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Mammalian development including embryogenesis requires coordinated gene expression

in order to control each cells eventual fate, a complex and finely tuned process driven by

epigenetic information. Specifically, these developmental cues are interpreted by cells and lead

to remodeling of the chromatin landscape, including changes in accessibility, conformation,

and modifications to the chromatin. Thus, the state and accessibility of chromatin serve as key

aspects of the cells epigenome, modulating and controlling the expression and function of the

underlying genomic sequence. Understanding these developmental regulatory networks are

of crucial importance as the dysregulation of developmental pathways has been implicated in

xv



numerous disease phenotypes. To address this unmet scientific need, we systematically profiled

a comprehensive array of mouse tissues spanning twelve tissues, over seven developmental

time points (from 10.5 days after conception until birth), using histone ChIP-seq and ATAC-

seq. We used these data to produce a catalog of putative cis-regulatory elements defined

by chromatin accessibility (developmental regions of Tn5-accessible chromatin or d-TACs)

and characterized their function with chromatin state annotations derived from the histone

modification profiles. Within these regions of heightened accessibility, we analyzed the tissue-

specific enrichments for human disease-associated sequence variation. Additionally, we studied

the developmental dynamics of open chromatin regions over mouse embryogenesis, evaluating

the tissue-specific temporal dynamic patterns as well as the relationship between chromatin state

and accessibility. Finally, we applied novel machine learning techniques to elucidate the biology

behind gene regulation, building a framework for comparing datasets using sequence-based

models. Taken as a whole, this thesis provides a comprehensive study of and cutting-edge

methods for understanding mouse fetal chromatin dynamics.

xvi



Chapter 1

Introduction

The central dogma of biology holds that organisms are defined the relationship between

three types of molecules: DNA, RNA, and proteins. The genome, unique to every individual,

contains the genes whose sequences are transcribed into RNA transcripts, which are then in turn

read and translated into the proteins responsible for every cellular function. Though elegant in its

simplicity, the central dogma is unfortunately, incomplete. Most critically, it fails to address the

question of how those critical genes are selected for transcription and under what contexts they

are active, be it developmental cues as an organism matures or environmental ones in response to

external stresses. Sandwiched between the DNA and RNA layers of the central dogma is in fact

a fourth layer, the epigenome, which can be defined as the chemical changes and modifications

of the genome that control its regulation without modifying the genetic sequence itself.

Mammalian development including embryogenesis requires coordinated gene expres-

sion in order to control each cells eventual fate, a complex and finely tuned process driven by

epigenetic information. Specifically, these developmental cues are interpreted by cells and lead

to remodeling of the chromatin landscape, including changes in accessibility, conformation,

and modifications to the chromatin. Epigenetic information comes in many forms includ-

ing post-translational modifications of histone proteins and the positioning of nucleosomes[1].

Posttranslational histone modifications can influence gene expression by directly modulating

DNA-histone interactions, or serving as binding sites for cognate reader proteins that function

1
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downstream to enhance or repress transcription[2]. The importance of histone modifications is

further demonstrated by the fact that mutations in genes encoding histones or histone modifying

enzymes can lead to a variety of diseases including cancer, neurodevelopmental disorders, and

congenital malformations[3][4]. Histone modifications are also valuable tools for genome anno-

tation, because the modifications present at a given genome region often reflect the activity of the

underlying sequence. While the profiles of individual histone modifications can be informative,

the most comprehensive functional annotations are achieved when multiple histone modifications

are integrated into a unified set of chromatin states based on combinatorial patterns[5][6]. Thus,

the state and accessibility of chromatin serve as key aspects of the cells epigenome, modulating

and controlling the expression and function of the underlying genomic sequence by silencing or

enabling key regulatory elements. Ultimately, the epigenetic state (and remodeling thereof) of a

given cell is responsible for the cells cellular context, or its outward phenotype.

In the case of development, these processes are responsible for the differentiation and

emergence of new cell types and populations within heterogenous tissues, as the totipotent

zygote eventually matures into a complex, diverse multicellular organism. In his famous 1957

book, The Strategy of Genes, philosopher and embryologist Conrad Hal Waddington famously

proposed a topographical analogy for this developmental epigenetic landscape, imagining the

process of differentiation as akin to a marble sliding down a landscape of branching troughs that

represent cell lineages; his theories laid the foundation for epigenetic theory and evolutionary

developmental biology (Figure 1.1)[7]. Less well known but no less impactful was a companion

figure to the aforementioned landscape, showing the underside of this hypothetical topography

(Figure 1.2). Waddington imagined that the troughs and contours of the landscape were pulled

down by strings to anchor points, the combinations of which served as defining features for each

cell lineage. Just as the landscapes topology represents the processes of development, these

anchors are representative of the gene regulatory network behind said processes, namely the

transcription factors that bind accessible sequences and the chromatin state enabling this to occur.

Understanding this complex biological landscape and the regulatory pathways driving

3



them are of critical scientific importance given the implications in human disease biology.

Dysregulation of the epigenetics in a cell can lead to significant and wide-ranging alterations to

normal gene regulation and lead to a variety of severe disorders including developmental defects,

neurological disorders, and cancer. These regulatory programs are orchestrated, at least in part,

by cis regulatory elements (cREs) that direct the expression of genes in response to specific

developmental and environmental cues[6][8]. Beyond their normal role in development, cREs

are important to human health because mutations in cREs can cause or contribute to a variety of

diseases. Moreover, SNPs associated with disease by Genome-Wide Association Studies (GWAS)

are highly enriched in putative cREs[10]. Active cREs have characteristic patterns of histone

modifications including H3K4me3 and H3K27ac which mark chromatin around active promoters,

and H3K4me1 and H3K27ac which mark chromatin around active enhancers[11][12][13]. Active

cREs are also characterized by the presence of open or accessible chromatin that is relatively

devoid of packaging nucleosome particles. This loose packaging makes the underlying DNA

sequence more accessible to transcription factors, which can function in turn to recruit co-factors

and stimulate transcriptional activity. Importantly, the level of accessibility at cREs can be

modulated by chromatin remodeling factors and so-called pioneer transcription factors[14],

highlighting the importance of chromatin accessibility in gene regulation.

There are several genomic tools available to the field for probing the mammalian epige-

netic landscape. In addition to chromatin immunoprecipitation sequencing (ChIP-seq), which

allows us to profile the functional histone modifications associated with various locations in

specific cellular contexts, recent advances have enabled researchers to directly evaluate the

accessible chromatin landscape using DNase I hypersensitive sites sequencing (DNase-seq) and

the Assay for Transposase-Accessible Chromatin using sequencing (ATAC-seq). Indeed, these

tools have been leveraged by previous researchers in several efforts to build catalogs and atlases

of putative cREs[15][16][17][18]; however, there remains a large unmet need in the field for a

catalog that comprehensively profiles the entire process of mammalian development in a diverse

variety of cellular contexts (Figure 1.3). Most resources to date focus primarily on one of two

4



Figure 1.2. Waddington envisioned strings pulling down the landscape to create fate-determining
valleys. These tethers are akin to transcription factors, and the combinations of their binding
control a cells regulatory program.
Adapted from “The Strategy of Genes,“ by CH Waddington, 1957, George Allen & Unwin.
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Figure 1.3. The majority of extant genomics data bases either focus on profiling the temporal
(developmental) dimension or the cellular phenotype dimension, resulting in a dearth of resources
that sample in both dimensions.

axes: either assessing a range of tissues or cell types at a single temporal stage (e.g. adult) or

providing a temporal dataset but in a single, well-defined lineage (e.g. blood lineages). The

availability of a resource that profiles samples in both dimensions would enable an unprecedented

view of the dynamic chromatin landscape during development, helping us to better understand

the way chromatin changes and affects gene regulation for different phenotypes.

In this thesis, we present a study in which we address this scientific need, profiling not

two but in fact three dimensions of data: tissues, developmental times, and genomic assay. In

this study, we profile both chromatin state and accessibility across a large panel of mouse fetal

tissues and developmental stages. More specifically, we used chromatin Immunoprecipitation

sequencing (ChIP-seq) to profile a set of eight histone modifications which in combination

can distinguish multiple types of functional elements and activity levels. To assay chromatin

accessibility, we used the Assay for Transposase-Accessible Chromatin using Sequencing

6



(ATAC-seq)[19]. Chromatin accessibility can also be mapped by DNase-seq, which has been

integral to the identification of millions of candidate CREs in mammalian genomes[16][20].

However, ATAC-seq has emerged as a powerful alternative method for mapping open chromatin

accessibility, offering a more streamlined workflow because fragmentation and incorporation of

sequencing adapters are carried out in a single step by the Tn5 transposase. Furthermore, we

apply cutting-edge machine learning techniques to better understand the epigenetic basis behind

gene regulation using a sequence-based neural network strategy, providing a novel framework

for comparing similarity between diverse samples regardless of genomic origin.

The resulting ATAC-seq maps of chromatin accessibility and neural network models

provide deep insight into the genomic regions and processes that drive mouse fetal development.

Highlights of our findings include:

• We identified more than 500,000 regions marked by accessible chromatin during mouse

fetal developmental, including approximately 140,000 with dynamic temporal activity in

at least one tissue.

• Human orthologs of accessible chromatin regions in fetal mouse tissues are enriched

for human disease-associated sequence variation, with specific diseases showing tissue-

restricted patterns of enrichment.

• Temporal changes in chromatin accessibility often coincide with changes in enhancer

chromatin states, and tend to precede changes in nearby H3K27ac levels.

• We predict 21,142 enhancer-promoter interactions by measuring the correlation between

enhancer-associated chromatin signals and gene expression across tissues-stages, and find

enrichment for GWAS SNPs within enhancers predicted to regulate Mendelian disease

genes.

• Neural networks produce highly predictive models for the accessible chromatin landscape

in individual cell types and samples.
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• Models trained on a combination known motifs and de novo motifs outperform those

trained one just one or the other.

• Predictions made on a uniform set of sequences derived from pooled open chromatin

regions can be projected onto a 2D space, enabling comparisons between diverse samples

in terms of their genomic vocabulary and grammar.
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Chapter 2

Systematic mapping of accessible chro-
matin during mouse development

2.1 Abstract

Mammalian development, including embryogenesis, requires coordinated gene expres-

sion in order to control each cells eventual fate, a complex and finely tuned process driven by

epigenetic information. Specifically, these developmental cues are interpreted by cells and lead

to remodeling of the chromatin landscape, including changes in accessibility, conformation, and

modifications to the chromatin. To understand these processes, we systematically profiled a

comprehensive array of mouse tissues using histone ChIP-seq and ATAC- seq. We used these

data to produce a catalog of putative cis-regulatory elements and analyzed the tissue- specific

enrichments for human disease-associated sequence variation.

2.2 Introduction

Traditionally, cis regulatory sequences are defined by genetic and comparative genomics,

which can be limited in throughput and cellular specificity. In recent years, the development

of high throughput sequencing methods to detect chromatin features and transcription factor

binding sites has greatly accelerated genome-wide mapping of cis elements in diverse species.

Among the various chromatin features, one of the commonly used is chromatin accessibility,
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which could be monitored using DNase-I treatment followed by high throughput sequencing

(DNase-seq). This approach has led to identification of millions of candidate cis regulatory

sequences in the mammalian genomes of human, mouse and a number of other species. More

recently, the Assay for Transposase accessible chromatin followed by sequencing (ATAC-seq)

has been demonstrated to detect chromatin accessibility from as few as several hundred cells. For

example, Wu et al. use this method to investigate the chromatin landscape in oocytes, zygotes

and early embryos[22].

Variations in cis-regulatory elements among the human population have been linked to

a growing number of common and rare diseases , presumably through dysregulation of gene

expression[10]. Thus, identification of the cis-regulatory elements in a genome is of paramount

importance to the study of developmental biology, evolution, and pathogenesis of human disease.

Despite the importance of chromatin states and accessibility in determining the functional

output of the genome, a comprehensive survey of chromatin dynamics during mammalian fetal

development has been lacking, except for very early stages of embryogenesis[21][22]. The

mouse is an ideal system to study the developmental epigenome because it is the most widely

used animal model in biomedical research, and enables experimental access to timed stages

of development. Indeed, the biology of mice is largely representative of placental mammals

including humans.

