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Trusted hardware components are essential when protecting the security of our devices and

privacy of our online activities. Several kinds of trusted hardware components are widely

available, most notably Trusted Execution Environments (TEEs) and Secure Hardware To-

kens. Increasing availability of such hardware prompts a natural question: How can systems

benefit from these trusted hardware components?

In this dissertation, we design four systems (COMIT, PDoT, CACTI, and VICEROY) that

have enhanced security and privacy properties due to the integration of trusted hardware

components. We identify and address the key challenges and issues that arise during the

integration process. By evaluating proof-of-concept implementations of the four systems,

we show that they meet necessary security, privacy, latency, throughput, and deployment

requirements.
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Chapter 1

Introduction

Research into protecting software and data using trusted hardware components dates back

to the 1980s. Kent [137] introduced the important notion of tamper-resistant modules, which

prevent adversaries from obtaining information contained within the module by erasing it

when an attack is detected. Around the same time, Best [31] proposed using a crypto-

microprosessor which holds a secret key that can be used to decrypt instructions of valuable

programs, preventing unauthorized re-distribution or manipulation of proprietary software.

The two studies were motivated by the increase in the need for software protection as com-

puters were projected to be widely available to individuals. This sparked a wide range

of research efforts (e.g., [209, 172, 90, 198, 117, 229, 230]) that investigate how software

protection can be achieved by relying on hardware cryptographic co-processors.

In the late 1990s, attacks utilizing sophisticated malware increased at an alarming rate [183],

which led to the formation of the Trusted Computing Platform Alliance (TCPA) in 1999 [201].

In early 2003, a nonprofit industry standards organization called the Trusted Computing

Group (TCG) replaced TCPA. The main goal of TCPA and TCG was to provide hardware

and software interface specifications, in order to increase interoperability between different

1



hardware and software vendors. This ultimately allowed the hardware to be adopted at a

large scale, providing hardware-based security to the mass [30].

TCG announced the specification for its first Trusted Platform Module (TPM) version

1.1b [110] in 2003, version 1.2 in 2009 [111], and 2.0 in 2014 [112]. TPMs are used in a

wide variety of applications, including OS secure boot [49] (a.k.a., static root-of-trust) and

disk encryption software (e.g., Microsoft Windows BitLocker [167]).

Around the same time the TCG announced the TPM 1.1b specification, ARM started to

develop a security architecture that provides hardware-assisted isolated execution. This later

became ARM TrustZone [156], a Trusted Execution Environment (TEE) available to many

devices that use ARM CPUs, especially smartphones. A TEE is a hardware-assisted security

primitive capable of running arbitrary code in a secure environment isolated from all other

software on the platform. An important feature of many TEEs is the ability to prove to a

remote party that a specific code is running in the TEE, thus establishing a dynamic root-

of-trust. In recent years, CPU manufacturers, such as Intel and AMD, introduced TEEs

for desktop computers and servers, e.g., Intel Software Guard Extensions (SGX) and AMD

Secure Encrypted Virtualization (SEV) in addition to the mobile-focused ARM TrustZone.

Apart from TEEs, Secure Hardware Tokens (e.g., Yubikey [235]) emerged as a new type

of trusted hardware component. Similar to TPMs, these tokens are capable of securely

storing secrets and performing cryptographic operations by utilizing an on-board Secure

Element (SE). Secure Hardware Tokens (SHTs) commonly implement protocols standardized

by the FIDO alliance [5], an industry-led protocol standard that aims to provide a means

for authentication without the need for passwords [6]. The protocol also allows tokens to

attest their authenticity to a remote party through a standard challenge-response protocol.

Furthermore, SHTs include mechanisms to prove that a human is using the device through

physical inputs such as buttons, touch sensors, and biometric sensors.
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Both TEEs and SHTs have become widely available in client and server machines, prompting

the following important question:

How can we utilize trusted hardware components to improve security and/or

privacy of systems?

This dissertation primarily focuses on Web systems, as they pose unique security and privacy

challenges. In particular, I focus on the following four challenges:

• Cloud computing platforms are increasingly adopting TEE-enabled services, including

Azure Confidential Computing [162], GCP Confidential Computing [101], and AWS

Nitro [9]. Migrating VMs and processes running in the cloud is essential for keeping

services (e.g., web servers) available to users. However, how is this possible if a VM or

process is protected using TEEs?

• Protecting DNS queries from network eavesdroppers is essential for user privacy. How-

ever, is it possible to protect them from adversarial DNS recursive resolver operators?

• CAPTCHAs have been used to thwart and mitigate both bot and excessive human

activity However, as their effectiveness decline, solving CAPTCHAs have become frus-

trating and some raise concerns regarding user privacy. Can users bypass solving

CAPTCHAs while maintaining the same security guarantees and benefiting from im-

proved privacy?

• Data regulations provide consumers with legal rights to access/modify/delete data col-

lected by websites. These same rights apply to those who do not hold an account on

that website. Since collected data contain personal information, websites must authen-

ticate the consumer. How can this be achieved while protecting consumer privacy and

meeting scalability requirements?

In this dissertation, I explore an exciting new line of research on the integration of trusted
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hardware components into the aforementioned systems to provide novel security and privacy

properties and highlight the challenges and issues that arise in the process.

1.1 Contributions

The contributions of this dissertation are:

• Four novel architectures that offer improved security and privacy functionalities due

to trusted hardware component integration: COMIT, PDoT , CACTI, and VICEROY.

• A focus on client-side trusted hardware in addition to server-side integration and the

novel security/privacy guarantees they provide.

• An overview of challenges faced during the integration and their mitigation.

• Proof-of-concept implementations of the four systems.

• Comprehensive security, latency, throughput, and deployability evaluation of each im-

plementation.

1.2 Dissertation Structure

Following the Introduction, Chapter 2 provides background information on TEEs. The

following two chapters focus on availability and privacy issues of server-side systems and

show how TEEs can help mitigate them. Chapter 3 focuses on availability issues for TEE-

enabled processes in cloud environments via COMIT, a software-only design that retrofits

migration functionalities into existing in-process TEE architectures. Chapter 4 presents

PDoT , a Private DNS-over-TLS architecture that protects privacy of DNS requests even from

adversarial DNS recursive resolver operators. The next two chapters shift toward privacy

and authenticity issues on the client side and explore how trusted hardware components
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can help. Chapter 5 points out privacy issues in current CAPTCHA systems and presents

CACTI, a protocol that allows clients to avoid solving CAPTCHAs while providing the same

security guarantees and improved user privacy. Chapter 6 introduces VICEROY, a protocol

that allows accountless consumers to securely and privately authenticate themselves when

accessing their data. Finally, Chapter 7 discusses directions for future work.

Note that background information specific to each project is described within each chapter.
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Chapter 2

Background

2.1 Trusted Execution Environments

A Trusted Execution Environment (TEE) is a security primitive that protects confidentiality

and integrity of security-sensitive code and data from untrusted code through isolation (either

virtually or physically). In this section, we provide an overview of basic functionalities offered

by TEEs and summarize different instances of TEEs.

2.1.1 Overview of TEEs

A typical TEE provides the following features:

Isolated execution. The principal function of a TEE is to provide an execution environ-

ment that is isolated from all other software on the platform, including privileged system

software, such as the OS, hypervisor, or BIOS. Specifically, data inside the TEE can only be

accessed by the code running inside the TEE. The code inside the TEE provides well-defined

entry points (e.g., call gates), which are enforced by the TEE.

Remote attestation. Remote attestation provides a remote party with strong assurances
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about the TEE and the code running therein. Specifically, the TEE (i.e., the prover) creates

a cryptographic assertion that: (1) demonstrates that it is a genuine TEE, and (2) unam-

biguously describes the code running in the TEE. The remote party (i.e., the verifier) can

use this to decide whether to trust the TEE and then bootstrap a secure communication

channel with the TEE. This is typically implemented by using an attestation key.

Data sealing. Data sealing allows the code running inside the TEE to encrypt data such

that it can be securely stored outside the TEE. This is typically implemented by providing

the TEE with a symmetric sealing key, which can be used to encrypt/decrypt the data. In

current TEEs, sealing keys are platform-specific, meaning that data can only be unsealed on

the same platform on which it was sealed.

Hardware monotonic counters. A well-known attack against sealed data is a rollback

attack, where the attacker replaces the sealed data with an older version. Mitigating this

requires at least some amount of rollback-protected storage, typically realized as a hardware

monotonic counter. When sealing, the counter can be incremented and the latest value

is included in the sealed data. When unsealing, the TEE checks that the included value

matches the current hardware counter value. Since hardware counters themselves require

rollback-protected storage, TEEs typically only have a small number of counters.

2.1.2 Instances of TEEs

This section describes several recent or current types of TEEs. We mainly focus on Intel

Software Guard Extensions (SGX), as it is used to implement three out of the four systems

proposed in the later chapters of this dissertation.

Intel Software Guard Extensions

One prominent example of a TEE is Intel Software Guard Extensions (SGX) [15, 118, 158].

SGX is a hardware-enforced TEE available on Intel CPUs from the Sky Lake microarchitec-
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ture onwards.

SGX allows applications to create isolated environments, called enclaves, running in the

application’s virtual address space. This is enabled via a special region in physical memory

reserved for enclaves, called the Enclave Page Cache (EPC), shared between all running

enclaves. When enclave data leaves the CPU boundary, it is transparently encrypted and

integrity-protected by the CPU’s Memory Encryption Engine (MEE), defending against

physical bus snooping/tampering attacks. The EPC of CPUs up to the 9th generation can

hold up to 128 MB of code and data, while the 10th generation CPUs have been upgraded

to hold up to 1 TB. Since enclaves run in the application’s virtual address space, enclave

code can access all memory of its host application, even that outside the enclave.

A thread can only invoke enclave code via predefined function calls, called ECALLs. Any

attempt to jump into the enclave without calling an ECALL is prevented by the CPU.

Every enclave has an enclave identity (MRENCLAVE), which is a cryptographic hash of the code

that has been loaded into the enclave during initialization, and various other configuration

details. Each enclave binary must be signed by the developer, and the hash of the developer’s

public key is stored as the enclave’s signer identity (MRSIGNER).

SGX provides two types of attestation: local and remote.

Local attestation is used by an enclave (A) to convince another enclave (B) that A is a

genuine Intel enclave and that both A and B are running on the same physical machine.

This is enabled through a shared symmetric key only known to the processor. The attestation

procedure is as follows:

1. Enclave A receives the MRENCLAVE value of enclave B.

2. A asks the hardware to generate a report destined for B using the MRENCLAVE value of

B.
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3. The report is generated by the hardware and forwarded to B. It is important to note

that at this step A can pass in data to the report. This data then can be used to create

a secure channel.

4. B receives the report, verifies it, and concludes that A is running on the same platform.

Remote attestation allows remote clients to cryptographically check what code is exactly

running inside the TEE. This is to assure that the client is talking to a genuine TEE or

that the data received from a TEE was generated by expected code. Remote attestation

process includes local attestation with a special enclave called quoting enclave, an enclave

created by Intel. The quoting enclave holds a group private key (SGX uses the EPID [41]

group signature scheme for this purpose) called the attestation key which is obtained by

the provisioning enclave during the provisioning phase. The provisioning is done during

the initial setup (or later if any critical components are updated due to vulnerabilities).

Once the quoting enclave verifies the content of the report it received from the enclave via

local attestation, it signs the report using its attestation key thus creating a quote. The

quoting enclave gives the quote back to the enclave and the enclave can hand the quote

to the remote party. The remote party then contacts the Intel Attestation Service or an

equivalent attestation service (e.g., Microsoft Azure Attestation [163]) to verify that this

quote is genuine. If verification succeeds, the remote party is convinced that the enclave is

running the expected code. Moreover, using group keys as remote attestation keys prevents

malicious remote parties to identify or link platforms running the enclaves.

In SGX, data can be sealed in one of two modes, based on: (1) the enclave’s identity (i.e.,

MRENCLAVE), such that only the same type of enclave can unseal it, or (2) the signer identity

(i.e., MRSIGNER), such that any enclave signed by the same developer (running on the same

platform) can unseal it. SGX provides hardware monotonic counters and allows each enclave

to use up to 256 counters at a time.
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Other TEE instances

Commercially available TEEs include AMD Secure Encrypted Virtualization (SEV) [12],

SEV Encrypted State (ES) [14], SEV Secure Nested Paging (SNP) [13], ARM TrustZone [23],

and AWS Nitro Enclave [11]. Commercially planned TEEs include Intel Trusted Domain Ex-

tensions (TDX) [126] and ARM Confidential Compute Architecture (CCA) [21]. Academic

projects include Keystone [146], Sanctum [65], and Penglai [86].

A note on attacks on TEEs. Ever since their introduction, there have been numerous

attacks on TEEs, including cache side-channel [151, 38, 69, 109, 170], control channel side-

channel [232], memory side-channel [227], fault injection [174, 53], and attacks exploiting

speculative execution [140, 150, 44]. In response, many mechanisms have been proposed to

mitigate such attacks [207, 216, 37]. We refer to [199] for a comprehensive discussion of

attack vectors and countermeasures.

We emphasize that defending against such attacks is orthogonal to the work in this dis-

sertation and that all proposed systems assume that the TEE architecture as well as all

algorithms and cryptographic primitives within the TEE are implemented correctly.
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Chapter 3

COMIT: Retrofitting Cooperative

Migration to In-Process Trusted

Execution Environments
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Abstract

Hardware-based Trusted Execution Environments (TEEs) are becoming increas-

ingly prevalent in cloud computing, forming the basis for confidential computing. How-

ever, the security goals of TEEs sometimes conflict with cloud functionality, such as

VM or process migration, because TEE memory cannot be read by the hypervisor,

OS, or other software on the platform. While some newer TEE architectures support

migration of entire protected VMs, there is currently no practical mechanism for mi-

grating individual processes containing in-process TEEs. The inability to migrate such

processes leads to operational inefficiencies or even data loss if the host platform must

be urgently restarted.

In this chapter, we present COMIT, a software-only design to retrofit migration

functionality into existing TEE architectures, while maintaining their expected security

guarantees. Our design allows TEEs to be interrupted and migrated at arbitrary

points in their execution, thus maintaining compatibility with existing VM and process

migration techniques. By cooperatively involving the TEE in the migration process, our

design also allows application developers to specify stateful migration-related policies,

such as limiting the number of times a particular TEE may be migrated. Our prototype

implementation for Intel SGX demonstrates that migration latency increases linearly

with the size of the TEE memory and is dominated by TEE system operations.
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3.1 Introduction

Confidential computing is an emerging model in cloud computing, which is already offered

in some form by each of the three largest cloud providers [162, 101, 9]. The primary aim of

confidential computing is to protect data in use, e.g., against insider threats or compromise

of the underlying cloud infrastructure. Currently, the leading approach for achieving this is

to use hardware-enforced Trusted Execution Environments (TEEs).

Although there are multiple TEE technologies, the overarching idea is the same — to create

a strong security boundary between the TEE and other software components. Misbehavior

by any component outside the TEE cannot violate confidentiality or integrity of the TEE.

Specifically, data within the TEE can only be read or modified by code within the same

TEE. TEEs often also provide remote attestation functionality, through which a remote

party can ascertain what code runs within the TEE, and use this information to make

security decisions.

Current TEE technologies can be divided into two groups: those that enable the creation

of one or more in-process TEEs within an application process, and those that protect larger

structures such as containers or entire VMs.

However, the hardware-based nature of most modern TEEs conflicts with VM or process

migration. By design, TEE memory cannot be read by the hypervisor, OS, or other software

on the platform, preventing existing migration techniques to be used directly on systems

containing TEEs. While some newer TEE architectures support migration, this is not uni-

versally available, and there are no in-process TEE architectures that support migration.

There are several reasons why migration is important in cloud computing. From an opera-

tional perspective, the cloud provider may want to move VMs to different physical machines

to reduce the number of active machines. From a security perspective, the cloud provider may

need to restart specific physical machines to apply firmware security updates, e.g., to defend
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against newly-identified side-channel attacks against the TEE [140, 150, 44, 233, 174, 221].

Finally, the tenants (customers) of the cloud provider may want to move their workloads to

a different provider. In these scenarios, the inability to migrate a process that uses a TEE

could lead to operational inefficiencies or, in the worst case, data loss if the physical machine

must be restarted.

In light of this, several TEE architectures have announced native support for migrating TEEs,

namely AMD SEV [12], SEV-SNP [13], and Intel TDX [126]. Some prior work [186, 185, 113]

has proposed approaches to support migration of VMs with Intel SGX enclaves. However,

these TEEs are VM-based, not in-process.

Compared to VM migration, in-process TEEs are harder to migrate because they are not

designed with migration in mind. There have been several proposals to retrofit migration

functionality into existing in-process TEE architectures. Guerreiro et al. [114] use Hardware

Security Modules (HSMs) to manage the cryptographic keys needed to securely migrate

the data; Alder et al. [4] describe how to migrate the persistent state (e.g., hardware-based

monotonic counter values) associated with a TEE. However, all of these require either change

to the hardware (which is likely to be impractical given the large deployed base), or the

assumption that the TEE will reach a quiescent state before it is migrated, which limits the

applicability of the technique.

In this chapter, we present COMIT, a software-only design to retrofit migration functionality

into existing TEE architectures, while maintaining their expected security guarantees. The

core idea is to add a minimal set of extra functionality to the TEE and then enlighten the

migration tool to make use of this functionality. COMIT makes the following contributions:

(1) It enables migration of existing in-process TEE architectures, without requiring modifi-

cations to the hardware or placing constraints on the software running within the TEE. This

is challenging because it requires a software-only mechanism that can operate within the
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constraints of existing TEE architectures (e.g., in Intel SGX, some critical data structures

are inaccessible even from software within the enclave). Furthermore, these architectures

may not have been designed with migration in mind.

(2) It allows TEEs to be interrupted, migrated, and resumed at arbitrary points in execution,

thus matching the paradigm of existing process migration tools, such as CRIU [182]. This

allows us to integrate COMIT with current tools with minimal changes. Our method for

enlightening these tools is itself extensible and could be used to enable new types of process

migration behavior.

(3) It involves the TEE in the migration operation, resulting in a type of cooperative migra-

tion. This gives TEE application developers the ability to specify flexible stateful policies to

govern migration. Examples of such policies may be to limit the number of times a particular

TEE is migrated or to migrate only a subset of the TEE’s memory.

As a proof of concept, we implemented COMIT for Intel SGX. Through micro and macro

benchmarks, we show that migration latency increases linearly with the size of the TEE and

that the overhead is dominated by TEE system operations, mainly creation and termination

of TEEs.

3.2 Migration is the Cloud

For a large number of cloud services, liveness relies on the availability of the machines on

which the service is deployed [165, 96, 8]. This architecture runs counter to the deploy-

ment philosophy of many cloud providers. Cloud providers consider a single machine to be

expendable and instead define large availability zones where machines within a single avail-

ability zone may become simultaneously unavailable while machines in different availability

zones will be available [161, 97, 10]. In this situation, migrating the application from a ma-

chine that the cloud provider plans to soon shut down provides a high level of availability.
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Therefore, migrating TEEs is important, especially as confidential computing is gaining pop-

ularity amongst cloud providers. In this section, we describe VM-based TEEs that support

migration and then discuss the state-of-the-art system for in-process TEEs.

TEE VM migration. AMD enabled its TEE extensions SEV and SEV-SNP with hardware

support for live migration [12, 13]. The hardware extensions provided by AMD SEV are

called AMD Secure Processor (SP) which manages the encryption keys required for live

migration. During TEE VM migration, the destination SP attests itself to the source SP

and once the attestation is verified, the source SP sends the key securely to the destination

SP. After verification is completed successfully the source SP sends encrypted TEE VM

pages to the destination SP, which uses the key sent by the source SP to decrypt the pages

and copy them into the destination TEE VM.

AMD SEV-SNP improves upon the AMD SEV model by introducing migration agents. A

migration agent oversees the enforcement of migration policies removing the requirement for

the VM to maintain its migration policy.

Intel announced live migration support for their unreleased TEE extension, TDX [126]. TDX

creates TEE VMs, called trust domains (TDs). Similar to SEV-SNP’s migration agent, TDX

utilizes an entity called migration TD. The source and migration TDs conduct mutual remote

attestation and negotiate a key to encrypt the contents of the migrating TD.

Although Intel’s current TEE architecture, SGX, does not natively support migration, several

attempts had been made. The first was by Park et al., which proposed a design that supports

live migration of SGX-enabled VMs [186]. It discussed several problems of migrating such

VMs, including secure migration of enclave memory. The idea was to introduce a new set

of CPU instructions to enable live migration. A follow-up work [185] implemented the new

set of instructions using OpenSGX [132], a fully functional Intel SGX emulator based on

QEMU.
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Gu et al. [113] utilize a control thread to securely copy an enclave’s state from within the

TEE. The system uses a scheme called “two-phase checkpointing”, which requires an enclave

to reach a checkpoint before migrating, to ensure data consistency of migrated enclaves. The

system was implemented using a variant of the KVM that provides support for Intel SGX

in applications, guest OSs, and KVM itself.

Unfortunately, these results cannot migrate a process running within an operating system

without the coordination of the application being aware and adding logic that coordinates

with the migration coordinator. This results in TEEs losing a considerable amount of utility

when run on a machine within a cloud data center. Additionally, aforementioned systems

cannot migrate a process running within the TEE without migrating the entire VM. This

increases latency and adds strain to the cloud provider’s network bandwidth, as a larger

amount of data must be migrated. This motivates migrating in-process TEEs without the

need of migrating the entire underlying VM.

In-process TEE migration. To the best of our knowledge, TEEnder [114] is the only

work that aims to enable migration for in-process TEEs, specifically Intel SGX. TEEnder

uses Hardware Security Modules (HSMs) to encrypt and decrypt SGX enclave data during

migration. The main motivation behind using HSMs is the recent findings of security vulner-

abilities surrounding SGX remote attestation [147, 206, 215, 221]. TEEnder realizes this by

integrating enclave applications with HSMs and implementing an infrastructure that utilizes

HSMs to provide enclaves with migration capabilities. However, the usage of HSMs, although

motivated clearly, will decrease the deployability of the system as well as the performance

of migration.

Given the challenges above, a design for migrating TEE-containing processes must fulfill the

following requirements:

R1 The migration functionality must be retrofitted into existing TEE architectures.
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Figure 3.1: Overview of the main components COMIT and the interactions between them.

R2 The design must maintain the existing security guarantees provided by the TEEs.

R3 The TEE developer must be able to define stateful policies that govern migration.

We present an overview of our design in the next section and show how it meets these

requirements in Section 3.4.

3.3 System Overview

Figure 3.1 shows an overview of the main entities in COMIT, and the interactions between

them.

The migration begins when the migration initiator decides that a process should be migrated

from the node on which it is currently running (the source) to another node (the destination).

The source process contains at least one TEE that must be included in the migration. The

migration can be broadly divided into two phases: checkpoint (§3.3.1) and restore (§3.3.2).
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3.3.1 Checkpoint phase

The first step in the checkpoint phase is to pause the execution of the source process by

stopping all currently executing threads, including those within the TEE. With the execution

paused, the state of the source process can be serialized and saved. There are several existing

tools, such as CRIU [182], that can be used to serialize and save the state of the source

process. We refer to this type of tool as the migration agent on the source (and destination)

node.

However, since the migration agent is running outside the TEE, it cannot directly read

the TEE’s memory, as would be required to perform the migration. Using an unmodified

migration agent on a process containing a TEE typically results in an access violation.

COMIT, therefore, requires a small amount of additional functionality to the TEE, through

the inclusion of a software library. This functionality can be used to request the TEE to

serialize its state, encrypt it, and write the output to the memory of the source process. The

cryptographic key used to encrypt (and subsequently decrypt) the TEE’s state cannot be

revealed to the source process, so it is securely transferred to a trusted migration key service.

The existing migration agent can be enlightened to i) recognize that the source process

contains a TEE, and ii) use the additional functionality added to the TEE to perform the

migration. The output of the checkpoint phase is the serialized state of the source process,

including the encrypted state of one or more TEEs. This state is then transferred to the

destination host.

3.3.2 Restore phase

The restore phase begins when the destination node receives the state from the checkpoint

phase. This state is used to recreate the saved process (now referred to as the destination

process), using a migration agent on the destination node (e.g., CRIU). Using information

from the saved process state, the migration agent also creates one or more fresh TEEs in the

19



destination process, corresponding to the TEEs that were paused in the source process.

However, the migration agent does not have the decryption keys for the encrypted TEE

state and cannot write directly to the memory of the destination TEE. Similar to the check-

point phase, COMIT delegates the task of restoring the TEEs’ internal state to the TEEs

themselves. Specifically, the additional functionality added to the TEE can also be used to

restore a previously-saved TEE state onto a newly-initialized TEE.

The destination TEE securely retrieves the decryption keys from the migration node, using

remote attestation to demonstrate that it is the correct type of TEE running the expected

code. Once the keys have been retrieved, the destination TEE decrypts the saved state and

transforms itself by overwriting its own heap, stack, and other data structures with those

from the restored state. Once the migration has been completed, this restored TEE can

continue operating from the same point at which the source TEE was paused.

3.4 Design Challenges

This section discusses challenges arising from requirements in Section 3.2 and approaches for

addressing them in COMIT.

3.4.1 Retrofitting migration to existing TEEs

The requirement to support existing TEE architectures, which may already be widely de-

ployed, precludes modifying TEE hardware (e.g., [186]) and necessitates a software-only

approach. Since only the software running within the TEE can read and write TEE mem-

ory, the checkpoint and restore functionality must be provided from within the TEE. As

described in Section 3.3, COMIT adds these functionalities by including an additional soft-

ware library within the TEE. In the future, this library could be included by default in the

TEE development frameworks (e.g., Open Enclave [164]). Performing the migration from
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within the TEE raises specific challenges in both checkpoint and restore phases.

Arbitrarily pausing TEEs. Halting a TEE without modifying TEE hardware is a chal-

lenge. One way of doing this is to wait until the TEE reaches a certain point in its execution

and exit (e.g., [113]). However, this requires the TEE to be aware of the migration and thus

may not fit the requirements of certain migration agents (e.g., CRIU requires processes to

be arbitrarily paused). This means that COMIT must be able to halt a TEE at any point in

time. COMIT realizes this by using interrupts, which are widely supported across different

TEE architectures.

Operating within the TEE. The checkpoint functionality is invoked once the source TEE

has been paused, and therefore must carry out its operations without affecting the state of

the source TEE. In addition, the working state of this operation must not be included in

the saved state of the TEE. Techniques used to overcome these challenges will vary by TEE

technology (e.g., we describe our implementation for Intel SGX in Section 3.5). However, in

general, this requires the checkpoint operation to use its own stack and heap memory. The

restore functionality faces similar challenges in that it must decrypt and process saved state

within the fresh destination TEE and then overwrite the state of that TEE (stack and heap)

with restored state. This means that the restore operation must use its reserved memory

within the TEE.

Understanding TEE memory. The next challenge is that the checkpoint and restore

operations within the TEE must understand the TEE’s memory map. For example, the

TEE’s memory might contain control structures that cannot be read or written even by

software running within the TEE (e.g., the Thread Control Structures in Intel SGX). The

migration operations must take care to avoid these memory regions. Additionally, COMIT

may need to use architecture-specific techniques to infer the values held in these control

structures in the source TEE and to correctly set these values in the destination TEE.
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3.4.2 Maintaining TEE security

When migrating TEEs, COMIT needs to ensure that existing TEE security guarantees still

hold. Specifically, the only change to the security model is that the TEE can be migrated.

As described in Section 3.3, the checkpoint operation encrypts the TEE’s memory before

writing it outside the TEE. Specifically, an authenticated encryption scheme, such as AES-

GCM, must be used so that the integrity of the saved state can be verified by the destination

TEE. We refer to the symmetric encryption/decryption key as the migration key.

Secure key transfer. The migration key cannot be directly exported with the saved

state — it must instead be securely transferred to the destination TEE. If the source and

destination TEEs were running concurrently, they could use existing remote attestation

functionality to mutually attest each other, establish a secure channel, and securely transfer

the migration key. However, requiring both TEEs to be running concurrently would severely

limit the applicability of the approach. For example, existing process migration tools such

as CRIU [182] operate strictly sequentially: the checkpoint phase is completed before the

restore phase begins. Requiring concurrently running source and destination TEEs would

also preclude the possibility of self-migration, where the source and destination are the same

physical node. This would be used to allow the node to be restarted e.g., to install security

firmware updates.

To overcome this challenge, COMIT makes use of a new migration key service (MKS), which

serves as a trusted intermediary and key escrow service between the source and destination

TEEs. Specifically, once the source TEE has generated the migration key, it establishes a

secure channel with the MKS and sends the migration key. The restore operation in the

destination TEE retrieves the migration key from the MKS and uses it to decrypt the TEE

state.

The MKS is a relatively simple store-and-forward helper service, for which there are various
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Figure 3.2: Secure transfer of the migration key (MK) from source to destination TEE via
the Migration Key Service. All communication takes place via secure channels.

possible implementations. One possibility is to implement the MKS using another TEE,

either on the source, destination, or another node. As shown in fig. 3.2, the source TEE

attests the MKS to ensure that the migration key is only transferred to a trustworthy MKS,

and the MKS attests the source TEE to verify the provenance of this key. Subsequently,

the MKS attests the destination TEE to ascertain that it is the correct type of TEE (e.g.,

the same as the source TEE), and the destination TEE attests the MKS to again verify the

provenance of this key. This provides the same security guarantee as the direct key transfer

between source and destination TEE.

Fork and roll-back attacks. In addition to secure key transfer, the design must also

ensure that the migration functionality itself cannot be used to mount attacks such as a fork

or roll-back attack [4]. Specifically, we need a mechanism to ensure that the source TEE

cannot continue running after the checkpoint operation has been completed, as this could

lead to a fork attack with multiple copies of the same TEE running. To prevent this, COMIT
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blocks the source TEE from being resumed before the output from the checkpoint operation

is released. Although the precise implementation is architecture-dependent, it can always be

achieved through minor modifications of the TEE’s software. We also require a mechanism

to prevent one saved state from being restored to multiple destination TEEs (another type of

fork attack) or being restored more than once (a roll-back attack). This cannot be prevented

by changes within the TEE, so COMIT requires the MKS to only release the migration key

to a single destination TEE.

