16–18). Growing evidence has shown that non-coding regions are 

associated with human diseases, such as enhancers, promoters, boundaries of 

topologically associated domains, transposable elements, and non-coding RNAs(5, 6, 9, 

19–26). Despite spectacular progress in the functional roles of the non-coding regions in 

gene regulation, the contributions from non-coding regions in maintaining proper 3D 

chromatin organization are still not well investigated, particularly for the regions without 

any epigenetic signals.  

 

In Chapter1, colleagues and I showed that the non-coding regions without 

epigenetic signals can maintain global 3D chromatin organization. Using the scale-free 

network analysis on the Hi-C contact data and CRISPR-CAS9 high throughput screening 
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experiment, we identified dozens of non-coding regions without epigenetic signals 

essential to cell fitness.  Deletion of such locus can produce a profound impact on 3D 

chromatin organizations such as the flips between A/B compartments, TAD alterations, 

and enhancer-promoter interactions changes revealed by Hi-C analysis. Single-cell RNA-

seq analysis also showed that many apoptosis genes are upregulated and distal gene 

expressions are changed upon deletion of such locus.  

 

Promoters and enhancers are cis-regulatory elements (CREs) that are critical for 

the spatiotemporal regulation of gene expressions(27–30). The activated enhancers are 

involved in direct physical contact with both the nearby active promoters(31–33) and the 

distal active promoters in the linear genome(28, 34–39). Therefore, a precise and delicate 

3D genome chromatin organization is essential to forming and maintaining promoter-

enhancer interactions. Many studies have reported that an altered chromatin organization 

can result in inappropriate enhancer-promoter interactions and lead to dysregulation of 

gene expressions(9, 40–44). 

 

Moreover, advanced microscopes have observed that the transcription factors and 

polymerases are grouped to form high transcriptional compact clusters instead of evenly 

scattered along the genome(45). The transcriptional condensates can further form liquid-

liquid phase separation in vivo and in vitro(46–48). Disruption of the phase separation 

has been observed to affect the chromatin organization(49). These observations 

suggested that the transcription machinery is important to 3D genome organization. 

 



 3 

Although the functional roles of regulatory elements in gene regulation have been 

intensively studied in the past few years, the contributions from enhancers and promoters 

in maintaining broad 3D chromatin organization beyond enhancer-promoter interactions 

have not been well studied. In Chapter2, colleagues and I presented the structural 

importance of regulatory elements in maintaining broad chromatin structures. Through 

small world networks analysis on enhancer-promoter interactions, we identified a group 

of regulatory elements harboring many 3D contacts (“hotspots”). Using the CRISPR-

CAS9 screening followed by Hi-C and single-cell RNA-seq analysis, we identified dozens 

of hotspots that can be essential to maintaining a broad chromatin structure and cell 

viability. Our study illuminated a previously unidentified role of regulatory elements, 

particularly enhancers, in maintaining a broad chromatin organization.  

 

Post-translational modifications on histones, including methylation(50–52), 

acetylation(53–55), phosphorylation(56, 57) and ubiquitination(58, 59), play critical roles 

in chromatin organization and function. Histone modifications are involved in gene 

regulation(60, 61). For instance, acetylation of the lysine residue at N-terminal position 

27 of the histone H3 protein (H3K27ac) serves as an indicator of the strong transcription 

activities; trimethylation of the lysine residue at N-terminal position 9 of the histone H3 

protein (H3K9me3) acts as an indicator of the gene silence and low transcription activities. 

In addition, histone modifications can also regulate the chromatin structures by controlling 

the chromatin conformation loose or tight. Previous studies have shown that histone 

acetylation and phosphorylation can change the conformation by effectively altering the 

charges on the residues. For example, acetylation on the N-terminal of lysine can 
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neutralize the positive charge on the residues and thus leads to a loose conformation or 

euchromatin(62, 63). Other modifications, such as histone methylation can alter the 

conformation by being recognized by other proteins(62). One example is H3K9me3. 

H3K9me3 can recruit heterochromatin protein 1 (HP1), which can compact chromatin into 

heterochromatin(62). 

 

Histone modifications have been observed to be associated with the 3D genome 

spatial domains(2, 7, 64–68). At a relatively small scale of chromatin organization, 

transcriptionally active TADs and polycomb-repressed TADs are often correlated with 

separate histone marks(68). At a large scale of chromatin organization beyond TADs, the 

“A compartment” is often enriched in active histone marks, and the “B compartment” is 

often in repressive histone marks (2, 7). Through the genome-wide clustering algorithms, 

the A/B compartment could be further clustered into six commonly known subtypes: A1, 

A2, B1, B2, B3, and B4 subcompartments, which have distinct functions. These 

subcompartments are often enriched in different histone mark patterns(2, 69). Based on 

the correlation between the histone marks and the 3D spatial organization, a few 

computational models have been built to predict the 3D genome organization from histone 

marks(70–76). 

 

Previous studies have intensively investigated the association between histone 

modifications and the existing 3D genome organization modules. However, an 

unexplored field is to illustrate the 3D genome organization modules directly from 

epigenetic histone modifications to better understand the relationship between chromatin 
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organization and function. In Chapter3, I presented a newly identified regulation 

associated module (“RAM”) from histone modifications. Through intensive 

characterizations and comparative analysis of RAMs and previously known spatial 

domains such as TADs and A/B compartments, RAM can reflect the spatial modular 

organization of the 3D genome and be better aligned with chromatin function. 

Perturbation of RAM boundaries is predicted to produce more severe alterations in 

chromatin structure than TADs from deep learning models. The enrichment of somatic 

indels in RAM boundaries highlights the critical role of RAM in pathogenesis.  

 

The introduction is, in part, based on material as it appears in “Noncoding loci 

without epigenomic signals can be essential for maintaining global chromatin organization 

and cell viability.” Bo Ding; Ying Liu; Zhiheng Liu; Lina Zheng; Ping Xu; Zhao Chen; 

Peiyao Wu; Ying Zhao; Qian Pan; Yu Guo; Wensheng Wei; Wei Wang. Science 

Advances, 7(45), eabi6020, 2021. DOI: 10.1126/sciadv.abi6020. The introduction is also, 

in part, based on the material as it appears in “Regulatory elements can be essential for 

maintaining broad chromatin organization and cell viability.” Ying Liu; Bo Ding; Lina Zheng; 

Ping Xu; Zhiheng Liu; Zhao Chen; Peiyao Wu; Ying Zhao; Qian Pan; Yu Guo; Wei Wang; 

Wensheng Wei. Nucleic Acids Research, Oxford University Press, 2022. gkac197, 

https://doi.org/10.1093/nar/gkac197. The introduction is also, in part, based on material 

as it appears in “Regulation associated modules reflect 3D genome modularity associated 

with chromatin activity.” Lina Zheng; Wei Wang. bioRxiv, 2022. 

https://doi.org/10.1101/2022.03.02.482718. This paper is in submission. The dissertation 

author was the primary investigator and author of all these papers. 
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Chapter 1. Noncoding loci without epigenomic signals can be essential for 

maintaining global chromatin organization and cell viability 

1.1 Abstract 

Most noncoding regions of the human genome do not harbor any annotated 

element and are even not marked with any epigenomic or protein binding signal. However, 

an overlooked aspect of their possible role in stabilizing 3D chromatin organization has 

not been extensively studied. To illuminate their structural importance, we started with the 

noncoding regions forming many 3D contacts (referred to as hubs) and performed a 

CRISPR library screening to identify dozens of hubs essential for cell viability. Hi-C and 

single-cell transcriptomic analyses showed that their deletion could significantly alter 

chromatin organization and affect the expressions of distal genes. This study revealed 

the 3D structural importance of noncoding loci that are not associated with any functional 

element, providing a previously unknown mechanistic understanding of disease-

associated genetic variations (GVs). Furthermore, our analyses also suggest a possible 

approach to develop therapeutics targeting disease-specific noncoding regions that are 

critical for disease cell survival. 
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1.2 Introduction 

Noncoding sequences of the human genome, such as noncoding RNAs (ncRNAs), 

enhancers, and transposons, are known to be critical for many biological processes and 

are thus functionally important. Despite the great progress in uncovering new roles of 

these noncoding elements, most of the human genome remains unannotated. As the 

three-dimensional (3D) organization of the genome is essential for regulating transcription 

and other cellular functions(1–6), an overlooked aspect of noncoding sequences is their 

“structural importance” in forming and maintaining the proper 3D chromatin structure, 

particularly for those that are not marked by any epigenetic signal or annotated with any 

functional unit. 

 

In protein function analysis, some residues could be important, if they are essential 

for maintaining the proper conformation(7), even though they may not be directly involved 

in the protein’s enzymatic activity or interaction with ligands. Similarly, noncoding genomic 

sequences could play critical roles in stabilizing the proper chromatin structure, although 

they do not harbor any enhancer or transcription factor (TF) binding site. Previous studies 

have shown that changing the noncoding sequences could alter chromatin organization; 

for instance, deletion of some boundary sequences of topologically associating domains 

(TADs)(1, 2) causes aberrant gene transcription, leading to disease(3). TAD boundaries 

can be considered a special case, but the structural importance of noncoding sequences, 

particularly those not associated with TADs or any functional elements, has not been fully 

investigated. 
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Deleting a noncoding sequence and examining a phenotypic readout such as cell 

viability can directly assess its importance. High-throughput genetic screening by the 

CRISPR-Cas9 system has been effectively applied to analyzing long ncRNAs 

(lncRNAs)(8, 9), enhancers, and promoters(10–12). However, it is still prohibitive to 

delete each 5-kb segment in the genome for thorough screening, and random selection 

of deletion loci is inefficient. For example, less than 3% of lncRNAs were reported to be 

essential for cell growth and survival(8, 9), and this percentage is expected to be even 

lower for unannotated noncoding loci. A reasonable strategy is to start with the genomic 

loci involved in many chromatin contacts, hereinafter referred to as hubs, because 

disrupting these hubs would potentially lead to a relatively profound perturbation to the 

chromatin organization. 

 

Here, we performed network analysis on Hi-C 3D contact data and identified a 

group of loci as hubs. Through a high-throughput CRISPR-Cas9 library screening by 

targeted deletion, we found that some hubs without any epigenetic marks were essential 

for cell growth and survival. We examined the impacts of hub deletion on the global 

chromatin structure and gene expression using Hi-C and single-cell RNA sequencing 

(scRNA-seq) technologies. 
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1.3 Materials and Methods 

1.3.1 Network construction and hub identification 

Evaluating the significance of Hi-C interaction pairs. We collected the raw 

reads, scale factors for vanilla coverage (VC) normalization, and the expected normalized 

reads for interaction pairs from the Hi-C experiments provided by Rao et 

al.(13)(GSE63525). The raw read, 𝑅!" , between fragments 𝐹! and 𝐹" was first divided by 

both sequence distances between 𝐹! and 𝐹" and obtained the expected normalized reads 

for the scale factors 𝑆#! and 𝑆#"  for VC normalization, 𝑅!"$%&' = (!"
)#!)#"

. Then, we calculated 

the distance 𝑅!"
*+, . Last, the significance of the interaction between 𝐹!  and 𝐹"  was 

evaluated using the P value of the normalized read 𝑅!"$%&' calculated on the basis of a 

Poisson distribution (4) with an expectation equal to 𝑅!"
*+,(14). 

 

Hub identification. We identified hubs in each Fragment Contact Network (FCN) 

using a Z-score of its degree, 𝑍𝑠𝑐𝑜𝑟𝑒 = -!./
0

, where 𝑑! is the degree of the ith fragment 

and 𝜇 and 𝜎 are the average and standard deviation of the degrees of all nodes in a 

chromosome of a cell line. We used a Z-score cut-off of 2.0 to select hubs that accounted 

for less than 10% of the total nodes(14) (Table S1.1). 

 

Epigenetic signal/gene enrichment in hubs and nonhubs. The peaks of six 

histone modifications (H3K4me1, H3K4me3, H3K27ac, H3K36me3, H3K27me3, and 

H3K9me3) and ATAC-seq peaks were counted in the hub/nonhub regions in the six cell 

lines (GM12878, HMEC, HUVEC, IMR90, NHEK, and K562). They were downloaded 
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from www.encodeproject.org/. The KBM7 cell line was not included in the analysis 

because of the lack of enough histone modification ChIP-seq data. Distributions of the 

overlapping histone modification and ATAC-seq peaks were compared between hubs and 

nonhubs, and P values were calculated using matched-pairs t test. 

 

To check the gene enrichment in the hub region and the entire genome, the 

annotated genes in hg19 genome downloaded from the UCSC genome browser 

overlapped with the whole genome (all 563,566 5-kb fragments covered in the Hi-C data 

in the entire genome), union of the hubs (union of all 87,324 hubs in the seven cell lines), 

and common hubs (8025 common hubs were found in the seven cell lines). 

 

Cell line specificity of the node degree distribution. For 5-kb resolution Hi-C 

data in the five cell lines, we used a correlation-based method to evaluate cell type 

specificity. (i) The degree of each node was represented as a vector containing the degree 

z score values calculated for the five cell lines that had both GV and Hi-C data (GM12878, 

HMEC, HUVEC, IMR90, and K562). (ii) For cell type specificities, there are 21= 32 

possible vectors, including 2 with no cell line specificity (0,0,0,0,0), (1,1,1,1,1); 5 specific 

to one cell line (1,0,0,0,0), (0,1,0,0,0)...(0,0,0,0,1); 10 specific to two cell lines (1,1,0,0,0), 

(1,0,1,0,0)...(0,0,0,1,1); 10 specific to three cell lines (1,1,1,0,0), (1,0,1,1,0)...(0,0,1,1,1); 

and 5 specific to four cell lines (1,1,1,1,0), (1,0,1,1,1)...(0,1,1,1,1). (iii) For each node, we 

calculated the Pearson correlation between the degree vector and these cell line 

specificity vectors. If the best correlation coefficient was larger than a threshold of 0.9 (P 
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< 0.006), then we assigned the node with the corresponding cell line specificity(14). 

(Table S1.2) 

 

For 20-kb resolution Hi-C data in 12 normal cell lines and 2 cancer cell lines (Table 

S1.3), we used a distribution-based method to evaluate the cell type specificities. (i) The 

degree of each node was represented as a vector containing the degree z score values 

calculated in all cell lines that had both GV and Hi-C data. (ii) For each node, we assumed 

that the normalized degrees obey a Gaussian distribution across normal cell lines, and 

we calculated the mean and SD. (iii) On the basis of the mean and SD for each node, we 

calculated the z score for each cell line, i.e., the cell line specificity z score. A node was 

considered cell line–specific if the absolute value of the cell line specificity z score was 

greater than 1(14). The “Network construction and hub identification” section was 

presented in an earlier and limited preprint version of this study deposited in BioRxiv(14). 

 

1.3.2 Hub screening and validation 

Cell culture. K562, H1975, and NAMALWA cells were cultured in RPMI 1640 

medium (Gibco). 293T, HeLa, A549, and Huh7.5.1 cells were cultured in Dulbecco’s 

modified Eagle’s medium (Gibco). All cells were supplemented with 10% fetal bovine 

serum (Biological Industries) with 1% penicillin/streptomycin and cultured in 5% CO2 at 

37°C. 

 

Design and construction of the CRISPR-Cas9 pgRNA library. To validate the 

importance of the hub regions, we sorted the hub regions with PLT and selected the top 
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700 all-cell line hubs and top 300 K562-specific hubs. Among them, 960 hubs were 

suitable for designing pgRNAs for CRISPR-Cas9 screening. For each hub, up to 20 

pgRNAs were designed to target 1-kb upstream and 1-kb down- stream regions flanking 

the two boundaries of the 5-kb segment. To ensure the cleavage accuracy and efficacy, 

we required sgRNAs in each pair to contain at least two mismatches to any other loci in 

the human genome, and their GC contents are between 0.2 and 0.8. For all the possible 

pgRNAs obtained from the selected sgRNAs, we removed those that may delete any 

promoter or exon of protein-coding genes, and we ensured that the cut site of each 

sgRNA is at least 30 base pairs (bp) away from the exon-intron boundary of the coding 

genes. We also designed 473 pgRNAs deleting the promoter region and first exon of 29 

ribosomal genes as positive controls, and 100 pgRNAs targeting the AAVS1 locus as well 

as 100 nontargeting pgRNAs as negative controls, which were obtained from our previous 

library(15). As a result, the hub deletion library contained 17,476 pairs of gRNAs targeting 

960 hub loci. The 128-nt oligonucleotides containing pgRNA coding sequences were 

designed, synthesized (Agilent Technologies Inc.), and cloned into the lentiviral 

expression vector following the two-step cloning method as previously described(15), with 

a minimum representation of 150 transformed colonies per pgRNA in each cloning step. 

 

CRISPR-Cas9 pgRNA library screening. K562 cells stably expressing Cas9 

were infected with pgRNA library lentiviruses at an MOI of <0.3 (1000× to 1500× coverage 

of the library), and two replicates were arranged. Seventy-two hours after infection, 

enhanced green fluorescent protein–positive (EGFP+) cells were selected by 

fluorescence-activated cell sorting (FACS; day 0). For each replicate, the harvested cells 
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were divided into a day 0 control group and an experimental group, which was further 

maintained at a minimum coverage of 1500× for 30 days. Then, cells from each group 

with 1500× library coverage were, respectively subjected to genomic DNA extraction, 

PCR amplification of sgRNA-coding sequences, and high-throughput sequencing 

analysis (Illumina HiSeq 2500 and HiSeq X Ten platform) as previously described(15). 

 

Identification of functional hubs. Sequencing reads were mapped to the pgRNA 

library and further normalized to reads per million for each barcoded gRNA. After 

calculating the quantile of pgRNA counts from two replicates, we removed noisy pgRNAs 

if a pgRNA’s quantile difference of two replicates was in either 3% tail of the distribution. 

Then, log2FC between the experimental and control groups was calculated for each 

pgRNA, and 100 negative control genes were generated by randomly sampling 20 

AAVS1-targeting pgRNAs with replacement. Two scores for each set of hubs were 

calculated: (i) the mean log2FC of all pgRNAs in the set, denoted by	𝐹𝐶234 ; and (ii) 

−𝑙𝑜𝑔56𝑃7893*of the one-sided Mann-Whitney U test of all pgRNAs in the set compared 

with pgRNAs targeting the AAVS1 locus, denoted by 𝑃234. The background distribution 

of these two scores was represented by the mean (𝜇#: and 𝜇;) and SD (𝜎#: and 𝜎;) of 

all negative control genes. Then, the essentiality of hubs was evaluated by the following 

function and hubs with the lowest 𝐼<=%&*(≤ −1) were identified as essential hubs. 

𝐼<=%&* = 𝑠𝑖𝑔𝑛(
𝐹𝐶234 − 𝜇#:

𝜎#:
) × ;|

𝐹𝐶234 − 𝜇#:
𝜎#:

| +
𝑃234 − 𝜇;

𝜎;
; 

 

To further avoid the potential issue of cell toxicity generated from multiple 

cleavages by some pgRNAs, we retrieved the GuideScan specificity score to evaluate 
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each sgRNA(16). By calculating the harmonic mean of the two sgRNAs for each pgRNA, 

a specificity score was generated for each pgRNA. We kept only the identified essential 

hubs if their targeting pgRNAs had specificity scores > 0.1 and 𝑙𝑜𝑔>𝐹𝐶 < −1. Furthermore, 

to avoid the copy number effect on dropout screening, the copy number of each hub locus 

in the K562 cell line was analyzed on the basis of ENCODE consortium copy number 

data (www.encodeproject.org/files/ENCFF486MJU/). After further filtering hub loci with 

copy number amplification, the remaining hits were regarded as essential hubs. 

 

Distance between hubs and centromeres. We calculated the distances between 

hubs and centromeres using their nearest boundaries and compared the distance 

distributions for essential and nonessential hubs. Chi-squared goodness of fit test was 

used to calculate the P value. 

 

Individual validation of essential hubs by cell proliferation assay. For each 

candidate hub locus, two pgRNAs were used for the individual validations, and they were 

either newly designed or selected from the library showing consistent depletion in 

replicates. To ensure high targeting specificity of all the selected pgRNAs, we required 

that their specificity scores are all greater than 0.15, and the score of at least one pgRNA 

for each hub is greater than 0.2. For the newly designed pgRNA, we further required that 

they do not include ≥4-bp homopolymer stretches and that their GC contents are between 

0.4 and 0.7. We also changed the deletion regions, which included each sgRNA targeting 

−1 to +0.5 kb, flanking the two boundaries of the 5-kb hub loci (− and + refer to the outer 
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and inner hub directions, respectively). Other rules were the same as those used for the 

pgRNA design in the library screening. 

 

All the pgRNAs targeting each hub to be validated were individually cloned into a 

lentiviral expression vector containing an EGFP selection marker. After virus packaging, 

the pgRNA lentiviruses were respectively transduced into K562 cells at an MOI of <1. The 

percentages of EGFP-expressing cells indicating the fraction of pgRNA-containing cells 

were quantified every 3 days by FACS. Cell proliferation of each sample was measured 

by normalizing the per- centage of EGFP+ cells at each time point to that at 3 days after 

in- fection (labeled day 0), which was the same as previously described(9, 15). The 

experiments lasted for 15 days after the first FACS analysis, and at least 100,000 cells 

were analyzed. 

 

WGS to evaluate off-target effects. K562 cells were lentivirally transduced with 

the pgRNA hub_22_7-pg2. The EGFP+ cells were collected by FACS sorting at day 8 

after pgRNA infection at an MOI of <1, and the sorted cells were subjected to genomic 

DNA extraction. The WGS library was prepared following the manufacturer’s instructions 

and sequenced using the Illumina HiSeq 4000 platform. Using the WGS data, we 

evaluated the deletion efficiency at the targeted locus and off-target effects. 

 

We downloaded the K562 (wild-type) WGS data from ENCODE with accession 

codes ENCFF313MGL, ENCFF004THU, ENCFF506TKC, and ENCFF066GQD and then 

evaluated the potential off-target effects following the published procedures(17). We first 
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generated putative off-target sites for hub_22_7 in the hg19 genome using Cas-OFFinder 

(23). We called the base mismatch type with at most four mismatches without considering 

any bulge (mismatch ≤ 4, bulge = 0). We also called bulge mismatch type with at most 

two mismatches with at maximum two bulges (mismatch ≤ 2, bulge ≤ 2). In total, we 

examined 455 potential off-target loci. To detect the candidate mutations and indels in the 

hub-deleted cells, variant calling was performed as described in genome analysis toolkit 

(GATK) Best Practices (https://gatk.broadinstitute.org/hc/en-us). Briefly, reads were 

aligned to the human reference genome (hg19) using BWA-0.7.17. Duplicated reads were 

then removed using GATK4 MarkDuplicatesSpark (https://gatk.broadinstitute.org/hc/en-

us/articles/360037224932-MarkDuplicatesSpark). The reads were then processed via 

base quality score recalibration using GATK4. Germline mutations (compared to the hg19 

reference genome) were called in both wild-type and hub-deleted cells by GTAK 

HaplotypeCaller (version 4.1.4.1) with the default parameters. SNVs and indels called by 

GATK4 Mutect2 (version 4.1.4.1) with the default parameters were used to assess off-

target deletions. 

 

We further confirmed no off-target effects using a different analysis software, 

BCFTOOLS suite (version 1.9, www.htslib.org/doc/ bcftools.html), to reexamine the 

single-nucleotide polymorphisms (SNPs) and indel sites from the WGS data. The mapped 

BAM file of K562 cells was piped into bcftools mpileup and bcftools call with default 

parameters. The called raw variant call format (VCF) file was filtered by a bcftools filter 

with “%QUAL < 30 || DP < 30” marked as low-quality variants. Homozygous variants were 

also removed from the raw VCF file with the parameter “GT = 1/1.” Gold standard indels 
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VCF of Mills and 1000G were downloaded from GATK Resource Bundle 

(https://gatk.broadinstitute.org/hc/en-us/articles/360035890811- Resource-bundle). The 

gold standard indels were also removed from the VCF file using bcftools isec with 

parameter “-n -1 -c all.” There were no putative off-target sites found in the 13,809 indels 

obtained using bedtools intersect (https://bedtools.readthedocs.io). 

 

1.3.3 Hi-C library preparation and data analysis 

Hi-C library preparation. The pgRNA Hub_22_7-pg2 was delivered into K562 

cells through lentiviral infection at an MOI of <1. EGFP+ cells were collected by FACS 

sorting at day 9 after infection, and the sorted cells were allowed to recover under normal 

cell culture conditions for 2 hours before proceeding to conduct the Hi-C library. One 

million cells were used for each Hi-C library preparation using an Arima-HiC kit (Arima 

Genomics, San Diego) following the manufacturer’s instructions. Hi-C libraries were 

sequenced using the Illumina NovaSeq platform. 