Previous experiments investigating open chromatin in the mouse genome have been

focused largely on adult tissues and cell types, with only a handful of embryonic tissues profiled.

While mouse models theoretically allow access to tissues at all developmental stages, studying

embryonic development has been constrained by the limited quantities of tissue samples that

can be obtained from early embryonic stages. To overcome this limitation, we have developed

a modified protocol of ATAC-seq that could be applied to flash frozen primary mouse tissues

at small quantities, and used this method to generate maps of open chromatin in up to 12

embryonic tissues across seven stages of mouse fetal development from 11.5 days post-conception

(e11.5) to birth (p0). Integrative analysis of this dataset along with other DNA methylation,

10



chromatin modifications and transcriptome data from the same tissues allowed us to annotate

the dynamic chromatin state of over half a million cis-regulatory elements in the mouse genome

during embryogenesis, providing insights into the mammalian gene regulatory programs and the

molecular basis of human diseases.

2.3 Results

2.3.1 Accessible chromatin profiled across a diverse cross-section of
murine tissues and developmental stages

We harvested mouse tissues at closely spaced intervals from 11.5 days post conception

(E11.5) until birth. At each stage, we dissected a diverse panel of tissues from multiple litters of

C57BL/6N embryos and performed two replicates of ATAC-seq, and two replicates of ChIP-seq

for each of eight histone modifications (H3K4me1, H3K4me2, H3Kme3, H3K27ac, H3K27me3,

H3K9ac, H3K9me3, H3K36me3) (Figure 2.1a). These modifications were chosen to distinguish

between different types of functional elements (e.g. promoters, enhancers, gene bodies), and

activity levels (e.g. active, poised, repressed)[23]. We also collected 6 tissues at E10.5, but it was

not feasible at this stage to harvest enough tissue for standard ChIP-seq, so we used a modified

micro-ChIP-seq procedure designed to work on much smaller numbers of cells and restricted our

scope to only six histone modifications.

The complete ChIP-seq data series includes more than 66 billion sequencing reads from

564 ChIP-seq experiments, each consisting of two biological replicates derived from different

embryo pools (N=1,128 replicates total). The ATAC-seq data series includes more than seven

billion sequencing reads from 66 experiments (N=132 replicates total). All ChIP-seq and ATAC-

seq datasets were processed with a uniform pipeline, and subject to high quality standards.

Whole genome bisulfite sequencing and RNA-seq were also performed on these same tissue

samples by other groups in the ENCODE consortium. These data are presented in detail in

companion manuscripts[25], but we make select use of these complimentary datasets here to
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Figure 2.1. Overview of tissues and stages profiled. The ENCODE Consortium effort of which
this thesis was a contributing component produced a comprehensive epigenomics resource
featuring three dimensions of data: profiling up to 12 mouse embryonic tissues, over up to 8
developmental stages, and using genomics assays spanning 8 histone modifications, chromatin
accessibility, the transcriptome, and the methylome.
Adapted with permission from “An atlas of dynamic chromatin landscapes in the developing
mouse fetus,“ by DU Gorkin, I Barozzi, Y Zhao, Y Zhang, H Huang et al, 2019, Nature.[24]

perform integrative analysis.

A key novelty of the data produced for this resource is the profiling of a developmental

(temporal) dimension in addition to the diversity of tissue samples. Crucially, these data are

able to capture the biological differences inherent in each samples specific cellular context,

both in terms of identifying tissue-specific peaks and patterns in the signal tracks, as well as

temporal dynamics. This ability to discriminate unique sample-specific biology holds true for

both the ChIP-seq datasets profiling histone modifications as well as the ATAC-seq for chromatin

accessibility patterns (Figure 2.2).
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2.3.2 High-quality, reproducible datasets meet ENCODE Consortium
standards

For the mouse ENCODE Consortiums third phase, we developed guidelines for stringent

ATAC-seq data quality standards. Specifically, we required that each tissue and developmental

stage be sequenced to a depth of at least 20 million usable reads (defined as sufficiently high-

quality, non-duplicated, and non-mitochondrial) and meet a threshold of at least 10% of reads

being represented in transcription start site regions (e.g. fraction of reads overlapping TSS, or

FROT) (Figure 2.3). As compared to several reference datasets, the ATAC-seq generated compare

favorably, showing sufficient enrichment of TSS-covering reads while being comparable to the

Immunological Genome Project data series[27] and DNase-seq generated by our collaborators in

the Stam Lab in the same ENCODE effort. The FROT score for our ATAC-seq data series also

exceeds that of the corresponding H3K27ac histone ChIP-seq data.

In addition to satisfying sequencing data quality controls, we required that our data be

highly reproducible between biological replicates. Evaluating both the Pearson and Spearman

correlations between replicates for each sample across the entire genome reveals a strong

similarity between them (Figure 2.4). To assess the overall relationship between all of the

samples and their similarity, we performed dimensionality reduction using multi-dimensional

scaling (MDS) over read counts in replicated peak calls throughout the genome and projected

the samples onto 2D and 3D spaces (Figure 2.5a-b).

2.3.3 Identification of developmental regions of transposase-accessible
chromatin (d-TACs)

To build a catalog of candidate cREs contributing to mouse fetal development we merged

ATAC-seq peaks across tissue-stages to identify a non-overlapping set of 523,159 regions,

which we refer to hereafter as developmental regions of transposase accessible chromatin (d-

TACs) (Figure 3a). Comparing chromatin state annotations to our catalog of d-TACs, we find

that d-TACs are enriched in promoter and enhancer chromatin states, but generally depleted
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in chromatin states characteristic of gene bodies, heterochromatin, and regions showing no

chromatin signature (Figure 3b). Despite the enrichment of d-TACs in promoter states, the vast

majority of d-TACs are distal to annotated Transcription Start Sites (TSS), representing putative

enhancers and other TSS-distal elements (473,332/523,159, 90.48% of d-TACs >1kb from TSS).

2.3.4 Predictions of accessible regions supported by orthogonal datasets

Comparison with the VISTA database of experimentally validated enhancers[28] shows

that the d-TAC catalog has high sensitivity for identifying enhancers: 75.6-93.6% of sequences

showing in vivo enhancer activity by reporter assay are d-TACs in the corresponding tissue at

E11.5 (the stage at which embryos are collected in the VISTA reporter assays) (Figure 2.7b). The

catalog has an even higher sensitivity for active promoters, as 87.6-95.1% of active promoters
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Table 2.2. Number of d-TACs identified for each mouse embryonic tissue, categorized as
TSS-distal or TSS-proximal based on distance to GENCODE annotated TSS sites.

TSS-distal TSS-proximal Total

Forebrain 123,622 23,169 146,791
Midbrain 96,833 22,892 119,725
Hindbrain 114,409 23,518 137,927
Neural Tube 76,827 20,871 97,698
Limb 71,047 19,628 90,675
Craniofacial 72,707 20,775 93,482
Heart 93,172 23,107 116,279
Liver 87,771 23,652 111,423
Intestine 93,574 24,344 117,918
Kidney 86,642 22,727 109,369
Lung 113,120 24,609 137,729
Stomach 80,255 22,400 102,655

(i.e. TSS with transcripts present in available RNA-seq data from the corresponding tissue stage)

are detected as d-TACs (Figure 2.7a). While these data suggest a high sensitivity of ATAC-seq in

uncovering regulatory sequences in our samples, estimation of the specificity is more difficult

due to the lack of a true negative dataset. However, using annotated promoters that lack DNase

I hypersensitivity in matched samples as a negative set, we find that <5% of these regions are

detected as d-TACs (1.7-4.5%), which suggests a low false positive rate.

2.3.5 Functional characterization of d-TAC catalog

Using the accessible regions derived from ATAC-seq, we were able to identify putative

cis-regulatory elements cataloged in our map of developmental d-TACs; however, without further

analysis, it is not immediately clear what types of elements are represented or what regulatory

function is performed by these elements. To understand the constitution of our d-TAC catalog,

we performed integrative analysis using the orthogonal ChIP-seq data to functionally characterize

these developmentally accessible loci. Specifically, to leverage the chromatin state informa-

tion captured by combinatorial patterns of histone modifications we applied ChromHMM[26],

deriving a 15-state model that shows near-perfect consistency between biological replicates
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and general agreement with previously published models. We segmented the genome for each

tissue-stage with the full complement of eight histone modifications (N=66), excluding E10.5 to

ensure a consistent approach. Each state was assigned a descriptive label based on similarity

to known chromatin signatures[4][23][29], and genomic distribution. The resulting chromatin

state maps allow for visualization of multiple functional predictions across a range of tissues and

stages (Figure 2.8).

The 15 chromatin states fit into four broad functional classes: promoter, enhancer, tran-

scriptional, and heterochromatin states. As expected, promoter states show the highest average

levels of chromatin accessibility, followed by enhancer, transcriptional, and heterochromatin

(Figure 2.8a). In total, we find that 33.4% of the genome shows a reproducible chromatin

signature characteristic of one of these four functional classes in at least one tissue-stage. In this

calculation we required that a region be called in the same state in both biological replicates

and excluded states 15 (no signal) and 11 (permissive) that cover large swaths of the genome

(Figure 2.8c). This does not necessarily imply that 33.4% of the genome sequence is functional

during development, but rather that 33.4% of the genome sequence is mappable and packaged

in chromatin with a reproducible signature in at least one tissue-stage profiled here. These

chromatin signatures often reflect transcriptional and/or regulatory activity, but the underlying

sequences may not contribute to fitness.

Comparing chromatin state annotations to our catalog of d-TACs, we find that d-TACs are

enriched in promoter and enhancer chromatin states, but generally depleted in chromatin states

characteristic of gene bodies, heterochromatin, and regions showing no chromatin signature

(Figure 2.9).

Summary of characteristic enrichment patterns for histone modifications surveyed here.

Note that modifications are generally categorized as narrow or broad depending on the typical

breadth of enrichment. H3K9me3 is further distinguished from other broad marks because it

shows very few regions of enrichment in non-repetitive sequence in primary tissues and cells[30]

Metagene profiles were plotted with deeptools plotProfile[31], using data from E15.5 Heart
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Figure 2.9. Enrichment of accessible chromatin within regions segmented into different chro-
matin states. Chromatin state labels same as Figure 2.8.

(Figure 2.10).

2.3.6 Orthologous regions of d-TACs in the human genome exhibit
enrichment of GWAS traits

Catalogs of candidate cREs have proven to be valuable resources for the interpretation

of non-coding genetic variation linked to disease, because such variation is highly enriched in

regulatory sequence[32]. Thus, we sought to determine whether our catalog of mouse d-TACs

could be leveraged to provide insight into human complex disease, as many developmental

enhancers are believed to be conserved[33]. To this end, we used the liftover utility[34] to

identify human orthologs of our mouse d-TACs (we use the term ortholog here to indicate that a

24



-10Kb +10Kb
chromHMM 

region

0

1

2

3

4

5

ch
ro

m
at

in
 a

cc
es

si
bi

lit
y

Pr-B
Pr-W Pr-F
Pr-A

-10Kb +10Kb
chromHMM 

region

En-Sd
En-Sp
En-W

En-Pd
En-Pp

-10Kb +10Kb
chromHMM 

region

Tr-S Tr-I
Tr-P

-10Kb +10Kb
chromHMM 

region

Hc-P
Hc-H

Ns

Promoter
states

Enhancer
states

Transcriptional
states

Heterochromatin
states

Figure 2.10. Metagene plots of chromatin states centered on accessible peaks of e15.5 forebrain.
Adapted with permission from “An atlas of dynamic chromatin landscapes in the developing
mouse fetus,“ by DU Gorkin, I Barozzi, Y Zhao, Y Zhang, H Huang et al, 2019, Nature.

given pair of mouse and human sequences are derived from a common ancestral sequence, not

necessarily that the function of a mouse sequence is conserved in human). Of the total elements

in the mouse TAC catalog, 172,879 (36.6%) had orthologous sequences in the human genome.

We discovered a significant enrichment (P=2.38 x 10-100) of the (European) GWAS

loci within the lifted mouse ATAC sites as compared to the background loci (Figure 2.11, left).

To demonstrate the novel knowledge contributed by our mouse embryonic data, we intersected

the human d-TAC orthologs with a superset of regions from a combined data set found within

ENCODE or Roadmap DNAse I hypersensitivity sites for around a total of 350 cell types.

