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ABSTRACT OF THE DISSERTATION

Improving Energy Efficiency of Basic Linear Algebra Routines on Heterogeneous Systems
With Multiple GPUs

by

Hadi Zamani Sabzi

Doctor of Philosophy, Graduate Program in Computer Science
University of California, Riverside, March 2023

Prof. Laxmi Bhuyan, Chairperson

The current trend of ever-increasing performance in high performance computing

(HPC) applications comes with tremendous growth in energy consumption. Because ex-

isting libraries are mainly concerned with performance, they do not make efficient use of

heterogeneous computing systems, resulting in energy inefficiency. Hence, improving the

energy efficiency of critical applications running on HPC systems is necessary to deliver

better performance at a given power budget. The aim of this dissertation is to develop

techniques and frameworks to improve the energy efficiency of the high performance applica-

tions on heterogeneous system with GPUs while maintaining the reliability and performance

requirements.

In our first approach, we present GreenMM framework for matrix multiplication,

which reduces energy consumption in GPUs through undervolting without sacrificing the

performance. The idea is to undervolt the GPU beyond the minimum operating voltage (Vmin)

to save maximum energy while keeping the frequency constant. Since such undervolting

may give rise to faults, we design an Algorithm Based Fault Tolerance (ABFT) algorithm
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to detect and correct those errors. We target Matrix Multiplication (MM), as a key kernel

used in many scientific applications. Empirically, we explore different errors and derive a

fault model as a function of undervolting levels and matrix sizes. Then, using the model, we

configure the proposed fault tolerant MM algorithm. We show that energy consumption is

reduced up to 19.8%. GreenMM also improves the GFLOPS/Watt by 9% with negligible

performance overhead.

In our second study, we present a framework for GPU applications, which reduces

energy consumption in GPUs through Safe Overclocking and Undervolting (SAOU) without

sacrificing performance. The idea is to increase the frequency beyond the safe frequency

fsafeMax and undervolt below VsafeMin to get maximum energy saving. Since such overclock-

ing and undervolting may give rise to faults, we employ an enhanced checkpoint-recovery

technique to cover the possible errors. Empirically, we explore different errors and derive a

fault model that is used to determine the appropriate undervolting and overclocking level

for maximum energy saving. Similarly, we target MM kernel for error correction using the

checkpoint and recovery (CR) technique as an example of scientific applications. In case of

MM, SAOU achieves up to 22% energy reduction through undervolting and overclocking

without sacrificing the performance.

In our third study, we introduce GreenMD, an energy-efficient framework for

heterogeneous systems for LU factorization utilizing multi-GPUs. LU factorization is a

crucial kernel from the MAGMA library, which is highly optimized. The aim is to apply

DVFS by leveraging slacks intelligently on both CPU and multiple GPUs. To predict the

slack times, accurate performance models are developed separately for CPUs, GPUs, and
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PCIe bus based on the algorithmic knowledge and manufacturer’s specifications. We also

determine the appropriate level of undervolting for both CPUs and GPUs through offline

profiling. Reducing voltage below threshold values may give rise to errors; hence we extract

the minimum safe voltages (VsafeMin) for the CPUs and GPUs utilizing a low overhead

profiling phase and apply them before execution. It is shown that GreenMD improves the

CPU, GPUs, and total energy about 59%, 21%, and 31%, respectively, while delivering

similar performance to the state-of-the-art linear algebra library MAGMA.

In our fourth study, we introduce a fault tolerant algorithm for LU factorization

on heterogeneous systems with GPUs. We have developed a fault tolerant algorithm by

constructing a local and global checksums. The local checksums are used to detect the errors

and the global checksums are used to correct the errors. Using the local checksums, we can

detect the errors in the middle of the computation which enables us to tolerate more number

of faults during the whole execution. LU factorization has three main phases. These phases

have different sensitivity to the error. For each phase, we introduce an appropriate level

of fault tolerance to prevent the error propagation to other phases. Since, we check the

correctness of the computation in each iteration, if there is any error in the system, only the

small fraction of the computation is affected and can be covered easily in compared to the

previous works such as ABFT.

vii



Contents

List of Figures x

List of Tables xii

1 Introduction 1
1.1 GreenMM: Energy Efficient GPU Matrix Multiplication Through Undervolting 2
1.2 SAOU: Safe Adaptive Overclocking and Undervolting for Energy-Efficient

GPU Computing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6
1.3 GreenMD: Energy-Efficient Matrix Decomposition on Heterogeneous Multi-

GPU Systems . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9
1.4 Fault Tolerant Matrix Decomposition on Heterogeneous Multi-GPU System 13
1.5 Dissertation Organization . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16

2 GreenMM: Energy Efficient GPU Matrix Multiplication Through Under-
volting 17
2.1 GPU Undervolting Model . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17

2.1.1 Fault Distribution in GPU . . . . . . . . . . . . . . . . . . . . . . . 18
2.1.2 GPU Fault Model . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20

2.2 GreenMM: Energy Saving Methodology . . . . . . . . . . . . . . . . . . . . 22
2.2.1 Offline Profiling . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23
2.2.2 Offline FT-cuBLAS-MM . . . . . . . . . . . . . . . . . . . . . . . . . 29
2.2.3 Online FT-cuBLAS-MM . . . . . . . . . . . . . . . . . . . . . . . . . 30

2.3 Evaluation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34
2.3.1 Experimental Setup . . . . . . . . . . . . . . . . . . . . . . . . . . . 34
2.3.2 Performance and Energy Saving Evaluation of FT-cuBLAS-MM . . 35
2.3.3 Performance/Watt and Total Energy Consumption Evaluation . . . 39

3 SAOU: Safe Adaptive Overclocking and Undervolting for Energy-Efficient
GPU Computing 41
3.1 Fault Model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41
3.2 Checkpoint and Recovery . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48

3.2.1 Implementation Details . . . . . . . . . . . . . . . . . . . . . . . . . 50

viii



3.3 Evaluation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 54
3.3.1 Experimental Setup . . . . . . . . . . . . . . . . . . . . . . . . . . . 54
3.3.2 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 54

4 GreenMD: Energy-Efficient Matrix Decomposition on Heterogeneous
Multi-GPU Systems 56
4.1 Background And Motivation . . . . . . . . . . . . . . . . . . . . . . . . . . . 56

4.1.1 LU Factorization Overview . . . . . . . . . . . . . . . . . . . . . . . 56
4.1.2 Profiling Observations . . . . . . . . . . . . . . . . . . . . . . . . . . 57

4.2 Slack Predictor . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 60
4.2.1 Performance Model Of LU Factorization On The CPU . . . . . . . . 61
4.2.2 Performance Model of the GPU Kernel . . . . . . . . . . . . . . . . 64
4.2.3 Performance Model Of Data Transfer . . . . . . . . . . . . . . . . . 67

4.3 DVFS-Based Slack Reclamation . . . . . . . . . . . . . . . . . . . . . . . . . 70
4.4 Undervolting . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 75
4.5 Evaluation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 77

4.5.1 Implementation Details . . . . . . . . . . . . . . . . . . . . . . . . . 77
4.5.2 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 79

5 Fault Tolerant Matrix Decomposition On Heterogeneous Multi-GPU Sys-
tem 86
5.1 Background And Motivation . . . . . . . . . . . . . . . . . . . . . . . . . . . 86

5.1.1 Fault Model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 87
5.1.2 Challenges Of Fault Tolerant LU Factorization . . . . . . . . . . . . 87
5.1.3 Error Propagation In LU Factorization . . . . . . . . . . . . . . . . . 88

5.2 Proposed Methodology . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 90
5.2.1 Checksum Setup . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 92
5.2.2 Local Checksum After Panel Factorization . . . . . . . . . . . . . . . 95
5.2.3 Proof Of Checksum Correctness During The Right Looking LU Fac-

torization . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 96
5.3 Evaluation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 97

5.3.1 Checksum Setup And Detection Phase . . . . . . . . . . . . . . . . . 97

6 Related Work 102
6.1 GreenMM . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 102
6.2 SAOU . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 104
6.3 GreenMD . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 106
6.4 Fault Tolerant LU Decomposition . . . . . . . . . . . . . . . . . . . . . . . . 108

7 Conclusion And Future Work 111

Bibliography 115

ix



List of Figures

2.1 Error distribution below nominal voltage for different benchmarks using GTX
980 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19

2.2 Probability of failure for different Rodinia benchmarks and cuBLAS-MM from
cuBLAS library . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20

2.3 Failure rate of different Rodinia benchmarks and cuBLAS-MM from cuBLAS
library . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22

2.4 GreenMM overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24
2.5 Overview of offline profiling . . . . . . . . . . . . . . . . . . . . . . . . . . . 25
2.6 Temperature variation over time without and with maximum level of under-

volting . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26
2.7 Execution time estimation model vs. the real execution time . . . . . . . . 27
2.8 Number of faults according to the undervolting level for matrices with size of

10K on NVIDIA GTX 980 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28
2.9 Estimated Number of faults for different matrix sizes given the undervolting

levels. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29
2.10 Performance overhead of matrix multiplication for different matrix sizes in

presence of two errors . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36
2.11 Performance evaluation of the FT-cuBLAS-MM . . . . . . . . . . . . . . . . 37
2.12 Energy saving in the FT-cuBLAS-MM versus the original cuBLAS-MM given

different undervolting levels and number of faults . . . . . . . . . . . . . . . 38
2.13 Comparing performance in GPU with default voltage versus undervolted GPU

in presence of different number of faults. . . . . . . . . . . . . . . . . . . . . 39

3.1 Fault distribution w.r.t. overclocking . . . . . . . . . . . . . . . . . . . . . 42
3.2 Failure rate of different Rodinia benchmarks and cuBLAS-MM from cuBLAS

library w.r.t overclocking . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45
3.3 Failure rate w.r.t undervolting . . . . . . . . . . . . . . . . . . . . . . . . . . 46
3.4 Number of faults in regard to overclocking and undervolting for matrix with

size of 10K . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47
3.5 Thread block level synchronization using array of global variables . . . . . . 51
3.6 Energy saving ratio in regard to overclocking in presence of CR algorithm . 52
3.7 Energy saving ratio in regard to undervolting in presence of CR algorithm . 53

x



3.8 Energy reduction for given frequencies and voltages . . . . . . . . . . . . . . 55

4.1 Overview of the blocked LU factorization . . . . . . . . . . . . . . . . . . . 58
4.2 Trace of the execution of multi-GPU version of double precision LU factoriza-

tion for a matrix of size 18K . . . . . . . . . . . . . . . . . . . . . . . . . . . 59
4.3 The estimated time of CPU w.r.t various frequencies . . . . . . . . . . . . . 61
4.4 Error rate in performance model on the underlying CPU . . . . . . . . . . . 64
4.5 The estimated time of single GPU w.r.t various frequencies using Equation 4.10 66
4.6 Error rate of GPU performance model provided in equation 4.10 . . . . . . 67
4.7 Estimated GPU time with single and Two GPUs at default frequency of 1980

MHz . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 68
4.8 The estimated copy time of double precision LU factorization for a matrix of

size 18K . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 69
4.9 The error rate of the PCIe model for a matrix of size 18K . . . . . . . . . . 70
4.10 An overview of slack reclamation. . . . . . . . . . . . . . . . . . . . . . . . . 71
4.11 GPU’s probability of failure w.r.t undervolting . . . . . . . . . . . . . . . . 76
4.12 CPU’s probability of failure w.r.t undervolting . . . . . . . . . . . . . . . . 77
4.13 The amount of CPU and GPU slack for double precision LU factorization

with one GPU and matrix of size 18K . . . . . . . . . . . . . . . . . . . . . 79
4.14 The CPU energy improvement of double precision LU factorization with single

GPU for a matrix of size 18K . . . . . . . . . . . . . . . . . . . . . . . . . . 80
4.15 GPU Energy improvement of double precision LU factorization in presence of

single GPUs for a matrix of size 18k . . . . . . . . . . . . . . . . . . . . . . 81
4.16 The amount of slack for double precision LU factorization in presence of Two

GPUs for matrix of size 18K . . . . . . . . . . . . . . . . . . . . . . . . . . 81
4.17 The CPU energy improvement of double precision LU factorization with two

GPUs for a matrix of size 18K . . . . . . . . . . . . . . . . . . . . . . . . . 82
4.18 Total CPU and GPU energy improvement of double precision LU factorization

with two GPUs for a matrix of size 18k . . . . . . . . . . . . . . . . . . . . 82
4.19 GPU energy improvement of double precision LU factorization in presence of

Two GPUs for a matrix of size 18k . . . . . . . . . . . . . . . . . . . . . . . 83
4.20 Total CPU and GPU energy improvement of double precision LU factorization

with single GPUs for a matrix of size 18k . . . . . . . . . . . . . . . . . . . 84

5.1 Error propagation scheme of error in different sections of the matrix . . . . 89
5.2 Overview of the Fault Tolerant LU factorization . . . . . . . . . . . . . . . 91
5.3 Original input matrix with block size of 4× 3 . . . . . . . . . . . . . . . . . 92
5.4 Original input matrix with local checksums added to each block. Block width

is increased by 1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 93
5.5 Original input matrix with local and global checksums added . . . . . . . . 94
5.6 The checksum verification overhead of panel factorization . . . . . . . . . . 98
5.7 The checksum verification overhead of row panel update . . . . . . . . . . . 99
5.8 The checksum setup and verification overhead of panel factorization . . . . 100
5.9 The checksum verification overhead of trailing matrix update . . . . . . . . 100

xi



List of Tables

2.1 Power management commands using the NVML library . . . . . . . . . . . 35
2.2 NVIDIA GTX 980 specifications . . . . . . . . . . . . . . . . . . . . . . . . 36

4.1 Experimental setup configuration . . . . . . . . . . . . . . . . . . . . . . . . 77
4.2 Power management and undervolting APIs . . . . . . . . . . . . . . . . . . 79
4.3 Energy improvement of CPU, GPU/GPUs in heterogeneous systems with one

GPU and two GPUs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 85

5.1 Experimental setup configuration . . . . . . . . . . . . . . . . . . . . . . . . 97

xii



Chapter 1

Introduction

High Performance Computing (HPC) applications like molecular dynamics, weather

prediction and drug discovery demand parallel processing environments. General Purpose

Graphics Processing Units (GPGPUs) have evolved as high performance accelerators due to

their SIMD (Single Instruction Multiple Data) processing architecture. Modern GPUs with

hundreds of computing cores are capable of 7.8 TFLOP/s of double precision floating-point

(FP64) and 15.7 TFLOP/s of single precision (FP32) [57]. Moreover, GPUs are equipped

with huge memory bandwidth as high as 1 TB/s. These characteristics make them well-

suited for use as accelerators in HPC applications, especially for numerical computations

and vector processing. Given their high computational capabilities, the GPUs consume

a significant portion of the total system energy. Because existing libraries are mainly

concerned with performance, they do not make efficient use of heterogeneous computing

systems, resulting in energy inefficiency. Hence, improving the energy efficiency of critical

applications running on HPC systems is necessary to deliver better performance at a given

1



power budget. Matrix multiplication (MM), and Matrix decomposition algorithms are

heavily used in many important numerical computations. The matrix-multiplication kernel,

referred to as GEMM in the Basic Linear Algebra Subroutines (BLAS) [56], is frequently used

as a basic numerical calculation library in CPUs. GEMM and LU decomposition routines

are critical to the performance of High Performance LINPACK benchmark (HPL) and

many software packages solving problem in linear algebra such as LAPACK, ScaLAPACK,

MUMPS and SuperLU. Improving the energy efficiency usually comes with degrading the

reliability. For instance reducing the operating voltage will result in experiencing more

faults in the system. Soft errors can occur in heterogeneous computing systems that use

GPUs. Recent studies have revealed that GPUs are susceptible to soft errors and any error

in long running kernels, if not solved, could cause restart that considerably rises the GPU

workload. According to the previous works, soft error rate increases as the voltage reduces

more [46]. Hence, there is trade-off between performance, energy efficiency, and reliability.

Previous works have not considered the impact of energy efficiency, reliability, performance

together. In this thesis we aim to improve the energy efficiency of the heterogeneous systems

while marinating the performance and reliability requirements.

1.1 GreenMM: Energy Efficient GPU Matrix Multiplication

Through Undervolting

Over the past few years, there have been significant efforts to study different

techniques improving energy efficiency of GPUs such as Dynamic Voltage and Frequency

Scaling (DVFS) [34] [60], and load balancing in the CPU-GPU heterogeneous systems [59]
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[79]. However, DVFS techniques result in performance degradation due to lowering of the

frequency.

GPUs are designed to operate in worst case operating conditions in terms of

process, temperature and voltage variation. A comprehensive study has been done on several

commercial GPU cards showing that there exists about 20% voltage guardband on different

GPU cards, which, when utilized, can result in up to 25% energy saving on GPU cards [46].