 

Hi-C data processing. The Hi-C raw FASTQ data were processed by the Juicer 

pipeline(18) with the default parameters. Hi-C reads were aligned to hg19 (GRCh37), and 

the reads with mapping quality score (MAPQ) < 30 were further trimmed. The output bam 

files were trans- formed into 5-kb, 10-kb, 25-kb, 50-kb, 100-kb, and 1-Mb resolution 

contact matrix. The contact matrix was then normalized by the VC method(13). The 

significance level of a given interaction pair was calculated from Poisson distribution fitting 

between the measured interaction reads and the expected reads by VC normalization. 



 25 

Juicebox (https://aidenlab.org/juicebox/) and HiCExplorer(19, 20) were used to visualize 

the processed Hi-C data. 

 

Loop calling. In both wild-type K562 and hub_22_7-deleted K562 cells, the VC 

normalized Hi-C contact reads were processed by HiCCUPS with default parameters at 

25-kb resolution for calling loops. (https:// github.com/aidenlab/juicer/wiki/HiCCUPS). 

 

TAD calling. We used insulation score(21) to identify the TADs for K562 wild-type 

and hub_22_7 deletion cells in 10-kb resolution data. The HiCExplorer software was used 

to plot the TADs(19). 

 

A/B compartment analysis. The A/B compartment analysis was conducted using 

50-kb bins. The eigenvectors for each chromosome in both K562 wild-type and hub-

deleted cells were extracted from the VC normalized Hi-C counts processed by the Juicer 

pipeline with the default parameters(18). The polymerase II (Pol II) ChIP-seq data in K562 

cells were downloaded from ENCODE(22). The correlation between the first eigenvector 

of each chromosome and the Pol II peaks density was calculated, on the basis of which 

we determined the A and B compartments(23). We repeated this analysis in GM12878, 

HUVEC, IMR90, and NHEK. For HMEC, there were no Pol II ChIP-seq data available, 

and thus, we used TSS density for hg19 genome to assign A/B compartments. 

 

Effective diameter comparison. The effective diameter was computed by SNAP 

software (https://snap.stanford.edu/snap/). We calculated the effective diameter deviation 



 26 

for each chromosome both before and after hub deletion and found that the deviation 

followed a Gaussian distribution by the Shapiro-Wilk normality test (P = 0.27 so that the 

null hypothesis of being normal distribution was accepted). Then, we calculated the P 

value for the deviation of each chromo- some on the basis of a Gaussian distribution and 

identified the significantly changed chromosome with P < 0.05. 

 

Modularity comparison. The modularity was computed by SNAP software 

(https://snap.stanford.edu/snap/). We collected the modularity scores of each 

chromosome in the seven wild-type cell lines (GM12878, K562, HUVECs, IMR90, NHEK, 

KBM7, and HMEC) and found that the modularity score for each chromosome followed a 

Gaussian distribution (all P values ≥ 0.01 to accept the null hypothesis of being a 

Gaussian distribution in the Shapiro-Wilk normality test). Then, for each chromosome in 

hub-deleted K562 cells, we calculated the P value of its modularity score on the basis of 

chromosome-specific modularity distribution and identified significantly changed 

chromosomes with P < 0.05. 

 

1.3.4 Bulk RNA-seq and data analysis 

Bulk RNA-seq library preparation. The pgRNA AAVS1-pg1 targeting the AAVS1 

locus was delivered into K562 cells at an MOI of <1. Then, 2 × 10?	EGFP+ K562 cells 

were sorted by FACS 8 days after transfection. Total RNA was extracted using the 

RNeasy Mini Kit (QIAGEN, 79254) with three replicates. The RNA-seq libraries were 

further prepared following the NEBNext PolyA mRNA Magnetic Isolation Module [New 

England Biolabs (NEB), E7490S], NEBNext RNA First Strand Synthesis Module (NEB, 
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E7525S), NEBNext mRNA Second Strand Synthesis Module (NEB, E6111S), and 

NEBNext Ultra DNA Library Prep Kit for Illumina (NEB, E7370L). All samples were 

subjected to next-generation sequencing (NGS) analysis using the Illumina HiSeq 4000 

platform. 

 

Bulk RNA-seq data processing. In the bulk RNA-seq library, the sequencing 

reads with Phred scores of ≥30 were aligned to the human reference genome 

(GRCh37/hg19) using HISAT2 (2.0.4)(24, 25) and assembled and quantified by 

StringTie(1.3.5)(24, 26). The gene read counts for each sample were further normalized 

by CPM. 

 

1.3.5 scRNA-seq and data analysis 

Single-cell library preparation. K562 cells infected with Hub_22_7-pg2 were 

FACS-sorted 8 days after lentivirus transduction for single-cell library preparation. The 

single-cell library was prepared with the established protocol de- scribed previously(27). 

Briefly, polyadenylated RNA was reverse transcribed through tailed oligo(dT) priming 

directly in whole-cell lysate (single droplet) using Moloney murine leukemia virus reverse 

transcriptase (MMLV RT) and temperature switch oligos. The resulting full-length 

complementary DNA (cDNA) contained the complete 5′ end of the mRNA, as well as an 

anchor sequence that served as a universal priming site for second-strand synthesis. The 

cDNA was preamplified using 15 cycles with Kapa HiFi HotStart ReadyMix. We used the 

Nextera DNA Sample Preparation Kit to generate single-cell libraries. The amplified cDNA 

was tagmented at 55°C for 5 min in a 20-𝜇l reaction with 0.25 𝜇l of transposase and 5 𝜇l 
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of Nextera reaction buffer. Five microliters of neutralization buffer was added to the 

tagmentation reaction mix to strip the transposase off the DNA, and the tagmented DNA 

was amplified by 12 cycles of standard Nextera PCR. Then the DNA was purified with 20 

𝜇 l of Ampure beads (sample to beads ratio of 1:0.6). The prepared libraries were 

sequenced on an Illumina HiSeq 4000 instrument. 

 

scRNA-seq processing. The FASTQ files were first mapped to the human 

reference genome (GRCh37/hg19) using Picard (2.17.0) 

(https://broadinstitute.github.io/picard/) and STAR (2.5.3a)(28). We used the Drop-seq 

processing pipeline developed by the McCarroll laboratory(27) to remove low-quality 

reads (lower than Q10) and PCR duplicates (identified by cell barcodes and molecular 

barcodes). The cells were descendingly ordered by read count. Reads from all the cells 

were pooled together to form a cumulative distribution. Cells with the most reads before 

the inflection point “knee” of the cumulative distribution were kept for the following 

analysis. 

 

We calculated a P value for each gene to assess whether the change was 

significant. Each cell was first normalized by CPM. We calculated 𝐸!, which is the sum of 

CPMs for a given gene across all the cells, and 𝐸A%A89, which is the sum of Ei for all the 

genes. We then computed 𝑃!  =𝐸!  /𝐸A%A89. In a given cell  j, the normalized gene expression 

of all genes was assumed to follow a binomial distribution 𝐺!"~B (𝑁" , 𝑃!) independently 

and identically, where 𝐺!" is the expected reads of gene 𝑖 in cell 𝑗 and 𝑁"  is the total reads 

for cell 𝑗. We calculated a P value to evaluate how significantly each gene expression in 
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each cell deviated from the expected value on the basis of the binomial distribution, which 

indicates its differential expression across cells. We also calculated the P value for genes 

in the negative control (𝛥AAVS1) and wild-type bulk RNA-seq data the same way. 

 

Single-cell trajectory branching and pseudotime analysis. Because hub 

deletion affected cell proliferation, we focused on analyzing the apoptosis genes 

annotated in the KEGG database (www. genome.jp/kegg/). Considering the noise in the 

scRNA-seq data, we selected apoptosis genes that showed differential expression in at 

least 10 to 15% of cells (P < 0.05). As a result, 93 apoptosis genes were identified in K562 

cells with the essential hub chr22: 17,325,000 to 17,330,000 deleted. All the single-cell 

and bulk data were clustered with trajectory branching and pseudotime analysis using the 

Monocle R package(29, 30). Monocle(29, 30) assigned each cell a pseudotime value and 

a “state” on the basis of the segment of the trajectory according to the PQ tree algorithm. 

Cells with the same state were clustered together(30), and then relative gene expression 

in each cluster was computed. 

 

DEGs identified from pseudotime analysis. To identify differentially expressed 

genes (DEGs) between state 1 and state 2 defined in the pseudotime analysis, a Wilcoxon 

rank sum test was applied to identify DEGs in state 2 compared to those in state 1 using 

a P value cutoff of 0.05. The chromosome distributions for these DEGs are listed in Table 

S1.4. 
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Investigation of the essentialities of DEGs from scRNA-seq data. Among the 

DEGs in chr22 upon hub_22_7 (chr22: 17,325,000 to 17,330,000) deletion, which were 

significantly decreased from state 1 to state 2, a top-ranked DEG THOC5 was selected 

to analyze its importance on cell growth and proliferation in K562 cells. Three sgRNAs 

were designed to knock down its expression through the CRISPRi strategy, which were 

selected from the hCRISPRi-v2 library(31). These sgRNAs were also individually cloned 

into the lentiviral expression vector with an EGFP marker and then respectively 

transduced into K562 cells stably expressing dCas9-KRAB (Krüppel-associated box) 

protein at an MOI of <1. The cell proliferation assay was performed as previously 

described(9, 15). The first time point of FACS analysis was 6 days after lentiviral infection, 

and the experiment lasted for 12 days. 
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1.4 Results 

We first downloaded the 5-kb resolution Hi-C data in seven human cell lines 

[GM12878, human mammary epithelial (HMEC), human umbilical vein endothelial 

(HUVEC), IMR90, normal human epidermal keratinocytes (NHEK), K562, and KBM7](13) 

and identified significant intrachromosomal contact pairs (P value cutoff of 𝑒.>6 , see 

Materials and Methods). We next assembled all the contacts in a chromosome for a 

certain cell line into a network, which is hereinafter referred to as the fragment contact 

network (FCN). In the FCN, each node is a 5-kb fragment, and each edge represents a 

3D contact. The degree of a node reflects how many contacts it forms. We calculated the 

z score of each node’s degree as 𝑧	𝑠𝑐𝑜𝑟𝑒 = -!./
0

, where 𝑑! 	 is the degree of the 𝑖 th 

fragment and 𝜇 and 𝜎 are the mean and standard deviation of the degrees of all nodes in 

a chromosome of a cell line. The nodes with a 𝑧	𝑠𝑐𝑜𝑟𝑒 ≥ 2.0 were considered “hubs”, 

whereas the rest of the nodes were considered “nonhubs”. (see Materials and Methods, 

Table S1.1 and ref(14)). The hubs count for less than 10% of the total nodes in a given 

FCN. 

 

Note that these contacts indicate the spatial closeness of the contacting loci, and 

they are not necessarily mediated by proteins or ncRNAs to form specific chromatin loops. 

An analogy is the core residues of a protein, which are located in the interior and form 

many contacts with other residues but do not necessarily have specific residue-residue 

interactions mediated by such as hydrogen bonds and electrostatic interactions; however, 

deleting these residues can disrupt the packing of the interior residues and thus distort 

the proper conformation required for the protein’s normal function. Similarly, perturbing a 
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hub may have the same impacts on the 3D genome structure by disrupting chromatin 

organization. 

 

To illustrate the importance of the hubs, we first investigated their contribution to 

stabilizing the FCN and their association with genetic variations (GVs; in this study, we 

focused on single nucleotide variations hereinafter) in cancer. Then, we identified hubs 

essential for cell viability using CRISPR screening. Lastly, we illustrated the impact of hub 

deletion on chromatin structure and gene expression using Hi-C and scRNA-seq. 

 

1.4.1 FCN networks are resistant to random attacks but vulnerable to targeted 

attacks 

In this study, we focused on intrachromosomal contacts and constructed FCNs for 

each chromosome in each cell line, resulting in a total of 161 (= 23 × 7) FCNs for all 

chromosomes in the seven cell lines. We found that the degree distribution of FCN follows 

a power law (Figure 1.1A), indicating that FCNs are scale-free networks. FCNs are 

resistant to random attacks (random removal of nodes in the network) but vulnerable to 

targeted attacks (targeted removal of specific nodes) against high-degree nodes, as 

scale-free networks(32). The 161 FCNs have similar network parameters, such as 

effective diameters, which is the path length such that 90% of node pairs are at a smaller 

or equal distance apart. The most significant outlier was the FCN of chr9 in the leukemia 

cancer cell line K562, which had a significantly larger effective diameter than the rest 

(Figure 1.1B, Figure S1.1A). We also calculated the diameter by considering the 

translocation between chr9 and chr22 (Philadelphia translocation), and it was still 
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significantly different from other chromosomes. We found that computationally removing 

high-degree nodes from chr9 of GM12878 normal cells led to a similar degree distribution 

of chr9 in K562 cancer cells, which suggests that the targeted perturbation shifted the 

FCN of a normal cell toward that of a cancer cell (Figure 1.1C). This analysis suggests 

that GVs in K562 cells likely target the high-degree nodes of chr9 and thus alter the 

network properties. We also confirmed that the high degree nodes (hubs) are crucial for 

stabilizing the contacts between their connecting nodes in the network (hereinafter 

defined as “neighbors”) (Figure S1.1C-F). 

 

We next investigated the genomic and epigenomic signals in the identified hub 

regions in six cell lines (no epigenomic data for KBM7). Compared to the nonhub loci, 

hub loci had fewer peaks for five histone marks (H3K27ac, H3K27me3, H3K4me1, 

H3K4me3, and H3K36me3) and a comparable number of H3K9me3 peaks (Figure 1.1D-

F, Figure S1.1G-I). We also observed less open chromatin (Figure 1.1G) and fewer 

annotated regions (including coding genes, ncRNA, and other annotated regions 

downloaded from https://hgdownload.cse.ucsc.edu/goldenPath/hg19/database/refFlat. 

txt.gz) in hubs than in nonhub regions (Figure 1.1H)(14) (see Materials and Methods). 

Furthermore, we compared the epigenetic marks (H3K27ac, H3K4me3, H3K4me1, 

H3K27me3, and H3K9me3) and assay for transposase accessible chromatin with high-

throughput sequencing (ATAC-seq) peaks in the upstream and downstream of the hubs 

in multiple cell types. We considered different distances away from the hub regions 

ranging from 0 to 50 kb in linear distance (Figure S1.3). Comparing with the upstream 

and downstream regions, hubs also have lower H3K27ac, H3K27me3, H3K4me1, 
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H3K4me3, H3K36me3, and open chromatin signals and comparable H3K9me3 peak 

numbers. We also identified A/B compartments for hub and nonhub loci and found that 

hubs are enriched in B compartments (Figure S1.1J), which is consistent with the histone 

modification analysis. These observations suggest that hubs are similar to the core 

residues in proteins, both densely packed in the interior of the 3D structure. Therefore, 

perturbation to hubs by GVs and deletions could disrupt chromatin packing to affect the 

surrounding 3D organization of chromatin and propagate through the genome, leading to 

observable phenotypes such as disease formation and cell death. 

 

Next, we examined whether the hubs found in normal cells have significantly 

different 3D contacts in cancers and whether these changes are associated with GVs. 

Then, we investigated whether and how deleting hubs can cause cell death. 

 

1.4.2 Cancer-related mutations alter 3D hub contacts 

As K562 is a cancer cell line, we investigated whether K562-specific GVs are 

related to changes in spatial contacts. After calculating the z score for each node’s degree 

so that it is comparable across cell lines, we checked its specificity, i.e., whether the 

contact degree was specifically high in any particular cell line.(see Materials and 

Methods) When considering all the nodes, we did not observe any specificity bias toward 

K562 cells: In the 563,566 total nodes of the whole genome, 38.3% showed no specificity, 

12.2% showed specificity in K562 cells, and the largest of the other specificities was 13.4% 

(Figure 1.1J, Table S1.2). 
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Next, we calculated the Pearson correlation coefficient between a node’s degree 

and GV occurrence in the node across cell lines. We found that K562-specific GVs were 

associated with the degree changes in K562 cells: Among all 54,117 nodes with degree-

GV Pearson correlation coefficients > 0.9 (referred to as degree-GV–correlated nodes; 

Figure 1.1I), 24,229 (44.72%) were K562 specific, i.e., the GV is only observed in K562, 

and the degree of the node shows significantly higher or lower degree in K562 than the 

other cell lines; as a comparison, the largest percentage for another cell type (HMEC) 

specificity was only 10.6% (5743 nodes) (Figure 1.1J, Table S1.2). This bias toward the 

only diploid cancer cell line K562 among the seven was even more obvious for hubs: For 

all the hubs identified in at least one of the seven cell lines, there were 8765 degree-GV–

correlated hubs, among which 5379 (61.37%) were K562-specific compared to the largest 

percentage of 824 (9.4%) specific to another cell type (HMEC) (Figure 1.1J, Table S1.2). 

Together, these analyses suggest that K562-specific GVs tend to significantly change the 

contact degrees, particularly on hubs, which is consistent with the observation that the 

FCN is vulnerable to targeted GVs in hubs. 

 

GVs can either disrupt hubs in normal cells or form new disease-specific hubs in 

cancer cells. We thus analyzed hub formation and disruption separately and found a 

strong correlation between GV and contact degree change in K562 cells for both 

scenarios. In particular, the percentages of hub disruption in chr9 of K562 cells (i.e., hubs 

found in the other four cell types but not in K562 cells) were 47.56 and 47.50% without 

and with consideration of translocation between chr9 and chr22, respectively (only the 

untranslocated part of chr9 was used for calculation). This was significantly higher than 
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all other chromosomes in each cell line, whose range was between 0 and 18.6% (Figure 

1.1K). Our analyses clearly show that the GVs in K562 cells severely disrupted the hubs 

on chr9 shared by other cell lines. 

 

To confirm the generality of this observation, we extended our analysis to four 

normal cell lines (GM12878, HMEC, HUVEC, and IMR90) and three cancer cell lines 

(HepG2, HeLa-S3, and K562) that had both 20-kb resolution Hi-C and GV data. We also 

found a strong correlation between the degree and GV in cancers (Figure 1.1L), 

suggesting that cancer-specific GVs tended to significantly alter the 3D contacts of hubs. 

 

1.4.3 Targeted deletion of hubs can significantly affect cell viability 

The above analyses indicated that hubs are not necessarily directly involved in 

functional activities, but they can be crucial for stabilizing the chromatin structure and are 

thus functionally important. To further test this hypothesis, we selected 960 hub regions 

(each 5 kb in length) to examine their impacts on cell growth and survival in a high-

throughput deletion screen with the highest partner linking tendency (PLT). These hubs 

are those likely to stabilize the contacts between neighbors, including 683 hubs present 

in all cell lines and 277 hubs specific to K562 cells. They are evenly distributed along the 

chromosomes (Figure S1.4E).  

 

For screening, we constructed a paired-guide RNA (pgRNA) library(15) targeting 

the selected hubs mediated by the CRISPR-Cas9 system. Using lentiviral transduction at 

a low multiplicity of infection (MOI) of <0.3, we transfected the pgRNA library containing 
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a total of 17,476 pgRNAs into K562 cells stably expressing the Cas9 protein. This library 

also included 473 pgRNAs targeting essential ribosomal genes as positive controls, 100 

pgRNAs targeting the AAVS1 locus, and 100 nontargeting pgRNAs as negative controls. 

The library cells were cultured for 30 continuous days after transduction. We sequenced 

cells at day 0 (controls) and day 30 to determine the abundance of barcode-gRNA regions, 

which represent the corresponding pgRNAs (Figure 1.2A). 

 

Distributions of pgRNA reads from the control/experimental group between two 

biological replicates were highly correlated (Figure S1.4A-B), and the scatter plot of each 

hub’s mean fold change between replicates also showed a high correlation (Pearson 

correlation coefficient = 0.75) (Figure S1.4C). In the day 30 cell population, compared 

with nontargeting pgRNAs or those targeting AAVS1, we identified hub regions with 

significant depletion in their targeting pgRNAs, consistent with positive controls that target 

essential ribosomal genes. The fold changes of all pgRNAs targeting each hub were 

calculated, and their P values were computed by comparison with the AAVS1-targeting 

pgRNAs using the Mann-Whitney U test(8, 9), which is focused on analyzing screening 

data with the in-library controls and could more accurately reflect the fitness effect of each 

locus. AAVS1-targeting pgRNAs were randomly sampled to generate a distribution of 

negative controls, which was used to compute the hubs’ P values. Combining the mean 

fold change and corrected P values, an 𝐼<=%&* was computed for each hub. Eventually, the 

hubs whose Iscore was less than or equal to −1 were considered essential hits. Overall,!

77 hubs were selected in K562 cells whose deletion led to cell death or growth inhibition 

(Figure 1.2B). 
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It has been reported that multiple cleavages in genomic loci generated by Cas9 

activity could lead to cellular toxicity and thus affect growth screen measurements(33–

36). To minimize the potential off-target effects, we calculated the GuideScan specificity 

score(16) for each single guide RNA (sgRNA) of every pgRNA, which focused on 

assessing the specificities of sgRNAs with two or three mismatches to off-target loci that 

are commonly used in library screens, and generated a specificity score for each pgRNA. 

We found that pgRNA targeting AAVS1 with a specificity score ≤ 0.1 could lead to a 

significant dropout effect in K562 cells (Figure S1.4D). To further assure the target 

specificity, we selected only targeting pgRNAs with specificity scores > 0.1 and log2 (fold 

change) (𝑙𝑜𝑔>𝐹𝐶) < −1 for subsequent analysis (Figure 1.2C). Furthermore, hub loci with 

copy number amplification were also filtered out to minimize the effect due to multiple 

cleavages by certain pgRNAs(37). Using these stringent criteria, we identified 35 

essential hubs in K562 cells (Figure 1.2C). We checked the location of essential hubs 

and found some of them located near the centromeres (Figure S1.4E), but they are not 

significantly closer to centromeres than the nonessential ones (P = 0.092, Figure S1.4F). 

 

We then chose seven candidate hubs for individual validation in K562 cells. For 

each hub, two or three pgRNAs with high specificity scores were selected (see Materials 

and Methods). All but two identified hubs were validated to severely affect cell growth 

and proliferation in K562 cells (Figure 1.2D-E, Figure S1.5), indicating their functional 

roles in cell fitness. To further explore the cell type specificity of the essential hubs, we 

selected hub_22_7 (chr22: 17,325,000 to 17,330,000, hg19), which showed the most 
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significant growth defect in K562 cells, and performed the same cell proliferation assay in 

five other cancer cell lines. Compared with negative controls targeting the AAVS1 locus, 

targeted deletion of hub_22_7 did not lead to significant cell death or cell growth inhibition 

in the following four tested cell lines: HeLa (cervical cancer cells), H1975 (non–small cell 

lung cancer cells), A549 (non–small cell lung cancer cells), and NAMALWA (Burkitt’s 

lymphoma) (Figure 1.2F, Figure S1.6A). In the liver cancer cell line Huh7.5.1, deletion 

of hub_22_7 showed a weak effect on cell fitness compared with deletion of the essential 

gene RPL19 serving as the positive control (Figure 1.2F, Figure S1.6A). Overall, only 

the hub_22_7 locus exhibited a remarkable essential role in the K562 cell line. These 

results validate the essential hubs identified in the screen. 

 

1.4.4 Cell death caused by hub deletion does not result from disruption of 

functional elements or off-target effects 

To illuminate the mechanism of cell death induced by hub deletion, we first 

examined the functional annotation and epigenetic modifications in these regions. None 

of the essential hubs overlap with gene coding regions, ncRNA regions, or TAD 

boundaries. A total of 77.1% (27 of 35 including 3 of 5 individually validated hubs) of the 

essential hubs did not overlap with any histone modification or TF chromatin 

immunoprecipitation sequencing (ChIP-seq) peak (Figure 1.3A, an example of hub_22_7 

in Figure 1.3B and full genomics and epigenomics signals for hub_22_7 in Figure S1.7). 

We also checked the ChromHMM states (the 18-state data downloaded from the 

Roadmap Epigenomics project 

(https://egg2.wustl.edu/roadmap/web_portal/chr_state_learning.html#exp_18state) in 
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the K562 essential hubs and found that 82.286% of them are in the quiescent/low states 

(Table S1.5). These observations indicated that the essentiality of these hubs did not 

result from the genes or regulatory elements they harbor. 

 

We next evaluated the essential hub_22_7 to rule out the possibility that cell death 

was caused by off-target cleavage. Using the validated pgRNA hub_22_7-pg2 with high 

specificity, we first measured its deletion efficiency by real-time quantitative polymerase 

chain reaction (PCR) (Figure S1.6B) at each time point after pgRNA transduction and 

then performed whole-genome sequencing (WGS) to evaluate its potential off-target 

effect on the day showing the highest deletion efficiency (see Materials and Methods). 

