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Abstract

How do people rapidly learn rich, structured concepts from
sparse input? Recent approaches to concept learning have
found success by integrating rules and statistics. We describe a
hierarchical model in this spirit in which the rules are stochas-
tic, generative processes, and the rules themselves arise from
a higher-level stochastic, generative process. We evaluate this
probabilistic language-of-thought model with data from an ab-
stract rule learning experiment carried out with adults. In this
experiment, we find novel generalization effects, and we show
that the model gives a qualitatively good account of the exper-
imental data. We then discuss the role of this kind of model in
the larger context of concept learning.
Keywords: Probabilistic language of thought, Bayesian infer-
ence, abstract rule learning, computational model, induction,
generalization, behavioral experiment

Introduction
A foundational question about human cognition is how we
learn as much as we do from input that is often extremely
limited. From a few or even just one example, we can make
powerful and accurate generalizations. In language learning,
for example, there have long been debates about how we learn
the complex grammatical structures that we do, given input
that is relatively sparse. The ability to learn complex mental
representations on the basis of small data sets is also at work
in other cognitive domains such as visual perception (Marr
& Nishihara, 1978) and causal reasoning (Gopnik & Sobel,
2000) . These mental representations are important because
they abstract and summarize the regularities in our environ-
ment. By generalizing knowledge gained in specific settings,
they allow us to act in novel settings. For the field of cogni-
tive science, a key question is, since there are infinitely many
generalizations that are consistent with a finite input, why and
how do we generalize in the ways that we do?

To understand people’s generalizations, cognitive scientists
often debate the merits of statistical versus rule-based ap-
proaches. Statistical approaches are appealing because the
statistical regularities of data can often be learned relatively
easily. Advocates of rule-based approaches argue however,
that statistical regularities are inadequate and that, without
explicit rules, it is difficult to explain the full richness and
complexities of people’s generalizations (Marcus, 1999).

As pointed out by others, statistical and rule-based ap-
proaches are not mutually exclusive, but rather can be prof-
itably combined (Tenenbaum, Kemp, Griffiths, & Goodman,
2011; Aslin & Newport, 2012). For example, in the field of

artificial intelligence, the natural language processing com-
munity has long used models that use statistics to infer struc-
tured, arguably rule-based representations of syntax (Man-
ning & Schütze, 1999). Within the cognitive sciences, the
Rational Rules model (Goodman, Tenenbaum, Feldman, &
Griffiths, 2008) showed how we can account for human per-
formance by considering rule learning as Bayesian statistical
inference over a structured rule space. Hybrid statistical/rule-
based models are sometimes referred to as “probabilistic lan-
guage of thought” models.

Work in developmental psychology has strongly suggested
that even infants generalize in ways that go beyond sim-
ple statistical co-occurrences. Marcus, Vijayan, Bandi Rao,
& Vishton (1999) showed that seven-month-old infants can
learn to recognize sequences of syllables that follow an ABA
pattern like “ga ti ga” and “wo fe wo”, where the first and
third syllables are the same but differ from the middle syl-
lable. Gerken (2006) later showed that when infants are ex-
posed to stimuli that are consistent with both a broader (e.g.,
ABA) and a narrower generalization (e.g., AxA where x is a
specific syllable, not a class or set of syllables), the infants
tend to prefer the narrower generalization. This ability to
seemingly learn abstract rules from small data sets has even
been glimpsed in non-human animals (van Heijningen, Chen,
van Laatum, van der Hulst, & ten Cate, 2013).

