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Abstract

Operator algebras in Solovay’s model

by

Andre Val Kornell

Doctor of Philosophy in Mathematics

University of California, Berkeley

Professor Marc A. Rieffel, Chair

The ultraweak topology on bounded operators on a Hilbert space is given by functionals of
the form x 7→

∑∞
n=0〈ηn|xξn〉 for

∑∞
n=0 ‖ηn‖2 < ∞ and

∑∞
n=0 ‖ξn‖2 < ∞. By analogy with

the ultraweak topology, we define the continuum-weak topology to be given by functionals
of the form x 7→

∫∞
0
〈ηt|xξt〉 dt for

∫∞
0
‖η‖2 dt < ∞ and

∫∞
0
‖ξt‖2 dt < ∞. In order to make

sense of the integral
∫∞
0
〈ηt|xξt〉 dt for arbitrary bounded operators x, we work in a model of

set theory where every set of real numbers is Lebesgue measurable: Solovay’s model.
Solovay’s construction produces transitive models of set theory that satisfy a number of

axioms that are convenient for analysis. In any such model, every set of real numbers sat-
isfies Lebesgue measurability, the Baire property, and the perfect set property. By Vitali’s
theorem, such a model cannot satisfy the full axiom of choice, but it does satisfy the axiom
of dependent choices, which allows us to make choices during a countable recursive construc-
tion. If we specify that the input model for Solovay’s construction satisfies the axiom of
constructibility, then the output model also satisfies the axiom of choice almost everywhere,
which allows us to make choices for any family of sets indexed by the real numbers, at almost
all indices.

Many, but not all, familiar theorems continue to hold in our Solovay model N. In general,
the proof of such a theorem relies only on the axiom of dependent choices, and not on the
full axiom of choice. However, it is impractically time consuming to scrutinize the proof of
every needed result down to first principles, so we develop an alternative approach. The
Solovay model N is obtained as an inner model of a forcing extension M[G], and it is closed
under countable unions, so many properties are absolute for N and M[G], that is, their
truth value is the same in both. We show how this observation can be leveraged to establish
sophisticated results in the Solovay model N.

We develop the properties of the continuum-weak topology by analogy with those of
the ultraweak topology. We then define a V*-algebra to be a ∗-algebra of operators that
is closed in the continuum-weak topology, by analogy with the definition of von Neumann
algebras. For each self-adjoint operator x in some V*-algebra, and each bounded complex-
valued function f on the spectrum of x, we can define the operator f(x), which is also in
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that V*-algebra. The role of V*-algebras in noncommutative mathematics is not discussed
in this dissertation; see [15].

Every C*-algebra A has an enveloping V*-algebra V ∗(A) which is universal among the
V*-algebras generated by the representations of A. If A is nonseparable, then it may not
have any nontrivial representations, so that V ∗(A) ∼= 0. However if A is separable, then
it is isomorphic to a C*-subalgebra of V ∗(A). If A is a commutative separable C*-algebra,
then it is isomorphic to the C*-algebra of all continuous complex-valued functions on some
compact metrizable space, and V ∗(A) is isomorphic to the von Neumann algebra of all
bounded complex-valued functions on that compact metrizable space. More generally, if A
is a separable C*-algebra of type I, then its enveloping V ∗-algebra is an `∞-direct sum of
type I factors, one for each irreducible representation of A.
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Chapter 1

Working in Solovay’s model

In this chapter, we explain how to verify that familiar theorems hold in the Solovay model
by appealing to absoluteness, and we briefly survey functional analysis in this new setting.
Our primary reference for Solovay’s construction is his original paper [27], from which we
have taken the notation M and N1. Jech’s Set Theory [11] is our reference for set theory in
general. Schechter’s Handbook of Analysis and its Foundations is an excellent reference for
the role of the axiom of choice in analysis. Some notation and terminology is reviewed in
appendix A.

1.1 The role of set theory

It is sometimes convenient to assume that every subset of R is Lebesgue measurable. For
example, it is difficult to make sense of definition 2.1.2 without this assumption. However,
Vitali’s theorem implies that this assumption is inconsistent with the standard development
of mathematics. Therefore, before proceeding with this assumption, we argue that many
familiar mathematical results are compatible with it. Thus, we are led to examine the
foundations of mathematics. We work with Zermelo-Fraenkel set theory because it is the
established foundational system for mathematics, and because its extensions and fragments
are the objects of modern research into consistency.