We identified >3.7 million single-nucleotide variants (SNVs) and >890,000 indels 

compared to the hg19 reference genome (Table S1.6). The fact that we could 

successfully identify 87.4% germline mutations found in the published wild-type K562 

cells (ENCODE database with the accession codes ENCFF313MGL, ENCFF004THU, 

ENCFF506TKC, and ENCFF066GQD) suggests reliable library quality. We manually 

checked the indels on 455 potential off-target loci and 2 on-target loci identified by Cas-

OFFinder(38) using loose criteria (bulge = 0, mismatch ≤4; bulge ≤2, mismatch ≤2) to 

avoid missing any possible off-target site (see Materials and Methods). Significant indels 

were found in only 2 on-target loci and not found in any of the 455 putative off-target loci, 

indicating no off-target cleavage. These analyses confirmed that cell death caused by 

hub deletion did not result from off-target effects. 
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1.4.5 Deletion of essential hubs can alter the global chromatin structure 

We next performed Hi-C analysis to examine the chromatin structure changes in 

hub_22_7-pg2–infected (hub_22_7-deleted) K562 cells. To characterize the global 

impact of hub deletion, we first constructed FCNs in the hub_22_7-deleted cells using the 

same criteria as in the wild-type cells and analyzed the changes in the network properties, 

including effective diameter and modularity, which is the difference between the fraction 

of edges observed within a group of nodes and the expected value in a random network. 

 

By analyzing the effective diameters of the FCNs before and after the hub deletion, 

we found that chr9, chr10, and chr22 had significant changes (P < 0.05; see Materials 

and Methods, Figure 1.3C): chr22 and chr10 increased, while chr9 decreased upon hub 

deletion. The hub-deleted cells also showed significant changes in the modularity scores 

of chr9, ch10, chr16, and chr22 (P < 0.05; see Materials and Methods, Figure 1.3D). 

While the change in the hubs residing in chr22 and chr22-translocated chr9 in K562 cells 

was not unexpected, the unexpected impact on chr10 and chr16 illuminated the 

importance of the understudied interactions between chromosomes (Figure S1.8). 

 

The increased diameter and modularity in chr22 suggest that hub deletion reduces 

long-range chromatin contacts and enhances modularization of the FCN, consistent with 

the overall Hi-C contact difference between the wild-type and hub-deleted cells (Figure 

1.3E). We did find newly formed and disrupted chromatin loops (examples in Figure 1.3E) 

and merge or split of a small percent of TADs in the hub-deleted cells (examples of chr22: 
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24 to 26 Mb, 35 to 38 Mb, and 45 to 47 Mb in Figure S1.9). Together, deletion of a hub 

has a global impact on chromatin structure that can propagate to other chromosomes. 

 

1.4.6 Deletion of essential hubs can up-regulate apoptotic genes 

Next, we set out to identify genes whose expression was significantly affected by 

hub deletion. Cells transduced with pgRNAs have various rates toward cell death, and 

the cell population is thus heterogeneous. Therefore, we used single-cell analysis to 

define the different cell states in the population. We performed Drop-seq analysis(27) on 

hub_22_7-pg2–infected K562 cells and collected scRNA-seq data for 393 cells passing 

the quality control criteria. The bulk RNA-seq data of the wild-type and AAVS1-deletion 

K562 cells were included as controls. All the RNA-seq data were normalized using counts 

per million (CPM), and the scaled z score for each gene in each individual cell or bulk 

sample was calculated by fitting a binomial distribution (see Materials and Methods). 

The scaled z score matrix of single-cell and bulk RNA-seq data was used for the following 

analysis. 

 

We performed trajectory branching and pseudotime analysis using Monocle(29, 

30). Given that cell viability was significantly affected upon hub_22_7 deletion, we 

analyzed 93 apoptosis genes documented in the Kyoto Encyclopedia of Genes and 

Genomes (KEGG) database (www.genome.jp/kegg/). The single cells together with bulk 

samples of the wild-type and AAVS1-deletion K562 cells were grouped into five cell states 

(Figure 1.4A). Both AAVS1-deletion and wild-type samples were assigned to state 1, 

indicating that AAVS1 deletion is a valid control. Single cells in state 1 resemble the wild-
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type cells at the low value of pseudotime, which is understandable because hub deletions 

were not synchronized in all cells. States 4 and 5 have the highest pseudotime values 

and thus are the most distinct from the wild-type state. Overall, the apoptosis genes 

showed increasing expression levels from state 2 to state 5 (see examples in Figure 

1.4B). Because states 2, 4, and 5 are the leaf nodes in the trajectory tree that represent 

local minimum or maximum points, we clustered the apoptosis genes according to their 

expression profiles in these three states. Each of the gene clusters presented with unique 

patterns as they progressed toward cell apoptosis (Figure 1.4C). This scRNA-seq 

analysis depicted the transcriptomic progression toward cell death upon hub deletion in 

K562 cells. 

 

1.4.7 Deletion of essential hubs can alter gene expression in distal regions 

We noticed that multiple contacts between promoters and enhancers located at 

the opposite sides of the hub in the linear genome were disrupted upon hub deletion 

(Figure 1.5A, Figure S1.10), indicating that deleting a hub could affect transcriptional 

regulation. To investigate whether important genes in chr22(31, 39) were affected, we 

compared the expression profiles of state 2 and state 1 and found significantly down-

regulated genes upon hub deletion, including multiple essential genes whose gene 

knockdown would significantly affect the K562 cell viability (identified from previous 

genome-wide CRISPRi screening(31)), such as ATXN10, THOC5, CHEK2, and HSCB 

(Figure 1.5B). Notably, these genes are located distal (12 to 34 Mb away in the linear 

genome) from the deleted hub_22_7 loci. We confirmed the essentiality of THOC5 in 

K562 cells through CRISPRi-based gene knockdown (Figure 1.5B). Furthermore, the 
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high-resolution Hi-C data indicated that its promoter’s interaction with enhancers was 

disrupted upon hub deletion (Figure 1.5C). They are located in compartment A (active) 

to compartment B (inactive) flip region (chr22: 29 to 32 Mb, Figure 1.5C), consistent with 

THOC5 repression. These observations suggest that the chromatin structure alteration 

induced by hub deletion could affect the expression of distal genes, including those 

essential for cell viability. 

 

1.4.8 The global impact of hub deletion suggests that hubs might be potential 

noncoding therapeutic targets 

Given that deleting one essential hub can affect many genes, a new “one-drug–

multiple-targets” therapeutic strategy may be developed to synergize different pathways. 

Namely, disease-specific noncoding regions, such as hubs that are essential in only 

cancer cells, could be potential therapeutic targets. In our screen, we identified a group 

of essential hubs specifically for K562 cells (Figure 1.2E-F, Figure S1.6). The deletion of 

hub_22_7 resulted in an approximately 80% decrease in the cell proliferation rate of K562 

cells but nearly no significant effects on the other analyzed cell lines (Figure 1.2F, Figure 

S1.6A). As K562 cell is a leukemia cancer cell line, such K562-specific hubs could be 

potential therapeutic targets for chronic myelogenous leukemia. As shown above, 

deletion of this hub caused the down-regulation of many essential genes and the 

activation of apoptosis pathways. Therefore, this collective effect of killing cancer cells is 

more potent than targeting each individual pathway and would make it more difficult for 

cancer cells to develop drug resistance. 

 



 45 

Furthermore, hub deletion also affected genes specifically expressed in K562 cells, 

although they are not essential for cell viability. For example, K562 cell-specific high 

expression of TOP3B (Figure S1.11), which plays important roles in the maintenance of 

gene stabilities and chromosome bridging(39, 40), was down-regulated upon hub deletion 

due to the disruption of its promoter-enhancer interactions. By examining the ENCODE 

data in 23 cell lines/tissues, we found that the enhancers located at chr22: 17,125,000 to 

17,130,000 were marked by H3K27ac in only K562 cells and another leukemia cell line, 

Dnd41 (Figure S1.11). The low expression of TOP3B in Dnd41 cells (Figure S1.11)(37) 

suggests that these enhancers may regulate only TOP3B in K562 cells. Therefore, 

deleting this hub can specifically down-regulate TOP3B in K562 cells. 

 

We also used Genomic Regions Enrichment of Annotations Tool (GREAT)(41) to 

search for pathways enriched (binomial false discovery rate Q ≤ 1 ×𝑒.1) in the loci whose 

Hi-C contacts (P ≤10.>6) were significantly reduced upon hub_22_7 deletion in chr22 

(Figure 1.5D). Notably, the APOBEC3 family genes stood out, and in particular, 

APOBEC3B was significantly down-regulated from state 1 to state 2 (Figure 1.5F). This 

is likely due to the reduced interaction between the APOBEC3B promoter and its 

enhancers upon hub_22_7 deletion (Figure 1.5E). APOBEC3 enzymes were reported as 

therapeutic targets for cancer treatment(42, 43), and their aberrant expression (e.g., 

higher expression of APOBEC3B) could cause cancerous mutagenesis leading to drug 

resistance or metastasis(44–46). Although APOBEC3B is not essential for K562 cell 

viability, its down-regulation could effectively reduce the mutation rate, which is crucial for 

developing a potent therapy. Together, deleting one hub may synergize with multiple 
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pathways to kill cancer cells and simultaneously reduce the cancer’s mutation capability. 

This example suggests that the identification and deletion of cancer-specific hubs could 

open a new avenue for developing potent therapeutics. 
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1.5 Discussion 

Noncoding genomic regions without any epigenetic mark, open chromatin, or TF 

binding have been overlooked in functional analysis. By analyzing the 3D contact 

networks derived from Hi-C data, we found that such noncoding regions without any mark 

can be in contact with many other loci and thus become hubs in the 3D contact network. 

Our simulated deletion of hubs in normal GM12878 cells shifted the 3D contact network 

toward the K562 cancer cell line. Our analysis also showed a strong correlation between 

3D contact change and GV occurrence in the hubs of cancer cell lines, suggesting that 

cancer-specific GVs tend to significantly alter the 3D contacts of hubs. These results 

indicate that hubs likely play critical roles in normal cells, and noncoding disease-

associated GVs can occur in hub regions to form or disrupt hubs in normal cells, which 

may cause aberrant cellular functions leading to diseases. Therefore, our analysis 

provides a new perspective to understand the mechanisms of noncoding GVs that do not 

overlap with any epigenetic mark, TF binding, or open chromatin but are tightly associated 

with diseases. 

 

To further examine the importance of the hub regions, we deleted 960 hubs in 

K562 cells using a pgRNA CRISPR-Cas9 library. Through computational analysis 

combined with the in-library AAVS1 controls and stringent filtering to avoid the potential 

issues of off-target effects and copy number amplifications, we found that 35 hubs could 

affect cell growth or viability after targeted deletion. The percentage of hubs essential for 

cell fitness is comparable to those of essential lncRNAs (<3%)(8, 9) and protein-coding 

genes (< 3%)(47), which further supports the importance of hubs. Five of seven loci were 
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individually validated with multiple pgRNAs, and hub_22_7 was further validated to be 

specifically essential for cell fitness in the K562 cell line. Using WGS analysis, we also 

confirmed that the targeting pgRNA of hub_22_7 has no off-target effect across the 

genome. 

 

To understand the impact of hub deletion, we focused on § validated hub 

hub_22_7 that has no epigenetic mark, TF binding, or open chromatin signal in K562 cells. 

This hub was randomly selected from the K562 essential hubs and could serve as a 

representative group of cell type–specific essential hubs. Hi-C analysis showed that 

deleting the 5-kb hub significantly altered the 3D contact networks, as quantified by the 

significant change in FCN properties, including diameter and modularity. The hub deletion 

effects were far beyond the contacting loci of the hub and indicate that the impact of hub 

deletion is global. 

 

We speculate that this global impact may start from the disruption of chromatin 

packing around the deleted hub and propagate to affect distal chromatin looping and 

promoter-enhancer interactions. An analogy is mutation of a residue in the interior of a 

protein’s structure that can significantly change the protein conformation, leading to 

protein dysfunction. Therefore, although hubs do not host or interact with any gene, the 

propagated effect can alter the transcription of distal genes, as shown by the scRNA-seq 

data, which are essential for cell viability by themselves or in combination with other 

affected nonessential genes. We recognize that it is difficult to prove the causal 

relationship between global chromatin organization change and cell proliferation or gene 
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expression, which still remains technically challenging and worthy of future investigation. 

Nevertheless, this is the first study to observe that noncoding loci without any epigenetic 

signals are not junk DNA, which could contribute to maintaining the global chromatin 

structure. 

 

Furthermore, we showed that hubs can be cancer specific, which indicates a 

possibility of developing treatments to target a specific cancer. We are aware that the 

present studies are in cell lines and that further analysis in tumor tissues is necessary to 

confirm the translational value. However, it is worth noting that, because the global impact 

of hub deletion can affect many genes located distal from each other in the genome, the 

identified cancer-specific hubs could be potential new therapeutic targets. Targeting these 

noncoding loci could leverage the synergistic effects of multiple mechanisms to develop 

potent therapeutics, and treatment resistance is harder to develop because it requires 

mutations to interfere with the large number of genes affected by hub inhibition. There is 

a long way to go to translate this discovery, and there are possible roadblocks such as 

targeting multiple genes/pathways that may lead to lack of specificity for developing new 

therapeutics. As there are much more noncoding loci than the genes, overcoming the 

potential pitfalls requires additional effort to better understand the mechanisms of these 

“dark matter” in the genome for treating disease. Our findings here suggest an exciting 

direction for further exploration given the fast advancement of genome editing and 

delivery technologies. 

 



 50 

Together, we report here the first study to reveal that noncoding loci without any 

epigenetic mark, TF binding, or open chromatin signal can be essential for cell viability. 

The importance of these loci for global chromatin organization and their impact on distal 

gene expression upon deletion make them a potential new class of therapeutic targets 

that have not yet been found. 
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1.7 Figures 

 

Figure 1.1. Characterization of the FCNs and hub nodes. (A) Degree distribution of 
FCN. (B) The effective diameter of FCN remains largely unchanged with increasing 
network size. “Translocated” (untranslocated): network constructed by considering (not 
considering) the translocation between chr9 and chr22. (C) The degree distribution of 
chr9 in normal cell lines (GM12878 as an example) after removal of high-degree nodes 
is similar to that of K562 chr9. (D-G) Epigenomic signals in hubs and nonhubs: H3K27ac 
(D), H3K4me1 (E), H3K9me3 (F), and ATAC-seq (G) in diverse cell lines. (H) The 
percentages of the annotated regions (including coding genes, ncRNA, and other 
annotated regions at 
https://hgdownload.cse.ucsc.edu/goldenPath/hg19/database/refFlat.txt.gz) in the whole 
genome, union of hubs (hubs appeared in at least one cell line), and common hubs (hubs 
appeared in all cell lines). Numbers above the bar plot are the number of nodes 
overlapping with gene regions (top) and the number of nodes in that category (bottom in 
parentheses). (I) Definition of degree-GV–correlated nodes. The example node has a 
high degree in K562 and low degrees in others, which is correlated with the GV profile 
with a SNP in K562 but none in others. (J) The distribution of cell line specificities in all 
nodes, degree-GV–correlated nodes, and degree-GV–correlated hubs. (K) The 
distribution of one cell type–specific hub and four cell type–specific hubs in chromosomes 
and cell lines. (L) The percentage of degree-GV–correlated nodes in normal cell lines and 
cancer cell lines. 
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Figure 1.2. Identification of essential hubs for cell growth and proliferation in the 
K562 cell line through pgRNA-mediated fragment deletion. (A) Schematic of the 
pgRNA library design, cloning, and functional screening of selected hub loci. CMV, 
cytomegalovirus. (B) Volcano plot of the fold change and P value of hubs in the K562 cell 
line. The dotted red line represents Iscore = −1. (C) Selection of candidate essential hubs 
by pgRNA fold change and specificity score. Essential hits were selected with specificity 
score > 0.1, log2 (fold change) (log2FC) < −1. (D and E) Validation of top-ranked essential 
hubs in K562 by cell proliferation assay. AAVS1-pg1 and AAVS1-pg2 are pgRNAs 
targeting AAVS1 as negative controls. Asterisk (*) represents P values compared with 
AAVS1-pg1 at day 15, calculated by two-tailed Student’s t test, and adjusted by 
Benjamini-Hochberg procedure. (F) Validation of hub_22_7 in multiple cancer cell lines, 
including A549, H1975, HeLa, Huh7.5.1, and NAMALWA. Asterisk (*) represents P values 
compared with AAVS1-pg1 at day 15, calculated by two-tailed Student’s t test, and 
adjusted by Bonferroni correction accounting for multiple testings. Data are presented as 
the means ± SD. (n = 3). **P < 0.01, ***P < 0.001, and ****P < 0.0001. NS, not significant. 
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Figure 1.3. Characterization of the deleted hub and the impact of its deletion on the 
global chromatin structure. (A) Overlap of essential hubs in K562 cells with the peaks 
of 10 histone marks (H3K27ac, H3K4Me1, H3K4me3, H3K27me3, H3K9me3, H3K36me3, 
H3K4me2, H3K79me2, H3K9ac, and H3K20me1) and 151 TFs. (B) Histone marks, CTCF 
(CCCTC-binding factor) binding, open chromatin, DHS, DNase hypersensitivity; FAIRE, 
formaldehyde-assisted isolation of regulatory elements, and conservation score (100 
vertebrates basewise conservation by PhyloP) on chr22: 17,325,000 to 17,330,000 (see 
Figure S1.6 for all signals). (C) Effective diameters versus log10(number of nodes) the 
wild-type (WT) and hub_22_7-deleted K562 cells. (D) Modularity scores in the seven wild-
type cell lines for 23 chromosomes. Red dots, hub_22_7 deletion. (E) Hi-C contacts for 
wild-type and hub_22_7-deleted K562 cells at 1-Mb, 100-kb, and 25-kb resolutions. 
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Figure 1.4. Hub deletion induces global changes in gene expression. (A) 
Pseudotime clusters of hub_22_7-deleted and wild-type K562 cells based on apoptosis 
gene expression. (B) Examples of typical apoptosis gene expressions (CASP2, CASP3, 
CASP6, CASP7, CASP8, CASP9, BAK1, and BID) under different cell states defined by 
pseudotime analysis. (C) Global analysis of 93 KEGG apoptosis gene expression levels 
in states 1, 2, 4, and 5. Genes were clustered into three groups. 
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Figure 1.5. The concurrent alterations of 3D chromatin structure and gene 
expressions after hub deletion. (A) Disruption of enhancer-promoter interactions upon 
hub_22_7 deletion. (B) Essential genes of K562 cells located on chr22 with significantly 
down-regulated expression (P < 0.05) in state 2 compared to state 1. (C) A/B 
compartment change (50-kb resolution) upon hub deletion. Multiple enhancer-promoter 
contacts with THOC5 were disrupted in the compartment changing region (chr22: 
29,850,000 to 32,350,000). (D) Gene Ontology biological process pathways associated 
with loci whose 3D contacts were disrupted by hub deletion. (E) The 3D contacts between 
the APOBEC3B promoter and enhancers located on chr22: 24,000,000 to 26,000,000 
were significantly decreased in hub-deleted cells. The enhancers were identified using 
the overlapping peaks of H3K27ac and H3K4me1 in the wild-type cells. (F) The relative 
expression level of APOBEC3B from state 1 to state 2. 
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1.8 Supplementary Figures 

 

Figure S1.1. Hub characterization. (A) The effective diameter of FCN remains almost 
unchanged with increasing network size (taking GM12878 cells as an example). (B) 
Random removal of nodes did not change, while targeted removal significantly altered 
the degree distribution (chr1 in GM12878 cells shown as an example). (C) Neighbours of 
a node are those directly linked to it in at least one cell line. In a particular cell line, the 
interacting neighbours of a node are called its partners, and neighbours not interacting 
with the node in this cell line are called non-partners. (D) Removal of a node with or 
without disrupting the contacts between its neighbours. Removal with disruption and 
removal without disruption refer to removing a node disrupting and not disrupting contacts 
between its neighbours respectively. Removal with disruption decreases the network size 
more significantly than removal without disruption. (E) The distribution of Partner Linking 
Tendency (PLT) for all the nodes in the 7 cell lines. PLT shows the difference in the 
contact ratio between partners and non-partners for each node in all cell lines. Blue bars, 
PLT < 1.0; grey bars, PLT > 1.0. This suggests that the removal of most of the nodes will 
disrupt the contacts between their neighbours. (F) The relationship between the number 
of nodes and effective diameter with targeted removal without disruption. The red dot 
represents chr9 of K562 cells, whose size is much smaller than the simulated removal 
without disruption. (G-J) Comparison of epigenomic signals between hubs and non-hubs, 
including H3K27me3 (G), H3K4me3 (H), and H3K36me3 (I). The data were obtained from 
the NIH Roadmap Epigenetics Project. (J) Comparison of B-compartment percentage 
between hubs and non-hubs. The data were calculated from Hi-C. 
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Figure S1.2. Formation or disruption of cell type-specific hubs. (A) The distribution 
of one cell line specificities, i.e., cell type-specific interaction formation, in all nodes, 
degree-GV-correlated nodes and degree-GV-correlated hubs (Table S1.2). (B) The 
distribution of four cell line specificities, i.e., cell type-specific interaction disruption, in all 
nodes, degree-GV-correlated-nodes and degree-GV-correlated-hubs. 
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Figure S1.3. Histone modifications and open chromatin signals around the hub 
regions (0-50 kbp upstream and downstream) in different cell types. Average peak 
numbers in the 5-kb bins of H3K27ac (A), H3K4me1 (B), H3K4me3 (C), H3K27me3 (D), 
H3K36me3 (E), H3K9me3 peaks (F), ATAC-seq (G). 
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Figure S1.4. The correlations between replicates in the functional screening for 
essential hubs in the K562 cell line and hub distribution in each chromosome. (A 
and B) Scatter plots of normalized pgRNA read counts of the hub libraries including day 
0 control samples (Ctrl) (A) and day 30 experimental samples (Exp) (B) in the K562 cell 
line. The Pearson correlation coefficients (Pearson corr.) between the two biologically 
independent replicates of each sample are also presented. (C) Scatter plots of pgRNA 
fold changes between the two biological replicates in K562 cells. (D) The distribution of 
pgRNAs targeting the AAVS1 locus with different log2(fold change) and specificity scores. 
(E) Hub distribution in each chromosome. The lines above the chromosomes represent 
the locations of hubs, among which, the purple vertical lines indicate the essential hubs 
and the yellow lines indicate other hubs. The red horizontal blocks in the chromosomes 
represent the locations of the centromeres. (F) The density of essential hubs and other 
hubs with different distances (in Mb) from the centromeres. The purple line indicates the 
density of essential hubs and the yellow line indicates the density of other hubs. 

 



 66 

 

 

 



 67 

 

Figure S1.5. Validation of essential hubs in K562 cells through fragment deletion. 
(A) Validation of three additional hubs that were confirmed to be essential for cell viability 
in K562 cells. (B) Validation of two selected hubs that showed no significant effect on cell 
viability in K562 cells. The rule of designing pgRNAs for each hub and the method for 
determining their effects on cell growth or proliferation were the same as described in 
Figure 1.2D-E. Asterisks represent p-value compared with AAVS1_pg1 at day 15, which 
were calculated by two-tailed Student’s t-test and adjusted for multiple comparisons by 
the Benjamini-Hochberg method. Data are presented as the mean ± s.d. (n = 3 
biologically independent samples). *p-value < 0.05; **p-value < 0.01; ***p-value < 0.001; 
****p-value < 0.0001; NS, not significant.  
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Figure S1.6. Validation of hub_22_7 in multiple cancer cell lines through fragment 
deletion. (A) The performance of pgRNAs targeting hub_22_7, the AAVS1 locus and the 
essential protein-coding gene RPL19 in various cell lines (HeLa, H1975, A549, Huh7.5.1, 
NAMALWA and K562). The method for determining their effects on cell growth or 
proliferation was the same as that described in Figure 1.2D-E. Data are presented as the 
mean ± s.d. (n = 3 biologically independent samples). *P < 0.05; **P < 0.01; ***P < 0.001; 
****P < 0.0001; NS, not significant. (B) Deletion efficiency of the pgRNA targeting 
hub_22_7 in K562 cells on different days post lentiviral transfection. 
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Figure S1.7. Comprehensive genomic and epigenomic data of the essential 
hub_22_7 (chr22:17,325,000-17,330,000) in K562 cells. 
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Figure S1.8. Interchromosomal Hi-C contacts in wild-type K562 cells. 
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Figure S9. TADs in the wild-type and hub-deleted K562 cells. (A and B) TADs in 
chr22: 16.5 Mbp-34 Mbp. (C and D) TADs in chr22: 34 Mbp-50 Mbp. 
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Figure S1.10. Hi-C contacts between chr22: 16 M-17 M and chr22: 19 M-20 M in the 
hub-deleted (left) and wild-type (right) K562 cells. 
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Figure S1.11. The expression levels of TOP3B in different cell lines/tissues and 
H3K27ac signals of the enhancer regions interacting with the TOP3B promoter. 
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1.9 Supplementary Tables 

Table S1.1 Number of hubs selected in each cell line. 
Cell Line Number of hubs Number of total nodes Ratio 
GM12878 36,371 545,098 0.067 

HMEC 37,452 465,032 0.081 
HUVEC 33,817 483,049 0.07 
IMR90 32,183 495,532 0.065 
NHEK 26,437 446,942 0.059 
K562 44,295 480,934 0.092 
KBM7 37,453 488,283 0.077 
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Table S1.2 The percentage of cell line-specific nodes in all nodes, degree-GV-correlated 
nodes and degree-GV-correlated hubs.  