Approximately 89% (169,571/190,462) of the human-mappable orthologous sequences are also

annotated as regions of accessible chromatin in human cells[10][20], suggesting conserved

function. Though it is tempting to interpret the remaining, previously unannotated 11% of human

orthologs to be previously undiscovered – likely embryonic – human regulatory elements, we

must be cautious not to over-interpret their significance; the reason they were not previously

identified in human screens is just as likely to be that they do not actually have any conserved

or functional role in humans. Thus, to interrogate whether or not we identified putative human
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Figure 2.11. Enrichment of GWAS SNPs in human orthologs of d-TACs compared to back-
ground set of matched SNPs generated with SNPsnap[35] (p=2.84x10-100, hypergeometric).
Novel regions (right) are defined as those that to our knowledge have not been previously
described in catalogs of accessible chromatin regions in human cells (p=3.14x10-11, hypergeo-
metric).

regulatory elements of embryonic origin, we performed the same GWAS enrichment analysis

on this novel subset as the entire set of mappable human orthologs. For this subset of unique

regions, we also observed a significant enrichment (P=3.14 x 10-11) of GWAS loci (Figure 2.11,

right). This establishes that our resource generally captures novel information missed by current

accessible chromatin data. Again, though not all of these novel mapped sequences are guaranteed

to be functional in the human genome, the enrichment of functional variants in these loci suggests

that they do encompass some human elements with embryonic activity.

Next, we sought to show specific examples of GWAS traits that are enriched within these

lifted mouse developmental sites. We focused on enhancer sites because they are more likely to

have tissue-specific effects. For each tissue, we lifted over collapsed chromHMM enhancer states

26



(En-Sd, En-Sp, En-W) that were merged across timepoints. We then defined active enhancer

regions by overlapping enhancer regions with ATAC peaks. We tested for enrichment of human

traits and diseases within active enhancers with polyTest (Figure 2.12a).

We find that human phenotype-associated genetic variation reveals relationships between

specific phenotypes and particular developmental tissues and our results generally corroborate

what is known in the literature. We observed significant enrichments of brain-related traits

such as intelligence and sleep duration[37] as well as brain-related diseases such as biopolar

disorder[38], schizophrenia, and ADHD[39] within brain annotations[40][41]. We also found

significant enrichment of immune-related diseases such as rheumatoid arthritis[42] and primary

sclerosing cholangitis[43] within liver annotations, which makes sense given that the liver is the

primary site for mouse embryonic hematopoiesis. For Crohns Disease, ulcerative colitis, and IBD,

we found enrichment within liver, intestine, and stomach active enhancers, which is concordant

with the etiology of these diseases. For anthropometric traits related to development, we observe

wide-ranging tissue enrichments[44]. Overall, we demonstrate how this unique resource can be

used to break down genetic association information using tissue-specific regulatory sites.

We note that the ATAC-seq data generated here comes from heterogeneous tissue sam-

ples. However, our group recently published single-nucleus ATAC-seq (snATAC-seq) of mouse

forebrain[45], which can further resolve chromatin accessibility profiles for distinct cell types

within a complex tissue. Re-analyzing that data here, we detected enrichment of phenotype-

associated genetic variation within regulatory sequence in specific forebrain cell types (Fig-

ure 2.12b). The enrichment of variation associated with late onset Alzheimer’s disease within

microglia regulatory sequence is particularly striking, and agrees with a growing body of litera-

ture linking microglia in the pathophysiology of Alzheimer’s disease[46].
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Figure 2.12. a. Enrichment of GWAS signal for complex traits and disease (y axis) within human
orthologs of TSS-distal d-TACs from specific tissues (x axis) with polyTest[36]. Enrichment
values plotted are signed -log10(p-values) which are z-score normalized within studies. b.
Enrichment of GWAS signal for specific phenotypes (y axis) within TSS-distal accessible
chromatin regions in specific cell types within mouse forebrain via scATAC-seq[45]. EX =
Excitatory neurons, IN = Inhibitory neurons, AC = Astrocytes, OC = Oligodendrocyte, MG =
Microglia.
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2.3.7 Correlation-based network of d-TACs identifies potentially co-
accessible regions

One application of an expansive map of cREs is the ability to infer potential associations

and interactions based on correlations. Specifically, by using the read counts as a measure of

degree of chromatin accessibility in each sample, we can build a correlative network of putative

interactions across the catalog of d-TACs. We conclude that this map has some value as a

potential map of enhancers to promoters (or enhancer to enhancer), since we know there is 3D

conformation interaction where regions come into contact, so accessibility serves as an important

proxy metric.

Constraining within embryonic TADs, we performed pairwise Pearson correlations

between every potential pair of interacting d-TACs and took the ones with an r >= 0.7 to be a

highly correlated interacting pair, resulting in a map of 2,700,062 total correlations (Figure 2.13).

To assess the relationship between genomic distance and correlation, we plotted this and see that

there is a distance decay, describing it.

We also observe that d-TACs close to each other in linear distance on a chromosome are

more likely to have correlated activity across tissue-stages. These correlations are higher for

elements in the same Topologically Associating Domain (TAD), providing further evidence of

regulatory coordination during development at the level of TADs[47][48] and that they serve as

a practical algorithmic constraint. A table of correlated d-TACs is provided in the supplemental

material of Gorkin et al, 2019[24].

2.4 Discussion

In summary, we present a survey of the chromatin landscape in the developing mouse

fetus that is unprecedented in its breadth. Our results describe a multi-tiered compendium of

functional annotations for the developmental mouse genome, yielding valuable insight into key

developmental processes and regulatory factors and expanding upon previous annotations. The
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resources detailed here include chromatin state maps for each tissue and stage, an extensive

catalog of development candidate cREs, a genome-wide map of predicted enhancer target genes,

and a collection of transgenic reporter assays that demonstrates a strong relationship between

H3K27ac signal and likelihood of validation. Due to the uniquely critical role of the mouse as a

model system in biomedical research, we believe that the tools and insights developed here will

be a valuable resource to the biomedical research community.

Several key highlights of this chapter are listed below:

• Generated a comprehensive catalog of developmentally accessible chromatin in mouse.

• Developed standards and methods for processing and analyzing ATAC-seq data.

• Performed integrative, multiomics analysis to characterize the function of these regions.

• Explored the application of mouse developmental data for studying human disease.

30



2.5 Methods

2.5.1 Data collection

All animal work was reviewed and approved by the Lawrence Berkeley National Labora-

tory Animal Welfare and Research Committee. Tissue collection for all developmental stages

was performed using C57BL/6N strain Mus musculus animals. For E14.5 and P0, breeding

animals were purchased from both Charles River Laboratories (C57BL/6NCrl strain) and Taconic

Biosciences (C57BL/6NTac strain). For all remaining developmental stages, breeding animals

were purchased exclusively from Charles River Laboratories (C57BL/6NCrl strain). Wild-type

male and female mice were mated using a standard timed breeding strategy. Embryos and

P0 pups were collected for dissection using approved institutional protocols. Embryos were

excluded if they were not the expected developmental stage. To avoid sample degradation, only

one embryonic litter or p0 pup was processed at a time, and tissue was kept ice cold during

dissection. Collection tubes for each tissue type were placed in a dry ice ethanol bath so that

tissue samples could be flash frozen immediately upon dissection. Tissue from multiple embryos

was pooled together in the same collection tube, and at least two separate collection tubes were

collected for each tissue-stage for biological replication. Tissue was stored in a -80oC freezer

or on dry ice until further processing. A step-by-step protocol for tissue collection, including

detailed information about how embryonic stage was determined, can be found on the EN-

CODE Project website at: https://www.encodeproject.org/documents/631aa21c-8e48-467e-8cac-

d40c875b3913/@@download/attachment/StandardTissueExcisionProtoco 02132017.pdf.

2.5.2 Data generation protocol

Our full ATAC-seq protocol is available via the ENCODE data portal here: https://www.e-

ncodeproject.org/documents/4a2fc974-f021-4f85-ba7a-bd401fe682d1/@@download/attachme-

nt/RenLab ATACseq protocol 20170130.pdf. We required a minimum of 20 million usable
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ATAC-seq read pairs per dataset (see methods), and a minimum Fraction of Read Overlapping

TSS (FROT) of 0.1. We use FROT as a measure of signal-to-noise ratio in ATAC-seq datasets,

because TSS are widely marked by open chromatin, even in tissues where the gene is not

expressed. We calculate FROT for each library as the number of reads mapping within 1kb of

a GENCODE v4 TSS[49], divided by the total number of usable reads. Our ATAC-seq data

is highly reproducible between biological replicates of the same tissue stage as measured by

Pearson and Spearman correlation. In addition, multidimensional scaling analysis of ATAC-seq

enrichment across identified peaks confirms that the samples tend to cluster primarily by tissue

types and then by developmental stage.

2.5.3 Data processing pipeline

ATAC-seq data were analyzed using a standardized software pipeline implemented by

the ENCODE Data Coordinating Center (DCC)[50] for the ENCODE Consortium to perform

quality-control analysis and read alignment. ATAC-seq reads were trimmed with a custom

adapter script and mapped to mm10 using bowtie version 2.2.6[51] and samtools version 1.2[52]

to eliminate PCR duplicates and mitochondrial reads. To center peaks on the Tn5 cut site, the

paired-end read ends were converted to single-ended read ends and the read end was shifted

4bp towards the center of the fragment to account for the Tn5 insertion position by moving the

read end towards the center of the fragment. MACS2 version 2.1.1.20160309[53] was used for

generating signal tracks and peak calling with the following parameters: nomodel shift 37 ext 73

pval 1e-2 -B SPMR call-summits. To produce a set of replicated ATAC-seq peaks for analysis,

the peak calling steps above were performed for each experiment on each pair of replicates

independently as well as a pooled set of the two replicates. The intersectBed tool from the

bedtools v2.27.1[54] suite was used to identify a set of replicated peaks which we define as the

subset of peaks called in the pooled set, were also present in both of the replicate peak call sets.
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Figure 2.14. Flowchart overview of ATAC-seq data processing pipeline

2.5.4 Uniform d-TAC catalog generation

To obtain a uniform d-TAC catalog that can enable the multi-dimensional analysis across

all 66 tissue-stages sampled over fetal development, the aforementioned replicated peak sets

for each sample were concatenated, merged, sorted, and then labeled using the mergeBed and

sortBed tools from the bedtools v2.27.1 suite. The intersectBed tool was used associate each

uniform d-TAC with the original tissue-stages where its constituent peaks were accessible. The

catalog was further categorized as being TSS distal or proximal based on a +/-1kb window

around GENCODE v4 TSS. A flowchart diagram of this strategy is shown in Figure 2.14.

2.5.5 Sensitivity and specificity

To evaluate the sensitivity of our peak calls in detecting potential cis-regulatory ele-

ments, we calculated the true positive rate, or fraction of peaks recovered, for every applicable

tissue-stage with respect to two reference sets using intersectBed from bedtools v2.27.1: (1)

actively-transcribed promoters, and (2) enhancers from the VISTA enhancer database (accessed

7/22/17) with activity at e11.5. Using matched RNA-seq downloaded from www.encodedcc.org,
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transcripts with counts of >=10 TPM were classified as actively transcribed for each tissue-stage.

Catalog specificity was assessed by calculating the true negative rate of each tissue-stages d-TACs

against the following two reference sets: (1) GENCODE v4 TSS that were not accessible to

matched DNase-seq from www.encodedcc.org, and (2) enhancers from the VISTA enhancer

database with no activity at e11.5. To further probe the tissue-specificity of the d-TAC catalog,

the overlap between d-TACs for each tissue at e11.5 and enhancers showing activity in the

matching tissue pattern was calculated, and compared to a background hit rate of enhancers with

activity in any pattern, the enrichment significance of which was computed using a binomial test.