The impact of undervolting for energy saving has thoroughly been analyzed recently

by reducing the voltage down to the safe minimum voltage [46] [49]. Leng et al. [46] explore

energy benefits of reducing voltage of the GPU chip down to the safe limit. We aim to

save even more energy through undervolting the GPU beyond the safe minimum operating

voltage and tackling the possible GPU faults by employing a configurable low-overhead fault

tolerant (FT) algorithm. According to [46] and our observations, different applications affect

the Vmin at which the program executes correctly but fails when the voltage is reduced

any further. The errors can be classified into Silent Data Corruption (SDC), Run-time

Faults, Segmentation Faults, and Operating System (OS) crash. Some types of errors lead

to divergence in the application control flow, and as a result, increase the execution time

and even in some rare cases end up in an infinite loop [46]. The most predominant error is

SDC. In Fast Fourier Transform (FFT), Matrix Multiplication and Hotspot benchmarks,

the SDC errors lead to 24%, 42% and 55% faulty executions, respectively [69].

The reliability loss due to undervolting is not acceptable for most scientific com-

puting cases. There are software level fault tolerant techniques such as DMR (dual modular

redundancy) [66] and TMR (triple modular redundancy) [58], which take advantage of
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redundancies for handling erroneous cases, and checkpointing that tolerate errors in a

checkpoint-restart manner [74]. These techniques are not very efficient for large scale

scientific applications due to large energy and performance overheads [29]. In such cases,

algorithm based fault tolerance (ABFT) [41], which tolerates errors at the application level,

plays a crucial role in error detection and correction in the systems. ABFT techniques in

GPUs were introduced for MM [27], Cholesky [16] and Fast Fourier Transform [73]. Tan et

al. [93] proposed a technique for undervolting CPUs and correcting errors through ABFT

techniques.

In our first study, we introduce an energy efficient and ABFT framework,GreenMM ,

which tolerates system errors due to undervolting. In our proposed framework, we use a

combination of undervolting and ABFT for GPUs to guarantee energy, power, reliability, and

performance efficiency of the system. First, we experimentally determine VsafeMin, which is

the undervolting level beyond which the Operating System crashes for different applications.

The proposed GreenMM framework exploits the voltage slack between Vmin and VsafeMin

using a lightweight offline profiling to accurately predict the needed fault coverage capability

as a function of matrix size, undervolting level and architectural details. We modify the

offline ABFT algorithm by incorporating a number of faults. Online ABFT algorithms have

also been proposed to reduce the overhead for detection and correction of large number

of faults [41]. The basic idea is to decompose the large matrix into several blocks, which

are individually protected through checksums. Unlike the offline algorithm, the overhead is

lower and faults are not propagated to the output. GreenMM framework is developed for

both offline and online algorithms. GreenMM achieves comparable performance (with 1.5%
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performance overhead) to highly optimized cuBLAS-MM in the cuBLAS library, but needs

a lot less energy, which enhances the performance per watt of the GPU.

To summarize, GreenMM has two parts, GPU Undervolting model and Fault

Tolerant MM. In GPU Undervolting model we determine the fault rate, Vmin and VsafeMin

for MM.The undervolting is started from nominal voltage till Vmin, during which no fault is

encountered. However, when we undervolt further from Vmin till VsafeMin, FT-MM corrects

the errors on the fly. GreenMM makes the following contributions:

• We experimentally determine the Vmin and VsafeMin for different applications, includ-

ing matrix multiplication.

• We develop a fault model for GPU undervolting and determine number of faults as a

function of matrix size and degree of undervolting.

• We design a fault tolerant framework, ”GreenMM ”, for matrix multiplication that

provides peak performance on GPUs. We incorporate the number of faults and modify

the original MM to implement offline and online FT-MM algorithms.

• GreenMM is transparent to applications which utilize the matrix multiplications, i.e.

it uses the same programming interface as cuBLAS-MM and GreenMM users do not

need to modify source code of the cuBLAS.

• GreenMM is portable, i.e. it can be used with any GPU architecture just by changing

some architecture specific parameters in the model.

• We present various experimental results in terms of energy, power, performance and

reliability. GreenMM achieves up to 19.5% energy reduction compared to the original

MM. Beside that, it improves the GFLOPS/Watt of the GPU up to 9%.
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1.2 SAOU: Safe Adaptive Overclocking and Undervolting for

Energy-Efficient GPU Computing

Ever-increasing performance demands have led to the GPU-based acceleration in

a wide range of computing systems from mobile devices to super computers. While GPUs

deliver high computational capability, they consume a significant portion of total system

energy. As technology advances towards deep sub-micron level, the static power becomes

a serious problem. Several techniques including Dynamic Voltage and Frequency Scaling

(DVFS) and power gating techniques have improved energy efficiency of the GPUs [26,34,60].

However, DVFS and power gating techniques usually degrade performance due to lowering

the frequency or putting the components into sleep mode.

GPUs are designed to operate in worst case operating conditions in terms of

process, temperature and voltage variation. A comprehensive study has been done on several

commercial GPU cards showing that there exists about 20% voltage guardband on different

GPU cards, which, when utilized, can result in up to 25% energy saving on GPU cards [46].

Through GreenMM framework, we have explored undervolting to save energy for GPUs

for a Matrix Multiplication (MM) algorithm [105]. GreenMM saves the energy through

undervolting beyond the VsafeMin and employing algorithm based fault tolerant (ABFT)

technique to correct the errors [105]. VsafeMin is identified as the minimum voltage for a

GPU to operate without generating any fault. However, ABFT can be applied to only

very regular algorithms, like matrix multiplication [42]. On the other hand, checkpoint

and recovery (CR) is a general technique that can be applied to both regular and irregular

applications. In SAOU, as an example, we have built our framework on top of GreenMM by
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enabling the CR technique. We aim at using the voltage guardband to save energy while

preserving performance. Since the GPU is undervolted at a fixed frequency, it does not

incur any performance degradation.

Overclocking is another technique that reduces the execution time through boosting

the frequency to a higher level. Even though the power consumption increases, the total

energy can be saved due to the reduction in the execution time. However, overclocking

beyond fsafeMax may raise errors due to having less time for charging and discharging

transistors. We experimentally determine the safe values for the maximum safe frequency

for different applications, similar to the undervolting experiments done earlier [46,105].

We develop an undervolting and overclocking model and validate with several

applications. We specifically target cuBLAS Matrix Multiplication (cuBLAS-MM), a key

kernel used in many scientific applications and implement checkpoint and recovery (CR) on

top of cuBLAS-MM.

CR is a general resilience technique that is often used to handle hard errors but

it can also recover soft errors. Several CR mechanisms are developed for CPUs [64, 98].

However, none of them is feasible on NVIDIA GPUs due to the absence of particular runtime

APIs to extract computation state inside the kernel. Considering these limitations, a handful

of GPU CR schemes are developed [35,68,76,90]. CheCuda [90] is built on top of checkpoint

and recovery library called BLCR [35] to store the system state. Since the BLCR does not

support CUDA contexts, before checkpointing, it stores and destroys CUDA contexts, then

runs BLCR to reallocate all destroyed GPU contexts. These extra phases, incur a huge

performance overhead to the system. NVCR is another checkpoint and recovery library
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which is transparent to the applications [68]. CheCL is another checkpoint and recovery

technique that follows CheCuda but it is designed for OpenCL-based applications [88]. All

these checkpoint and recovery techniques reload GPU state and re-launch kernels from the

beginning which incurs huge performance overhead.

We propose application specific incremental CR to preserve the computation state.

Our technique is similar to the in-kernel, in-memory, and incremental CR technique, employed

in [76]. However, we specifically target the cuBLAS-MM library and extend it to handle

faults arising from undervolting and overclocking. Through a detailed fault model based on

our experiments, we determine the locations of checkpoints in the kernel. SAOU preserves

computation states in the GPU device memory to eliminate transfer time between CPU

and GPU. We also adopt an incremental CR that only saves the variables that have been

modified since the last checkpoint. It can improve the performance but requires us to keep

track of the modified variables. Once a failure happens, the preserved computation state

will be loaded and the execution will be resumed from the last checkpoint. Clearly, the cost

of a checkpoint will vary with the amount of states required to be saved and the bandwidth

available to the storage mechanism being used to preserve the state.

This work presents performance and energy consumption using the combination of

overclocking, undervolting and FT algorithm. Through experiments, we show that SAOU

achieves up to 22% energy reduction for a 10K × 10K matrix multiplication. SAOU makes

the following contributions:
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• First, we empirically find fsafeMax and VsafeMin for different applications.

• Next, based on our overclocking and undervolting results, we develop a fault model to

determine the number of checkpoints and their locations in the application.

• We design an incremental in-kernel and in-memory CR technique to overcome any

transient faults during the execution.

• We verify the operation by applying the proposed technique to cu-BLAS-MM library

and executing it on a NVIDIA GTX 980 GPU.

SAOU framework makes the following contributions:

• First, we empirically find fsafeMax and VsafeMin for different applications.

• Next, based on our overclocking and undervolting results, we develop a fault model to

determine the number of checkpoints and their locations in the application.

• We design an incremental in-kernel and in-memory CR technique to overcome any

transient faults during the execution.

• We verify the operation by applying the proposed technique to highly optimized MM

kernel and executing it on a NVIDIA GTX 980 GPU.

1.3 GreenMD: Energy-Efficient Matrix Decomposition on

Heterogeneous Multi-GPU Systems

HPC systems are increasingly using heterogeneous systems, FPGAs and GPUs,

with multicore processors to boost the performance of scientific applications. GPUs, in

particular, have been widely employed for HPC due to their extraordinarily high compute

capability and easy programmability. High performance GPUs, on the other hand, with large
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power consumption [63]. Because existing libraries are mainly concerned with performance,

they do not make efficient use of heterogeneous computing systems, resulting in energy

inefficiency. Hence, improving the energy efficiency of critical applications running on HPC

systems is necessary to deliver better performance at a given power budget.

LU factorization is an algorithm used for solving dense linear algebra problems,

and is widely used in many scientific and engineering applications [55]. It is included in

several popular linear algebra libraries, such as Linear Algebra Package (LAPACK) [6]

and Linpack [72] benchmarks. Existing LU factorization implementations are concerned

primarily with performance, ignoring the potential for energy savings that do not have a

negative impact on performance. When LU factorization is running on heterogeneous system

equipped with GPU, it divides the workload between CPUs and GPUs. CPU handles the

panel factorization, which is sequential in nature. The GPUs update the row panel and

trailing matrix because they involve large computation that is highly parallelized. During the

execution, either the CPU or the GPUs could be on non-critical paths that can experience

idle time, or slack. These slacks can be exploited for energy savings, by exploring the

power-aware techniques such as the Dynamic Voltage and Frequency Scaling (DVFS).

Over the last few years, significant efforts have been made to apply various tech-

niques, such as Dynamic Voltage and Frequency Scaling (DVFS) [32] [61] and undervolt-

ing [105]. DVFS approaches have been employed to save energy during underutilized execu-

tion phases of the execution, called slack, on CPU [53] [5] [81] [80], and GPU [33] [95] [105] [19].

Using algorithmic knowledge, the amount of slack on different components can be estimated

to determine the appropriate level of DVFS so that all the components finish execution
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at the same time. Hence, the main task is to accurately predict the slack during the

execution so that the exact frequency can be computed and DVFS can be enabled. A

prior research on LU factorization utilized the slack using a simple performance model in a

single GPU environment [19]. It profiled the application to determine the execution time of

the first iteration, and then estimated the slack for the next iterations based on the prior

iteration. However, we develop a more accurate performance model based on the amount

of computation extracted from the algorithmic knowledge for heterogeneous systems with

multiple GPUs that does not need profiling phase and performance overhead. Also, we

extend the DVFS technique to multiple GPUs and present both performance and energy

saving results with two GPUs. We derive the execution times of a multicore CPU and

multiple GPUs separately and verify the results through experiment. Then the amount

of slack is determined at every iteration of the LU factorization, frequency is calculated,

and DVFS is enabled at runtime. Our measurement shows that DVFS reduces the energy

consumption by 15%.

DVFS techniques are mainly focused on the dynamic power. Static power can be

reduced only through the voltage reduction, called undervolting. However undervolting below

the threshold value will introduce errors. Manufacturers specify large safety margins in the

nominal frequency-voltage operating points of CPUs, up to 30% [31] [22]. As a result, they

are inherently conservative and not energy efficient [10]. Leng et al. investigate the voltage

guardband of the GPUs and they observe that there is about 20% voltage guardband on

different GPU architectures [47]. There are many efforts to operate hardware at sub-nominal

voltage levels on the CPUs [31] [22] [70] [108] and GPUs [94] [50] [47] [105]. However, most
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of this work focuses on applying undervolting in a conservative way, based on the worst

voltage constraint across all workloads and running frequencies. This limits the potential

gains since some applications can operate at a higher degree of undervolting. Hence, we

empirically extract the minimum safe voltage (VsafeMin) of the underlying CPU/GPUs

for various running frequencies while executing the LU factorization. Using the extracted

VsafeMin for both CPU and GPUs, we apply the undervolting during the execution of the

LU factorization. It is shown that undervolting reduces the energy consumption by 16%

beyond DVFS.

GreenMD propose a framework that improves the energy efficiency of heterogeneous

multi-GPU systems while maintaining the reliability and performance requirement of LU

factorization. GreenMD is built on top of the LU factorization from the highly optimized

linear algebra library MAGMA. First, we develop accurate performance models for CPU,

GPU, and PCIe bus based on the algorithmic knowledge and underlying hardware details

and verify through rigorous experiments. Then we predict the slack, and employ the DVFS

on both the CPU and GPUs during the slack periods to save energy. GreenMD also extracts

and utilizes the maximum level of undervolting at a fixed frequency to improve the energy

efficiency of the system without sacrificing performance. GreenMD is portable, which means

it can be used with any GPU and CPU architecture by simply adjusting a few architecture

specific parameters. In summary, GreenMD makes the following contributions:

• Using algorithmic knowledge and hardware configuration, we develop a more accurate

performance model for both CPU, GPUs, and the PCIe bus to estimate the execution

time of the LU factorization during the different iterations of the execution.
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• We implement DVFS in CPU, single and multiple GPUs based on the accurate

performance models.

• We implement undervolting in CPU, single and multiple GPUs based on the empirical

observations.

• We evaluate the performance, energy saving, and reliability through real implementation

and achieve 31% total energy saving for double precision LU factorization with a matrix

of size 18K*18K.

1.4 Fault Tolerant Matrix Decomposition on Heterogeneous

Multi-GPU System

With scaling down the technology and employing more number of computing cores

in the hardware accelerators, they become more prone to different types of faults and errors.

Hence, with increasing the number of cores, the probability of fault increases and as a result,

it is vital to employ an fault tolerant algorithm for the long running applications. However,

employing the appropriate method of fault tolerance with a reasonable overhead is critical

to recover the application from the error. The general fault tolerant algorithms incur huge

amount of performance overhead. So it is necessary to employ a proper FT algorithm to

reduce the performance penalty.

LU factorization is one of the key kernels in high performance computing and soft

errors or computation errors are the errors we aim to cover during the LU factorization. A

single error in the LU factorization can spread to large sections of the matrix. Thus it is

13



essential to often verify the matrix for correctness to prevent the errors from spreading to

the point where they are no longer recoverable. We have discovered that different matrix

sections demonstrate varying degrees of sensitivity to errors, resulting in certain sections

requiring less frequent verification and some sections more frequent verification. The LU

factorization has been powered by the global matrix checksum to recover from fail-stop

failures [25]. With this approach, just one checksum was used, and it was assumed that

failure details would come from another source. If one of the processes fails to run, the

system can quickly indicate the process’ location. Therefore, the error detection step is

not necessary when a fail-stop failure must be addressed. On the other hand, soft errors

typically leave no sign that an error has happened. An inaccurate computation result may

be the only indication of a soft error.

To tolerate the soft errors, algorithm-based fault tolerance (ABFT) is a known

technique that applies a checksum to a matrix and ensures that the sum will remain accurate

even after performing an operation on the matrix [39]. When the sum is incorrect at the

end of the computation, there has been a mistake. The sum may be used to determine the

correct values or the computation may be repeated, depending on the approach and the

type of error. To detect and correct a single soft error using ABFT, we need to add both

row and column checksum which incurs a performance overhead. For more number of faults,

we need to apply more number of weighted checksum vectors. For instance to tolerate two

errors, we should append two weighted checksum vectors in each dimension of the matrix.

In case of LU factorization, we have developed the idea of a checksum on a matrix

by figuring out how to construct it so that it is correct throughout the entire LU factorization.
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We are able to provide fault tolerance for the right looking LU factorization by utilizing

a local and global checksum. For local checksum, we append the checksum to each block

of input matrix. For global checksum, we construct the additional blocks that consist of

sums of the local blocks in a row. Error detection is done using the local checksum and

error correction is done using either the global checksum or repeating the computation. LU

factorization has three main steps. Panel factorization, row panel update and trailing matrix

update. If any error is detected in the panel factorization, the whole computation will be

repeated. This phase is done on the CPU side due to its sequential nature. If the error

occurs in the row panel update or the trailing matrix update phase, the global checksum

will be used to recover from the error. With this approach, we check the correctness of the

computation in each iteration and if there is any error in the system, the small fraction of

the computation needs to recovered either using the global checksum or repeat the faulty

fraction.

In summary, our proposed fault tolerant LU factorization makes the following

contributions:

• Introducing the local and global checksum for the multi-GPU implementation of right

looking LU factorization.

• Reducing the overhead of the fault tolerant algorithm by reducing the number of

checksum vectors and verifying the correctness of the computation in the middle of

the computation to reduce the performance overhead of the recovery.