3.4.3 Supporting policy-governed migration

The design must provide mechanisms that TEE developers can use to define and enforce poli-

cies to govern the migration of the TEE. COMIT does not define any specific policies, rather

it aims to provide as much flexibility as possible to TEE developers. Specifically, COMIT

enforces policies by calling a developer-defined function (which calls additional functions)

during the restore phase before allowing the TEE to resume operation. Since the TEE state

has already been decrypted and put into place, this function can be stateful and can inspect

the full state of the TEE. The return value of this function indicates whether the TEE should

be allowed to resume operation. This ensures that every restore operation is visible to the

TEE. We sketch two example policies to illustrate the use of this mechanism.

Limited number of migrations. One example policy could be to limit the number of times

a specific TEE can be migrated. This may be useful in cases where the TEE developer is

concerned that an excessive number of migrations might leak information from the TEE (e.g.,

through side-channel attacks) and limit the number of times the cloud provider migrates a

TEE. To implement this, the developer would define a counter variable in the TEE’s memory

and decrement this on each successful restore operation. When the counter reaches zero, the

function would indicate that the TEE should not be permitted to resume.

Clearing caches upon migration. As another example, the policy might not need to gov-
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ern whether the TEE can be resumed, rather define a set of actions that must be performed

after each migration. For example, the TEE might contain a node-specific state (e.g., some

type of cache of local sessions) that should be invalidated if the TEE is migrated. Again

this can be achieved by calling a developer-defined function that clears/resets this part of

the state whenever the TEE is restored.

3.5 Implementation

This section describes COMIT-SGX, an implementation of COMIT for Intel Software Guard

Extensions. Although our implementation is based on the Open Enclave SDK [164] v0.16.1,

it could be applied to any other SGX SDK. We first describe the specific steps required for

migrating an Intel SGX enclave (§3.5.1) and then discuss how we integrated these into the

CRIU [182] process migration tool (§3.5.2).

3.5.1 Enclave Migration

In practice, migrating an SGX enclave requires some additional preparation before the check-

point phase and some additional cleanup after the restore phase. We, therefore, describe this

process in terms of the following four phases:

1. Preparation Phase: Initializes variables used for migration.

2. Checkpoint Phase: Collects, encrypts, and exports all necessary data from the source

enclave.

3. Restore Phase: Imports, decrypts, and restores all data to the destination enclave.

4. Cleanup Phase: Cleans up data structures (e.g., buffers) used for migration.

Below, we describe each phase in detail.
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Figure 3.3: Enclave migration flow

Preparation Phase

The preparation phase is run asynchronously, any time before the enclave is to be migrated.

This can either be integrated into the enclave’s initialization sequence or called via a separate

ECALL. In this phase, the enclave generates a migration key and initializes the encryption

context (i.e., the data structures used by the cryptographic library). It also retrieves the

memory addresses and sizes of the enclave’s stack, heap, and data sections, as well as the

address and size of the SGX-specific State Save Area (SSA). These values are stored within

the enclave in preparation for migration.

Checkpoint Phase

To initiate the checkpoint phase, the host should interrupt all enclave threads and call a

newly-added ECALL (called enclave export all). In this ECALL, the host provides a pointer

to a memory buffer outside the enclave, into which the encrypted state should be written.

The enclave then performs several steps to serialize, encrypt, and save its state.
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Halting enclave threads. COMIT-SGX uses interrupts to pause TEEs. In Intel SGX,

interrupting a thread that is within the enclave causes an event called an Asynchronous

Exit (AEX). When it occurs, the CPU saves the thread’s state in the enclave’s State Save

Area (SSA). This saved state includes the Thread Local Storage (TLS), current instruction

pointer, stack and base pointers, and other register values (within a data structure called

GPRSGX). The CPU then clears the registers and jumps to a predefined code location

outside the enclave.

The host process (i.e., the source process) can send a signal to each thread within the enclave

to cause an AEX. However, the default behavior of most SGX frameworks is for the thread

to immediately re-enter and resume executing within the enclave after the interrupt has been

handled. The host process, therefore, needs to take additional steps to prevent the thread

from re-entering the enclave. A simple way would be to cause the thread to sleep or spin

in an infinite loop. However, all enclave threads jump to the same code address outside the

enclave when they are interrupted. At least one thread is required to perform the checkpoint

operations within the enclave, and this thread might also be periodically interrupted. If this

thread is interrupted, it should not be held outside the enclave.

The host process can overcome the above issues using three flags: IS HOST MIGRATING,

HAS ENTERED ENCLAVE, and ALLOW ERESUME. All three start in the unset state. The host

process first sets the IS HOST MIGRATING flag to indicate that it is going to halt the enclave

thread. This flag causes the interrupted enclave threads to be kept in an infinite loop, which

is conditioned to break when the ALLOW ERESUME flag is set. Finally, the HAS ENTERED -

ENCLAVE flag is set immediately before the migration thread enters the enclave. This flag

prevents any new threads from being caught in the infinite loop, while still holding the

previously-captured threads.

Once the migration thread has entered the enclave (via the enclave export all ECALL),

it could set an in-enclave flag to prevent any other ECALLs from being made. It could
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also prevent any threads from being resumed while the migration is in progress by saving

and overwriting the saved instruction pointer values in the SSA. If any thread did resume

operation after this point, it would cause the enclave to crash.

Exporting enclave data. With the enclave paused, the next step is to encrypt and export

the enclave’s data. This includes (1) data section, (2) heap section, (3) stack, and (4) SSA.

These data are serialized by concatenating all the above in the order shown. We do not

export code data because we assume both the source and destination enclaves are running

the same code.

Additionally, every SGX enclave includes one or more Thread Control Structures (TCS),

which cannot be read or written even by code running within the enclave. Each TCS

contains a Current State Save Area (CSSA) value, which indicates how many threads have

been interrupted and are now outside of the enclave. Since we are using interrupts to halt

enclave threads, we need to infer the CSSA value. We could employ the same method

proposed in [113], which introduces a software monitor to keep track of how many threads

have entered and exited the enclave.

Recall that enclave data must be encrypted before it can be written outside the enclave

(Section 3.4.2). We use AES in GCM mode (i.e., authenticated encryption) with a 256-bit

key for this purpose. We implemented this using both the cryptographic libraries supported

by Open Enclave: mbedTLS and OpenSSL. Once encrypted, that data is written to the

specified buffer outside the enclave.

Restore Phase

The restore phase also consists of several steps. First, the destination enclave must be created

and initialized. Second, COMIT-SGX creates one or more placeholder threads within the des-

tination enclave, corresponding to the threads that were interrupted from the source enclave.
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Third, the host process initiates the restore process by calling a new ECALL (enclave im-

port all). This ECALL takes the pointer to the encrypted enclave data received from the

source process. Finally, the restored enclave threads resume execution from the point at

which they were interrupted.

Creating placeholder threads. Placeholder threads are essentially enclave threads with

an infinite loop. There are several reasons for creating placeholder threads in the destination

enclave. First, we need a pre-allocated memory region to lay out the exported enclave data

back to its original location. Second, this causes the CPU to increase the CSSA value in the

TCS. This technique overcomes the limitation of not being able to write to the TCS from

software, and can thus be used to set the correct CSSA values. COMIT-SGX, therefore,

creates a placeholder thread in the destination enclave for each thread that was interrupted

from the source enclave.

Restoring enclave data. The main challenge during the restoration phase is to ensure

that the enclave data is restored to the correct location. For security reasons, the saved

state must be decrypted within the destination enclave. The data structure used by the

cryptographic library (i.e., the decryption context) is typically allocated on the heap. This

creates a problem when we restore the heap section, because we may potentially overwrite

the decryption context when we are decrypting and restoring the subsequent section. To

overcome this issue, COMIT-SGX places the decryption context in the global data section

and intentionally avoids that area during the restoration process. This is possible because the

same code runs in the source and destination enclaves, allowing encryption and decryption

contexts to be allocated in the same memory location.

Cleanup Phase

Both source and destination processes carry out a cleanup phase after they have completed

their respective roles in the migration. The source node tears down the enclave. Alter-
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natively, if allowed by the enclave developer, the host process may resume the enclave by

setting the ALLOW ERESUME flag. This is essentially “forking” the enclave, which may be

desirable in some circumstances. On the destination node, the buffer that was used to store

the encrypted enclave data can be freed.

3.5.2 Integrating COMIT-SGX into CRIU

In this section, we describe how enclave migration can be integrated into existing process

migration tools. Specifically, we integrate COMIT-SGX into CRIU [182]. Below we describe

this integration in each of the four phases discussed above. Although we describe this in the

context of a source process that contains a single enclave, it applies to the case of multiple

enclaves.

Preparation Phase

In addition to the steps described in Section 3.5.1, the source process must perform several

steps. First, it must close file descriptors to stdin, stdout, stderr, and /dev/sgx, as

they cannot be migrated by CRIU. Second, it must allocate a memory buffer to store the

encrypted enclave memory, the address of which is passed as a parameter when calling

enclave export all. Finally, it creates a file containing code pointers to several functions

within the source process, which will be used in both the checkpoint and restoration phases.

Checkpoint Phase

This phase begins when the migration initiator instructs the migration agent (in this case,

CRIU) to migrate a specific process (in this case, the source process). CRIU process transi-

tions the source process into a “seized” state and begins to determine what must be migrated.

To do this, CRIU injects a piece of code (called the parasite code) into the source process.

The parasite code allows CRIU to gain access to resources held by the source process, such

as file descriptors and threads. However, by design, even this parasite code cannot read the
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memory of the SGX enclave.

Extending CRIU. COMIT-SGX, therefore, extends the parasite code to work with the

source enclave in order to achieve the migration. Specifically, we extend the parasite code

to call the enclave export all ECALL. Although it may be possible to make this ECALL

from outside the source process (e.g., from the migration agent), this would involve several

address translations. A more natural approach is for the injected parasite code to make this

ECALL, since it: i) has direct access to variables in the source process, such as the enclave

context, and ii) can directly invoke functions from the source process’s address space, such

as the ECALL.

Determining function addresses. However, the addresses of the enclave export all

ECALL and other enclave functions are not deterministic, due to memory address randomiza-

tion. To overcome this issue, our enlightened version of CRIU looks up the necessary function

pointers in the file created in the preparation phase (§3.5.2). Specifically, the parasite code

opens the file from a predefined location, retrieves the function pointers, and invokes each

of the functions sequentially.

Passing parameters. Since this approach does not allow CRIU to pass arguments to any

of the functions, the function pointers in the file should point to wrapper functions that

do not take any parameters. These wrapper functions could in turn call other functions for

which the parameters have been determined in advance. A specific example is the enclave -

export all ECALL, which must include the address of the memory buffer outside the enclave

into which the encrypted state will be written. This parameter can be determined when the

buffer is allocated (i.e., in the preparation phase). CRIU calls a wrapper function with no

parameters, which in turn calls this ECALL with the pre-prepared parameter value.

Further extensibility. This approach is extensible in that the application developer can

provide additional functions for CRIU to invoke before starting the migration. Apart from
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enabling cooperative migration of TEEs, this could also be used to support other types

of extended functionality e.g., if the source process needs to perform some non-standard

clean-up operations or close some resources before being migrated.

Overall checkpoint process. The interaction between the source process and the source

enclave is shown in Figure 3.3a. Putting it all together, the checkpoint process proceeds

as follows: When CRIU seizes the source process, this will interrupt and pause all of the

source process’s threads. Specifically, this will cause an AEX for any threads within the

enclave, as required. Once the process is seized, CRIU injects the parasite code into the

source process and invokes it. The parasite code then calls the enclave export all ECALL,

which as described above, causes the enclave to serialize, encrypt, and write its state to the

memory of the source process. This memory will then be included in the saved process image

output by CRIU, alongside the rest of the source process’s memory. Finally, after all the

data has been exported, the parasite code destroys the enclave. The migration agent can

then transfer the saved process image to the destination node.

Restore Phase

The restore phase begins once the migration initiator has transferred the process image to

the destination node and invoked the migration agent (CRIU) on the destination node. The

CRIU process on the destination node uses this process image and essentially transforms

itself into the restored destination process. To restore the process memory, CRIU uses

another separate piece of code called the restorer blob. As with the parasite code in the

checkpoint phase, COMIT-SGX extends the CRIU restorer blob to handle restoration of

the enclave. The interaction between the destination process and the destination enclave is

shown in Figure 3.3b.

Restoring a process with CRIU. CRIU first restores resources that do not require the

restorer blob, such as threads. This includes the enclave threads that were exported during
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the checkpoint phase. CRIU then injects the restorer blob into its process memory and uses

this blob to restore the memory from the saved process image.

Restoring an enclave with CRIU. Once the destination process’s memory has been

restored, the restorer blob needs to create and restore the destination enclave. COMIT-

SGX uses a similar mechanism as for the parasite code in the checkpoint phase in that the

restorer blob accesses a file at a predefined location and reads a list of function pointers to

invoke. As described above, this file of function pointers was created during the preparation

phase. Since the destination process does not yet contain an enclave, the restorer blob first

invokes the function to create an enclave and the ECALL to initialize important variables (e.g.,

encryption context) within the enclave. It then creates one or more placeholder enclave

threads, corresponding to the number of enclave threads that were interrupted. Each of

these threads is then interrupted and destroyed once outside the enclave. The restorer

blob then invokes the enclave import all ECALL (via the corresponding wrapper function).

As discussed in Section 3.5.1, this ECALL restores the exported enclave data to the correct

location.

Cleanup Phase

In addition to the steps described in Section 3.5.1, the injected restorer blob must be removed

from the destination process’s memory. Finally, the restored process is released from its

seized state and starts resuming its execution. Once the restored process is resumed, the

restored enclave thread can re-enter the enclave and continue execution.

3.6 Evaluation

We evaluated COMIT-SGX to understand the overheads and performance impact of mi-

grating in-process TEEs. In §3.6.1 we first describe the settings of the environment and

benchmarks used for the evaluation. Next, we report the throughput of an application run-
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ning in an enclave and the performance impact of when it is migrated (§3.6.2). Then, we

show the overall latency of migrating both the host application and enclave (§3.6.3). Next,

we report the latency of migrating just the enclave (§3.6.4) and the host application (§3.6.5).

Finally, we consider the cryptographic operations used in COMIT-SGX (§3.6.6).

3.6.1 Experimental Setup

We conducted our experiments using a Microsoft Azure Confidential Computing DC4ds v3

series VM. The VM had 4 Intel Xeon Platinum 8370C vCPUs (Icelake, 2.80 GHz) with 32

GB of assigned memory of which 16 GB could be used by the SGX TEE’s enclave page cache

(EPC). We ran Ubuntu 18.04 and installed the Intel SGX DCAP Driver version 1.33.2. To

remove disk I/O latency from the critical path, we used a RAM disk to store images created

by COMIT-SGX’s checkpoint phase.

Implementation. We built our implementation of COMIT-SGX in 913 lines of C/C++

code of which 96 lines were additions or modifications to the Open Enclave SDK and 204

lines were additions or modifications to CRIU. COMIT-SGX was integrated into CRIU

version 3.15 and Open Enclave version 0.16.1. All cryptography was performed using either

mbedTLS version 2.16.10 or OpenSSL version 1.1.1k and COMIT-SGX used OpenSSL unless

otherwise specified.

Benchmarks. The throughput evaluation used the SmallBank benchmark [7] which models

a bank with 1, 000 accounts. The clients perform one of five randomly selected transactions

that either: deposit funds; transfer funds; withdraw funds; check an account’s balance; or

amalgamate two accounts. We implemented the SmallBank benchmark with SQLite version

3.34.1. We ran the benchmark for 10 seconds allowing it to reach a steady state before

migrating it to a different process and then ran it for another 10 seconds ensuring the

migrated process also reached a steady state.
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(a) The blue line is the average number of transactions in the previous second. The vertical lines
show when certain migration operations occurred.
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(b) The blue plot shows the actual number of transactions that occurred per second. Vertical lines
show the point of time where certain migration operations occur.

Figure 3.4: Migration affecting throughput of application with a 64 MB enclave running
SmallBank benchmark.

3.6.2 Throughput

We first explored how the throughput of an application is affected when it is migrated. We

created an in-memory SQLite database inside a 64 MB size enclave and manipulated the

data within the database by executing the SmallBank benchmark [7].

Figure 3.4a shows the result. The blue plot shows the number of transactions executed

per second on a one-second rolling average, which calculates the average of transactions

in the previous second. We plot our results starting after the first second and advance
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Figure 3.5: Latency of checkpointing/restoring host application and enclave when varying
enclave size. Enclave runs a simple counter application.

in 1-millisecond increments. The vertical blue, green, and purple dashed line shows the

time points where the checkpoint starts, checkpoint ends and restore starts, and restore

ends, respectively. We can see that the throughput of nearly 1, 300 transactions per second

(txns/s) dips to 750 txns/s as the migration happens, and recovers after around 1, 400 ms.

In this benchmark, when we consider the number of transaction executed per second, the

rolling average of executed SmallBank transactions never dips to zero. This shows that most

applications – which typically consider their throughput at a per-second granularity – will

never experience an instance when their application is unavailable.

We further consider a more course-gained concept of availability in Figure 3.4b. This figure

shows the case where we plot the sum of the number of transactions recorded per second. We

see a similar trend as Figure 3.4a, where the number of executed transactions in a window

is approximately 1, 300 txns/s, dips to appropriately 750 txns/s, and recovers back the next

second. Thus, we observe that a window of unavailability – where throughput is 0 txns/s –

does not exist and the window of reduced throughput is only one second.

36



8 64 128 256 512 1024
Enclave size [MB]

0

1

2
O

p
er

at
io

n
la

te
n

cy
[s

]

Destroy enclave

Checkpoint enclave

Restore enclave

Create enclave

Figure 3.6: Latency of enclave migration operations when varying enclave size. OpenSSL
is used to encrypt/decrypt enclave data. Checkpoint and Destroy enclave operations occur
during checkpoint phase, while Create and Restore enclave operations occur during restore.

3.6.3 Migration Latency

Now, we look at the impact of migrating enclaves with an increasing amount of memory

allocated to the enclave and report all results as the average of 10 measurements. We first

show the overall latency of migrating both the host application and enclave.

We measured the change in migration latency when varying the enclave size from 8 MB up to

1024 MB, increasing in two folds. The enclave sizes were chosen based on a survey conducted

by Guerreiro et al. [114] on various projects that include enclaves, in which they concluded

that enclave sizes between 1 MB and 1 GB represent many development scenarios. The

enclave ran an application that incremented a counter from 0 to 1, 000, 000, 000. For this

evaluation, we used OpenSSL (see § 3.6.6 for a comparison of cryptographic libraries). We

use this benchmark to understand the overall latency of COMIT-SGX with the side-effects

that a more complex workload such as SmallBank may introduce.

Figure 3.5 shows the time required for COMIT-SGX to checkpoint or restore the host ap-

plication and the enclave when the enclave size changes. We can see that the restore phase

takes the most time (2.55 sec for a 1 GB enclave) while checkpoint takes less time (0.95

sec). We also observed that the latency for both phases increases linearly with the enclave
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Figure 3.7: Latency of checkpointing/restoring only the host application. The same amount
of memory needed to store encrypted enclave data is allocated by the host application and
is migrated with the application.
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Figure 3.8: Latency of checkpointing/restoring only the host application. No memory buffer
is allocated.

size. Since modern Icelake CPUs have an EPC that is half the available system memory,

we expect this linear relationship between the enclave’s memory and migration time to be

consistent until memory is exhausted. This allows COMIT-SGX users to estimate the time

required to migrate their enclave.

3.6.4 Enclave Migration Latency

Next, we consider the overhead introduced when migrating just the enclave when varying

enclave size. We measure key enclave operations, namely checkpoint enclave, destroy enclave,
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create enclave, and restore enclave. Note that (1) and (2) occur during the checkpoint phase

and (3) and (4) occur during the restore phase. These operations were chosen based on

preliminary observations conducted before this evaluation.

The results are shown in Figure 3.6. We can observe that creating an enclave takes the most

time (1.91 sec for 1 GB enclave), followed by checkpoint (0.40 sec), restore (0.30 sec), and

destroy enclave (0.15 sec). The reason that creating an enclave takes the longest is because

of the allocation and initialization of enclave pages. We can see that the restore phase is

the largest contributor to the latency we observed in Figure 3.5. The other essential enclave

migration operations (checkpoint and restore enclave) introduce minimal latency.

Another point of consideration is that the create enclave latency is included in the overall

latency strictly because the destination enclave is created during the migration operation. We

emphasize that this would change according to migration policies, e.g., if the policy requires

the destination enclave to be created before or during migration, this latency would not occur

in the critical path. We could further reduce the latency in Figure 3.6 by employing multiple

threads when checkpointing/restoring enclave data. Therefore, the numbers reported here

represent the upper bound, where all migration operations are done sequentially.

3.6.5 Host Migration Latency

Next, we look at the overheads introduced when migrating only the host application. In

this evaluation, we migrated only the host application and we did not create an enclave

in the application. Since the host application allocates and initializes a buffer required to

store encrypted enclave data in COMIT-SGX, we also wanted to observe whether this has

an impact on latency. Therefore, although the application does not create an enclave during

this evaluation, the application still allocated and initialized the buffer.

Figure 3.7 shows the results. We can see that the checkpoint phase takes the longest (0.4 sec
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Figure 3.9: Latency of key enclave migration operations when varying enclave size. mbedTLS
is used to encrypt/decrypt enclave data. Checkpoint and Destroy enclave operations occur
during checkpoint phase, Create and Restore enclave operations occur during restore.

for a 1 GB buffer), followed by restore (0.35 sec). From this we can draw several conclusions:

First, the time required to allocate and initialize the buffer required to store encrypted

enclave data is significant. This conclusion is further validated by comparing the results

from Figure 3.7 to the results from Figure 3.8 where COMIT-SGX does not allocate the

buffer. Figure 3.8 shows that the latency of migrating a process without the memory buffer

does not grow as the enclave’s memory increases. Second, the checkpoint/restore latency

of a host application is near-identical to that of an enclave. This shows COMIT-SGX can

migrate both a host application and its enclave by doubling the latency of CRIU and that

our implementation of in-process TEE migration has the same latency overhead as a state-

of-the-art non-TEE process migration utility.

3.6.6 Latency vs. Crypto library

Finally, we investigate how different cryptographic libraries affect enclave migration latency.

Here we use two different cryptographic libraries supported by OpenEnclave; mbedTLS and

OpenSSL. Additionally, we measure the latency without encrypting/decrypting the enclave

data during the checkpoint/restore phase to show the overhead introduced by cryptographic

operations. The evaluation followed the same methodology as Section 3.6.3, where we vary
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Figure 3.10: Latency of key enclave migration operations when varying enclave size. Enclave
data is copied outside without any encryption. Checkpoint and Destroy enclave operations
occur during checkpoint phase, Create and Restore enclave operations occur during restore.

the enclave size and measure the time taken to migrate an enclave.

Figures 3.6 and 3.9 show the latency of enclave migration when using OpenSSL and mbedTLS,

respectively. We see that OpenSSL outperforms mbedTLS by two orders of magnitude, as

mbedTLS takes nearly 33 seconds to checkpoint and restore an enclave, while it takes 0.4

seconds to checkpoint and 0.3 seconds to restore an enclave using OpenSSL. This is vali-

dated when comparing Figures 3.6 and 3.10, as the overhead introduced by OpenSSL is in

the order of milliseconds, not seconds.

We observed from this evaluation it is preferable to use OpenSSL – which utilizes special-

ized CPU instruction to perform the encryption/decryption – whenever possible. MbedTLS

should only be used if there are no specialized CPU instructions to accelerate cryptographic

operations as mbedTLS introduces less code into the enclave’s trusted code base. This al-

lowed us to conclude that the performance of enclave migration is dependant on the encryp-

tion and decryption performance. Thus, we expect that, as more cryptographic operations

are optimized and offloaded to hardware accelerators, the migration latency of COMIT-SGX

will decrease.
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3.7 Related Work

TEE migration. Currently, there are only two TEE architectures (AMD SEV [12], SEV-

SNP [13], and Intel TDX [126]) that have publicly announced native support for migrating

their VM-based TEEs. Park et al. and Gu et al. proposed systems that enable TEEs with

Intel SGX enclaves to be migrated. The drawback of these systems is that they either require

native hardware support or TEEs to be aware and coordinate with the migration operator.

In addition, they target VM-based TEEs, not in-process ones.

TEEnder [114] is the only TEE migration system which is aware of that targets in-process

TEEs. However, it uses Hardware Security Modules (HSMs) to encrypt and decrypt SGX en-

clave data during migration. This hardware is not standard on commodity cloud servers and

thus this reduces which environments their system can be used in as well as its performance.

TEE persistent state migration. Alder et al. [4] proposed a design for including persistent

state (e.g., sealed data, hardware monotonic counter values) when migrating Intel SGX

enclaves. Support for migrating such data is important, as migrated enclaves that rely

on these persistent state will not be able to continue normal operation at their migration

destination. Moreover, not being able to migrate hardware monotonic counter values will

undermine the security of the system, as the enclave will be susceptible to roll-back attacks.

We consider this as complementary work and envision COMIT working in conjunction with

this system.

ReplicaTEE [212] considers another aspect of TEE migration: provisioning of newly instan-

tiated TEEs. Although ReplicaTEE does not support replicating TEEs with their internal

state intact, it allows server operators to start up multiple instances of the same enclave

and provision them with the same secret without interacting with the application owner.

ReplicaTEE is designed so that a limit is imposed on the number TEE instances that can be

created. COMIT can utilize ReplicaTEE to limit the number of destination TEEs that are
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created while allowing such TEEs to be provisioned with necessary secrets (e.g., migration

key).

3.8 Conclusion

In this work, we proposed COMIT, a software-only design to enable migration functionality

into current in-process TEE architectures without hardware modifications. COMIT allows

TEEs to be migrated at arbitrary points in their execution, allowing our method to be

integrated into existing process migration tools. We implemented COMIT for Intel SGX

and CRIU, and show that migration latency increases linearly with the size of the TEE and

is primarily dependent on the time required to create and initialize the destination TEE.
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Chapter 4

PDoT: Private DNS-over-TLS with

TEE Support
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Abstract

Security and privacy of the Internet Domain Name System (DNS) have been long-

standing concerns. Recently, there is a trend to protect DNS traffic using Transport

Layer Security (TLS). However, at least two major issues remain: (1) how do clients

authenticate DNS-over-TLS endpoints in a scalable and extensible manner; and (2)

how can clients trust endpoints to behave as expected? In this chapter, we propose a

novel Private DNS-over-TLS (PDoT ) architecture. PDoT includes a DNS Recursive

Resolver (RecRes) that operates within a Trusted Execution Environment (TEE). Us-

ing Remote Attestation, DNS clients can authenticate and receive strong assurance of

trustworthiness of PDoT RecRes. We provide an open-source proof-of-concept imple-

mentation of PDoT and experimentally demonstrate that its latency and throughput

match that of the popular Unbound DNS-over-TLS resolver.

Research presented in this chapter appeared in the Proceedings of the 35th An-

nual Computer Security Applications Conference (ACSAC 2019) [177] and in Digital

Threats: Research and Practice, Volume 2, Issue 1 (DTRAP 2021) [178].
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4.1 Introduction

The Domain Name System (DNS) [169] is a global distributed system that translates human-

readable domain names into IP addresses. It has been deployed since 1983 and, throughout

the years, DNS privacy has been a major concern.

In 2015, Zhu et al. [241] proposed a DNS design that runs over Transport Layer Security

(TLS) connections [76]. DNS-over-TLS protects privacy of DNS queries and prevents man-in-

the-middle (MiTM) attacks against DNS responses. [241] also demonstrated the practicality

of DNS-over-TLS in real-life applications. Several open-source recursive resolver (RecRes)

implementations, including Unbound [144] and Knot Resolver [67], currently support DNS-

over-TLS. In addition, commercial support for DNS-over-TLS has been increasing, e.g.,

Android P devices [105] and Cloudflare’s 1.1.1.1 RecRes [61]. However, despite attracting

interest in both academia and industry, some problems remain.

The first challenge is that clients need a way to authenticate the RecRes. Certificate-based

authentication is natural for websites, since the user (client) knows the URL of the desired

website and the certificate securely binds this URL to a public key. However, this approach

cannot be used for a DNS RecRes because the RecRes does not have a URL or any other

unique long-term user-recognizable identity that can be included in the certificate. One

way to address this issue is to provide clients with a white-list of trusted RecRes-s’ public

keys. However, this is neither scalable nor maintainable, because the white-list would have

to include all possible RecRes operators, ranging from large public services (e.g., 1.1.1.1)

to small-scale providers, e.g., a local RecRes provided by a coffee-shop.

Even if the RecRes can be authenticated, the second major issue is the lack of means to

determine whether a given RecRes is trustworthy. For example, even if communication

between client stub (client) and RecRes, and between RecRes and the name server (NS) is

authenticated and encrypted using TLS, the RecRes must decrypt the DNS query in order to
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resolve it and contact the relevant NS-s. This allows the RecRes to learn unencrypted DNS

queries, which poses privacy risks of a malicious RecRes misusing the data, e.g., profiling

users or selling their DNS data. Some RecRes operators go to great lengths to assure users

that their data is private. For example, Cloudflare promises “We will never sell your data or

use it to target ads” and goes on to say “We’ve retained KPMG to audit our systems annually

to ensure that we’re doing what we say” [61]. On March 31, 2020, Cloudflare released the

results of the privacy examination of its 1.1.1.1 DNS resolver [59]. The report is publicly

available [57] and it assures that during the time of inspection (conducted from February

1, 2019 to October 31, 2019), 1.1.1.1 was configured in such a way that it supports the

commitment given by Cloudflare. While this report gives some guarantee that the 1.1.1.1

resolver is honoring the client’s privacy, there are three drawbacks of this method. First, it

only provides a guarantee to a particular point in time. We cannot be certain whether the

privacy promise was kept before and after the inspection. Second, it takes a long time

to conduct the inspection and release the report. 1.1.1.1 was announced on April 1,

2018 [58], two years before the privacy report was released. Third, this method requires

users to trust the auditor and can only be used by operators who can afford an auditor.

Although 1.1.1.1 may be one of the famous public resolvers that support DNS-over-TLS

and DNS-over-HTTPS, a recent study shows that there are many smaller organizations that

also provide such resolvers [153]. Since these organizations cannot afford to be inspected, it

is more difficult for them to convince their customers that they are protecting their privacy.