Specificity All nodes degree-GV-
correlated-nodes 

degree-GV-
correlated-hubs 

Total 563,566 54,177 8,765 
No specificity 215,893 9,766 910 

GM12878 8,482 615 99 
HMEC 45,196 3,871 824 
HUVEC 13,712 1,074 142 
IMR90 8,841 828 101 
K562 68,988 24,229 5,379 

GM12878, HMEC 7,572 370 58 
GM12878, HUVEC 8,232 398 45 
GM12878, IMR90 31,295 1,979 106 
GM12878, K562 16,954 1,269 256 
HMEC, HUVEC 16,867 1,070 116 
HMEC, IMR90 10,858 600 102 
HMEC, K562 75,344 5,743 372 

HUVEC, IMR90 13,915 678 85 
HUVEC, K562 14,296 1,060 90 
IMR90, K562 7,121 627 80 
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Table S1.3 Additional Hi-C data with 20-kb resolution. 
Samples Experiment ID Status 

transverse colon, adult male (54 years) ENCSR079IDJ Normal 
gastrocnemius medialis, adult female (51 years) ENCSR974ADY Normal 

transverse colon, adult female (53 years) ENCSR504OTV Normal 
gastrocnemius medialis, adult female (53 years) ENCSR089CCK Normal 

gastrocnemius medialis, adult male (37 years) ENCSR125MJP Normal 

transverse colon, adult male (37 years) ENCSR295BDK Normal 

gastrocnemius medialis, adult male (54 years) ENCSR479USL Normal 
transverse colon, adult female (51 years) ENCSR424WMG Normal 

HeLa-S3 ENCSR693GXU Cancer 
HepG2 ENCSR194SRI Cancer 
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Table S1.4 The chromosome distributions for differentially expressed genes. 
chromosome DEG.number 

chr1 631 
chr10 246 
chr11 351 
chr12 345 
chr13 111 
chr14 207 
chr15 179 
chr16 291 
chr17 365 
chr18 78 
chr19 471 
chr2 417 
chr20 168 
chr21 59 
chr22 142 
chr3 336 
chr4 210 
chr5 266 
chr6 325 
chr7 270 
chr8 188 
chr9 230 
chrX 245 
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Table S1.5 chromHMM states distribution in K562 essential hubs. 
chromHMM states description Percentage(%) 

State1 Active TSS 0 
State2 Flanking TSS 0.229 
State3 Flanking TSS Upstream 0 
State4 Flanking TSS Downstream 0 
State5 Strong transcription 0 
State6 Weak transcription 6.057 
State7 Genic enhancer1 0 
State8 Genic enhancer2 0 
State9 Active Enhancer 1 0.229 
State10 Active Enhancer 2 0.229 
State11 Weak Enhancer 2.4 
State12 ZNF genes & repeats 0 
State13 Heterochromatin 0 
State14 Bivalent/Poised TSS 0 
State15 Bivalent Enhancer 0 
State16 Repressed PolyComb 0 
State17 Weak Repressed PolyComb 8.571 
State18 Quiescent/Low 82.286 
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Table S1.6 Summary of WGS analysis for hub_22_7 deletion in K562 cells. 
CellLine K562-wt K562-del 

Genome hg19 hg19 
Genome Coverage 42x 27x 
Mapping Rate 94.39% 80.19% 
SNV+INDEL(Compared.to.hg19) 4.7M 4.1M 
SNV+INDEL(Compared.to.hg19) confirmation ratio 87.40% 
Variations in Putative Off-Target loci (compared to wt) N/A 0 
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Chapter 2. Regulatory elements can be essential for maintaining broad chromatin 

organization and cell viability 

2.1 Abstract 

Increasing evidence shows that promoters and enhancers could be related to 3D 

chromatin structure, thus affecting cellular functions. Except for their roles in forming 

canonical chromatin loops, promoters and enhancers have not been well studied 

regarding the maintenance of broad chromatin organization. Here, we focused on the 

active promoters/enhancers predicted to form many 3D contacts with other active 

promoters/enhancers (referred to as hotspots) and identified dozens of loci essential for 

cell growth and survival through CRISPR screening. We found that the deletion of an 

essential hotspot could lead to changes in broad chromatin organization and the 

expression of distal genes. We showed that the essentiality of hotspots does not result 

from their association with individual genes that are essential for cell viability but rather 

from their association with multiple dysregulated non-essential genes to synergistically 

impact cell fitness. 
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2.2 Introduction 

Promoters and enhancers are regulatory elements that control gene expression in 

response to intra- and extracellular signals(1–4). In many cases, activated enhancers 

appear to engage in direct physical contact with their nearby promoters (5–7). However, 

there are also enhancers whose interacting promoters are distally located in the linear 

genome(2, 8–13), and they are brought to spatial proximity by such as chromatin looping 

(14–17), protein oligomerization(2, 18, 19) or Pol II tracking along chromatin(2, 20). These 

observations on long-range enhancer-promoter interactions highlight the important 

impact of 3D chromatin structure on the activities of these regulatory elements. 

 

Recently, an increasing number of investigations on chromosome spatial 

structures have indicated that enhancer-promoter interactions play pivotal roles in forming 

specific 3D structures. Imaging analyses showed that transcription factors (TFs) and 

polymerases are not evenly distributed in the nucleus but rather concentrated in certain 

regions to form spatial clusters; these regions are associated with high transcriptional 

activities and a more compact chromatin structure(21–23). Transcription could also affect 

the 3D topology, and a recent study reported that transcription elongation can be critical 

for chromatin organization(24). These studies suggested a mutual relationship between 

promoter/enhancer activity and 3D chromatin structure. The discovery that these 

regulatory elements positioning in such spatial clusters with active transcription could 

contribute to maintaining broad chromatin structures therefore has become an emerging 

question. 
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Given these observations and evidence, we hypothesize the following: if a 

promoter or enhancer is positioned in 3D space in a manner pivotal for the maintenance 

and stabilization of the surrounding 3D chromatin structure, perturbing such elements 

may impact chromatin organization beyond their specific direct enhancer-promoter 

interaction; namely, perturbation of such promoter or enhancer would significantly alter 

broad chromatin organization and disrupted regulation of multiple direct and indirect 

target genes simultaneously. 

 

To investigate our hypothesis, we started with active promoters/enhancers that 

likely form many 3D spatial contacts with other active promoters or enhancers, referred 

to as hotspots hereinafter. Using our previously published algorithm EpiTensor(25), we 

identified hotspots at a high resolution of 200 bp based on their covariation of epigenetic 

marks across cell types. Interestingly, cancer-specific genetic variations (we focused on 

single nucleotide variations) were discovered to have a significantly higher chance of 

residing in hotspot regions. Through high-throughput CRISPR-Cas9 library screening of 

hotspots by targeted deletion, dozens of noncoding loci were identified as essential for 

cell growth and survival, referred to as essential hotspots. We then evaluated the impact 

of the 3D chromatin structure by Hi-C technology and transcriptome patterns using single 

cell RNA-seq upon knocking out hotspots. Importantly, we found that deleting a hotspot 

enhancer could alter broad chromatin organization beyond chromatin looping, which has 

not been reported before. Deletion of the hotspot would further impact the expression 

levels of multiple genes concurrently, which exhibited synergistic effects to affect cell 

fitness. 
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2.3 Materials and Methods 

2.3.1 Predicting high-resolution regulatory element contacts by EpiTensor 

Active promoters marked by H3K27ac and H3K4me3 and active enhancers 

marked by H3K27ac and H3K4me1 were identified in 73 normal and 5 cancer 

cells/tissues that were available in the Roadmap Epigenomics project(26). The 3D 

contacts between these active promoters/enhancers in each cell/tissue were predicted by 

EpiTensor(25) with an EpiTensor score cut-off ≥ sqrt (25000). In a given cell/tissue 

sample, these contacts were assembled into a regulatory element interaction network 

(REIN) in which each node represents a promoter/enhancer and an edge represents a 

predicted contact. 

 

2.3.2 Identification of sample-specific degree/sample-specific GV 

A distribution-based method was used to evaluate the cell type specificities for 

degree: 1) For each node, we collected the normalized degree in all samples that had 

epig23enomic data (73 normal and 5 cancer in total); then we calculated the mean and 

standard deviation for each node across the normal samples, under the assumption that 

the normalized degrees of normal samples obey a Gaussian distribution; finally, the Z-

score for each node in each sample, i.e. the sample-specific degree Z-score, was 

calculated using the mean and standard deviation. A node was considered to have 

sample-specific degree if the absolute value of the sample-specific degree Z-score was 

greater than 1. 
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We identified sample-specific GVs with a similar method: for each GV, we first 

calculated mean and standard deviation of B-allele frequency in all normal samples (45 

in total); then, Z-score for each GV in each sample, i.e. the sample-specific allele 

frequency Z-score, was calculated using the mean and standard deviation. A GV was 

considered as sample-specific if the absolute value of the sample-specific allele 

frequency Z-score was greater than 1.  

 

2.3.3 Cell culture 

K562, H1975 and NAMALWA cells were cultured in RPMI 1640 medium (Gibco), 

and 293T, HeLa, A549 and Huh7.5.1 cells were cultured in Dulbecco’s modified Eagle’s 

medium (DMEM, Gibco). All media were supplemented with 10% fetal bovine serum (FBS, 

Biological Industries) and 1% penicillin/streptomycin, and cells were cultured with 5% CO2 

at 37°C. 

 

2.3.4 Design and construction of the CRISPR-Cas9 pgRNA library 

To explore the cellular function of hotspots, we selected 751 hotspots identified in 

the K562 cell line. For each hotspot, the designed sgRNAs targeted 100-bp inside regions 

and 1-kb outside regions flanking the two boundaries of hotspot loci. If there were not 

enough sgRNAs satisfying the following design rules, sgRNAs were searched among the 

5-kb outside regions flanking each boundary. All the PAM motifs in the targeting regions 

were scanned to identify available sgRNA targeting sites. All the selected sgRNAs are 

located in noncoding regions and satisfy all the following conditions: (1) the targeting 
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sequence is unique for the intended locus; (2) the sgRNA contains at least 2 mismatches 

to any other locus in the human genome; and (3) the GC content of the sgRNA ranges 

from 20% to 80%. We enumerated all possible pgRNAs from the selected sgRNAs and 

then retained those satisfying these conditions: (1) the two sgRNAs respectively targeted 

100-bp inside regions and 1-kb (or 5-kb) outside regions flanking each hotspot boundary; 

(2) the deletion regions should not overlap with any promoter or exonic region of protein-

coding genes; and (3) the sgRNA targeting sites are at least 30 bp away from the exon-

intron boundary of protein-coding genes. The gRNA pairs were designed with one unique 

gRNA serving as a decoding barcode, and up to 20 pgRNAs were designed for each 

locus. 

 

Finally, 14,399 pairs of gRNAs targeting 751 hotspots were generated for the 

hotspot deletion library together with 473 pgRNAs targeting the promoter regions (5 kb 

upstream of the transcription start site) and the first exon of 29 ribosomal genes (serving 

as positive controls) and 100 pgRNAs targeting the AAVS1 locus and 100 non-targeting 

pgRNAs from a previous library(27) (serving as negative controls). According to the two-

step cloning method(27), 128-nt oligonucleotides containing pgRNA coding sequences 

were synthesized (Agilent Technologies, Inc.), cloned into a lentiviral expression vector 

harbouring an EGFP selection marker (with a minimum representation of 150 transformed 

colonies per pgRNA in each cloning step) and further packaged as previously 

described(27). 
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2.3.5 CRISPR-Cas9 pgRNA library screening 

To ensure the infection at 1,000-1,500 cells per pgRNA with an MOI of < 0.3, K562 

cells stably expressing Cas9 were seeded in duplicate in T-175 flasks (Corning). Twenty-

four hours later, each replicate was infected by the pgRNA library lentiviruses 

supplemented with 8 μg/ml polybrene. Seventy-two hours post infection, EGFP+ cells 

were sorted by FACS (Day 0 control group). For each replicate, the initial EGFP+ pool 

(1500-fold coverage) was isolated for DNA extraction, and the same number of cells as 

the experimental group was maintained at a minimum coverage of 1,500 cells per pgRNA 

at each passage for 30 days. Then, cells from each condition with 1500x library coverage 

were respectively subjected to genomic DNA extraction, PCR amplification of sgRNA-

coding sequences and high-throughput sequencing analysis (Illumina HiSeq2500 

platform) as previously described(27). 

 

2.3.6 Identification of functional hotspots involved in cell growth and proliferation 

The raw pgRNA counts were extracted from paired-end sequencing FASTQ files 

by bash script based on AWK. Since the low reads in the control groups affect the analysis 

confidence, pgRNAs with raw reads of less than 5 were eliminated from the following 

analysis. The total counts were further normalized to adjust the sequence depth of each 

replicate in the control and experimental groups. To further filter noisy pgRNAs, we 

removed pgRNAs whose quantile difference of two replicates was in either 3% tail of the 

distribution, and 100 negative control genes were generated by randomly sampling 20 

AAVS1-targeting pgRNAs with replacement. In each replicate, we calculated the fold 

change between the experimental and control group for each pgRNA, and the mean fold 
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change of all targeting pgRNAs for each hotspot. Then, the fold changes in the two 

replicates were averaged for each specific hotspot. In summary, two features for each set 

of hotspots were calculated: 1) the mean  𝑙𝑜𝑔>𝐹𝐶 (log2(fold change)) of all pgRNAs in the 

set, denoted by 𝐹𝐶2%A<,%A; and 2) the  −𝑙𝑜𝑔56𝑃7893* of two-sided Mann-Whitney U test of 

all pgRNAs in the set compared with pgRNAs targeting the AAVS1 locus, denoted by 

𝑃2%A<,%A. To consider both the fold change and P value, we defined a screen score for the 

hotspots as follows: 

𝑆𝑐𝑟𝑒𝑒𝑛	𝑠𝑐𝑜𝑟𝑒	 = 	𝑠𝑖𝑔𝑛(𝐿𝐹𝐶) 	×	 F;
𝐿𝐹𝐶	 −	𝜇B#:

𝜎B#:
; 	+ 𝐿𝑃F 

where	𝐿𝐹𝐶 is the 𝑙𝑜𝑔>𝐹𝐶, 𝜇B#: is the mean of the 𝐿𝐹𝐶, 𝜎B#: is the standard deviation 

of the 𝐿𝐹𝐶, and 𝐿𝑃 is the −𝑙𝑜𝑔56𝑃7893*. Hotspots with screen scores of less than -2.5 were 

identified as essential hotspots. 

 

To further avoid the potential issue of cellular toxicity generated from multiple 

cleavages by some pgRNAs, we retrieved the GuideScan specificity score (a score 

reflecting the sgRNA cutting specificity) to evaluate each sgRNA(28). A specificity score 

was further assigned for each pgRNA, which was calculated as half of the harmonic mean 

of the specificity scores of the two sgRNAs. The formula is as follows: 

𝑝𝑔𝑅𝑁𝐴<,*=!C!=	<=%&* 	= 	
5

$
%&'()$%*+,!-!,	%,/0+

D $
%&'()1%*+,!-!,	%,/0+

. 

From the identified essential hotspots through the above analysis, those targeting 

pgRNAs were further selected, whose specificity score is > 0.1 and log2(fold change) is < 

-1. To further avoid the copy number effects on drop-out screening, the copy number of 
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each hotspot locus in the K562 cell line was analysed based on ENCODE consortium 

copy number data (https://www.encodeproject.org/files/ENCFF486MJU/). After filtering 

hotspot loci with copy number amplification, the remaining hits were regarded as essential 

hotspots. 

 

2.3.7 Individual validation of functional hotspots by cell proliferation assay 

For each candidate hotspot without immediate overlap with the promoter or gene 

body of protein-coding genes, two or three pgRNAs were used for the individual validation, 

which were selected from the library that were consistently depleted or newly designed. 

To ensure the targeting specificity of all the selected pgRNAs, we required that the 

specificity scores are all greater than 0.15 and that the score of at least one pgRNA for 

each hotspot is more than 0.2. For the newly designed pgRNA, to ensure the cleavage 

efficiency, we further required that they don’t include ≥ 4-bp homopolymer stretches, and 

their GC contents are between 0.4 and 0.7. We further ensured that each sgRNA targeting 

site is 400 bp inside and 1 kb outside the two boundaries of the hotspot loci. All the 

pgRNAs targeting each hotspot locus to be validated were individually cloned into a 

lentiviral expression vector containing an EGFP selection marker. The cell proliferation 

assay was performed as previously described(27). The experiments lasted for 15 days 

after the first FACS analysis, and at least 10,000 cells were analysed. 

 

For the hotspots overlapping with the promoter or within the intron of possible 

essential protein-coding genes, three pgRNAs were selected for subsequent validation. 

The cDNA of each neighbouring coding gene was cloned into a lentiviral vector containing 
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a puromycin selection marker and individually transduced into K562 cells. Three days 

after virus infection, the cells with candidate gene overexpression were enriched by 

puromycin treatment, and then the corresponding pgRNAs targeting the neighbouring 

hotspot were respectively transduced into these cells as well as into wild-type K562 

control cells. The cell proliferation assay was performed as described above. 

 

2.3.8 Hi-C library preparation and data analysis 

Hi-C library preparation. The pgRNA Hotspot_10_25-pg2 was delivered into 

K562 cells via lentiviral infection at an MOI of < 1. EGFP-positive cells were then collected 

by FACS sorting at day 9 post infection.  Before the Hi-C library preparation, the sorted 

cells were allowed to recover under normal cell culture conditions for 2 h. Finally one 

million cells were used for Hi-C library preparation by the Arima-HiC kit (Arima Genomics, 

San Diego) following the manufacturer’s instructions. The K562 hotspot_10_25 Hi-C 

library was sequenced using the Illumina NovaSeq platform. 

 

Hi-C data processing. An in-house pipeline Juicer(29) was implemented to 

process the Hi-C data. Hi-C contact reads were first aligned to hg19 (GRCh37), and the 

reads were reserved if MAPQ greater than 30. Then, the vanilla coverage (VC) method(14) 

was applied to the Hi-C raw reads. Between the expected VC-normalized reads and the 

observed VC-normalized reads, we conducted a Poisson distribution fitting. The 

normalized contacts were considered significant if the p-value is ≤ 0.05. HiCExplorer(30, 

31) and HiCPlotter(32) were utilized to visualize the processed Hi-C data.  
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Chromatin loops identification. The HiCCUPS software 

(https://github.com/aidenlab/juicer/wiki/HiCCUPS) was utilized to call the loops at 10-kb 

resolution in both the wild-type and hotspot-deleted K562 cells. All the other parameters 

in HiCCUPS were set to default.  

 

Topological associated domain (TAD) identification. The Insulation Score 

method was used to call the TAD for the wild-type and hotspot_10_25-deleted cells at 10 

kb resolution. TADs were visualized using HiCExplorer. 

 

A/B compartment analysis. We performed the A/B compartment analysis on the 

wildtype and hotspot_10_25 deleted cells at 50-kb resolution. The eigenvectors for each 

individual chromosome were extracted from VC-normalized Hi-C reads using the Juicer 

pipeline(29). All the parameters were set to default. To determine the direction of A or B 

compartments in each chromosome, the K562 Pol II peak file was obtained from 

ENCODE (https://www.encodeproject.org/). A correlation score between the first 

eigenvector of each chromosome and the K562 Pol II peak density in 50 kb-sized bins 

was calculated.  

 

Hi-C comparison. We used HiCRep(33, 34) to calculate the Stratum-adjusted 

correlation coefficient (SCC) to measure the Hi-C reproducibility. We performed 

HiCcompare R bioconductor package(35) to detect the Hi-C contact differences across 

all the chromosomes. All the analyses were done at 25-kb resolution.  
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2.3.9 Evaluation of the potential off-target effects by the CRISPR-Cas9 system 

through whole genome sequencing (WGS) 

K562 cells were infected with the validated pgRNA hotspot_10_25-pg2 at an MOI 

of < 1. Eight days after lentiviral infection, the pgRNA-infected cells were sorted by FACS, 

and were further subjected to genomic DNA extraction. The whole genome sequencing 

(WGS) library was prepared following the manufacturer’s instructions and sequenced 

using the Illumina HiSeq 4000 platform. Using the WGS data, we evaluated the potential 

off-target effects after targeted deletion of hotspot_10_25. 

 

The K562 (wild-type) WGS data were downloaded as controls from ENCODE with 

accession code ENCFF313MGL, ENCFF004THU, ENCFF506TKC and ENCFF066GQD. 

A strict off-target evaluation was conducted according to the whole-genome sequencing 

approach(36, 37). The putative off-target sites for hotspot_10_25 were output by Cas-

OFFinder in the hg19 genome(36). To avoid missing any potential off-target locus, we 

considered two scenarios to detect the potential off-target loci: 1) no more than 4 base 

mismatches without any bulge mismatch (mismatch ≤ 4, bulge = 0) and 2) no more than 

2 base mismatches with no more than 2 bulge mismatches 2 (mismatch ≤ 2, bulge ≤ 2). 

In total, we examined 746 potential off-target loci. In order to detect the candidate 

mutations and indels in the K562 wildtype and hotspot_10_25 deleted K562 cells, we 

performed variant call according to the approaches described in GATK Best Practices 

(https://gatk.broadinstitute.org/hc/en-us). The sequencing reads were firstly aligned to the 

human reference genome (hg19) using BWA-0.7.17. Then we used the GATK4 tools 

MarkDuplicatesSpark (https://gatk.broadinstitute.org/hc/en-us/articles/360037224932-
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MarkDuplicatesSpark) to remove the duplicated reads. Finally, the reads were processed 

via base quality score recalibration with the GATK4 tools. Germline mutations (compared 

to the hg19 reference genome) were called in both wild-type and hotspot_10_25 deleted 

K562 cells by GTAK HaplotypeCaller (version 4.1.4.1) with default parameters. SNVs and 

indels in pgRNA-infected K562 cells compared to wild-type K562 cells were identified via 

the tools GATK Mutect2 (version 4.1.4.1) with default parameters. These SNVs and indels 

were further compared with generated putative off-target loci. 

 

For further confirmation, we applied the BCFTOOLS suite (version 1.9, 

http://www.htslib.org/doc/bcftools.html) to call variants. BCFTOOLS mpileup and call 

commands with default settings were used to generate raw variants. Then, variants with 

“%QUAL < 30 || DP < 30” were marked as low-quality variants by the BCFTOOLS filter 

command and filtered out in addition to the homozygous variants with the feature “GT = 

1/1”. We also used the BCFTOOLS isec command with parameter “-n -1 -c all” to filter 

the Mills and 1000G gold standard indels obtained from the GATK resource bundle 

(https://gatk.broadinstitute.org/hc/en-us/articles/360035890811-Resource-bundle). The 

putative off-target sites generated by Cas-OFFinder were checked with the variants called 

by the above BCFTOOLS pipelines, and no overlaps were found. 

 

2.3.10 Bulk RNA-seq and data analysis 

We downloaded the K562 bulk RNA-seq data with pgRNA targeting AAVS1, which 

was generated by our previously published research(38) (GEO accession code 

GSE176503). In the bulk RNA-seq library, the sequencing reads were aligned to the 
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human reference genome (GRCh37/hg19) using HISAT2 (2.0.4)(39–41) and assembled 

and quantified by StringTie (1.3.5)(39, 42). 

 

2.3.11 Single-cell RNA-seq and data analysis 

Single-cell library preparation. K562 cells were infected with the validated 

pgRNA hotspot_10_25-pg2. Eight days after lentiviral infection, the pgRNA-infected cells 

were subjected to FACS for single-cell library preparation. The single-cell library was 

prepared according to a previously established Drop-seq protocol(43). PolyA+ RNA was 

reverse transcribed through tailed oligo-dT priming directly in whole-cell lysates (single 

droplet) using Moloney Murine Leukaemia Virus Reverse Transcriptase (MMLV RT) and 

temperature switch oligos. The resulting full-length cDNA contains the complete 5′ end of 

the mRNA as well as an anchor sequence that serves as a universal priming site for 

second strand synthesis. The cDNA was pre-amplified using 15 cycles with Kapa HiFi 

Hotstart Readymix and then tagmented at 55°C for 5 min in a 20 μl reaction following the 

Illumina Nextera DNA preparation kit. 5 microliters of neutralization buffer was added to 

the tagmentation reaction mix to quench the reaction. The tagmented DNA was amplified 

by 12 cycles of standard Nextera PCR. The DNA was then purified with Ampure beads 

(sample to beads ratio of 1:0.6). The prepared hotspot_10_25-deleted single cell library 

of K562 was sequenced on an Illumina HiSeq 4000 instrument. 