The role of set theory as a foundational system for mathematics may be explained with
a simile. Computers handle finite mathematical structures by storing their data as strings of
bits. Conceptually, a finite graph is not literally a string of bits, but an ideal computer can
search through finite graphs by searching through strings of the appropriate kind. Similarly,
the set {{}, {{}}} is not literally the number 2, but it is a set that is commonly used to
represent the number 2. Thus, a set should be thought of as a block of information that can
be used to represent a mathematical structure.

Set theory typically considers only the hereditary sets; a set is said to be hereditary iff
all of its elements are sets, all of the elements of its elements are sets, etc. The class V of
all hereditary sets is assumed to satisfy the Zermelo-Fraenkel axioms of set theory, denoted
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ZF. These axioms formalize our intuition of sets as classes of limited size. The class V
is also assumed to satisfy the axiom of choice, denoted AC. The theory ZF + AC, often
abbreviated ZFC, is the usual foundation for mathematics.

In summary: The class V of hereditary sets satisfies the theory ZFC, Zermelo-Fraenkel
set theory with the axiom of choice.

1.2 The interpretation of mathematics in set theory

Whatever one’s views on the foundation of mathematics, within standard mathematical
discourse we assume an external mathematical reality, which consists of mathematical objects
which may or may not have various mathematical properties, independent of our ability to
determine whether or not a particular mathematical object has a particular mathematical
property. For example, it is a simple consequence of classical logic that either there exists
an uncountable subset of R not equinumerous to R or there does not, despite the fact that
this proposition, the continuum hypothesis, cannot be decided from the usual mathematical
assumptions.

Thus, we imagine a multitude of mathematical objects, which form our universe of dis-
course, and each mathematical property yields a function from our universe to the set {>,⊥}
of truth-values, true > and false ⊥. We also often consider properties that apply jointly to a
finite sequence of objects O1, . . . ,On. For example, group isomorphism is a property of two
groups. Each such property yields a function that assigns a truth-value to each n-tuple of
objects. The propositions are mathematical properties that do not refer to any variable ob-
jects; these are true or false of the universe as whole. For example, the continuum hypothesis
is a proposition.

We use the word class to refer to the totality of objects satisfying a particular mathe-
matical property (of a single variable object). For us, classes are not mathematical objects,
but are simply properties that are identified if they hold of exactly the same objects.

In summary: The universe of mathematical discourse consists of mathematical objects.
Each property holds or fails for all values of variable objects O1, . . . ,On that it references,
where n depends on the property. A proposition is a property that references no variable
objects; it simply holds or fails.

The above picture is quite inconvenient for mathematical logic because of the diversity
of properties that appear in mathematical research. The foundation of mathematics in set
theory reduces the study of general mathematical properties to the study of the first-order
properties of the hereditary sets, which can be described succinctly and precisely. A first-
order property is one that can be expressed by a formula in the language of set theory, i. e.,
by a grammatically correct string using parantheses, variables, the membership symbol ∈,
and the logical symbols =, ¬, ∧, ∨, ∀, and ∃.

If hereditary sets are the possible strings of bits in our imaginary computer, then the
language of set theory is our programming language. The interpretation of mathematics in
set theory is essentially a function that assigns formulas of the language of set theory to
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mathematical properties, in a way that preserves logical structure and truth. In particular,
each property of n variable objects is interpreted as an n-ary formula of the language of
set theory, that is, a formula of the language of set theory that has n free variables. The
preservation of truth refers to the the requirement that if p is a proposition that is interpreted
as the 0-ary formula π, then p is true iff π is true in the class V of all hereditary sets.

The preservation of logical structure refers to the requirement that if a property p is
interpreted as the formula π, then the property “it is not the case that p” is interpreted
as the formula ¬π, the property “there is an object Om with property p” is interpreted as
the formula ∃xm : π, and so on. This requirement implies that any mathematical proof can
be formalized, i. e, transformed into a sequence of 0-ary set-theoretic formulas that can be
mechanically verified to be a proof, provided that the interpretations of our mathematical
assumptions themselves have formal proofs from our set-theoretic axioms, ZFC.