To account for these types of experimental findings, Frank
& Tenenbaum (2011) modeled rule-like patterns with strings
that have a symbol for each token in the pattern. The symbols
indicate whether the token in a given position is a particular
token x, (isx), the same as another token at position n (=n),
or a wildcard (i.e., the symbol could be any token). They
modeled learning as Bayesian inference over these structures:
P(h|D) ∝ P(D|h) P(h), where h is a hypothesis representing
a specific choice of symbols and D is the observed data. The
likelihood P(D|h) is the probability of obtaining the exem-
plars in D via independent random draws from the set of all
strings consistent with h. Importantly, this likelihood follows
the “size principle” (Tenenbaum & Griffiths, 2001). If h is a
broad hypothesis that is consistent with many possible sets of
strings, then obtaining the specific set D from h is small (i.e.,
P(D|h) is small). In contrast, if h is a focused hypothesis that
is consistent with relatively few possible sets of strings, then
obtaining D from h is large (i.e., P(D|h) is large). Conse-
quently, likelihood functions that follow the size principle fa-
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vor focused hypotheses over broad hypotheses. In Frank and
Tenenbaum’s model, hypotheses were a priori equally likely
(i.e., P(h) was a uniform distribution).

Their model gives an impressive account of findings in the
literature for abstract rule learning across several domains.
Although this work is an important early step in developing a
probabilistic language-of-thought account of human general-
ization, it leaves open many important questions. Their model
is limited in the sense that it only includes the bare machinery
necessary to account for the specific findings that they con-
sider. To what extent can their model, or rather their general
theoretical framework, serve as a foundation for a richer and
more broadly-applicable model providing a more comprehen-
sive account of generalization? What is the full range of rules
that people might learn and that cognitive models will need
to account for? As noted by Frank and Tenenbaum, people
have built-in biases for certain hypotheses over others. What
are those biases, and how can they be included in a cognitive
model?

In light of these outstanding questions, we developed a
new probabilistic language-of-thought model for rule learn-
ing. This model uses a two-level generative process for ex-
plaining items in a data set. At the top level is a stochastic
generative process for generating rules. As explained below,
the generative process in our model is a probabilistic context-
free grammar, and this grammar generates rules. At the bot-
tom level, each rule is a stochastic generative process for gen-
erating data items. An innovative aspect of our model is that
rules are themselves stochastic generative processes. Because
data items are generated stochastically from rules, and be-
cause rules are generated stochastically from a probabilistic
grammar, the overall generative process forms a hierarchy.

To our knowledge, only one other computational model of
concept learning employs such a structure. Lake, Salakhut-
dinov, & Tenenbaum (2015) created a model of handwritten
character recognition that employed a two-level generative
model. The top level defined a distribution over the abstract,
symbolic representation of a character (the type), and then
given that specification, the bottom layer defined a distribu-
tion over concrete instances of that character as visual strokes
(the token). Our work relates to and extends this work by cast-
ing a hierarchical model in a more general context. The Lake
et al. model is highly customized for its domain, so it is un-
clear how to apply insights from that work to other domains,
except at the broadest conceptual level. Our model, however,
is built upon the more general Language of Thought frame-
work. Since this framework has already been successfully
applied to other domains, and since models in this framework
only require the specification of very general primitives, our
work is much more readily adaptable to other domains. This
also makes for a much more plausible cognitive explanation,
as the learning system requires far less manual engineering.

The model is a natural evolution of prior work on rule
learning. Previously, theoretical progress was made by in-
corporating stochasticity into the rule-learning process, and

here we incorporate stochasticity into the rules themselves.
The remainder of the paper is an exploration of this idea in an
abstract rule learning task in a visual domain.

Experiment
We conducted an experiment with adults to test their ability to
learn rule-based visual concepts from a small number of ex-
amples. Our visual stimuli were part-based 3D objects where
the parts act as tokens in an abstract rule (see Figure 1). There
were two groups of subjects (30 subjects per group). For one
group of subjects, the experiment used the rule ABA (as in the
experiment by Marcus et al. discussed above). For the other
group, the experiment used the rule xBB (as in the experiment
by Gerken discussed above; x is a specific token that is iden-
tical in all exemplars).

Figure 1: On top, the five parts used in the experiment. Par-
ticipants viewed these during the instructions phase. On the
bottom are the training exemplars for ABA and xBB condi-
tions.