The work presented in this chapter uses Trusted Execution Environments (TEEs) and Re-

mote Attestation (RA) to address these two problems. By using RA, the identity of the

RecRes is no longer relevant, since clients can check what software a given RecRes is running

and make trust decisions based on how the RecRes behaves. RA is one of the main features

of modern hardware-based TEEs, such as Intel Software Guard Extensions (SGX) [159] and

ARM TrustZone [23]. Such TEEs are now widely available, with Intel CPUs after the 7th

generation supporting SGX, and ARM Cortex-A CPUs supporting TrustZone. TEEs with
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RA capability are also available in cloud services, such as Microsoft Azure [166]. Specifically,

our contributions are:

• We design a Private DNS-over-TLS (PDoT ) architecture, the main component of which

is a privacy-preserving RecRes that operates within a commodity TEE. Running the

RecRes inside a TEE prevents even the RecRes operator from learning clients’ DNS

queries, thus providing query privacy. Our RecRes design addresses the authentication

challenge by enabling clients to trust the RecRes based on how it behaves, and not on

who it claims to be. (See Section 4.4).

• We implement a proof-of-concept PDoT RecRes using Intel SGX and evaluate its secu-

rity, deployability, and performance. All source code and evaluation scripts are publicly

available [142]. Our results show that PDoT handles DNS queries without leaking in-

formation while achieving sufficiently low latency and offering acceptable throughput

(See Sections 4.5 and 4.7).

• In order to quantify privacy leakage via traffic analysis, we performed an Internet

measurement study. It shows that 94.7% of the top 1, 000, 000 domain names can be

served from a privacy-preserving NS that serves at least two distinct domain names,

and 65.7% from an NS that serves 100+ domain names. (See Section 4.8).

4.2 Background

4.2.1 Domain Name System (DNS)

DNS is a distributed system that translates host and domain names into IP addresses. DNS

includes three types of entities: Client Stub (client), Recursive Resolver (RecRes), and Name

Server (NS). Client runs on end-hosts. It receives DNS queries from applications, creates

DNS request packets, and sends them to the configured RecRes. Upon receiving a request,
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RecRes sends DNS queries to NS-s to resolve the query on client’s behalf. When NS receives

a DNS query, it responds to RecRes with either the DNS record that answers client’s query,

or the IP address of the next NS to contact. RecRes thus recursively queries NS-s until the

record is found or a threshold is reached. The NS that holds the queried record is called:

Authoritative Name Server (ANS). After receiving the record from ANS, RecRes forwards it

to client. It is common for RecRes to cache records so that repeated queries can be handled

more efficiently.

4.3 Adversary Model & Requirements

4.3.1 Adversary Model

The adversary’s goal is to learn, or infer, information about DNS queries sent by clients. We

consider two types of adversaries, based on their capabilities:

The first type is a malicious RecRes operator who has full control over the physical machine,

its OS, and all applications, including the RecRes. We assume that the adversary cannot

break any cryptographic primitives, assuming that they are correctly implemented. We also

assume that it cannot physically attack hardware components, e.g., probe the CPU to learn

TEE secrets. This adversary also controls all of the RecRes’ communication interfaces, al-

lowing it to drop/delay packets, measure the time required for query processing, and observe

all cleartext packet headers.

The second type is a network adversary, which is strictly weaker than the malicious RecRes

operator. In the passive case, this adversary can observe any packets that flow into and out of

RecRes. In the active case, this adversary can modify and forge network packets. Note that

this represents the strongest form of network adversary who can observe and potentially

manipulate both the downstream (i.e., client – RecRes) and upstream (i.e., RecRes– NS)

communication. In the common case, the network adversary would only be able to observe
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the downstream communication (e.g., the adversary is another user connected to the same

wireless network as the victim). DNS-over-TLS alone (without PDoT ) is sufficient to

thwart a passive network adversary. However, since an active adversary could redirect clients

to a malicious RecRes, clients need an efficient mechanism to authenticate the RecRes and

determine whether it is trustworthy, which is one of the main contributions of PDoT .

We do not consider Denial-of-Service (DoS) attacks on RecRes, since these do not help

to achieve either adversary’s goal of learning clients’ DNS queries. Connection-oriented

RecRes-s can defend against DoS attacks using cookie-based mechanisms to prevent SYN

flooding [241].

4.3.2 System Requirements

We define the following requirements for the overall system:

R1: Query Privacy. Contents of client’s query (specifically, domain name to be resolved)

should not be learned by the adversary. Ideally, payload of the DNS packets should

be encrypted. However, even if packets are encrypted, their headers leaks information,

such as source and destination IP addresses. In Section 4.8.1, we quantify the amount

of information that can be learned via traffic analysis.

R2: Deployability. Clients using a privacy-preserving RecRes should require no special

hardware. Minimal software modifications should be imposed. Also, for transition

and compatibility, a privacy-preserving RecRes should be able to interact with legacy

clients that only support unmodified DNS-over-TLS.

R3: Response Latency. A privacy-preserving RecRes should achieve similar response

latency to that of a regular RecRes.

R4: Scalability. A privacy-preserving RecRes should process a realistic volume of queries
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generated by a realistic number of clients.

Note: Query privacy guarantees provided by PDoT rely on the forward-looking assumption

that communication between RecRes and respective NS-s is also protected by DNS-over-TLS.

The DNS Privacy (DPrive) Working Group is working towards a standard for encryption and

authentication of DNS resolver-to-ANS communication [36], using essentially the same mech-

anism as DNS-over-TLS. We expect an increasing number of NS-s to begin supporting this

standard in the near future. Once PDoT is enabled at the RecRes, it can provide incremen-

tal query privacy for queries served from a DNS-over-TLS NS. As discussed in Section 4.5,

with small design modifications, PDoT can be adapted for use in NS-s. Additionally, until

DNS-over-TLS becomes the norm for protecting communications between the RecRes and

NS, PDoT can be modified to support DNSSEC [20]. Although DNSSEC does not provide

DNS query privacy, it provides a means for PDoT to authenticate the NS.

4.4 System Model & Design Challenges

4.4.1 PDoT System Model

Figure 4.1 shows an overview of PDoT . It includes four types of entities: client, RecRes, TEE,

NS-s. We now summarize PDoT operation, reflected in the figure: (1) After initial start-up,

TEE creates an attestation report. (2) When client initiates a secure TLS connection, the

attestation report is sent from RecRes to the client alongside all other information required

to setup a secure connection. (3) Client authenticates and attests RecRes by verifying the

attestation report. It checks whether RecRes is running inside a genuine TEE and running

trusted code. (4) Client proceeds with the rest of the TLS handshake procedure only if

verification succeeds. (5) Client sends a DNS query to RecRes through the secure TLS

channel it has just set up. (6) RecRes receives a DNS query from client, decrypts it into

TEE memory, and learns the domain name that the client wants to resolve. (7) RecRes sets
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Figure 4.1: Overview of the proposed system.

up a secure TLS channel to the appropriate NS in order to resolve the query. (8) RecRes

sends a DNS query to NS over that channel. If NS’s reply includes an IP address of the next

NS, RecRes sets up another TLS channel to that NS. This is done repeatedly until RecRes

successfully resolves the name to an IP address. (9) Once RecRes obtains the final answer,

it sends this to client over the secure channel. Client can reuse the TLS channel for future

queries.

Note that we assume RecRes is not under the control of the user. In some cases, users could

run their RecRes-s, which would side-step the concerns about query privacy. For example,

modern home routers are sufficiently powerful to run an in-house RecRes. However, this

approach cannot be used in public networks (e.g., airports or coffee shop WiFi networks),

which are the target scenarios for PDoT .

4.4.2 Design Challenges

The following key challenges were encountered in the process of PDoT ’s design:

C1: TEE Functionality Limitations. In order to satisfy their security requirements,
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current TEEs (e.g., SGX and TrustZone) often limit the functionality available to

code that runs within them. One example is the inability to fork within the TEE.

Forking a process running inside the TEE forces the child process to run outside the

TEE, breaking RecRes security guarantees. Another example is that system calls, such

as socket communication, cannot be made from within the TEE.

C2: TEE Memory Limitations. A typical TEE has a relatively small amount of mem-

ory. Although an SGX enclave can theoretically have a large amount of in-enclave

memory, this will require page swapping of EPC pages. The pages to be swapped

must be encrypted and integrity protected in order to meet the security requirements

of SGX. Therefore, page swapping places a heavy burden on performance. To avoid

page swapping, enclave size should be less than the size of the EPC – typically, 128MB.

Since RecRes is a performance-critical application, its size should ideally not exceed

128MB. This limit negatively impacts RecRes throughput, as it bounds the number of

threads that can be spawned in a TEE.

C3: TEE Call-in/Call-out Overhead. Applications requiring functionality that is not

available within the TEE must switch to the non-TEE side. This introduces additional

overhead, both from the switching itself and from the need to flush and reload CPU

caches. Identifying and minimizing the number of times RecRes switches back and

forth (while keeping RecRes functionality correct) is a substantial challenge.

4.5 Implementation

Figure 4.2 shows an overview of the PDoT design. Since our design is architecture-independent,

it can be implemented on any TEE architecture that provides the features outlined in Chap-

ter 2.1. We chose the off-the-shelf Intel SGX as the platform for the proof-of-concept PDoT

implementation in order to conduct an accurate performance evaluation on real hardware
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Figure 4.2: Overview of PDoT implementation.

(see Section 4.7). Therefore, our implementation is subject to performance and memory

constraints in the current version of Intel SGX. It is thus best suited for small-scale net-

works, e.g., a WiFi hotspot provided by a typical coffee shop. However, as TEE technology

advances, we expect that our design will scale to larger networks.

4.5.1 PDoT

PDoT consists of two parts: (1) a trusted part residing in TEE enclaves, and (2) untrusted

part that operates elsewhere. The former is responsible for resolving DNS queries, and

the latter – for accepting incoming connections, assigning file descriptors to sockets and

sending/receiving data received from the trusted part.

Enclave Startup Process. When the application enclave starts, it generates a new public-

private key-pair within the enclave. It then creates a report that summarizes enclave and

platform state. The report includes a SHA256 hash of the entire code that is supposed to

run in the enclave (called MRENCLAVE value) and other attributes of the target enclave.
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PDoT also includes a SHA256 hash of the previously generated public key in the report. The

report is then passed on to the SGX quoting enclave to receive a quote. The quoting enclave

signs the report and thus generates a quote, which cryptographically binds the public key

to the application enclave. The quoting enclave sends the quote to the application enclave,

which forwards it to the Intel Attestation Service (IAS) to obtain an attestation verification

report. It can be used in the future by clients to verify the link between the public key and

the MRENCLAVE value. After receiving the attestation verification report from IAS, the

application enclave prepares a self-signed X.509 certificate required for the TLS handshake.

In addition to the public key, the certificate includes (1) attestation verification report,

(2) attestation verification report signature, and (3) attestation report signing certificate,

extracted from (1). The MRENCLAVE value and hash of public key are enclosed in the

attestation verification report.

TLS Handshake Process.1 Once the application enclave is created, PDoT can create

TLS connections and accept DNS queries from clients. The client initiates a TLS handshake

process by sending a message to PDoT . This message is captured by untrusted part of PDoT

and triggers the following events. 2 First, untrusted part of PDoT tells the application

enclave to create a new TLS object within the enclave for this incoming connection. This

forces the TLS endpoint to reside inside the enclave. The TLS object is then connected to the

socket where the client is waiting to be served. The RecRes then exchanges several messages

with the client, including the self-signed certificate that was created in the previous section.

Having received the certificate from RecRes, the client authenticates RecRes and validates

the certificate (see Section 4.5.2). Only if the authentication and validation succeed does the

client resume the handshake process.

DNS Query Resolving Process. The client sends a DNS query over the TLS channel

1This design is derived from the SGX RA-TLS [139] whitepaper.
2Since we consider a malicious RecRes operator, it has an option not to trigger these events. However,

clients will notice that their queries are not being answered and can switch to a different RecRes.
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established above. Upon receiving the query, RecRes decrypts it within the application

enclave and obtains the target domain name. The RecRes begins to resolve the name starting

from root NS, by doing the following repeatedly: 1) set up a TLS channel with NS, 2) send

DNS queries and receive replies via that channel. Once the RecRes receives the answer from

the NS, the RecRes returns it to the client over the original TLS channel.

Figure 4.3 illustrates the threading model of PDoT . For each client, we spawn two threads,

a ClientReader and one or more QueryHandler threads.

The ClientReader thread is responsible for accepting incoming connections from a client

and performing the TLS handshake. Once a TLS connection has been established, this

thread reads the incoming DNS queries and stores them in client-specific FIFO queues —

the QueryLists in Figure 4.3.

The QueryHandler threads are responsible for performing the recursive resolution of queries

and sending the responses to the clients. Each QueryList has one or more QueryHandler

threads associated with it. Using the thread synchronization primitives in the SGX SDK, the

QueryHandler threads wait on a condition until they are signaled by the ClientReader thread

to indicate that there is a pending query in the QueryList. Once signaled, a QueryHandler

thread first checks whether the client is still accepting responses from RecRes, and if so,

resolves the query and sends the response via the established TLS connection.

In our implementation, we only use one QueryHandler thread per client, in order to maximize

the number of concurrent client connections we can support. Due to the limitations on en-

clave memory, only a limited number of threads can execute within the enclave concurrently.

This is controlled by the number of Thread Control Structure (TCS) data structures allo-

cated during enclave compilation. Additionally, by using only a single QueryHandler thread

per client, this thread can be given exclusive write access to the client’s TLS connection,

thus avoiding the need for costly thread synchronization.
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Having a dedicated ClientReader thread to read and buffer the incoming queries from a single

client enables PDoT to receive concurrent requests. This allows a client to send multiple

DNS queries within a short timespan without waiting for the answers to previous queries.

For example, when a client loads a webpage that includes images and advertisements from

different domains, multiple DNS queries are triggered at the same time. However, because

we chose to use one QueryHandler thread per client, PDoT does not resolve the concurrent

requests it received from a single client. In comparison to alternative designs (described

below), we observed that this approach provides higher throughput when multiple clients

are connected (see Section 4.7.4).

We previously implemented an alternative design using a per-client dedicated ClientWriter

thread to buffer responses. However, we found that this increased the number of concurrent

threads in the enclave without providing a performance benefit. Moreover, using a dedicated

ClientWriter thread introduced additional queues and therefore required additional thread

synchronization variables.

We also previously implemented another alternative design using a single QueryList shared

between multiple ClientReader threads and multiple QueryHandler threads. This allowed

ClientReader threads to share multiple QueryHandler threads, thus allowing PDoT to resolve

multiple DNS queries from a single client concurrently. However, we observed that this causes

contention between the ClientReader threads when accessing the single QueryList, leading

to a large variance in query response times and causing some queries to time-out.

Caching. In order to measure the influence of caching, we implemented a simple in-enclave

cache for PDoT . It uses a red-black tree data structure and stores all records associated with

the clients’ queries, indexed by the queried domain. This results in O(log2(N)) access times

with N entries in the cache. We discuss the potential privacy risks of enabling caching and

propose possible mitigation strategies in Section 4.6.
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Figure 4.3: Overview of PDoT threading model.

PDoT ANS with TEE support. With minor design changes, PDoT RecRes design can

be modified for use as an ANS. Similar to the caching mechanism described above, an PDoT

ANS can look up the answers to queries in an internal database, rather than contact external

NS-s. The same way that clients authenticate PDoT RecRes, the RecRes can authenticate

the PDoT ANS. Clients can thus establish trust in both RecRes and ANS using transitive

attestation [3].

4.5.2 Client with PDoT Support

We picked the Stubby client stub from the getdns project [143] which offers DNS-over-TLS

support and modified it to perform remote attestation during the TLS handshake. We chose

to use Stubby as it is the most well-developed, open-sourced DNS-over-TLS client. We now

describe how the client verifies its RecRes, decides whether the RecRes is trusted, and emits

the DNS request packet.

RecRes Verification. After receiving a DNS request from an application, the client first

checks whether there is an existing TLS connection to its RecRes. If so, the client reuses

it. If not, it attempts to establish a new connection. During the handshake, the client

receives a certificate from RecRes, from which it extracts: 1) attestation verification report,
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2) attestation verification report signature, and 3) attestation report signing certificate. This

certificate is self-signed by IAS and the client is assumed to trust it. From (3), the client

first retrieves the IAS public key and, using it, verifies (2). Then, the client extracts the

SHA256 hash of RecRes’s public key from (1) and verifies it against (3). This way, the client

is assured that RecRes is indeed running in a genuine SGX enclave and uses this public key

for the TLS connection.

Trust Decision. The client also extracts the MRENCLAVE value from (1), which it com-

pares against the list of acceptable MRENCLAVE values. If the MRENCLAVE value is

not listed or one of the verification steps fails, the client stub aborts the handshake, moves

on to the next RecRes, and re-starts the process. Note that the trust decision process is

different from the normal TLS trust decision process. Normally, a TLS server-side certificate

binds the public key to one or more URLs and organization names. However, by binding the

MRENCLAVE value with the public key, the clients can trust RecRes based on its behavior,

and not its organization (recall that the MRENCLAVE value is a hash of RecRes code).

There are several options for deciding which MRENCLAVE values are trustworthy. For ex-

ample, vendors could publish lists of expected MRENCLAVE values for their resolvers. For

open-source resolvers such as PDoT , anyone can re-compute the expected MRENCLAVE

value by recompiling the software, assuming a reproducible build process. This would allow

trusted third parties (e.g., auditors) to inspect the source code, ascertain that it upholds

required privacy guarantees, and publish their list of trusted MRENCLAVE values.

Sending DNS request. Once the TLS connection is established, the client sends the DNS

query to RecRes over the TLS tunnel. If it does not receive a response from RecRes within

the specified timeout, it assumes that there is a problem with RecRes and sends a DNS reply

message to the application with the error code SERVFAIL.
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4.5.3 Overcoming Technical Challenges

As discussed in Section 4.4.2, PDoT faced three main challenges, which we addressed as

follows:

Limited TEE Functionality. The inability to use sockets within the TEE is a challenge

because the RecRes cannot communicate with the outside world. We address this issue

by having a process running outside the TEE, as described in Section 4.5.1. This process

forwards packets from the client to TEE through ECALLs and sends packets received from

TEE via OCALLs. However, because it is outside the TEE, this process might redirect

the packet to a malicious process or simply drop it. We discuss this issue in Section 4.7.1.

Another function unavailable within TEE is forking a process. PDoT uses pthreads instead

of forking to run multiple tasks concurrently in a TEE.

Limited TEE Memory. We use several techniques to address this challenge. First, we

ensure no other enclaves (other than the quoting enclave) run on the RecRes SGX machine.

This allows PDoT to use all available EPC memory. Second, we minimize the number of

threads running inside the enclave in order to save space.

OCALL and ECALL Overhead. ECALLs and OCALLs introduce overhead and there-

fore should be avoided as much as possible. For example, all threads mentioned in the

previous section must wait until they receive the following information: for the ClientReader

thread, the DNS query from the client, and for the QueryHandler thread, the query from the

QueryList. PDoT was implemented so that these threads wait inside the enclave whenever

possible to minimize the number of expensive enclave entries and exits.

4.6 Privacy-preserving DNS caching

Some DNS recursive resolvers cache query results and can use these to answer a query

directly in the case of a cache hit. Caching is beneficial from the client’s perspective because
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it reduces query latency. The RecRes also benefits from not having to establish connections to

external NS-s. However, if implemented naively, caching at the RecRes may allow adversaries

to learn something about the victim’s query. In this section, we discuss the potential privacy

risks, and show how these can be overcome in PDoT .

4.6.1 Attacks exploiting caching

As described in Section 4.3.1, we consider attacks by either a malicious RecRes operator or

a network adversary. Both aim to learn information from a naive caching implementation.

Network adversary: As discussed in the previous section, the network adversary cannot

see the contents of the victim’s query thanks to the TLS connection. However, we assume

this adversary can still observe all (encrypted) packets sent and received by the RecRes on

both the upstream and downstream communication links. We assume the network adversary

can also submit queries to the RecRes and measure the time between queries and responses.

The network adversary’s goal is to infer whether a specific query, submitted by either the

victim or himself, was answered from the cache. This could be achieved by measuring

the time between query and response since a cache hit can be answered relatively quickly.

Alternatively, the adversary could observe any (encrypted) recursive queries on the upstream

interface, since a cache hit can be answered without consulting upstream NS-s. Knowing

whether a query was answered from the cache can leak information to the adversary in two

ways:

• The adversary could have primed the cache with specific domains before the victim

arrives; thus whenever the victim’s query is answered from the cache, the adversary

can infer that the victim queried one of the primed domains.

• The adversary can probe the cache by submitting queries after the victim; thus when-

ever one of their queries is answered from the cache, the adversary can infer that the
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victim had previously queried this domain.

In most cases, these attacks would be complicated by the presence of other users and the

inability of the network adversary to clear the RecRes’ cache. However, we consider the

worst-case scenario, since the network adversary can block packets from other users in order

to isolate the victim’s traffic.

Malicious RecRes operator: A malicious RecRes operator can perform the same attacks

as the network adversary, and can also observe the memory access pattern of the RecRes. In

addition to learning whether or not a specific query was answered from the cache, the ma-

licious operator also aims to learn which cached response was used. Depending on the type

of TEE used to implement PDoT , the malicious operator might be able to monitor PDoT ’s

(encrypted) memory accesses. For example, it has been shown that in Intel SGX, an adver-

sary in control of the OS can monitor memory accesses deterministically at page granularity

(typically 4 kB) [232], or probabilistically at cache-line granularity [151]. Similarly to the

network adversary, this information can be leveraged in two ways:

• The malicious operator could prime the cache with specific domains before the victim

arrives, and record the address of each primed entry in the cache. When there is a

cache hit, the address of the response reveals exactly which domain the victim queried.

• If there are multiple users, the malicious operator could wait for the users to fill the

cache, while recording which users created which cache entries. Afterward, the mali-

cious operator could submit its queries, and if there are any cache hits, the address

reveals which user queried for that domain.

4.6.2 Mitigating cache attacks

We propose the following techniques to mitigate the above attacks. In some cases, multi-

ple techniques must be combined. During remote attestation, clients can ascertain which
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mitigations the RecRes is using.

A nocache bit: Short of disabling caching completely, the impact of the above attacks

could be minimized by giving users the choice of whether or not to use the cache on a per-

query basis. For non-sensitive queries, the cache could be used as normal, while for sensitive

queries, the users could specify that the query should not be answered from the cache (even

if an answer is available) and that the response should not be cached. This could be done

by assigning the currently unused Z bit in the DNS query header as a nocache (NC) bit.

Historically the Z bit was used to indicate that only a response from the primary server for a

zone was acceptable [80], which is already very similar to the nocache bit. The only addition

is that the RecRes would not cache responses to queries with this bit set.

The distinction between sensitive and non-sensitive queries should be made by each user,

or their client software (e.g., when browsing in “incognito mode”, all DNS queries could be

marked as sensitive). Although the adversary would still be able to perform all the above

attacks, the impact to the user would be minimal since these would only reveal information

about non-sensitive queries. Sensitive queries would be indistinguishable from cache misses.

Although less efficient than normal non-privacy-preserving caching, this approach is more

efficient than disabling caching completely, while providing similar privacy guarantees.

Delayed responses: In most cases, a realistic network adversary’s abilities are weaker than

the assumptions we make in Section 4.3.1. Specifically, this adversary would not usually be

able to see upstream communication between the RecRes and the NS-s. For example, in the

coffee shop scenario, a malicious user on the wireless network may be able to observe the

communication between other wireless clients and the RecRes. However, they cannot observe

the RecRes’ upstream communication, as this would take place via a wired interface. This

type of network adversary can thus only infer whether there was a DNS cache hit (either

their own or a victim’s query) by measuring the time between the query and response.
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One possible mitigation is therefore to introduce artificial delay when answering queries from

the cache [2]. For example, when there is a cache miss, the RecRes itself can measure the

time required to resolve a particular query, and store this time measurement along with the

answer in the cache. When this answer is subsequently served from the cache, the RecRes can

simply wait for the same amount of time before sending the response to the client. Although

this results in higher-latency responses for the clients, it is still beneficial for the RecRes as

it reduces the load on the upstream connection. This addresses both types of attacks by the

weaker network adversary, although it does not help against the malicious RecRes operator,

who can observe whether or not the RecRes makes an upstream query.

Pre-populated cache: On startup and periodically while it is running, the RecRes itself

could query for example the top 1,000 most popular domains and store the results in the

cache. This mitigates the first of the two possible attacks the network adversary can perform

because when there is a cache hit by the victim, the adversary cannot distinguish whether

it is for a primed or a pre-populated domain. In other words, this negates the adversary’s

ability to prime the cache. Note that the network adversary can still probe the cache after

the victim’s query. The malicious RecRes operator can also bypass this mitigation by observ-

ing the RecRes’s memory access pattern to distinguish between primed and pre-populated

domains.

Oblivious memory accesses: To prevent the malicious RecRes operator from learning

which memory address in the cache contained the desired result, we need to make all cache

memory accesses oblivious to the operator. This could be used in conjunction with the pre-

populated cache mitigation above. Since this is a more general challenge for applications

using SGX enclaves, multiple techniques are already available, including general-purpose

oblivious RAM (ORAM) schemes (e.g., [205, 64]), and purpose-built oblivious access schemes

(e.g., [216]). These techniques could be applied to the caching mechanism described in the

previous section.
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4.6.3 DNS cache poisoning

Although not an attack on privacy, introduction of a cache also opens PDoT to the possibility

of DNS cache poisoning attacks, whereby a network adversary causes incorrect answers to

be stored in the cache. This could be used as the precursor to a man-in-the-middle attack

where the adversary redirects the victim to a malicious IP address, even though the domain

appears to be correct.

A network adversary could attempt to poison the cache by pretending to be an upstream

NS and responding to upstream queries from the RecRes before the real NS response arrives.

Alternatively, the adversary could force the RecRes to query a malicious upstream NS with

which the adversary is colluding (e.g., simply by querying the relevant domain). The DNS

response from the malicious NS could also include falsified additional information records

for other domains, which would also poison the cache. These attacks can be mitigated by

the RecRes using DNSSEC [20] wherever possible.

4.7 Evaluation

4.7.1 Security Analysis

This section describes how query privacy (Requirement R1) is achieved, concerning the two

types of adversaries, per Section 4.3.1.

Malicious RecRes operator. Recall that a malicious RecRes operator controls the machine

that runs PDoT RecRes. It cannot obtain the query from intercepted packets since they flow

over the encrypted TLS channel. Also, because the local TLS endpoint resides inside the

RecRes enclave, the malicious operator cannot retrieve the query from the enclave, as it does

not have access to the protected memory region.

However, a malicious RecRes operator may attempt to connect the socket to a malicious
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TLS server that resides in either: 1) an untrusted region or 2) a separate enclave that

the operator itself created. If the operator can trick the client into establishing a TLS

connection with the malicious TLS server, the adversary can obtain plaintext DNS queries.

For case (1), the verification step on the client side fails because the TLS server certificate

does not include any attestation information. For case (2), the malicious enclave might

receive a legitimate attestation verification report, attestation verification report signature,

and attestation report signing certificate from IAS. However, that report would contain a

different MRENCLAVE value, which would be rejected by the client. To convince the client

to establish a connection with PDoT RecRes, the adversary has no choice except to run the

code of PDoT RecRes. Therefore, in both cases, the adversary cannot trick the client into

establishing a TLS connection with a TLS server other than the one running a PDoT RecRes.

Network Adversary. Recall that this adversary captures all packets to/from PDoT . It

cannot obtain plaintext queries since they flow over the TLS tunnel. The only information

it can obtain from packets includes cleartext header fields, such as source and destination IP

addresses. This information, coupled with a timing attack, might let the adversary correlate

a packet sent from the client with a packet sent to an NS. The resulting privacy leakage is

discussed in Section 4.8.1

4.7.2 Deployability

Section 4.5 argues that PDoT clients do not need special hardware, and require only minor

software modifications (Requirement R2). To aid deployability, PDoT also provides several

configurable parameters, including: the number of QueryHandle threads (to adjust through-

put), the amount of memory dedicated to each thread (to serve clients that send a lot of

queries at a given time), and the timeout of QueryHandle threads (to adjust the time for

a QueryHandle thread to acquire a resource). Another consideration is incremental deploy-

ment, where some clients may request DNS-over-TLS without supporting PDoT . PDoT can
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(a) Latency of PDoT and Unbound (Cold Start)
(b) Latency of PDoT and Unbound (Warm
Start)

Figure 4.4: Latency comparison of PDoT and Unbound

handle this situation by having its TLS certificate also be signed by a trusted root CA, since

legacy clients will ignore PDoT -specific attestation information.

On the client side, an ideal deployment scenario would be for browser or OS vendors to update

their client stubs to support PDoT . In the same way that browser vendors currently include

and maintain a list of trusted root CA certificates in their browsers, they could include and

periodically update a list of trustworthy MRENCLAVE values for PDoT resolvers. This

could all be done transparently to end-users. As with root CA certificates, expert users can

manually add/remove trusted MRENCLAVE values for their systems. In practice, there

are only a handful of recursive resolver software implementations. Thus, even allowing

for multiple versions of each, the list of trusted MRENCLAVE values would be orders of

magnitude smaller than the list of public keys of every trusted resolver, as would be required

for standard DNS-over-TLS.

4.7.3 Latency Evaluation

We aim to assess overhead introduced by running RecRes inside an enclave. To do so, we

measure the time to resolve a DNS query using PDoT and compare this with the correspond-
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ing latency incurred by Unbound [144], a popular open source RecRes. To meet requirement

R3, PDoT should not incur a significant increase in latency compared to Unbound.

Experimental Setup. We ran PDoT on a DC4s v2 series virtual machine (VM) in Mi-

crosoft Azure. This VM has 4 virtual CPUs and 16 GB of memory and supports Intel SGX

with up to 112 MB of EPC. We used Ubuntu 18.04 for the OS and Intel SGX SDK ver-

sion 2.9. We configured our PDoT to support up to 100 concurrent clients and used Stubby

as the DNS-over-TLS client.

We measured latency under two scenarios: cold start and warm start. In the former, the

client sets up a new TLS connection every time it sends a query to the RecRes. In the warm

start scenario, the client sets up one TLS connection with the RecRes at the beginning and

reuses it throughout the experiment. In other words, cold start measurements also include

the time to establish the TLS connection. In this experiment, caching mechanisms of both

PDoT and Unbound were disabled.