Due to the diversity of properties that appear in mathematical research, it is difficult
to expound an interpretation of mathematics in set theory here. The interpretations that
appear in the literature differ, for example, in their construction of the real numbers, i. e.,
in their interpretation of the property of being a real number. These differences are not
important for us, but for concreteness, we mention the interpretation given in Bourbaki’s
classic texts [4]. The one unacceptable feature of this interpretation is that it does not
respect equality, that is, there exists a hereditary set that codes both a set and a natural
number in this interpretation, even though there is no object that is both a natural number
and a set. This aspect of Bourbaki’s interpretation can be easily corrected, essentially by
encoding each object as a pair, with the first element indicating its type, and the second
element being its code in Bourbaki’s interpretation. This is the interpretation that we accept
as our standard interpretation.

In summary: We fix a standard interpretation of mathematics in set theory. The standard
interpretation sends each property referring to n variable objects to a set-theoretic formula
with n free variables, in a way that preserves logical structure. Each proposition is true iff
the corresponding 0-ary set-theoretic formula is true of the hereditary sets.

One advantage of Bourbaki’s interpretation is that all hereditary sets code themselves,
i. e., any property of hereditary sets that is expressible by a formula of the language of set
theory, is interpreted as that formula. This is not the case for the standard interpretation. In-
deed, suppose that the standard interpretation of the property p of hereditary sets expressed
by the formula ¬x0 ∈ x0 is ¬x0 ∈ x0. Then, the standard interpretation of the proposition
“all objects have property p” is ∀x0 : ¬x0 ∈ x0, which is true in the class of hereditary sets,
so all objects have property p. But, p is a property of hereditary sets, so we conclude that
all objects are hereditary sets, contrary to our conception of mathematical reality. Never-
theless, the standard interpretation of any proposition expressed by a set-theoretic formula
is provably equivalent to that formula, from the axioms of Zermelo-Fraenkel set theory.

Mathematical properties are not mathematical objects, but set-theoretic formulas are.
We use boldface for the former and lightface for the latter. For example, AC denotes the
axiom of choice as a proposition about hereditary sets, while AC denotes the set-theoretic
formula expressing this proposition, or equivalently, the standard interpretation of this propo-
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sition. Tarski’s undefinability theorem implies that the truth of a set-theoretic formula in
the class V of all hereditary sets is not a mathematical property.

1.3 Models of set theory

A model of set theory is a kind of simple directed graph; it is a set M equipped with a binary
relation ∈M that satisfies the axioms of Zermelo-Fraenkel set theory, in the same way that a
group is a set equipped with a binary operation that satisfies the group axioms. The existence
of a model of set theory obviously implies the consistency of ZF, so by Gödel’s incompleteness
theorem, it is impossible to prove that any model of set theory exists. Furthermore, by
Gödel’s theory of constructibility, the consistency of ZF implies the consistency of ZFC,
so the existence of a model of set theory cannot be proved from ZFC, either. However, if
we assume the consistency of ZF in addition to the Zermelo-Fraenkel axioms themselves,
then Gödel’s completeness theorem does yield a model of set theory. Furthermore, the
Löwenheim-Skolem theorem then yields a model of set theory that is countable in the usual
sense: it is a directed graph with countably many vertices.

The right notion of subobject for models of set theory is that of transitive submodels. If
M is a model of set theory, then N ⊆M is a transitive submodel if it is itself a model of set
theory when equipped with the membership relation inherited from M, and if it is “closed
under elements”, i. e., x ∈M y ∈ N implies that x ∈ N. This latter condition is visually
suggestive of transitivity in the usual sense, which explains the terminology. This condition
is important because it ensures that y represents the same set in N as it does in M; after all,
a set is determined by its elements. Each model of set theory M has a minimum transitive
submodel [5] [24] [25] [26], which may be degenerate in the sense that it fails to have some
of the ordinals in M.

If M is a model of set theory, then an inner submodel of M is a transitive submodel that
contains all the ordinals of M. Each model M has a minimum inner submodel LM, which
consists of all of the constructible elements of M. This minimum inner submodel satisfies
the axiom of constructibility, and therefore also the axiom of choice and the continuum
hypothesis. Thus, if there is a model of ZF, then there is a model of ZF + AC + CH; so the
consistency of the former theory implies the consistency of the latter.

In summary: There is a class of simple directed graphs called models of set theory. A
transitive submodel N of a model of set theory M is a subset N ⊆ M that is a model of
set theory with the inherited simple directed graph structure, such that all elements with an
arrow to some element in the subset N are themselves in the subset N. An inner submodel
is a kind of transitive model.