The experiment was web-based, carried out on Amazon
Mechanical Turk. All subjects were US residents over the
age of 18. To eliminate the possibility of order and experi-
ence effects, each subject participated in only a single condi-
tion. The experiment consisted of three stages: an instruction
stage, a training stage, and a testing stage. As part of the in-
struction stage, participants were shown all five possible part
shapes. Following the instruction stage, subjects participated
in a training stage where they were shown three exemplars
from a category. Each subject was allowed to view the exem-
plars for as long as he or she wished. Training was followed
by testing. During testing, subjects were shown an array of 24
test items. Test items had the same general structure as train-
ing exemplars (three parts arranged linearly), but differed in
which parts occupied each position in an item. Participants
chose ‘yes’ or ‘no’ for each test item to indicate whether it
belonged to the same category as the training exemplars. The
exemplars remained available for viewing at the top of the
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web page for the duration of the test stage. At least one ex-
emplar was present in the test items. If a participant answered
‘no’ to that item, his or her results were excluded from the
analysis (1 and 2 subjects were excluded in the ABA and xBB
conditions, respectively).

Cognitive Model
In our implementation, concepts or hypotheses begin as
lambda calculus expressions. Lambda calculus is a form of
logic that is a universal model for computation (i.e., it is
equivalent in power to a Turing machine). It characterizes
computation using function abstraction and application via
variable binding and substitution. For ease of readability,
we present these expressions here as procedural “computer
programs”. These programs construct objects by sampling
parts from a fixed alphabet and then combining those parts
in a spatial order. They do so using simple set operations,
such as removing an element from a set. They can also
abstract over parts by assigning them to variables which can
be reused. An example program is the following:

let x1 = sample(A)
let x2 = sample(A− x1)
output x1→ x2→ x1

This program generates the set of objects following an
ABA pattern. The object is constructed by first randomly
sampling part x1 from the full alphabet, then randomly
sampling x2 from the set consisting of all parts except x1,
and finally combining those parts in the order x1→ x2→ x1.
The arrows specify the spatial relationship between parts.
Although repetition detection is not explicitly built in, it
arises as a natural consequence of the ability to form variable
abstractions.

We model learning by assuming that people select the most
probable rule or hypothesis h given the set of training exem-
plars D: argmaxhP(h|D). The posterior distribution over h
can be calculated using Bayes’ Rule: P(h|D) ∝ P(D|h)P(h).
This expression has a natural interpretation in our framework,
with the two probabilities corresponding to the two levels of
the hierarchy.

The likelihood P(D|h) is the probability that hypothesis h
generated the training exemplars in data set D. Assuming the
exemplars are drawn independently with replacement (known
as the “strong sampling hypothesis” (Tenenbaum & Griffiths,
2001)),

P(D|h) = ∏
d∈D

P(d|h)

where d is an individual exemplar. Note that each h, as in the
example above, is itself a stochastic generative model. There-
fore it naturally defines a distribution over its outputs. Con-
sider “running” the example program repeatedly. Each run
produces an independent output that depends on the randomly
sampled tokens. P(d|h) is the limiting distribution over those
outputs.

Figure 2: Parse tree for the example program discussed in the
main text.

The prior distribution P(h) is the prior probability of hy-
pothesis h. By employing the language-of-thought frame-
work, it too has a natural interpretation. Consistent with ear-
lier language-of-thought models, our model implements the
idea that hypotheses are language-like in that they are com-
positional. Just as sentences are structures built out of words,
our model’s hypotheses are structures built out of primitives.

This structure is specified by a probabilistic context-free
grammar G which defines the syntax for how primitives can
be combined. For this experiment, we provided primitive
functions sample(SET) which samples uniformly from a set,
set minus(SET, PART) which removes a part from a set,
and concatenate(STR, STR, ...) which concatenates strings
(which are in turn made up of parts). These primitives are in
addition to variable abstraction, which is an inherent property
of hypotheses by virtue of their lambda calculus core.

Because the grammar is probabilistic, it defines a distri-
bution over the structures it generates. Each non-terminal
in the grammar has an associated distribution that specifies
the probability that a production rule will be used to expand
that non-terminal. The prior probability of hypothesis h is the
product of the probabilities for each of the production rules
used in constructing h. In other words, if T is the parse tree
for h and ri is a rule in this tree, then

P(h) = ∏
ri∈T

P(ri|G).