• Implementing the local and global checksum in a way that the checksum relationship

is maintained during the execution.
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1.5 Dissertation Organization

The rest of the dissertation is organized as follows: In chapter 2, we describe

GreenMM framework that improves the energy efficiency of GPUs while running highly

optimized matrix multiplication (MM) kernel. Chapter 3 introduces the fault tolerant

SAOU framework which employs undervolting along with overclocking to improve the

energy efficiency of the GPUs. Chapter 4 discusses the GreenMD framework that uses the

slack reclamation technique along with undervolting to improve the energy efficiency of

heterogeneous systems equipped with multiple GPUs. Chapter 5 discusses fault tolerant

LU factorization that uses both local and global checksum in a blocked LU factorization on

heterogeneous systems with multiple GPUs. And finally, Chapter 6 discusses the related

work and chapter 7 concludes this dissertation by giving a summary of our work.
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Chapter 2

GreenMM: Energy Efficient GPU

Matrix Multiplication Through

Undervolting

2.1 GPU Undervolting Model

Microprocessor manufacturers usually append an operating guard-band (a static

voltage margin) as high as 20% of the nominal voltage, to ensure that the microprocessor

functions reliably over varying load and environmental conditions [107]. The guard-bands

also account for errors occurring from the load line, aging effects, noise and calibration

error [78]. The guard-band grows with increase in variations in technology scaling. However,

because we do not encounter these errors every time; significant energy saving can be

achieved by reducing guard-band to a much lower supply voltage [45]. In our work, we
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aim at using the voltage slack between the nominal voltage and the actual OS safe voltage

to save energy while preserving the performance. We use a similar approach as in [46] to

reach VsafeMin, we also build a fault model empirically as a function of the undervolting

level and matrix size. In GreenMM, we go a step further by aggressively undervolting and

correcting subsequent errors using the ABFT. Shrinking microprocessor feature size and

diminishing the noise guard-band increase the transient fault rate. We undervolt till the

safe minimum voltage Vmin without experiencing any faults. Going beyond Vmin, system

may experience soft errors. Although, GreenMM works for all kinds of soft errors, main

focus is specifically on transient and computation errors such as SDCs [46]. SDC occurs

when the program finishes its execution normally without any error message but results in a

wrong output. These errors can be covered at the application level. CUDA run-time errors

such as driver faults or segmentation faults caused by memory management drivers can be

detected by inspecting the standard error output. Operating System crash occurs after a

specific undervolting level (application-dependent), and it is not possible to undervolt the

GPU below the ”OS crash point voltage” or VsafeMin.

2.1.1 Fault Distribution in GPU

In order to determine the number of faults to tolerate, we profile the application.

We perform sensitivity analysis of different applications by reducing the voltage beyond

Vmin and by recording the faults at each voltage. The sensitivity analysis results help us to

reach the minimum voltage at which we can tolerate errors for a given application. First,

we execute an application at nominal voltage and record the output as ”golden output”.

Then, starting from base voltage of 1.075V, the underlying GPU (GTX 980) is undervolted
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Figure 2.1: Error distribution below nominal voltage for different benchmarks
using GTX 980

in step sizes of 10mV. The application is executed 100 times for each level of undervolting

and the corresponding output is compared with the golden output to verify correctness. If

the output does not match with the golden output, then the application has experienced

a failure for that execution. To force the GPU to reduce its voltage at a fixed frequency,

we reduce the target power limit of GPU. Fault distribution of different applications such

as FFTD3D, FFTD2D, Histogram, MergeSort and BlackScholes on NVIDIA GTX 980 are

shown in Figure 2.1. Applications that belong to Rodinia benchmark, are used extensively

for performance evaluation of GPU architectures [11]. X-axis denotes the undervolting level

starting at 1.075V, and Y-axis denotes the fault types along with their frequencies. Each

application experiences different types of errors at different voltages. Some applications such

as FFT2D, and FFTD3D show more number of SDC errors as compared to BlackScholes
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Figure 2.2: Probability of failure for different Rodinia benchmarks and
cuBLAS-MM from cuBLAS library

and MergeSort benchmarks. Since SDC errors can be handled at the application level, we

only focus on SDC errors.

2.1.2 GPU Fault Model

The probability of failure is given by,

Pf =
Number of failures

Number of application runs
(2.1)

Pf is derived by counting number of failures in Figure 2.1. Figure 2.2 shows Pf for

different applications as a function of undervolting. Vmin is the minimum voltage at which

the program executes correctly. (VsafeMin) refers to theoretical lowest safe supply voltage

under which the system can operate without crashing. As shown in Figure 2.2, applications
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have different undervolting levels for Vmin and VsafeMin, which means different amounts of

energy can be saved through undervolting while working with different applications. We

observe a significant voltage guard-band whose margin varies from one application to another.

As shown in Figure 2.2, we have more voltage guard-bands in Matrix Multiplication in when

compared with the guard bands in other applications which means we can save more energy

in case of MM.

Reliability of application R(t) at time t is the probability that there is no failure

in the system until time t. We find R(t) where t is the execution time in equation 3.2.

R (t) = 1− Pf (t) (2.2)

The failure rate is obtained using Weibull lifetime reliability model, a well-accepted

model for transient and permanent soft errors as in equation 3.3 [65]. Since we consider

undervolting at a fixed frequency, the failure rate model is a function of supply voltage [93].

R (t) = e−λt (2.3)

The failure rate calculated for different applications is shown in Figure 2.3, where

X-axis represents the undervolting level and Y-axis represents the failure rate per minute.

The failure rate of applications BlackScholes, FFTD2D, Histogram, FFTD3D, Mergesort

and cuBLAS-MM are obtained experimentally. As shown in Figure 2.3, Vmin for CUDA

applications at a specific level of undervolting are different. In [46], it is observed that

programs have different activity patterns which can lead to different voltage droops. The
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Figure 2.3: Failure rate of different Rodinia benchmarks and cuBLAS-MM from
cuBLAS library

voltage droop is the main reason of GPU voltage noise. So, at a specific voltage, different

intra and inter-kernel activities can lead to different failure rates. It is shown that the voltage

noise, and specifically di
dt droop, has the largest impact on VsafeMin in [46]. Microarchitectural

events, such as cache misses, cause pipeline stalls and large di
dt droops lead to different guard-

bands and VsafeMin. Because cuBLAS-MM is highly optimized, and all GPU components

are active most of the time, there is no large di
dt droop which could lead to lower voltage

noise margin and larger guard-band.

2.2 GreenMM: Energy Saving Methodology

GreenMM introduces an adaptive FT-cuBLAS-MM algorithm; which aggressively

saves energy and power on GPUs through undervolting with a negligible performance over-
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head. GreenMM works with NVIDIA GPUs irrespective of the underlying GPU architecture.

Figure 2.4 shows the overview of GreenMM. GreenMM finds the maximum level of under-

volting for the underlying GPU and configures the adaptive FT-cuBLAS-MM to tolerate

the potential faults with regards to the failure rate of the underlying GPU at the maximum

level of undervolting. To find the failure rate of cuBLAS-MM, GreenMM reduces the voltage

of GPU progressively up to VsafeMin and according to the fault model which is described in

Section 2.1 find the failure rate of the GPU at each undervolting level. Then, based on the

failure rate and execution time of given matrix, estimates the number of faults. Since these

phases should be done before MM computation, execution time of MM is not determined.

So, GreenMM uses an estimation model to predict the execution time of any arbitrary size.

With multiplying the estimate execution time and failure rate of the GPU, the number of

faults is determined and now we can configure the FT-cuBLAS-MM. It uses NVML library

commands to reduce voltage of the GPU by changing the GPU target power limit and

voltage offset.

2.2.1 Offline Profiling

GreenMM finds the optimum working voltage of the GPU for cuBLAS-MM, going

beyond the Vmin and correcting the potential errors. Incorporating fault tolerance mechanism

increases the execution time, which in turn increases the energy consumption. GreenMM,

carefully calibrates the level of undervolting so that the energy saving is more than the

energy overhead. Optimum working voltage is found through an offline profiling phase which

is done only once for each GPU. Offline profiling creates the failure rate model and MM
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Figure 2.4: GreenMM overview

execution time estimation model to estimate the number of faults for any MM sizes with

regards to the underlying GPU. The offline profiling phase which is shown in Figure 2.5 is

split into two parts:

Phase 1: Determine The Maximum Undervolting Level (VsafeMin) And Fault

Rate (λ)

We execute matrices of small sizes on the GPU to minimize the profiling time and

obtain maximum undervolting level (VsafeMin) and fault rate (λ), as described in Section

2.1.

In GreenMM, the offline profiling phase takes into account the aging effect. Also,

the effects due to process variation and temperature were explored on various applications

on different GPU cards in [46]. They concluded that process variation and temperature have

a relatively uniform impact on VsafeMin across all applications in a given GPU card; and the
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Figure 2.5: Overview of offline profiling

effect of aging is negligible (1-2 % in the long term). Moreover, The effect of temperature

rise is already included in the number of faults, as plotted in Figures 2.1 and 2.9, because our

fault model already considers the increase in temperature during long executions. However,

we performed additional experiments to measure temperature while undervolting. Due to

limited resources, we run MM in a loop to have enough time to observe the temperature

changes. The variation in temperature of the GPU over time with and without undervolting
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is shown in Figure 2.6. It is observed that, after running kernel continuously, the temperature

of GPU remains the same after a period of time and there is only about 11 ◦C variation in

the temperature in presence of maximum level of undervolting. Ref. [46] shows that VsafeMin

at 70 ◦C is about 20mV higher than the values at 40 ◦C for various GPU cards. Temperature

variation in GreenMM is about 11 ◦C which is not big enough to make a sensible change on

VsafeMin.

Phase 2: Estimate Number Of Faults Based On Matrix Size And Fault Rate (λ)

The number of faults in an application can be obtained by multiplying λ with the

execution time, as shown in equation 3.5. Failure rate remains same irrespective of the input

data size for a given application as in equation 3.3. Hence, we estimate the execution time

of MM for a given matrix size on a specific GPU through a simple profiling.

T = ax3 + b (2.4)

Figure 2.6: Temperature variation over time without and with maximum level
of undervolting
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Figure 2.7: Execution time estimation model vs. the real execution time

F = λ ∗ T (2.5)

Due to different compute resources like SM, register file size, cache sizes and shared

memory size, execution time of the MM for a given size could be vary in different GPUs. Due

to memory constraints, the GPU cannot handle matrix multiplication of any arbitrary size.

The time complexity of cuBLAS-MM as a function of matrix size is provided in equation 3.4,

where a and b are architecture-specific constants [86] [77]. We run MM for different sizes to

calculate the values of a and b for the underlying GPU. Figure 2.7 shows the experimental

execution time (blue) and the execution time calculated theoretically from equation 3.4.

Moreover, the red line shows sample points that were used to derive values of a and b which

can be used for prediction of execution time for larger matrices, shown as green dashed line.

Then, we compare the estimated execution time with the real experimental results for bigger

matrices. As the results show, the estimation error is negligible.
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Figure 2.8: Number of faults according to the undervolting level for matrices
with size of 10K on NVIDIA GTX 980

Due to memory constraints on NVIDIA GTX 980, we use matrix of size 10K for

GreenMM. The VsafeMin is 86.05% of nominal voltage (undervolting level is 13.95%); the

number of faults is 1.2 as shown in Figure 2.8. Hence, FT-cuBLAS-MM should tolerate at

least 2 faults with the input size of 10K * 10K. If GPU memory supports matrices bigger

than 10K * 10K, they may experience more number of faults.

As the size of the matrix increases, the execution time as well as the number of

faults also increase as shown in Figure 2.9. The matrix size varies between 10K and 100K as

the undervolting level is changed from 0% to 13.95% in Y-axis; Z-axis shows the number of

faults. For a given undervolting level, the number of faults for large matrix sizes is more

than the number of faults in small matrices.. In the following, we propose an adaptive FT

algorithm than can be configured to handle different number of faults.
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2.2.2 Offline FT-cuBLAS-MM

The ABFT for Matrix Multiplication has a very low performance overhead when

compared with other techniques [8]. The basic idea of ABFT is to encode input matrices with

checksums to detect and correct the corrupted data. The traditional ABFT introduced by

Huang et al. [41] is capable of correcting one fault by checking correctness at the very end of

computation. In our work, we introduce an enhanced offline version, FT-cuBLAS-MM, which

is capable of tolerating any arbitrary number of faults by increasing the number of weighted

check-sum vectors. Algorithm 7 describes the pseudo-code for the offline FT-cuBLAS-MM.

Generating the weights of the checksum vectors, encoding the column checksums,

and the row checksum are done according to algorithms into the matrix is done according

algorithms 2, 3 and 4 respectively. The result of Cf = Ac ∗Br is a full checksum matrix. At

the end of computation, we check full checksum relationship again and if the relationship
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Algorithm 1 The pseudo-code for Detection Phase

1: Generate checksum weights vectors v1 and v2
2: Encode A −→ Ac

3: Encode B −→ Br

4: Cf = Ac ×Br

5: Recompute the checksum for Cf

6: Verify full checksum relationship of Cf

does not hold, then our result is faulty; thereafter, faults are detected and corrected using

equation 2.6.

Cij = Σn
j=1c

f
ij − Σn

k=1,k ̸=jc
f
ik (2.6)

2.2.3 Online FT-cuBLAS-MM

Offline FT-cuBLAS-MM only checks correctness of results at the end of computa-

tion. We design an online version of FT-cuBLAS-MM to check correctness of MM during

computation, so that we can prevent faults to be propagated. We introduce an Online

FT-cuBLAS-MM that can handle different number of faults. Fault coverage capability of

FT-cuBLAS-MM is determined before starting the MM computation. However, the key

problem here is that we must use MM algorithm such that it maintains the checksum

Algorithm 2 Generating weighted checksum vectors for each block

1: for i = 0, 1, ..., nb do
2: v1 [i] = 1
3: end for
4: for i = 0, 1, ..., nb do
5: v2 [i] = 1 + i
6: end for
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relationship even in the middle of the computation. In [20], it is proved that outer product

Matrix Multiplication maintains checksum relationship in each iteration of computation.

For a matrix with size of N, we have at most N opportunities to tolerate faults during the

entire MM computation. The fault detection phase, which is always active, increases the

performance overhead. So, to achieve high performance, we can invoke the FT-cuBLAS-MM

routine once in every several iterations. There is a trade-off between the number of iterations

and overhead of online FT-cuBLAS-MM. The number of iterations to invoke FT-cuBLAS-

MM is closely related to the number of faults that may happen during the computation. If

the failure rate of system increases, then we should check more frequently, otherwise, there

is no need to employ an algorithm with higher fault coverage capability. The algorithm to

perform MM has several steps. The detailed steps of the algorithm are shown in algorithm

5.

During each iteration, we update checksum of the result matrix to maintain full checksum

relationship. Then, we compute sum of each row and column in the result matrix and

compare it with the row and column checksum. If the check is passed we move to the next

iteration, otherwise, if any checksum does not match, we locate the exact position of error

through comparing the checksums. To correct the error (Cij), we simply add the difference

of jth checksum column and the sum of jth column to the result matrix element at location

(i, j). GreenMM corrects two errors at the same time regardless of the error patterns. Also,

it corrects any number of errors which may happen in the same row or column.
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Algorithm 3 Column checksum update for A(m * k)

1: for j = 0, 1, ..., k − 1 do
2: for i = 0, 1, ...,m− 1 do
3: ColChkv1 [j] = Σm−1

i=0 V1 [i] ∗A [i] [j]
4: ColChkv2 [j] = Σm−1

i=0 V2 [i] ∗A [i] [j]
5: end for
6: end for

As shown in algorithm 5, online FT-cuBLAS-MM algorithm consists of following

steps:

1. Move input matrices to the GPU using cudaMemCpy API.

2. Generate checksum weights vectors in the CPU and move them to the GPU. The

weights are generated according to algorithm 2. Due to frequent accesses to weights

vector in GPU, to get peak performance, pitched device memory is allocated using

cudaMallocPitch API that allocates linear memory space for better efficiency in terms

of performance and power.

3. Divide input matrices into blocks given the number of faults and do MM without

checksums.

4. Invoke cuBLAS-MM to update column checksum for each block according to algorithm

3.

Algorithm 4 Row checksum update for B(k * n)

1: for i = 0, 1, ..., k − 1 do
2: for j = 0, 1, ..., n− 1 do
3: RowChkv1 [i] =

∑n−1
j=0 V 1 [j] ∗B [i] [j]

4: RowChkv2 [i] =
∑n−1

j=0 V 2 [j] ∗B [i] [j]
5: end for
6: end for
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Algorithm 5 Pseudo-code for online FT-cuBLAS-MM

1: Initialization
NB = N (Matrix Size)/ B (Block Size)

2: for i = 1, ..., NB do
3: AB, BB −→ GPU
4: Update CB −→ cuBLAS-MM(AB, BB, CB )
5: Update AB

c −→ cuBLAS-MM(AB, ColChkv, A
c
B )

6: Update Cc
B −→ cuBLAS-MM(Ac

B, BB, C
c
B )

7: Update Br
B −→ cuBLAS-MM(BB, RowChkv, B

r
B )

8: Update Cr
B −→ cuBLAS-MM(AB, B

r
B, C

r
B )

9: Recalculate −→ CB ColChk2
10: while CB ColChk1 ̸= CB ColChk2 do
11: Do Correction
12: end while
13: Recalculate −→ CB RowChk2
14: while CB RowChk1 ̸= CB RowChk2 do
15: Do Correction
16: end while
17: Update C
18: end for
19: C −→ CPU

5. Invoke cuBLAS-MM to update C

6. Invoke cuBLAS-MM to update row checksum of B given the equations described in

algorithm 4.