 

Single cell RNA-seq processing. The single cell RNA-seq data were processed 

using the Drop-seq pipeline developed by the McCarroll lab(43). Low-quality reads (lower 

than Q10) and PCR duplicates were removed. Cells were ranked in descending order by 
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the total number of read counts. Cells ranked before the inflection point of the cumulative 

distribution were selected for the following analysis. Each cell was first normalized by 

counts per million (CPM). The value 𝐸! 	 was computed as the sum of CPMs for a given 

gene across all the cells. 𝐸A%A89was calculated as the sum of 𝐸! for all the genes. Then, a 

𝑃! 	was computed as 𝑃! 	 =𝐸! 	 /𝐸A%A89. In a given cell j, the normalized gene expression of all 

genes was assumed to independently and identically follow the binomial distribution 𝐺!"  

~B (𝑁" , 𝑃!), where 𝐺!" is the expected read of gene i in cell j and Nj is the total read for cell 

j. A p-value was computed to evaluate how each gene expression in each cell significantly 

deviated from the expectation based on the binomial distribution. We also calculated p-

values for genes in the negative control (ΔAAVS1) and wild-type bulk RNA-seq data in 

the same way. 

 

Single-cell trajectory branching and pseudotime analysis. Because hotspot 

deletion severely hampered cell proliferation, we focused on analysing the apoptosis-

related genes annotated in the KEGG database(44). The 99 apoptosis-related genes that 

showed differential expression upon deleting hotspot_10_25 (chr10: 74,123,469-

74,124,868) in at least 10% ~ 15% of cells (p-value < 0.05) were selected. All the 

normalized single cells and bulk data were clustered with trajectory branching and 

pseudotime analysis using Monocle(45, 46). Monocle assigned a specific pseudotime 

value and a “state” to each cell. Cells with the same “state” and similar pseudotime were 

clustered together(45), and then the relative gene expression in each cluster was 

computed. 
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Differentially expressed genes identified from pseudotime analysis. To 

identify differentially expressed genes (DEGs) pairwise between different cell states, a 

Wilcoxon Rank-Sum Test(47) was used to identify genes that showed significantly up- 

and downregulated in the cell state pair. 

 

2.3.12 Validation of synthetic lethal pairs by cell proliferation assay 

Selection of the targeting sgRNA for each gene. To explore the synthetic lethal 

pairs among the four significantly downregulated genes located within the same TAD of 

hotspot_10_25 after hotspot deletion, we first determined the targeting sgRNA to ensure 

efficient knockdown of each gene. Three sgRNAs were selected to target the promoter 

region of each gene from the hCRISPRi-v2 library(48), and a non-targeting sgRNA was 

set as a control. These sgRNAs were further cloned into the lentiviral expression vector 

with an EGFP selection marker and then transduced into K562 cells stably expressing 

KRAB-dCas9 protein through lentiviral infection. Three days after infection, the EGFP-

positive cells were sorted by FACS, and the total RNA of each sample was extracted 

using an RNeasy Mini Kit (QIAGEN 79254). cDNA was synthesized from 2 μg of total 

RNA using the Quantscript RT Kit (TIANGEN KR103-04), and real-time qPCR was 

performed with TB Green™ Premix Ex Taq™ II (Tli RNaseH Plus, TAKARA) to detect the 

expression of each indicated gene as well as of the reference gene GAPDH. The sgRNAs 

showing the most significant knockdown effect were selected for subsequent experiments 

to evaluate the synergistic effect.  

 

Evaluation of the growth effect of each individual gene and gene pair in K562 
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cells. The above four selected sgRNAs were grouped into six gRNA pairs targeting six 

gene pairs. The four sgRNAs and six pgRNAs were respectively cloned into the lentiviral 

expression vector with an EGFP selection marker and then transduced into K562 cells 

stably expressing KRAB-dCas9 protein at an MOI of < 1. The cell proliferation assay was 

performed as described above. The first time point of FACS analysis was at 6 days after 

lentiviral infection, and the experiment lasted for another 12 days. 
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2.4 Results 

2.4.1 Small-world network formed by 3D contacts between promoters and 

enhancers 

To identify regulatory element promoters or enhancers that are likely to be 

important for chromatin organization, we set out to classify such elements involved in 

many interactions with other loci in the genome. We first identified active promoters 

(marked by H3K27ac and H3K4me3) and enhancers (marked by H3K27ac and H3K4me1) 

in 73 normal and 5 cancer cell lines/tissues with all 3 marks using data from the Roadmap 

Epigenomics project(26). The 3D contacts between these active promoters/enhancers in 

each cell line/tissue predicted by EpiTensor(25) were assembled into a regulatory 

element interaction network (referred to as REIN hereinafter), in which nodes are 

promoters/enhancers and edges represent 3D contacts (see Materials and Methods). We 

resorted to computational prediction by EpiTensor(25) because Hi-C data with sufficient 

resolution to define the interactions between promoters and enhancers were rare. We 

have previously shown that chromatin contacts could be successfully predicted by 

EpiTensor(25), which detects epigenetic covariation patterns between promoter-

enhancer, promoter-promoter and enhancer-enhancer pairs at 200-bp resolution via 

tensor analysis. Such a covariation indicates that possible 3D contacts can be formed 

between active regulatory elements in a cell type-specific manner. Therefore, when 

considering spatial contacts in a particular cell type or tissue, we only considered those 

formed between active promoters and/or enhancers, as marked by open chromatin or 

H3K27ac, because these contacts are likely to establish functional regulation. EpiTensor 

predictions were shown to be highly concordant with the Hi-C, ChIA-PET and eQTL 



 103 

results in different cell types(25). 

 

In REIN, each node represents a promoter/enhancer in the given cell line/tissue, 

and each edge represents a contact predicted by EpiTensor. The degree of a given node 

reflects its total contacts. We examined the topological properties of REIN using SNAP 

software(49). Through computational simulations, the cluster coefficients of REIN (the 

percentage of node pairs that connected when they were connected to another node) 

were found to be similar to an equivalent (same number of nodes and edges) regular 

lattice network(50), and their path length (the largest required number of steps between 

node pairs) was similar to that of the equivalent random network(51) (Figure 2.1A). These 

properties showed that the REINs are small-world networks. Small-world networks are 

characterized by robustness in that they are resistant to random attacks (random removal 

of nodes) but vulnerable to targeted attacks (removal of specific nodes) on high-degree 

nodes that have significantly more contacts than the other nodes(52). We selected the 

top 10% high-degree nodes in REIN as “hotspots” for further analysis. 

 

2.4.2 Mutations in hotspot enhancers and promoters could alter 3D contacts 

We collected all the genomic loci identified as hotspots in at least one cell 

line/tissue. In total, we found 48,110 regions, the majority of which are enhancers, and 

12,754 of them overlap with promoter regions (1 kb around the transcription start sites). 

Consistent with our previous analysis(25), these loci tend to be active (overlapping with 

H3K27ac signals) in more cell types than the non-hotspot loci (Figure 2.1B). We noticed 

that the number of interactions a hotspot forms varies significantly across cell 
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types/tissues, and on average, a locus was identified as a hotspot only in 7 out of 78 cell 

types/tissues. Particularly, promoter hotspots are shared by more cell types/tissues (on 

average 17 out of 78) than enhancer hotspots (on average 4 out of 78), which is not 

unexpected as enhancers are known to be cell type/tissue specific. 

 

Given the importance of high-degree nodes in a small-world network, mutations in 

hotspot loci may have a severe impact on the network structure. To investigate this 

possibility, we analysed the loci that are active in all examined cell lines but show a 

significant change in degree. We first identified nodes with sample-specific degrees: using 

the degree numbers of each node in all 73 normal samples as the background distribution, 

we identified nodes that are active in a specific sample and whose degree also 

significantly deviates from the mean. We then determined the sample-specific genetic 

variations (GVs). We collected 1,197,917 GVs in 45 normal and 17 cancer samples (DCC 

accession number ENCFF105JRY). For each GV in each sample, if its B-allele frequency 

significantly deviates from the mean in the 45 normal samples, we considered this GV 

specific to the sample (see Materials and Methods). 

 

The nodes with a sample-specific degree containing at least one sample-specific 

GV, which are called degree-GV correlated nodes (Figure 2.1C), are good candidates to 

investigate the relationship between GV and degree. We first analysed 4 normal 

(GM12878, H1, HEK293 and IMR90) and 4 cancer cell lines (HeLaS3, HepG2, K562 and 

MCF-7) and found that degree-GV correlated nodes are more frequently observed in 

cancer cell lines than in normal cell lines (Figure 2.1D). First, we collected 21,064 nodes, 
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which contain at least one sample-specific GV and show specific high/low degree in at 

least one of the 78 samples (73 normal and 5 cancer samples). Note that GV and high/low 

degree do not necessarily occur in the same cell line. For example, the degree of a node 

can be significantly high in GM12878, while the allele frequency of GV covered by this 

node is significantly high in K562. We found that the majority (62.59%) showed 

specificities in both cancer and normal cells, among which 18.36% were specific to cancer 

and 19.05% specific to normal cells (Figure 2.1F). Similarly, among the 629,547 cell-

specific GVs, 58.86% showed specificities in both cancer and normal cells, 32.08% to 

only cancer cells and 9.06% to only normal cells (Figure 2.1E). However, the degree-GV-

correlated nodes were dominated by cancer-specific nodes (87.18%), compared to 8.53% 

in both cancer and normal cells and 4.29% only in normal cells (Figure 2.1F). We 

observed the same trend for degree-GV-correlated hotspots, including 86.52% cancer-

specific, 4.52% normal-specific, and 8.96% in both cancer and normal cells (Figure 2.1F). 

In summary, the majority of degree-GV-correlated nodes appear in cancer cells. 

 

We further examined two groups of nodes in 8 distinct cell lines: one group had a 

significantly higher degree in one cell line than in other cell lines, which indicates cell-

type-specific contact formation (one-cell-type-specific nodes), and the other had a 

significantly lower degree in one cell line than in the others, which indicates cell-type 

specific contact disruption (seven-cell-type-specific nodes). The percentages of HepG2-

specific nodes and K562-specific nodes in the one-cell-type-specific group (cell-type-

specific contact formation) are 28.5% and 7.4% in all nodes, 64.4% and 17.4% in degree-

GV-correlated nodes and 64.3% and 18.1% in degree-GV-correlated hotspots, 
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respectively (Figure 2.1G). Similarly, the percentages of HeLa-S3-specific nodes and 

K562-specific nodes in the seven-cell-type-specific group (cell-type-specific interaction 

disruption) are 41.8% and 13.2% in all nodes, 49.2% and 37.8% in degree-GV-correlated 

nodes and 61.3% and 27.1% in degree-GV-correlated hotspots, respectively (Figure 

2.1H). Taken together, our analyses suggested that cancer-specific GVs are highly 

correlated with the node-degree change that alters the REIN. 

 

2.4.3 CRISPR/Cas9 library screening identified hotspots essential for cell growth 

and survival 

To further investigate the function of hotspots, 751 hotspots identified as 

enhancers were randomly selected for targeted deletion to analyse their impact on cell 

growth and survival. These hotspots do not overlap with coding regions of any protein-

coding gene or noncoding RNA. In total, 14,399 paired gRNAs (pgRNAs) were designed 

to delete these loci (see Materials and Methods), including 473 positive control pgRNAs 

targeting 29 ribosomal genes, 100 negative control pgRNAs targeting the AAVS1 locus 

and 100 non-targeting pgRNAs. Through lentivirus infection at a low MOI (Multiplicity of 

Infection), the pgRNA library was transduced into K562 cells stably expressing Cas9 

protein. The pgRNA-infected samples were FACS-sorted 3 days post infection, serving 

as the control group, and then continuously cultured for 30 days to obtain the experimental 

group. The library cells from the control and experimental groups were sequenced to 

determine the abundance of each pgRNA (Figure 2.2A). The read distribution of pgRNAs 

showed a high correlation between the two biologically independent replicates for all 

groups (Figure S2.1A-C), indicating high reproducibility. 
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Compared with the control group, pgRNAs targeting ribosomal genes and hotspots 

in Day 30 experimental cells were both decreased more than those targeting the AAVS1 

locus and non-targeting pgRNAs. For all the pgRNAs of each hotspot, we calculated their 

fold changes and P values by comparing them with the pgRNAs targeting AAVS1 using 

the Mann-Whitney U test(53, 54), which is focused on analysing screening data with the 

in-library controls and could more accurately reflect the fitness effect of each locus. By 

randomly sampling the pgRNAs targeting AAVS1, we generated a distribution of negative 

controls and further computed the hotspots’ P values. The screen score of each hotspot 

was calculated by combining its mean fold change and corrected P values (see Materials 

and Methods), and 49 hotspots with screen scores ≤ -2.5 were considered to significantly 

affect cell fitness upon deletion (Figure 2.2B). To avoid cellular toxicity caused by 

potential off-target effects(55–58), we assessed the specificities of sgRNAs with 2 or 3 

mismatches to off-target loci using the GuideScan specificity score and calculated the 

specificity score for each pgRNA (see Materials and Methods)(28). Because AAVS1-

targeting pgRNAs with specificity scores ≤ 0.1 could cause a dropout effect in K562 cells 

(Figure 2.2C and Figure S2.1D), we only kept pgRNAs with specificity scores > 0.1 and 

log2(fold change) < -1 for subsequent analysis. Furthermore, hotspots with copy number 

amplification were also removed to avoid cell death caused by multiple cleavages(59). 

Using such stringent criteria, we identified 43 hotspots essential for the cell fitness of K562 

cells (Figure 2.2C). 

 

Based on the ranking of the screen score, 7 top-ranked hotspots in K562 cells were 
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chosen for individual validation by cell proliferation assay. None of them overlapped with 

any promoter, protein-coding gene or noncoding RNA. Three or two pgRNAs with high 

targeting specificity were separately constructed for each hotspot, and the cell 

proliferation assay was performed as previously reported(54). We found that deletion of 

these hotspots led to significant cell death or cell growth inhibition (Figure 2.3A and 

Figure S2.2A), which was consistent with the screening results, indicating that these 

hotspots played critical roles in cell fitness. 

 

In our design, we assured that the deletion regions were not associated with any 

coding regions of protein-coding genes, but there were a few essential hotspots located 

near the promoter regions or in the introns of coding genes. To rule out the possibility of 

affecting the expressions of certain genes essential for cell growth and survival (essential 

genes) after hotspot deletion, we further investigated two identified hotspots located near 

the gene promoter or in the intronic regions, whose deletion may affect the expression of 

the corresponding genes. For hotspot_19_32 located in the intron of an essential gene 

GATAD2A, we chose 2 highly specific pgRNAs to respectively delete this locus in K562 

cells and observed significant cell growth inhibition (Figure 2.3B). Importantly, we found 

that overexpression of GATAD2A did not rescue the cell death caused by hotspot deletion 

(Figure 2.3B), indicating that the hotspot deletion itself has a profound impact on cell 

growth. By detecting the expression level of the GATAD2A gene under each condition by 

real-time qPCR, we confirmed that the gene was successfully overexpressed in K562 

cells and that the cell death caused by the hotspot deletion was not rescued by GATAD2A 

overexpression (Figure 2.3C). A similar result was obtained for hotspot_1_36, which is 
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located approximately 3 kb upstream of the transcriptional start site of an essential gene 

SLC2A1. We performed the cell proliferation assay using 2 pgRNAs in wild-type K562 

cells and K562 cells stably overexpressing SLC2A1. A similar level of influence on cell 

fitness was observed in both conditions for each pgRNA deletion, and real-time qPCR 

further confirmed that the growth phenotype was not due to affecting the expression level 

of SLC2A1 (Figure S2.2B-C). 

 

To further assess the essentialities of the identified K562-essential hotspots in 

other cancer cell lines, we chose hotspot_10_25 (chr10: 74,123,469-74,1248,68), which 

showed a significant growth defect in K562 if deleted, for parallel validations in HeLa 

(cervical cancer cells), H1975 (non-small cell lung cancer cells), A549 (non-small cell lung 

cancer cells) and NAMALWA (Burkitt's lymphoma) cells. Surprisingly, compared with the 

negative control AAVS1-targeting pgRNAs, hotspot_10_25 showed no significant effect 

in any of the five tested cell lines, indicating that its role in K562 cells is cell-type specific 

(Figure 2.3D, Figure S2.2D). 

 

2.4.4 The essentiality of hotspots does not result from any association with 

essential genes 

To understand how these identified essential hotspots exert their functional roles, 

we first examined whether direct interaction with essential genes determines the 

essentialities of these hotspots. We retrieved the essential genes whose knockdown 

would lead to cell death according to the CRISPRi-based screen(48) and identified all 

possible spatial contacts they formed that were detected by Hi-C (p-value ≤ 0.05) in wild-
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type K562 cells(60). There is no distinction between essential and non-essential hotspots 

regarding their association with essential genes (the Wilcoxon Rank-Sum test p-value = 

0.98, indicating no significant difference) (Figure 2.3E). We also performed the same 

comparison using the spatial contacts predicted by EpiTensor and reached the same 

conclusion (the Wilcoxon Rank-Sum test p-value = 0.61) (Figure 2.3E). According to the 

above analysis, the essentiality of hotspots is not determined by their direct contact with 

essential genes. 

 

2.4.5 Deleting essential hotspots can affect broad chromatin organization 

We next investigated whether deleting hotspots affects chromatin organization. 

We selected hotspot_10_25 (chr10: 74,123,469-74,124,868) for further analysis, which 

showed unique essentiality in K562 cells (Figure 2.3A, Figure 2.3D, Figure S2.2D) yet 

does not interact with any essential protein-coding gene identified in the previous 

CRISPRi screening(48) in the Hi-C analysis. We first performed whole genome 

sequencing (WGS) to confirm that there was no off-target effect. The validated pgRNA 

hotspot_10_25-pg2 was chosen (Figure 2.3A), and the WGS library was generated 8 

days after pgRNA infection in K562 cells. Compared to the hg19 human genome, we 

identified 4.1 million germline mutations in hotspot_10_25-deleted K562 cells, which 

showed 86.2% consistency with the published wild-type K562 WGS data. The high 

percentage of the germline mutation discovery rate indicated good quality of the library. 

We used Cas-OFFinder to identify 746 potential off-target loci with loose cut-off values 

(base mismatch ≤ 4, bulge ≤ 2) to avoid missing any possible off-target loci. We manually 

examined the putative off-target loci with the indels detected from the edited cells that 
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differed from the wild-type cells (Table S2.1). Except for the significant indels found in the 

two on-target loci with clear cleavages in the pileup reads in the genome browser view 

(Figure S2.3), there was no cleavage in the pileup reads on any of the putative off-target 

loci (two examples of possible off-target loci are shown in Figure S2.3). These analyses 

confirmed that the cell growth defects did not result from off-target effects. 

 

We subsequently performed Hi-C analysis on the edited K562 cells and compared 

it with the wild-type cells(60) (see Materials and Methods). The 100 kb-resolution Hi-C 

contact maps of the wild-type and hotspot-deleted cells are overall similar (Figure S2.4A), 

and no distinct flips between A and B compartments were observed on the entire chr10 

at 50-kb resolution (Figure S2.4B). We compared  the chromosome-wide similarity and 

detected differential Hi-C contacts using HiCRep(33, 34) and HiCcompare(35). The high 

Stratum-adjusted correlation coefficient (SCC > 0.7) and the small percentage of 

differential Hi-C contacts suggested an overall similarity between the wild-type and 

hotspot_10_25-deleted K562 cells (Table S2.2). Topologically associated domains 

(TADs) largely remained similar, with a few TADs merge and split in the regions of chr10: 

12230000-14540000, chr10: 15210000-15910000, chr10: 71220000-72220000, chr10: 

89850000-91010000, chr10: 95290000-96350000 and chr10: 99450000-100140000 

(Figure S2.4C). Interestingly, using HiCCUPS 

(https://github.com/aidenlab/juicer/wiki/HiCCUPS), we found that hotspot deletion did 

affect chromatin loops (Table S2.3). We next investigated whether deleting a hotspot 

could affect relatively broad genomic regions in spatial proximity. Using a sliding window 

with a bin step of 1 Mb and a flanking region of 2 Mb in the linear genome, we assembled 
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all the Hi-C contacts (5-kb resolution with p-value ≤ 0.05) in each 5-Mb window into a sub-

network. The modularity score and effective diameter were computed for each of these 

sub-networks in the wild-type and hotspot-deleted K562 cells. These two metrics of all 

the sliding windows of chr10 showed a high correlation between before and after hotspot 

deletion, with Pearson correlation coefficients of 0.84 and 0.91 for the effective diameter 

and modularity, respectively (Figure 2.4A-B). Notably, significant changes were 

observed on the 6-8 Mb regions surrounding the deleted hotspot for both effective 

diameter (chr10: 69-75 Mb for bin 71 and 72) and modularity (chr10: 68-76 Mb for bin 70, 

71 and 73) (Figure 2.4A-B). Some other genomic regions interacting with the hotspot 

neighboring regions were also affected, such as chr10: 11-17 Mb (bin 13 and 14), showing 

a significant change in modularity (Figure 2.4B, Figure S2.5). We further examined the 

Hi-C contact alteration within chr10: 11-17 Mb and chr10: 68-76 Mb (Figure 2.4C and 

2.4E). In the region of chr10: 12-14 Mb with observed Hi-C contact changes (Figure 2.4C), 

we also found consistent TAD splits (Figure S2.4C), disruption and formation of 

chromatin loops upon hotspot deletion (Table S2.4). These chromatin changes led to 

alteration of promoter-enhancer interactions, such as the enhanced and weakened 

contacts between the CELF2, RSU1, FAM149B1 and CCAR1 promoters and their 

interacting enhancers upon hotspot deletion (Figure 2.4D and 2.4F). Notably, these 

affected promoters and enhancers are not only located close to but also can be as far as 

62 Mb away from the deleted hotspot_10_25 located at chr10: 74,123,469-74,124,868. 

These observations showed that hotspot deletion resulted in broad alterations in 

chromatin structure beyond its linear neighbor genome. 
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2.4.6 Essential hotspots tend to reside in dense chromatin structures 

If essential hotspots are critical for maintaining the chromatin structure in the 

spatial neighbourhood, it is likely that the 3D contacts around them are dense. Therefore, 

we compared the sub-network effective diameters, modularity and chromatin loops in the 

5-Mb regions centered at the essential and non-essential hotspots in wild-type K562. We 

found that essential hotspots were surrounded by higher effective diameters (Wilcoxon 

Rank-Sum test, p-value = 7.3E-6), higher modularities (p-value = 0.1) and higher loop 

densities (p-value = 4.7E-4) than non-essential hotspots (Figure S2.6A-C). In fact, using 

these three metrics in wild-type K562 cells, a random forest classification model could 

distinguish essential and non-essential hotspots with an AUC of 0.73 in 10-fold cross 

validations. This result resonates with the above observations and suggests that hotspots 

are pivotal for stabilizing dense chromatin contacts in the spatial neighborhood. 

 

2.4.7 Hotspot deletion synergistically affects gene expression 

We next performed single-cell RNA-seq using Drop-seq(43) to analyze the 

changes in gene expression upon hotspot_10_25 deletion. We transduced the 

individually validated pgRNA hotspot_10_25-pg2 (Figure 2.3A) targeting this essential 

hotspot into K562 cells, among which 482 single cells passed the quality control. We also 

included the bulk RNA-seq data of wild-type and AAVS1-deleted cells as controls. All the 

data were normalized together to make them comparable (see Materials and Methods). 

As deletion of this hotspot has an impact on cell viability or cell growth, we focused on 

genes related to apoptosis pathways to confirm their activation. We selected 99 

apoptosis-related genes documented in the KEGG database and clustered the cells into 
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five states by trajectory branching and pseudotime analysis using Monocle (Figure 

2.5A)(46). The wild-type and AAVS1-deleted K562 cells (negative control) were located 

in state 1, suggesting that cells in this state resemble the wild-type cells. The apoptosis 

genes fell into three groups, with distinct expression patterns along the pseudotime but 

overall all increasing from cell state 1 to cell state 5, for example, CASP2, CASP8, CASP9, 

and CASP10 in cluster 1, CASP6 in cluster 2, and CASP7 in cluster 3 (Figure 2.5B). 

Taken together, the single cell transcriptomic analysis showed that apoptosis pathways 

are activated upon hotspot deletion. 

 

To investigate the impact of hotspot deletion on the spatial neighborhood, we 

analyzed the genes whose promoters were predicted to interact with the essential 

hotspot_10_25 by EpiTensor. Among the 14 genes located within the same TAD of 

hotspot_10_25, 4 showed significantly downregulated (p-value < 0.05) in the progression 

from state 1 to 5, including P4HA1 (downregulated from state 1 to 2, Figure 2.5C) and 

DNAJB12, ASCC1 and ECD (downregulated from state 2 to 4, Figure 2.5D-E, Figure 

S2.7A). By individually knocking down each gene by CRISPR interference (Figure 2.5F, 

Figure S2.7B), only ECD knockdown showed a weak impact on cell growth, and all the 

other genes showed no detectable effects (Figure 2.5G, Figure S2.7C). As the hotspot 

interacted with multiple genes, we investigated whether knocking down a pair of genes 

would have a synergistic effect on cell growth. Applying the CRISPRi strategy, we 

knocked down 6 pairs of genes in K562 cells using paired gRNAs, respectively. We found 

that simultaneous knockdown of P4HA1-ECD and ASCC1-ECD showed a much more 

significant impact on cell growth (Figure 2.5G). These results indicated that disrupting 
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hotspot_10_25 could affect the expression levels of multiple interacting genes, and their 

synergistic effect could lead to cell death. Note that we were limited to examining pairs of 

genes, but hotspot deletion can affect multiple genes together with more significant 

synergic effects. 
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2.5 Discussion 

In this study, we analyzed the hotspot promoters/enhancers that were predicted 

by EpiTensor(25) to form a large number of 3D contacts with other promoters/enhancers. 