We created a Python program to feed DNS queries to the client. It sends 100 queries

sequentially (i.e., waits for an answer to the previous query before sending the next query)

for each of the top ten domains in the Majestic Million domain list [155].

The Python program measures the time between sending the query and receiving an answer.

For the cold start experiment, we spawned a new Stubby client and established a new TLS

connection for each query. In the warm start scenario, we first established the TLS connection

by sending a query for another domain (not in the top ten), but did not include this in the

timing measurement.

Note that the numeric latency values are specific to our experimental setup because they

depend on network bandwidth of the RecRes, and latency between the latter and relevant

NS-s. The important aspect of this experiment is the ratio between the latencies of PDoT

and Unbound. Therefore, it is not meaningful to compute average latency over a large set of
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domains. Instead, we took multiple measurements for each of a small set of domains (e.g.,

100 measurements for each of 10 domains) to analyze the range of response latencies for each

domain.

Results and observations. The results are shown in Figure 4.4. Red boxes show latency

of PDoT and the blue boxes – of Unbound. In these plots, boxes span from the lower to

upper quartile values of collected data. Whiskers span from the lowest datum within the 1.5

interquartile range (IQR) of the lower quartile to the highest datum within the 1.5 IQR of

the upper quartile. Median values are shown as black horizontal lines inside the boxes.

For the cold-start case in Figure 4.4a, although Unbound is typically faster than our proof-

of-concept PDoT implementation, the range of latencies is similar. For 5 out of 10 domains,

the upper whisker of PDoT was lower than that of Unbound. Moreover, we observed that

the range of latencies of PDoT overlaps with that of Unbound. Across the tested domains,

PDoT shows an average of 73% overhead compared to Unbound in this setting.

For the warm-start case in Figure 4.4b, the median latency is lower across the board compared

to the cold-start setting because the TLS tunnel has already been established. In this

setting, PDoT shows an average of 44% overhead compared to Unbound. Compared to the

cold start setting, the difference in the range of latencies is smaller. In fact, for half of the

domains, the range of PDoT latencies is smaller than that of Unbound. In practice, once

the client has established a connection to RecRes, it will maintain this connection; thus, the

vast majority of queries will see only the warm-start latency.

4.7.4 Throughput evaluation

The objective of our throughput evaluation is to measure the rate at which the RecRes can

sustainably respond to queries. PDoT ’s throughput should be close to that of Unbound to

satisfy requirement R4.
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(a) Overhead with 1 client (b) Overhead with 5 clients (c) Overhead with 10 clients

(d) Overhead with 20 clients (e) Overhead with 30 clients (f) Overhead with 40 clients

(g) Overhead with 50 clients (h) Overhead with 60 clients (i) Overhead with 70 clients

Figure 4.5: Throughput overhead comparison of PDoT

Experiment setup. We used the same experimental setup as the latency evaluation (Sec-

tion 4.7.3). The client and RecRes ran on different VMs located in the same virtual network

so that the RecRes could use all available resources of a single VM. This is representative

of a local RecRes running in a small network (e.g., a coffee shop WiFi network). We con-

ducted this experiment using Stubby and the same two RecRes-s as in the latency experiment.

Stubby was configured to reuse TLS connections where possible and the caching mechanisms

of both PDoT and Unbound were disabled. To eliminate further variance due to external

network latency, we also ran our own authoritative NS in the same virtual network as the

RecRes. Running our own authoritative NS also has the benefit of not applying strain on
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Figure 4.6: Average overhead of PDoT for different numbers of clients.

the public NS during our evaluation. All queries sent to the RecRes could be resolved with

a single upstream query to our local NS. To simulate a small to medium-scale network, we

varied the number of concurrent client connections between 1 and 70 and adjusted the query

rate from 1 to 10 queries per second per client. We maintained each constant query rate for

half a minute.

Results and observations. The results of our throughput experiments are shown in

Figure 4.5. Each graph corresponds to a different number of clients. The horizontal axis

shows different per-client query rates and the vertical axis shows the overhead for response

latencies compared to the average response latency of Unbound for the same setting. During

our preliminary evaluation, we found that the average latency of Unbound is consistently

about 0.05 seconds across the evaluated scenarios. The red dots show the average overhead

of PDoT , and the black error bars represent the standard deviation.

Figure 4.6 is a combination of the individual plots in Figure 4.5, showing the total rate at

which PDoT is processing queries for different numbers of concurrent client connections on

the x axis and the average latency overhead in the y axis. From this figure, we can see that

the average latency overhead increases linearly as the total number of queries sent by the

clients increases up to 200 queries per second. However, we can observe that the increase
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in the overhead is smaller after 200 queries per second. In fact, we can almost see that the

overhead is converging to a particular value. For instance, after 500 queries per second, the

latency overhead that 70 clients experience is around 0.3 seconds on average.

4.7.5 Caching evaluation

Caching domains

First, we counted how many domains can be handled by the in-enclave cache, as described

in Section 4.5. A single client was set up to query domains from the Majestic Million

domain list [155]. The client queried domains until PDoT experienced a significant increase

in latency, indicating that the cache starts to exceed the size of the Enclave Page Cache

(EPC). Although the cache could grow beyond this point, this would lead to increased

latency because memory pages would have to be swapped in and out of the EPC. The

memory setting for each thread was the same as the throughput evaluation. Even though

different queries have answers of different sizes, this experiment showed that PDoT can cache

at least 10,000 domains.

Effect on latency

Next, we quantified the effect of caching on query latency by repeating the latency evaluation

with and without caching. The results are shown in Figure 4.7. The average latency of PDoT

without caching in the cold start setting is 249 ms and with caching is 117 ms. In the warm

start setting, the average latency without caching is 123 ms, and with caching is 1 ms. In

addition to reducing average latency, caching also reduces the variance of the latency, thus

preventing time-outs and improving the stability of the system.

Benefiting from caching

Section 4.7.5 showed how both users and PDoT can potentially benefit from caching query

answers and Section 4.7.5 showed that our simple proof-of-concept in-enclave cache can
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(a) Effect of Cache (Cold Start) (b) Effect of Cache (Warm Start)

Figure 4.7: Latency comparison of PDoT without caching (red) and with caching (blue)

accommodate at least 10,000 domains. The overall performance impact of this type of cache

depends heavily on the pattern of DNS queries sent by each user. However, we expect that a

significant number of queries would fall within the most popular 10,000 domains, and could

thus be answered from the cache. Additionally, PDoT operators can also pre-populate the

cache with domains that are frequently queried by their users.

Effect of different numbers of domains in cache

Lastly, we evaluated the performance of both resolvers with caching enabled; Unbound with

its default caching behavior, and PDoT with the proof-of-concept caching mechanism.

Experiment setup. To simulate a realistic small-scale network, we ran PDoT on a low-

cost Intel NUC consisting of an Intel Pentium Silver J5005 CPU with 128 MB of EPC

memory and 4 GB of RAM, using Ubuntu 16.04 and the Intel SGX SDK version 2.2. We

pre-populated resolvers’ caches with varying numbers of domains and measured response

latency for a representative set of 10 popular domains.

Results and observations. Figure 4.8 shows the response latency with caching enabled.

The box and whisker plots have the same meaning as in Figure 4.4. Unbound serves responses
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(a) 10 domains in cache (b) 100 domains in cache (c) 1000 domains in cache

Figure 4.8: Latency comparison of PDoT (red) and Unbound (blue) with different number
of domains in cache

from cache with a consistent latency irrespective of the number of entries in the cache.

Although PDoT achieves lower average latencies when the cache is relatively empty, it has

higher variability than Unbound. This is possibly due to the combination of our unoptimized

caching implementation and latency of accessing enclave memory. Nevertheless, Figure 4.8

shows that even with the memory limitations of current hardware enclaves, PDoT can still

benefit from caching a small number of domains.

4.7.6 Real-world evaluation

In this experiment, we evaluated the difference in latency between Cloudflare’s 1.1.1.1 and

PDoT .

Experiment setup. PDoT was set up on a Microsoft Azure VM with caching enabled.

The VM was set up on the US East coast region. Meanwhile, we confirmed that 1.1.1.1

resides on the US West coast region. A Stubby client on a machine residing on the US West

coast region. We ran the same latency evaluation script we used in Section 4.7.3. Since it is

highly likely that 1.1.1.1 has the ten domains cached in its system, we also pre-populated

the domains in PDoT ’s cache before conducting the experiment.

Results and observations. Figure 4.9 shows the result of the latency measurement. The
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(a) Latency comparison in cold start setting (b) Latency comparison in warm start setting

Figure 4.9: Latency comparison of PDoT (red) and 1.1.1.1 (blue)

box and whisker plots have the same meaning as in Figure 4.4. We can see that in both

settings there is a difference in latency between the two resolvers. In the cold start setting, the

average latency of PDoT was 0.5 seconds while 1.1.1.1 was 0.02 seconds. In the warm start

setting, the average latency of PDoT was 0.06 seconds while 1.1.1.1 was 0.005 seconds. The

difference in latency in the warm start setting can be due to several reasons. This includes

the network latency due to the location of the resolver, 1.1.1.1 using optimized caching

mechanisms, more powerful machines, and load balancing methods. As the cold start setting

includes the TLS handshake, we assume the difference in latency in the cold start setting is

largely due to the fact that 1.1.1.1 uses optimized cryptographic operations and optimized

TLS handshake methods. Overall, we can conclude that the query response latency of our

proof-of-concept PDoT is well below standard timeout time, which is 5 seconds for DNS

queries. A production-level PDoT can adopt the methods which 1.1.1.1 uses to further

decrease its latency in resolving queries.
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4.8 Discussion

4.8.1 Information Revealed by IP Addresses

Even if the connections between the client, RecRes, and NS-s are encrypted using TLS,

some information is still leaked. The most prominent and obvious is source/destination IP

addresses. The network adversary described in Section 4.3.1 can combine these cleartext IP

addresses with packet timing information in order to correlate packets sent from client to

RecRes with subsequent packets sent from RecRes to NS.

Armed with this information, the adversary can narrow down the client’s domain name

query to one of the records that could be served by that specific ANS. Assuming the ANS

can serve R domain names, the adversary has a 1/R probability of guessing which domain

name the user queried. When R > 1, we call this a privacy-preserving ANS. This prompts

two questions: 1) what percentage of domains can be answered by a privacy-preserving ANS;

and 2) what is the typical size of anonymity set (R) provided by a privacy-preserving ANS?

To answer these questions, we designed a scheme to collect records stored in various ANS-s.

We sent DNS queries for 1,000,000 domains from the Majestic Million domain list [155],

and gathered information about ANS-s that can possibly provide the answer for each. By

collecting data on possible ANS-s, we can map domain names to each ANS, and thus estimate

the number of records held by each ANS. Following the Guidelines for Internet Measurement

Activities [52], we limited our querying rate, in order to avoid placing undue load on any

servers.

As shown in Figure 4.10, only 5.7% of domains we queried were served by non-privacy-

preserving ANS-s, i.e., those that hold only one record). Examples of domain names served

from non-privacy-preserving ANS-s included: tinyurl.com3, bing.com, nginx.org, news.bbc.co.uk,

3Since tinyurl.com is a URL shortening service, this is actually still privacy-preserving because the
adversary can not learn which short URL was queried.
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Figure 4.10: Percentage of Majestic Million domains answered by an ANS with at least N
records

and cloudflare.com. On the other hand, 9 out of 10 queries were served by a privacy-

preserving ANS, and 65.7% by ANS-s that hold over 100 records.

These results are still approximations. Since we do not have data for domains outside the

Majestic Million list, we cannot make claims about whether these would be served by a

privacy-preserving ANS. We hypothesize that the vast majority of ANS-s would be privacy-

preserving for the simple reason that it is more economical to amortize the ANS’s running

costs over multiple domains. On the other hand, we can be certain that our results for the

Majestic Million are a strict lower bound on the level of privacy because the ANS-s from

which these are served could also be serving other domains outside of our list. It would be

possible to arrive at a more accurate estimate by analyzing zone files of all (or at least most)

ANS-s. However, virtually all ANS-s disable the interface to download zone files because

this could be used to mount DoS attacks. Therefore, this type of analysis would have to be

performed by an organization with privileged access to all ANS-s’ zone files.

4.8.2 Supporting DNS-over-HTTPS (DoH)

Concurrently with the development of DNS-over-TLS, there has also been significant devel-

opment of protocols and standards for DNS resolution over HTTPS (DoH) [119].
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Similarly to DoT, the aim of DoH is to protect the confidentiality and integrity of DNS

queries and responses in transit between the client and RecRes. DoH still uses TLS as the

underlying secure channel, although layers the DNS queries and responses on top of HTTPS.

Whereas DoT uses its dedicated port (853), DoH uses the same port as other HTTPS traffic

(443). The last main difference is that DoH adds the ability for a server to push DNS

responses to a client without the client having to first send a request.

DoH is already supported by a similar set of public DNS resolvers as DoT (e.g., Cloudflare’s

1.1.1.1) and is gaining support in web browsers (e.g., Firefox [42]) and operating systems

(e.g., Windows 10 [133]). In February 2020, it was estimated that on average there are still

seven times more DoT requests than DoH requests [17].

DoH faces similar challenges to DoT, and thus would also benefit from the security guarantees

provided by PDoT . PDoT could be modified to support DoH by adding an HTTP parsing

layer. Although this slightly increases the amount of software running within the TEE (i.e.,

the software trusted computing base), only minimal HTTP parsing functionality would be

required.

4.9 Related Work

There has been much prior work aiming to protect the privacy of DNS queries [51, 240,

239, 154, 84, 208, 81]. For example, Lu et al. [154] proposed a privacy-preserving DNS that

uses distributed hash tables, different naming schemes, and methods from computational

private information retrieval. Federrath et al. [84] introduced a dedicated DNS Anonymity

Service to protect the DNS queries using an architecture that distributes the top domains by

broadcast and uses low-latency mixes for requesting the remaining domains. These schemes

all assume that all parties involved do not act maliciously.

There have also been some activities in the Internet standards community that focused on
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DNS security and privacy. DNS Security Extensions (DNSSEC) [20] provide data origin

authentication and integrity via public key cryptography. However, it does not offer privacy.

Bortzmeyer [35] proposed a scheme Also, though not Internet standards, several protocols

have been proposed to encrypt and authenticate DNS packets between the client and the

RecRes (DNSCrypt [195]) and RecRes and NS-s (DNSCurve [70]). Moreover, the original

DNS-over-TLS paper has been converted into a draft Internet standard [120]. All these

methods assume that the RecRes operator is trusted and does not attempt to learn anything

from the DNS queries.

Furthermore, there has been some research on establishing trust through TEEs to protect

confidentiality and integrity of network functions. Specifically, SGX has been used to protect

network functions, especially middle-boxes. For example, Endbox [92] aims to distribute

middle-boxes to client edges: clients connect through VPN to ensure confidentiality of their

traffic while remaining maintainable. LightBox [79] is another middle-box that runs in an

enclave; its goal is to protect the client’s traffic from the third-party middle-box service

provider while maintaining adequate performance. Finally, ShieldBox [217] aims to protect

confidential network traffic that flows through untrusted commodity servers and provides a

generic interface for easy deployability. These efforts focus on protecting confidential data

that flows in the network and do not target DNS queries.

4.10 Conclusion & Future Work

This chapter proposed PDoT , a novel DNS RecRes design that operates within a TEE to

protect privacy of DNS queries, even from a malicious RecRes operator. In terms of query

throughput, our unoptimized proof-of-concept implementation matches the throughput of

Unbound, a state-of-the-art DNS-over-TLS recursive resolver, while incurring an acceptable

increase in latency (due to the use of a TEE). In order to quantify the potential for privacy

leakage through traffic analysis, we performed an Internet measurement study which showed
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that 94.7% of the top 1,000,000 domain names can be served from a privacy-preserving ANS

that serves at least two distinct domain names, and 65.7% from an ANS that serves 100+

domain names. As future work, we plan to port the Unbound RecRes to Intel SGX and

conduct a performance comparison with PDoT , as well as explore methods for improving

PDoT ’s performance using caching while maintaining client privacy. We also plan to

investigate supporting DNS-over-HTTPS.
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Chapter 5

CACTI: Captcha Avoidance via

Client-side TEE Integration
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Abstract

Preventing abuse of web services by bots is an increasingly important problem, as

abusive activities grow in both volume and variety. CAPTCHAs are the most com-

mon way for thwarting bot activities. However, they are often ineffective against bots

and frustrating for humans. In addition, some recent CAPTCHA techniques diminish

user privacy. Meanwhile, client-side Trusted Execution Environments (TEEs) are be-

coming increasingly widespread (notably, ARM TrustZone and Intel SGX), allowing

establishment of trust in a small part (trust anchor or TCB) of client-side hardware.

This prompts the question: can a TEE help reduce (or remove entirely) user burden

of solving CAPTCHAs?

In this chapter, we design CACTI: CAPTCHA Avoidance via Client-side TEE

Integration. Using client-side TEEs, CACTI allows legitimate clients to generate un-

forgeable rate-proofs demonstrating how frequently they have performed specific ac-

tions. These rate-proofs can be sent to web servers in lieu of solving CAPTCHAs.

CACTI provides strong client privacy guarantees since the information is only sent to

the visited website and authenticated using a group signature scheme. Our evaluations

show that overall latency of generating and verifying a CACTI rate-proof is less than

0.25 sec, while CACTI’s bandwidth overhead is over 98% lower than that of current

CAPTCHA systems.

Research presented in this chapter appeared in the Proceedings of the 30th USENIX

Security Symposium (USENIX Security 2021) [175].
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5.1 Introduction

In the past two decades, as Web use became almost universal and abuse of Web services grew

dramatically, there has been an increasing trend (and real need) to use security tools that

help prevent abuse by automated means, i.e., so-called bots. The most popular mechanism

is CAPTCHAs: Completely Automated Public Turing test to tell Computers and Humans

Apart [224]. A CAPTCHA is essentially a puzzle, such as an object classification task

(Figure 5.1a) or distorted text recognition (see Figure 5.1b), that aims to confound (or at

least slow down) a bot, while being easily1 solvable by a human user. CAPTCHAs are often

used to protect sensitive actions, such as creating a new account or submitting a web form.

Although primarily intended to distinguish humans from bots, it has been shown that

CAPTCHAs are not very effective at this task [173]. Many CAPTCHAs can be solved

by algorithms (e.g., image recognition software) or outsourced to human-driven CAPTCHA-

farms2 to be solved on behalf of bots. Nevertheless, CAPTCHAs are still widely used to

increase the adversary’s costs (in terms of time and/or money) and reduce the rate at which

bots can perform sensitive actions. For example, computer vision algorithms are computa-

tionally expensive, and outsourcing to CAPTCHA-farms costs money and takes time.

From the users’ perspective, CAPTCHAs are generally unloved (if not outright hated), since

they represent a barrier and an annoyance (a.k.a. Denial-of-Service) for legitimate users.

Another major issue is that most CAPTCHAs are visual in nature, requiring sufficient

ambient light and screen resolution, as well as good eyesight. Much less popular audio

CAPTCHAs are notoriously poor and require a quiet setting, decent-quality audio output

facilities, as well as good hearing.

More recently, the reCAPTCHA approach has become popular. It aims to reduce user

burden by having users click a checkbox (Figure 5.1c) while performing behavioral analysis

1Exactly what it means to be “easily” solvable is subject to some debate.
2A CAPTCHA farm is usually sweatshop-like operation, where employees solve CAPTCHAs for a living.
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of the user’s browser interactions. Acknowledging that even this creates friction for users,

the latest version (“invisible reCAPTCHA”) does not require any user interaction. However,

the reCAPTCHA approach is potentially detrimental to user privacy because it requires

maintaining long-term state, e.g., in the form of Google-owned cookies. Cloudflare recently

decided to move away from reCAPTCHA due to privacy concerns and changes in Google’s

business model [62].

Notably, all current CAPTCHA-like techniques are server-side, i.e., they do not rely on any

security features of, or make any trust assumptions about, the client platform. The purely

server-side nature of CAPTCHAs was reasonable when client-side hardware security features

were not widely available. However, this is rapidly changing with the increasing popularity

of Trusted Execution Environments (TEEs) on a variety of computing platforms, e.g., TPM

and Intel SGX for desktops/laptops and ARM TrustZone for smartphones and even smaller

devices. Thus, it is now realistic to consider abuse prevention methods that include client-

side components. For example, if a TEE has a trusted path to some form of user interface,

such as a mouse, keyboard, or touchscreen, this trusted User Interface (UI) could securely

confirm user presence. Although this feature is still unavailable on most platforms, it is

emerging through features such as Android’s Protected Confirmation [71]. This approach’s

main advantages are minimized user burden (e.g., just a mouse click) and increased security

since it would be impossible for software to forge this action. Admittedly, however, this

approach can be defeated by adversarial hardware e.g., a programmable USB peripheral

that pretends to be a mouse or keyboard.

However, since the majority of consumer devices do not currently have a trusted UI, it would

be highly desirable to reduce the need for CAPTCHAs using only existing TEE functionality.

As discussed above, the main goal of modern CAPTCHAs is to increase adversarial costs and

reduce the rate at which they can perform sensitive actions. Therefore, if legitimate users

had a way to prove that their rate of performing sensitive actions is below some threshold,
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a website could decide to allow these users to proceed without solving a CAPTCHA. If a

user can not provide such proof, the website could simply fall back to using CAPTCHAs.

Though this would not fully prevent bots, it would not give them any advantage compared

to the current arrangement of using CAPTCHAs.

Motivated by the above discussion, this chapter presents CACTI, a flexible mechanism for

allowing legitimate users to prove to websites that they are not acting in an abusive manner.

By leveraging widespread and increasing availability of client-side TEEs, CACTI allows users

to produce rate-proofs, which can be presented to websites in lieu of solving CAPTCHAs. A

rate-proof is a simple assertion that:

1. The rate at which a user has performed some action is below a certain threshold, and

2. The user’s time-based counter for this action has been incremented.

When serving a webpage, the server selects a threshold value and sends it to the client. If

the client can produce a rate-proof for the given threshold, the server allows the action to

proceed without showing a CAPTCHA. Otherwise, the server presents a CAPTCHA, as

before. In essence, CACTI can be seen as a type of “express checkout” for legitimate users.

One of the guiding principles and goals of CACTI is user privacy – it reveals only the minimum

amount of information and sends this directly to the visited website. Another principle is

that the mechanism should not mandate any specific security policy for websites. Websites

can define their own security policies e.g., by specifying thresholds for rate-proofs. Finally,

CACTI should be configurable to operate without any user interaction, in order to make it

accessible to all users, including those with sight or hearing disabilities.

Although chiefly motivated by the shortcomings of CAPTCHAs, we believe that the general

approach of client-side (TEE-based) rate-proofs, can also be used in other common web

scenarios. For example, news websites could allow users to read a limited number of articles
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for free per month, without relying on client-side cookies (which can be cleared) or forcing

users to log-in (which is detrimental to privacy). Online petition websites could check that

users have not signed multiple times, without requiring users to provide their email addresses,

which is once again, detrimental to privacy. We, therefore, believe that our TEE-based rate-

proof concept is a versatile and useful web security primitive.

Anticipated contributions of this work are:

1. We introduce the concept of a rate-proof, a versatile web security primitive that allows

legitimate users to securely prove that their rate of performing sensitive actions falls

below a server-defined threshold.

2. We use the rate-proof as the basis for a concrete client-server protocol that allows

legitimate users to present rate-proofs in lieu of solving CAPTCHAs.

3. We provide a proof-of-concept implementation of CACTI, over Intel SGX, realized as

a Google Chrome browser extension.

4. We present a comprehensive evaluation of security, latency, and deployability of CACTI.

Organization: Section 5.2 provides background information, and Section 5.3 defines our

threat model and security requirements. Next, Section 5.4 presents our overall design and

highlights the main challenges in realizing this. Then, Section 5.5 describes our proof of

concept implementation and discusses how CACTI overcomes the design challenges, followed

by Section 5.6 which presents our evaluation of the security, performance, and deployability

of CACTI. Section 5.7 discusses further optimizations and deployment considerations, and

Section 5.8 summarizes related work.
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(a) Image-based object recognition re-
CAPTCHA [103]

(b) Image-based text recognition re-
CAPTCHA [103]

(c) Behavior-based reCAPTCHA [103]

Figure 5.1: Examples of CAPTCHAs

5.2 Background

5.2.1 Group Signatures

A group signature scheme aims to prevent the verifier from determining the group member

who generated the signature. Each group member is assigned a group private key under

a single group public key. In case a group member needs to be revoked, a special entity

called group manager can open the signature. A group signature scheme is composed of five

algorithms [25]:

• Setup: Given a security parameter, an efficient algorithm outputs a group public key

and a master secret for the group manager.

• Join: A user interacts with the group manager to receive a group private key and a

membership certificate.

• Sign: Using the group public key, group private key, membership certificate, and
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message m, a group member generates a group signature of m.

• Verify: Using the group public key, an entity verifies a group signature.

• Open: Given a message, a putative signature on the message, the group public key,

and the master secret, the group manager determines the identity of the signer.

A secure group signature scheme satisfies the following properties [25]:

• Correctness: Signatures generated with any member’s group private key must be

verifiable by the group public key.

• Unforgeability: Only an entity that holds a group private key can generate signa-

tures.

• Anonymity: Given a group signature, it must be computationally hard for anyone

(except the group manager) to identify the signer.

• Unlinkability: Given two signatures, it must be computationally hard to determine

whether these were signed by the same group member.

• Exculpability: Neither a group member nor the group manager can generate signa-

tures on behalf of other group members.

• Traceability: The group manager can determine the identity of a group member that

generated a particular signature.

• Coalition-resistance: Group members cannot collude to create a signature that

cannot be linked to one of the group members by the group manager.

Enhanced Privacy ID (EPID) [41] is a group signature scheme used by remote attestation

of Intel SGX enclaves. It satisfies the above properties while providing additional privacy-

preserving revocation mechanisms to revoke compromised or misbehaving group members.
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Specifically, EPID’s signature-based revocation protocol does not “Open” signatures. Rather,

it uses a signature produced by the revoked member to notify other entities that this par-

ticular member has been revoked.

5.3 System & Threat Models

The ecosystem that we consider includes three types of principals/players: (1) servers, (2)

clients, and (3) TEEs. There are multitudes of these three principal types. The number of

clients is the same as that of TEEs, and each client houses exactly one TEE. Even though

a TEE is assumed to be physically within a client, we consider it to be a separate security

entity. Note that a human user can, of course, operate or own multiple clients, although

there is clearly a limit and more clients imply higher costs for the user.

We assume that all TEEs are trusted: honest, benign, and insubvertible. We consider all

side-channel and physical attacks against TEEs to be out of scope of this work and assume

that all algorithms and cryptographic primitives implemented within TEEs are impervious

to such attacks. We also consider cuckoo attacks, whereby a malicious client utilizes multiple

(possibly malware-infected) machines with genuine TEEs, to be out of scope, since clients

and their TEEs are not considered to be strongly bound. We refer to [237] and [78] as far as

means for countering such attacks. We assume that servers have the means to authenticate

and attest TEEs, possibly with the help of the TEE manufacturer.

All clients and servers are untrusted, i.e., they may act maliciously. The goal of a malicious

client is to avoid CAPTCHAs, while a malicious server either aims to inconvenience a client

(via DoS) or violate client’s privacy. For example, a malicious server can try to learn the

client’s identity or link multiple visits by the same client. Also, multiple servers may collude

in an attempt to track clients.

Our threat model yields the following requirements for the anticipated system:
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• Unforgeability: Clients cannot forge or modify CACTI rate-proofs.

• Client privacy: A server (or a group thereof) cannot link rate-proofs to the clients

that generated them.

We also pose the following non-security goals:

• Latency: User-perceived latency should be minimized.

• Data transfer: The amount of data transfer between client and server should be

minimized.

• Deployability: The system should be deployable on current off-the-shelf client and

server hardware.

5.4 CACTI Design & Challenges

This section discusses the overall design of CACTI and justifies our design choices.

5.4.1 Conceptual Design

Rate-proofs. The central concept underpinning our design is the rate-proof (RP). Concep-

tually, the idea is as follows: Assuming that a client has an idealized TEE, the TEE stores

one or more named sorted lists of timestamps in its rollback-protected secure memory. To

create a rate-proof for a specific list, the TEE is given the name of the list, a threshold (Th),

and a new timestamp (t). The threshold is expressed as a starting time (ts) and a count (k).

This can be interpreted as: “no more than k timestamps since ts”. The TEE checks that

the specified list contains k or fewer timestamps with values greater than or equal to ts. If

so, it checks if the new timestamp t is greater than the latest timestamp in the list. If both

checks succeed, the TEE pre-pends t to the list and produces a signed statement confirming

that the named list is below the specified threshold and the new timestamp has been added.
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If either check fails, no changes are made to the list and no proof is produced. Note that the

rate-proof does not disclose the number of timestamps in the list.

Furthermore, each list can also be associated with a public key. In this case, requests for

rate-proofs must be accompanied by a signature over the request that can be verified with

the associated public key. This allows the system to enforce a same-origin policy for specific

lists – proofs over such lists can only be requested by the same entity that created them.

Note that this does not provide any binding to the identity of the entity holding the private

key, as doing so would necessitate the TEE to check identities against a global public key

infrastructure (PKI) and we prefer for CACTI not to require it.

Rate-proofs differ from rate limits because the user is allowed to perform the action any

number of times. However, once the rate exceeds the specified threshold, the user will no

longer be able to produce rate-proofs. The client can always decide to not use its TEE;

this covers clients who do not have TEEs or those whose rates exceeded the threshold. On

the other hand, if the server does not yet support CACTI, the client does not store any

timestamps or perform any additional computation.

CAPTCHA-avoidance. In today’s CAPTCHA-protected services, the typical interaction

between the client (C ) and server (S ) proceeds as follows:

1. C requests access to a service on S .

2. S returns a CAPTCHA for C to solve.

3. C submits the solution to S .

4. If the solution is verified, S allows C access to the service.

Although modern approaches, e.g., reCAPTCHA, might include additional steps (e.g., com-

municating with third-party services), these can be abstracted into the above pattern.
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Our CAPTCHA-avoidance protocol keeps the same interaction sequence while substituting

steps 2 and 3 with rate-proofs. Specifically, in step 2, the server sends a threshold rate and

the current timestamp. In step 3, instead of solving a CAPTCHA, the client generates a

rate-proof with the specified threshold and timestamp, and submits it to the server. The

server has two types of lists:

• Server-specific: The server requests a rate-proof over its own list. The name of the

list could be the server’s URL, and the request may be signed by the server. This

determines the rate at which the client visits this specific server.