7. Update row checksum of C by invoking cuBLAS-MM

8. Recalculate column and row checksums of C by invoking a simple kernel which adds

elements of the result matrix.

9. Compare recalculated checksums and old checksums to locate the potential error. Any

potential errors can be located by comparing the column and the row checksums. Since

computers do floating point calculations in finite precision, the checksum relationship

can not hold exactly due to round-off errors. So, we need a threshold to distinguish
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between round-off errors and computation errors. Too large thresholds may hide the

computation errors, while, too small thresholds may interrupt correct computation. In

comparison phase, according to [99], e−10 has been chosen as a conservative threshold

to distinguish between round-off and computation errors.

10. Correct any potential errors according to equation 2.6

2.3 Evaluation

2.3.1 Experimental Setup

All experiments are performed on NVIDIA GTX 980, the architectural specifications

can be found in Table 2.2. Given the limited memory size of the GPU, we were able to

evaluate the results for up to a matrix size of 10K. We reduced nominal voltage of the GPU

in step sizes of 10 - 12mV until the VOSCrashpoint using the MSI After Burner [46]. By

decreasing the target power limit of the GPU, we can enforce specific operating voltage.

We use NVIDIA System Management Interface (Nvidia-smi), a widely used command line

utility on top of NVIDIA Management Library (NVML), to measure power consumption of

the GPU at 10ms intervals. Some important commands on power management in NVIDIA

GPUs are shown in Table 2.1. The execution times of cuBLAS-MM and FT-cuBLAS-MM

are shown in Figure 2.10. The overhead of fault tolerance is large for small matrices, however,

the overhead decreases with increase in the matrix size. For small matrices, there is 8%

performance overhead, while in case of bigger matrices (10K), performance overhead of

FT-cuBLAS-MM comes down to 1.5%.
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There is no need for fault tolerance till Vmin as the probability of error occurrence

is zero. The detection phase is activated when undervolting beyond Vmin to detect potential

errors, however, the correction phase is activated only if an error is detected in the detection

phase. The detection phase accounts for majority of the overhead in the FT-cuBLAS-MM.

For instance, when the matrix size is 10K, the detection phase takes 139ms while the

correction phase takes only 0.24ms, which means the number of faults to be corrected

has low impact on the performance. In case of 10K matrix size, the maximum number of

faults we need to tolerate is 1.2 as shown in Figure 2.8; which can be handled by offline

FT-cuBLAS-MM. Offline FT-cuBLAS-MM is a special case of online FT-cuBLAS-MM when

the number of faults is less than or equal to 2. Here, the block size is the same as the matrix

size.

2.3.2 Performance and Energy Saving Evaluation of FT-cuBLAS-MM

When the matrix size increases, the failure rate remains the same. However, the

number of errors increases. To evaluate the overhead of FT-cuBLAS-MM, faults are injected

directly into partial sum results at random locations and in random iterations according

to fault model described in Section 2.1. Fault injection in a controlled manner emulates

the impact of hardware transient faults on MM computation. We observed errors in the

Table 2.1: Power management commands using the NVML library

Command Description

nvmlDeviceGetPowerUsage Retrieves power usage for the GPU and its associated circuitry in milliwatts
nvmlDeviceSetPersistenceMode Enables persistent mode to prevent driver from unloading

nvmlDeviceSetPowerManagementLimit Sets new power limit for the device
nvmlDeviceSetApplicationsClocks Sets clocks that applications will lock to

Accuracy Power Measurement Accuracy & Reading is accurate to within +/- 5% of the current power draw
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Figure 2.10: Performance overhead of matrix multiplication for different matrix
sizes in presence of two errors

output, however, they were detected and corrected by the offline or online FT-cuBLAS-MM

depending on the size of matrix and the number of faults.

FT-cuBLAS-MM as described in Section 2.2, improves the reliability of computation

and tolerates any arbitrary number of faults. This is because, we check correctness of the

partial results in each iteration. There is a trade-off between reliability of computation,

energy consumption and performance overhead. We measure the performance (GFLOPS)

of the cuBLAS-MM and FT-cuBLAS-MM on NVIDIA GTX 980 in the presence of different

number of faults for a 10K matrix. Since the actual number of faults at VsafeMin (i.e. 13.95%)

undervolting level is 1.2, we evaluate the performance overhead by manually injecting faults

Table 2.2: NVIDIA GTX 980 specifications

Processor
2048 CUDA-core NVIDIA
Maxwell GeForce GTX 980

Peak Perf. 4.6 TFLOPs
Memory 4 GB GDDR5

Base Clock 1126 MHz
Boost Clock 1216 MHz

Memory Clock 7 GHz
Default Voltage 1.075 V
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into 10K matrix. Increase in the number of faults results in increased performance overhead,

as shown in Figure 2.11. The performance is 165 GFLOPS in presence of 2 errors and

162 GFLOPS in presence of 16 faults. On average, the performance overhead for different

number of faults is 1.5%.

The energy consumption of the GPU is calculated by multiplying power (at each

undervolting level) with the execution time of MM. Figure 2.12 shows the energy saving

in FT-cuBLAS-MM versus the original cuBLAS-MM in presence of different undervolting

levels and number of faults. Since no fault occurs till Vmin, fault detection phase is disabled.

The fault detection and correction phases are activated when we undervolt from

Vmin till VsafeMin. The X-axis denotes the undervolting level and the corresponding number

of faults. Figure 2.12 (a) shows the energy saving at different undervolting levels for matrix

size of 10K with and without fault tolerance. Undervolting level at Vmin for the original

cuBLAS-MM is 10.23% without any faults. Undervolting beyond Vmin results in faults; and

the maximum number of faults is 1.2 at undervolting level of 13.95% as shown in Figure

2.8. So, offline FT-cuBLAS-MM is used to correct the faults. For a matrix of size 10K,

Figure 2.11: Performance evaluation of the FT-cuBLAS-MM
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Original cuBLAS-MM

Offline FT-cuBLAS-MM

Original cuBLAS-MM

Offline FT-cuBLAS-MM

Online FT-cuBLAS-MM

Figure 2.12: Energy saving in the FT-cuBLAS-MM versus the original
cuBLAS-MM given different undervolting levels and number of faults

the cuBLAS-MM can save energy up to 14% just by undervolting and without any fault

tolerance, but with GreenMM the energy saving is increased up to 19.8% due to undervolting

beyond Vmin.

Figure 2.12 (b) shows the energy saving at different undervolting levels for matrix

size 40K with and without fault tolerance. Undervolting beyond Vmin, results in faults; and

the maximum number of faults is 10.2 at undervolting level 13.95%. Offline FT-cuBLAS-MM

with two weighted-check sum vectors can not cover those number of faults. Hence, we

activate the Online FT-cuBLAS-MM to tolerate the faults. Although, going beyond Vmin

results in more number of faults, we can still save 4% additional energy by activating the

FT-cuBLAS-MM. For a matrix of size 40K, when there are no faults, the cuBLAS-MM

saves energy up to 14% with undervolting, but when using undervolting in combination with

FT-cuBLAS-MM the energy saving increases to 18%.
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2.3.3 Performance/Watt and Total Energy Consumption Evaluation

cu-BLAS-MM is not open source; so, the number of operations cannot be calculated

accurately; however, the number of floating point operations that take place when multiplying

2 matrices can be estimated according to equation 2.7.

Nfp = 2n3 − n2 (2.7)

With assuming the same amount of operations in both cases (with and without ABFT),

and measuring the extra execution time which is needed for ABFT part, we can have a fair

comparison.

As shown in Figure 2.13, despite the performance overhead of ABFT, GreenMM has

higher performance per watt (GFLOPS/Watt) in comparison to the original cuBLAS-MM.

This is because, we can save significant power by just undervolting the GPU. Figure 2.13

shows GFLOPS/Watt of the GPU. X-axis shows the number of faults and the Y-axis shows

GFLOPS/Watt improvement ratio when compared with the performance of the original

Figure 2.13: Comparing performance in GPU with default voltage versus
undervolted GPU in presence of different number of faults.
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cuBLAS-MM without undervolting. When there are two faults, at 13.95% undervolting

level, GreenMM improves GFLOPS/Watt of the GPU by 9%. When the number of faults

increases to 16, there will be 7% improvement in GFLOPS/Watt over the original cuBLAS-

MM without undervolting. MM heavy applications such HPL and ScaLAPACK involves a

time-consuming task to deal with MM computation. Trailing matrix updates consumes more

than 90% of the computation cost in HPL [97]. GreenMM can be employed to compute this

phase. Since GreenMM is transparent to the users, it can be integrated into HPL and other

MM heavy applications supporting GPUs.
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Chapter 3

SAOU: Safe Adaptive Overclocking

and Undervolting for

Energy-Efficient GPU Computing

3.1 Fault Model

As clock frequency of the system is pushed beyond the maximum clock frequency,

system may experience errors due to timing faults. It is because with increasing the clock

frequency, a circuit node may not have enough time to fully charge and discharge the load

capacitance. Therefore, increasing frequency leads to higher probability of logic failure [62].

In this section, we develop a realistic model for error probability in different applications at

a given frequency.
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Figure 3.1: Fault distribution w.r.t. overclocking

The probability of failure is given by,

Pf =
Number of failures

Number of application runs
(3.1)

We define fmax, as the maximum nominal frequency of the GPU at which the

program executes correctly and fsafeMax as the theoretical highest safe frequency under

which the system can operate without crashing. Reliability of application R(t) is the

probability that there is no failure in the system during the execution time t.

R (t) = 1− Pf (t) (3.2)
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The failure rate is obtained using Weibull lifetime reliability model, a well-accepted

model for transient and permanent soft errors as in equation 3.3 [65].

R (t) = e−λt (3.3)

Hence, we calculate the λ according to execution time t and R(t), which are

measured through the profiling phase. λ gives the number of errors per minute, which will

be used to determine the number of sufficient checkpoints at a given frequency.

We executed applications from Rodinia benchmark [11] and cuBLAS library are

executed on Nvidia GTX 980 GPU at different frequencies. We increase the frequency

starting from 1404 MHz, which is the default maximum frequency of the Nvidia GTX 980

GPU. At each frequency, using the MSI After Burner, we keep the frequency constant

during the execution time. The frequency is increased in steps of 25 MHz. To estimate

the failure rate, we run each application 100 times at each level of overclocking, and the

corresponding output is compared with the golden output which is extracted by running the

application at default frequency. If the output does not match with the golden output, then

the application has experienced a failure during the execution. The failure rate calculated for

for applications is shown in Figure 3.2, where X-axis represents overclocking level and Y-axis

represents failure rate per minute. Applications have different failure rates due to different

activity patterns they experience during the execution time. different activity patterns which

can lead to different voltage droops. The voltage droop is the main reason of GPU voltage

noise. So, at a specific voltage, different intra and inter-kernel activities can lead to different

failure rates. It is observed that the voltage noise, and specifically di
dt droop, has the largest

43



impact on VsafeMin. Microarchitectural events, such as cache misses, cause pipeline stalls

and large di
dt droops lead to different guard-bands and VsafeMin. Because cuBLAS-MM is

highly optimized, and all GPU components are active most of the time, there is no large di
dt

droop which could lead to lower voltage noise margin and larger guard-band [46].

Applications have different failure rates due to different activity patterns they

experience during the execution time [46]. It is observed that increasing the frequency or

lowering the voltage results in less timing margin and higher error probability [46]. At a

given frequency, the applications have different failures due to micro-architectural events

such as cache misses, cause pipeline stalls which can cause voltage noise or timing errors.

Because cuBLAS-MM is highly optimized, and all GPU components are active most of the

time, so there is no large di/dt droop which could lead to lower voltage noise and as a result

timing error.

To find sensitivity of overclocking, we also record error distribution of different

applications during the overclocking. Silent data corruption (SDC), CUDA run-time er-

rors and OS crash are among notable types of errors that system may experience during

overclocking. SDC refers to when program finishes its execution normally without any

error messages, however, producing a wrong result. In profiling phase, errors can simply be

detected by comparing results against the golden output. CUDA run-time errors including

segmentation faults and driver faults are detected through standard error output. OS crash

happens when undervolting level is beyond the VsafeMin. Since, SDC errors can be covered

through fault-tolerant algorithm, we only focus on SDC errors and we do not go for the

frequencies which can cause errors other than SDCs. Figure 3.1 shows behavior of different
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Figure 3.2: Failure rate of different Rodinia benchmarks and cuBLAS-MM from
cuBLAS library w.r.t overclocking

applications including cuBLAS-MM, FFTD2D, BlackScholes, and Histogram in regard to

overclocking. X-axis denotes frequency and Y-axis denotes fault types. As shown in Figure

3.1, due to different activity patterns which explained earlier, we observe different SDC rates.

For instance, cuBLAS-MM, and FFT2D have larger SDC rate compared to Histogram and

BlackScholes.

The failure rate of different applications due to undervolting are measured similar

to the approach used in [105]. As shown in Figure 3.3, failure rate of application increases

exponentially. This means, even, if all types of errors are in SDC form, which can be

covered through a FT algorithm, we should checkpoint more frequently which incurs a huge

performance overhead. So there is no need to reduce voltage if number of checkpoints is

going to be high. In MM application, according to fault distribution and failure rate model,

we only checkpoint at the end of each thread and we are able to correct the potential errors

due to undervolting. Our resilience technique which is used to cover the potential errors, is
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Figure 3.3: Failure rate w.r.t undervolting

discussed in section 3.2.

Our aim is to carefully calibrate the level of undervolting and overclocking so that

the energy saving is more than the energy overhead. Voltage and frequency are estimated

through an offline profiling phase which is done only once for each GPU. The offline profiling

phase is split into two phases:

Phase 1: Extracting The Overclocking And Undervolting Level And Error Rate

(λ)

We execute matrices of small sizes on the GPU to minimize the profiling time

and obtain maximum tolerable overclocking and undervolting level, and fault rate (λ) as

described in Section 3.1.
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Figure 3.4: Number of faults in regard to overclocking and undervolting for
matrix with size of 10K

Phase 2: Estimate The Number Of Faults

The number of faults in an application can be obtained by multiplying λ with the

execution time, as shown in equation 3.5. Failure rate remains same irrespective of the input

data size for a given application as in equation 3.3. Hence, we estimate the execution time

of MM for a given matrix size on a specific GPU through a simple profiling.

T = α ∗ (ax3 + b) (3.4)

F = λ ∗ T (3.5)
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Due to different compute resources like SM, register file size, cache sizes and shared

memory size, execution time of the MM for a given size could vary in different GPUs. Due

to memory constraints, the GPU cannot handle matrix multiplication of any arbitrary size.

The time complexity of cuBLAS-MM as a function of matrix size is provided in equation

3.4, where a and b are architecture-specific constants [86] [77]. After finding these constant

values we can estimate the execution time of the given matrix. Multiplying the failure rate

and estimated execution time provides the number of faults. We find the number of faults

for different pairs of frequency and voltage as shown in Figure 3.4 for matrix multiplication

with input size of 10K. X-axis, Y-axis, and Z-axis shows undervolting level (%), frequency

(MHz) and number of faults respectively. For matrix of size 10K, on average, we observe

1.45 faults during the execution.

3.2 Checkpoint and Recovery

A checkpoint is a snapshot of a system state, including stack, heap, global and

register values. It also keeps the copy of the contents of application process address space.

In CPU domain, several checkpoint and recovery (CR) techniques have been developed at

different levels including kernel, library, and application level. It is not feasible to extract

the mentioned information in kernel and library level. This is because, GPU is handled by

driver rather than the operating system and there is no available API to access the required

information during the execution. As a result, in a faulty case, it is not possible to reload

threads computing state inside the kernel and resume the execution. Therefore, checkpoint

and recovery techniques usually relaunch kernel from the beginning [35] [90] [68]. We can
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overcome this by modifying the application code to keep track of the necessary information.

Hence, we introduce a technique that is able to recover only the corrupted information.

We adopt an incremental checkpointing [76] which preserves only the data that

has changed since the last checkpoint. In matrix multiplication, we only checkpoint partial

results which are updated during execution. Each thread block (TB) is responsible for a

chunk of matrix. Depending on the size of input matrix and TB size, input matrices are

divided into several TBs, all of which, might not be accommodated on the GPU at a time.