The unsupervised learning method EpiTensor predicts all possible 3D contacts of 

promoter-promoter, promoter-enhancer and enhancer-enhancer pairs. In a particular cell 

line, we focused on the predicted contacts between active promoters/enhancers denoted 

by histone marks. The hotspot promoters/enhancers are defined by their 3D contacts with 

many active promoters/enhancers, which makes them a class of high-degree nodes in 

the REIN. We showed that REIN is a small-world network that is vulnerable to targeted 

perturbation to high-degree nodes. Therefore, it is reasonable to infer that hotspots can 

be important for stabilizing REIN and the 3D contacts formed between active 

promoters/enhancers. 

 

We found that the occurrence of genetic variations (GVs) is much more strongly 

correlated with the alteration of 3D contact degrees (degree-GV-correlated nodes) in the 

hotspots in cancer cells than in normal cells. Furthermore, we showed that cancer-specific 

hotspots (only formed or disrupted in one particular cancer cell) are enriched with degree-

GV-correlated nodes. Taken together, these observations suggest that GVs occurring in 

hotspots can lead to chromatin structure changes and dysregulated cellular functions. 

 

To confirm the functional importance of the hotspots, we performed CRISPR/Cas9 

library screening on hotspot enhancers by paired-gRNA deletion in the K562 cancer cell 

line. By calculating the screen score for each hotspot and further filtering loci with potential 
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off-target effects or copy number amplifications, we identified 43 hotspots essential for 

cell growth and survival. Nine randomly selected loci were individually validated by cell 

proliferation assay, including 7 top-ranked hotspots in K562 cells without any overlap with 

coding genes and 2 loci overlapped with promoter or intronic regions of certain genes. 

We further identified that hotspot_10_25 was essential for cell fitness specifically in K562 

cells through multiple validations in four other cancer cell lines. 

 

We thus selected a hotspot enhancer (hotspot_10_25) as a representative of 

cancer-specific hits for in-depth analysis, which ensured that no off-target cleavages 

occurred through WGS analysis. Note that this selected hotspot is not unique compared 

to the other essential hotspots, and the insights obtained here are expected to be 

generalizable. Hi-C and scRNA-seq analyses showed that deleting this 1.4-kb long 

hotspot could impact a broad chromatin structure of 8-Mb regions surrounding the hotspot 

and affect the expression of numerous distal genes not even directly associated with the 

hotspot. These observations indicate that the hotspot enhancer has a pivotal role in 

chromatin organization beyond forming chromatin loops. 

 

Importantly, this hotspot does not directly interact with any essential gene, and 

thus, the cell death resulting from its deletion is not due to directly disrupting the 

expression of essential genes. Single cell RNA-seq revealed that hotspot_10_25 deletion 

could affect the expression levels of multiple interacting genes located within the same 

TAD of the hotspot. By knocking down individuals and pairs of these genes, we found 

that although none of these dysregulated genes has a significant impact on cell fitness 
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individually, altered expression of gene pairs showed significant synergistic effects 

leading to cell death. 

 

We have revealed the understudied “structural importance” of noncoding 

regulatory elements, especially enhancers. We are aware that establishing the causal 

relationship between broad chromatin organization changes and cell proliferation or gene 

expression remains technically challenging. However, to our knowledge, this is the first 

report about the observations that enhancers could maintain a broad chromatin 

organization, which goes far beyond the direct interaction between promoters and 

enhancers. A logical inference towards the causal relationship based on our observations 

is that the impact of hotspot deletion is propagated through the 3D contact network and 

could impact distal genes that are important for cell fitness. 

 

 

 

 

 

 

 

 

 



 119 

2.6 Acknowledgements 

Chapter 2, in full, is a reformatted reprint of the material as it appears in “Regulatory 

elements can be essential for maintaining broad chromatin organization and cell viability.” 

Ying Liu#; Bo Ding#; Lina Zheng#; Ping Xu#; Zhiheng Liu; Zhao Chen; Peiyao Wu; Ying 

Zhao; Qian Pan; Yu Guo; Wei Wang; Wensheng Wei. Nucleic Acids Research, Oxford 

University Press, 2022. gkac197, https://doi.org/10.1093/nar/gkac197. (# These authors 

contributed equally to this work.) The dissertation author was the primary investigator and 

author of this paper. 

 

We acknowledge the staff of the BIOPIC High-throughput Sequencing Center 

(Peking University) for their assistance in next-generation sequencing analysis, the 

National Center for Protein Sciences (Beijing) at Peking University for their assistance 

with fluorescence-activated cell sorting and analysis, and Dr. Hongxia Lv and Ms. Liying 

Du for their technical help. We acknowledge Dr. Ying Yu (Peking University) for her 

assistance in preparing the NGS library. We acknowledge the staff of the UC San Diego 

IGM Genomics Center for sequencing services and the UC San Diego Human Embryonic 

Stem Cell Core Facility for cell sorting services. We acknowledge Ms. Jia Xu (UC San 

Diego) for her assistance in preparing a single cell RNA-seq library.  

 

W. Wei and W. Wang conceived and supervised the project. W. Wei, W. Wang, 

Y.L. and B.D. designed the experiments. B.D. and L.Z. constructed network analysis and 

identified and characterized hotspot regions. Y.G. designed the pgRNA library for hotspot 

screening. Y.L. and P.X. performed the pgRNA library construction and screening. Y.L. 



 120 

performed the experiments, including individual validation of candidate hotspots in 

multiple cell lines, whole-genome sequencing (WGS), bulk RNA-seq and examination of 

the synergistic effects with the help of P.X. and Q.P. Z.L. performed the bioinformatics 

analysis of the screening data and designed the pgRNAs used for individual validation. 

P.W. and Z.C. performed the Hi-C experiments on hotspot-deleted K562 cells. P.W. and 

Y.Z. performed single cell RNA-seq on hotspot-deleted K562 cells. L.Z. and B. D 

performed the bioinformatics analyses of the WGS, Hi-C and single-cell RNA-seq data. 

Y.L., B.D., L.Z., W. Wang and W. Wei wrote the manuscript with contributions from all 

other authors. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 121 

2.7 Figures 

 

Figure 2.1. Small-world network analysis and mutation effects on 3D contact for 
hotspot enhancers and promoters. (A) The path length and cluster coefficient of REINs 
compared with equivalent regular lattice networks and equivalent random graph networks. 
(B) Comparison of H3K27ac peaks between hotspots and non-hotspots in 121 cell lines, 
primary cells and tissues characterized by the NIH Roadmap Epigenetics Project. (C) 
Definition of degree-GV-correlated nodes. In this example, the node has a low degree in 
the HUVEC cell line and a high degree in other cell lines, which is correlated with the GV 
profile with a G > T SNP in HUVEC that is not present in other cell lines. (D) The 
percentage of degree-GV-correlated nodes in normal cell lines and cancer cell lines. (E) 
The distribution of GV specificities in samples. Normal, cancer and both indicate GVs with 
specificities only in normal cells, only in cancer cells and in both cell types, respectively. 
(F) The distribution of normal or cancer cell line specificities in the nodes which contain 
at least one sample-specific GV and show specific high/low degree in at least one of the 
78 samples (those nodes denoted as “All nodes”), degree-GV-correlated nodes and 
degree-GV-correlated hotspots. Note that for the nodes in the first group (All nodes), GV 
and high/low degree do not necessarily occur in the same cell line. For example, the 
degree of a node can be significantly high in GM12878, while the allele frequency of GV 
covered by this node is significantly high in K562. (G) The distribution of one-cell-line 
hotspot formation in all nodes, degree-GV-correlated nodes and degree-GV-correlated 
hotspots. (H) The distribution of one-cell-line hotspot disruption in all nodes, degree-GV-
correlated nodes and degree-GV-correlated hotspots. 
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Figure 2.2. Identification of essential hotspots for cell growth and proliferation in 
the K562 cell line through pgRNA deletion-based CRISPR screening. (A) Schematic 
of the pgRNA library design, cloning and functional screening of selected hotspot loci. (B) 
Volcano plot of the fold change and p-value of hotspots in the K562 cell line. Negative 
control genes were generated by randomly sampling 20 AAVS1-targeting pgRNAs with 
replacement per gene, and ribosomal genes served as positive controls in the screening. 
The dotted red line represents a screen score = -2.5. (C) Selection of candidate essential 
hotspots by the fold change and specificity score of each pgRNA. These essential hits 
were selected under the threshold of a specificity score > 0.1 and log2(fold change) < -1.  
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Figure 2.3. Validation of candidate essential hotspot loci in K562 cells and multiple 
cell lines. (A) Validation of the top-ranked essential hotspot in K562 cells by cell 
proliferation assay. AAVS1-pg1 and AAVS1-pg2 are pgRNAs targeting the AAVS1 locus 
and serve as negative controls. The asterisk (*) represents p-value compared with 
pgRNAs targeting AAVS1-pg1 at Day 15, which were calculated by two-tailed Student’s 
t-test and adjusted for multiple comparisons by Benjamini-Hochberg procedure. Data are 
presented as the mean ± s.d. (n = 3 biologically independent samples). * p < 0.05; ** p < 
0.01; *** p < 0.001; **** p < 0.0001; NS, not significant. (B) Validation of essential hotspots 
overlapped with the intronic region of an essential gene in K562 cells by cell proliferation 
assay. Left: WT K562 cells infected with pgRNAs targeting hotspot_19_32. Right: 
GATAD2A-overexpressed K562 cells infected with pgRNAs targeting hotspot_19_32. (C) 
The expression levels of GATAD2A in WT and GATAD2A-overexpressed K562 cells 
infected with pgRNAs targeting AAVS1 or hotspot_19_32. (D) Validation of 
hotspots_10_25 in multiple cancer cell lines, including A549, H1975, HeLa, Huh7.5.1 and 
NAMALWA cell lines. Asterisk (*) represents p-value compared with pgRNAs targeting 
AAVS1-pg1 at Day 15, which were calculated by two-tailed Student’s t-test and adjusted 
by Bonferroni correction accounting for multiple testings. * p < 0.05; ** p < 0.01; *** p < 
0,001; **** p < 0.0001; NS, not significant. (E) No significant difference between the 
numbers of essential genes contacting essential and non-essential hotspots from Hi-C or 
EpiTensor in K562 cells.  
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Figure 2.4. Deletion of an essential hotspot impacts broad chromatin structure. (A-
B) The effective diameter (A) and modularity (B) before and after hotspot deletion in the 
sliding 5-Mb sub-networks on chr10 (left). The outliers are labeled, and their genomic 
locations are shown on the right. (C) Hi-C contact maps of chr10: 11-17 Mb at 5-kb 
resolution (left) and 12-14 Mb at 5-kb resolution (right), before and after hotspot deletion. 
(D) Two examples, CELF2 and RSU1, for enhancer-promoter interactions altered after 
hotspot deletion within chr10: 11-17 Mb. (E) Hi-C contact maps of chr10: 68-76 Mb at 5-
kb resolution (left) and chr10: 72-75 Mb at 5-kb resolution (right), before and after hotspot 
deletion. (F) Two examples, FAM149B1 and CCAR1, for enhancer-promoter interactions 
altered after hotspot deletion within chr10: 68-76 Mb. In Figure 2.4D and 2.4F, Black dash 
line indicates decreased interactions in hotspot_10_25-deleted K562 cells, red dash line 
indicates enhanced interactions in hotspot_10_25-deleted K562 cells.  
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Figure 2.5. Synergistic change in gene expression after hotspot deletion. (A) 
Pseudotime clusters of hotspot_10_25-deleted and wild-type K562 cells based on 
apoptosis gene expression. (B) Global analysis of the expression levels of 99 KEGG 
apoptosis genes in state 1, 2, 4 and 5. Genes were clustered into 3 groups. (C-E) The 
relative expression levels of three representative downregulated genes P4HA1, ASCC1, 
ECD in different states as determined by single cell RNA-seq. (F) The knockdown 
efficiency of the indicated sgRNAs targeting each downregulated gene in K562 cells 
stably expressing KRAB-dCas9. The expression level of each gene was detected by real-
time qPCR. sgRNANT represents the non-targeting sgRNA serving as the negative control. 
(G) Validation of the synergistic effects of two sets of gene pairs on K562 cell fitness by 
cell proliferation assay. Asterisk (*) represents p-value compared with pgRNAs targeting 
AAVS1-pg at Day 12, which were calculated by two-tailed Student’s t-test and adjusted 
for multiple comparisons by Benjamini–Hochberg procedure. * p < 0.05; ** p < 0.01; NS, 
not significant.  
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2.8 Supplementary Figures 

 

 

Figure S2.1. The correlations between replicates in the functional screening for 
essential hotspots in the K562 cell line. (A-B) Scatter plots of normalized pgRNA read 
counts of the hotspot libraries from the Day-0 control samples (Ctrl) (A) and Day-30 
experimental samples (Exp) (B) in the K562 cell line. The light violet dots represent the 
pgRNAs targeting hotspots that passed the filter, and the light gray dots represent the 
pgRNAs that are filtered out. The Pearson correlation coefficients (Pearson corr.) of the 
two biologically independent replicates of each sample are also presented. (C) Scatter 
plots of pgRNA fold changes between the two biological replicates in K562 cells. (D) The 
distribution of pgRNAs targeting AAVS1 with different log2(fold change) and specificity 
scores.  
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Figure S2.2. Validation of essential hotspots in K562 cells and multiple cancer cell 
lines as assessed by fragment deletion. (A) Validation of essential hotspots not 
overlapping with essential protein-coding genes in K562 cells. (B) Validation of essential 
hotspots overlapping with the promoter region of an essential gene in K562 cells by cell 
proliferation assay. Left: WT K562 cells infected with pgRNAs targeting hotspot_1_36. 
Right: SLC2A1-overexpressing K562 cells infected with pgRNAs targeting hotspot_1_36. 
The method for determining the effect of each hotspot on cell growth or proliferation was 
the same as that described in Figure 2.3A. Asterisks represent p-values compared with 
AAVS1_pg1 at Day 15, which were calculated by the same method as described in Figure 
2.3A. (C) The expression levels of SLC2A1 in WT and SLC2A1-overexpressing K562 
cells transduced with pgRNAs targeting AAVS1 or hotspot_1_36. (D) Validation of 
hotspot_19_32 in multiple cancer cell lines, including A549, H1975, HeLa, Huh7.5.1 and 
NAMALWA cell lines. The asterisks (*) represents the p-values compared with pgRNAs 
targeting AAVS1-pg1 at Day 15, which were calculated by the same method as described 
in Figure 2.3D. In Figure S2.2A-B and D, data are presented as the means ± s.d.s (n = 3 
biologically independent samples). * p < 0.05; ** p < 0.01; *** p < 0.001; **** p < 0.0001; 
NS, not significant.  
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Figure S2.3. WGS analysis of the off-target effects of the pgRNA targeting 
hotspot_10_25 in the genome browser view. (A-B) Pileup reads for on-target loci chr10: 
74,123,164-74,123,186 (A, one sgRNA target site) and chr10: 74,125,013-74,125,035 (B, 
another sgRNA target site) with clear cleavages as indicated in the frames. (C-D) Pileup 
reads for two examples of putative off-target loci chr10: 106,243,900-106,243,922 (C) and 
chr10: 30,109,435-30,109,457 (D) without any clear cleavages, indicating no off-target 
effects. 
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Figure S2.4. Hi-C contact maps, A/B compartments and TADs before and after 
hotspot_10_25 deletion. (A) Hi-C contact maps of the entire chr10 at 100-kb resolution. 
(B) A/B compartments at 50-kb resolution for wild-type and hotspot_10_25-deleted K562 
cells in chr10. (C) TADs merge/split at 10-kb resolution for wild-type and hotspot_10_25-
deleted K562 cells in chr10.  
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Figure S2.5. Contact map (chr10) of wild-type K562 at a 1-Mb resolution. The yellow 
box highlights the strong contact between chr10: 71-76 Mb and chr10: 11-17 Mb. 
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Figure S2.6. Distributions of the effective diameter (A), modularity score (B) and 
chromatin loops (C) in the 5-Mbp regions around the essential hotspots and non-
essential hotspots. 
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Figure S2.7. The growth effects of gene pairs that showed downregulated 
expression according to single-cell RNA-seq after hotspot_10_25 deletion in K562 
cells. (A) The relative expression level of DNAJB12 (from state 2 to state 4) in 
hotspot_10_25-deleted K562 cells from the single-cell RNA-seq results. (B) The 
knockdown efficiency of sgRNA targeting DNAJB12 in K562 cells stably expressing 
KRAB-dCas9 protein. The expression levels of DNAJB12 in K562 cells infected with non-
targeting sgRNA and DNAJB12-targeted sgRNA were detected by real-time qPCR. 
sgRNANT represents the non-targeting sgRNA (serving as the negative control). (C) 
Validation of the gene pairs through a cell proliferation assay. The asterisks (*) represent 
the p-values compared with pgRNAs targeting AAVS1-pg at day 15, which were 
calculated by the same method as described in Figure 2.4F. Data are presented as the 
means ± s.d.s (n = 3 biologically independent samples). * p < 0.05; NS, not significant.  
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2.9 Supplementary Tables 

Table S2.1. Summary of WGS analysis for hotspot_10_25 deletion in K562 cells 

Cell Line K562-WT K562-del 

Genome hg19 hg19 

Genome coverage 42x 26x 

Mapping rate 94.39% 84.9% 

SNV+INDEL (compared to hg19) 4.7 M 4.05 M 

SNV+INDEL (compared to hg19) 
confirmation rate 86.20% 

Variations in putative off-target loci 
(compared to WT) N/A 0 
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Table S2.2. Hi-C comparison between the wild-type and hotspot_10_25-deleted K562 
cells 

Chromosome Compared.pairs off-diagonal contacts 
with p value < 0.05 Percentage 

chr1 3746079 8700 0.2322% 
chr2 3415305 21238 0.6218% 
chr3 2497235 20972 0.8398% 
chr4 2526220 16836 0.6665% 
chr5 2579300 6523 0.2529% 
chr6 2230346 10784 0.4835% 
chr7 2439371 15266 0.6258% 
chr8 2077913 11813 0.5685% 
chr9 945967 7 0.0007% 
chr10 1655689 1287 0.0777% 
chr11 1823573 13085 0.7175% 
chr12 1660129 13771 0.8295% 
chr13 951182 6723 0.7068% 
chr14 916781 3969 0.4329% 
chr15 884917 3029 0.3423% 
chr16 922993 3601 0.3901% 
chr17 765104 4354 0.5691% 
chr18 974682 9741 0.9994% 
chr19 583452 3101 0.5315% 
chr20 675116 6192 0.9172% 
chr21 384661 272 0.0707% 
chr22 290993 878 0.3017% 
chrX 1476247 9356 0.6338% 
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Table S2.3. Comparison of chromatin loops before/after hotspot deletion 

Chromosome Disappeared in 
hotspot deletion 

Newly formed in 
hotspot deletion 

Identified in both before/after 
hotspot deletion 

chr1 266 1096 315 

chr10 91 428 90 

chr11 142 595 151 

chr12 100 488 102 

chr13 21 143 18 

chr14 51 276 35 

chr15 86 278 69 

chr16 78 294 72 

chr17 121 496 132 

chr18 30 217 25 

chr19 82 439 126 

chr2 161 679 145 

chr20 63 274 69 

chr21 27 108 16 

chr22 35 209 51 

chr3 118 553 131 

chr4 80 336 87 

chr5 81 475 117 

chr6 144 475 117 

chr7 100 482 141 

chr8 89 414 69 

chr9 106 445 97 

chrX 58 289 42 
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Table S2.4. Comparison of chromatin loops before/after hotspot deletion in chr10: 11-17 
Mb and chr10: 68-76 Mb 

Genomic Locus Disappeared in 
hotspot deletion 

Newly formed in 
hotspot deletion 

Identified in both before/after 
hotspot deletion 

Chr10: 11-17 Mb 4 22 7 

Chr10: 68-76 Mb 15 61 15 
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Chapter 3. Regulation associated modules reflect 3D genome modularity 

associated with chromatin activity 

3.1 Abstract 

The 3D genome has been shown to be organized into modules including 

topologically associating domains (TADs) and compartments that are primarily defined by 

spatial contacts from Hi-C or other experiments. There exists a gap to investigate whether 

and how the spatial modularity of the chromatin is related to the functional modularity 

resulting from the chromatin activity. Increasing evidence shows a tight interplay between 

histone modifications and 3D chromatin organization. As the histone modifications reflect 

the chromatin activity, it is tempting to infer the spatial modularity of the genome directly 

from the histone modification patterns, which would establish the connection between the 

spatial and functional modularity of the genome. However, uncovering the 3D genomic 

modules using histone modifications has not been well explored. Here, we report that the 

histone modifications show a modular pattern (referred to as regulation associated 

modules, RAMs) that reflects the spatial modularity of the chromatin structure. We found 

that enhancer-promoter interactions and extrachromosomal DNAs (ecDNAs) occur more 

often within the same RAMs than within the same TADs, indicating stronger insulation of 

the RAM boundaries and a modularization of the 3D genome at a scale better aligned 

with the chromatin activity. Consistently, compared to the TAD boundaries, in silico 

predictions showed that deletions of RAM boundaries perturb the chromatin structure 

more severely and somatic variants in the cancer samples are more enriched in the RAM 

boundaries. These observations suggest that RAMs reflect a modular organization of the 
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3D genome at a scale better aligned with chromatin activity, providing a bridge connecting 

the structural and functional modularity of the genome.  
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3.2 Introduction 

Histone modifications are critical to shape the chromatin structure and regulate 

gene expression(1, 2). Active marks such as H3K27ac and H3K4me3 open up chromatin 

to allow access of transcription factors (TFs) and transcription machinery to promoters or 

enhancers. Repressive marks such as H3K9me3 and H3K27me3 condensate chromatin 

to block TF binding and suppress gene expression. DNA marked by active and repressive 

histone modifications form euchromatin and heterochromatin that are distinct on the 

compactness. These observations suggest that histone modifications have an important 

impact on organizing the regional and global 3D genome. 

  

Accumulating evidence has revealed the association of histone modifications with 

the topologically associating domains (TADs)(3–6) and compartments(7, 8) derived from 

the Hi-C contact maps showing plaid patterns. TADs represent genomic domains forming 

dense internal contacts but fewer contacts with neighboring regions. The TAD boundaries 

are demarcated with CTCF sites or active transcribed DNA sequences. The Hi-C data 

also shows that the 3D genome is partitioned into transcriptionally active (compartment 

A) and suppressed (compartment B) compartments. Active and repressive histone marks 

are enriched, but do not exclusively appear, in the A and B compartments, respectively(7, 

8). Computational models have shown that histone modification signals are predictive of 

Hi-C contacts particularly for enhancer-promoter interactions(9), TAD boundaries(10) and 

compartments(11). Histone modifications are tightly associated with transcriptional 

activity(12–14) while transcription and proteins involved in transcriptional regulation 
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including RNA polymerase and TFs have been shown to contribute to compartmentation 

and active promoters and enhancers tend to form clusters in the nucleus(15–18). 

 

Despite the mechanisms underlying the interplay between histone modifications 

and chromatin organization remain elusive, histone modifications can indicate the spatial 

organization of the genome as readout signals for regulatory modules. However, the 

current analysis has been limited to associating histone marks to Hi-C derived TADs and 

compartments. An unfilled gap is to use histone modifications to directly elucidate the 

modular organization of the 3D genome. We propose here to define the spatial module 

of the genome organization resulting from the chromatin activities reflected by histone 

modifications. 

 

We found that the frequency profiles of the H3K27ac peaks present a modular 

structure (referred to as regulation associated modules, RAMs). A large number of these 

modules are shared across cell types and can be independently derived using other 

active histone marks, including H3K4me3 and H3K4me1. We uncovered several lines of 

evidence to support the hypothesis that the RAMs are spatial modules resulting from 

functional activities: the enhancer-promoter interactions dominantly occur within RAMs; 

the extrachromosomal DNAs (ecDNAs) tend to be originated from the same RAMs rather 

than split in multiple RAMs; RAMs are resistant to cohesin degradation. These properties 

of RAMs distinguish them from TADs and compartments. Furthermore, deletion of the 

RAM boundaries is predicted to alter the chromatin organization more significantly than 

the deletion of TAD boundaries. Consistently, the somatic genetic variations in cancer 
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patients are enriched in RAM boundaries, suggesting a possible mechanism of 

tumorigenesis involved in altering the chromatin modules.  
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3.3 Materials and Methods 

3.3.1 Regulatory associated modules (RAM) identification 

Data Source. The 93 normal and 19 cancer  samples with the called H3K27ac 

narrow peaks in hg19 were downloaded from Roadmap Epigenomics portal 

(https://egg2.wustl.edu/roadmap/web_portal/)(19) and ENCODE portal 

(https://www.encodeproject.org/). Table S3.1 lists the samples used in this study. 