• Global: The server requests a rate-proof over a global list, with a well-known name,

e.g. CACTI-GLOBAL. This yields the rate at which the client visits all servers that use

the global list.

The main idea of CAPTCHA avoidance is that a legitimate client should be able to prove

that its rate is below the server-defined threshold. In other words, the server should have

sufficient confidence that the client is not acting in an abusive manner (where the threshold

of between abusive and non-abusive behaviors is set by the server). Servers can select their

own thresholds according to their own security requirements. A given server can vary the

threshold across different actions or even across different users or user groups, e.g., lower

thresholds for suspected higher-risk users. If a client cannot produce a rate-proof, or is

unwilling to do so, the server simply reverts to the current approach of showing a CAPTCHA.

CACTI essentially provides a fast-pass for legitimate users.

The original CAPTCHA paper [224] suggested that CAPTCHAs could be used in the fol-

lowing scenarios:

1. Online polls: to prevent bots from voting,

2. Free email services: to prevent bots from registering for thousands of accounts,
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3. Search engine bots: to preclude or inhibit indexing of websites by bots,

4. Worms and spam: to ensure that emails are sent by humans,

5. Preventing dictionary attacks. to limit the number of password attempts.

As discussed in Section 5.1, it is unrealistic to assume that CAPTCHAs cannot be solved by

bots (e.g., using computer vision algorithms) or outsourced to CAPTCHA farms. Therefore,

we argue that all current uses of CAPTCHAs are actually intended to slow down attackers or

increase their costs. In the list above, scenarios 2 and 5 directly call for rate-limiting, while

scenarios 1, 3, and 4 can be made less profitable for attackers if sufficiently rate-limited.

Therefore, CACTI can be used in all these scenarios.

In addition to CAPTCHAs, modern websites use a variety of abuse-prevention systems (e.g.,

filtering based on client IP address or cookies). We envision CACTI being used alongside such

mechanisms. Websites could dynamically adjust their CACTI rate-proof thresholds based on

information from these other mechanisms. We are aware that rate-proofs are a versatile

primitive that could be used to fight abusive activity in other ways, or even enable new

use-cases. However, in this chapter, we focus on the important problem of reducing the user

burden of CAPTCHAs.

5.4.2 Design Challenges

In order to realize the conceptual design outlined above, we identify the following key chal-

lenges:

TEE attestation. In current TEEs, the process of remote attestation is not standardized.

For example, in SGX, a verifier must first register with Intel Attestation Service (IAS)

before it can verify TEE quotes. Other types of TEEs would have different processes. It is

unrealistic to expect every web server to establish relationships with such services from all
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manufacturers in order to verify attestation results. Therefore, web servers cannot directly

verify the attestation, while still needing to ascertain that the client is running a genuine

TEE.

TEE memory limitations. TEEs typically have a small amount of secure memory. For

example, if the memory of an SGX enclave exceeds the size of the EPC (usually 128 MB), the

CPU has to swap pages out of the EPC. This is a very expensive operation since these pages

must be encrypted and integrity protected. Therefore, CACTI should minimize the required

amount of enclave memory, since other enclaves may be running on the same platform.

Limited number of monotonic counters. TEEs typically have a limited number of

hardware monotonic counters, e.g., SGX allows at most 256 per enclave. Also, the number

of counter increments can be limited, e.g., in SGX the limit is 100 in a single epoch [122] – a

platform power cycle, or a 24-hour period. This is a challenge because hardware monotonic

counters are critical for achieving rollback-protected storage. Recall that CACTI requires

rollback-protected storage for all timestamps, to prevent malicious clients from rolling-back

the timestamp lists and falsifying rate-proofs. Furthermore, this storage must be updated

every time a new timestamp is added, i.e., for each successful rate-proof.

TEE entry/exit overhead. Invoking TEE functionality typically incurs some overhead.

For example, whenever an execution thread enters/exits an SGX enclave, the CPU has

to perform various checks and procedures (e.g., clearing registers) to ensure that enclave

data does not leak. Identifying and minimizing the number of TEE entries/exits, while

maintaining functionality, can be challenging.

5.4.3 Realizing CACTI Design

We now present a detailed design that addresses aforementioned design challenges. We

describe its implementation in Section 5.5.
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TEE PA

get group private key()

request attestation()

attestation report

skTEE

Figure 5.2: CACTI provisioning protocol. The interaction between the Provisioning Author-
ity (PA) and the client’s TEE takes place over a secure connection, using the client to
pass the encrypted messages. After verifying the attestation report (and any other required
information), the PA provisions the TEE with a group private key (skTEE).

Communication protocol

The web server must be able to determine that a supplied rate-proof was produced by a

genuine TEE. Typically, this would be done using remote attestation, where the TEE proves

that it is running CACTI code. If the TEE provides privacy-preserving attestation (e.g., the

EPID protocol used in SGX remote attestation), this would also fulfill our requirement for

client privacy, since websites would not be able to link rate-proofs to specific TEEs.

However, as described above, current TEE remote attestation is not designed to be verified

by anonymous third parties. Furthermore, as CACTI is not limited to any particular TEE

type, websites would need to understand attestation results from multiple TEE vendors,

potentially using different protocols. Finally, some types of TEEs might not support privacy-

preserving remote attestation, which would undermine our requirement for client privacy.

To overcome this challenge, we introduce a separate Provisioning Authority (PA) in order

to unify various processes for attesting CACTI TEEs. Fundamentally, the PA is responsible

for verifying TEE attestation (possibly via the TEE vendor) and establishing a privacy-

preserving mechanism through which websites can also establish trust in the TEE. Specifi-

cally, the PA protects user privacy by using the EPID group signature scheme. The PA plays

the role of the EPID issuer, and – optionally – the revocation manager [41]. During the pro-
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TEE C S

GET example.com

t, ts, k, name, pks, sig

t, ts, k, name, pk, sig

SignskTEE
(rate-proof)

SignskTEE
(rate-proof)

Verify

CAPTCHA PASS, example.com

Figure 5.3: CACTI CAPTCHA-avoidance protocol. The client (C) requests a resource from
the web server (S). In response, the server provides a timestamp for the current event (t),
a threshold consisting of a starting time (ts) and a count (k), and the name of the list.
Optionally, the server also provides a signature (sig) over the request and the public key
(pks) with which the signature can be verified. The client passes this information to its
TEE in order to produce a rate-proof, signed by a group private key (skTEE), which can be
verified by the server.

visioning phase (as shown in Figure 5.2), the PA verifies the attestation from the client’s

TEE and then runs the EPID join protocol with the client’s TEE in order to provision the

TEE with a group private key skTEE. The PA certifies and publishes the group public key

pkG. The PA may optionally require the client to prove their identity (e.g., by signing into

an account) – this is a business decision and different PAs may take different approaches.

After provisioning, the PA is unable to link signatures to any specific client thanks to the

properties of the underling BBS+ signature scheme and signature-based revocation used in

EPID [41]. We analyze security implications of malicious PAs in Section 5.6.1 and discuss

the use of other group signature schemes in Section 5.7.2. There can be multiple PAs and

websites can decide which PAs to trust. If a TEE is provisioned by an unsupported PA, the

website would fall back to using CAPTCHAs.

Once the TEE has been provisioned, the client can begin to use CACTI when visiting sup-

ported websites, as shown in Figure 5.3. Specifically, when serving a page, the server includes
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the following information: a timestamp t, a threshold Th (including start time ts and count

k), the name of the list (or CACTI-GLOBAL for the global list), and (optionally) a public key

and signature for rates that enforce a same-origin policy. The client uses this information to

request a rate-proof from their TEE. If the client’s rate is indeed below the threshold, the

TEE produces the rate-proof, signed with its group private key. The client then sends this

to the server in lieu of solving a CAPTCHA.

TEE Design

To realize the conceptual design above, the client’s TEE would ideally store all timestamps

indefinitely in integrity-protected and rollback-protected memory. However, as discussed

above, current TEEs fall short of this idealized representation, since they have limited

integrity-protected memory and a limited number of hardware counters for rollback pro-

tection. To overcome this challenge, we store all data outside the TEE, e.g., in a standard

database. To prevent dishonest clients from modifying this data, we use a combination of

hash chains and Merkle Hash Trees (MHTs) to achieve integrity and rollback-protection.

Hash chains of timestamps. To protect integrity of stored timestamps, we compute a

hash chain over each list of timestamps, as shown in Figure 5.4. Thus the TEE only needs to

provide integrity and rollback-protected storage for the most recent hash in each hash chain.

For efficiency, we store intermediate value of the hash chain along with each timestamp

outside the TEE.

MHT of lists. Although it would be possible for the TEE to seal the most recent hash

of each list individually, the lists may be updated independently, so the TEE would need

separate hardware monotonic counters to provide rollback protection for each list. In a real-

world deployment, the number of lists is likely to exceed the number of available hardware

counters, e.g., 256 counters per enclave in SGX. To overcome this challenge, we combine

the lists into a Merkle Hash Tree (MHT). As shown in Figure 5.5, each leaf of the MHT
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Figure 5.4: Hash chain of timestamps tij for list i. H() is a cryptographic hash function.
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Figure 5.5: Merkle Hash Tree over lists a...d. Each leaf is a hash of the list information Li

(list name and public key) and the most recent hash of the list’s hash chain H i
n+1. H() is a

cryptographic hash function, R is the root of the MHT, and the nodes in blue illustrate the
inclusion proof path for list b.

is a hash of the list information (list name and public key) and the most recent hash in

the list’s hash chain. With this arrangement, the TEE only needs to provide integrity and

rollback-protected storage for the MHT root R, which can be achieved using sealing and a

single hardware monotonic counter.

Producing a Rate-Proof

The TEE first needs to verify the integrity of its externally-stored data structures (i.e., hash

chains and MHT described above), and if successful, update these with the new timestamp

and produce the rate-proof, as follows:

1. TEE inputs. The client supplies its TEE with the list information and all timestamps
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in the list that are greater than or equal to the server-defined start time ts. The client

also supplies the largest timestamp that is smaller than ts, which we denote ts−δ, and the

intermediate value of the hash chain up to, while discluding, ts−δ. The client supplies the

sealed MHT root and intermediate hashes required to verify that the list is in the MHT.

2. Hash chain checks. The TEE first checks that ts−δ is smaller than ts and then

recomputes the hash chain over included timestamps in order to reach the most recent value.

During this process, it counts the number of included timestamps and checks that this is

less than the value k specified in the threshold. The inclusion of one timestamp outside the

requested range (ts−δ) ensures that the TEE has seen all timestamps within the range. This

process requires O(n) hashes, where n is the number of timestamps in the requested range.

3. MHT checks. The TEE then unseals the MHT root and uses the hardware counter to

verify that it is the latest version. The TEE then checks that the list information and that

the calculated most recent hash value is indeed a leaf in the MHT. This process requires

O(log(s)) hashes, where s is the number of lists. Including the list name in the MHT leaf

ensures that the timestamps have not been substituted from another list. If the list has an

associated public key, the TEE uses this to verify the signature on the server’s request.

4. Starting a new list. If the rate-proof is requested over a new list (e.g., when the user

first visits a website), the TEE must also verify that the list name does not appear in any

MHT leaves. In this case, the client supplies the TEE with all list names and their most

recent hash values. The TEE reconstructs the full MHT and checks that the new list name

does not appear. This requires O(s) string comparisons and hashes for s lists.

5. Updating a list. If the above verification steps are successful, the TEE checks that

the new timestamp t supplied by the server exceeds the latest timestamp in the specified

list. If so, the TEE adds t to the list and updates the MHT to obtain a new MHT root.

The new root is sealed alongside the TEE’s group private key. The TEE then produces a
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signed rate-proof, using its group private key. The rate-proof includes a hash of the original

request provided by the server, thus confirming that the TEE checked the rate and added

the server-supplied timestamp. The TEE returns the rate-proof to the client, along with

the new sealed MHT root for the client to store. In the above design, the whole process of

producing the rate-proof can be performed in a single call to the TEE, thus minimizing the

overhead of entering/exiting the TEE.

Reducing Client-Side Storage

The number of timestamps stored by CACTI grows as the client visits more websites. How-

ever, in most use-cases, it is unlikely that the server will request rate-proofs going back

beyond a certain point in time tP .

To reduce client-side storage requirements, we provide a mechanism to prune a client’s

timestamp list by merging all timestamps prior to tP . Specifically, the server can include

tP in any rate-proof request, and upon receiving this, the client’s TEE counts and records

how many timestamps are older than tP . The old timestamps and associated intermediate

hash values can then be deleted from the database. In other words, the system merges all

timestamps prior to tP into a single count value cP . The TEE stores tP and the count value

in the database outside the TEE and protects their integrity by including both values in the

list information that forms the MHT leaf. Pruning can be done repeatedly: when a new

pruning request is received for tP ′ > tP , CACTI fetches and verifies all timestamps up to tP ′

and adds these to cP to create cP ′ . It then replaces tP and cP with tP ′ and cP ′ respectively.

This pruning mechanism does not reduce security of CACTI. If the server does request a

rate-proof going back beyond tP , CACTI will include the full count of timestamps stored

alongside tP . This is always greater than or equal to the actual number of timestamps;

thus, there is no incentive for the server to abuse the pruning mechanism. Similarly, even

if a malicious client could trigger this pruning (i.e., assuming the list is not associated to
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Figure 5.6: Overview of CACTI client-side components.

the server’s public key), there is no incentive to do so because it would never decrease the

number of timestamps included in rate-proofs.

Since the global list CACTI-GLOBAL is used by all websites, the client is always allowed to

prune this list to reduce storage requirements. CACTI blocks servers from pruning CACTI-

GLOBAL since this can be used as an attack vector to inflate the client rate by compressing all

rates into one value – thus preventing use of CACTI on websites that utilize CACTI-GLOBAL.

Thus, we expect pruning of CACTI-GLOBAL to be done automatically by the CACTI host

application or browser extension.

5.5 Implementation

We now describe the implementation of the CACTI design presented in the previous section.

We focus on proof-of-concept implementations of: client-side browser extension, native host

application, and CACTI TEE, as shown in Figure 5.6. Finally, we discuss how CACTI is

integrated into websites.
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5.5.1 Browser Extension

The browser extension serves as a bridge between the web server and our host applica-

tion. We implemented a proof-of-concept browser extension for the Chrome browser (build

79.0.3945.130) [99]. Chrome extensions consist of two parts: a content script and a back-

ground script.

• Content script: scans the visited web page for an HTML div element with the id

CACTI-div. If the page contains this, the content script parses the parameters it

contains and sends them to the background script.

• Background script: we use Chrome Native Messaging to launch the host application

binary when the browser is started and maintain an open port [100] to the host ap-

plication until the browser is closed. The background script facilitates communication

between the content script and the host application.

User notification. The browser extension is also responsible for notifying the user about

requests to access CACTI. Notifications can include information, such as server’s domain

name, timestamp to be inserted, and threshold used to generate the rate-proof. By default,

the background script notifies the user whenever a server requests to use CACTI, and waits for

user confirmation before proceeding. This prevents malicious websites from abusing CACTI

by adding multiple timestamps without user permission (for possible attacks, see Section

5.6.1). However, asking for user confirmation for every request could cause UI fatigue.

Therefore, CACTI could allow the user to choose from the following options: (1) Always

ask (the default), (2) Ask only upon first visit to site, (3) Only ask for untrusted sites, (4)

Only ask for more than x requests per site per time period, and (5) Never ask. Advanced

users can also modify our extension or code their own extension to enforce arbitrary policies

for requesting user confirmation. The notification is displayed using Chrome’s Notification

API [95].
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5.5.2 Host Application

The host application running on the client is responsible for: (1) creating the CACTI TEE,

which we implement as an SGX enclave, and exposing its ECALL API to the browser extension;

(2) storing (and forwarding) timestamps and additional integrity information for secure

calculation of rate-proofs (to the enclave); and (3) returning the enclave’s output to the

browser extension.

The host application is implemented in C and uses Chrome Native Messaging [102] to com-

municate with the browser extension. Since Chrome Native Messaging only supports commu-

nication with JSON objects, the host application uses a JSON parser to extract parameters

to the API calls. We used the JSMN JSON parser [236]. Moreover, the host application

implements the Chrome Native Messaging protocol [94] and communicates with the browser

extension using Standard I/O (stdio), since this is currently the only means to communicate

between browser extensions and native applications.

The host application stores information in an SQLite database. This database has two

tables: LISTS stores the list names and associated public keys, and TIMESTAMPS stores all

timestamps and intermediate values of the hash chains. For each rate-proof request, the host

application queries the database and provides the data to the enclave.

Since the timestamps are stored unencrypted, we use existing features of the SQLite database

to retrieve only the necessary range of timestamps for a given list. Note that since data in-

tegrity is maintained through other mechanisms (i.e., hash chains and MHT), the mechanism

used by the host application to store this data does not affect the security of the system.

Alternative implementations could use different database types and/or other data storage

approaches. Instead of hash chains and MHTs, it is possible to use a database managed by

the enclave, e.g., EnclaveDB [193]. However, this would increase the amount of code running

inside the enclave, thus bloating the trusted code base (TCB).
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5.5.3 SGX Enclave

We implemented the TEE as an SGX enclave using the OpenEnclave SDK [164] v0.7.0.

OpenEnclave was selected since it aims to unify the programming model across different

types of TEEs. The process of requesting a rate-proof is implemented as a single get rate

ECALL. For timestamps, we use the UNIX time which denotes the number of seconds elapsed

since the UNIX Epoch (midnight 1/1/1970) and is represented as a 4-byte signed integer.

We use cryptographic functions from the mbed TLS library [22] included in OpenEnclave.

Specifically, we use SHA-256 for all hashes and ECDSA for all digital signatures. For EPID

signatures, we use Intel EPID SDK (v7.0.1) [121] with the performance-optimized version

of Intel Integrated Performance Primitives (IPP) Cryptography library [123]. We use a

formally-verified and platform-optimized MHT implementation from EverCrypt [196]. As

an optimization, if the MHT is sufficiently small, we can cache fully inside the enclave. When

a request for a rate-proof is received, the enclave recalculates the timestamp hash chain and

then directly compares the most recent value to the corresponding leaf in the cached MHT,

as described in Section 5.4.3.

OpenEnclave currently does not support SGX hardware monotonic counters, so we could not

include these in the proof-of-concept implementation. However, a production implementation

can easily include hardware counter functionality. Although our implementation uses SGX,

CACTI can be realized on any suitable TEE. For example, OpenEnclave is currently being

updated to support ARM TrustZone. When this version is released, we plan to port the

current implementation to TrustZone, with minimal expected modifications.

5.5.4 Website Integration

Integrating CACTI into a website involves two aspects: sending the rate-proof request to the

client, and verifying the response. The server generates the rate-proof request (see Section

5.4.3) and encodes it as data-* attributes in the CACTI-div HTML div. The server also
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includes the URL to which the generated rate-proofs should be sent. The browser extension

determines whether the website supports CACTI by looking for the CACTI-div element.

The server implements an HTTP endpoint for receiving and verifying rate-proofs . If the

verification succeeds, this endpoint notifies the website and the user is granted access.

Integrating CACTI into a website is thus very similar to using existing CAPTCHA systems.

For example, reCAPTCHA adds the g-recaptcha HTML div to the page, and implements

various endpoints for receiving and verifying the responses [104]. We evaluate server-side

overhead of CACTI, in terms of both processing and data transfer requirements, in Sec-

tion 5.6.

5.6 Evaluation

We now present and discuss the evaluation of CACTI. We start with a security analysis, based

on the threat model and requirements defined in Section 5.3. Next, we evaluate performance

of CACTI in terms of latency and bandwidth. Finally, we discuss CACTI deployability issues.

5.6.1 Security Evaluation

Data integrity & rollback attacks. Since timestamps are stored outside the enclave, a

malicious host application can try to modify this data, or roll it back to an earlier version. If

successful, this might trick the enclave into producing falsified rate-proofs. However, if any

timestamp is modified outside the enclave, this would be detected because the most recent

value of the hash chain would not match the corresponding MHT leaf. Assuming a suitable

collision-resistant cryptographic hash function, it is infeasible for the malicious host to find

alternative hash values matching the MHT root. Similarly, a rollback attack against the

MHT is detected by comparing the included counter with the hardware monotonic counter.

Timestamp omission attacks. A malicious application can try to provide the enclave
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with only a subset of the timestamps for a given request, e.g., to pretend to be below the

threshold rate. Specifically, the host could try to omit one or more timestamps at the start,

in the middle, and/or at the end, of the range. If timestamps are omitted at the start, the

enclave detects this when it checks that the first timestamp supplied by the host is prior to

the start time of request ts. If timestamps are omitted in the middle (or at the end) of the

range, the most recent hash value will not match the value in the MHT leaf.

List substitution attacks. A malicious client might attempt to use a timestamp hash

chain from a different list, or claim that the requested list does not exist. The former is

prevented by including list information (list name and public key) in the MHT leaf. If there

is a mismatch between the name and the timestamp chain, the resulting leaf would not exist

in the MHT. For the latter, when the host calls the enclave’s get rate function for a new

list, the enclave checks the names of all lists in the MHT to ensure that the new list name

does not already exist.

TEE reset attacks. A malicious client might attempt to delete all stored data, including

the sealed MHT root, in order to reset the TEE. Since the group private key received from

the provisioning authority is sealed together with the MHT root, it is impossible to delete one

and not the other. Deleting the group private key would force the TEE to be re-provisioned

by the provisioning authority, which may apply its own rate-limiting policies on how often

a given client can be re-provisioned.

CACTI Farms. Similar to CAPTCHA farms, a multitude of devices with TEE capabilities

could be employed to satisfy rate thresholds set by servers. However, this would be infea-

sible because: (1) CACTI enclaves would stop producing rate-proofs after reaching server

thresholds and would thus require a TEE reset and CACTI re-provisioning – which is a

natural rate limit; (2) the cost of purchasing a device would be significantly higher than

CAPTCHA solving costs. For example, currently, the cheapest service charges $1.8 for solv-
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ing 1, 000 reCAPTCHAs [18]3, while a low-end bare-bones CPU with SGX support alone

costs ≈ $70 [125], in addition to the maintenance and running costs.

CACTI Botnets. An adversary might try to build a CACTI botnet consisting of compromised

devices with suitable TEEs in order to bypass CAPTCHAs at scale, similar to a CACTI

farm. However, if the compromised devices are not yet running CACTI, the adversary would

have to provision them using a suitable PA, which could be made arbitrarily costly and

time-consuming. Alternatively, if the compromised devices are already running CACTI, the

adversary gains little advantage because the legitimate users will likely have been using

CACTI to create their own rate-proofs. Furthermore, the legitimate user would probably

notice any overuse/abuse of their system due to quickly exceeding the thresholds.

Client-side malware. A more subtle variant of the reset attack can occur if malware on

the client’s own system corrupts or deletes TEE data. This is a type of denial-of-service

(DoS) attack against the client. However, defending against such DoS attacks is beyond the

scope of this work, since this type of malware would have many other avenues for causing

DoS, e.g., deleting critical files.

Other DoS attacks. A malicious server might try to mount a DoS attack against an

unsuspecting client by inserting a timestamp for a future time. If successful, the client would

be unable to insert new timestamps and create rate-proofs for any other servers, since the

enclave would reject these timestamps as being in the past. This attack can be mitigated if

the client’s browser extension and/or host application simply check that the server-provided

timestamp is not in the future.

Client tracking. A malicious server (or group of servers) might attempt to track clients by

sending multiple requests for rate-proofs with different thresholds in order to learn the precise

number of timestamps stored by the client. A successful attack of this type could potentially

3See a comparison of CAPTCHA solving services [197]
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reduce the client’s anonymity set to only those clients with the same rate. However, this

attack is easy to detect by monitoring the thresholds sent by the server. A more complicated

attack targeting a specific client is to send an excessive number of successful rate-proof

requests in order to increase the client’s rate. The goal is to reduce the size of the target’s

anonymity set. This attack is also easy to detect or prevent by simply rate-limiting the

number of increments accepted from a particular server. Note that the window of opportunity

for this targeted attack is limited to a single session because malicious servers cannot reliably

re-identify the user across multiple sessions (since this is what the attack is trying to achieve).

The above attacks cannot be improved even if multiple servers collude.

Rogue PAs. A malicious PA might try to compromise or diminish client privacy. However,

this is prevented by CACTI’s use of the EPID protocol [41]. Specifically, due to the BBS+

signature scheme [26] during EPID key issuance, clients’ private keys are never revealed to

PAs. Also, EPID’s signature-based revocation mechanism does not require member private

keys to be revealed. Instead, signers generate zero-knowledge proofs showing that they are

not on the revocation list. Therefore, client privacy does not depend on any PA business

practices, e.g., log deletion or identifier blinding.

Each website has full discretion to decide which PAs it trusts; if a server does not trust the PA

who issued the member private key to the TEE, it can simply fall back to CAPTCHAs. This

provides no advantage to attackers, and websites can be as conservative as they desire. If

higher levels of assurance are required, PAs can execute within TEEs and provide attestation

of correct behavior; we defer the implementation of this optional feature to future work.

Overall, we claim that CACTI meets all security requirements defined in Section 5.3 and

significantly increases the adversary’s cost to perform DoS attacks. Specifically, the Un-

forgeability requirement is satisfied since it is impossible for the host to perform rollback,

timestamp exclusion, and list substitution attacks. Client privacy is achieved because the

rate-proof does not reveal the actual number of timestamps included, and is signed using a
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group signature scheme.

5.6.2 Latency Evaluation

We conducted all latency experiments on an Intel NUC Kit NUC7PJYH [124] with an Intel

Pentium Silver J5005 Processor (4M Cache, up to 2.80 GHz); 4 GB DDR4-2400 1.2V SO-

DIMM Memory; running Ubuntu 16.04 with the Linux 4.15.0-76-generic kernel Intel SGX

DCAP Linux 1.4 drivers.

Recall that the host application is responsible for initializing the enclave, fetching data

necessary for enclave functionality, performing ECALLs, and finally updating states according

to enclave output. Therefore, we consider the latency in the following four key phases in the

host application:

• Init-Enclave: Host retrieves the appropriate data from the database and calls init mt

ECALL initializing the MHT within the enclave.4

• Pre-Enclave: Host retrieves the required hashes and timestamps from the database.

• In-Enclave: Host calls the get rate ECALL. This phase concludes when the ECALL

returns.

• Post-Enclave: Host updates/inserts the data it received from the enclave into the

database.

We investigated the latency impact by varying (1) the number of timestamps in the rate-proof

(Section 5.6.2), and (2) the number of lists in the database (Section 5.6.2). We evaluated

the end-to-end latency in Section 5.6.2. Unless otherwise specified, each measurement is the

average of 10 runs.

Note: The ECDSA and EPID signature operations are, by far, the dominant contributors to

4Init-Enclave is done only when the enclave starts.
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latency. However, they represent a fixed latency overhead that does not vary with the number

of timestamps or servers. Therefore, for clarity’s sake, figures in the following sections do

not include these operations. We analyze them separately in Section 5.6.2.

Varying Number of Timestamps in Query

We measured the effect of varying the number of timestamps included in the query while

holding the number of lists constant. As shown in Figure 5.7, query latency increases linearly

with the number of timestamps included in the query. The most notable increase is in the

in-enclave phase since this involves calculating a longer hash chain. However, even with

10,000 timestamps in a query, the total latency only reaches ˜40 milliseconds (excluding

signature operations).

Varying Number of Lists

Next, we varied the number of lists while holding the number of timestamps fixed at one per

list. We considered two separate scenarios: adding a new list and updating an existing list.

Adding a new list. As shown in Figure 5.8, the latency for the pre-enclave phase is

lower compared to Figure 5.7. This is because we optimize the host to skip the expensive

TIMESTAMPS table look-up operation if the host knows that this is a new list. The in-enclave

phase increases as the number of lists increases due to the string comparison operations

performed by the enclave to prevent list substitution attacks. However, this phase can be

optimized by sorting the server names inside the enclave during initial MHT construction.

The post-enclave latency is due to the cost of adding entries to the TIMESTAMPS table. Fig-

ure 5.8 assumes the enclave has already been initialized (see Figure 5.9 for the corresponding

init-enclave phase).

Updating an existing list. As shown in Figure 5.9, the latency of the init-enclave phase

increases as the number of lists increases. This is expected since the enclave reconstructs
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Figure 5.7: Latency of initializing the enclave
and creating a rate-proof for different num-
bers of timestamps in the query (excluding
signature operations).
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Figure 5.10: Microbenchmarks of signature
operations. ECDSA signatures were created
and verified using the mbed TLS library [22]
and EPID signatures with the Intel EPID
SDK [121].

the MHT in this phase. The pre-enclave phase also increases slightly due to the database

operations.

Signature Operation Latency

Evaluation results presented thus far have not included the ECDSA signature verification or

EPID signature creation operations. Specifically, the server creates an ECDSA signature on
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Table 5.1: End-to-End Latency of CACTI for different numbers of timestamps and lists. The
Browser column represents the latency of the browser extension marshaling data to and from
the host application. The other columns are as described above.

ECDSA-
Sign

Browser Pre-Enclave In-Enclave Post-
Enclave

EPID-
Verify

Total

10,000 times-
tamps in 1
list

6.3 ms 15.2 ms 7.7 ms 181.7 ms 1.0 ms 27.3 ms 239.2 ms

4,096 lists with 1
timestamp each

6.3 ms 15.2 ms 1.8 ms 157.4 ms 2.0 ms 27.3 ms 210.0 ms

the request, which the enclave verifies. The enclave creates an EPID group signature on the

response, which the server verifies using the EPID group public key. The average latencies

over 10 measurements for these four signature operations are shown in Figure 5.10. We

can see that the EPID group signature generation operation is an order magnitude slower

compared to the other cryptographic operations including EPID group signature verification.

The latency of our enclave is thus dominated by the EPID signature generation operation.

End-to-End Latency

Table 5.1 shows the end-to-end latency (excluding network communication) from when the

server begins generating a request until it has received and verified the response from the

client. In both settings, the end-to-end latency is below 250 milliseconds. The latency

will be lower if there are fewer lists or included timestamps. Compared to other types of

CAPTCHAs, image-based CAPTCHAs take ˜10 seconds to solve [45] and behavior-based

reCAPTCHA takes ˜400 milliseconds, although this might change depending on the client’s

network latency.