In GTX 980 GPU, the maximum number of threads is 1024 per TB and 16 SMs which

can execute 16 TBs. If we decrease number of threads within the thread block, we can

accommodate more number of TBs in GPU at a time. Due to constraints on GPU resources

(16 SMs, and 128 CUDA cores/MP), we can have limited number of TBs at a time. After

executing each TB, GPU replaces the TB with other TBs in the queue. However, as shown

in Algorithm 6, before replacing the executed TB, we check the correctness of the partial

results within the TB. If no error is detected, we checkpoint the partial results of the current

TB. To reduce the performance penalty, we start with storing them in private memory space

which is local to each thread. If there is not enough space in private memory, data will be

pushed back into global memory. In case of matrix multiplication, according to failure rate

model, it is sufficient to only checkpoint at the end of each TB. But for bigger matrices,

due to higher probability of faults, we might need to checkpoint more frequently. Proposed

checkpoint and recovery technique incurs very small overhead on the energy and performance

in comparison with the baseline. When TB size is 1024 threads, energy and performance

overheads are 0.5% and 0.4% respectively.
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Algorithm 6 High level pseudo-code for execution process of CR-enabled matrix multipli-
cation

1: Initialize()
2: cudaMalloc(&dA, size A);
3: cudaMalloc(&dB, size B);
4: cudaMalloc(&dC , size C);
5: cudaMemcpy(dA, hA, size A, hostToDevice);
6: cudaMemcpy(dB, hB, size B, hostToDevice);
7: Invoke MM-Kernel();
8: syncthreads();
9: if (results!=correct) then

10: restore();
11: else
12: checkpoint();
13: end if
14: Go to 7

3.2.1 Implementation Details

The state of GPU application can be represented by variables declared in the

program. However due to the complex memory hierarchy of the GPU, those variables are

spread in different memory locations: register, local memory, shared memory and global

memory.

As shown in algorithm 6, to ensure an appropriate in-kernel checkpoint and recovery,

all threads synchronize before checkpoint and during recovery. Due to memory inconsistency,

it is not guaranteed that all threads finish at the same time. In other words, it is mandatory

for all threads to participate in checkpointing. As an example, when thread X is checkpointing,

thread Y can update a shared variable between them. CUDA supports synchronization

between threads within a TB with a built-in instruction called ”syncthreads()”.

The same problem exists if we extend this to threads of different TBs which share

a global variable. Due to lack of any built-in synchronization mechanism between different

50



TBs, similar problem might occur [1]. To solve synchronization problem between TBs, we

propose an algorithm which synchronizes TBs before checkpointing. As shown in Figure

3.5, we define array of global variables which can be accessed by all TBs. The array length

depends on the number of TBs that can run at a time on GPU. Before checkpoint module,

we use instruction ”synchthreads()” to synchronize the threads within the TB and make sure

all of them are finished. Once, all threads within the TB are completely executed, we set

the global variable corresponding to the TB to ”1”. Now, to solve the memory inconsistency

between different TBs, we ensure all TB flags are set to ”1”. Therefore, threads within

different TBs will not modify the shared global value anymore.

Checkpoint and recovery is embedded into the code through a pre-compiling phase

at compile time. Since the GPU drivers are closed source, the modifications are done at the

application level. During pre-compiling phase, we transform application source code into

a format where run-time support calls are inserted for constructing computation state. In

pre-compiling phase, we follow the below tasks:

1) Buffer allocation: Create buffers to hold GPU state in device memory.

2) Insert checkpoint location

3) Synchronize GPU threads before checkpointing

TB0 Flag TB1 Flag TB Max Flag

          0                        1                                 ...                                                        TB Index

Figure 3.5: Thread block level synchronization using array of global variables
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Figure 3.6: Energy saving ratio in regard to overclocking in presence of CR
algorithm

4) Copy variables from GPU local, shared and global memory to allocated buffers which can

be register, private memory or device global memory.

At run-time, as shown in algorithm 6, when the execution stream reaches a

checkpoint, it synchronizes threads in all TBs and checks for faults. If at least one thread

detects an error, the entire block goes to restoration phase. Otherwise, it goes to checkpointing

phase. In restoration phase, all threads within corrupted block jump to previous checkpoint

label. Then, each thread, copies threads private information from its backup to its original

location. The shared memory is also reloaded from its backup located in device memory.

In case of matrix multiplication, due to different performance penalties, registers, private

memory, and device global memory are in priority for storing the partial results. If there

is not enough registers and private memory, we save the computation states into device

global memory. During the checkpoint and recovery, we need to check for the correctness

of the computation. Similar to approach used in GreenMM [105], we use checksum data

52



Figure 3.7: Energy saving ratio in regard to undervolting in presence of CR
algorithm

redundancy for detection phase [41]. To compute C=A*B. Algorithm 7 describes pseudo-

code for detection phase. Ac and Br are encoded input matrices and Cf is a full checksum

matrix [20]. At the end of each iteration right before checkpoint location, we recompute

checksum again. If checksum relationship does not hold up, the computation is faulty and

recovery phase will be invoked.

Algorithm 7 The pseudo-code for error detection phase

1: Initialize(Ac and Br)
2: Cf = Ac× Br

3: Recompute Cf from C
4: if (Cf doesn’t maintain checksum relationship) then
5: error detected();
6: else
7: no error detected();
8: end if
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3.3 Evaluation

3.3.1 Experimental Setup

All experiments were performed on NVIDIA GeForce GTX 980 GPU. For matrix

multiplication application, matrix with size of 10K was considered due to memory constraints

(4 GB RAM). The GPU overclocking and undervoling was done using MSI After-Burner [2].

For undervolting, the power budget was reduced to enforce the GPU to operate at a specific

voltage. For overclocking, the memory frequency was set to its default value and only the

core clock frequency was modified. NVIDIA System Management Interface (Nvidia-smi) was

used to monitor GPU utilization and report power consumption of every 10ms. We evaluate

the energy savings of MM due to overclocking only, undervolting only and combination of

overclocking and undervolting considering the power consumption and execution time.

We used matrix multiplication application (cuBLAS-MM) as it is a key sub-routine

for many scientific applications like HPL and ScaLAPACK [97] [7]. For instance, MM

constitutes of more than 90% of the computation cost in HPL [97]. Our proposed method

can easily be integrated into these applications to save considerable amount of energy.

Similar approach can be used while implementing checkpoint and recovery (CR) for different

applications in order to save energy due to fusion of overclocking and undervolting.

3.3.2 Results

Figure 3.6 shows percentage of energy reduction in a matrix size of 10K, compared

to the original execution of without overclocking or CR. As shown in Figure 3.6, at default

frequency, there is negligible energy overhead of about 0.5%. However, as we continue
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Figure 3.8: Energy reduction for given frequencies and voltages

overclocking, 5.3% energy reduction can be achieved in comparison with the baseline. As

shown in the Figure 3.7, for the same matrix, SAOU saves energy up to 12.74% just by

undervolting till Vmin . There is no error in the system till Vmin as per Fig. 3.3. However,

SAOU can save up to 20% with going beyond Vmin and correcting possible errors with

checkpoint and recovery technique. Performance Overhead is mostly incurred by detection

phase. According to experimental results, for a matrix of size 10K, the error detection time

is 1.15% of the total execution time.

We also evaluated the energy consumption of combined undervolting and overclock-

ing. Figure 3.8 shows the energy consumption of combined undervolting and overclocking.

X-axis and Y-axis denote frequency (MHz) and undervolting level respectively. With com-

bined overclocking and undervolting, we are able to save about 22% in comparison the

original system.
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Chapter 4

GreenMD: Energy-Efficient Matrix

Decomposition on Heterogeneous

Multi-GPU Systems

4.1 Background And Motivation

4.1.1 LU Factorization Overview

Figure 4.1 demonstrates an overview of the LU factorization algorithm. The left

side, shows the LU factorization at iteration k, while the right side shows the LU factorization

at iteration k+1. In a matrix of size n*n, during iteration k, a set of k ∗ n/b columns (the

panel shown in yellow) is factored on the CPU, where b is the block size and n is the row

width. The remaining part of the matrix is then subjected to the elementary transformations

that result from the panel factorization. This phase is called trailing matrix update. The
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updating of the trailing matrix requires kernels ’row swap’ (DLASWP), ’triangular solve’

(DTRSM), and ’matrix multiplication’ (DGEMM). In other words, updating the trailing

sub involves swapping up k ∗ (n/b) rows of the trailing sub-matrix (DLASWP), applying a

triangular solver to the top k ∗ n/b rows of the trailing sub-matrix (DTRSM), and finally

invoking the matrix multiplication for the part shown in blue (DGEMM). On the right

side, at iteration k+1, one column of tiles is transferred from the GPU to the CPU to get

factorized and be ready for the next iteration of LU factorization. This column of blocks,

called Look-ahead panel which is used in the next iteration, is transferred before the GPU

finishes the trailing matrix update at iteration k. Look-ahead is a communication and

computation overlapping technique that reduces the GPU idle time while waiting for the

CPU cores to deliver the panel factorization results. This procedure is repeated several

times and in each iteration, the CPUs factor a panel shown in yellow color, while the GPUs

update their portions of the trailing matrix shown in the blue color.

4.1.2 Profiling Observations

Figure 4.2 shows the partial timing profile for a double precision LU factorization for

a matrix of size 18K on the heterogeneous system with Two GPUs. Since the profiling tools

are not capable of observing the GPUs and CPU timelines at the same time, we profile the LU

factorization on the CPUs and GPUs separately. For GPU, we used Nvidia Visusal Profiler to

profile LU factorization. The NVIDIA Visual Profiler is a cross-platform performance profiling

tool that delivers developers vital feedback for optimizing CUDA C/C++ applications. In a

heterogeneous multi-GPU system, matrix decomposition algorithms including matrix LU
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Figure 4.1: Overview of the blocked LU factorization

factorization algorithms, distribute the workload between CPU and GPU at each iteration.

Figure 4.2 shows the beginning trace of LU factorization on heterogeneous system with

Two GPUs for a matrix of size 18K. We enlarged the timing profile to observe the details,

but this resulted in the loss of information from the entire LU factorization. Observation

shows that there is no slack on the GPUs at the beginning of the LU factorization. This is

because, at earlier iterations, panel factorization, which is performed on the CPU, takes less

time than trailing matrix update, which is performed on the GPU. However, the amount of

slack on the GPUs increases as LU factorization approaches to the end of execution. This is

because the size of the trailing matrix update on two GPUs is decreasing over the time and

takes less and less time to execute on the GPUs in compared to the panel factorization. In

the following, we explain different components (1 to 7) in the figure so that we can develop

a performance model accurately.
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1. Sending the matrix to All GPUs 2. Sending the panel to CPU from 
the corresponding GPU

3. Panel Factorization on the CPU

4. Sending the factorized panel 
from CPU to all GPUs5. Lookahead panel is updated in 

the corresponding GPU

7. Updating the Trailing Matrix on 
all GPUs

6. The updated lookahead panel is 
transferred to the CPU from the 

corresponding GPU

Figure 4.2: Trace of the execution of multi-GPU version of double precision LU
factorization for a matrix of size 18K

• 1) At the beginning the whole matrix is divided and copied to into the GPUs. The

block columns are distributed across multiple GPUs using a 1-D block-column cyclic

distribution. The even and odd block-columns are transferred to GPU 0 and 1,

respectively. In the case of two GPUs. The input matrix size is 18K*18K, and the

block size is 512*512. As a result, each GPU holds 18 block columns with each block

column containing 36 blocks of 512*512 size. Since the GPUs share the PCIe bus with

the CPU, these column-blocks are transferred in a round-robin fashion.

• 2) In each iteration, one GPU is responsible for updating the look-ahead panel and

sending it to the CPU while the other GPUs are updating the rest of trailing matrix.

After the look-ahead panel update, the GPU continue to update the rest of trailing

matrix along with the other GPUs.
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• 3) Panel factorization is done on CPU.

• 4) Factorized panel is sent to all GPUs for the update phase for the next iteration.

• 5) in the next iteration, look-ahead panel update is done on a single GPU holding the

next panel.

• 6) the updated look-ahead panel is transferred to the CPU. This phase is done to

overlap the communication and computation.

• 7) Then, the rest of the trailing matrix, which are distributed across multiple GPUs

are updated on the corresponding GPUs.

4.2 Slack Predictor

In each iteration, either the CPU or the GPU is in the critical path. Critical path

consists of a group of tasks that takes the maximum time among different paths. Identifying

the critical path allows us to extract slack duration in a non-critical path. We precisely

estimate the slack length at a given iteration, and then reclaim the slack by utilizing the

DVFS. Using the algorithmic knowledge, we estimate the execution time of each iteration

on the CPU/GPUs based on the amount of operations and their compute capacities. It

may be reminded that the earlier paper on DVFS for LU factorization used profiling with a

simple performance model [19]. However, our techniques do not involve any bench-marking

and the performance can be directly computed.
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4.2.1 Performance Model Of LU Factorization On The CPU

By dividing number of operations (workload) by the compute capability of the

underlying architecture, the execution time of the CPU can be estimated. The compute

capability is defined as equation 4.1, where pcpu is the maximum peak performance. Peak

performance is defined as the maximum number of floating point operations per second for

the underlying architecture, freq and Maxfrequency are the current running frequency and

maximum frequency of the CPU, respectively. MAGMA library is highly optimized and is

getting close to the maximum peak performance. .

Computecapability = pcpu ×
freq

Maxfrequency
(4.1)

The number of operations or workload at kth iteration, Wpanel, required to perform panel

factorization on a single block column of matrix with size of Mk × b can be calculated as [28]

Wpanel = (Mk −
b

3
)× b2 (4.2)
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Figure 4.3: The estimated time of CPU w.r.t various frequencies
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In LU factorization with matrix of size m× n, and block size b, Mk varies during

each iteration k, which can be calculated as 4.3.

Mk = (
m

b
− k)× b (4.3)

Hence, the amount of operations, Wpanel, will be estimated through equation 4.4.

Wpanelk = ((
m

b
− k)× b)− b

3
)× b2 (4.4)

Panel factorization is naturally a sequential program. So the estimation time for

panel factorization, TCPUk
for a CPU thread can be determined by the equation 4.5 for a

given iteration k.

TCPUk
=

(((mb )− k)× b)− b
3)× b2

pcpu × freq
Maxfrequency

(4.5)

But with huge number of computing cores provided by the multicore architectures,

MAGMA is written to use multi-threading even for panel factorization. Since using multiple

threads brings in extra overhead, the number of flops required for the panel factorization

increases by about b3 × log (Ncpu−threads), where Ncpu−threads is the number of threads par-

ticipating in the panel factorization [28]. As a result, we can estimate the panel factorization

execution time of the multi-threaded CPU at kth iteration as 4.6.
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T ′
CPUk

=
(((mb )− k)× b)− b

3)× b2 + b3 × log (Ncpu−threads)

pcpu × freq
Maxfrequency

×Ncpu−threads

(4.6)

Since we would run the CPU at different frequencies for DVFS, we compared the

estimated values through equation 4.5 against the measured values for various frequencies.

The empirical results are extracted for double precision LU factorization with matrix of

size 18K. The panel factorization is running on the ”CPU Intel(R) Core(TM)i7-6700k”

while employing only one thread. Figure 4.3 presents the analytical results for execution

time of the panel factorization during different iterations. The execution time is inversely

proportional to the frequency. We also measured the error rate of the execution time for

different frequencies. Figure 4.4 shows the error rates for different frequencies w.r.t different

iterations. According to the results, the average error rate for different iterations is less

than 4% for different frequencies. The Empirical results shown in Figure 4.4 demonstrates

different amount of error rate for different frequencies. This is because, there is a different

amount of time needed to charge and discharge the transistors with different frequencies. In

higher frequencies, there is less amount of time to charge and discharge the transistors. So

timing errors are one of the main reasons for faults/errors. However, lower frequencies, the

execution time increases and as a result, the probability of observing the errors increases

as well. So the probability of fault is dependent on both the frequency and the execution

time [82]. Besides, different frequencies can change the temperature of the processor which

could lead to different amount of error rate. In other words, the error rate is dependent on

frequency, execution time and temperature.
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Figure 4.4: Error rate in performance model on the underlying CPU

4.2.2 Performance Model of the GPU Kernel

Similar to the CPU performance model provided in equation 4.5, we develop the

GPU performance model for one hardware thread and then extend it to consider all the

GPU computing cores (threads). However, unlike CPU, the GPU is an SIMT architecture

and there is no resource conflict. The GPU throughput is obtained simply by multiplying

per thread throughput with the number of cores in the GPU. The GPU execution time is

estimated by dividing the number of floating point operation by the GPU computation rate.

In each iteration of the LU factorization, the size of trailing sub-matrix is reduced

by the block size from both row and column width. Given the matrix size as mxn and block

size b, the sub-matrix row and column width at iteration k can be calculated as:

Rowwidthk
= (

m

b
− k)× b (4.7)
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Columnwidthk
= (

n

b
− k)× b (4.8)

Therefore, the total number of operations (workload) required for trailing matrix

update at a given iteration k can be written as [28]:

WorklaodGPUk
= ((

m

b
− k)× b) ∗ ((n

b
− k)× b)2 (4.9)

Therefore, extending the equation 4.5 to the GPU, the equation 4.10 can be derived to

estimate the execution time of each GPU at a given iteration k.

Where

• Nc is the number of cores per GPU.

• freq is the running frequency of the GPU.

• TGPUi@k
is the time required for the kernel (trailing matrix update) running on ith

GPU at a given iteration k.

• WorkloadGPUi@k
is the total workload of the ith GPU at a given iteration k.

Equation 4.9 calculates the total number of floating point operations at iteration k.