2.5.6 Enrichment of GWAS catalog variants in human orthologs of
d-TACs

To enable comparison to GWAS of human phenotypes, we used liftOver with default set-

tings to convert d-TACs from mm10 to hg19 genomic coordinates. We then defined novel d-TACs

by removing those that overlapped DNaseI hypersensitivity sites from any cell line or tissue in two

published datasets[10][20], one of which included embryonic tissues. We obtained index variants

for all traits in the GWAS catalog (https://www.ebi.ac.uk/gwas/api/search/downloads/full) and

retained a unique set of variants that were identified as genome-wide significant (P<5x10-8) in

GWAS of European ancestry individuals. To obtain a background set of variants for enrichment

testing, we used the filtered index variants as the input for SNPsnap[35], which matches based

on (1) minor allele frequency, (2) distance to the nearest annotated gene, (3) gene density in the

surrounding region, and (4) number of SNPs in linkage disequilibrium (LD), with the following

parameters: European population, 10 matched SNPs, exclude HLA SNPs and input SNPs, and

report clumping. As GWAS index variants are not necessarily causal and can be in LD with the

true causal variant, we next defined loci for all index and matched background variants as all

SNPs in high LD (r**2 >0.8) with the variant in European 1000 Genomes[55] samples using

PLINK[56]. We then calculated the the number of GWAS and background loci with at least one

variant overlapping either all d-TACs or novel d-TACs and used a hypergeometric test to assess
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enrichment significance of GWAS loci compared to matched background loci.

To test for enrichment of complex phenotypes and diseases with publicly available

summary statistics, we first defined sets of human orthologs of enhancer d-TACs. For each

tissue, we collapsed all strong and weak enhancer chromatin states (En-Sd, En-Sp, En-W)

across timepoints and used liftOver to convert genomic coordinates from mm10 to hg19. We

then intersected orthologous enhancers with orthologous d-TACs to obtain a set of orthologous

enhancer d-TAC for each tissue. We collected summary statistics for 41 human traits and diseases,

converting odds ratios and confidence intervals to log odds ratios and standard errors for binary

traits and estimating allele frequencies from the European subset of 1000 Genomes[55] where

unavailable from the summary data. We used polyTest[36] to test for enrichment of variant

effects on each phenotype within orthologous enhancer d-TAC annotations with the parameters

–univariate –maf 0.05 –high-mem. We used hierarchical clustering on signed -log10(p-values)

for enrichment that were z-score normalized within studies to group similar phenotypes.

2.5.7 Correlative d-TAC interaction map

Using the ATAC-seq read counts measured for the entire d-TAC catalog across all 66

tissue-stages normalized to RPKM and log2-transformed with a small pseudocount, a correlative

map between d-TACs was generated for each chromosome by calculating the Pearson correlation

coefficient (PCC) for each pair of d-TACs. Of these correlations, only those with a PCC >=

0.7 and represented a pair of d-TACs whose coordinates lie within the same TAD, as defined by

mouse ES cells, were retained as a predicted interacting pair. The correlative map was binned

into 100kb bins for the purpose of visualizing the interactions as a heatmap.

To assess the nature of distance decay in correlations as a function of genomic distance,

we assigned each d-TAC to 10kb bins. For each bin A, the correlation was measured between its

d-TACs and those of bin B, at various distances away ranging from 10kb to 2Mb. The average of

these correlations across all chromosomes is plotted as a function of distance. Additionally, to

investigate the validity of using mESC TAD boundaries as a constraint for the correlative map,
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the mean correlation between d-TACs at various genomic distances were compared for pairs

located within the same TAD to that of those not sharing a TAD. At several genomic distances,

this mean correlation was computed for each chromosome, from which the significance of the

difference in correlation between intra-TAD and inter-TAD d-TAC pairs was calculated using

the Wilcoxon signed rank test.

2.5.8 Data access

Supplementary files associated with this study such as chromHMM calls, dynamic dTAC

and enhancers, and ATAC-seq peak calls are available at:

http://renlab.sdsc.edu/renlab website//download/encode3-mouse-histone-atac/.

The ATAC-seq pipeline for aligning reads and calling peaks is available at:

https://github.com/yuz207/atac-seq-pipeline.

Code notebooks for analysis performed in this thesis and generating figures can be found

at: https://github.com/yuz207/encode3-atac.
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Chapter 3

Integrative analysis of chromatin state and
accessibility dynamics

3.1 Abstract

Transcriptional regulation plays a central role in animal development. Dynamic interac-

tions between transcription factors and cis regulatory sequences drive spatiotemporal expression

of genes during development and dictate how an organism grows, adapts to environment, and

reproduces. Birth and turnover of cis-regulatory sequences, in addition to gains and losses of

activity of genes encoding transcriptional factors, play a major role in evolution of species.

Leveraging the temporal dimension in our embryonic mouse data series, we performed

integrative multiomics analysis to analyze the dynamics of developmentment, applying a combi-

nation of orthogonal datasets (histone ChIP-seq, transcriptomics, and chromatin accessibility

data). We profiled the changes that occur over the development in our datasets, capturing the

emergence and depletion of cell lineages as tissues develop and differentiate. With these findings,

we are able to identify key regulators for each tissue and help elucidate the gene regulatory

mechanisms during mammalian embryogenesis.

38



3.2 Introduction

The embryonic chromatin landscape is a complex, tightly regulated network of interacting

transcription factors and regulatory sequences, dysregulation of which plays a direct role in the

development of a variety of adult diseases and traits. Transcriptional regulation is at the heart

of these processes, driven by the activity of transcription factor proteins that bind to regulatory

elements in a sequence-specific manner[57]. Specifically, pioneering factors and so-called master

regulators bind to critical loci within the genome, directing the cells to differentiate down their

epigenetic landscapes to their final specified fates[58]. However, TFs do not act in a vacuum.

Pioneering factors recruit other TFs and the collaborative binding and coordination of these

diverse proteins – along with the vast number of putative enhancers, numbering in the hundreds

of thousands – are ultimately responsible for the ability of a totipotent cell to become such a

wide-range of lineages[59].

Naturally, the ability to dissect these dynamic processes over the time course of develop-

ment is an extremely powerful biological tool. Since many adult diseases have origins that can

be traced to early development and disruption in developmental regulatory processes can also

lead to congenital disorders, there is tremendous translational value in these types of analyses.

Unfortunately, in addition to the dearth of resources that profile the developmental time series,

the availability of human samples at crucial time points such as fetal development remain limited

for political and ethical reasons. Here, we present a number of computational strategies and

integrative multiomics methods to extract relevant insights related to the chromatin remodeling

during development by studying the differential changes that occur between sequential stages

and interrogating the relationship between these changing regions and their functional chromatin

state annotations.
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3.3 Results

3.3.1 Identification of temporally dynamic regions of accessible chro-
matin between sequential stages

To more directly assess the temporal dynamics of chromatin accessibility during develop-

ment we performed differential peak analysis, identifying d-TACs that show significant gain or

loss of accessibility between sequential stages within a tissue. We defined sequential log fold

change between sequential developmental stages for each active dT-AC in a given tissue type,

and quantify the gain or loss of transposase accessibility for each d-TAC at every transition point.

d-TACs exhibiting significant change in transposase accessibility in at least one such transition

were classified as dynamic. Through this approach, we are able to describe each d-TAC in our

catalog by its precise dynamic temporal pattern in each tissue.

In total, we identified 140,051 d-TACs that exhibit significant change of accessibility in at

least one stage transition (27% of all d-TACs) (Figure 3.1), of which the overwhelming majority

(127,354, or 90.9%) are TSS-distal regions (Figure 3.1a). We observe that most dynamic d-TACs

show a significant change in accessibility at only one stage transition within a tissue in this

developmental window (Figure 3.2, top), suggesting that these changes reflect enduring shifts in

cell fate and/or composition rather than rapid on-off molecular switches. Thus, given that these

data are bulk rather than single cell, one may interpret these patterns to represent the emergence

of new cell lineages in concordance with increased tissue complexity over time. In other words,

the temporally dynamic patterns of chromatin accessibility observed reflect highly tissue-specific

developmental programs, rather than global tissue-agnostic changes.

3.3.2 Developmental pathways associated with tissue-specific patterns of
accessibility

The tissue-specific patterns of transposase accessibility at the TACs revealed biological

insights into mouse fetal development. Just as we examined the number of stage transitions
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Figure 3.1. Overview of dynamic d-TACs identified in our catalog. If a d-TAC was called
as significantly dynamic at any stage transition within it a tissue it was labeled as dynamic;
otherwise it was labeled as static. a. The relative number of TSS-distal versus TSS-proximal
dynamic d-TACs, which comprise the majority of dynamic elements. b. The breakdown of
dynamic d-TACs categorized by tissue. c. The breakdown of static d-TACs categorized by tissue.
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Table 3.1. Number of dynamic d-TACs identified for each mouse embryonic tissue, categorized
as gain of accessibility or loss of accessibility.

Loss of accessi-
bility

Gain of accessi-
bility

Total dynamic
d-TACs

Forebrain 12,986 16,307 27,537
Midbrain 2,893 4,311 6,678
Hindbrain 1,944 2,219 4,034
Neural Tube 3,536 3,617 6,788
Limb 2,361 4,199 6,319
Craniofacial 4,355 2,265 6,401
Heart 5,668 3,273 8,434
Liver 14,905 18,453 31,265
Intestine 10,120 17,133 25,730
Kidney 1,757 3,228 4,739
Lung 17,081 19,199 35,594
Stomach 7,000 9,607 15,494

in which a given d-TAC is exhibiting significant change in accessibility, the corrolary to this

analysis to examine the stage transitions featuring the largest amount of turnover in terms of

number of dynamic d-TACs. For most tissues, there is typically one stage transition when the

majority of dynamic TACs exhibit a significant change in transposase accessibility (Figure 3.2,

bottom). The precise stages of importance varied, with closely related tissues featuring more

similar dynamic patterns. For example, forebrain development shows the most dramatic changes

from e12.5 to e13.5 while the four endoderm derived tissues are more dynamic later at e16.5 to

p0. Interestingly, this shift from e16.5 to p0 is a period during which a relatively high proportion

of TACs exhibit turnover across several tissues. The heightened level of chromatin remodeling

observed during this period can be attributed to both a larger temporal gap between sampling (˜2.5

days vs 1 day between other stages) as well as the considerable change to mouse metabolism and

physiology at birth. The exact number of d-TACs gaining and losing accessibility respectively,

and their totals, are shown for each tissue in Table 3.1.

Closer examination of dynamic d-TACs in each tissue reveals that these patterns resemble

known developmental processes. For instance, the chromatin dynamics in embryonic forebrain
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are dominated by remodeling in two particular stage transitions: from e12.5 to e13.5; and from

e16.5 to p0 (Figure 3.3). These two periods coincide with major periods of growth in the brain,

neurogenesis and gliogenesis respectively. Both require complex coordination of transcriptional

regulators as the brain develops its adult structural organization and are characterized by a rapid

expansion of newly differentiated cell types. During neurogenesis, neuronal stem cells and

neural progenitor cells differentiate and give rise to post-mitotic neurons[64]. As a representative

example, dynamic d-TACs upstream of Neurod2, a canonical marker gene of mature, adult

neurons, exemplify the dramatic gain of accessibility from e12.5 to e13.5. Functional enrichment

of loci characterized by a significant gain in accessibility during this stage transition using the

GREAT tool[61] establishes associations between these d-TACs and biological processes related

to the IGF-1 signaling pathway, a key growth factor in neurogenesis and synaptogenesis, and

neuronal differentiation. Likewise, d-TACs characterized by a strong loss of accessibility are

involved in the negative regulation of neuron development. Similarly, dynamic d-TACs from

e16.5 to p0 show enrichment for processes promoting oligodendrocyte differentiation and are

depleted for forebrain neuron development, reflecting a shift away from neurogenic activity and

towards gliogenesis, which corresponds to the emergence of non-neuronal cell populations such

as astrocytes and oligodendrocytes.

Interrogating heart-associated d-TACs also reveals insights into the signaling pathways

driving to the development of the embryonic mouse heart. Unlike most tissues in this study,

which re characterized by active remodeling throughout gestation, the heart is unique in that

the majority of dynamic changes cease by e14.5 and heart-associated d-TACs are relatively

static from e14.5 to p0 (Figure 3.9). This observation speaks to the earlier maturation of heart,

which is mostly developed by birth. Pre-e14.5 heart d-TACs are functionally enriched for

growth and morphogenesis of critical cardiac chambers, the atrium and ventricles, reflecting

the development of vascular structure. Simultaneously, the cessation of dynamic accessibility

at e14.5 is accompanied by the depletion of myeloid differentiation. Furthermore, dynamic

heart-associated d-TACs associated with later stages fail to show enrichment for developmental
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processes, only depletion of cardiac morphogenesis, offering further evidence that the heart is

functionally matured quickly compared to other tissues.