5.6.3 Bandwidth Evaluation

We measured the amount of additional data transferred over the network by different types

of CAPTCHA techniques. Minimizing data transfer is critical for both servers and clients.

We compared CACTI against image-based and behavior-based reCAPTCHA [103] (see Fig-
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Table 5.2: Additional data received and sent by the client for image-based and behavior-
based reCAPTCHA, compared with CACTI.

Received Sent Total

Image-based 140.05 kB 28.97 kB 169.02 kB
Behavior-based 54.38 kB 26.12 kB 80.50 kB
CACTI 0.82 kB 1.10 kB 1.92 kB

ure 5.1). The former asks clients (one or more times) to find and mark certain objects in a

given image or images, while the latter requires clients to click a button. To isolate the data

used by reCAPTCHA, we hosted a webpage with the minimal auto-rendering reCAPTCHA

example [104]. We visited this webpage and recorded the traffic using the Chrome browser’s

debugging console.

Table 5.2 shows the additional data received and sent by the client to support each type

of CAPTCHA. Image-based reCAPTCHA incurs the highest bandwidth overhead since it

has to download images, often multiple times. Although not evaluated here, text-based

CAPTCHAs also use images and would thus have a similar bandwidth overhead. Behavior-

based reCAPTCHA downloads several client-side scripts. Both types of reCAPTCHA made

several additional connections to Google servers. Overall, CACTI achieves at least a 97%

reduction in client bandwidth overhead compared to reCAPTCHA.

5.6.4 Server Load Evaluation

We analyzed the additional load imposed on the server by CACTI. Unfortunately, CAPTCHAs

offered as services, such as reCAPTCHA [103] and hCAPTCHA [129], do not disclose their

source code and we have no reliable way of estimating their server-side overhead. There-

fore, we compared CACTI against two open-source CAPTCHA projects published on GitHub

(both have more than 1,000 stars and have been forked more than a hundred times):

dchest/captcha [74] (Figure 5.11a) generates image-based text recognition CAPTCHAs
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(a) dchest/captcha image-based
CAPTCHA [74].

(b) produck/svg-captcha image-based
CAPTCHAs [194].

Figure 5.11: CAPTCHAs generated using open-source libraries.

consisting of transformed digits with noise in the form of parabolic lines and additional

clusters of points. It can also generate audio CAPTCHAs, which are pronunciations of

digits with randomized speed and pitch and randomly-generated background noise.

produck/svg-captcha [194] (Figure 5.11b) generates similar image-based text recognition

CAPTCHAs, as well as challenge-based CAPTCHAs consisting of simple algebraic opera-

tions on random integers. Noise is introduced by varying the text color and adding parabolic

lines.

Table 5.3 shows the time to generate different types of CAPTCHAs using the above libraries

with typical configuration parameters (e.g., eight characters for text CAPTCHAs). Since

CAPTCHA verification with these libraries is a simple string comparison, we assume this

is negligible. CACTI’s server-side processing is due almost entirely to the EPID signature

verification operation. We expect that this time could be improved by using more optimized

implementations of this cryptographic operation. Additionally, CACTI uses significantly less

communication bandwidth than other approaches, which also reduces the server load (which

is not captured in this measurement). Most importantly, the biggest gain of CACTI is on

the user side; saving more than ˜10 seconds per CAPTCHA for users.

5.6.5 Deployability Analysis

We analyze the deployability of CACTI by considering changes required from both the server’s

and client’s perspectives:

Server’s perspective. The server will have to make the following changes: (1) create and
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Table 5.3: Server-side processing time for generating a CAPTCHA and verifying the re-
sponse.

Library Type Time

dchest/captcha
Audio 13.3 ms
Image-based text 1.7 ms

produck/svg-captcha
Image-based text 2.2 ms
Image-based math 1.4 ms

CACTI Rate-proof 33.6 ms

maintain a new public/private key pair and obtain a certificate for the public key, (2) add

an additional div to pages for which they wish to enable CACTI, (3) create and sign requests

using the private key, and (4) add an HTTP endpoint to receive and verify EPID signatures.

The server-side deployment could be further simplified by providing the request generation

and signature operations as an integrated library.

Client’s perspective. The client will have to make the following changes: (1) download

and install the CACTI native software, and (2) download and install the browser extension.

Although CACTI requires the client to have a suitable TEE, this is a realistic assumption

given the large and increasing deployed base of devices with e.g., ARM TrustZone or Intel

SGX TEEs.

5.7 Discussion

5.7.1 PA Considerations

As discussed in Section 5.4.3, CACTI’s use of a provisioning authority (PA) provides the basis

for client privacy. CACTI does not prescribe the PA’s policies. For example, the PA has the

choice of running the provisioning protocol (Figure 5.2) as a one-off operation (e.g., when

installing CACTI) or on a regular basis, depending on its risk appetite. If there are attacks or

exploits threatening the Intel SGX ecosystem (and consequently the security of group private
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keys), the PA can revoke all group member keys. This would force all enclaves in the group

to re-register with the PA. A similar scenario applies if key-rotation is implemented on the

PA, e.g., the master secret held by the PA is rotated periodically. This forces all enclaves to

regularly contact the PA to obtain new group member keys. Frequent key-rotation introduces

a heavier burden on the clients (although this can be automated), however, provides better

security.

5.7.2 EPID

Even though CACTI uses EPID group signatures to protect client privacy, CACTI is agnostic

to the choice of the underlying signature scheme as long as it provides signer unlinkability

and anonymity. We also considered other schemes, such as Direct Anonymous Attestation

(DAA) [39], as used in the Trusted Platform Module (TPM). However, DAA is susceptible

to various attacks [148, 202, 40] and, due to its design targeting low-end devices, suffers from

performance problems. In contrast, EPID is used in current Intel SGX remote attestation

and is thus a good fit for enclaves. Moreover, as mentioned in the previous section, the

PA must revoke group member keys in the event of a compromise. EPID offers privacy-

preserving signature-based revocation, wherein the issuer can revoke any key using only a

signature generated by that key. Signature verifiers use signature revocation lists published

by issuers to check whether the group member keys are revoked. Using this mechanism,

CACTI provides PAs with revocation capabilities without allowing them to link keys to

individual users. PAs can define their own revocation policies to maximize their reputation

and trustworthiness.
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5.7.3 Optimizations

Database Optimizations

As with most modern database management systems, SQLite supports creating indexes

in database tables to reduce query times. Also, as discussed in Section 5.6, placing all

timestamps for all servers in one table and conducting JOIN operations incurs performance

overhead. An alternative is to use a separate table per list. However, we presented CACTI

evaluation results without creating any indexes or separate timestamp tables in order to

show the worst-case performance. Performance optimizations, such as changing the database

layout, can be easily made by third parties since they do not affect the security of CACTI.

System-level Optimizations

As a system-level optimization, CACTI can perform some processing steps in the background

while waiting for the user to confirm the action. For example, while the browser extension

is displaying the notification and waiting for user approval, the request can already be sent

to the enclave to begin processing (e.g., loading and verifying the hash chain of timestamps

and the MHT). While the enclave creates the signed rate-proof, it does not release the proof

or update the hash chain until the user approves the action. This optimization reduces

user-perceived latency to that of client-side post-enclave and server-side EPID verification

processes, which is less than 14% of the end-to-end latency reported in Section 5.6.2.

Optimizing Pruning

Although it is possible to create another ECALL for pruning, this might incur additional

enclave entry/exit overhead (see Section 5.4.2). Instead, pruning can be implemented within

the get rate ECALL. Since get rate already updates the hash chain and MHT, the pruning

can be performed at the same time, thus eliminating the need for an additional ECALL and

hash chain and MHT update.
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5.7.4 Deploying CACTI

Integration with CDNs and 3rd Party Providers

Although CACTI aims to reduce developer effort by choosing well-known primitives (e.g.,

SQLite and EPID), we do not expect all server operators to be experienced in implementing

CACTI components. The server-side components of CACTI can be provided by Content

Delivery Networks (CDNs) or other independent providers.

CDNs are widely used to reduce latency by serving web content to clients on behalf of the

server operator. CDNs have already recognized the opportunity to provide abuse prevention

services to their customers. For example, Cloudflare offers CAPTCHAs as a free rate-limiting

service [60] to its customers [62]. CACTI could easily be adapted for use by CDNs, which

would bring usability benefits across all websites served by the CDN.

In addition, independent CACTI providers could offer rate-proof services that are easy to inte-

grate into websites – similar to how CAPTCHAs are currently offered by reCAPTCHA [103]

or hCAPTCHA [129]. These services would implement the endpoints described in Sec-

tion 5.5.4 and could be integrated into websites with minimal effort.

Website Operator Incentives

There are several incentives for website operators to support CACTI. Firstly, in terms of

usability, CACTI can drastically improve user experience by allowing legitimate users to

avoid having to solve CAPTCHAs. Secondly, in terms of privacy, some concerns have been

raised about existing CAPTCHA services [62]. By design, CACTI rate-proofs cannot be

linked to specific users or to other rate-proofs created by the same user. Thirdly, in terms

of bandwidth usage, CACTI requires an order of magnitude fewer data transfer than other

CAPTCHA systems.

User demand for privacy-preserving systems that reduce the amount of time spent solving
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CAPTCHAs has led Cloudflare to offer Privacy Pass [73], a system designed to reduce

the number of CAPTCHAs presented to legitimate users, especially while using VPNs or

anonymity networks [63].

PA Operator Incentives

In CACTI, PAs are only involved when provisioning credentials to CACTI enclaves (i.e.,

not when the client produces a rate-proof). This is a relatively lightweight workload from a

computational perspective. PAs could be run by various different organizations with different

incentives, for example:

1. TEE hardware vendors that want to increase the desirability of their hardware;

2. Online identity providers (e.g., Google, Facebook, Microsoft) who already provide fed-

erated login services;

3. For-profit businesses that charge fees and provide e.g., a higher level of assurance;

4. Non-profit organizations, similar to the Let’s Encrypt Certificate Authority service.

CACTI users can, and are encouraged to, register with multiple PAs and randomly select

which private key to use for generating each rate-proof. This allows new PAs to join the

CACTI ecosystem and ensures that clients have maximum choice of PA without the risk of

vendor lock-in.

Client-side components

On the client-side, CACTI could be integrated into web browsers, and would thus work “out

of the box” on platforms with a suitable TEE.
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5.8 Related Work

CACTI is situated in the intersection of multiple fields of research, including DoS (or Dis-

tributed DoS (DDoS)) protection, human presence, and CAPTCHA improvements and al-

ternatives. In this section, we discuss related work in each of these fields and their relevance

to CACTI.

Network-layer defenses. The main purpose of network-layer DoS/DDoS protection mech-

anisms is to detect malicious network flows targeting the availability of the system. This

is done by using filtering [152] or rate-limiting [54] (or a combination thereof) according

to certain characteristics of a flow. We refer the reader to [190] for an in-depth survey of

network-level defenses. Moreover, additional countermeasures can be employed depending

on the properties of the system under attack (e.g., sensor-based networks [184], peer-to-peer

networks [191], and virtual ad-hoc networks [138]).

Application-layer defenses. Application-layer measures for DoS/DDoS protection focus

on separating human-originated traffic from bot-originated traffic. To this end, problems that

are hard to solve by computers and (somewhat) easy to solve by humans comprise the basis

of application-layer mechanisms. As described in Section 5.1, CAPTCHAs [224] are used ex-

tensively. Although developing more efficient CAPTCHAs is an active area of research [108,

226, 204, 72], research aiming to subvert CAPTCHAs is also prevalent [171, 234, 91, 89]. In

addition to such automated attacks, CAPTCHAs suffer from inconsistency when solved by

humans (e.g., perfect agreement when solved by three humans is 71% and 31% for image

and audio CAPTCHAs, respectively [45]). [173] suggest that although CAPTCHAs suc-

ceed at telling humans and computers apart, by using CAPTCHA-solving services (operated

by humans), with an acceptable cost, CAPTCHAs can be defeated. Moreover, apart from

questions regarding their efficacy, one other concern about CAPTCHAs is their usability.

Studies such as [87, 45] show that CAPTCHAs are not only difficult but also time-consuming

for humans, with completion time of ≈10 seconds on average. While less time-consuming
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behavioral CAPTCHAs are available, some raise privacy concerns. A prevalent example,

reCAPTCHA [103], analyzes user behavioral data (which requires sharing this data with the

CAPTCHA provider) and claims to work more efficiently if used on multiple pages. In con-

trast, CACTI can provide at least the equivalent of abuse-prevention as CAPTCHAs, while

minimizing the burden on users and offering strong privacy guarantees.

Human presence detection. Human presence refers to determining whether specific

actions were performed by a human. VButton [149] proposes a system design based on

ARM’s TrustZone [24]. Secure detection of human presence is achieved by setting the display

and the touch input peripherals as secure peripherals which can only be controlled by the

TEE while VButton UI is displayed. With a secure I/O mechanism in place, user actions can

be authenticated to originate from VButton UI by a remote server using software attestation.

Similarly, Not-a-Bot [115] designs a system based on TPMs by tagging each network request

with an attestation assuring that the request has been performed not long after a keyboard

or mouse input by the user. Unfortunately, Intel SGX does not support secure I/O and it is

not currently possible to implement similar systems on devices with only Intel SGX support.

SGXIO [228] proposes an architecture for creating secure paths to I/O devices from enclaves

using a trusted stack that contains a hypervisor, I/O drivers, and an enclave for trusted

boot. In addition, an untrusted VM hosts secure applications. The communication between

secure applications and drivers is encrypted using keys generated at the end of the local

attestation process. Unfortunately, the implementation of this system is not yet available.

Fidelius [82] protects user secrets from a compromised browser or OS by protecting the path

from the input and output peripherals to the hardware enclave. Similar to SGXIO, this is

a promising step towards general-purpose trusted UI. If trusted UI capabilities do become

widely available on TEEs, these can complement our CACTI design (e.g., providing stronger

assurance of human presence).

Privacy Pass. Privacy Pass [73] implements a browser extension to reduce the burden of
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CAPTCHAs for legitimate users when visiting websites served by Cloudflare. When a user

solves a CAPTCHA, Cloudflare sends the user multiple anonymous cryptographic tokens,

which the user can later “spend” to access Cloudflare-operated services without encountering

additional CAPTCHAs Although Privacy Pass significantly benefits benign users, it could

still be exploited by CAPTCHA farms. Additionally, Privacy Pass’ is currently limited to

Cloudflare users.

5.9 Conclusion & Future Work

CACTI is a novel approach for leveraging client-side TEEs to help legitimate clients avoid

solving CAPTCHAs on the Web. The unforgeable yet privacy-preserving rate-proofs gen-

erated by the TEE provide strong assurance that the client is not behaving abusively. Our

proof-of-concept implementation demonstrates that rate-proofs can be generated in less than

0.25 seconds on commodity hardware, and that CACTI reduces data transfer by more than

98% compared to existing CAPTCHA schemes. As for future work, we plan to employ

optimization techniques discussed in Section 5.7, implement and evaluate CACTI on ARM

TrustZone using OpenEnclave, and explore new types of web security applications that are

enabled using client-side TEEs.
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Chapter 6

VICEROY: GDPR-/CCPA-compliant

Enforcement of Verifiable Accountless

Consumer Requests
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Abstract

Recent data protection regulations (notably, GDPR and CCPA) grant consumers

various rights, including the right to access, modify or delete any personal information

collected about them (and retained) by a service provider. To exercise these rights,

one must submit a verifiable consumer request proving that the collected data indeed

pertains to them. This action is straightforward for consumers with active accounts

with a service provider at the time of data collection, since they can use standard (e.g.,

password-based) means of authentication to validate their requests. However, a major

conundrum arises from the need to support consumers without accounts to exercise their

rights. To this end, some service providers began requiring such accountless consumers

to reveal and prove their identities (e.g., using government-issued documents, utility

bills, or credit card numbers) as part of issuing a verifiable consumer request. While

understandable and reasonable as a short-term fix, this approach is cumbersome and

expensive for service providers as well as privacy-invasive for consumers.

Consequently, there is a strong need to provide better means of authenticating

requests from accountless consumers. To achieve this, we propose VICEROY, a privacy-

preserving and scalable framework for producing proofs of data ownership, which form

a basis for verifiable consumer requests. Building upon existing web techniques and

features, VICEROY allows accountless consumers to interact with service providers, and

later prove that they are the same person in a privacy-preserving manner, while re-

quiring minimal changes for both parties. We design and implement VICEROY with

emphasis on security/privacy, deployability, and usability. We also assess its practical-

ity via extensive experiments.

Research presented in this chapter appeared in the Proceedings of the 30th Network

and Distributed System Security Symposium (NDSS 2023) [135].
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6.1 Introduction

Several new data protection regulations have been enacted in recent years, notably the Euro-

pean Union General Data Protection Regulation (GDPR) [83] and the California Consumer

Privacy Act (CCPA) [48]. These regulations grant consumers various new legal rights. For

example, consumers gain the right to access personal data collected about them and held

by service providers (GDPR Art. 15, CCPA 1798.100), request correction (GDPR Art. 16,

CCPA 1798.106) or request deletion of their personal data (GDPR Art. 17, CCPA 1798.105).

Importantly, these regulations expand the definition of personal data beyond that associated

with a person’s real name. For example, GDPR Rec. 30 states that natural persons “may be

associated with online identifiers provided by their devices, applications, tools and protocols,

such as internet protocol addresses, cookie identifiers or other identifiers”. This means

that any website1 collecting information about consumers2 based on identifiers, such as IP

addresses or cookies, may be collecting personal information, and thus have to comply with

these new regulations. The website must therefore provide a means by which consumers can

access, request correction of, or request deletion of their personal information.

When dealing with a consumer request, the website must verify that the requestor is in-

deed the consumer to whom the personal information pertains. This is critical to prevent

erroneous disclosure (which would be a serious violation of any data protection regulation),

unauthorized modification, or deletion of personal information. This is called a “verifiable

consumer request” (VCR) (CCPA 1798.140(y)).3

For consumers who have pre-existing accounts on a given website, submitting a VCR is

relatively straight-forward. To wit, CCPA 1798.185 requires: “treating a request submitted

1As shorthand, we use the term website to represent the entity operating a website, which (we assume)
falls into the category of entities that the GDPR and CCPA call controller and business, respectively.

2We use consumer or client to refer to: (1) the GDPR term data subject, (2) the CCPA term consumer,
and (3) the equivalent terms in other regulations.

3These requests are sometimes also referred to as Subject Rights Request (SRR) or Subject Access Request
(SAR).
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through a password-protected account maintained by the consumer ... as a verifiable consumer

request”. However, there remains a major challenge of how to support a VCR from casual or

accountless consumers, as required by CCPA 1798.185, while protecting such consumers’

privacy.

The only mechanisms that are currently suitable for accountless consumers are those that

require: a device cookie, a government-issued ID, a signed (and possibly witnessed) state-

ment, a utility bill, a credit card number, or taking part in a phone interview [189]. However,

these mechanisms are cumbersome (and some are time-consuming) for consumers as well as

insecure, as demonstrated by prior work [189, 46, 75, 34]. Such mechanisms also typically

require manual processing, which is both error-prone and costly. Moreover, such methods

(apart from device cookies) are privacy-invasive for the consumer and open the door for

further consumer data exposure. For example, a government-issued ID or utility bill reveals

even more private information to the website.

In light of these issues, the most appealing choice appears to be the use of device cookies.

Cookies are already used pervasively by websites to link multiple sets of activities (sessions)

to the same consumer. At first glance, asking for device cookies as part of a VCR appears to

meet the GDPR and CCPA requirements: only the authorized consumer should possess the

correct cookie (unforgeability), and providing a cookie does not reveal additional information

(privacy). However, this essentially means treating device cookies as authentication tokens,

which has at least three disadvantages:

First, in the general case, there is no requirement for a cookie’s value to be unguessable. A re-

cent large-scale study [93] found cookie values containing URLs, email addresses, timestamps,

and even JSON objects. Although authentication cookies are designed to be unguessable,

these would typically only be used once the user has logged into an account.

Second, cookies are used (i.e., sent over the network) whenever the consumer interacts with
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the website. Although secure communication channels (e.g., TLS) can protect cookies in

transit, the MITRE ATT&CK framework lists several recent examples of techniques for

stealing web cookies [168].

Third, consumers must protect the cookies stored on their devices, especially considering

e.g., client-side spyware, even after the cookies expire. Secure storage may become more

challenging as the number of stored cookies increases since consumers should not delete

cookies for which they might subsequently issue a VCR. If an adversary can guess or obtain

the cookie through any of the above vectors, they would be able to request, modify, or delete

all the consumer’s data.

Motivated by aforementioned issues, this chapter constructs VICEROY, a first-of-its-kind

framework that allows accountless consumers to request their data in a private manner,

while allowing website operators to efficiently and securely verify such requests. VICEROY

introduces a one-to-one mapping between Web sessions and consumer-generated public keys.

At session initiation, the consumer generates a public key (a VCR public key) and supplies

it to the server. At a later time, the consumer digitally signs their request using the private

key corresponding to the VCR public key for the session.

To ensure consumer privacy, our key derivation mechanism uses unlinkable public keys de-

rived from a single master public key. This also allows VICEROY to only require consumers to

securely store a single private key, regardless of the number of sessions they have generated.

Moreover, since this private key is only needed when generating VCRs, it can be protected

using well-known secure key storage mechanisms (e.g., hardware security devices).

VICEROY is composed of well-known cryptographic primitives. However, to meet the neces-

sary requirements of security, scalability, and privacy, this must be done through the careful

selection of such primitives. Furthermore, VICEROY’s design prioritizes deployability, requir-

ing only minimal changes to existing websites and no changes to existing cookie usage.
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The contributions of this work are:

• Design of VICEROY– a secure, scalable, and privacy-preserving VCR mechanism for

accountless consumers.

• Careful selection of cryptographic protocols to balance the three requirements of VICEROY.

• Proof-of-concept implementation of VICEROY for web browsers, including a VICEROY-

compatible hardware security device.

• Thorough security, performance, and deployability evaluation of VICEROY.

Organization. Section 6.2 presents background on GDPR/CCPA and verifiable consumer

requests (VCRs). Next, Section 6.3 presents our threat model and defines requirements for

VICEROY. Sections 6.4 and 6.5 then describe the design and proof-of-concept implementation

of VICEROY. Section 6.6 presents our evaluation methodology and results. Further aspects of

VICEROY are discussed in Section 6.7 and related work is overviewed in Section 6.8. Section 6.9

concludes the chapter.

Code Availability. Source code for all VICEROY components and the Tamarin model is

available at [213].

6.2 GDPR/CCPA Background

This section overviews Personally Identifiable Information and consumer rights under the

GDPR and the CCPA. Given familiarity with GDPR and CCPA, it can be skipped without

any loss of continuity.
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6.2.1 Personally Identifiable Information (PII)

Both GDPR and CCPA pertain to the combination of personal and personally identifiable

information, often referred to as: Personally Identifiable Information4 or PII.

Information is personal if it relates to a person, e.g., contact information, geolocation, appli-

cations and devices used, how an application is used, interests, websites visited, consumer-

generated content, identities of people with whom a consumer communicated, content of

communication, audio, video, and sensor data [136].

Information is personally identifiable if the person to which it pertains is either identified

or identifiable. If information is paired with a name, telephone number, email address,

government-issued identifier, or postal address, then it is considered to be personally identi-

fiable [134]. If information is paired with an IP address, a device identifier (e.g., an IMEI), or

an advertising identifier, it is likely to be considered personally identifiable [134]. Informa-

tion paired with an identifier created by a business (e.g., a cookie) is personally identifiable

if it can be combined with other information to allow the consumer to whom it relates to be

identified [134].

6.2.2 Rights of Access and Erasure

Both GDPR and CCPA require a business that collects PII to disclose, typically in its privacy

policy, the categories of PII collected, the purposes for collecting it, and the categories of

entities with which that PII is shared [134]. Both regulations give consumers the right:

• To learn about, and control, information relating to them that a business has collected.

Specifically, consumers have the right to request access to the specific pieces of PII that

the business has collected (GDPR Art. 15; CCPA Sec. 1798.110(a)(5)).

• To request that their incorrect PII be corrected (GDPR Art. 16; CCPA Sec. 1798.106).

4The GDPR uses the term personal data and the CCPA uses personal information.
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• To request that a business delete their PII (GDPR Art. 17; CCPA Sec. 1798.105).

6.2.3 Verifiable Consumer Requests (VCRs)

The consumer’s rights to access, and request correction or deletion of, their PII are contingent

upon verification that the consumer is indeed the person to whom that PII relates. However,

GDPR and CCPA differ in requirements of methods of verification. Both regulations require

a business to use reasonable measures to verify the consumer’s identity (GDPR Rec. 64;

CCPA Sec. 1798.140(ak)). If a consumer has a password-protected account with a business,

both require a business to treat requests submitted via that account as verified (GDPR Rec.

57; CCPA Sec. 1798.185(a)(7)).

However, both regulations also recognize that PII is often collected about casual consumers,

who do not have password-protected accounts. In this case, they envision a consumer request

being verified by associating additional consumer-supplied information with PII that the

business previously collected about that consumer (CCPA Sec. 1798.130(a)(3)(B)(i)). The

CCPA further specifies that any information provided by the consumer in the request can

be used solely for the purposes of verification (CCPA Sec. 1798.130(a)(7)). However, if

a business has not linked PII to a consumer or a household, and cannot link it without

the acquisition of additional information, then neither the GDPR nor the CCPA requires

a business to acquire additional information to verify a consumer request (GDPR Rec. 57;

CCPA Sec. 1798.145(j)(3)). Thus, some requests may be unverifiable.

The CCPA [47] recognizes that consumer verification is not absolutely certain. It establishes

two thresholds of certainty. The lower threshold, called reasonable degree of certainty, may

be satisfied by matching at least two pieces of information provided by the consumer (CCPA

Regs. §999.325(b)). The higher threshold, called reasonably high degree of certainty, may

be satisfied by matching at least three pieces of information provided by the consumer, and

obtaining a signed declaration from the consumer (CCPA Regs. §999.325(c)). However,
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other means of verification may also satisfy these thresholds. Verification of the consumer

identity must always, at a minimum, meet the reasonable degree of certainty threshold.

Furthermore, requests to learn specific pieces of PII must meet the reasonably high degree of

certainty threshold. Finally, a consumer may choose to use a third-party verification service

(CCPA Regs. §999.326).

The design of a verification method should balance the administrative burden on the con-

sumer (CCPA Sec. 1798.185(a)(7)) with the likelihood of unauthorized access and the risk

of harm (CCPA Regs. §999.323(b)(3)).

6.3 Threat Model and Requirements

Our system model assumes a typical Web environment with two types of principals: (1)

clients and (2) servers. Clients are consumers who access Internet services offered by servers.

Servers collect and store data during interactions with consumers by associating such data

with identifiers issued to the consumer. Each client can own multiple devices and at least

one of the client’s devices can be trusted to store a secret, e.g., a private key. This trusted

device could be a smartphone, a dedicated key storage device, or a secure hardware wallet.

All access to the secret is controlled by the client. Physical and side-channel attacks against

the trusted client device are beyond the scope of this work.

We assume secure communication channels between clients and servers, which can be realized

using standard means, e.g., HTTPS. Use of secure channels to deliver web content has become

a de-facto standard, as shown by Felt et al. [85], which reports that up to 87% of all webpages

were served via HTTPS in 2017. This number is expected to increase, as shown by Google’s

2022 Transparency Report [107], which claims that 80–98% of top-100 websites use HTTPS.

Moreover, standards such as DTLS [200] and QUIC [131] allow devices that cannot use TCP

to establish similarly secure channels.
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We consider three types of adversarial behavior:

• Malicious clients: Attempt to impersonate other clients in order to perform opera-

tions on data that is not theirs.

• Client-side malware: Attempts to perform unauthorized operations on client data

without client’s knowledge. We assume that the client’s trusted device is free of mal-

ware, while all other client devices can be potentially infected.

• Honest-but-curious servers: Attempt to identify clients who submit requests, or to

link multiple requests to the same client. Multiple servers might collude to link client

requests and/or to learn client identities.

As usual, we assume all relevant cryptographic primitives are implemented and used correctly

and cannot be attacked via side-channels or any other weaknesses. Similarly, we assume

digital signatures can only be generated by the true owner of the private key.

Based on the above system model, we define the following requirements for VICEROY:

• Unforgeability: Only the client who originally interacted with the server can create

a valid VCR.

• Replay resistance: A server will only accept a valid VCR at most once.

• Consumer Privacy: An honest-but-curious server (or a set thereof) should be unable

to link a VCR to a specific client, or to link multiple VCRs to the same client.

6.4 VICEROY Design & Challenges

This section discusses VICEROY’s goals, design features, and challenges encountered. Note

that we use the terms client and consumer interchangeably.
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6.4.1 Design Motivation

One straight-forward way to support VCRs from accountless consumers is to require them

to provide the same cookie(s) they were issued when originally visiting the server website.

(Indeed this is one of the mechanisms that [189] encountered in their survey of how businesses

respond to access requests.) The rationale is that only the consumer from whom the data was

collected should have access to the cookie, which ties all consumer activity that constitutes

one session. This method has several advantages: First, it is privacy-preserving in that, when

making a request, the consumer does not reveal any further personal information that the

server didn’t already have. Furthermore, if the consumer submits multiple VCRs based on

different cookies, the server cannot link them.5 Second, this mechanism is easily deployable,

since cookies are supported by virtually every device that uses the Web.

However, per Section 6.1, there are also several significant disadvantages: First, this method

essentially makes cookies into symmetric authentication tokens: anyone in possession of the

cookie can create VCRs. This is problematic because cookies, in general, are not required

to be unguessable and may contain predictable information, such as URLs or email ad-

dresses [93]. A subset of cookies, namely authentication cookies, are designed to be unguess-

able, however, these would typically only be used once the consumer has logged into an ac-

count (i.e., no longer an accountless consumer). Second, cookies are used in all interactions

with the website, and several techniques for stealing cookies have been demonstrated [168].

Third, since consumers visit many different websites, they would have to securely and reliably

store a potentially large number of cookies. This differs from the usual client-side cookie

management since cookies would be additionally valuable as a means to issue VCRs. Also,

if cookies are lost (e.g., due to disk failure), the consumer would be unable to exercise their

GDPR/CCPA rights. This underscores the importance of cookie storage reliability. Further-

more, if the server for any reason also stores copies of cookies, the same security requirements

5Potential “fingerprinting” of the consumer’s browser or network interface notwithstanding.
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apply. If these cookies are leaked as a result of a data breach, the server would have to in-

validate them in bulk, thus preventing legitimate consumers from submitting VCRs, or risk

attackers requesting consumers’ personal data.