 

RAM identification in individual samples. We calculated the H3K27ac narrow-

peak density using a sliding window of step size equal to 10kb, 50kb, 100kb, 250kb and 

500kb respectively and 500kb flanking size of each window in every sample. The 

H3K27ac narrow-peak profiles were then smoothed by a local polynomial regression 

fitting(20). The RAM boundaries (valley/minima on the smoothing curves) and peaks 

(summit/maxima on the smoothing curve) in the smoothed curves were then detected 

using the “findpeaks” function in R package “pracma”. 

 

Consensus-RAM (cRAM) identification. We first identified RAM boundaries in 

the 93 normal or 19 cancer samples using different step sizes (10kb, 50kb, 100kb, 250kb 

and 500kb) and then counted the percentage of a genomic region identified as RAM 

boundary in the 93 normal or 19 cancer samples. A genomic region with occurring 

percentage >=25% was considered as a consensus-RAM (cRAM) boundary in the normal 

or cancer samples. We merged cRAM boundaries if they are located <250kb apart from 

each other and required cRAMs have size >250kb. 

 



 151 

3.3.2 Hi-C data analysis  

Hi-C processing. The Hi-C data for the wildtype K562, GM12878, A549, IMR90, 

NHEK, HUVEC, HMEC and the HCT116 cell lines were downloaded from GEO 

(GSE63525) and the ENCODE portal (ENCSR662QKG and GSE104333). All the raw 

fastq files were aligned to hg19 genome and then processed using Juicer with the default 

settings(7, 21). The contact reads in a given cell line were further normalized by vanilla 

coverage (VC) normalization using the Juicer pipeline. The significance for a given 

fragment contact was computed by Poisson distribution with VC-normalized expected 

contact reads versus the VC-normalized observed contact reads.  We then used 

HiCExplorer(22–24) and HiCplotter(25)  software to visualize the Hi-C data.  

 

A/B compartment. We performed A/B compartment analysis at 250kb resolution. 

The eigenvectors for each chromosome in all the cell lines involved in the Hi-C data 

analysis were extracted from the VC normalized Hi-C counts processed by the Juicer 

pipeline with the default parameters(26). POLR2A ChIP-seq data were obtained from the 

ENCODE(27) portal  (https://www.encodeproject.org/). To determine A or B compartment, 

we calculated the correlation between the first eigenvector of each chromosome and the 

Pol II peak density(28). As there was no Pol II ChIP-seq data available for HMEC, we 

used TSS density in the hg19 genome to assign A/B compartments in HMEC. 

 

Topological associated domains (TAD). To identify topological associated 

domains (TAD), we applied the insulation score method(29) to the Hi-C data at 50kb 

resolution in the K562, GM12878, A549, IMR90, NHEK, HUVEC, HMEC and HCT116 
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cell lines. The HFF cell line TADs were downloaded from the 4DN website (accession 

number 4DNFIMROE6N4). The H1 cell line TADs were downloaded from ref(4).  

 

3.3.3 Lamina-associated domains (LADs) data processing 

The Lamin-B1 signal data in the K562, HCT116, H1, HAP1, RPE-hTERT, HFFc6 

cell lines generated by the DamID technique were obtained from the 4DN portal(30). We 

downloaded the mean of the replicates for each cell line. The Lamin-B1 signals at 50kb 

resolution for the K562, HCT116, H1, HAP1, RPE-hTERT, HFFc6 cell lines were lifted 

over from hg38 to hg19. 

 

3.3.4 Cohesin degradation analysis. 

The H3K27ac ChIP-seq data in the untreated HCT-116 RAD21-mAC cells and 

HCT-116 RAD21-mAC cells treated for 6 hours with IAA were downloaded from GEO 

(GSE104888). We processed the H3K27ac data same as ref(31). In brief, we aligned the 

raw data to the hg19 human genome using the BWA software(32), and then deduplicated 

the reads using PicardTools. The narrow peaks were called by comparing the associated 

input data using MACS2(33). All the parameters were set to the defaults.  
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3.3.5 Enrichment of upregulated genes in enhancer-promoter pairs occurring in the 

same RAM of K562 but split in the background cell type by Hypergeometric Test. 

The hypergeometric test was employed to measure the significance of the 

upregulated genes involved in the enhancer-promoter pairs occurring in the same RAM 

in K562 (foreground cell type) but in different RAMs of the background cell type. The 

population size N was the overall genes involved in the K562 and the compared cell type. 

The population success size M was the number of all upregulated genes in the K562 

compared to the background cell type. The sampling size n was the number of the genes 

involved in the enhancer-promoter pairs occurring in the same RAM of K562 but in 

different RAMs of the background cell type, and the sampling success size m was the 

upregulated genes involved in the enhancer-promoter pairs occurring in the same RAM 

of K562 but in different RAMs of the background cell type. Enrichment was considered 

significant if p-value<0.05.  

 

3.3.6 Enrichment of the somatic variants in cancer cRAM boundaries compared to 

the TAD boundaries assessed by Two-sample Proportion Tests. 

The two-sample proportion test null hypothesis was to test the equal proportion of 

the number of the somatic variants relative to the genome coverage (in base pair) in the 

cancer cRAM boundaries and TAD boundaries. The two proportions were calculated 

separately by the number of the somatic variants divided by the boundary length (in base 

pair) for cancer cRAM boundaries and TAD boundaries. Enrichment was considered 

significant if p-value<0.05.  
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3.3.7 Somatic mutations and structural variation analysis for cancer patients from 

PCAWG 

The consensus somatic SNV and indels were downloaded from PCAWG. 

(https://dcc.icgc.org/releases/PCAWG)(34, 35). The VCF files were transformed to bed 

files by BEDOPS vcf2bed tools(36). The number of somatic SNV and indels overlapping 

with the RAM and TAD boundaries were then counted.  

 

3.3.8 Motif analysis  

The motif analysis was done using the Homer pipeline(37) with default parameters. 

The motif occurrence was called using  FIMO(38) with  p-value <=1E-4.  
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3.4 Results 

3.4.1 Regulation associated modules (RAMs) detected by the histone modification 

peaks 

We analyzed the density profile of H3K27ac peaks (i.e. peak count in a sliding 

window) from chromatin immunoprecipitation assays with sequencing (ChIP-Seq) 

experiments as using the peak density instead of read count density can better remove 

the noise from the background signals. We downloaded ChIP-seq data of 93 normal and 

19 cancer samples from Roadmap Epigenomics Project 

(http://www.roadmapepigenomics.org/)(19) and ENCODE portal 

(https://www.encodeproject.org/)(39) (Table S3.1). Using a sliding window (a fixed 

flanking size of 500kbp and step size varying from 10kbp to 500kbp), we computed the 

H3K27ac peak densities in the linear genome. Regardless of the step size, the H3K27ac 

peak densities were not evenly distributed and showed a modular pattern (Figure 3.1A). 

The active marks of H3K4me1, H3K4me3 and H3K36me3 showed similar peak density 

profiles to H3K27ac in the 93 samples, indicated by high Pearson correlations between 

them, whereas the repressive marks of H3K27me3 and H3K9me3 had less consistent 

patterns (Figure 3.1B). Given the highly correlated active mark patterns, we focused on 

analyzing the H3K27ac signals as the other active marks show similar modular structure.  

 

At a given step size, we identified the valley or minima of the H3K27ac peak profile 

that was smoothed using local polynomial fit in each chromosome and in each cell type 

(see Materials and Methods). These valleys demarcated the boundaries of the modular 

domains (called Regulation Associated Domains or RAMs). We varied the step size from 
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10kbp to 500kbp and fixed the window size to 500kbp. It is not surprising that, with the 

increasing step size, the RAM size increased and a higher percentage of RAMs were 

shared between samples (Figure S3.1, Figure S3.2). We observed that the number of 

common RAMs in all the chromosomes reached a plateau at 250kbp step size in both 

normal and cancer samples, which indicates the identified RAMs are most conserved 

across diverse cell types (Figure S3.3A-B). We thus used this step size of 250kbp for the 

remaining analyses. A RAM boundary is called consensus RAM (cRAM) boundary if it is 

shared by >25% of the samples. This way, 711 cRAMs were detected in the normal 

samples and 771 cRAMs in the cancer samples (see Materials and Methods). On 

average, 60% of the RAMs in a cell type are consensus (referred to as cRAMs) and the 

remaining cell-type specific (Figure S3.3C). 

 

One example of the identified RAMs in chr12 of the GM12878 cell by IGV 

software(40) is shown in Figure 3.1C-E. Obviously, the RAM boundaries have lower 

signals of the active histone marks (H3K27ac, H3K4me1, H3K4me3, H3K36me3) and 

higher repressive marks (H3K9me3 and H3K27me3) compared to the within RAM regions. 

Consistently, they tend to align with the B compartment or subcompartments (B1, B2, B3). 

Furthermore, by counting the number of the 3D contacting neighbors for each locus using 

the 10kb resolution Hi-C data in GM12878 (contacts with log(P-value) <=-10), we found 

that the RAM boundaries tend to harbor many 3D contacts, indicated an enrichment with 

densely packed DNA sequences forming many spatial contacts (Figure 3.1C). 
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3.4.2 Characterization of the consensus regulation associated modules (cRAMs)  

As cRAMs are largely shared between diverse cell lines, we further characterized 

them. Among the cell lines that have both active and repressive marks (all are normal 

cells), as expected, we found that the cRAM boundaries have lower peak density of the 

active marks (H3K27ac, H3K4me3, H3K4me1 and H3K36me3) and slightly higher peak 

densities of repressive marks (H3K27me3 and H3K9me3) than the cRAM regions (see 

examples in GM12878 and HUVEC cell lines in Figure 3.2A). To quantify the difference 

of the histone modifications among the cRAM boundaries and the non-boundary regions, 

we counted the peak density using a sliding window, and compared the histone 

modifications enrichment across 93 normal samples. The P-value < 0.05 from the 

Wilcoxon Rank Sum test indicated that cRAM boundaries have significantly lower active 

marks and higher repressive marks than the non-boundaries of cRAMs (Figure 3.2B-G). 

Furthermore, using the available 10kb-resolution Hi-C data in the K562, GM12878, A549, 

IMR90, NHEK, HUVEC, HMEC and HCT116 cell lines, we found that the cRAM 

boundaries have significantly more Hi-C contacts (intrachromosomal contacts with log(P-

value)<=-10)  compared to the whole genome (Figure 3.2H), which is consistent with the 

genome browser view for any RAM boundary in Figure 3.1C. These observations 

suggested that the cRAM boundaries are formed by densely packed DNA sequences 

harboring many 3D contacts. 

 

We next investigated how RAMs are related to the previously identified chromatin 

modules. First, the median size of cRAMs (~3.3Mbp) is larger than TADs (~600kbp) and 

one RAM often spans across multiple TADs (Figure 3.2I). Second, using the Hi-C data, 
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we identified the A/B compartments at 250kb resolution (see Materials and Methods). 

We calculated the percentage of the A and B compartments in each cRAM (250kb bin 

size) across the cell types. While the A-compartments account around 50%-75% in each 

of the cRAM, a single cRAM is largely composed by a mixture of A and B compartments, 

indicating a distinction between cRAMs and compartments (Figure 3.2J). Consistently, 

the cRAM boundaries are enriched with B-compartment but also with a significant portion 

of A compartments (Figure 3.2J). Third, we checked the Lamin-B1 signals for the cRAM 

boundaries. Lamin-B1 is a scaffolding component of the nuclear envelope(41, 42). A 

positive signal for Lamin-B1 suggests a close distance to the nuclear lamina, which could 

be used to define lamina associated domain (LAD). When aligning the cRAM boundaries 

with the Lamin-B1 signals (see Materials and Methods), we found on average 69% of 

the cRAM boundaries overlapping with Lamin-B1 signals across the cell types and 

meanwhile on average 62.7% of the LADs identified from each cell type overlapping with 

cRAM boundaries (Figure 3.2K), indicating that LADs and cRAMs are also different. 

Taken together, the cRAM boundaries are formed by densely packed DNA sequences; 

while they are enriched with B compartment and Lamin-B1 signals, RAMs are clearly 

distinct from the previously reported domain structures such as TADs, LADs and A/B 

compartments.   

 

3.4.3 RAMs are functional units 

If RAMs are functional modules, we reason that the majority of the promoter-

enhancer interactions should occur within the same RAMs. We downloaded 970 high-

confidence promoter-enhancer interactions in the K562 cell line that were experimentally 
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validated in ref(43, 44) and 95% of them are located within the same RAMs, compared to 

75% of them in the same TADs(4, 6, 8, 45) (Figure 3.3A-B). Two examples of promoter-

enhancer interactions are shown in Figure 3.3G: the enhancer-promoter interactions of 

STEAP1B and VGF are across multiple TADs but within the same K562 RAMs marked 

by continuous strong H3K27ac peaks. This observation suggests that RAMs may 

represent regulatory modules and RAM boundaries insulate promoter-enhancer contacts 

across RAMs at a scale more appropriate than TADs to capture functional modularity of 

chromatin activity.  

 

We further investigated how the modularity defined by RAMs affects gene 

expression. To this end, we examined whether the enhancer-promoter pairs located 

within the same K562 RAMs but separated by RAM boundaries in other cells would 

specifically impact gene expression in K562. When comparing K562 to the normal cell 

line GM12878, we found 885 K562 enhancer-promoter interactions were within the same 

RAMs in both cell lines and 39 only in K562 (Figure 3.3C). The majority of the genes 

regulated by the 39 enhancer-promoter interactions are upregulated in K562 compared 

to in GM12878 (P-value=0.0002 by Hypergeometric Test, see Materials and Methods) 

(Figure 3.3D), indicating that the RAM organization facilitates promoter-enhancer 

interactions to activate gene expression. For example, the RAB31 promoter interacts with 

an enhancer that is located within the same RAM in K562 but in a RAM boundary in 

GM12878 where the enhancer would be silenced in GM12878; the PRELID2 promoter 

and its interacting enhancer are located within the same K562 RAM but reside in a 

GM12878 RAM boundary indicating suppression in GM12878 (Figure 3.3H). In fact, the 
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RAB31 and PRELID2 normalized expression levels are 34.29 and 5.37 folds higher in 

K562 than in GM12878, respectively. All the upregulated gene expressions involved in 

enhancer-promoter interactions that occurred in the same RAM in K562 but in different 

GM12878 RAMs are shown in Table S3.2. We had a similar observation by comparing 

K562 and HEPG2: while the majority of the promoter-enhancer pairs are intra-RAM in 

both cell lines, 28 are only occurred in the same RAM in K562 but in different HEPG2 

RAMs (Figure 3.3E) and the corresponding genes have higher expressions in K562 than 

in HEPG2 (P-value=0.0006 by Hypergeometric Test) (Figure 3.3F, Table S3.3). 

Furthermore, we examined the K562 enhancer-promoter pairs in K562-specific RAMs 

and the cancer consensus RAMs (cancer cRAMs). 750 pairs were identified as intra-RAM 

interactions in both K562 RAMs and cancer cRAMs (Figure S3.4A). 77 genes were 

involved in the 174 pairs that are only intra-RAM interactions in K562, and 20 out of the 

77 genes were detected as K562 specifically highly expressed genes across 92 cancer 

cell lines (hypergeometric test P-value=0.03) documented in the Harmonizome 

database(46) (Figure S3.4B). These observations further illustrated that RAMs represent 

a modularity directly associated with functional activity of the chromatin.  

 

3.4.4 RAMs are insensitive to cohesin degradation 

Previous studies showed that cohesin degradation would disrupt loop domains and 

topological associated domains (TADs) but largely not change histone modifications and 

gene expression(47, 48). Therefore, RAMs are not expected to be affected by cohesin 

degradation. For confirmation, we identified RAMs using H3K27ac data in the HCT-116 

RAD21-mAC cells untreated and treated for 6 hours with IAA. The RAM patterns for each 
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chromosome were highly correlated between treated and untreated cells (Figure S3.5A) 

and the recall rate for the RAM boundaries was 0.9 on average for all the chromosomes 

(Figure S3.5B). This observation indicates that the RAM formation is independent from 

cohesin, distinguishing RAMs from TADs and loop domains.  

 

3.4.5 Extrachromosomal DNA (ecDNA) from cancer patients majorly originated 

from intra-RAM 

Circular extrachromosomal DNAs (ecDNAs) are prevalent in tumors and their 

length ranges from 100kbp to megabases, and the genes encoded in the ecDNAs are 

often amplified in cancers(49–51). We reason that, if RAMs are functional modules, 

ecDNAs would form within RAMs because RAM boundaries are highly condensed DNAs 

that would restrain the transcription of genes residing in ecDNAs. To test this hypothesis, 

we downloaded the ecDNAs identified from cancer patients(52), and filtered the ecDNAs 

corresponding to the median size of the cancer cRAM length (2.5Mb), i.e. only ecDNAs 

with size <2.5Mb were kept (i.e. 78% of all the ecDNAs). We found that 98% of 2459 

ecDNAs were located within the individual RAMs. As a comparison, we performed the 

same analysis on TADs. We took the conserved TADs defined in the Dixon et al. study(4) 

and only kept the ecDNAs shorter than 880kbp (68% of all the ecDNAs), the median size 

of the TAD length. We found that 86% of the 2150 ecDNAs were within individual TADs 

(Figure 3.3J, 3.3K). Because the ecDNAs were filtered to have comparable length with 

the RAM and TAD sizes, respectively, this lower intra-domain percentage for TAD 

compared to RAM is not due to the larger size of RAMs. Furthermore, GREAT analysis(53) 

(http://great.stanford.edu/public/html/) on the ecDNAs that fall into intra-cancer cRAMs 
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but split in TADs revealed that they are highly enriched in “positive regulation of DNA 

replication” with a P-value of 5.1641E-19. There are 12 genes involved in this pathway: 

ATF1, BMP5, BMP6, EGFR, FGFR1, GLI2, IGF1, IL6, JUN, KITLG, PDGFA, PDGFRA, 

which are known important for cell proliferation and cancer pathogenesis. For example, 

EGFR is a driver of tumorigenesis(54). Deregulation of the oncogenic FGFR signaling 

has been frequently observed in multiple types of cancers(55). The PDGF mediated 

signaling has been reported to be involved in the cell proliferation and invasion(56). The 

observations that ecDNAs tend to originate from intra-RAMs, which suggests that RAM 

is a functional module.  

 

3.4.6 Deletion of the cRAM boundaries are predicted to alter the 3D chromatin 

structures 

To systematically examine the impact of deleting cRAM boundaries to the 

chromatin structure, we resorted to computational predictions using a deep learning 

model ORCA(57) (https://github.com/jzhoulab/orca) as it is prohibitive to perform 

hundreds of Hi-C experiments with sufficient resolution. We took the ORCA model pre-

trained on the high resolution Hi-C and Micro-C data in H1-hESC and HFF cell lines to 

predict 3D chromatin architecture from kilobase to whole-chromosome scale using DNA 

sequences. It also provided perturbation predictions if certain sequences were targeted. 

cRAM boundaries shared between cancer and normal samples are apparently important, 

therefore we selected all 418 of them that are located at least 16Mb away from 

centromere to predict their impacts on Hi-C contacts if deleted. As a comparison, we also 

included  298 H1-hESC and 187 HFF TAD boundaries (length of the TAD boundaries >= 
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100kbp; nonoverlap with selected cRAM boundaries; away from centromere at least 

16Mb) in the computational perturbations screening. Considering that the cRAM 

boundaries are often larger than the TAD boundaries, we only deleted the center 100kbp 

of cRAM and TAD boundaries to avoid bias introduced by deletion size.  

 

To measure the similarity between the deletion and wildtype Hi-C contact matrices, 

we calculated the Pearson correlation between them. Compared to the TAD deletions, 

deleting cRAM boundaries obviously resulted in lower correlation coefficients, indicating 

larger chromatin alterations, at the highest resolutions the ORCA model could predict 

(4kb and 8kb resolutions with Wilcoxon Rank Sum test P-values of 2.4E-11 and 2.6E-7, 

respectively) (Figure 3.4B). Deletion of the cRAM boundary (chr10:115,940,000-

116,040,000, in hg38) on Hi-C contacts in HFF and H1-hESC cells is shown as an 

example (Figure 3.4A, Figure S3.6). The 3D contacts are severely weakened by deleting 

the cRAM boundary in both cell types.  

 

3.4.7 Somatic genetic variations enriched in regulation associated modules 

boundaries 

If RAMs are functional modules important for regulating functional activities, we 

reason that somatic mutations in cancers may target the RAM boundaries to disrupt the 

modular organization of chromatin leading to aberrant regulation of gene expression and 

resulting tumorigenesis. The PCAWG study revealed consensus mutations and variations 

from thousands of cancer patients including  ~20 millions of somatic single nucleotide 

variations (SNVs) and ~1.08 millions of indels (https://dcc.icgc.org/releases)(58). We 
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found that, while cancer cRAM boundaries cover ~21.6% of the genome, they host 25.9% 

of somatic SNVs and 23.4% somatic indels. As a comparison, the conserved TAD 

boundaries(4) covering 6.5% genome containing 5.2% somatic SNVs and 6% somatic 

indels (Figure 3.4C). The cancer cRAM boundaries are significantly enriched with both 

somatic SNVs and indels compared to the TAD boundaries (P-value<1E-5 from Two-

sample Proportion tests, see Materials and Methods), indicating a stronger association 

with cancer mutations.  

 

To elucidate the sequence features associated with cRAM boundaries and 

investigate how the somatic mutations change such features, we performed motif analysis 

on the cRAM boundaries using Homer(37). We focused on the cRAMs that are common 

in cancer (normal) but not in normal (cancer) samples as cancer (normal)-specific cRAMs, 

as they represent changed modularity between cancer and normal samples. By 

comparing cancer-specific and normal-specific cRAMs, we found 73 and 74 motifs 

enriched only in cancer and normal specific cRAM boundaries, respectively (example 

motifs shown in Figure 3.4D, 3.4F). We employed FIMO(38) to identify the occurrences 

of the enriched motifs that counted for 25.8% and 30.1% in base pairs, respectively, in 

the cancer and normal specific cRAM boundaries (Figure 3.4E, 3.4G). We next mapped 

the PCAWG somatic SNVs and indels onto the cancer and normal specific cRAM 

boundaries. While somatic SNVs do not show a preferred occurrences within the enriched 

motifs (24.9% and 29.9% for cancer and normal specific cRAM boundaries, respectively), 

the somatic indels overlapping with the cancer/normal-specific cRAM boundaries 

preferentially hit the enriched motifs (52.3% and 63% for cancer and normal specific 
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cRAM boundaries, respectively), more than two fold by chance, in the altered cRAM 

boundaries between normal and cancer samples. We speculate that the enriched motifs 

in the cancer and normal-specific cRAM boundaries may respectively facilitate disruption 

and formation of  cRAM boundaries in the normal samples. Two examples of these motifs 

overlapping with indels are shown in Figure 3.4H-I. We identified genes within 2.5kb from 

the enriched motifs overlapping with somatic indels and analyzed the enriched pathways 

using g:Profiler(59). The KEGG over-represented pathways are shown in Figure 3.4J, 

and the gene ontology molecular functions are shown in Figure S3.7. Furthermore, we 

downloaded the normalized gene expressions of the TCGA and GTEx samples from 

Expression Atlas (https://www.ebi.ac.uk/gxa/home) and identified differentially expressed 

genes (DEGs) (P-value<=0.05 by the Wilcoxon Rank Sum tests between cancer and 

normal samples). The top ranked pathways associated with cancer and cell proliferation 

are highly enriched with the DEGs, such as PIK3AP1, LABM3, AKT1, MYB in  “PI3K-AKT 

pathway” (32%) and “pathways in cancer” (20%) (Figure 3.4K). These observations 

suggested that the motifs specifically enriched in the formation of cancer cRAM 

boundaries and disruption of normal cRAM boundaries are close to genes important for 

tumorigenesis, cell survival and cell proliferation. Somatic indels can severely alter these 

motifs and may contribute to the cRAM boundary change, affecting the expressions of 

the nearby genes.   
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3.5 Discussion 

In this study, we analyzed the peak density profiles of histone modifications data 

and found they show modular patterns. These modules are clearly defined by active 

marks such as H3K27ac, H3K4me1 and H3K4me3, indicating their association with 

functional activity of the genome, and are thus termed regulation associated modules 

(RAMs). While TADs and compartments are identified from the 3D contacts measured by 

Hi-C, RAMs are delineated by histone modifications that are directly related to chromatin 

accessibility and gene expression. We showed that RAMs are obviously distinct from 

TADs, compartments and LADs although some RAM boundaries do overlap with TAD, 

compartment or LAD boundaries.  