In the case of multiple GPUs, the amount of computation on each GPU will be divided by

the number of GPUs. In case the number of panels in the trailing matrix is not divisible by

the number of GPUs, some GPUs will hold an extra panel to update. The workload for the
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Figure 4.5: The estimated time of single GPU w.r.t various frequencies using
Equation 4.10

extra panel can be calculated using the equation 4.9.

TGPUi@k
=

WorkloadGPUi@k

Pgpu × freq
Maxfrequency

×Nc

(4.10)

Figure 4.5 shows the estimated execution time of double precision LU factorization

with an input matrix of size 18K on a single GPU card for different running frequencies. The

”GPU GTX 1660 super” card, which has a total of 1408 processing cores, is used to update

the trailing matrix. To validate our performance model, we also extracted the empirical

results and calculated the execution time error rate for the same configurations. The kernel

execution time is measured from the host which takes the kernel launch time and etc. into

account. Figure 4.6 shows the error rate of the execution time on a single GPU in presence of

various frequencies. The results show that the average error rate is about 5%. However, the

error rate is increases towards the last iterations. This is because, with the update matrix

getting smaller and smaller, GPU is not fully utilized. The execution time is getting smaller,
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Figure 4.6: Error rate of GPU performance model provided in equation 4.10

which results in larger error rate. Using equation 4.10, we also estimate the execution time

of Two GPUs. Figure 4.7 compares the estimated values of single and double GPUs while

running the trailing matrix update. The running frequency is fixed at the default value of

1980 MHz. It shows that the execution time of GPU is inversely proportional to the number

of GPUs at different iterations. In the case of Two GPUs, the execution time of trailing

matrix is almost divided by two for different iterations. We also extracted the experimental

result for two GPUs and the average error rate for the estimated execution time was about

4.6%.

4.2.3 Performance Model Of Data Transfer

We must first model the PCIe bus latency before we can model the transfer time

between CPU and GPU. We take LogGP model [21] as a starting point and expand it

to multiple streams. According to the model, transferring a single chunk of size k bytes

takes ”L+O+(k)B”. The time it takes for a single byte to transmit from the source to the
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Figure 4.7: Estimated GPU time with single and Two GPUs at default
frequency of 1980 MHz

destination endpoint is denoted by the ’L’. ’O’ specifies the amount of time the processor

is working on the transmission. In other words, this is the amount of time the CPU

spends registering the DMA request with the controller, while ’B’ represents the PCIe bus’s

bandwidth. We don’t have any overhead on the device side because we’re using DMA

transfer, which writes data directly into memory. Even with DMA transfers, the data is

split into data chunks and transmitted across PCIe in a continuous stream. We define ’g’ as

the gap between these chunks. This is the amount of time it takes to start a new transfer

API. As a result, transferring multiple chunks requires ”L+ O + k1G+ (n − 1)g + knG”.

When many streams are present, each stream is transferred one at a time, and ’g’ will be the

overhead to initiate a new transfer API on a different stream. As a result, the time required

to transfer K bytes utilizing n streams will be determined using the equation 4.11. Hence,

in case of double precision LU factorization with matrix of size m× n, the copy time for

each iteration can be extracted using the equation 4.12. Here m is the row width of matrix,
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Figure 4.8: The estimated copy time of double precision LU factorization for a
matrix of size 18K

b is the block size or the panel width which remains same over the iterations.

Tcopyk = L+O +K/B + (n− 1)× g (4.11)

Tcopyk = L+O + ((m− k × b)× b× 8)/B + (n− 1)× g (4.12)

Even though, the newer GPUs are equipped with dual copy engines and they might

share the resources that affects the transfer time, we are not considering the dual copy

engine because in case of LU factorization, the copy transfers are not occurring at the same

time. Figure 4.8 shows the estimated time between CPU and GPU for different iterations of

double precision LU factorization with matrix size of 18K. The estimated results illustrate

that the copy time is proportional and inversely proportional to the size of the data and

bandwidth, respectively. ’L’, ’O’, ’g’, and ’B’ are extracted using a simple profiling phase.

We also compared the estimated values with the experimental results of the copy time for a

matrix of size 18k in case of single GPU (NVIDIA GeForceGTX 1660 SUPER) and CPU
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Figure 4.9: The error rate of the PCIe model for a matrix of size 18K

(Intel(R) Core(TM) i7-6700k). Figure 4.9 shows that the error rate is very negligible in the

iterations when the PCIe bus is fully utilized. However, the error rate is increases due to

under utilization of the PCIe bus during the last iterations of LU factorization. For example,

the amount of data that is transferred between CPU and GPU in the first and last iterations

of the LU factorization are 73 MB, and 2.42 MB, respectively. On average, the error rate of

the estimation model is about 1.3% for different iteration which is very small.

However, it may be observed that, compared to hundreds of msecs in CPU and

thousands of msecs in GPU execution times, the data transfer time is negligible.

4.3 DVFS-Based Slack Reclamation

A slack is a period of time when one computer component waits for another. Load

imbalance, inter-task or inter-process communication, and memory access stalls are all

common causes of slack. A Critical Path is a certain sequence of tasks that spans from the
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beginning to the end of the execution and has zero slack. Slack is only observed in non-critical

path of the application. While slack on non-critical paths is commonly utilized for energy

savings, fully reclaiming them without affecting application performance is difficult. During

the LU factorization, slack occurs on the CPU or GPU at each iteration, as shown in figure

4.10. Slack occurs only when the CPU waits for the GPU to update the next panel or when

the GPU waits for the CPU to factorize the panel. If the CPU finishes earlier in an iteration,

we can slow it down to finish at the same time as the GPU and vice versa. As the panel

and matrix update sizes change across iterations, the amount of slack changes. Then we

use DVFS on the CPU and GPU to take full advantage of the slack on non-critical paths.

We can reduce power consumption without affecting performance for the next iteration by

properly reducing the frequency of the processing units to only eliminate the slack.

Algorithm 8 provides the overview of DVFS controller that estimates the panel

factorization time on CPU, matrix update time on GPUs, and data copy time between

CPU and GPU using the equations provided in section 4.2. Let TCPU
k , TGPUi@k

, and TCopy
k

represent the CPU time, ith GPU execution time at iteration k, and the transfer time,

respectively. The slack lengths of LU factorization at each iteration for CPU and GPU are

Figure 4.10: An overview of slack reclamation.
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given by equations 4.13 and 4.14. These values are extracted according to the equations 4.6,

4.10, and 4.12 respectively. In each iteration the copy time is the summation of both H2D

and D2H transfers that happens between CPU and GPUs.

slackCPUk
= Max(TGPUi@k

)− TCPU
k − TCopy

k ; 0 ≤ i <
N

nb
(4.13)

slackGPUi@k
= TCPU

k + TCopy
k − TGPUi@k

; 0 ≤ i <
N

nb
(4.14)

If the equation 4.13 has a positive value, the CPU has slack time, and the CPU

should wait for the GPU to finish its execution. To find the slack on different GPUs, we use

equation 4.14 for each individual GPU. Similarly, if it has a positive value, the GPU will

have the slack. There is no slack in the CPU or GPU when the value is 0.

We can reduce power consumption without affecting performance for the next

iteration by properly reducing the frequency of the processing units to only eliminate the

slack. As we have shown in the earlier section, the execution time of the LU factorization is

proportional to the frequency of computing units.

We use Advanced Configuration and Power Interface (ACPI) to change the CPU

core’s frequency at runtime to reduce the voltage/frequency transition time. Our frequency

enforcement is performed by manipulating each core’s “scaling setspeed” file. When this
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Algorithm 8 Overview of DVFS methodology

Initialize ()
Profiling Phase ()
for i = 0, 1, ..., iteration− 1 do

cputime ←cpuPredict()
gputime ←gpuPredict()
copytime ←copyPredict()
cpuSlacklength ←slackPrediction(cputime , gputime, copytime)
if slacklength ̸= 0 then

if cputime < gputime then
Invoke DV FSCPU ()

else
Invoke DV FSGPU ()

end if
end if

end for

device file is modified, Linux triggers a group of system calls that adjust the CPU core’s

frequency in about 40 microseconds. Compared to the hundreds of msecs of CPU and GPU

execution times per iteration (Figures 4.3 and 4.7), this overhead is negligible.

We derive the equation to find the optimum frequency for the units on the non-

critical path based on the current and target execution time. Equation 4.15 below is derived

to calculate the amount of optimum frequency, where fopt and fdefault are the optimum

and default frequencies of the component with slack at a given iteration. The frequency of

the CPU/GPUs is adjusted using the pseudo code provided in algorithm 9. We choose the

minimum frequency if the adjusted frequency is less than the minimum defined frequency.

When an adjusted frequency is not supported by the hardware, two consecutive available

frequencies are used to eliminate the slack. This is because, only available discrete frequencies

offered by CPU and GPU DVFS are taken into account in GreenMD.

fopt = fdefault ×
max(TCPU , TGPU )− slack

max(TCPU , TGPU )
(4.15)
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Algorithm 9 Frequency adjustment during the slack

if foptimum ≤ fmin then
foptimum = fmin

end if
if fmin ≤ foptimum ≤ fmax then

if foptimum /∈ availablefrequencies then
flower ← adjacentfrequency(foptimum, availablefrequencies)
fupper ← adjacentfrequency(foptimum, availablefrequencies)
Adjustfrequency(slack,flower,fupper)

else if Adjustfrequency(slack,foptimum) then
end if

end if

With increasing the number of GPUs, since, using the algorithmic knowledge, the

amount of operations are known on each GPU, we can still estimate the execution time of

each GPU during each iteration of the LU factorization and as a result, we can find the

slack. The amount of slack on the CPU and GPUs will be varied based on the size of the

input matrix and the number of GPUs. The input size of the input matrix was limited

by memory size of the GPUs. For the same input size of the matrix, if we increase the

number of GPUs, the amount of slack will be even more on the GPUs and we can save even

more energy. This is because the main source of power consumption is consumed by the

GPUs in an heterogeneous system with GPUs. According to the empirical results provided

through the offline profiling, at earlier iterations, since the panels widths are larger, the

CPU takes more time than the GPU to factorize the panel ans we still experience slack on

the GPU unless more number of CPUs and potentially GPUs are employed to help the CPU

to factorize the panel. And if the number of GPUs increases, in later iteration, when the

trailing matrix size is getting smaller and smaller, there could still be slack in the GPUs

that can be utilized for energy saving.
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4.4 Undervolting

Since we don’t compromise the LU cauterization’s performance, DVFS can only be

utilized to reclaim slack on non-critical path components. This is because using the DVFS on

critical paths degrades the application’s overall performance for compute-intensive workloads

[9]. DVFS is mainly concerned with dynamic power consumption. However, the static power

is becoming predominant in today’s technology. Hence, we also employ undervolting (at a

fixed frequency) to reduce both static and dynamic power while maintaining performance.

To ensure that the microprocessor functions reliably under varying load and

environmental conditions, microprocessor manufacturers usually append an operational

guard-band (a static voltage margin) of up to 20% of the nominal voltage [107]. The

guard-bands additionally take into consideration errors caused by the load line, aging effects,

noise, and calibration error [78]. Because these errors do not occur frequently, significant

energy savings can be achieved by lowering guard-band voltage to a much lower supply

voltage [45]. In our work, we aim to save energy by utilizing the voltage guard-band between

the nominal voltage and the actual OS safe voltage while maintaining performance. To

extract VsafeMin during LU factorization, we take a similar approach as described in [47].

We undervolt to the safe minimum voltage VsafeMin without introducing any fault into the

system. System may experience soft errors if VsafeMin is exceeded.

To determine the VsafeMin for LU factorization, we profile the LU factorization

for small matrices. According to [105], the sensitivity analysis is performed by lowering

the voltage below the nominal voltage (1.075 V). First, we run the program at nominal

voltage and record the result as ”golden output”. We start with the corresponding voltage
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Figure 4.11: GPU’s probability of failure w.r.t undervolting

in the CPU and reduce the voltage in 10 mv steps at a given fixed frequency. We run the

application 100 times and record the number of faulty runs. If the output does not match

the golden output, the application’s run has failed. The frequency is then changed, and

the undervolting is repeated at a new fixed frequency. We extract the VsafeMin for both

CPU and GPU with different running frequencies. This is because the maximum level of

undervolting could be different for different frequencies as observed in Figure 4.12 and 4.11.

The probability of failure for the CPU is shown in Figure 4.12. There is no error until the

undervolting level reaches 150 mv. At lower running frequencies, we can decrease the voltage

even further (10 mv) without observing the error.
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Figure 4.12: CPU’s probability of failure w.r.t undervolting

4.5 Evaluation

4.5.1 Implementation Details

All experiments are preformed on heterogeneous system with 8-cores Intel CPU

and Two homogeneous GEFORCE GTX 1660 SUPER, whose architectural specifications

are listed in Table 5.1. We were able to evaluate the results for up to a 18K matrix size due

to GPU’s limited device memory. The proposed power management algorithm is embedded

inside the application code and called right before the next iteration. Considering the

performance overhead of DVFS, the DV FSCPU () and DV FSGPU () functions are called if

Table 4.1: Experimental setup configuration

Component CPU GPU

Architecture
Intel(R) Core(TM)

i7-6700k
NVIDIA GeForce
GTX 1660 SUPER

Minimum Frequency 800 MHz 300 MHz

Maximum Frequency 4200 1980

Memory 16 GB 6 GB

Cache
L1(128 KB)
L2 (1 MB)
L3 (8 MB)

L1 (64 KB per SM)
L2 (1536 KB)

OS Ubuntu 20.04
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there is enough slack available in the next iteration. We use ”linux-intel-undervolt” and

”cpupower frequency-set” APIs to undervolt and scale the CPU frequency. These APIs can

be used for Intel CPUs with an integrated voltage controller (FIVR). In CPU, we change

only the CPU frequency and do not touch the memory frequency. However, in case of GPU,

since the GPU core and memory frequencies are coupled, changing the core frequency might

change the memory’s frequency as well.

For GPU profiling phase and extracting the safe minimum voltage of the GPU,

MSI After Burner [2] was used. However, MSI After Burner is not supported on Linux

operating system. So, to reduce the voltage of the GPU, we used the similar approach

employed in [105]. Since there is no direct API to reduce the voltage, we reduce the voltage

of GPU by lowering the GPU’s target power limit at a fixed frequency. To undervolt the

GPU, several APIs from NVIDIA Management Library (NVML) are used as listed in Table

4.2.

It is not possible to truly disable GPU Boost in modern NVIDIA architectures

without resorting to very risky procedures involving flashing custom firmware. However, it

is still possible to lock the graphics frequency in recent GPUs. We use the NVML library’s

’nvmlDeviceSetGpuLockedClocks’ API to fix the frequency and, as a result, the voltage.

This API effectively locks the graphics frequency, ensuring that it remains constant at the

desired frequency with tiny variations, which could be due to the auto boosting option.
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Figure 4.13: The amount of CPU and GPU slack for double precision LU
factorization with one GPU and matrix of size 18K

4.5.2 Results

We executed the LU factorization in presence with one and two GPUs. In case of

single GPU, the amount of slack on the CPU and GPU is shown in Figure 4.13 for a matrix

size of 18K x 18K. The slacks for CPU and single GPU are observed in iterations 0-21 and

22-34, respectively. This is because, even though the GPU is equipped with huge number of

computing core, it has larger ratio of ”workload/(compute − capability)” compared with

the CPU till iteration 21. Since there is no slack on the GPU for iterations before iteration

21, we do not change the GPU frequency until then. We only adjust the CPU frequency to

Table 4.2: Power management and undervolting APIs

API Desciption

nvmlDeviceSetPersistenceMode Enables persistent mode to prevent driver from unloading

nvmlDeviceSetPowerManagementLimit Set new power limit of the GPUdevice.

nvmlDeviceGetClock Retrieves the clock speed for the clock specified by the clock type and clock ID.

nvmlDeviceSetGpuLockedClocks Set clocks that device will lock to.

nvmlDeviceGetTotalEnergyConsumption Read the GPU’s total energy consumption

nvmlDeviceResetApplicationsClock Resets the application clock to the default value

linux-intel-undervolt Undervolt the Intel CPUs

cpupower frequency-set Sets the CPU’s frequency
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Figure 4.14: The CPU energy improvement of double precision LU
factorization with single GPU for a matrix of size 18K

reclaim the slack allowing both CPU and GPU to complete their tasks at the same time at

a given iteration. If the amount of adjusted frequency is less that the minimum frequency of

the underlying architecture, we set the frequency to the minimum frequency. Similarly, if

the adjusted frequency is greater than the maximum frequency, set the the frequency to the

maximum frequency.

Along with slack reclamation, we also extracted the maximum level of undervolting

when no fault is introduced in the system. At a given frequency corresponding to each

iteration, we apply maximum level of safe undervolting. The amount of energy consumed at

default scenario (baseline) and proposed approach w.r.t iteration is shown in Figure 4.14.