6.4.2 Conceptual Design

Motivated by aforementioned challenges, we construct VICEROY to avoid the drawbacks dis-

cussed. We now describe key features of VICEROY.

Asymmetric tokens. When interacting with a server, a client provides the server with the

public part of an asymmetric key-pair called the VCR public key. Upon receiving a VCR

public key, the server associates this key with a particular session. Generally, a session is any

linkable set of interactions between a client and a server. For example, in the Web context, a

session most likely corresponds to an HTTP(S) session, which is managed using cookies. To

protect the client’s privacy, a new VCR public key, which is unlinkable to any previous keys,

can be used for each session. Finally, to submit a VCR for a particular session, the client

creates a request and signs it using the corresponding VCR private key for that session.

This approach addresses the drawbacks of using only cookies to authenticate the request

since the client’s signature is assumed to be unforgeable and the client’s VCR private keys

are never sent over the network. It does not matter if the adversary learns the VCR public

keys. The use of digital signatures also allows additional information/parameters to be

cryptographically bound to the request (e.g., a request to correct personal information could,

in some cases, already include the corrected information).

Cookie wrappers. At first glance, mapping data collected during a session to the VCR

public key seems to be an efficient way of storing such data on the server side, especially

when the consumer submits a VCR. However, from a deployability perspective, it would

be infeasible to replace existing Web cookies with public keys because this would require
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non-trivial modifications to the way servers use cookies. For example, cookie values con-

taining URLs, email addresses, timestamps, and even JSON objects have been observed in

practice [93].

To avoid changing the existing and ubiquitous cookie mechanism, VICEROY introduces the

concept of a cookie wrapper – a cryptographic binding between an existing server-generated

session identifier (e.g., cookie) and a client-generated VCR public key. The server generates

a cookie wrapper by signing the hash of the server-generated cookie and the VCR public key

using the server’s long-term wrapper signing key. This allows the client to verify whether the

wrapper was created correctly. This wrapper is created contemporaneously with the cookie,

and at most one wrapper is created per cookie. The wrappers are then sent to and stored by

the client alongside the cookie and VCR public key. The use of cookie wrappers significantly

improves deployability by allowing servers to add support for VICEROY without modifying

current cookie management.

Submitting VCRs. When the client issues a VCR signed with the relevant VCR private

key (as described above), the client also sends the corresponding cookie wrapper to the

server, along with the request. The server first verifies that the wrapper is valid, by verifying

its own signature on the wrapper. If valid, the server then uses the VCR public key specified

in the wrapper to verify the client’s signature over the request. If this in turn is valid, the

server is assured that this request was generated by the same client who received the original

cookie (i.e., the legitimate consumer).

6.4.3 Design Challenges

The conceptual design described above presents several design challenges. This section out-

lines the main challenges and presents the key insights used to realize VICEROY.
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Avoiding Key Explosion

For privacy reasons, the client cannot use a static public key. A static public key would

allow a server (or a set thereof) to link together multiple sessions by the same client. This

linkage could take place at session initiation time, i.e., when the client requests a wrapper,

or when the client issues a VCR. Also, if a client’s static public key is leaked, it becomes

possible to track that client’s sessions globally. However, requiring each client to have a

distinct public/private key-pair per session can cause a “key explosion” in which the client

has to manage the large number of public keys and more importantly, securely store many

private keys.

To avoid this issue, we use the concept of derivable asymmetric keys, specifically, the key

derivation scheme used in Bitcoin Improvement Proposal (BIP) 32 [231]. This type of key

derivation scheme allows a chain of child public keys to be derived from a single parent public

key. Importantly, the derivation of public keys does not require access to the corresponding

parent private key. Furthermore, the corresponding child private keys can only be derived

from the parent/master private key. We denote the derivation path of a key as a/b/c/...,

where a/b is the bth child key of a, and a/b/c is the cth child key of a/b. This approach

minimizes public key storage requirements of VICEROY – only the parent public key must

be stored, while all other public keys can be derived. When a new session is initiated, the

parent public key is used to generate a new child public key.

Multiple Devices

The client may interact with websites from multiple different devices and may subsequently

want to issue VCRs for one or more of these sessions.

By design, VICEROY allows clients to use any number of devices with a single trusted device.

Specifically, the master private key is used to generate a new device public key which is stored

on each of the client’s devices. The device public key can in turn be used for generating all
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other VCR public keys needed on the device. Note that even though the device public keys

are derived from the same master private key, they are unlinkable and thus cannot be used

by websites to link together sessions from the client’s different devices.

Secure Key Management

VCR private keys for each session must be stored in a secure environment, access-controlled

by the client. Leakage of private keys would allow an adversary to issue VCRs for the

client’s sessions, thus giving them the ability to learn, modify, or delete, potentially sensitive

information.

Our use of derivable asymmetric keys reduces the number of private keys that need to be

stored securely to just one – the master private key. Another benefit of using derivable

asymmetric keys is that the master private key can be stored offline. This is because the

master private key is only needed when generating a new device public key (i.e., when

enrolling a new device) or creating VCRs, which are expected to be relatively infrequent

operations.

This feature provides VICEROY significant flexibility in terms of how the master private key

is stored, in order to accommodate different levels of security. For example, at one end

of the spectrum, clients with low-security requirements can simply store their keys on any

device they trust, e.g., a phone or laptop. Clients with higher security requirements can

store their keys in hardware-backed keystores, such as the Android Keystore [16] or Apple

Secure Enclave [19]. On PCs, clients could make use of hardware-enforced enclaves, such

as Intel SGX [128] or Windows Virtualization-base security (VBS), to protect the keys. At

the top end of the spectrum, clients with the highest security requirements could store their

keys in hardware security devices (e.g., YubiKey [235], Solokey [211], or Ledger [145]). These

clients may also enforce additional physical security controls, such as keeping the hardware

security device in a locked safe until it is needed. Clients can also make back-up copies of
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their master private keys to allow recovery if the trusted device fails.

We emphasize that a separate trusted device is recommended and not mandated. The only

requirement for the trusted device is that it can derive child private keys and create signa-

tures. Section 6.5 shows that these requirements can be met even by resource-constrained

hardware security devices.

Long-Term Storage

A VCR may be submitted long (possibly, years) after the corresponding session ends. This

typically requires clients to store state information for numerous sessions in a secure and

highly available manner. Naturally, the amount of state per session must be minimal.

In VICEROY neither the cookies themselves nor the wrappers can be used to issue VCRs

without a signature from the client’s master private key. Therefore, the security requirements

for the storage of cookies and wrappers are minimal – the integrity and availability of the

cookies and wrappers must be maintained. Importantly, these pieces of information do not

need to be kept confidential (assuming the cookies themselves have expired and are no longer

useful, e.g., for authentication).

This opens up potential new business opportunities for third-party cookie storage providers

to offer a service for safely storing cookies and wrappers on clients’ behalf. This service

can take care of all cookie and wrapper management as well as provide API endpoints to

their customers. Note that security requirements for, and trust burden on, such services

would be significantly higher if cookies alone were sufficient to issue VCRs. Also, third-

party cookie storage is not a requirement; clients who are uncomfortable with third-part

providers storing their cookies can store them on their local devices. Clients may also use

their preferred cloud-storage service, e.g., OneDrive.
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Broad Application Support

Many non-browser applications also communicate with application-specific servers, which,

similarly to Web servers, collect consumer data. VICEROY is sufficiently flexible to be used

in these applications as well. This is achieved through the design pattern of using wrappers

instead of directly modifying the session identifiers. For example, if a non-browser application

uses a different form of session identifier (i.e., not a Web cookie), VICEROY can still be used

since the wrapper can be used to cryptographically bind the client’s VCR public key to any

type of session identifier.

6.4.4 Overall VICEROY Design

Bringing together the design concepts discussed in the preceding sections, this section presents

the overall design of VICEROY. The precise protocol messages exchanged between the var-

ious principals are shown in Figure 6.1 and the various cryptographic keys are defined in

Table 6.1.

Setup and device provisioning

The client first generates a master private key sk(t) on a trusted consumer device t. This

key is then used to derive a device-specific public key for each device the client will use for

interacting with websites, e.g., pk(t/i) for device i. Device public keys are provisioned using

a simple request-response protocol, as shown in Figure 6.1 (A). The device public keys are

stored within the respective devices for rapid future VCR key generation.

Website Interaction

When initiating a session with a server, upon a client request, the server generates a unique

client id and sends it to the client in the form of a cookie. The client generates a new

VCR public key pk(t/i/j) for session j, derived from the device public key. The client then

sends this newly-generated key, along with the client id cookie, to the server as shown in
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Figure 6.1: Protocol messages exchanged in VICEROY. signk(m) denotes a cryptographic
signature on message m using key k, and h(m) denotes a cryptographic hash of message m.
The events issue wrapper(j), issue VCR(j), and accept VCR(j) are used in the formal security
analysis in Section 6.6.

Figure 6.1 (B). After receiving the VCR key, the server signs the hash of the VCR key and

cookie to generate a wrapper. Then it returns the wrapper to the client, attesting to the

association between the client id cookie and the VCR key. To check the integrity of the

wrapper, the client verifies the signature using the server wrapper public key which can be

obtained and verified the same way it obtains and verifies the server’s TLS public key.

VCR Issuance

As shown in Figure 6.1 (C), the client generates a request, which consists of the specified

operation (e.g., retrieve, modify, or delete), the current time, and any optional parameters.

The client uses the master private key sk(t) on the trusted device to derive the respective

signing key sk(t/i/j) for device i and session j. The signing key sk(t/i/j) is then used to

sign a hash of the request and the associated cookie, which is returned to the client. The

client then sends this signature, along with the cookie, request, public key, and wrapper to
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Table 6.1: List of keys and their role in VICEROY

Key Name and description

sk(t) Master private key: generated and stored in trusted device.

pk(t/i)
Device i public key: derived from master private key sk(t) within the trusted device, and
stored on device i.

pk(t/i/j) VCR j public key: derived from device public key pk(t/i) when requesting a new wrapper.

sk(t/i/j)
VCR j private key: derived from master private key sk(t) within the trusted device when
issuing a VCR.

sk(S) Wrapper signing key: long-term private key used by server when generating a wrapper.

pk(S)
Wrapper public key: long-term public key used by client when verifying a wrapper. Obtained
via standard PKI.

the server, constituting the VCR.

Upon receiving a VCR, the server first verifies its own signature on the wrapper to confirm

the authenticity of the wrapper. The server then verifies the client’s signature on the VCR

using the public key pk(t/i/j) from the wrapper. If these checks succeed, the server accepts

the VCR and proceeds with the requested data operation.

To prevent an attacker from replaying a valid VCR to the server, the client includes a

unique nonce in the request, which is thus also included in the client’s signature sigj in

Figure 6.1. Upon receiving this VCR, the server checks that it has not already processed

a VCR containing that nonce. The client also includes a timestamp ts in the request,

representing the time at which the VCR was issued. Each server defines its own recency

threshold (e.g., 12 hours) and rejects any VCRs that are older than this threshold. This

means that the server only has to store nonces for up to this threshold in order to check

that new requests are unique. This also ensures that an attacker cannot delay valid VCRs

arbitrarily (e.g., if the attacker were able to block a VCR and then release it months later,

this could have unintended consequences for consumers).

An alternative would be to use a challenge-response protocol where the server generates

a challenge that the client must include in the signed VCR. Although this would avoid
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the need for a nonce and timestamp, the complexity of the system increases and could

be abused to mount a denial of service attack against the server, similar to a TCP SYN

flooding attack (although well-known cookie-based and application-level countermeasures

such as CAPTCHAs [225] or rate-limiting mechanisms [176] could also be used.).

Device Unprovisioning

Finally, the full device lifecycle may require unprovisioning, e.g., if the device is lost/stolen,

or sold/recycled. We separately consider the implications for a regular or trusted device.

Regular Device. Since such devices do not hold private VCR keys, unprovisioning is

straight-forward. The client only has to unlink the old device from the respective trusted

device to prevent any further VCR issuance. This can be done from the trusted device, even

if the old device is lost/stolen. The client may wish to back-up or transfer any cookies and

wrappers from the old device.

Trusted Device. From an availability perspective, the client should be able to recover the

master private key from a backup. From a security perspective, the trusted device should

ideally have some type of access control (e.g., using a PIN and/or a fingerprint) to protect

the private key even from an adversary who has physical access to the device. If the trusted

device is being sold/recycled, the client should securely back-up or transfer the master private

key to a new trusted device using techniques such as Presence Attestation [238].

6.5 Implementation

We now describe our implementation of VICEROY, which consists of: a browser extension, a

trusted device implementation, and a modified web server.
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6.5.1 Browser Extension

This component provides most of the client-side functionality on a regular consumer device.

Specifically, it manages VCR public keys, implements client-side aspects of the VCR flow,

and includes a client-facing interface for controlling this flow. It also handles communication

between the browser and the trusted device (or application) that holds the master private

key. Although we chose to implement a proof-of-concept extension for Google Chrome, no

(or only minor) mods would be required to get it to work with any modern browser.

To realize derivable asymmetric keys, we used a mechanism proposed for hierarchical de-

terministic wallets, commonly known as Bitcoin Improvement Proposal 32 [231], or BIP32.

BIP32 has the notion of an extended key, with 256 bits of entropy (called chain code) added

to a normal public/private key-pair. Extended keys can be used to derive one or more child

keys, following the rule that private keys can be used to derive private or public keys, while

public keys can only derive public keys.6 BIP32 is also well-suited for low-end devices, since

it was designed for (resource-constrained) Bitcoin hardware wallets. Section 6.5.3 describes

our proof-of-concept of a resource-constrained trusted device.

The browser extension comprises a background and a pop-up script, both written in JavaScript,

with additional HTML and CSS for the pop-up. As no JavaScript version of several Node.js

libraries (e.g., crypto, BIP32) were available, we used Browserify [43] to convert such libraries

into JavaScript files that can be loaded by the browser.

Background Script

This component houses most VCR-side functionality. It uses the browser’s API (chrome.webRequest.onHeadersReceived)

to scan HTTP response headers to detect which servers support VICEROY. If present, it parses

the relevant VICEROY endpoints and the client id cookie from the headers.

6BIP32 also has the notion of hardened vs. non-hardened keys, though we only use the latter. The
difference between these two is the algorithm used when deriving them from the parent key.
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Using the device public key, it derives a session-specific VCR public key using a port of the

official BIP32 implementation [33]. The derivation path of a VCR public key is in the form

t/i/j, where t denotes the master private key, i the device ID, and j the total number

of sessions created on the device. In other words, t/i represents the device public key and

t/i/j represents the child public key for the jth session.

After deriving a VCR public key, the background script either includes this in the next

request header sent to the server or sends a POST request to a separate server-defined VCR

wrapper request endpoint (we implemented the latter). The server then responds with a

newly generated wrapper.

The background script then stores the server-returned wrapper along with the key derivation

path. Since we generate a new one for each session, the number of stored wrappers may grow

large, depending on how many new sessions the client establishes. However, the storage over-

head of the wrappers is not significant, as the number of wrappers is at most the same as the

number of cookies the client must store (see Section 6.6.4 for client-side storage evaluation).

To improve efficiency of searching for a client id cookie, we use a hashmap of client id cookies

and their corresponding wrapper information. We also store the URL of the website and

the time of the visit alongside the wrapper to assist clients when selecting a session during

VCR issuance. The background script can store this data using any storage service. Our

implementation uses the local storage API (chrome.storage.local). Other choices include

cloud storage services or Google Chrome’s synced storage API (chrome.storage.sync),

which would allow clients to synchronize VICEROY data between different devices.7

Note that all the above operations are performed asynchronously, in the background. Thus,

the client does not experience any additional latency in loading the page.

7Unfortunately, we found that Chrome synced storage currently imposes a limit on the amount of stored
data.
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Figure 6.2: VICEROY browser extension pop-up displaying multiple sessions. SID is the first
few bytes of VCR public key.

Pop-up

The extension pop-up is a small web page that appears when the client clicks on the extension

icon next to the URL bar. As shown in Figures 6.2 and 6.3, it displays session information

for a VCR key along with the history of web links visited when the session was active. It

also displays the types of VCRs (access, modify, and delete) that the client can submit.

To issue a VCR, the client first chooses the session(s) and the type of request. Next, the

pop-up script prepares a request for signing. It includes a timestamp in the signature to

prevent replay attacks, due to its simple design. The resulting client request is then passed

to a Python native application [56] which relays it to the trusted device (see Section 6.5.3)

for signing. Once signed using the VCR private key, the request is retrieved by the pop-up
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Figure 6.3: VICEROY browser extension pop-up displaying the history of visits in each session.
Clients can select which session and which type of VCR (ACCESS/MODIFY/DELETE) they wish
to generate.

(using the background script) through the native application, and the VCR is sent to the

server’s VCR verification endpoint. Finally, the server’s response is displayed in the client’s

browser.

6.5.2 Native Messaging Application

To simulate a client-controlled trusted device, we created a Node.js [179] application that

holds the master private key. Alike the trusted device, this application signs VCRs received

from the background script using private keys derived from the master private key with the

provided key derivation path, e.g., t/0/1. Communication between this application and

the browser is done via the native messaging protocol [56]. We use the native-messaging

package [210] to support both Firefox and Chrome. As mentioned in Section 6.4.3, the key

storage mechanism must support derivable asymmetric key operations (e.g., using BIP32).

There are publicly available implementations of BIP32 in different languages, including:

JavaScript [33], Golang [203], Python [130], Java [180] and C [218].
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Figure 6.4: Solokey hardware security to-
ken in use.

Figure 6.5: Solokey token compared to a
standard AA battery.

6.5.3 Trusted Device

We implemented a proof-of-concept trusted device using the Solokey Hacker [211], a security

token with open-source software and hardware. Solokey includes an STM32L432KC micro-

processor with an Arm Cortex-M4 MCU (80MHz), 64 kB of RAM, 256 kB of flash memory,

a true random number generator (TRNG), and a physical button for presence attestation,

as shown in Figures 6.4 and 6.5. We extended the FIDO2 Client to Authenticator Protocol

(CTAP) API on the device with the following three calls:

• KEYGEN: Generates a master private key using the TRNG. This key never leaves Solokey.

• DEVKEY: Takes a key derivation path (t/i) and outputs a generated device public key

(see Figure 6.1 (A)).

• VCRGEN: Takes a key derivation path (t/i/j) and a consumer request (in the form of

a cryptographic hash), and outputs a signed VCR (see Figure 6.1 (C)).
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All three trusted device API calls require human confirmation achieved by the client pressing

the physical button on the Solokey. For key derivation and signing we used the BIP32

implementation from Trezor [218] due to its popularity and suitability for embedded devices.

The native messaging application calls the individual API according to the command it

receives from the background script. Once the client confirms the action by pressing the

button and the native messaging application receives a response from Solokey, the application

relays the response back to the background script.

To protect against tampering with the consumer request by client-side malware, the trusted

device could also display information about the VCR that is about to be generated, including

the request type, the website URL, and the timestamp. In our prototype, this could be as

simple as changing LED color on the Solokey. Displaying more detailed information about

the request may require trusted devices to have a dedicated, human-perceivable output

means, e.g., a display.

6.5.4 VICEROY-enabled Web Server

We implemented a proof-of-concept VICEROY-enabled HTTP server using the Express Node.js

web framework [214]. It uses HTTP sessions and indexes data collected during each session

using session cookies. For signing, it uses ECDSA with curve secp256k1 [32], although any

secure signature scheme can be used.

When the client first visits a web page hosted on our server, the latter creates an HTTP cookie

that includes a client id (uuid [181]).Hereafter, all data collected by the server about this

client is associated with the client’s unique id.8 In response to the initial client request, the

server notifies the client that it supports VICEROY.

The server provides the client with an HTTP endpoint for obtaining a wrapper. The client’s

8VICEROY can also use any existing client identifier cookie scheme – such as Google Analytics’ ga and
gid cookies [98].
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browser extension sends the client id cookie set by the server and a freshly-generated VCR

public key to this endpoint, and the server then generates a wrapper that cryptographically

binds these two pieces of information. This endpoint can be configured to only issue wrappers

for a short duration after the cookie was issued, to avoid adversaries attempting to bind their

own public keys to arbitrary cookies. Alternatively, the client can provide a freshly-generated

VCR public key in the next HTTP request, and the server can issue the wrapper in the next

response.

The server also provides the client with a VCR endpoint, to which the client can later submit

VCRs for this website. As discussed in Section 6.4.4, the client sends a wrapper and a signed

VCR, which the server then verifies. To support requested VCR actions, the consumer’s

request may include metadata specific to the requested action. For instance, for data access

requests, metadata may include an encryption key to be used by the server to encrypt data

to be returned to the client.

6.6 Evaluation

We now evaluate security of VICEROY as well as its latency, data transfer, and storage re-

quirements.

6.6.1 Security Analysis

To evaluate security of VICEROY, we defined a formal specification of the protocol using the

Tamarin prover [160, 29]. The full specification is provided in Listing A.1 in the Appendix.

In Tamarin, a protocol P is modeled as a set of labeled transition rules operating on facts. A

transition consumes linear facts from state si−1, generates new facts for state si, and labels

the transition as a. An execution of protocol P is a finite sequence of states and transition

labels (s0, a1, s1, . . . , an, sn) such that s0 = ∅ and si−1
ai−→ si for 1 ≤ i ≤ n. The sequence of

transition labels (a1, . . . , an) is a trace of P and the set of all traces is denoted traces(P ).
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Security properties are specified using first-order logic formulas on traces.

Unforgeability. Using this specification, we formally define the security property of un-

forgeability (see Section 6.3), for both wrappers and VCRs. As shown in Figure 6.1, let

issue wrapper(s, o, pk) denote server s issuing a wrapper for cookie o and public key pk (cor-

responding to private key sk); let issue VCR(c, o, pk, r) denote client c issuing a VCR for

request r, cookie o, and public key pk; and let accept VCR(s, o, pk, r) denote server s accept-

ing a VCR for request r, cookie o, and public key pk.

Definition 6.1 (Wrapper unforgeability). A protocol P satisfies the property of wrapper

unforgeability if for every α ∈ traces(P ):

∀s, o, pk, r, j. accept VCR(s, o, pk, r) ∈ αj =⇒ ∃i. issue wrapper(s, o, pk) ∈ αi ∧ i < j

Definition 6.2 (VCR unforgeability). A protocol P satisfies the property of VCR unforge-

ability if for every α ∈ traces(P ):

∀s, c, o, pk, r, j. accept VCR(s, o, pk, r) ∈ αj =⇒ ∃i. issue VCR(c, o, pk, r) ∈ αi ∧ i < j

The Tamarin prover verifies that, in the protocol as specified, both of these properties hold

for an unbounded number of protocol runs (the strongest possible result). Since wrappers

and VCRs are ultimately verified by the server, Definition 6.1 requires that, whenever a server

accepts a VCR, that server must have issued a corresponding wrapper at some prior time

point. Similarly, Definition 6.2 requires that, whenever a server accepts a VCR, there must

exist a client that issued that VCR at some prior time point. Intuitively, these properties

show that the adversary cannot forge a valid wrapper or VCR for a given pk. Since the

corresponding private key is only known to the client, we conclude that the unforgeability

property is satisfied.
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Replay resistance. To prevent an attacker from obtaining a genuine VCR (e.g., by eaves-

dropping) and later replaying it to the server, we formally define the security property of

replay resistance (see Section 6.3) for VCRs.

Definition 6.3 (Replay resistance). A protocol P satisfies the property of replay resistance

if for every α ∈ traces(P ):

∀s, o, pk, r, j. accept VCR(s, o, pk, r) ∈ αi ∧ accept VCR(s, o, pk, r) ∈ αj =⇒ i = j

The Tamarin prover verifies that this property holds for an unbounded number of protocol

runs. Definition 6.3 states that, if there are two trace events in which a server accepts

the same VCR, these must be the same event. Since Tamarin does not model time-based

properties, the formal model uses only a nonce in the VCR to check for uniqueness. In

practice, the client would also include a timestamp in the VCR, as described in Section 6.4.4.

Consumer/Device/Request Linking. To protect clients’ privacy, an honest-but-curious

server should be unable to link a VCR to a specific client or to link multiple VCRs to the

same client (see Section 6.3). This requirement ensures that the use of VICEROY does not

reveal any additional information to the server about potential links between users, devices,

and sessions (e.g., if a single user is using multiple devices).

Since unlinkability is not a trace property, we cannot use Tamarin to model or verify this

property. Instead, we follow an existing approach for reasoning about unlinkability [223,

222, 188] and show that the messages sent by the client to the server do not contain any

information that could be used by a server to link VCRs to clients or to other VCRs.

As shown in Figure 6.1, the only new pieces of information provided by the client (which

the server does not already know) are (1) the request, (2) the VCR public key (pk(t/i/j)),

and (3) the client’s signature. The request does not contain any information that uniquely
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identifies the client or allows it to be linked to other requests. Formally, given any two

requests, a server would not be able to distinguish whether or not they were issued by the

same client. BIP32 guarantees that derived public keys are unlinkable to each other and to

their parent keys. This ensures that neither the VCR public key nor the signature created

using the corresponding private key are linkable.9 Formally, given any two derived public

keys or signatures, a server would not be able to distinguish whether or not they were issued

by the same client. We can therefore conclude that the protocol satisfies the unlinkability

property.

Of course, if the device public key is leaked from the client’s device, different VCR could

be linkable. However, even in this case, VICEROY is no worse than the current use of web

cookies, since an attacker that can steal a device public key could also steal cookies from the

victim’s device and use these to link/track the victim’s sessions and VCRs.

Although VICEROY provides unlinkability by design, the nature of how VCRs are submitted

may point servers in the direction of clients. For instance, by observing metadata such as

IP addresses of different VCR requests, a server might link them to the same client. One

possible mitigation is to use anonymity networks (e.g., Tor) and avoid issuing VCR bouquets

whereby multiple requests are submitted through the same connection. Random delays

between VCRs can be used to prevent timing-based correlation.

Public Key Injection. The adversary might attempt to replace the client VCR public

key with its own public key when obtaining a wrapper for a cookie. This can occur if there

is either: (1) an active network-level adversary, and/or (2) malware on client device. For

(1), this is mitigated by the use of secure communication channels (e.g. TLS) or by simply

having VICEROY browser extension compare the public key it sent with the public key in the

returned wrapper. In contrast, (2) is difficult to defend against. Malware in full control of

9By design, a VCR can be linked to the corresponding wrapper – indeed the latter is included in the
former.
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the client device can replace the client public key with its own during the wrapper request.

Even if the consumer attempts to verify the public key in the returned wrapper, the malware

can subvert this check. The only way to prevent this is to verify wrappers in an environment

isolated from client-side malware, e.g., a Trusted Execution Environment (TEE). Of course,

this approach would also require securely sharing the public key to be verified with the TEE

and displaying the verification result to the user without malware interference. Overall, we

consider (2) to be out of scope since malware in total control of a client device already has

access to any data that could be collected by the server about the client.

Client-Side Malware. Malware on the client’s device might conduct unauthorized op-

erations on client data. This might be possible either via: (1) replay attacks, or (2) by

generating VCRs without the owner’s consent. This issue highlights one important differ-

ence between using asymmetric tokens and symmetric tokens for VCRs. The former allows

generation of one VCR per client authorization. In contrast, symmetric tokens, even if en-

crypted and decrypted on demand with client’s approval, need to be available in plaintext

at some point in order to be sent to the servers. Client-side malware can use these exposed

tokens to generate future VCRs. Also, using symmetric tokens allows malware to access

data from before its infection period. For example, assume that malware infects the client’s

device at time t. It can access pre-stored tokens and learn data generated prior to t. Since

we can prevent such attacks via asymmetric tokens, VICEROY provides better security and

privacy compared to current symmetric token-based systems.

Key Leakage. An attacker might exploit weaknesses in BIP32 to learn the private key.

One well-known weakness of BIP32 is that knowledge of a parent extended public key as

well as of any non-hardened child private key (descended from that parent public key) can

leak the parent extended private key [231]. However, in VICEROY, the non-hardened child

private key is generated within, and never leaves, the trusted device. Therefore, the attacker

must compromise the trusted device to obtain the non-hardened child private key, which we
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consider to be infeasible, per Section 6.3.

6.6.2 Latency Analysis

Most operations in VICEROY result in no user-perceptible latency because they occur asyn-

chronously with normal web browsing. Nevertheless, we discuss them to quantify compu-

tational costs of VICEROY. The only user-perceivable latency occurs when a VCR is issued,

which is expected to be an infrequent operation. For these experiments, we used as the

client device an Intel NUC with an Intel Core i5-7260U 2.20GHz quad-core CPU with 32.0

GB of RAM running Ubuntu 18.04 LTS, with Chrome version 97.0.4692.71 64-bit official

build. Unless otherwise stated, all results are averages over 10 runs, with storage left un-

changed between runs. All data was in local storage and results may vary depending on the

underlying storage technology, e.g., memory vs. hard-drives vs. cloud-hosted databases.

Obtaining a Wrapper. We divide the process of obtaining a wrapper into the following

four phases:

1. Key Derivation: When an unknown client makes a request, the server returns a cookie

and the VCR endpoints. The client parses these endpoints, derives a VCR public key,

and prepares a wrapper request.

2. Wrapper Generation: The server generates a wrapper using the client-provided VCR

public key and cookie.

3. Wrapper Verification: After receiving the wrapper from the server, the client verifies

the wrapper using the server’s public key and confirms that the wrapper associates the

correct VCR public key and cookie.

4. Wrapper Storage: The client saves the wrapper along with the public key derivation

path and endpoints.
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Table 6.2: Latency Results for VICEROY Wrappers.

Key Derivation
Wrapper Genera-
tion

Wrapper Verifica-
tion

Wrapper Storage

24.6 ms 0.4 ms 18.8 ms 6.5 ms

Table 6.3: VCR Latency Results.

VCR Generation VCR Verification

VCR Flow 1357.4 ms 1.5 ms

Table 6.2 shows the average time of each phase. These measurements exclude network

latency, as this will vary depending on the locations of the client and server. Wrapper

Verification takes the longest as it includes a signature verification. Wrapper Generation is

noticeably faster than Key Derivation and Wrapper Verification since the former is performed

by a native application and the latter two run in the browser extension.