The most dynamic of the tissues collected in this study is the liver, which undergoes

the greatest transformation in cellular identity during embryogenesis (Figure 3.14). Early in

gestation, the liver is primarily responsible for the generation of blood lineages and immune

cells, and only late in development does the liver composition change to reflect the metabolic

functions of the adult liver. This metamorphosis is reflected in the liver-associated d-TACs, a

substantial fraction of which manifest dynamic accessibility behaviors from e16.5 to birth. These

d-TACs are marked by a profound depletion of processes related to myeloid cell and erythrocyte

differentiation, which being enriched for carbohydrate and lipid metabolism.

The corresponding heatmaps for all tissues profiled may be found in the Chapter 3

Appendix.

3.3.3 Clusters of stage-transition-specific dynamic d-TACs reveal devel-
opmental regulatory program

Using the catalog of mouse d-TACs and the annotations of their tissue-specific dynamic

patterns, we describe the key regulators of the transcriptional network responsible for specifying

cell fates, which is crucial to fully understand the regulatory landscape during embryogenesis.

Since heightened ATAC-seq signal marks regions of increased availability to transcription factor

binding, changes in the accessibility of regions containing TF binding sites can unveil potential

key regulators those respective stages. Therefore, examination of binding motifs both the

constantly accessible (non-dynamic) sets of d-TACs as well as those associated with dynamic

behavior for specific tissues and stages can shed light on the role of various TFs and their

coordination in each of these contexts. To elucidate these key regulators, we systematically

enriched known binding motifs from the JASPAR database in the d-TAC catalog[60]. In addition

to analyzing the non-dynamic d-TACs, each dynamic d-TAC was categorized with the tissue

and stage transition in which it displayed its largest gain or loss of accessibility. By grouping
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Figure 3.3. ATAC-seq and sequential logFC heatmaps for forebrain. d-TACs can be described
by their pattern of dynamics over the course of a tissues development, reflecting the regulatory
changes associated with the emergences or depletion of cell types. Heatmap (left) shows the
normalized accessibility for each dynamic dTAC at every stage profiled in forebrain (e11.5 to
p0). Heatmap (right) shows the sequential log-fold-change in accessibility between each stage
transition. For heatmaps of the other tissues, see the Chapter 3 Appendix.
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dynamic d-TACs in this manner, we are able to associate enriched motifs in each group with its

context-specific accessibility profile.

Examining the binding motifs enriched in non-dynamic subset of the d-TAC catalog, or

elements characterized by relatively constant and unchanging levels of transposase accessibility,

reveals noteworthy trends across the panel of tissues characterized. For non-dynamic d-TACs,

the patterns of motif enrichment are unsurprisingly relatively static between stages within a given

tissue. However, when comparing TSS proximal d-TACs against TSS distal ones, it becomes

apparent that motif family enrichments for proximal d-TACs are mostly invariant even across

tissues. In contrast, while static temporally, non-dynamic TSS distal d-TACs do feature highly

tissue-restricted patterns of motif enrichment, reflecting the prior observation that proximity to

TSS (promoter-like) is associated with accessibility in a larger number of tissue types whereas

distal d-TACs represent more distinct sets. Together, these organism-wide motif enrichment

analyses describe the complex global regulatory map of TFs in non-dynamic d-TACs during this

time series.

Similar analysis of dynamic d-TACs, both gain and loss of accessibility, uncovers the

reciprocal component of the regulatory program in mouse development. Like the TSS distal non-

dynamic elements, the motif enrichment patterns for dynamic d-TACs tend to be highly specific

to each tissues respective regulatory programs. However, unlike the non-dynamic d-TACs, the

motifs enriched can also be highly disparate between stages, presumably reflecting the TFs

specific to each stage transition. For example, in the developing forebrain, we observe that the

highly dynamic transition from e12.5 to e13.5, associated with neurogenesis, is highly enriched

for basic helix-loop-helix (bHLH) family motifs (Figure 3.4b). These include Neurog1/2,

Neurod2, Atoh1, Olig1-3, and Olig-related transcription factor Bhlhe22, with known functions

in cell proliferation and lineage differentiation[64]. However, since closely related binding

motifs may feature similar PWMs, motif enrichment analysis alone is insufficient for identifying

the specific transcriptional regulators acting on each pattern. To address this problem, we

integrated the TF gene expression data that were also generated for matched tissues and stages
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in this phase of ENCODE, which allowed us to identify which TFs in each binding family

were active and potentially driving the developmental pattern (Figure 3.4c). Gene expression

patterns show downregulation of Olig2/3, Twist1/2, and Hes5 during this stage. Concurrently,

Olig1 and Neurod2/6 are acutely upregulated. Of note, human orthologs Olig1/2 are located

on Chromosome 21 in the Down syndrome critical region, and overexpression of Olig1/2

is observed in both Down Syndrome and the Ts65Dn mouse model[65]. Olig3 is likewise

important in early neurogenesis and aberrant signaling has been associated with development of

medulloblastoma[66]. Saethre-Chotzen syndrome, when caused by reduced Twist expression

secondary to deletion[67][68], is likely to be associated with developmental delay and intellectual

disability in addition to craniofacial and tissue abnormalities. On the other hand, Hes5, expressed

on neural precursors and covering the developing embryo, inhibits the expression of proneural

genes[69].

In addition to bHLH factors, the coordinated expression of TFs belonging to the Forkhead

and Homeobox families appears responsible for distinct temporal patterns in other stages. For

example, while both Rfx and Fox motifs are enriched during neurogenesis, during the transition

from e16.5 to p0, these two Forkhead subfamilies tend to be diametrically associated with

loss of accessibility and gain of accessibility respectively. FOXP1 is an outlier in that its

motif is heavily represented in both groups of d-TACs from dynamic in e16.5 to p0, while

its expression profile displays downregulation at e13.5 and a sharp increase in regulation at

p0[70]. Notably, heightened expression of FOXP1 has been implicated in autism spectrum

disorder pathologies[71][72]. Homeobox domain motifs such as Lhx6, deficits of which linked

to neuropsychiatric disorders[73][74], are similarly co-associated with bHLH motifs during

neurogenesis but primarily enrich in the differentially inaccessible motifs at p0. However,

the factor most emblematic of this deeply interconnected regulatory landscape is Bhlha15,

which despite being a member of the bHLH family, is enriched for dynamic elements shared

with Forkhead and Homeobox factors but uniquely absent during neurogenesis. The differential

expression of both proneural and inhibitory factors underscore the complex interplay of regulatory
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factors during this critical period.

Motif enrichment of heart d-TACs reveals novel insights into the regulatory program

governing cardiogenesis. The dynamic patterns of fetal heart are clearly bifurcated into two

phases: a developmentally active phase through e14.5, and a relatively static period from the

middle stages until birth. During this first phase, the early stages are accompanied by a previously

undescribed switch from myocyte enhancer factor (MEF) proteins to a combination of GATA and

C2H2 zinc finger transcription factors. Elements exhibiting loss of accessibility at each of these

stages are highly enriched for members of the MEF2 family, peaking at e13.5 to e14.5, when

the heart undergoes a substantial reduction in chromatin remodeling. These factors, particularly

MEF2b/c, have been studied extensively given their wide-ranging roles in development across

many tissues and are believed to be interact with a vast number of target genes. In the heart,

MEF2 is highly conserved and plays a critical role in cardiac hypertrophy[75] and gene regulatory

program of cardiomyocytes[76]. Furthermore, these proteins have been implicated in a variety

of cancer types, potentially acting as oncogenes and tumor suppressor genes. Concomitantly,

GATA motifs are enriched for d-TACs that gain accessibility throughout this first phase, also

peaking by e14.5. GATA is a particularly well-studied TF in congenital heart disease (CHD)[?]

that is believed to regulate MEF[77]. Also exclusive to this key developmental transition from

e13.5 to e14.5 is the enrichment of basic leucine zipper (bZIP) motifs, such as JUNB and FOSL2,

which appear to contribute to the regulation of cardiac morphogenesis along with GATA family

TF. Thus, given the biological function of MEF and GATA, it is likely that this switch reflects

the maturation and subsequent reprogramming of existing populations of cardiomyocytes rather

than the expansion or differentiation of new cell types.

3.3.4 Significant changes in accessibility linked to changes in chromatin
state annotations

Having identified distinct patterns of accessibility change in each tissue that correspond

to tissue development, we examined the regions featuring dynamic chromatin remodeling to
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Figure 3.5. Heatmaps showing the chromatin state changes that occur at dynamic d-TACs that
gain accessibility at a given stage transition (left), or lose accessibility at a given stage transition
(right). Enrichment relative to coverage of each state in total d-TAC catalog. Pr is a superset
composed of states Pr-A, Pr-W, Pr-B, Pr-F; En is a superset composed of En-Sp, En-Sd, En-W,
En-Pp, En-Pd; Tr is a superset composed of Tr-S, Tr-I, Tr-P. Hc is a superset composed of Hc-A,
Hc-H. Chromatin state definitions can be referenced in Figure 2.8.

determine if there was a link between accessibility changes and chromatin state annotations. To

do this, we separately analyzed regions that gained accessibility as opposed to those that became

less accessible and looked for an enrichment of certain state transitions before and after the gain

or loss respectively. Analysis of chromatin state changes at dynamic d-TACs reveals that gain or

loss of accessibility does in fact often correspond respectively to gain or loss of active enhancer

chromatin states (Figure 3.5).

The most common state change pattern associated with a gain of accessibility was from

No Signal to Enhancer-like. Within these broader categories, the most frequent originating states

were the Transcription-Permissive, Enhancer-Poised, and No Signal states and the most frequent

resultant states were Enhancer-Weak and Enhancer-Poised. That being said, the No Signal state

did become other functional states with some level of frequency, in particular, promoters-like

states. In contrast, the precise reciprocal trends were observed for dynamic loci featuring a loss

of accessibility between stages.
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3.3.5 Characteristic order of accessibility and histone dynamics ob-
served in enhancer ’life cycle’

Given the coordination between chromatin state and accessibility dynamics, we sought

to determine if there was a characteristic order to an enhancer becoming functional. To do this,

we investigated the enhancers that were deemed strong, replicated enhancers based on their

chromatin state that also overlap a d-TAC. Taking the subset of these strong enhancers that

overlap a d-TAC, we examined the ones that featured dynamic H3K27ac (termed a dynamic

enhancer), and evaluated the corresponding change in accessibility (ATAC-seq) at preceding and

following stages. We note that most dynamic enhancers overlap d-TACs (67-88%, median 84%),

though fewer overlap dynamic d-TACs (5-35%, median 14%) (Figure 3.6).

We found that there is a characteristic order in which accessibility and modification by

H3K27ac appears to take place (Figure 3.7). For instance, chromatin accessibility increase tends

to precede marking with H3K27ac by several stages, indicating that the chromatin around a

regulatory sequence first becomes open before becoming functional as an enhancer. Conversely,

the loss of accessibility follows the loss of H3K27ac. This trend was a global phenomenon and

held true for all tissues.

3.4 Discussion

In this chapter, we characterized the changes in accessibility of this catalog, highlighting

key tissue-specific and temporally-restricted patterns driving the respective regulatory programs

of each tissue. We used an innovative approach to evaluating temporal dynamics by evaluating

the specific changes that occur between sequences stages in the samples, rather than against an

initial state or mean. By applying differential analysis strategies to sequence stage transitions, we

are able to identify specific regions that undergo chromatin remodeling, reflecting developmental

changes to the make up and composition of heterogeneous tissues. These characterizations also

enable the study of transcription factor binding and the identification of potential regulators
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in each developmental context as well as their specific, temporal activity profiles. Finally,

we investigated the functional changes that occur in association with changes in chromatin

accessibility, revealing a previously undescribed order in which regulatory sequences become

functional enhancers.

Several key highlights of this chapter are listed below:

• Our developmental time series enables an unprecedented ability to analyze the develop-

mental program of mouse embryogenesis.

• Different tissues feature unique, tissue-specific patterns of chromatin dynamics.