The X-axis represents the iteration number, while the Y-axis represents the amount of energy

consumed during each iteration. Using DVFS along with undervolting, for a matrix of size

18K, we were able to save the CPU energy consumption up to 51%. We also measured the

energy consumption of the single GPU, Figure 4.15 shows the GPU’s energy consumption
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Figure 4.15: GPU Energy improvement of double precision LU factorization in
presence of single GPUs for a matrix of size 18k

for the default configuration as well as the proposed method. Because there is no slack till

iteration 21, the energy improvement comes only from undervolting. However, after that

both DVFS and undervolting leads to more energy reduction. Figure 4.15 shows that, on

average, we save energy about 18% on the single GPU.
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Figure 4.16: The amount of slack for double precision LU factorization in
presence of Two GPUs for matrix of size 18K
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Figure 4.17: The CPU energy improvement of double precision LU
factorization with two GPUs for a matrix of size 18K

We have also extracted the results for heterogeneous system with two GPUs. In

this case, we observed less slack in the CPU at earlier iterations and more slack in the GPUs

at later iterations, compared to a single GPU. This is because the trailing matrix update is

done in parallel in both GPUs reducing the update time and the CPU slack. Figure 4.16

shows the amount of slack for different iterations for both CPU and GPUs. Compared with
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Figure 4.18: Total CPU and GPU energy improvement of double precision LU
factorization with two GPUs for a matrix of size 18k
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Figure 4.19: GPU energy improvement of double precision LU factorization in
presence of Two GPUs for a matrix of size 18k

a single GPU case in Figure 4.13, the slack at the CPU is reduced by almost half. We fully

reclaim the CPU slack and adjust the CPU’s frequency to a desired frequency, allowing

both CPU and GPU iterations to be completed at the same time. In the second half of

iterations, we also change the frequency of the GPUs to reclaim the slack in both GPUs. The

frequencies are automatically and independently enabled by the API during the execution.

Also, Figure 4.17 shows the amount of CPU energy consumption in presence of DVFS and

undervolting. Compared to single GPU results, illustrated in Figure 4.14, we observe less

energy improvement in the CPU in the earlier iterations and more energy improvement

during the late iterations. This is because, in case of two GPUs, the CPU experiences

less amount of slack during the earlier iterations and more amount of slack during the late

iterations, which leads to less and more energy improvement during these periods.

Similar to the CPU, we also extracted the energy improvement for GPU using

the proposed method. The energy consumption of GPU for the default configuration and
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the proposed method is shown in Figure 4.19. Since there is no slack in the first half of

the iterations, the energy improvement comes only from undervolting the GPU. However,

the energy improvement in the second half of the iterations comes from both DVFS and

undervolting. According to Figure 4.19, on average, we save the total energy consumption

of the GPUs about 21%. In comparison to the results illustrated in Figure 4.15 for a single

GPU, the small improvement in the energy saving comes mainly from the undervolting

part. This is because, even though the trailing matrix execution time is reduced into

half, the total power consumption doubles due to the use of two GPUs keeping the energy

consumption almost the same. Figures 4.20 and 4.18 show the total energy consumption

of LU factorization for a matrix of size 18k with single and two GPUs, respectively. As

shown in figure 4.18, in the first half of iterations, when only the CPU experiences slack, we

save 26.2% while in the second half of the iteration, when the GPUs only have slacks, we

save 41.8%. However, the energy consumption is much less than the first half because the
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Figure 4.20: Total CPU and GPU energy improvement of double precision LU
factorization with single GPUs for a matrix of size 18k
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Table 4.3: Energy improvement of CPU, GPU/GPUs in heterogeneous systems
with one GPU and two GPUs

Energy Improvement (%)
CPU GPU/GPUs Total

Heterogeneous system with one GPU 51% 18% 32.4

Heterogeneous system with two GPUs 59% 21% 31%

trailing matrix gets smaller and the execution time reduces. Overall, there is a 31% energy

improvement in total energy for the entire LU factorization with Two GPUs.
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Chapter 5

Fault Tolerant Matrix

Decomposition On Heterogeneous

Multi-GPU System

5.1 Background And Motivation

As explained in details, in chapter 4, LU factorization of a matrix A generates a

lower triangular matrix L and an upper triangular matrix U. In the right-looking block LU

algorithm, the matrix is divided into blocks that are NB in size (called a blocking factor).

Each step involves processing one block row and one block column while also updating the

square trailing sub-matrix. In our approach, the sequential phase (panel factorization) is

executed on the CPU the parallel phases (row panel update and trailing matrix update) are

executed on the GPU/GPUs. These phases have different sensitivity to the faults. In the
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following we will discuss the fault model on each of these phases and how we should address

the faults/errors in these phases.

5.1.1 Fault Model

There are two types of errors that might happen during the computation. Hard

errors and soft errors. Hard error occurs due to fatal damages such as circuit destruction and

it is not transient. Hard errors are repeatable with the correct sequence of actions within

the circuit. Unlike a hard error, there is no damage in the semiconductor itself in the case of

a soft error and it is a transient error. Soft errors are not easily detectable and the program

finishes its execution without any warning. If the soft errors are not detected during the

computation, they might propagate to different sections of a long running computation

kernels which makes it very difficult to dealt with. A single soft errors can affect nearly

the entire matrix in case of LU factorization, if not detected and covered properly. So, we

aim to address the soft errors which are more important and predominant types of errors in

today’s technologies.

5.1.2 Challenges Of Fault Tolerant LU Factorization

In the right looking LU factorization, since the checksum relationship is maintained

during the computation, we have built the fault tolerant algorithm on top of the LU

factorization. In the right looking LU factorization, Gaussian elimination is used to find the

elements of L by dividing the elements of original matrix by the element on the diagonal.

However, with floating point numbers, a value that is extremely close to zero could be on

the diagonal and not be immediately apparent as a problem. If this element is zero, division
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is obviously not possible. Algorithms for LU factorization involve pivoting, where the row

with the greatest element in the current column is switched with the current row, to make

sure that this doesn’t happen. In right looking LU factorization, in each iteration, panel

factorization, row panel update and trailing matrix updates are performed sequentially until

the entire matrix is factored. The LU factorization is performed by iterating over the panels

with the width of one block size. In each iteration, only one column with the width of

block size is factored and the rest of matrix is also updated in each iteration. The height of

the panel decreases by one block size in each iteration and there won’t be any change in

the panels of the matrix which are already factorized. The panel factorization, row panel

update, and trailing matrix update are the steps that change a particular portion of the

matrix. Matrix elements are broadcast to be used in the updates following the first two

phases. These phases have different sensitivity to the error. Errors can spread outside of

each section through the broadcast, at which point they may become irrecoverable. We are

only concerned about error propagation along rows because we only utilize row checksums

which will be explained later. The errors can propagate across the row after the broadcast

following panel factorization.

5.1.3 Error Propagation In LU Factorization

Different areas of the matrix have different levels of vulnerability to the integrity

of the calculation. We assume that errors can only occur during calculation, so that stored

values will not become wrong. When an error propagate, it may turns into a number of

incorrect values, making it impossible for the fault tolerance method to correct them. The

good news is that in the case of LU factorization, there are specific locations where errors
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Figure 5.1: Error propagation scheme of error in different sections of the matrix

can be identified before they spread to the rest of the matrix. Figure 5.1 shows the error

propagation of the error that might happen in different sections of the LU factorization. The

column panel is the most important section that needs to be verified during the execution.

Any errors that happen here will spread to all the rows. The remaining matrix is updated

using this panel. The components in the same row to the right of the erroneous element will

also be impacted by the error which makes the recovery impossible. This panel is factored

individually before being transmitted to the rest of the matrix. To avoid errors propagating,

the verification must be performed before the broadcast. The stored sums for this panel

will be zeros as long as no errors occurred due to the way the local checksum is constructed.

Because only one block of sums needs to be recalculated, this check is the shortest.

Also, the row panel, is similarly vulnerable to errors. This section’s error is not

immediately harmful. It would be hard to recover from a second error unless it happened

to occur in the same process column, because the entire column is affected. As a result, it

is crucial to verify the accuracy of this part as well; however depending on the error rate,

the time between checks may be adjusted. This panel’s verification takes longer than the

column panel’s because all of the panel’s sums must be recalculated.
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Another section that is least susceptible to errors is trailing matrix. An error in

this area is not propagated until a panel is used in a subsequent iteration, at which point the

panel verification can address it. Even while it’s still possible, the probability of a second

error making recovery impossible is smaller than it was for the row panel. Again, depending

on the error rate, it may be essential to examine this part of the matrix as well, though less

frequently than the row panel. Because each sum in the trailing matrix needs to be redone,

this verification again takes longer than the row panel verification.

5.2 Proposed Methodology

Figure 5.2 shows the overall overview of the proposed fault tolerant right looking

LU factorization algorithm. In LU factorization there are three main phases that need to

be done sequentially. 1) Panel factorization, row panel update and trailing matrix update.

During the each phase, we should make sure that the possible errors that might happen in

each phase won’t be propagated to the next phase or iteration. At the beginning, once the

matrix elements are located in the GPU’s device memory, GPUs will generate row checksum

vectors and the checksums will be appended to each local block or Thread-block(TB) and the

block size is increased by one. The first phase of the LU factorization is panel factorization.

Any error in the panel factorization could potentially, if not covered and propagated to

the rest of the matrix, could potentially corrupt the entire matrix. Hence, we check the

correctness of the panel factorization in each iteration frequently. If no error is detected,

we continue with row panel update; otherwise, we go back to the beginning of the panel

factorization in the current iteration and repeat the whole panel factorization again. This
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Figure 5.2: Overview of the Fault Tolerant LU factorization

sequential phase is done on the CPU side and if any error is detected, we should get the

correct values for each block which are the values from the previous iteration. It means, we

can get those correct values by going back to the beginning of the iteration.

Similarly, we verify the correctness the row panel update phase with the local

checksums appended to the local matrices or blocks. In this case, if the local checksum

shows an error, if the number of error is only one, we can cover that with employing the

global checksums which are the summation of the local checksums in each row of the local

matrix. If no error is detected in this phase, the LU factorization continues with executing

the trailing matrix update which is the last phase LU factorization in each iteration. Similar
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Figure 5.3: Original input matrix with block size of 4× 3

to row panel update, the local checksums are used to detect the possible errors and the

global checksums will be used to cover the potential errors. The number of errors can not

exceed the one in each row of the trailing matrix. However, more number of errors can be

covered if they are located in different rows of the trailing matrix update.

5.2.1 Checksum Setup

We have two types of checksums for the input matrix. Local checksum and global

checksum. Local checksums are appended to each block of matrix and global checksums are

the sums of all blocks which are added as a different block. In case of GPUs, these blocks

will be executed as thread-block. Figure 5.3 shows the original matrix with a block size of

4× 3. In a blocked LU factorization, the local row checksums are appended to each block

of input matrix and the block width will be increased by one. The matrix with each local

matrix with row checksums is shown in Figure 5.4. A local matrix’s elements in a single
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Figure 5.4: Original input matrix with local checksums added to each block.
Block width is increased by 1

block of a row are summed, and the result is stored immediately following the block it is a

part of. Checksum vectors for all local blocks are generated in the GPUs. To ensure that

sums and their elements are always included in operations, the block size has been increased

by one. Operating on a sum and the elements simultaneously is necessary for maintaining

checksums at a fine-grained level. Also, Figure 5.5 shows the matrix with the appended

global checksum as an additional blocks. These sums are sum of corresponding elements

in the local matrices across the rows. Along with the local checksums that are shown in

the last column of each block, global checksums are added to the input matrix. The global

checksum is also generated by the GPU. Based on the block size, and the input matrix size,

the number of blocks for global checksums will be varied. For instance, in case of global row

checksum, if the input matrix is height is 10k and the block size is 512× 512, there will be a

total of 20 blocks of global checksum.

Periodically, the local checksum is verified; if the sum is incorrect, the global sum is

used for recovery. At the end of each iteration, the checksum relationship between elements
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Figure 5.5: Original input matrix with local and global checksums added

in the same row is maintained in the right looking LU factorization. However, to make

sure that local checksums will be maintained at the end of each phase of the iteration,

the right looking LU factorization performs the operations on the level of each block with

the appended local checksums. For example, after the panel factorization, since only the

elements within the panel are involved in the computation, the checksum relationship will

be maintained. After the above mentioned steps, we check the correctness of computation

by verifying the checksum relationship. To reduce the overhead of the verification, only

local checksums are are used in this phase (detection phase). In case of panel factorization,

when an error is detected, due to an error propagation, the panel must be entirely replaced

with a recovered version. The recovered panel will therefore be the one from the prior

iteration because it is built using components that are still in their pre-iteration state. In this

approach, there is no other method for extracting the correct state. Any panel factorization

error will require a recovery to right before the panel factorization. In other words, if any

error is detected in this phase, we go back to the beginning of the loop and repeat the panel

factorization.
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Similar to panel factorization, the local checksums are used for the verification of

row panel update and trailing matrix update phases as well. However; in these phases, if

the error is detected, we use global checksum to cover the errors. If there are more than

one error in the same row, global checksum can not recover the error. However, we can

tolerate more number of faults if they are located in different rows. Also, if there are more

number of errors within only one TB, the whole TB can be recovered using the corresponding

global checksum. This is true, when there no errors on the other TBs across the same row.

The global sums which will be used in recovery of trailing matrix update and row panel

update, are executed concurrently with the local checksums. If any error is detected by the

local checksum in one of the TBs, in order to be able to recover the error using the global

checksum, we need to wait for the all TBs that are in the same row as the faulty TB to be

finished.

5.2.2 Local Checksum After Panel Factorization

In general, recalculating the sums and comparing to the stored values are required

for checksum verification. The overhead could be substantial due to the memory accesses.

All checksums are either of U or the original matrix. The checksum indicates the fact that

the equivalent point in U has a zero once the elements that made up the checksum have been

replaced with components of L. When the panel is factored, the first nb × nb block contains

a portion of U and the rest is L. The checksums will all be zeros in this area. Consequently,

for the majority of the panel verification, no computation is needed, and memory access is

minimized.
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After a panel is factored, the sums for the portion of the panel that becomes L in

a checksum matrix, where local row sums are computed for each block, will be zero. This is

due to the algorithms’ transformation of the sums from sums on the original matrix to sums

on U alone. The U matrix contains zeros in the location where the L matrix is stored. Thus,

the sums of zeros will zero. If there are no errors, the L sums are 0 in this case [24].

5.2.3 Proof Of Checksum Correctness During The Right Looking LU

Factorization

In each iteration of right looking LU factorization, the trailing matrix from the

previous step is used for the next iteration. The L and U parts are not changed again

after each step. In one factorization step, a matrix with row checksums is transformed into

panels of L and U and a trailing matrix with correct row checksums. Since the checksum is

maintained in one step in the right looking LU factorization, it is preserved throughout the

entire calculation [24]. In [24], it is proved that if the matrix has correct global and local

checksums at the beginning of the main loop iteration in the right looking LU factorization,

then the resulting matrix sections of U and the trailing matrix would also have correct

global and local checksums after each iteration. In other words, the trailing matrix from

the previous iteration is used in each subsequent iteration. The trailing matrix starts the

iteration with all checksums within the trailing matrix consisting entirely of elements from

the trailing matrix. As a result, it can be dealt as a whole matrix, separate from the parts

that have previously been fully factored.
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5.3 Evaluation

All experiments are performed on heterogeneous system with Two GPUs, the

architectural specifications can be found in Table 5.1.

5.3.1 Checksum Setup And Detection Phase

For detection phase, along with the checksum setup, the detection phase should be

done in each iteration. If there is no error, the overhead is the time it takes to check the

local checksums after each phase. Each iteration involves three checksum verification: one

for the panel, one for row panel update and another for the trailing matrix. The correctness

of the elements must be verified by adding the elements inside each row of the block/TB,

after which the result must be compared to the value that was previously stored. However,

as explained earlier, for panel factorization, except one block, these number should be all

zeros if no error has occurred. Therefore, it is not needed to add all the row elements of

the panel. Hence, the overhead of the verification comes from only comparing the elements

Table 5.1: Experimental setup configuration

Component CPU GPU

Architecture
Intel(R) Core(TM)

i7-6700k
NVIDIA GeForce
GTX 1660 SUPER

Minimum Frequency 800 MHz 300 MHz

Maximum Frequency 4200 1980

Peak Performance Intel

Memory 16 GB 6 GB

Cache
L1(128 KB)
L2 (1 MB)
L3 (8 MB)

L1 (64 KB per SM)
L2 (1536 KB)

OS Ubuntu 20.04
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Figure 5.6: The checksum verification overhead of panel factorization

with zero. For row panel update and trailing matrix update, each element inside a block

in the local matrix needs to be added together and validated. Using this method, we can

guarantee that all the errors within different rows can be covered but it is not possible to

cover multiple errors if they happen to be in different TBs across the same row. Multiple

errors in the same block/TB can be corrected if no other TB/block is faulty. These blocks

can be completely recovered from the global matrix.

We evaluated the checksum verification/detection of panel factorization, row panel

update, and trailing matrix update. Figure 5.6 shows the the performance overhead of check-

sum verification for the panel factorization phase. The X-axis shows the iteration number

and the Y-axis shows the execution time. The blue points shows the panel factorization time

whereas the red line shows the time taken for the verification. The results are extracted

while the CPU is running at the peak frequency of 4 GHz.
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Figure 5.7: The checksum verification overhead of row panel update

We also extracted the results for checksum setup and verification in presence of

different iterations. The checksum verification verifies the correctness of the panel with

recalculating the sums of one block as well comparing the rest of the panel with zeros. Figure

5.8 shows the overhead of the checksum setup and panel factorization verification in compare

to the total execution time the panel factorization. The maximum overhead is observed at

the earlier iteration due to larger number of comparisons needed for verification. As the LU

factorization proceeds, the height of the panel decreases and the number of comparisons

decrease as well.