Issuing a VCR. We divide the process of issuing a VCR into two steps:

VCR Generation: When a client selects a session and a VCR type, the browser extension

prepares a request to be signed by the trusted device and a key derivation path. Both are sent

to the trusted device via the native messaging application. Next, the trusted device signs

the overall request using the private key corresponding to the derived public key. Finally,

the signature is then returned to the extension. The above steps in total take on average

1357.4 ms using a modified Solokey Hacker as the trusted device.

VCR Verification: The server receives the VCR and verifies the wrapper. Also, it extracts

the VCR public key for this session from the wrapper and verifies the overall VCR using the

VCR public key. This step takes on average 1.5 ms.

Table 6.3 shows latency results (excluding network latency). Similar to Table 6.2, a signature

generation operation performed by the native messaging application takes longer, compared

to a standalone server. This is due to data passing delay between pop-up and background
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scripts, as well as the native messaging protocol between the application and the browser.

Based on these results, server’s cost to verify VCRs is minimal.

Trusted Device Latency. Finally, we benchmarked the latency of key-generation opera-

tions performed by the trusted device. Generation of the master private key takes 332 ms

and generation of a device key takes 724 ms, which are both reasonable for these types of

operations. As discussed in Section 6.5, we use a modified Solokey Hacker as an example of a

trusted device, while noting that this resource-constrained hardware token is likely to be the

slowest type of a trusted device. We emphasize that these are very infrequent operations,

taking place once per trusted device, and once per new client device respectively.

6.6.3 Data Transfer Analysis

We measured the amount of data transferred to obtain wrappers and issue VCRs. For

demonstration purposes, our server kept the visit history for each client, which was returned

to the client upon successful VCR verification. The setting was the same as for latency anal-

ysis, and we used the browser’s debugging console to measure the amount of data exchanged

between the browser and server.

The client first sent an HTTP GET request to the server. After receiving the VCR endpoints

and a cookie, the client sent a POST request to the wrapper request endpoint. The client

then generated and sent a VCR to the server requesting to access the data, and received

the visit history with a single entry. This request included: wrapper, VCR public key, and

signature on the request. Table 6.4 shows the HTTP header and payload sizes transmitted

between the client and server. For both obtaining a wrapper and issuing a VCR, the amount

of data exchanged was a fraction of a typical web interaction.
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Table 6.4: Data transfer in kB (HTTP header + payload).

Request Response Total

Obtain Wrapper
0.72 kB

(0.62 + 0.10)
0.38 kB

(0.23 + 0.15) 1.10 kB

Issue VCR
0.99 kB

(0.68 + 0.31)
0.28 kB

(0.23 + 0.05) 1.27 kB

6.6.4 Storage Analysis

For the client-side data storage evaluation, we measured client-side data storage requirements

using the chrome.storage.sync.getBytesUsed function. The date was represented using

the UNIX standard and the only the URL path was stored in the history section.

We first measured the minimum storage for a client with no visit history: it stores server

endpoints, VCR and server public keys, plus metadata used to issue VCRs, requiring 0.38

kB in total. We then measured storage for a client who visited a particular URL 100 times,

where VICEROY stored the details of each visit. This required 5.06 kB. Although storage

increases linearly with the number of visited web pages, the gradient is small and the overall

magnitude is similar to that of a typical web browser history.

We can extrapolate from the results above to estimate the amount of storage required by a

typical client to store all wrappers generated over a long period of time. Crichton et al. [66]

recently found that, on average, a user visits 163 distinct web pages per day. Note that

“distinct web page” refers to a unique URL and not necessarily to a unique domain, i.e.,

the number of distinct domains may be smaller. This study does not report the fraction of

web pages where a user has an account. We make the following conservative assumptions:

(i) the 163 web pages correspond to distinct domains; (2) the user has no accounts on any

of these web pages; and (3) the user stores all wrappers for one year before issuing a VCR

request.10 Under these assumptions, VICEROY would require 0.38 kB for each of the 163 web

pages for 365 days, resulting in a total storage requirement of 22.61 MB.

10Note that this analysis is purely illustrative and that the storage requirements could increase or decrease
if these assumptions change.

157



6.6.5 Deployability Analysis

From the server perspective, main changes are: (1) create and maintain a public/private key-

pair for generating wrappers, and (2) create and maintain relevant endpoints. By design,

the server does not have to change how it assigns identifiers to clients or uses cookies. The

integration of VICEROY into existing servers can be further simplified by releasing VICEROY

modules for popular server frameworks. From the server’s perspective, VICEROY is a cheaper

and simpler approach to complying with data protection regulations, compared to existing

third-party identity verification services.

From the client’s perspective, VICEROY requires: (1) generating a master private key on a

trusted device and (2) installing the browser extension and native messaging application on

other devices. These software packages could be made available via popular app stores. Once

installed, VICEROY operates transparently to the client and does not disrupt the normal flow

of web browsing. The anticipated incentives for clients to use VICEROY are that it is both

more automated and more privacy-preserving than current identity verification methods.

6.7 Discussion

6.7.1 Multi-Device Support

Given the proliferation of smartphones, computers, and various IoT gadgets im many spheres

of everyday life, we expect that most clients own (or soon will own) multiple devices with

varying capabilities. VICEROY has been designed with this scenario in mind. First, computa-

tional requirements of VICEROY can be met by any device that can establish TLS connections.

Any device that can perform a TLS handshake is sufficiently powerful to verify the signature

on a wrapper. Second, storage is not an issue because wrappers can be stored anywhere.

This also allows devices without a display to request wrappers and commit these to synced

storage. Thereafter, any other device with an appropriate display owned by the same client
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can fetch these and perform data operations. Third, the use of BIP32 allows VICEROY to

generate an arbitrary number of device public keys, which can be used to derive any number

of VCR public keys for interaction with different websites. Since private keys are not stored

on such devices, there is no threat against security of VICEROY, even if the number of devices

increases. Fourth, VCRs do not need to be issued from the same device that originally in-

teracted with the server. Devices may need to be unprovisioned, although the client should

still be able to issue VCRs for interactions they made on those devices. In VICEROY, the

client can always transfer cookies and wrappers between devices.

6.7.2 Multi-VCR Support

Unlinkability of VCRs is critical for protecting consumers’ privacy (as defined in Section 6.3).

However, it requires clients to generate and sign VCRs for each session. To reduce overhead,

a client can amend its key derivation mechanism. For example, if a client prefers to use only

one VCR to refer to combined collected data for all sessions with a particular website, it can

use the derivation path t/i/s/j where t/i is the derivation path of the device key as before,

s is a server id and j is a server-specific (rather than global) session counter. The client

then collects all wrappers and generates a unified VCR by signing it with the private key

corresponding to the server VCR public key (t/i/s). This server VCR public key is then

sent to the server. The server derives VCR public keys for individual sessions and verifies

all wrappers. For a new session with the same server, the client simply updates the server

id (s) and repeats the process.

6.7.3 Multi-Communication Protocol Support

So far, we focused on VICEROY being used over HTTP(S), the most common way to access

Web services. However, it can support any stateless protocol that assigns a unique identifier

by using that identifier when generating a wrapper. Thus, as described in Section 6.4.3,

VICEROY is also applicable to applications that use other protocols to interact with online
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servers. Such applications can use VICEROY wrappers to bind client-generated public keys

to any type of symmetric session identifier, and the same protocol to issue VCRs for data

associated with that identifier.

6.7.4 Shared Devices

Certain types of client devices may be shared by multiple individuals, e.g., a smart TV used

by all household members. In the worst case, it may not be possible to associate usage data

with a specific individual, e.g., if two or more people are using the device concurrently. This

a general policy question in the field of data protection; it is not unique to VICEROY. There is

no clear guidance in either GDPR or CCPA as to how to handle such situations. However,

VICEROY provides some mechanisms that could be used to assist with enforcing, rather than

defining, data ownership policies for shared devices. For example, one conceivable data

ownership policy for a shared device is that all users of the device must consent to VCRs

being issued for sessions originating from this device. In the example above, this would

require all smart TV users to consent to a data access request, which may also help address

the policy question of who actually owns the data. This could be achieved by using a

signature scheme that requires all users to participate in the creation of a VCR. The actual

policy and procedures regarding data from shared devices should be defined by the regulators,

while tools such as VICEROY should enable, rather than dictate, policy.

6.7.5 3rd Party Storage

One distinctive feature of VICEROY, as opposed to simply using cookies, is that possession of

a wrapper alone is insufficient to issue a VCR. Thus, wrappers can be stored by third parties

and retrieved only when needed. This relaxes client-side storage requirements and creates

a possible new business opportunity for (paid) service providers that manage wrappers on

behalf of clients.
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6.7.6 Broad Identifier Support

VICEROY wrappers are a general means of binding client identification cookies to client-

generated public keys. Importantly, this method is non-invasive and does not impose any

constraints on the cookie, which is useful if a server changes its identification method, e.g.,

cookie content. VICEROY can also support future identification methods, as a server can

simply issue wrappers that bind public keys to any new type of identifier, instead of the

cookies.

6.7.7 3rd-party Cookie Support

Third-party cookies are claimed to provide better, more personalized advertisements. Al-

though such cookies are commonly considered detrimental to privacy [157], they are widely

used; around 79% of 109 million web pages include third-party cookies [187]. VICEROY can

support such cookies by modifying the browser extension to capture traffic going to third

parties and extract and store all third-party cookies. To obtain the wrappers, the client can

either: (1) visit the third-party wrapper endpoints individually, or (2) send all cookies to the

first-party server, which would obtain wrappers on the client’s behalf. Note that VICEROY

does not require enabling third-party cookies in order to function. This is related to cookie

syncing [1, 50, 106, 220] in which, instead of placing multiple cookies on the client device, a

set of servers associate the data they collect under a unified identifier. VICEROY is capable of

supporting this type of cookie and obtaining the wrapper by visiting the relevant endpoint.

6.7.8 Further privacy considerations

When a consumer issues a VCR for a particular session, a potential risk arises that this action

could reduce consumer privacy by allowing the service provider to link multiple sessions to

the same consumer. For example, there is a one-to-one mapping of a VCR public key and

a session, thus revealing VCR keys to the servers might allow servers to link VCRs as well.
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To prevent this, we consider two approaches:

First, for data access requests, cryptographic techniques, such as Private Information Re-

trieval (PIR) [55], can hide the identity (i.e., VCR public key) of the data requested. For

modify and delete operations, the problem is more challenging, because, if data is in plain-

text, servers could detect what has been updated/deleted. Furthermore, PIR is likely to

incur a high bandwidth burden, since databases may retain data for very long periods of

time (e.g., 10 years) and that large database might need to be sent to the client.

An exciting approach to overcome both these problems is to introduce Trusted Execution

Environments (TEEs) on the server side. Using remote attestation [127], after ensuring that

expected code is running on a server-side TEE, clients can create a secure channel to the TEE

and send their VCR keys over it. The TEE can find the matching row in the database and

return associated data. This TEE-secured database can be populated with data collected

during a secure connection between a client and a server, e.g., using techniques such as

LibSEAL [27]. Server-side TEEs also allow servers to prove to clients how their data is

used, also using remote attestation. VCR responses can be generated with such guarantees,

providing more transparency and trust between clients and servers.

6.7.9 Further Applications

Although VICEROY focuses on VCRs from accountless clients, it can also supplement verifi-

cation of VCRs from account-holding clients. This can be useful, considering that passwords

suffer from dictionary attacks and are often re-used on multiple servers.

VICEROY can also be used as a basis in scenarios that require client re-authentication. For

example, in the context of monetary transactions, receipts are currently used to prove that

a client bought something from a merchant (server) in order to accept returns or perform

exchanges. With VICEROY, a client can supply a fresh VCR public key during the purchase

162



transaction and later generate proof of ownership of the corresponding private key, which

would anonymously confirm to the server that this is indeed the same customer.

6.8 Related Work

Supporting VCR requests from accountless consumers. Until now, the only means

of authenticating accountless consumers have been ad hoc. [189] reports that such means

may require one or more of: device cookies, government-issued IDs, signed and witnessed

statements, utility bills, credit card numbers, or participation in a phone interview. However,

these mechanisms are burdensome for consumers. Furthermore, they are insecure (as shown

in [189, 46, 75, 34]), error-prone (due to the manual processing), and privacy-invasive due

to the additional information collected. In contrast, VICEROY allows consumers to submit

VCRs in a secure and private manner without requiring any human interaction on the server

side.

Security of GDPR Subject Access Requests. As described in Section 6.2, the GDPR

and CCPA grant subjects the right to request access to their personal data collected by

businesses, by submitting a VCR or Subject Access Request (SAR). Unfortunately, insecure

(or easily circumventable) SAR verification practices open the door to potential leakage of

personal data to unauthorized third parties. Prior work [46, 75, 189] has investigated various

social engineering techniques for bypassing existing SAR verification practices.

Cagnazzo et al. [46] demonstrated that an unauthorized adversary can abuse the functionality

provided by a business to update a victim subject’s email and residential addresses. The

adversary could then request access to “their” data from this new address. Out of 14

organizations tested, 10 gave out personal information and 7 of these contained sensitive

data.

Di Martino et al. [75] investigated the use of address spoofing techniques (e.g., using ho-
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moglyphs), as well as more sophisticated techniques such as manipulation of identity card

images. It was found that 15 out of 41 organizations with manual verification processes

leaked personal data. The remaining 14 organizations required an account-based login, which

was impervious to such attacks, however is not available for the accountless consumers we

consider in this work.

Pavur and Knerr [189] performed an extensive evaluation of 150 companies’ practices for

SAR verification. Results indicated that email address-based and account login were the

most common, followed by device cookies, government IDs, and signed statements. Some

organizations also requested utility bills, phone interviews, or credit card numbers. To bypass

SAR verification, [189] created and sent a vague SAR letter to organizations. Out of 150,

24% disclosed personally-identifying information.

Boniface et al. [34] also analyzed SAR verification practices for popular websites and third-

party trackers. The findings were that, in addition to possibly being insecure, SAR verifica-

tion could undermine the privacy of subjects in order to verify the request.

General Studies on GDPR Subject Access Requests. Urban et al. [219] performed

a two-sided study of both data subjects and data-collecting organizations, with a focus on

online advertising. For data subjects, consumer surveys were used to evaluate the usability

of data transparency tools offered by the organizations and to learn more about consumers’

perceptions of these tools. [219] also conducted surveys and interviews with organizations to

get their views on the privacy regulations and business practices for SARs. The results paint

a picture of a discrepancy between the consumer’s perspectives and the collected data, which

is also corroborated by Ausloos and Dewitte [28]. Furthermore, consumers seemed to show

little interest in seeing raw technical data. Similarly, Urban et al. [220] investigated SAR

practices for online advertising companies and used cookie IDs to request collected data.

This approach is similar to the symmetric approach in Section 6.4. [220] reported that some

companies requested ID cards or affidavits, while others directly used the cookie IDs in the
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browser. Neither approach proves that the requestor is really the consumer about whom the

data was collected.

Kröger [141] studied mobile applications and observed an even more fragile ecosystem with

discontinued apps and disappearing consumer accounts while processing SARs. Another

conclusion of this study was to move away from email-initiated and manual processes which

are prone to errors. In terms of compliance, the analysis by Herrmann and Lindemann [116]

showed 43% compliance with access requests vs. 57% compliance with deletion requests.

In addition to the above, Dabrowski et al. [68] investigated cookie usage and how it is

affected by privacy regulations, reporting that 11% of EU-related websites set cookies for

US-based consumers, though not for EU-based consumers. Furthermore, up to 46.7% of

websites that appear in both the 2016 and 2018 Alexa top 100,000 sites stopped using

persistent cookies without consumer permission. In the standardization realm, Zimmeck

and Alicki [242] focused on “Do Not Sell” requests, which inform the websites that they may

not share the consumer’s information with third parties. [242] developed a browser extension

(OptMeowt) that conveys “Do Not Sell” requests to websites through headers and cookies.

Asymmetric access tokens. The most similar work to VICEROY from a technical per-

spective is Origin Bound Certificates (OBCs) [77] (also see RFC 8471 [192]), which aims

to strengthen TLS client authentication by converting cookies to asymmetric access tokens.

In OBC, the client generates a unique self-signed TLS client certificate for each website, in

order to remain unlinkable across websites. Although this does not authenticate the client to

the website (due to the self-signed certificate), it does allow the server to ascertain whether

this is the same client from a previous interaction. One benefit of this is that cookies can be

bound to an OBC, such that, even if stolen, they cannot be used by an adversary. This is

very similar to how we bind wrappers to a client-generated key. One key difference is that, in

OBC, the cookies themselves are modified, whereas our use of wrappers means that VICEROY

can be incrementally deployed on top of existing systems without needing to modify how
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they use cookies. Another difference is that per-site certificates would not be suitable for

accountless consumers, as these would allow servers to link together different visits from the

same client. The alternative of generating per-TLS-session certificates introduces the key

explosion problem, which we address in Section 6.4. Finally, OBC and VICEROY differ in

terms of their primary objectives: OBC aims to strengthen TLS channels in general, thus is

tightly coupled to the TLS protocol, whereas VICEROY aims to provide a specific mechanism

for supporting VCRs, which can be run over any communication protocol.

Another technology related to asymmetric access tokens is the FIDO Universal Authentica-

tion Framework (UAF) [88]. UAF allows users to authenticate to servers using mechanisms

other than passwords, e.g., biometrics. It also supports multi-factor authentication, e.g.,

requiring both a PIN and a biometric. The devices used to obtain such factors are called

authenticators. During registration, authenticators generate and register a server-specific

authentication key, which they then use for subsequent authentications. While similar to

the approach used in VICEROY, there are several reasons why the FIDO UAF protocol is not

directly suitable for VICEROY. First, VICEROY requires a fresh key pair to be generated for

every session per website, since these keys will be paired with session-specific cookies. FIDO

UAF does not meet this requirement, since only one key pair is generated per website. Even

if the FIDO UAF protocol were modified to generate a key pair per session per website,

this would lead to the key explosion problem described in Section 6.4.3, and it would be

particularly challenging to store all these keys in a resource-constrained device. In contrast,

in VICEROY, the use of BIP32 is critical to handle the significantly larger volume of keys and

facilitate implementation on resource-constrained devices. Second, using FIDO UAF would

require trusted devices to be online when generating cookie wrappers, since both the public

and private keys are generated by the trusted device. This is not ideal for security-conscious

users who might prefer to keep their trusted device offline most of the time (e.g., in a locked

safe). In contrast, VICEROY supports both casual and security-conscious use cases by not

requiring the trusted device to be present when generating public keys for cookie wrappers.
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6.9 Conclusions & Future Work

Motivated by recent GDPR and CCPA regulations granting (even) accountless consumers

rights to access data gathered about their behavior by web servers, we construct and evaluate

VICEROY, a framework for authenticating accountless consumers. VICEROY is secure with

respect to malicious clients and honest-but-curious servers, easy to deploy, and imposes

fairly low overhead. Natural directions for future work include: (1) integration with client-

side trusted execution environments (TEEs), (2) more extensive support for the MODIFY

VCR type, and (3) support for unilateral server deletion of accountless-consumer data, which

can occur if a server decides to delete consumer data without an explicit request.
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Chapter 7

Final Remarks

This dissertation proposed four systems that leverage trusted hardware components and

provide improved security and privacy properties that were not possible without the help of

such components.

Chapter 3 described COMIT, a software-only design that eliminates the migration issue

which arises when utilizing in-process TEEs in the cloud, hindering availability. The chal-

lenge of COMIT is being able to stop a TEE at any given point in time, migrate it, and

allow it to resume execution at its new location, all while leaving the underlying hardware

architecture untouched and preserving the security properties. We have shown that the TEE

itself plays an important role in overcoming this challenge. Evaluation results demonstrate

that the overhead is minimal even when migrating large TEEs.

PDoT , introduced in Chapter 4, tackles a key issue in the DNS-over-TLS architecture: DNS

query privacy under malicious recursive resolvers. We showed that TEEs play a crucial role

when hiding DNS queries as well as providing minimal latency. The challenges of limited

TEE memory and functionalities are overcome with a unique threading model. Evaluation

results display acceptable latency and throughput under certain realistic conditions.
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CACTI, proposed in Chapter 5, allows clients to avoid solving CAPTCHAs while providing

the same security properties and improved privacy features and client-side TEEs are nec-

essary for CACTI when implementing such features. By combining a set of different data

structures and advanced cryptographic primitives, CACTI tackles challenges such as lim-

ited TEE functionalities. Our measurements show that the end-to-end latency of CACTI is

under 0.25 seconds and is capable of reducing the bandwidth by 98% compared to other

conventional CAPTCHA systems.

Finally, Chapter 6 focused on VICEROY, a protocol that allows consumers without accounts to

exercise their data ownership rights over their collected data while protecting their security

and privacy. The key challenge of VICEROY is authenticating the consumers without identify-

ing who they are. VICEROY overcomes this challenge by leveraging cryptographic primitives

for privacy and scalability. Additionally, secure hardware tokens play a significant role when

providing the highest level of security and we show that the latency is acceptable even when

using this resource-limited hardware token. We also formally prove the protocol using the

Tamarin prover.

We hope that the systems presented in this dissertation inspire future designs of next-

generation security services that aim to take advantage of current and future trusted hard-

ware components. Aside from improving the proposed systems, there are several natural

directions for future work: (i) exploring other systems that can potentially benefit from

trusted hardware components; (ii) identifying the limitation of current trusted hardware

components, and designing and implementing improved components based on the findings;

and (iii) deploying the proposed system(s).
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Appendix A

VICEROY Tamarin model

A.1 Formal Protocol Specification

Listing A.1 presents the formal model of the VICEROY protocol and the security properties

verified using the Tamarin prover [160]. For details of the Tamarin syntax and conventions,

please refer to the Tamarin prover website [29].

1 theory VICEROY

2 begin

3

4 b u i l t i n s : s i gn ing , hashing

5

6 // Publ ic key i n f r a s t r u c t u r e

7 r u l e Reg i s t e r pk :

8 [ Fr (˜ skA) ]

9 −−[Unique ($A)]−>

10 [ ! Sk ($A, ˜skA) , ! Pk($A, pk (˜ skA) ) , Out( pk (˜ skA) ) ]

11

12 r u l e Revea l sk :

13 [ ! Sk (A, skA) ] −−[ RevSk (A) ]−> [ Out( skA) ]
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14

15

16 // Der ivab le asymmetric keys

17 r u l e R e g i s t e r d e r i v e d k e y :

18 [ ! Sk ($A, skA) , Fr (˜ dskA ) ]

19 −−>

20 [ ! Dsk ($A, ˜dskA ) , ! Dpk($A, pk (˜ dskA ) ) , Out( pk (˜dskA ) ) ]

21

22 r u l e Reveal dsk :

23 [ ! Dsk (A, dskA ) ] −−[ RevDsk(A) ]−> [ Out( dskA ) ]

24

25

26 /∗ We f o r m a l i z e the f o l l o w i n g p ro to co l

27

28 Trusted dev i ce (T) | Cl i en t dev i ce (C) | Web s e r v e r (S)

29

30 [ Optional ] Trusted dev i ce gene ra t e s master p r i v a t e key sk ( t ) and sends dev i ce

pub l i c key pk ( t / i ) to the c l i e n t ’ s dev i c e [ not inc luded in the model s i n c e

i t i s not mandatory to use a separa te t ru s t ed dev i ce ] .

31

32 When the c l i e n t beg ins i n t e r a c t i n g with a website , the webs i te i s s u e s the

c l i e n t with a cook i e .

33 0 . S −> C: cook i e

34

35 The c l i e n t d e r i v e s a f r e s h VCR pub l i c key pk ( t / i / j ) from the dev i ce pub l i c key

and sends i t to the s e r v e r along with the cook i e .

36 1 . C −> S : cookie , pk ( t / i / j )

37

38 The s e r v e r r e tu rn s a cook i e wrapper , which i s a s i g n a t u r e over the cook i e and

the provided VCR pub l i c key .

39 2 . S −> C: s i g n { sk (S) }{h( cookie , pk ( t / i / j ) ) }

40

41 When i s s u i n g a VCR, the user s i g n s the r eques t and cook i e us ing the
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corre spond ing p r i v a t e key on t h e i r t ru s t ed dev i ce [ not inc luded in t h i s

model ] , and then sends the cookie , request , pub l i c key , wrapper , and

s i g n a t u r e to the s e r v e r .

42 3 . C −> S : cookie , request , pk ( t / i ) , s i g n { sk (S) }{h( cookie , pk ( t / i / j ) ) } , s i g n

{ sk ( t / i / j ) }{h( request , cook i e ) }

43

44 I f a l l the s i g n a t u r e s can be v e r i f i e d , the s e r v e r accept s the VCR and performs

the reques ted opera t ion . ∗/

45

46 r u l e S 0 :

47 [ Fr (˜ cook i e ) ]

48 −−[ ]−>

49 [ Out( ˜ cook i e ) , ! S ta t e S 0 ($S , ˜ cook i e ) ]

50

51 r u l e C 1 :

52 l e t dpkC = pk (˜ dskC )

53 m1 = <cookie , dpkC>

54 in

55 [ In ( cook i e ) , Fr (˜ dskC ) ]

56 −−[ Request wrapper ( dpkC ) ]−>

57 [ Out( m1 ) , State C 1 (˜dskC , dpkC , cook i e ) ]

58

59 r u l e S 1 :

60 l e t m1 = <cookie , dpkC>

61 m2 = s ign (h(<cookie , dpkC>) , skS )

62 in

63 [ ! S ta t e S 0 ($S , cook i e ) , ! Pk($S , pkS ) , ! Sk ($S , skS ) , In ( m1 ) ]

64 −−[ I s sue wrapper ($S , dpkC , <cookie >) ]−>

65 [ Out( m2 ) , ! S ta t e S 1 ($S , pkS ) ]

66

67 r u l e C 2 :

68 l e t r eque s t = < ’ op ’ , ˜nonce , pkS>

69 m3 = <cookie , request , dpkC , wrapper , s i gn ( h(< request , cookie >) , dskC )
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>

70 in

71 [ State C 1 (dskC , dpkC , cook i e ) , ! Pk($S , pkS ) , In ( wrapper ) , Fr (˜ nonce ) ]

72 −−[ Eq( v e r i f y ( wrapper , h(<cookie , dpkC>) , pkS ) , t rue )

73 , Issue VCR ( dskC , $S , <cookie , request >) ]−>

74 [ Out( m3 ) ]

75

76 r u l e S 2 :

77 l e t r eque s t = < ’ op ’ , nonce , pkS>

78 m3 = <cookie , request , dpkC , wrapper , c l i e n t s i g >

79 in

80 [ ! S ta t e S 1 ($S , pkS ) , In ( m3 ) ]

81 −−[ Eq( v e r i f y ( wrapper , h(<cookie , dpkC>) , pkS ) , t rue )

82 , Eq( v e r i f y ( c l i e n t s i g , h(< request , cookie >) , dpkC) , t rue )

83 , Unique ( nonce )

84 , Accept VCR ($S , dpkC , <cookie , request >) ]−>

85 [ ]

86

87 r e s t r i c t i o n Equal i ty :

88 ” Al l x y #i . Eq(x , y ) @i ==> x = y”

89

90 r e s t r i c t i o n Uniqueness :

91 ” Al l x #i #j . Unique ( x ) @ i & Unique ( x ) @ j ==> #i = #j ”

92

93 /∗ Wrapper u n f o r g e a b i l i t y : whenever the s e r v e r accept s a VCR from a c l i e n t ,

then that s e r v e r had p r e v i o u s l y i s s u e d a cook i e wrapper to that c l i e n t f o r

the same cookie , or the adversary performed a long−term key r e v e a l on the

se rver , or the adversary knows the c l i e n t ’ s der ived p r i v a t e key . ∗/

94 lemma w r a p p e r u n f o r g e a b i l i t y :

95 ” Al l s e r v e r dskC cook i e r eques t #i .

96 Accept VCR ( server , pk ( dskC ) , <cookie , request >) @ i

97 ==>

98 (Ex #j . I s sue wrapper ( se rver , pk ( dskC ) , <cookie >) @ j & j < i )
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99 | (Ex #r . RevSk ( s e r v e r ) @ r ) | (Ex #r . KU( dskC ) @ r ) ”

100

101 /∗ VCR u n f o r g e a b i l i t y : whenever the s e r v e r accept s a VCR, then the c l i e n t with

the corre spond ing p r i v a t e key i s s u e d that VCR, or the adversary performed

a long−term key r e v e a l on the se rver , or the adversary knows the c l i e n t ’ s

der ived p r i v a t e key . ∗/

102 lemma VCR unforgeabi l i ty :

103 ” Al l s e r v e r dskC cook i e r eques t #i .

104 Accept VCR ( server , pk ( dskC ) , <cookie , request >) @ i

105 ==>

106 (Ex #j . Issue VCR ( dskC , se rver , <cookie , request >) @ j & j < i )

107 | (Ex #r . RevSk ( s e r v e r ) @ r ) | (Ex #r . KU( dskC ) @ r ) ”

108

109 /∗ Replay r e s i s t a n c e : the s e r v e r w i l l not accept a VCR f o r the same cook i e and

reque s t combination more than once , u n l e s s the adversary knows the c l i e n t

’ s der ived p r i v a t e key . ∗/

110 lemma r e p l a y r e s i s t a n c e :

111 ” Al l s e r v e r dskC cook i e r eques t #i #j .

112 Accept VCR ( server , pk ( dskC ) , <cookie , request >) @ i &

113 Accept VCR ( server , pk ( dskC ) , <cookie , request >) @ j

114 ==>

115 #i = #j | (Ex #r . KU( dskC ) @ r ) ”

116

117 /∗ Cons istency check : the s e r v e r can accept a VCR without the adversary having

performed a long−term key r e v e a l on the s e r v e r or knowing the c l i e n t ’ s

der ived p r i v a t e key . ∗/

118 lemma a c c e p t v c r p o s s i b l e :

119 e x i s t s−t r a c e

120 ” Ex s e r v e r dskC params #i .

121 Accept VCR ( server , pk ( dskC ) , params ) @ i

122 & not (Ex #r . RevSk ( s e r v e r ) @ r )

123 & not (Ex #r . KU( dskC ) @ r ) ”

124
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125 end

Listing A.1: Tamarin specification of the messages exchanged in VICEROY, and the

corresponding security lemmas.
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