We can evaluate each 0-ary set-theoretic formula in a given model M of set theory in the
obvious way; this is Tarski’s definition of truth. For example, the formula ∀x1 : ¬x1 ∈ x1 is
true in every model of set theory M, because the binary relation ∈M is necessarily irreflexive.
The set-theoretic formulas that are evaluated as true are closed under logical consequence,
so in particular, they are logically consistent. The interpretation of mathematics in M refers
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to the composition of this evaluation with the standard interpretation of mathematics in
set theory. Thus, we say that a proposition is true in M iff the corresponding 0-ary set-
theoretic formula is true for M. Of course, the propositions true in M are also closed under
logical consequence, and are therefore consistent with each other. Note that the standard
interpretation of any proposition about hereditary sets expressed by a 0-ary set theoretic
formula is provably equivalent to that formula, so such a formula is true in a model via the
standard interpretation iff it is true in that model in the obvious sense.

The truth or falsehood of a set-theoretic formula with one or more free variables obviously
depends not only on the given model of set theory, but also on the values of those variables.
For example, in any transitive model, the formula ∀x2 : ¬x2 ∈ x1 is true only of the empty
set. The standard interpretation of a property p of n object variables is an n-ary set-theoretic
formula π which is true or false for any n-tuple of elements of a transitive model M. If π
is true of x1, . . . , xn, we say that in M these hereditary sets code objects with property p,
or, following a standard abuse of terminology, that in M these hereditary sets are objects
with property p. Thus, the phrase “a transitive model in M” is ambiguous; it may describe
an element of M that is a transitive model, or an element of M that satisfies the standard
interpretation of the property “is a transitive model” in M. In fact, the hereditary sets in
M in the latter sense form a model of set theory that is canonically isomorphic to M. If
x and y are elements of M, we say that x codes y iff x is mapped to y by this canonical
isomorphism.

In summary: A proposition is true in a model of set theory M iff its standard inter-
pretation is true in M, in the obvious sense. A property of n variable objects is true in a
model of set theory M for the elements x1, . . . xn of M iff its standard interpretation is true
for x1, . . . xn in M, in the obvious sense. In this case, we say that x1, . . . , xn code (or are)
objects with the given property in M.

The class V of all hereditary sets, equipped with its usual membership relation, is as-
sumed to satisfy the axioms of Zermelo-Fraenkel set theory, but it is not a model of set
theory because it is not a set. We may extend the definition of model of set theory to
include structures that are large in this sense, just as we sometimes extend the definition
of fields to include the field of surreal numbers, which is a proper class. That the axioms
of Zermelo-Fraenkel set theory are true in V implies their consistency in the sense that we
cannot obtain a contradiction by reasoning from them, but the axioms themselves do not
imply the consistency of ZFC, the set of Zermelo-Fraenkel axioms as mathematical formulas.
Though we may speak of the truth or falsehood of a 0-ary formula, as it applies to the class
V of all hereditary sets, it follows by Tarski’s undefinability theorem that these are not a
mathematical properties. By contrast, the truth of a 0-ary set-theoretic formula in a model
of set theory is a mathematical property.

A transitive model is, intuitively, a model of set theory that is a transitive submodel of
V. Thus, a transitive model is a set M of hereditary sets that is a model of set theory if it
is equipped with the usual membership relation, inherited from V, and if it “closed under
membership” in the sense that x ∈ y ∈ M implies x ∈ M. The existence of a transitive
model cannot be proved from the consistency of ZFC, because there is a model of set theory



CHAPTER 1. WORKING IN SOLOVAY’S MODEL 6

in which the former proposition is false, but the latter proposition is true. The consistency of
ZFC is the proposition that there does not exist a finite combinatorial object of a particular
kind, namely a proof of a contradiction using axioms of ZFC, and any such proposition is
true in any transitive model iff it is actually true, i. e., there is no mathematical object
of this kind in the external mathematical reality that we presuppose. In particular, the
consistency of ZFC is true in the minimum model of set theory. However, the existence
of a transitive model of set theory is false in the minimum model, essentially because the
minimum model is the minimum transitive model, so it cannot contain any transitive models
as elements. However, if there exists a (strongly) inaccessible cardinal κ, in the sense that
κ is uncountable, that a set with fewer than κ elements also has fewer than κ subsets, and
that the union of fewer than κ sets, each having fewer than κ elements, itself has fewer than
κ elements, then Vκ, the set of all hereditary sets of rank less than κ, is a transitive model of
ZFC. The application of the downward Löwenheim-Skolem theorem, followed by Mostowski
collapse, then yields a countable transitive model.