Note that this prior distribution implements a form of Oc-
cam’s Razor. Since each probability P(ri|G) is less than one,
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ABA

xBB

Figure 3: For each test item, the graphs show the probability that subjects judged the item to be from the same category as
the training exemplars (plotted by the gray bars in each graph) compared to the probability predicted by our model (labeled
H-LOT) and the GCM model. The top and bottom graphs are for the ABA and xBB conditions, respectively.

hypotheses with short derivations tend to have higher proba-
bility than those with long derivations. The parse tree for the
example program discussed above is shown in Figure 2.

Finally, each hypothesis has an associated vector of vari-
ables θ which allow us to model additional factors that influ-
ence generalization. For this experiment, we used two vari-
ables. One indicated that the hypothesis should be orienta-
tion invariant, so that an expression that produced the object
a→ d→ d would also produce d→ d→ a. The other in-
dicated that the alphabet should only contain parts that have
been seen in the training exemplars rather than the full alpha-
bet of parts. Each of these parameters has an associated prior
probability, making the full posterior

P(h,θ|D) ∝ P(D|h,θ)P(h)P(θ).

We estimated this distribution in two steps. First we fixed
P(θ) and sampled the discrete variables h and θ using a
Metropolis-Hastings sampling algorithm (a type of Markov
chain Monte Carlo algorithm). Because we are sampling
in a discrete space, we can approximate the full distribu-
tion by saving unique samples and then normalizing. In our
Metropolis-Hastings algorithm, we used a slightly modified
version of the standard tree regeneration proposal distribu-
tion by Goodman et al. (2008). Next, since we have no a
priori information or theory to indicate how strong the prior
tendency to generalize to novel parts or to show invariance to
orientation should be, we fit P(θ) via gradient descent. Since
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our search space is tractable enough for the initial sampling
step to obtain an approximately complete set of samples, we
do not need to do any more sampling after fitting θ.

Results
The results are shown in Figure 3. For each test item, these
graphs show the probability that subjects judged the item to
be from the same category as the training exemplars (plotted
by the gray bars in each graph) as well as the probabilities pre-
dicted by two different models. For our model, its prediction
for a given test item was calculated by summing the posterior
probabilities for all hypotheses that produce that item:

P(t|D) = ∑
h,θ

P(h,θ|D)Iext(hθ)(t)

where I is the indicator function and ext(hθ) is the extension
of (the set of objects generated by) hypothesis h given param-
eters θ.

We also show results for the Generalized Context Model
(GCM) (Nosofsky, 1986), an exemplar model of category
learning that is commonplace in the cognitive science liter-
ature. The GCM is a similarity-based model; it determines
the category membership of a test item based on its similarity
(or inverse of distance) to the exemplars. For this domain, a
natural distance function would be one that assigns low dis-
tances (and thus high similarities) to pairs of objects that have
many parts in common, and high distances to those that have
parts that differ. This distance function would serve as a use-
ful comparison because, unlike our model, its representation
is relatively unstructured, and it does not have internal vari-
ables. We chose the Levenshtein string edit distance, which
gives the minimum number of insertions, deletions, or substi-
tutions needed to transform one string into another. We gave
this distance function a string representation of the objects.
For test item t, the predicted proportion of responses is given
by

P(t|D) = ∑
d∈D

e−c · Lev(t,d)

where c is a scaling parameter that we fit via gradient descent.
Subjects’ responses in our experiment showed large vari-

ability, as illustrated by the fact that many subject probabili-
ties (see gray bars in Figure 3) are not near 0 or 1. Despite this
variability, our model provides a reasonably good account of
subjects’ responses, particularly in the ABA condition. The
GCM model performs poorly; people’s generalizations in this
task reflect the latent structure present in the objects, thereby
going beyond simple similarities.

The tables in Figure 4 show the three hypotheses with the
highest probabilities according to our model. These results
suggest that the model correctly infers the target rules (ABA in
the top table of Figure 4 and xBB in the bottom table). How-
ever, people often deviate from the exact patterns given by
these rules, sometimes in interesting ways. For example, the
model and subjects may or may not generalize to test items
containing parts beyond those used by the training exemplars.