• These patterns, or regulatory programs, can be analyzed to better understand the biological

changes driving or resulting from tissue differentiation.

• Analysis of chromatin state dynamics reveals multiple roles for cis-regulatory elements

depending on cellular context.

• These techniques can be also used to study the regulatory differences between healthy and

disease states and identify putative targets for therapy.

3.5 Methods

3.5.1 Read count arrays

To score the peaks by their read count intensity, the uniform d-TAC catalog was inter-

sected against the read alignment (.bam) files for each sample and each each replicate using the

’bedtools coverage’ command. These counts were then tabulated and added together for a pooled

read count per peak in each sample.

3.5.2 Identification of differentially accessible d-TACs

For each d-TAC in the uniform catalog, the number of ATAC-seq reads overlapping the

d-TAC was counted for each tissue-stage and replicate using the coverage function in bedtools
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v2.27.1. For each tissue, d-TACs at any stage were classified as temporally dynamic if they were

significantly differentially accessible (fold change >= 2, p-value <= 0.05) in sequential stages

of development, using DEseq2.

3.5.3 GO ontology term enrichment

Functional enrichments through GREAT[61] were obtained through the greatBatch-

Query.py script. The resulting lists were first filtered for the relevant ontologies. After that, only

the terms showing a binomial FDR <= 0.05 and a regional enrichment equal or higher than

2-fold were considered.

3.5.4 chromHMM state enrichment

The d-TAC catalog was overlapped with autosomal chromHMM state calls for each

tissue-stage (pooled or replicate call set, as indicated) using bedtools v2.20.1. Enrichment for

a given state s in a particular tissue-stage was calculated as the observed number of base pairs

of the d-TAC catalog that overlap state s, divided by the total number of base pairs expected to

overlap state s based on its genome coverage (total bp coverage of d-TAC catalog * fraction of

genome covered by state s).

3.5.5 Dynamic chromatin state enrichment

To investigate the relationship between changes in accessibility and changes in chromatin

state, the dynamic d-TACs were classified as either gaining (positive log fold change) or losing

(negative log fold change) accessibility. For each tissue-stage-transition (n to n+1), these sets of

gain or loss of accessibility d-TACs were overlapped with chromHMM state calls for stages n

and n+1 using intersectBed from bedtools v.2.27.1. Enrichment was calculated by taking the

observed fraction of dynamic base pairs overlapping each combination of states (state at n, state

at n+1) and dividing by the expected fraction of base pairs overlapping each state combination

based on the dynamic and non-dynamic d-TACs.
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3.5.6 Motif enrichment

For each tissue and dynamic stage transition, associated d-TAC regions were converted

into fasta sequence format using the getfasta command in bedtools and shuffled using the fasta-

shuffle-letters tool in the MEME suite for a background with the parameters ’-kmer 2 -tag -dinuc

-seed 1’. Then, each set of fasta sequences were enriched for motifs in the HOCOMOCO v11[62]

core mouse database using AME in the MEME suite[63].

3.5.7 Coordination of H3K27ac and ATAC-seq in dynamic regions

To investigate the temporal relationship between H3K27ac and chromatin accessibility

(e.g. the enhancer ”life cycle”), dynamic strong-enhancers (replicated, chromHMM state U5) at

each stage-transition were overlapped against d-TACs (using bedtools) for the respective tissue

to identify matching enhancers and d-TACs. In cases where more than one d-TAC overlapped

an enhancer, the d-TAC with the largest number of overlapping base pairs was selected. The

sequential logFC in ATAC-seq signal was evaluated at every possible stage-transition for these

matching d-TACs and a mean was taken. These stage-transitions were converted to offsets

relative to the strong enhancers and the fold-changes averaged for the purpose of deriving a

global trend (i.e. for dynamic enhancers at e11.5 ->e12.5; e11.5 ->12.5 is an offset of 0, e12.5

->e13.5 is an offset of 1 and e16.5 ->p0 is an offset of 5). The inverse analysis was also

performed to assess the log FC in H3K27ac at dynamic d-TACs.
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Figure 3.8. ATAC-seq and sequential logFC heatmaps for embryonic facial prominence.
Heatmap (left) shows the normalized accessibility for each dynamic dTAC at every stage profiled
in CF (e11.5 to e11.5). Heatmap (right) shows the sequential log-fold-change in accessibility
between each stage transition.
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Figure 3.9. ATAC-seq and sequential logFC heatmaps for heart. Heatmap (left) shows the
normalized accessibility for each dynamic dTAC at every stage profiled in heart (e11.5 to
p0). Heatmap (right) shows the sequential log-fold-change in accessibility between each stage
transition.

60



e1
1.

5

e1
2.

5

e1
3.

5

e1
4.

5

e1
5.

5

e1
6.

5 p0

e1
1.

5

e1
2.

5

e1
3.

5

e1
4.

5

e1
5.

5

e1
6.

5

ATAC-seq at stage n
sequential log-fold change

(stage n -> n+1)

0

1

2

3

−3

−2

−1

0

1

2

3

Figure 3.10. ATAC-seq and sequential logFC heatmaps for hindbrain. Heatmap (left) shows the
normalized accessibility for each dynamic dTAC at every stage profiled in hindbrain (e11.5 to
p0). Heatmap (right) shows the sequential log-fold-change in accessibility between each stage
transition.

61



e1
4.

5

e1
5.

5

e1
6.

5 p0

e1
4.

5

e1
5.

5

e1
6.

5

ATAC-seq at stage n
sequential log-fold change

(stage n -> n+1)

0

1

2

3

−3

−2

−1

0

1

2

3

Figure 3.11. ATAC-seq and sequential logFC heatmaps for intestine. Heatmap (left) shows the
normalized accessibility for each dynamic dTAC at every stage profiled in intestine (e14.5 to
p0). Heatmap (right) shows the sequential log-fold-change in accessibility between each stage
transition.
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Figure 3.12. ATAC-seq and sequential logFC heatmaps for kidney. Heatmap (left) shows the
normalized accessibility for each dynamic dTAC at every stage profiled in kidney (e14.5 to
p0). Heatmap (right) shows the sequential log-fold-change in accessibility between each stage
transition.
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Figure 3.13. ATAC-seq and sequential logFC heatmaps for limb. Heatmap (left) shows the
normalized accessibility for each dynamic dTAC at every stage profiled in limb (e11.5 to
e15.5). Heatmap (right) shows the sequential log-fold-change in accessibility between each stage
transition.
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Figure 3.14. ATAC-seq and sequential logFC heatmaps for liver. Heatmap (left) shows the
normalized accessibility for each dynamic dTAC at every stage profiled in liver (e11.5 to
p0). Heatmap (right) shows the sequential log-fold-change in accessibility between each stage
transition.
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Figure 3.15. ATAC-seq and sequential logFC heatmaps for lung. Heatmap (left) shows the
normalized accessibility for each dynamic dTAC at every stage profiled in lung (e14.5 to
p0). Heatmap (right) shows the sequential log-fold-change in accessibility between each stage
transition.
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Figure 3.16. ATAC-seq and sequential logFC heatmaps for midbrain. Heatmap (left) shows the
normalized accessibility for each dynamic dTAC at every stage profiled in midbrain (e11.5 to
p0). Heatmap (right) shows the sequential log-fold-change in accessibility between each stage
transition.
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Figure 3.17. ATAC-seq and sequential logFC heatmaps for neural tube. Heatmap (left) shows
the normalized accessibility for each dynamic dTAC at every stage profiled in NT (e11.5 to
e15.5). Heatmap (right) shows the sequential log-fold-change in accessibility between each stage
transition.
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Figure 3.18. ATAC-seq and sequential logFC heatmaps for stomach. Heatmap (left) shows the
normalized accessibility for each dynamic dTAC at every stage profiled in stomach (e14.5 to
p0). Heatmap (right) shows the sequential log-fold-change in accessibility between each stage
transition.
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Figure 3.19. Similar schema to Figure 3.5 but showing each chromatin state separately instead
of in supersets. The heatmap shows the chromatin state changes that occur at dynamic d-TACs
which gain accessibility at a given stage transition. Enrichment is relative to the coverage of each
state in total d-TAC catalog.
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Figure 3.20. Same as Figure 3.19 but for d-TACs that lose accessibility at a given stage transition.
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Chapter 4

Understanding genomic vocabulary and
grammar with deep neural networks

4.1 Abstract

Mammalian gene regulatory networks are controlled by transcription factor binding to

accessible regulatory sequences in the genome, such as enhancers[78]. Though there are many

effective strategies for extracting biology from compendiums of these regulatory elements, the

most fundamental and biological interpretable approach would be to study the regulatory logic

encoded in the sequences themselves to which transcription factors bind. In this chapter, we

propose a novel paradigm for thinking about the functional ”unit” of regulation as a sequence

rather than a peak and describe a neural network-based machine learning strategy for predicting

accessibility of putative sequences in a cell-type-specific manner. We leverage these models to

identify similarities between samples based on the composition of their accessible regulatory

sequences, which can be utilized in a variety of clinical applications (ie. identifying model

systems or comparing samples after external stimuli perturbations).

4.2 Introduction

Gene regulation is controlled by the coordinated binding and activity of hundreds of

transcription factors, each with their individual specific binding motifs[79]. These motifs are
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Table 4.1. Toy example of regulatory vocabulary scores for several samples. For each sequence
(or combination of sequences), a score of some kind (i.e. probability, importance score, etc.) is
calculated to reflect its importance or predictiveness in describing the biology of each sample.

k-mers sample-1 sample-2 ... sample-66

ACTGTG 4.12 1.48 ... -0.1
ATCTTA 7.31 0.00 ... 2.51

... ... ... ... ...
TCGAAA 2.78 -0.81 ... 3.15
GGAATA 0.00 0.00 ... -0.61

heavily enriched in cis-regulatory elements, such as enhancers and promoters, as binding at

these key loci is a crucial aspect of a cell’s regulatory processes[80], including initiation of

transcription, recruitment of additional regulatory machinery, coordination of lineage-specifying

TFs by pioneering factors[81], and even remodeling of the 3D conformation of the genome via

chromatin looping[82]. Since these vital regulatory sequences must be accessible for TFs to bind,

the availability of a map of putative cREs in our d-TAC catalog represents a unique opportunity

to investigate the cell-type-specific regulatory networks driving gene expression.

However, genomics analysis tends to revolve around comparison or analysis of peaks.

While analysis peaks can provide useful insights, the idea of a peak as a ”unit” of genomics is less

than ideal. Peak sets are problematic because the are fundamentally arbitrary and non-standard,

derived empirically from each sample and subject to intrinsic variability. This includes biases due

to data quality as well as algorithmic factors, such as data processing methods and peak calling

parameters. Peaks are not even necessarily standardized in length, requiring further analysis

to create a uniform set. Most limiting, any analysis involving comparison of peaks requires

that samples of interest share a uniform genomic coordinate system, complicating cross-species

comparisons (without the use of additional tools such as liftover). Furthermore, the biological

meaning of a peak is hard to interpret; it is basically a locus in the genome, but what one peak

represents and even how important a peak is is unknown.

We propose the use of a genomic vocabulary[83][84] as a superior alternative to peaks
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for the purposes of evaluating sample similarity. As mentioned above, coordinated transcription

factor binding is central to define a cell’s phenotype, so being able to describe a cell based on

the availability of binding motifs in its accessible sequences is a biologically interpretable and

innovative approach. By distilling a sample’s regulatory network into a weighted combination

of sequences, we can describe the importance of each sequence to a given cellular context.

Furthermore, by characterizing the importance of various co-occurring patterns of sequences,

we can ascertain the rules of gene regulation, or the genomic grammar[85]. Just as linguistic

grammar defines the proper arrangement of words to create a sentence with semantic meaning, the

specific order, combinations, orientations, and intervening distances of key regulator sequences

reflects the molecular interactions of TF binding.

Under this framework, it becomes trivial to compare samples based on their distinct

biological patterns. The applications of this capability are significant, including the ability to

identify ideal animal models for disease research, categorize undefined clinical samples (includ-

ing single cell data), and characterize drug responses under different contexts (e.g. identifying

which cancer cell lines respond to treatment).