In summary: A transitive model is a hereditary set M such that every element of an
element of M is itself an element of M, and such that M becomes a model of set theory if it
is equipped with the usual membership relation.

Forcing is a fundamental set theoretic technique, whose simplest formulation is in terms
of countable transitive models. If M is a countable transitive model, and B codes a complete
Boolean algebra in M, then B codes a countable Boolean algebra in V. The Rasiowa-Sikorski
lemma implies that B admits a Boolean algebra homomorphism to the two-element Boolean
algebra {⊥,>} that is M-normal, i. e., it respects the join of any subset of B that is itself
in M. The set of elements mapped to > by such a Boolean algebra homomorphism is called
an M-generic ultrafilter on B. Usually, forcing over B is thought of as adding an M-generic
ultrafilter on B to the transitive model M, but it can be equivalently thought of as adding an
M-normal Boolean algebra homomorphism B → {⊥,>} to the transitive model M. If G is
an M-generic ultrafilter on B, then M[G] is the minimum transitive model that includes M
and contains G, and careful selection of the complete Boolean algebra B determines many
of the properties of M[G].

In summary: If M is transitive model, and G is a hereditary set not in M, then M[G]
denotes the smallest transitive model that contains G and has M as a transitive submodel.

For example, if M is the minimum transitive model of set theory, λ is Lebesgue measure
inside M, and B is the complete Boolean algebra of projections of L∞(R, λ) inside M, then
each M-generic ultrafilter G on B corresponds to a so-called “random real number”, a real
number not in M. A set is constructible in M[G] iff it is in the smallest inner model of M[G],
so random real numbers are not constructible. A variant of this choice of complete Boolean
algebra adds ℵ2 random real numbers, so that the continuum hypothesis fails in M[G].
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1.4 Solovay’s Model

Solovay’s construction begins with a countable transitive model M of set theory that satisfies
axiom of choice and the existence of an inaccessible cardinal. The properties guaranteed by
Solovay’s construction are not quite sufficient for us, so we ask that our countable transitive
model additionally satisfy the axiom of constructibility. This approach was suggested to me
by John Steel.

The existence of such countable transitive models can be established from the existence
of two inaccessible cardinals κ0 < κ1. In this case, κ0 is also an inaccessible cardinal in Vκ1 ,
a transitive model satisfying the axiom of choice. Appealing to the downward Löwenheim-
Skolem theorem, and then to Mostowski collapse, we obtain a countable transitive model
M̃ that satisfies both the existence of an inaccessible cardinal and the axiom of choice.
Thus, M contains an ordinal κ that is an inaccessible cardinal in M̃; of course κ is actually
countable, i. e., countable in V. The countable transitive model M̃ has a least inner model
LM̃, which we will call simply M, and which satisfies the axiom of constructibility. The
axiom of constructibility implies both the axiom of choice, and the continuum hypothesis.
The ordinal κ is also an inaccessible cardinal in M.

In summary: If there exist two strongly inaccessible cardinals, then there exists a count-
able transitive model M that satisfies the axiom of constructibility, the axiom of choice, the
continuum hypothesis, and the existence of an inaccessible cardinal.

We now apply Solovay’s construction to M, which may be sketched as follows: There is
a complete Boolean algebra in M, such that the inaccessible cardinal κ becomes the least
uncountable ordinal in the corresponding forcing extension M[G]. This forcing is termed the
Lévy collapse of κ to ℵ1. One of the consequences of this collapse is that almost every real
number in M[G] is random over M[s] for every real number s in M[G].

Solovay shows that all sets of real numbers definable in M[G] by a set-theoretic formula
using parameters in M and R satisfy Lebesgue measurability, the Baire property and the
perfect set property. A set X of real numbers satisfies Lebesgue measurability iff there is
a Gδ set that differs from X on a null set, that is, on a subset that can be covered by a
countable family of intervals, the sum of whose lengths is arbitrarily small. A set X of real
numbers satisfies the Baire property iff there exists an open set that differs from X on a
meager set, that is, a subset that can be covered by a countable family of closed nowhere
dense sets. A set X satisfies the perfect set property if it is either countable (possibly finite)
or contains a perfect set, that is, a nonempty subset that is closed and has no isolated points.
Solavay also shows that if X ⊆ R2 is definable in M[G] using parameters in M and R, and
for all x ∈ R there exists y ∈ R such that (x, y) ∈ X, then there exists a Borel function
h : R → R such that (x, h(x)) ∈ X for almost all x ∈ R. This is a weak form of the axiom
of uniformization, itself a weak form of the axiom of choice.