 

By surveying 93 normal and 19 cancer samples, we found the following evidence 

to support that RAMs are spatial modules resulting from functional activities. First, we 

observed that on average 60% of the RAMs (i.e. consensus RAMs) are largely shared 

across samples, while some of them are sample specific. Compared to TADs, consensus 

RAMs host higher percent of experimentally confirmed promoter-enhancer contacts (i.e. 

within the same RAMs), suggesting RAMs represent a modularization of the genome at 

a scale better aligned with transcriptional regulation. Second, ecDNAs detected from 

cancer patients tend to originate from the same RAMs rather than across multiple RAMs, 

supporting the insulation effect of RAM boundaries. Third, deletion of the cRAM 

boundaries would result in more severe chromatin alteration than the TAD boundaries 

based on in silico predictions of Hi-C contacts, suggesting the importance of cRAM 

boundaries in maintaining the chromatin structure. Fourth, cRAM boundaries are also 
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more enriched with somatic genetic variants of SNVs and indels than the TAD boundaries. 

In particular, the somatic indels tend to disrupt the motifs specifically enriched in cancer 

or normal specific cRAM boundaries, suggesting a possible mechanism of tumorigenesis 

involved in altering the chromatin modularity. 

 

To investigate the mechanisms underlying the RAM formation, we found that the 

RAMs are separated by densely packed DNA regions (as shown by their large number of 

Hi-C contacts) enriched with repressive histone modifications and lacking open chromatin, 

active histone marks or transcriptional events. Furthermore, unlike TADs, RAMs are 

insensitive to cohesin degradation. Taken together, these observations clearly show that 

RAMs are distinct from loop domains and TADs. RAMs are also different from lamina 

associated domains (LADs) defined by measuring the intermediate filament protein 

LMNB1 localization. The LADs are formed through interactions between chromatin and 

lamina, and they are located at the periphery of the genome. The RAM boundaries are 

demarcated by densely packed DNAs and many RAM boundaries are not located in 

regions interacting with lamina or overlapping with TAD boundaries, and thus the 

mechanism underlying these RAM boundary formation should be different from other 

chromatin modules including TADs, LADs and compartments.  

 

Many studies (such as in ref(60, 61)) have shown that multivalent cations such as 

calcium, magnesium, and manganese can reduce the electrostatic repulsions between 

the DNA chains and induce DNA condensation. Furthermore, these cations may bind to 

specific DNA sequences(62) and affect nucleosome positioning(63, 64). Therefore, a 
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possible mechanism can be that genomic DNAs become densely packed around cations 

such as Ca2+,  Mg2+ and Mn2+ to form RAM boundaries even if they are not marked by 

H3K9me3 or interacting with lamina. Proteins such as calcium binding proteins that carry 

many cations or their interacting partners may recognize specific DNA sequences such 

as those motifs enriched in the cancer or normal specific cRMA boundaries to facilitate 

locus-specific localization of cations. Interestingly, the most enriched molecular function 

of the genes close to (<2.5kbp) the enriched motifs overlapping with somatic indels in the 

cancer or normal specific cRAM boundaries is calcium ion binding (Figure S3.7), and 

~30% of them are differentially expressed in cancer and normal samples (Table S3.4), 

implying a possible feedback mechanism. This hypothesis and the mechanistic details 

are awaiting for future studies. 
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3.7 Figures 

 

Figure 3.1. Regulation associated module (RAM) identification. (A) H3K27ac peaks 
density of chr12 in GM12878 (binsize=250kb) (B) Pearson correlation between histone 
modification marks (H3K27ac, H3K4me1, H3K4me3, H3K36me3, H3K27me3, and 
H3K9me3 ) for the Roadmap samples. (C) Examples of histone modifications, A/B 
compartments, subcompartments, number of the 3D contacts, TAD boundaries and RAM 
boundaries in chr12 for GM12878. (D) The zoom-in genomic view for chr12:40Mb-80Mb 
and (E) The zoom-in genomic view for chr12:90Mb-120Mb in hg19. 
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Figure 3.2. Characterization of the cRAMs and boundaries. (A) Genome browser 
examples of normal cRAM boundaries and the histone modifications in genomic region 
chr12:40Mb-90Mb in hg19 for GM12878 and the HUVEC cells. (B-G) The genome-wide 
enrichment of the histone modification marks. (B) H3K27ac, (C) H3K4me1, (D) H3K4me3, 
(E) H3K27me3, (F) H3K9me3, and (G) H3K36me3 in cRAM boundaries and non-
boundaries (H) The contacting neighbors distribution of cRAM boundaries and whole 
genome locus in the 3D contact network in a diverse of the cell types. (I) Sizes of the 
TADs and cRAMs. (J) cRAM boundaries distribution over A/B compartments. (K) cRAM 
boundaries distribution over LaminB1 signals (LAD). 
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Figure 3.3. RAM is a functional unit. (A) K562 enhancer-promoter pairs distribution 
over K562 RAMs. (B) K562 enhancer-promoter pairs distribution over K562 TADs. (C) 
K562 enhancer-promoter pairs distribution over K562 RAMs and GM12878 RAMs. (D) 
Genes regulated by the 39 enhancer-promoter interactions only within K562 RAMs tend 
to have higher expressions in K562 compared to GM12878. (E) K562 enhancer-promoter 
pairs distribution over K562 RAMs and HEPG2 RAMs. (F) Genes regulated by the 28 
enhancer-promoter interactions only within K562 RAMs tend to have higher expressions 
in K562 compared to HEPG2. (G) Examples of K562 enhancer-promoter pairs relative to 
K562 TAD and RAM boundaries. (H)  Examples of K562 enhancer-promoter pairs relative 
to K562 and GM12878 RAM boundaries. (I) ecDNA distribution over TADs. (J) ecDNA 
distribution over cancer cRAMs.  
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Figure 3.4. The association of the cRAM boundaries with the 3D chromatin 
structure and  cancer somatic variants. (A) An example of the Hi-C contact change 
upon deletion of the cRAM boundary (chr10:115,940,000-116,040,000 in hg38) in HFF 
cells predicted by a deep learning model ORCA. (B) Pearson correlations between the 
predicted Hi-C contacts before and after cRAM boundary and TAD boundary deletion in 
HFF cells. A lower correlation indicates a larger perturbation to the wildtype chromatin 
structure upon deletion. (C) Somatic SNV and indels enrichment in cancer cRAM 
boundaries and TAD boundaries. Genome coverage: the total base pairs of the cancer 
cRAM boundaries or TAD boundaries in the whole genome; SNV coverage: the 
percentage of the SNVs in the cancer cRAM boundaries or TAD boundaries in the whole 
genome; INDEL coverage: the percentage of the indels in cancer cRAM boundaries or 
TAD boundaries in the whole genome. (D) Examples of the enriched motifs in the cancer 
specific cRAM boundaries. (E) Overlaps of somatic SNVs and indels with the enriched 
motifs in the cancer specific cRAM boundaries (F) Examples of the enriched motifs in the 
normal specific cRAM boundaries. (G) Overlaps of somatic SNVs and indels with the 
enriched motifs in the normal specific cRAM boundaries (H) The zoom-in genomic view 
for the enriched motifs with somatic indels in cancer specific cRAM boundaries (I) The 
zoom-in genomic view for the enriched motifs with somatic indels in normal specific cRAM 
boundaries (J) KEGG over-represented pathways for the genes within 2.5kb from the  
enriched motifs overlapping with somatic indels (K) Differentially expressed genes in 
KEGG “Pathways in cancer” and “PI3K-AKT pathway”. 
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3.8 Supplementary Figures 

 
Figure S3.1. The frequency of the consensus RAM boundaries in the 93 normal 
samples. The step sizes are (A) 10kb, (B) 50kb, (C)100kb, (D) 250kb, (E) 500kb. 
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Figure S3.2. The frequency of the consensus RAM boundaries in the 19 cancer 
samples. The step sizes are (A) 10kb, (B) 50kb, (C)100kb, (D) 250kb, (E) 500kb. 
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Figure S3.3. Consensus RAMs. The number of consensus RAMs (i.e. RAMs shared 
between samples) using different step sizes in (A) normal and (B) cancer samples. (C) 
The percentage of the consensus RAMs among all the RAMs in each sample. 
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Figure S3.4. The K562 enhancer-promoter interactions over K562 RAMs and cancer 
cRAMs. (A) K562 enhancer-promoter pairs distribution over K562 RAMs and cancer 
cRAMs. (B) 20 highly expressed genes in the enhancer-promoter pairs uniquely observed 
in K562 RAMs. 
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Figure S3.5. RAMs are resistant to cohesion degradation. (A) Spearman correlation 
of the RAMs between the treated and untreated HCT116 cells (B) RAM boundaries recall 
rate after cohesin treatment for HCT116 cells.  
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Figure S3.6. Predicted chromatin structure change upon deletion of cRAM 
boundaries and TAD boundaries in H1-hESC cell line. (A) An example of the Hi-C 
contact change upon deletion of the cRAM boundary (chr10:115,940,000-116,040,000 in 
hg38) in H1-hESC cells predicted by a deep learning model ORCA. (B) Pearson 
correlations between the predicted Hi-C contacts before and after cRAM boundary and 
TAD boundary deletion in H1-hESC cells. A lower correlation indicates a larger 
perturbation to the wildtype chromatin structure upon deletion. 
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Figure S3.7. Gene Ontology Molecular Functions of the genes within 2.5kb from the 
enriched motifs overlapping with somatic indels  
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3.9 Supplementary Tables 

 
Table S3.1. Collected ChIP-seq samples from ROADMAP and ENCODE. 

Data ID Source Tissue/SampleType Details 

E017 Roadmap IMR90 IMR90 fetal lung fibroblasts Cell 
Line 

E008 Roadmap ESC H9 Cells 

E015 Roadmap ESC HUES6 Cells 

E014 Roadmap ESC HUES48 Cells 

E016 Roadmap ESC HUES64 Cells 

E003 Roadmap ESC H1 Cells 

E020 Roadmap iPSC iPS-20b Cells 

E019 Roadmap iPSC iPS-18 Cells 

E021 Roadmap iPSC iPS DF 6.9 Cells 

E022 Roadmap iPSC iPS DF 19.11 Cells 

E007 Roadmap ES-deriv H1 Derived Neuronal Progenitor 
Cultured Cells 

E013 Roadmap ES-deriv hESC Derived CD56+ 
Mesoderm Cultured Cells 

E012 Roadmap ES-deriv hESC Derived CD56+ Ectoderm 
Cultured Cells 

E011 Roadmap ES-deriv hESC Derived CD184+ 
Endoderm Cultured Cells 

E004 Roadmap ES-deriv H1 BMP4 Derived 
Mesendoderm Cultured Cells 

E005 Roadmap ES-deriv H1 BMP4 Derived Trophoblast 
Cultured Cells 

E006 Roadmap ES-deriv H1 Derived Mesenchymal Stem 
Cells 

E062 Roadmap Blood&Tcell Primary mononuclear cells from 
peripheral blood 

E034 Roadmap Blood&Tcell Primary T cells from peripheral 
blood 

E045 Roadmap Blood&Tcell Primary T cells effector/memory 
enriched from peripheral blood 
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Table S3.1. Collected ChIP-seq samples from ROADMAP and ENCODE, continued 
Data ID Source Tissue/SampleType Details 

E044 Roadmap Blood&Tcell Primary T regulatory cells from 
peripheral blood 

E043 Roadmap Blood&Tcell Primary T helper cells from 
peripheral blood 

E039 Roadmap Blood&Tcell Primary T helper naive cells 
from peripheral blood 

E041 Roadmap Blood&Tcell Primary T helper cells PMA-I 
stimulated 

E042 Roadmap Blood&Tcell Primary T helper 17 cells PMA-I 
stimulated 

E040 Roadmap Blood&Tcell Primary T helper memory cells 
from peripheral blood 1 

E037 Roadmap Blood&Tcell Primary T helper memory cells 
from peripheral blood 2 

E048 Roadmap Blood&Tcell Primary T CD8+ memory cells 
from peripheral blood 

E038 Roadmap Blood&Tcell Primary T helper naive cells 
from peripheral blood 

E047 Roadmap Blood&Tcell Primary T CD8+ naive cells 
from peripheral blood 

E029 Roadmap HSC&Bcell Primary monocytes from 
peripheral blood 

E050 Roadmap HSC&Bcell Primary hematopoietic stem 
cells G-CSF-mobilized Female 

E032 Roadmap HSC&Bcell Primary B cells from peripheral 
blood 

E046 Roadmap HSC&Bcell Primary Natural Killer cells from 
peripheral blood 

E026 Roadmap Mesench Bone Marrow Derived Cultured 
Mesenchymal Stem Cells 

E049 Roadmap Mesench 
Mesenchymal Stem Cell 

Derived Chondrocyte Cultured 
Cells 

E055 Roadmap Epithelial Foreskin Fibroblast Primary 
Cells skin01 

E056 Roadmap Epithelial Foreskin Fibroblast Primary 
Cells skin02 
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Table S3.1. Collected ChIP-seq samples from ROADMAP and ENCODE, continued 
Data ID Source Tissue/SampleType Details 

E059 Roadmap Epithelial Foreskin Melanocyte Primary 
Cells skin01 

E061 Roadmap Epithelial Foreskin Melanocyte Primary 
Cells skin03 

E058 Roadmap Epithelial Foreskin Keratinocyte Primary 
Cells skin03 

E112 Roadmap Thymus Thymus 
E093 Roadmap Thymus Fetal Thymus 
E071 Roadmap Brain Brain Hippocampus Middle 
E074 Roadmap Brain Brain Substantia Nigra 
E068 Roadmap Brain Brain Anterior Caudate 
E069 Roadmap Brain Brain Cingulate Gyrus 
E072 Roadmap Brain Brain Inferior Temporal Lobe 
E067 Roadmap Brain Brain Angular Gyrus 

E073 Roadmap Brain Brain_Dorsolateral_Prefrontal_
Cortex 

E063 Roadmap Adipose Adipose Nuclei 
E100 Roadmap Muscle Psoas Muscle 
E108 Roadmap Muscle Skeletal Muscle Female 
E089 Roadmap Muscle Fetal Muscle Trunk 
E090 Roadmap Muscle Fetal Muscle Leg 
E104 Roadmap Heart Right Atrium 
E095 Roadmap Heart Left Ventricle 
E105 Roadmap Heart Right Ventricle 
E065 Roadmap Heart Aorta 
E078 Roadmap Sm. Muscle Duodenum Smooth Muscle 
E076 Roadmap Sm. Muscle Colon Smooth Muscle 
E103 Roadmap Sm. Muscle Rectal Smooth Muscle 
E111 Roadmap Sm. Muscle Stomach Smooth Muscle 
E092 Roadmap Digestive Fetal Stomach 
E085 Roadmap Digestive Fetal Intestine Small 
E084 Roadmap Digestive Fetal Intestine Large 
E109 Roadmap Digestive Small Intestine 
E106 Roadmap Digestive Sigmoid Colon 
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Table S3.1. Collected ChIP-seq samples from ROADMAP and ENCODE, continued 
Data ID Source Tissue/SampleType Details 

E075 Roadmap Digestive Colonic Mucosa 
E101 Roadmap Digestive Rectal Mucosa Donor 29 
E102 Roadmap Digestive Rectal Mucosa Donor 31 
E079 Roadmap Digestive Esophagus 
E094 Roadmap Digestive Gastric 
E099 Roadmap PLCNT.AMN Placenta Amnion 
E097 Roadmap OVRY Ovary 
E087 Roadmap PANC.ISLT Pancreatic Islets 
E080 Roadmap ADRL.GLND.FET Fetal Adrenal Gland 
E091 Roadmap PLCNT.FET Placenta 
E066 Roadmap LIV.ADLT Liver 
E098 Roadmap PANC Pancreas 
E096 Roadmap LNG Lung 
E113 Roadmap SPLN Spleen 
E116 Roadmap BLD.GM12878 GM12878 Lymphoblastoid Cells 

E119 Roadmap BRST.HMEC HMEC Mammary Epithelial 
Primary Cells 

E120 Roadmap MUS.HSMM HSMM Skeletal Muscle 
Myoblasts Cells 

E121 Roadmap MUS.HSMMT HSMM cell derived Skeletal 
Muscle Myotubes Cells 

E122 Roadmap VAS.HUVEC HUVEC Umbilical Vein 
Endothelial Primary Cells 

E124 Roadmap BLD.CD14.MONO Monocytes-CD14+ RO01746 
Primary Cells 

E125 Roadmap BRN.NHA NH-A Astrocytes Primary Cells 

E126 Roadmap SKIN.NHDFAD NHDF-Ad Adult Dermal 
Fibroblast Primary Cells 

E127 Roadmap SKIN.NHEK NHEK-Epidermal Keratinocyte 
Primary Cells 

E128 Roadmap LNG.NHLF NHLF Lung Fibroblast Primary 
Cells 

E129 Roadmap BONE.OSTEO Osteoblast Primary Cells 

E114 Roadmap LNG.A549.ETOH002.
CNCR 

A549 EtOH 0.02pct Lung 
Carcinoma Cell Line 
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Table S3.1. Collected ChIP-seq samples from ROADMAP and ENCODE, continued 
Data ID Source Tissue/SampleType Details 

E115 Roadmap BLD.DND41.CNCR Dnd41 TCell Leukemia Cell Line 

E117 Roadmap CRVX.HELAS3.CNCR HeLa-S3 Cervical Carcinoma 
Cell Line 

E118 Roadmap LIV.HEPG2.CNCR HepG2 Hepatocellular 
Carcinoma Cell Line 

E123 Roadmap BLD.K562.CNCR K562 Leukemia Cells 
ENCFF409EFR Encode SK-N-MC neuroblastoma 
ENCFF575WAS Encode HCT116 colon 
ENCFF209VEY Encode PC-3 prostatic 
ENCFF831KZM Encode MCF-7 Breast 
ENCFF787ITI Encode OCI-LY3 non-Hodgkin.lymphoma 

ENCFF161GCD Encode ACC112 Adenoid.cystic.carcinoma 
ENCFF468GKP Encode SK-N-SH neuroblastoma 
ENCFF137AXJ Encode VCaP prostate 
ENCFF629BRY Encode Panc1 pancreatic 
ENCFF159JKE Encode C4-2B HPV.cervical 
ENCFF623PRE Encode 22Rv1 prostate 
ENCFF279PSG Encode OCI-LY1 non-Hodgkin.lymphoma 
ENCFF262PTI Encode A673 rhabdomyosarcoma 
ENCFF152UAP Encode PC-9 lung 
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Table S3.2. Upregulated gene expressions involved in enhancer-promoter interactions 
occurred in the same RAM in K562 but in different GM12878 RAMs. 

Genes log2(GM12878) log2(K562) Difference 
log2(K562/GM12878) Foldchange 

PTGER3 0.01 1.77 1.76 3.38 

CLTCL1 0.05 2.65 2.60 6.07 

DGCR2 2.56 4.90 2.34 5.06 

HDAC6 1.96 4.27 2.31 4.95 

PLP2 5.57 7.04 1.47 2.77 

RHAG 0.03 9.71 9.68 820.61 

PFKFB4 5.10 5.14 0.04 1.03 

HPCAL1 1.93 3.65 1.72 3.29 

ARL4A 0.09 6.03 5.93 61.15 

GIPC1 2.81 4.37 1.56 2.94 

VGF 0.00 0.24 0.24 1.18 

APIP 2.74 3.62 0.88 1.84 

RAB31 0.55 5.65 5.10 34.29 

HTR1F 0.01 1.47 1.46 2.75 

MEX3B 1.09 2.85 1.76 3.39 

PRELID2 0.13 2.56 2.42 5.37 

MITF 0.48 2.53 2.05 4.14 
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Table S3.3. Upregulated gene expressions involved in enhancer-promoter interactions 
occurred in the same RAM in K562 but in different HEPG2 RAMs. 

Genes log2(HEPG2) log2(K562) Difference 
log2(K562/HEPG2) Foldchange 

ZNF582 0.63 1.34 0.71 1.64 

PTGER3 0.01 1.77 1.76 3.39 

CLTCL1 2.30 2.65 0.36 1.28 

PTPRC 0.00 3.00 3.00 7.99 

RNF24 3.26 4.82 1.56 2.95 

CTSC 5.01 5.10 0.10 1.07 

KAT2B 1.29 3.23 1.94 3.85 

TPST2 4.07 6.17 2.09 4.27 

CCDC74A 0.06 3.20 3.14 8.83 

ZEB2 0.01 4.35 4.34 20.20 

SNX18 1.59 2.32 0.74 1.66 

HTR1F 0.00 1.47 1.47 2.76 

MEX3B 0.68 2.85 2.17 4.51 

ZNF431 1.80 4.12 2.32 4.98 

CD47 0.86 3.75 2.89 7.40 
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Table S3.4. DEGs annotated with Gene Ontology Molecular Function of “Calcium Ion 
Binding”. 

Gene log2(Mean of Cancer) log2(Mean of Normal) log2(Cancer/Normal) Pvalue 

AIF1L 7.86 25.48 -1.70 1.40E-02 

CABP1 0.16 4.40 -4.79 6.66E-06 

CDH1 49.64 24.00 1.05 4.46E-03 

CDH3 16.24 5.80 1.49 9.34E-03 

DGKB 0.23 1.16 -2.34 1.62E-03 

FAT3 0.31 0.56 -0.86 9.49E-03 

HMCN2 0.24 1.43 -2.54 4.03E-03 

ITSN1 1.64 2.70 -0.72 4.11E-04 

LRP1B 0.20 0.57 -1.49 1.45E-03 

MAN1C1 2.14 3.60 -0.75 7.23E-04 

MASP1 1.31 3.35 -1.36 5.79E-05 

MCTP1 0.64 1.39 -1.12 4.30E-02 

MYL3 0.41 8.36 -4.33 2.63E-09 

NCS1 7.01 37.53 -2.42 2.37E-03 

NDUFAB1 30.63 22.33 0.46 2.93E-05 

PCDHA10 0.06 0.17 -1.39 1.09E-02 

PCDHA2 0.03 0.08 -1.18 3.57E-02 

PCDHA3 0.06 0.14 -1.25 3.82E-03 

PCDHA6 0.01 0.10 -2.69 2.64E-03 

RYR2 0.13 1.73 -3.78 7.88E-07 

SELL 10.52 17.24 -0.71 1.12E-04 

SVEP1 0.84 3.08 -1.87 2.39E-04 

SYT2 0.07 1.16 -4.12 9.57E-07 

VSNL1 2.05 26.51 -3.69 3.34E-02 

WDR49 0.10 0.35 -1.86 2.87E-02 
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Chapter 4. Concluding Remarks 

Using the scale-free network on the 3D contacts data from Hi-C, we have identified 

a few non-coding DNA regions that could form many 3D contacts with other regions as 

“hubs”. The following CRISPR-Cas9 experiment, Hi-C, and the single-cell RNA-seq 

analysis have further characterized the impacts on the global 3D chromatin structures 

and cell fitness upon the hub loci deletion, particularly for the hubs without epigenetic 

signals. Moreover, we modeled the enhancer-promoter interactions by a small-world 

network, and then identified dozens of active enhancers and promoters harboring many 

3D contacts as “hotspots”. Upon the hotspot deletion by the CRISPR-Cas9 pgRNA 

genome editing system, broad 3D chromatin organization alterations beyond enhancer-

promoter interactions and gene expression changes were observed from the Hi-C and 

the single-cell RNAseq analysis. Both the hubs and hotspots are strongly associated with 

genetic variants in cancer cells, which provide new insights into pathology. Although there 

is a long way to understand the underlying mechanisms of the hubs and hotspots 

contributing to maintaining the 3D chromatin organization, this is the first time to illuminate 

the structural importance of the regulatory elements and even non-coding regions without 

epigenetic signals in 3D genome architecture.  

 

Furthermore, the genome-wide regulation associated modules (“RAMs”) have 

been identified by investigating epigenetic histone marks across cell types. Pieces of 

evidence collected from histone modifications, enhancer-promoter interactions, 

extrachromosomal DNAs (ecDNAs), Hi-C data and LAD signals supported that RAMs are 

spatial modules and better aligned with the chromatin function. The characterizations of 
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RAMs tell apart them from compartments and TADs. Compared to the TADs, RAMs are 

insensitive to loss of cohesin and are predicted to have a more significant impact on 

chromatin organization through deep learning models. In addition, the cancer somatic 

indels are highly enriched in RAM boundaries, which highlights the importance of RAMs 

in human diseases. Although the mechanisms of RAM formation are still elusive, the 

RAMs provide opportunities to better understand the relationship between the structural 

and functional modularity of the genome.  

 

Together, this dissertation provides new insights into the 3D chromatin 

organization and function. Our findings navigate future efforts in deciphering the 

mysteries of the 3D genome.  

 

 

 

 

 