ABA
p hypothesis extension set size

.4

let x1 = sample(A)
let x2 = sample(A− x1)
output x1→ x2→ x1

20

.24

let x1 = sample(AR)
let x2 = sample(AR− x1)
output x1→ x2→ x1

6

.15

let x1 = sample(A)
let x2 = sample(A)
output x1→ x2→ x1

25

xBB
p hypothesis extension set size

.39

let x1 = "a"
let x2 = sample(A)
output x1→ x2→ x2

5

.21

let x1 = "a"
let x2 = sample(A− x1)
output x1→ x2→ x2

4

.18

let x1 = "a"
let x2 = sample(A)
output x1→ x2→ x2
or x2→ x2→ x1

5

Figure 4: The three top scoring hypotheses for each condition
as given by the model, along with their posterior probability
(p) and the number of objects each hypothesis generates. A is
the set of all parts, and AR is the set of parts that are present in
any of the exemplar objects. The model predicts that learned
hypotheses should not strictly follow the size principle, as
shown by the non-monotonic set sizes.

In addition, the model and subjects may or may not general-
ize to the linear reversal of patterns (e.g., BBx instead of xBB).
These creative generalizations suggest that people’s concept
space may be rich in ways that have only rarely been explored
by computational models in the cognitive science literature.

An interesting finding is that people often generalize in
ways that violate the “size principle” discussed above. For
instance, subjects in the xBB condition seem to often infer
the rule ABB. That is, despite the fact that the same token ap-
peared in the leftmost position of all training exemplars, sub-
jects seemed to infer that the leftmost token can be any part
so long as it differs from the tokens appearing in the other po-
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sitions. In general, the set sizes that people learned are highly
variable. This tells us that people are being strongly influ-
enced by the biases and structure of their hypothesis space,
which is captured reasonably well by the biases and structure
of the language-of-thought prior.

Discussion
We have shown how our theory of rule-based concepts as
structured, generative models provides a framework which
can profitably model concept learning in the domain of ab-
stract rules. Our approach has several features that make it
attractive as a general paradigm for theorizing in this domain.
First, it operates as an ideal observer (Geisler, 2003)—that
is, it defines optimal behavior under a set of assumptions.
The language-of-thought framework has the attractive prop-
erty that the modeler is forced to make those assumptions ex-
plicit; they must be encoded directly in the rules, choices of
primitives, and probabilities of the grammar. For instance, the
model in this paper assumed two computational primitives: a
uniform sample operation and an operation to remove an ele-
ment from a set. Furthermore, these assumptions are psycho-
logically interpretable. The modeling choices afforded by the
framework, such as the production probability of a rule, can
typically be mapped directly onto psychological phenomena.
For instance, we saw that in our experiment, subjects only
mildly penalized the complexity added by the use of set op-
erations. Because the framework allows us to decompose the
structure of concepts in these ways, we can identify the rele-
vant dimensions along which to aim further work.

As an example of how the framework gives us a lens
through which we can frame analyses, we identify several av-
enues for further investigation both in the domain of abstract
rule learning and in wider concept learning. The data hinted
that people may be incorporating primitives other than those
that we included in our model, perhaps ones that arbitrarily
permute or shuffle tokens, or ones that invert them, swapping
parts A and B. Would the incorporation of such primitives
improve model performance in this domain, and would those
primitives be relevant in other domains? There are several
dimensions of variation that may influence generalization—
the number of training exemplars, the number of tokens in
an object, the number of unique tokens across all exemplars,
etc. The probabilistic basis of the model allows it to make
predictions along all of these dimensions, but further empiri-
cal data is needed to test those predictions. More broadly, as
the framework allows us to identify potential representational
biases, we can then ask why people have those biases? Are
they the result of some deeper computational principle? And
do they need to be innate or can those biases be learned?

The work presented here is a proof of concept that a two-
level hierarchy of generative models can be a powerful frame-
work for modeling and interpreting human rule-learning phe-
nomena. Thinking of concepts as structured, stochastic rules
has promising potential to be a general theoretical tool for in-
vestigating concept learning in many contexts and domains.
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