We also extracted the performance overhead of the checksum verification for row

panel update and trailing matrix update phases. Figures 5.7 and 5.9 show the performance

overhead of the checksum detection of the row panel update and trailing matrix update

phases, respectively. X-axis shows the iteration number and Y-axis shows the performance

overhead of the only detection phase. The detection phase’s overhead is less than 1.25%

99



Figure 5.8: The checksum setup and verification overhead of panel factorization

and 1.5% for row panel update and trailing matrix update phases. This overhead does not

include the checksum setup overhead and recovery overhead. The checksum setup overhead

is similar to the checksum setup overhead of the panel factorization, since checksums for all

phases including the panel factorization is generated on the GPUs due to its parallel nature.

We also evaluated the overhead of the global checksum generation. For checksum

global generation, all the input matrix is stored on the GPU and the global checksum is

Figure 5.9: The checksum verification overhead of trailing matrix update
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built by adding the same elements of different blocks. In compare to the baseline, the

execution time of the LU factorization was increased by 5.6%. To find the actual overhead,

this will be added to the overhead of detection and recovery as well. We also, calculated the

overhead of the extra computation comes from the extra TBs belong to the global checksum

(additional TBs). In case of matrix of size 18K with the block size of 512× 512, we build

the global checksum blocks/TBs across the rows. So, the number of extra TBs needed for

global checksum will be 36. The total number of TBs for matrix of size 18K without the

global checksum TBs is 1296. So the computation overhead coming from the extra TBs will

be 2.7%.
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Chapter 6

Related Work

This chapter covers the literature related to the studies proposed in this thesis.

First, we provide the related work for DVFS, it’s drawbacks, and GPU undervolting. Next,

we discuss the overclocking, undervolting and fault tolerant technique works, and then,

discuss the previous energy efficient approaches on LU factorization.

6.1 GreenMM

The ever-increasing popularity of GPUs has motivated development of energy

efficient GPU architectures, most of which target for energy saving in general over many

applications. However, very few of the architecture designs are targeted at reducing energy

consumption of linear algebra basic routines such as cuBLAS-MM that are used in scientific

application.

Dynamic Voltage and Frequency Scaling (DVFS), is one common approach to

reduce power and energy consumption of a system [54]. Applying DVFS, based on system
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utilization, the processors can operate in different power states whenever high performance

is not necessary. DVFS in GPU domain can behave in a very different manner compared

to DVFS in CPUs in regard to energy efficiency [30]. Besides the DVFS technique, GPU

undervolting is another approach for improving GPU energy efficiency. Leng et al. [49],

reduce chip voltage of the GPU to Vmin without introducing any errors; which was achieved

by leveraging guard-band voltage of the GPU. However they did not go beyond Vmin because

errors would occur with any further undervolting. In our work, we show that even beyond

Vmin there is opportunity to save more energy and correct potential faults by combining

undervolting and Algorithm Based Fault Tolerance (ABFT) together. GPUs/CPUs use

huge number of communications links which have made them seriously prone to coupling

and inductance effects [85] [84]. By using undervolting, we also could relax the coupling

and inductance effect and increase the reliability. In [104] [37], power gating is applied onto

GPU to save energy on branch divergence and idle components respectively. [3] applies

dynamic resource allocation to improve GPU energy efficiency. [89] attempts to reduce

energy consumption by selecting between the CPU or GPU to run the application. In CPU

domain, there are several studies which rely on hardware sensors to look for possibilities to

reduce the operating voltage by monitoring critical path [44]. In [93], Tan et al. investigated

the interplay between energy efficiency and reliability on the CPUs. In their approach,

they combined undervolting with a fault tolerant technique to tolerate faults caused by

undervolting on the CPUs. Their fault rate model is based on digital circuit failure, and not

based on the CPU hardware. It is because they could not drive CPU undervolting to below

the threshold value to generate faults. So, they emulated the errors and corrected them. They
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used an analytic fault model and only considered a single soft error to correct. In GreenMM,

we introduce a fault model taking into account the real system faults during undervolting

through NVML APIs. We drove the GPU voltage under the threshold (VsafeMin), so that the

number of faults is practically measured. Thus, our proposed fault model is more accurate

and realistic.

Fault tolerant mechanisms such as redundancy-based techniques [71] can recover

from hard failures, however, at a huge performance cost. These techniques are not useful in

GPU applications due to high penalty in terms of energy consumption and performance.

Checkpointing has been applied to tolerate failures on the GPU through restarting applica-

tion from some previously saved correct state [74]. Checkpointing suffers from significant

performance and memory overheads. Compared to aforementioned techniques, ABFT

provides the advantage of negligible overhead along with the capability of detecting and

correcting errors with low overhead. ABFT has widely been studied for improving linear

algebra library on both CPUs [99] [51] and GPUs [13].

6.2 SAOU

Checkpoint/Restart (CR) is the most widely used fault-tolerance method for long-

running applications (CR). Checkpoint/Restart Checkpointing involves writing the current

state of a running process to a checkpoint file, which may then be used to restore the current

state of the process. In other words, periodically, CR takes a system snapshot and store it in

secondary storage (checkpointing phase). The current state is replaced with the previously

saved state in the event of a failure or migration, and execution continues from the most
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recent checkpoint (restoration phase). For CPUs, a number of CR techniques have been

developed at various levels including kernel, library, and application [83] [36].

Due to the lack of a specific operating system and appropriate runtime APIs to

extract compute information inside the kernel, none of the aforementioned approaches are

currently practical on NVIDIA GPUs. However, researchers have created a few GPU CR

algorithms in recent years despite these limitations.

The first GPU CR implementation was CheCuda [91]. CUDA applications using

CUDA driver API features are the current target of CheCUDA. CheCUDA releases CUDA-

related resources and saves all data of those resources prior to checkpointing. In order to

store the resource data, it overrides the CUDA resource data types with its own C++ class

types. Applications send those class objects as parameters to API functions. To intercept

API calls and call the relevant API functions with CUDA data, CheCUDA additionally

substitutes wrapper functions for the API functions. Therefore, even though recompilation

of the code is necessary, CR of a CUDA application does not need modifying the source

code. CheCuda is built on top of Berkeley Lab Checkpoint/Restart (BLCR) library [35].

BLCR is one of the CR solutions for Linux systems. BLCR, which is based on unique kernel

modules, permits checkpointing a wide variety of applications, including distributed and

multi-threaded ones. Like many other implementations, BLCR includes callback functions

to give processes that need to use resources that aren’t being checkpointed a method to

achieve CR. Furthermore, BLCR enables task migration between two distinct nodes if the

same shared libraries are accessible on both of them; a CUDA application may resume based

on a checkpoint file produced on a different node. Due to the fact that this library does not
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support CUDA contexts, CUDA contexts are backed up and deleted before checkpointing,

followed by BLCR checkpointing and then all destroyed GPU contexts are reallocated.

NVCR is another CR algorithm that was introduced in [68]. With NVCR, applica-

tions do not need to be recompiled since NVCR does not change the addresses of the CUDA

context after reallocation. Another program that uses the same strategy as CheCuda is

CheCL [88], but it was developed especially for OpenCL applications.

All of the CR solutions mentioned previously restart kernels and reload GPU state

in the event of failure and they are unable to reload a thread’s kernel-level computing state.

With these CR algorithms, we are not able to continue the application’s execution and we

need to come up with the solutions that do not need to restart the kernel.

6.3 GreenMD

There has been a lot of work done in recent years to investigate and improve the

energy efficiency of the kernels that are frequently utilized in scientific applications. Kernels

like matrix multiplication, LU factorization, Cholesky, and QR decomposition are examples

of such kernels. There are general methods that are employed to increase the energy efficiency

of the applications. Numerous methods have been suggested, which can be categorized into

the following categories: 1) Studies on the effects of DVFS on the execution of applications;

2) And works that introduce the runtime models to predict the GPU application performance

and/or power consumption.

Jiao et al. [43] investigated the impacts of core and memory frequency on applica-

tions with various features with regard to the effects of DVFS on various applications. The
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authors noted that as some applications were more sensitive than others to the scaling of each

frequency domain, the effect of frequency scaling on performance and power consumption

depended on the characteristics of the applications. An alternate strategy for DVFS requires

the development of accurate performance and/or power models that enable GPU behavior

prediction under various voltage and frequency conditions. In an effort to accurately repre-

sent the execution characteristics of GPGPU applications, GPU performance models are

generally developed based on GPU pipeline analysis [38,67,87], seeking to properly reflect

the execution characteristics of GPGPU applications. In some researches, the performance

models are based on profiling as well as the algorithmic knowledge of the application. For

instance, in [19], they introduce a performance model based on profiling the first iteration

and then using the algorithmic knowledge to predict the next iterations. Since the error

rate is only dependent on the profiling results of the first iteration, the error caused by

profiling will be accumulated in the later iterations and will become around 11.4%. In other

works [12], they use a similar approach, however, using an online calibration they avoid error

from accumulating and reduce the error rate but this approach adds the overhead of the

online calibration to the overhead of the performance model and needs application changes

ahead of time.

Some of the GPU DVFS runtime power modeling techniques are based on empirical

techniques, which call for the division of GPU micro-architectures and the analysis of the

kernel binary code [48]. Also, in [106], the authors use a micro-benchmark-based methodology

to create a throughput model for the instruction pipeline, shared memory access, and global

memory access, the three main components of GPU execution time and they are able to
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predict the performance of the GPU with a 5–15% error rate. However, these methods are

frequently product-specific and difficult to port to other architectures.

To utilize the DVFS, we introduce a simple model with up to 5% performance

overhead. Our performance model is based on the general GPU performance model which

could be used for different compute-intensive applications with a slight modification. The

introduced performance models

6.4 Fault Tolerant LU Decomposition

Almost every component of a computing system is susceptible to both hard and

soft errors. These errors can either result in inaccurate results or an anomalous termination

of the computing process; the former is known as a soft error, and the latter is known as a

hard error.

In contrast to hard error failures, soft errors are more harder to identify at runtime,

making them significantly more challenging to deal with [52] [17] [14] [102]. Recent studies

have revealed that soft errors happen in the GPUs as well and the rate of soft errors

substantially increases as the GPU workload increases [92].

As a general strategy, Triple Modular Redundancy (TMR) [58] may tolerate soft

errors. TMR runs three identical computation and report the output based on the majority

voting. Despite being a universal strategy that may be used for any application, it has an

extremely high overhead. To solve this problem. Later research proposed online ABFT,

which makes error correction considerably simpler and may detect faults during computation

when they are not propagated to the rest of the computation which makes it easier to deal
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with. Algorithm-based fault tolerance (ABFT) has frequently been used to identify errors in

matrix operations. Using this method, the matrices being operated on are assigned with a

row or column checksum. Many matrix operations can be verified to be valid at the end of

the calculation using a checksum, and these checksums can also be used to identify possible

errors after the computation is complete. ABFT can also be used for LU factorization. If

one checksum vector is used, it can only detect the error while with having both row and

column checksum vectors, it can detect and correct the error as well [4] [40] [40] [96].

Wu et al. proposed an online ABFT for matrix multiplication in [101]. Davies

introduced an online ABFT for LU decomposition in [23]. On distributed memory com-

puting systems, Wu et al. extended online ABFT to three fundamental one-sided matrix

decompositions: Cholesky, LU, and QR [100]. When performing Cholesky decomposition on

GPUs, Chen et al. developed an online ABFT technique to protect against both memory

and computation error [18] [15]. a comprehensive checksum-based LU decomposition was

introduced by Wu et al. to manage memory errors in CPU cache and registers [103].

For many matrix operations, the checksum method has been used to identify errors

and correct them after the calculation. In some implementation of the LU factorization, we

can also validate the relationship of the checksum in the middle of the computation. This will

result in preventing the errors from being propagated to the rest of the matrix which makes

it difficult to correct the errors. The incorrect elements in the matrix can be identified and

corrected using a checksum of a matrix. In some instances, one checksum is needed to identify

the error and a second is required to correct it. Diskless checkpointing is another approach

that is used for long running kernels. The data must be saved before performing a checkpoint
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so that it can be restored in the event of a failure. Saving the date to the disk is one of

approaches can be used. However, the low speed of writing and reading to the disk could be

a bottleneck if the disk needs to be shared between several processes. In case of failure, all

processes are restarted from the point of the previous checkpoint, and their data is restored

using the data stored on the disk. Diskless checkpointing [75] was developed to address

this problem. To avoid the slow write to disk, each processor stores its own checkpoint

state in memory. Diskless checkpointing and checksum-based checkpointing share common

similarities. Each checksum processor functions as the redundancy processor in a diskless

checkpoint when a checksum row is added to a processor grid. The difference is that the

technique naturally maintains the checksum data’s redundancy during the computation and

there is no need to checkpoint the data anymore. As a result, there are two key advantages:

the working processors do not need to use additional memory to store their checkpoint data,

and there is less communication overhead when a checkpoint is made.
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Chapter 7

Conclusion And Future Work

In this thesis, we introduced GreenMM, SAOU, GreenMD, and fault tolerant LU

factorization. These studies investigate the energy efficiency and reliability of key kernels

from high performance applications.

GreenMM presented a technique to save energy in GPUs through undervolting.

First, we profiled error distribution of different applications from Rodinia benchmark to

create an empirical fault model based on behaviour of the applications, while reducing

the GPU voltage beyond Vmin. After this point, the most predominant error was SDC

error, which can be corrected at the application level. Then, we designed a ABFT based

fault tolerant matrix multiplication algorithm to correct the errors. We evaluated energy

consumption and performance on NVIDIA GTX 980. Our experiments showed that energy

consumption can be reduced up to 19.8% using GreenMM, with performance overhead of

1.5%. Moreover, The GFLOPS/WATT improvement of the GreenMM in comparison to

the original MM for a matrix of size 10K is 9%.
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In SAOU, we proposed an energy efficient framework, that reduces energy consump-

tion of GPUs through undervolting and overclocking. Since going beyond the safe frequency

or voltage give rise to faults, we designed a checkpoint and recovery (CR) technique to handle

these faults. We created an empirical fault model to determine the number of checkpoints

at each level of undervolting and overclocking. For a MM with matrix of size 10K, SAOU

is able to save the energy consumption up to 22% through combined undervolting and

overclocking without sacrificing the performance.

With GreenMD, we presented an energy efficient framework to improve the energy

consumption of LU factorization on a heterogeneous mutil-GPU system. We profiled the

execution trace of a system with two GPUs and explained various kernel executions and data

transfers. This gave rise to detailed analytical models to predict the CPU/GPU execution

time, and PCIe bus transfer time. Then we applied DVFS to CPU and GPUs based on

the amount of slack predicted through our analysis. We designed appropriate APIs and

inserted them into the kernel to independently control the DVFS at each iteration. We

further improved the energy by reducing the voltage of CPU and GPUs independently

based on the minimum threshold voltages to avoid error. GreenMD’s energy consumption

was evaluated for two heterogeneous systems, one with a single GPU and the other with

two GPUs for a matrix size of 18K*18K. Our results showed that CPU and GPU energy

consumption improved by around 59% and 18%, respectively in a heterogeneous system

with a single GPU. Also, in a heterogeneous system with two GPUs, GreenMD reduces the

energy consumption of the CPU and GPU by 51% and 21%, respectively. The total energy

saved during the entire execution is 31%.
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Also, we suggested a fault-tolerant technique for the LU factorization by incorporat-

ing local and global row checksums into the initial matrix. We targeted the soft errors that

are becoming predominant types of errors nowadays. The local checksums were applied to

each local block of the matrix. The global checksums were the sums of the local matrices and

were placed at the end of the original matrix. In order to find errors in the different phases

of the LU factorization, local checksum were used. Recovery during the panel factorization

phase was achieved by rolling back to the previous state, or in this case, simply returning

to the beginning of the iteration. And the recovery for the row panel update and tail

matrix update phases was performed using the global checksum blocks. To enhance the

fault coverage capability, local checksums were added to each block and fault tolerance was

done in a block level. Also, to reduce the performance overhead of the FT algorithm, both

local and global checksums were generated in the GPUs. To even reduce the performance

overhead more, the frequency of the verification in less sensitive sections (row panel update

and trailing matrix) can be adjusted based on the error rate.
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Future work

There are many potential directions for future work in improving the energy

efficiency of high-performance applications on heterogeneous systems with multiple GPUs.

One potential area of focus is the development of more advanced power management

techniques, such as those that can dynamically adjust voltage and frequency in response to

changes in workload and other factors. Another possibility is to investigate new approaches to

algorithm optimization, such as using machine learning techniques to identify and eliminate

inefficiencies in code. Additionally, researchers could explore the use of hybrid systems that

combine multiple types of hardware, such as CPUs and GPUs, in order to achieve more

efficient systems. Another area of potential research is the use of energy-aware scheduling

strategies to optimize energy consumption on heterogeneous systems, taking into account

factors such as workload, and hardware utilization.
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