4.3 Results

4.3.1 Sequence-based regulatory vocabulary for analyzing accessible
chromatin regions

To fulfill our objective of developing a biologically meaningful, sequence-based unit of

gene regulation, we leveraged the extant knowledge base of binding motifs from the mammalian

JASPAR database[60]. These motifs were manually curated and merged to combine similar or

degenerative, non-specific motifs, resulting in a set of 390 curated motif PWMs [86]. However,

despite covering a large range of mammalian organisms, motif databases including JASPAR are

incomplete and numerous binding motifs remain uncharacterized. Furthermore, there may be

sequences with predictive regulatory function that are not cleanly represented by a single motif,
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so to capture these potential sources of unknown biology, we also allowed our models to train de

novo sequence filters (e.g. pseudo-motifs) as described below.

4.3.2 Neural network model identifies sample-specific sequence features

There are numerous machine learning techniques that have been successfully used to

explore the sequence-composition of regulatory elements, including random forests[87], support

vector machines (SVMs)[83], and neural networks[88]. From computer vision (i.e. Google

Image Search, self-driving cars) to natural language processing (i.e. Siri, Alexa) to even video

game e-sports (OpenAI Five DotA[90]), (of 2019) convolutional neural networks in particular

have captured the public imagination, and emerged as the future of artificial intelligence and

machine learning as, finding its way into virtually every area of research (and even aspects

of everyday life). Acknowledging the similarity between the encoding of genetic sequence

information (as an 4xn array) and digital images (essentially a matrix of pixel color values), we

leveraged advances in deep learning and applied these techniques to interface neural networks

with our biological objectives. As we will describe in detail below, we found convolutional neural

networks to be ideally suited to addressing regulatory vocabulary and grammar (Figure 4.1),

though other high-performing grammar methods exist such as attention networks[91][86] and

recurrent neural networks with word embeddings[92].

We developed our neural network models to differentiate between open chromatin regions

from GC-matched, dinucleotide shuffled genomic background, in a given genomic context or

condition. For each sample, a model was trained independently to predict on that sample’s

specific sequence features, allowing for superior training speed and predictive performance

compared to a multi-class singular model. In addition, using this modular approach for each

additional sample allows for rapid scaling of our models without the need to re-train previous

samples each time a new sample is to be considered.

Critically, the distillation of the biological information contained in peak calls into a

systematic model is an important innovation that will reduce the impact of variable data quality.
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Figure 4.1. Overview of the neural network comparison method. Input sequences are converted
into one-hot encoded array format and fed into the neural network for training. A uniform set
of prediction sequences are then used to generate model predictions for each model, the output
of which is used for model comparisons. See Figure 4.1 for an overview of the neural network
architecture.

Given the same parameters and pipeline, generally speaking, having more and better quality

reads results in a larger number of peak calls that tend to be less noisy. As our neural network

models are still trained from the peak centers, the quality of the source dataset is a factor;

however, by reducing the output for each sample to a uniform model, each of which share the

exact same architecture and number of parameters, it becomes more straightforward to compare

the regulatory information extracted by these models.

Our architecture revolves around two convolutional layers, which provide a perfect

analogy for (1) the enrichment of the genomic vocabulary sequences and (2) genomic grammar

patterns respectively. The first layer searches for and scores the motif PWMs across a sliding

window in each input sequence, and the second layer looks for combinations of these motif

scores, indicating the positions, orientations, and combinations of motifs (e.g. genomic grammar)

that are predictive for a sample’s regulatory landscape in training the model (Figure 4.2).

To build an initial reference set of models as a proof-of-concept, we trained models on all
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Figure 4.2. Overview of neural network architecture. The architecture features two convolution
filters that generate models based on the predictive potential of motif sequence scores and
combinations of motif scores respectively. The motif kernel filters are a combination of curated
PWMs from the JASPAR database[86] and de novo motifs learned by the neural network.

of the mouse embryonic ATAC-seq samples generated in the previous study, as well as various

human DNase-seq samples from corresponding tissues from the ENCODE database (Table 4.2).

4.3.3 Model predictions and performance

Models were trained using ten-fold cross-validation and repeated ten times for each

sample to verify performance metrics. In general, all of the models trained with our neural

network architecture had strong performance, as measured by area under the Receiver Operating

Characteristic curve (auROC) and Precision-Recall Curve (auPRC), ranging from 0.95-0.98) (Ta-

ble 4.4). Shown below is a characteristic curve, specifically from the model trained on accessible

sequences in e11.5 forebrain (Figure 4.3). The model performance depended on the sample of

origin including the number of peaks available for training, with better performance correlated

with a larger training set; however, given the generally strong and comparable performance

metrics, we believe using these models to be a superior comparative tool to peak lists.
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4.3.4 Uniform set of sequences for model prediction and comparison

Neural networks are non-deterministic in nature, meaning that for the same input training

data, different training iterations can result in models with wildly different parameters. These

diverse models can still produce comparable if not identical prediction results, but consequently,

this complicates model comparisons as evaluating the differences in model parameters – even for

the same architecture – is not informative of how similarly the models perform.

Therefore, if the goal is to compare two samples’ similarity based on their respective

neural network models, an alternative approach is to avoid comparing the models in favor of

their predictions on a shared set of input sequences. Put another way, if the objective is to see

how well two models represent the underlying biology of their original samples, their ability to

discriminate between which sequences out of a shared set are representative of said sample can

be informative as to their biological similarity. The output of this approach would be a vector of

length n, where n is the number of sequences in the prediction set, and vector values representing

the probability each sequence is accessible in a given sample.

To determine the composition of this uniform set of sequences is a non-trivial task

and there are numerous opportunities to explore regulatory biology through this method. One

potential set would be a series of sequences comprised of various permutations and orientations

of motifs, the predictions upon which would be directly interpretable as the biological relevance

of that particular genomic grammar to a sample. Alternatively, generative adversarial networks

(GANs)[93] have recently been featured prominently in literature and mainstream media for

their ability to generate ”fake” images from trained models, such as the artificial generation of

realistic-looking human faces. In this context, GANs could be used to generate ”fake” regulatory

elements, or sequences potentially representative of enhancers or other cis-regulatory elements

but not actually derived from any real endogenous cREs. For simplicity, however, we simply

took a superset of all positive input sequences used in training and shuffled them to generate a

new, uniform test sequences that would capture the diversity and content of all the originating
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Figure 4.4. Curves exploring the level of variation explained by principal components. a.
Variation explained by each principal component. b. Cumulative variation explained by the first
25 principal components, showing that the majority of the variation can be explained within the
first 25.

samples.

4.3.5 Neural network framework enables genome-agnostic sample
clustering and comparison

Given the large number of features in the uniform prediction set (100K input sequences),

we performed dimensionality reduction in order to visualize the samples by projecting onto a

lower dimensional space. To evaluate the validity of using dimensionality reduction with our

specific data matrix, we used principal component analysis (PCA) to calculate the variation

explained by the first m principal components and the contribution of each of the original

sequences to each component. We found that despite the initially large number of sequences to

be compressed, a majority of the overall cumulative variance could be explained within the first

25 components (Figure 4.4).

To visualize the relationship between samples, we first reduced the number of dimensions

with PCA to 25 and then projected these principal components onto a 2D space with two
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different commonly used visualization algorithms: t-SNE and UMAP. While t-SNE has been

used extensively in the field, UMAP has a distinct advantage in that its projections retain

meaningful distance information whereas in t-SNE, the distance between two points is not

interpretable.

Visually, samples cluster by their tissue of origin primarily, and then where applicable,

the stages of development (Figure 4.5). Zooming out slightly further, samples are found to

be associating based on their tissue layer of origin (i.e. endoderm, mesoderm, or ectoderm).

For instance, given the similarity between the four central nervous system tissues in the mouse

ENCODE data series (forebrain, mindbrain, hindbrain, neural tube), it is unsurprisingly that

these samples are closely grouped together and most distant to heart and liver.

Crucially, we find that based on these projections, our proposed neural network strategy

is in fact able to meet our objective of classifying and grouping samples based on biological

similarity, regardless of genomic structure. In these plots, mouse ATAC-seq samples are plotted

as red dots while human DNase-seq samples are plotted as blue ones. We find that the six

adult human neocortex samples (from three individuals) are clustered with forebrain samples,

reflecting the analogous structures of the mouse forebrain and the cerebrum, of which the

neocortex is a constituent component. (Notably, two human samples are farther away from

the others, suggesting either additional biological differences inherent to the individual donors

or possible batch effects in collection or processing.) The neocortex samples are particularly

striking in that they come from adult human donors, yet they still positively associate with the

mouse CNS tissues of embryonic origin. Likewise, the embryonic human lung samples most

closely associate the mouse lung. Finally, we found that the human digestive tissues (intestine,

stomach) were close in similarity to the corresponding mouse tissues.

These general trends hold true for both projection methods (Figure 4.7), but as mentioned

previously, UMAP is the preferred algorithm as sample similarity can then be calculated as a

Euclidean distance (Figure 4.6). In the case of using t-SNE as the projection algorithm, one’s

choice of perplexity parameter will have a large effect on the ultimate visualization. Additionally,
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as t-SNE is better used simply for grouping samples together as similar clusters, the human

samples tended to be more closely associated with each other. Though the neocortex clearly

associated with forebrain in the CNS-like super cluster for instance, t-SNE would be ill-suited

for more granular analysis within this cluster.

Finally, we compared the projected maps of our neural network predictions against a

comparable projection derived from using peaks. Notably, the peaks method requires a uniform

set of peaks for each sample and cannot be used to compare samples on dissimilar genomic

coordinate systems, so we could only project the mouse embryonic tissue samples. Using

the catalog of d-TACs, we calculated the read counts within each d-TAC for each sample and

used t-SNE (Figure 4.9 and UMAP (Figure 4.10 as described above. We note that there is a

tighter clustering with peaks compared to the neural network model predictions, but that is not

unexpected since using peaks for this type of map is somewhat cyclical in logic; if you already

have a uniform set of peaks, there is no need to do a 2D projection to calculate correlation or

distance between them in the first place. The important takeaway is that using the neural network

predictions works similarly well for the NN models in terms of capturing biological similarity,

while facilitating powerful comparisons in situations where peaks simply cannot be used. In fact,

in the case of t-SNE, an argument can be made that the model predictions are actually better

than the peaks-based approach, as t-SNE often created false super-clusters with the peaks data

(e.g. hindbrain and forebrain being grouped with stomach and lung) depending on the perplexity

and iteration count whereas the model t-SNE projections were more robust and stable.

4.4 Discussion

In this chapter, we proposed the use of a neural network architecture to discriminate

between the accessible and inaccessible sequences in a given cellular context, based on the

content of their sequence in terms of TF-relevant regulatory vocabulary. We show that models

trained by this novel approach are highly predictive and specific to their sample of origin. Our
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Figure 4.7. 2D projection of model predictions of selected samples using t-SNE. Human samples
are color-coded as blue dots and mouse samples re color-coded as red dots, revealing clusters of
samples based on biological tissue similarity.
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neural networks have a further advantage in reducing the biases inherent in peak calls from

samples of disparate quality and protocols. Furthermore, we provide a strategy for comparing

samples of varied genomic background using these neural network models by predicting on a

uniform set of diverse, representative sequences and performing dimensionality reduction on

the resulting model x sequence matrix. These similarity representations are able to recapitulate

known biological similarity as compared to a peaks-based read scoring strategy while enabling

comparisons across different genomes. Based on these findings, we believe this sequence-

based approach is a compelling alternative to peaks-based analysis for answering certain elusive

biological questions in the field of gene regulation.

Several key highlights of this chapter are listed below:

• Peak calls are an imperfect unit for genomics analysis, especially sample comparison.

• Sequence-based strategies can better describe the regulatory network in a biologically

interpretable manner.

• Using neural networks, we trained models for a wide range of samples and species, and

projected their similarity in a graphical format.

• Being able to compare samples has numerous applications, including the identification of

appropriate model systems and evaluating drug responses in disease research.

4.5 Methods

4.5.1 Extraction and shuffling of sequences from accessibility data

Peak calls were trimmed to their respective central 500bp using a custom script and

only the TSS-distal peaks were taken (defined as being >=1kb away from either GENCODE v4

mouse TSS or human Ensembl hg38 promoters). From these trimmed distal peak centers, the

corresponding fasta sequences were extracted using the ’bedtools getfasta’ command. Finally,
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shuffled genomic background sequences to be used as the negative control set were generated

with the fasta-shuffle-letters command in the MEME tookit with parameters ’-kmer 2 -tag -dinuc

-seed 1’. These fasta sequences were then loaded into the neural network training program where

they were converted into a 4x500 ”one-hot” encoded array format.

4.5.2 Neural network architecture

The architecture of our convolutional neural network model is shown in Figure 4.8. To

score the existing motif PWMs from the curated JASPAR library ([86]) as well as learn de novo

motif filters with predictive potential, our neural network applies a 1-dimensional convolution

over the input sequence (in one-hot array form) via sliding windows at each possible position.

These filters, padded to a uniform 4x24 size, are fixed in the case of the JASPAR library motifs

but allowed to be trained for the de novo sequences. In our final models, we use a combination

of the 390 JASPAR motifs and 1000 de novo filters. The output from this layer is then padded

and pooled in bins of 10bp (to a width of 50 pooled positions) and batch normalized.

The second convolutional layer is also a 1-dimensional convolution, but this time, over

the pooled output from the first convolution. These kernel filters can be interpreted as the

combination of motif scores from the first layer and represent the genomic grammar controlling

the sample’s regulatory network. A total of 500 kernels of size 1390x5 are trained in this layer.

Notably, the width of these kernels is a parameter that can be tuned depending on how close

or distant one wishes to constrain combinations of motifs. For instance, if one wishes only

to identify combinations of motifs at a single pooled position, one should use a filter size of

1390x1. Conversely, to capture potentially long-ranging interactions across the entirety of the

input sequence, one would select a filter size of 1390x50. For practical reasons and based on an

empirical evaluation of performance, we chose to examine the genomic grammar covering short

to medium-ranged distances, though this is a flexible parameter as are the number of kernels

depending on the design goals of the neural network. The output of this layer is also pooled and

batch normalized.
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Finally, the a fully-connected layer of dense neurons connects to output neurons with a

sigmoid activation function for binary classification. Our neural networks were implemented

using the keras 2.2.4 front-end package and TensorFlow 1.10.0 as the back-end.

4.5.3 Model training and validation

Models were trained on the entire set of TSS-distal peaks for each sample, though

optionally, TSS-proximal peaks can be included or the training set can be constrained artificially

to a top cutoff of highest expressed peaks. We employed ten-fold cross-validation and repeated

the model training ten times for each sample to verify performance metrics. Models were

trained by optimizing the performance of the binary entropy metric as the model’s validation

loss function with the Adam optimizer. They were trained for 15 epochs to minimize the above

validation loss metric while avoiding overfitting and a batch size of 64 to balance runtime against

risk of sharp minima and poor model generalization. To assess the impact of number of kernel

filters, we tested model training accuracy and loss (Table 4.3 at various epochs.

4.5.4 Generating a uniform prediction set

To generate a uniform set of sequences upon which to predict accessibility, we pooled the

entire set of all positive accessible sequences in every sample, regardless of sample classification

or origin. Then, we shuffled these sequences and randomly subsampled this superset down to

100K sequences using the ’fasta-subsample’ command in the MEME tookit. We repeated this

process twenty times to control against sampling bias when generating the similarity projection

maps in addition to cross-validating with the unselected sequences from the subsampling.

4.5.5 Dimensionality reduction and clustering

Dimensionality reduction was performed using principal component analysis (PCA).

After reducing the dimensions of the prediction array to 25, the data were projected onto a

2D plane with t-SNE (using perplexity of 10 and 1000 iterations) and with UMAP using the
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Figure 4.8. Neural network architecture, featuring two convolutional layers and a dense neuron
layer. Max pooling and batch normalization steps are taking after each convolution.
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’euclidean’ metric. For the comparison figures based on read counts within a set of peaks (here,

uniform d-TACs), we used the same parameters for t-SNE but the ’correlation’ metric for UMAP.

4.5.6 Software availability

The source code for our neural network model implementation is available at:

https://github.com/yuz207/atacgps.
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4.7 Appendix

Table 4.4. Mean model performance for each sample used in the seed map, given by area under
the receiver operating characteristic (ROC) and precision-recall (PRC) curves respectively.

Sample auROC auPRC
fore.e11.5 0.98 0.97
fore.e12.5 0.98 0.98
fore.e13.5 0.98 0.98
fore.e14.5 0.98 0.98
fore.e15.5 0.98 0.98
fore.e16.5 0.98 0.98
fore.p0 0.98 0.98
midb.e11.5 0.98 0.97
midb.e12.5 0.98 0.98
midb.e13.5 0.97 0.97
midb.e14.5 0.97 0.97

Continued on next page
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Table 4.4. Mean model performance for each sample used in the seed map, given by area under
the receiver operating characteristic (ROC) and precision-recall (PRC) curves respectively.

Table 4.4 – continued from previous page
Sample auROC auPRC

midb.e15.5 0.98 0.98
midb.e16.5 0.98 0.98
midb.p0 0.98 0.98
hind.e11.5 0.98 0.98
hind.e12.5 0.98 0.98
hind.e13.5 0.98 0.98
hind.e14.5 0.98 0.98
hind.e15.5 0.98 0.98
hind.e16.5 0.98 0.97
hind.p0 0.98 0.98
neur.e11.5 0.98 0.98
neur.e12.5 0.98 0.98
neur.e13.5 0.98 0.98
neur.e14.5 0.98 0.98
neur.e15.5 0.98 0.98
limb.e11.5 0.97 0.97
limb.e12.5 0.97 0.97
limb.e13.5 0.98 0.98
limb.e14.5 0.98 0.98
limb.e15.5 0.98 0.98
embr.e11.5 0.97 0.97
embr.e12.5 0.97 0.97
embr.e13.5 0.97 0.97
embr.e14.5 0.98 0.98
embr.e15.5 0.98 0.98
hear.e11.5 0.98 0.97
hear.e12.5 0.98 0.98
hear.e13.5 0.97 0.97
hear.e14.5 0.97 0.97
hear.e15.5 0.98 0.98
hear.e16.5 0.98 0.98
hear.p0 0.98 0.98
live.e11.5 0.98 0.98
live.e12.5 0.98 0.98
live.e13.5 0.98 0.98
live.e14.5 0.98 0.98
live.e15.5 0.98 0.98
live.e16.5 0.98 0.98

Continued on next page
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Table 4.4. Mean model performance for each sample used in the seed map, given by area under
the receiver operating characteristic (ROC) and precision-recall (PRC) curves respectively.

Table 4.4 – continued from previous page
Sample auROC auPRC

live.p0 0.98 0.98
inte.e14.5 0.98 0.98
inte.e15.5 0.98 0.98
inte.e16.5 0.98 0.98
inte.p0 0.98 0.98
kidn.e14.5 0.98 0.98
kidn.e15.5 0.98 0.98
kidn.e16.5 0.98 0.97
kidn.p0 0.98 0.98
lung.e14.5 0.98 0.97
lung.e15.5 0.98 0.97
lung.e16.5 0.98 0.98
lung.p0 0.98 0.98
stom.e14.5 0.98 0.97
stom.e15.5 0.98 0.98
stom.e16.5 0.98 0.97
stom.p0 0.98 0.98
neocortex 15w 0.96 0.95
neocortex 15w 0.95 0.95
neocortex 16w 0.96 0.96
neocortex 16w 0.96 0.96
neocortex 17w 0.96 0.96
neocortex 17w 0.96 0.96
lung 67d 0.98 0.98
lung 108d 0.97 0.97
lung 120d 0.98 0.98
kidney 85d 0.97 0.97
kidney 121d 0.98 0.98
small inte 91d 0.98 0.98
small inte 120d 0.98 0.98
large inte 120d 0.98 0.98
stomach 58/76d 0.98 0.98
stomach 121d 0.98 0.98
kidney 85d 0.98 0.98
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Figure 4.9. 2D projection of quantile normalized read counts over the uniform d-TAC catalog
for mouse samples using t-SNE. This map serves as an comparable peak-based companion
figure to the neural network model t-SNE projection in Figure 4.7, with the limitation that only
the mouse embryonic samples could be projected due to inability to compare samples across
different genomes using peaks.
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Figure 4.10. 2D projection of quantile normalized read counts over the uniform d-TAC catalog
for mouse samples using UMAP. This map serves as an comparable peak-based companion
figure to the neural network model UMAP projection in Figure 4.5, with the limitation that only
the mouse embryonic samples could be projected due to inability to compare samples across
different genomes using peaks. Note that this UMAP metric used correlation, which is better
suited to the data type, rather than euclidean, which clustered tissues well but formed unexpected
super-clusters of unrelated tissues.
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Figure 4.11. Included for comparison with Figure 4.10, this UMAP projection contains the same
data as in Figure 4.5 but using the ’correlation’ metric instead of the ’euclidean’ metric. With
either metric, the conclusions are unchanged and the choice of metric ultimately will depend on
specific datasets and clustering priorities. With ’correlation’, there is a larger species-orientated
grouping than with ’euclidean’ for the samples modeled.
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Figure 4.12. Dendrogram of hierarchical clustering of the UMAP euclidean distance matrix in
Figure 4.6 to organize samples according to their relative similarity to all other samples. Note
the general association of samples from similar tissue origins regardless of species.
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Chapter 5

Conclusions

In summary, our results describe a multi-tiered compendium of functional annotations for

the developmental mouse genome, including chromatin state maps for 66 distinct tissue-stages, an

extensive catalog of candidate cREs, many with dynamic temporal activity, and enhancer target

correlative interaction predictions. By systematically profiling tissues across sequential stages

in late development, our catalog provides an unprecedented examination of the differentially

dynamic chromatin patterns involved in this highly dynamic period of growth and maturation.

Additionally, the breadth of tissues examined presents an illustrative, global view of mouse

development at the organism level. These two comprehensive dimensions of data enable the

genome-wide study of dynamic chromatin and TF binding through embryogenesis.

We characterized the changes in accessibility of this catalog as well as the changes in

functional state annotations, highlighting key tissue-specific and temporally-restricted patterns

driving the respective regulatory programs of each tissue. These characterizations also enable

the study of transcription factor binding and the identification of potential regulators in each

developmental context as well as their specific, temporal activity profiles. Finally, we extend the

application of this mouse catalog to conserved loci in human, identifying orthologous regions that

are functionally enriched for relevant human traits. These findings not only expand the annotation

of human regulatory sequences with putative embryonic-active regions, but also provide support

for the use of the mouse as a model organism in studying human gestational development. In
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sum, this report provides a crucial and unprecedented perspective on the dynamically fluid

epigenetic architecture of mouse genome, and novel insights into the processes that govern it

during embryogenesis.

Despite the broad scope of this study, we note some important limitations. First, there

are multiple developmental tissues that were not surveyed here (e.g. skeleton, gonads, pancreas).

Second, as noted above, the tissues examined here are heterogenous, and future efforts to

examine the epigenomes of single cells during development will be critical to achieve a deeper

understanding of developmental gene regulation. Nonetheless, to our knowledge the survey of

fetal chromatin landscapes reported here is unprecedented in its breadth. Given the uniquely

critical role of the mouse as a model system in biomedical research, we believe that these data

and insights will be a valuable resource to the biomedical research community.

Finally, we used these valuable mouse data sets in conjunction with a number of human

datasets to explore novel methods for understanding biological similarity. By analyzing the

sequence content of potential regulatory elements rather than using the arbitrary definition of

peak coordinates, we were able to train powerful and highly predictive models for individual

samples and cell-types using convolutional neural networks. There are further advances based

on these machine learning strategies currently being explored as follow-up work. First, we plan

to extract the patterns contained within the second, ”grammar filter” layer of the convolutional

networks and use these information to cluster samples, providing access not only to a similarity

matrix of samples but also to the specific, biologically relevant ways their regulatory programs

are similar. Likewise, the intermediate prediction matrices can be extracted from the models as

well to cluster the sequences of each sample, grouping them within a sample, with applications

such as identifying clusters within single-cell data. Finally, we can generate a new uniform input

sequence based on the content of the aforementioned ”grammar filters” to remove the need for

the convolutional layers themselves to be biologically interpretable, enabling deeper and more

advanced neural network models. This study therefore serves as an important proof-of-concept

for leveraging neural networks and sequence-based strategies in general for understanding
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biological regulatory networks and facilitating sample comparison.
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