We will work in the inner model N1 of M[G], which consists of all sets hereditarily
definable using sequences of ordinals as parameters, i. e., all sets that are definable using
sequences of ordinals as parameters, all of whose elements are also definable using sequences
of ordinals as parameters, and so on. Solovay shows that every sequence of ordinals is
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definable from parameters in M and R, so in particular any set of real numbers in N1 satisfies
Lebesgue measurability, the Baire property, and the perfect set property in M[G]. It is then
straightforward to show these same properties in N1, appealing to their absoluteness, which
is described below.

Theorem 1.4.1 (Solovay [27, lemma III.2.6, theorem 1]). The inner submodel N1 of M[G]
is closed under countable unions. Also, the transitive model N1 satisfies:

1. DC, the axiom of dependent choices (there is an infinite walk through any directed
graph starting from any vertex),

2. LM, the Lebesgue measurability axiom (every set of real numbers is Lebesgue measur-
able),

3. BP, the Baire property axiom (every set of real numbers has the Baire property), and

4. PSP, the perfect set property axiom (every set of real numbers is either countable or
contains a perfect subset).

Solovay establishes the four above principles in N1 without assuming that M satisfies the
axiom of constructibility. This assumption implies that the Solovay model N1 also satisfies
the following choice principle, which is established in appendix B:

5. ACae, the axiom of choices almost everywhere (for every family of nonempty sets
indexed by R there is a function on R whose value at almost every real is in the
corresponding set).

The principles DC, LM, BP, and PSP are known to imply the following:

6. All ultrafilters on N are principal. All ultrafilters are countably additive.

7. Every linear function between Fréchet spaces is continuous [8]. Every linear function
between Banach spaces is bounded.

8. For every Banach space, its algebraic dual is equal to its continuous dual. For all
σ-finite measure spaces S, L∞(S)∗ = L1(S) [30], and in particular `∞(N)∗ = `1(N)
[22].

To see 6, observe that any nonpricipal ultrafilter on N yields a subset U ⊆ ZN
2 , such

that the membership of any infinite sequence s ∈ ZN
2 in U does not depend on any finite

initial segment of s, and furthermore {U,U + 1} is a partition of ZN
2 . Suppose that U

is measurable with respect to the coin-flip measure. The symmetry between 0 and 1 in
the definition of this measure then implies that the measure of U is 1

2
; this contradicts

Kolmogorov’s zero-one law, which implies that the measure of U must be 0 or 1. Thus, U is
not measurable, which contradicts DC + LM; see 1.7.5. We conclude that every ultrafilter
on N is principal. Now, suppose that on some set X there exists an ultrafilter U that is
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not countably additive. It is straightforward to partition X into a countably many subsets
that are not in the ultrafilter. The pushforward of U to the set of partition blocks is then a
nonprincipal ultrafilter on a countable set, which contradicts our previous finding that there
are no nonprincipal ultrafilters on N.

That the inner submodel N1 of M[G] is closed under countable unions means that
⋃
x∈X x

is an element of N1 whenever X ⊆ N1, X ∈ M[G], and X is countable in M[G]. This last
condition is a bit awkward to define within the framework of our approach; it does not
mean that X codes a countable hereditary set in M[G], but rather that the hereditary set
coding X in M[G] codes a countable set in M[G]. It is equivalent to saying that there is an
enumeration (xn) of X such that the set {{0, x0}, {1, x1, }, {2, x2} . . .} is in M[G], where 0
denotes the natural number 0 in M[G], i. e., the unique element of M [G] that satisfies the
standard interpretation of the property “is zero”, and likewise for the other natural numbers.

The fact that the inner submodel N1 of M[G] is closed under countable unions implies
that every countable sequence in M[G] of objects in N1 is in N1. This has the consequence
that every Cauchy sequence in M[G] from a metric space in N1 is in N1, so in particular
every real number in M[G] is in N1, and any metric space in N1 that is complete in N1 is
also a complete metric space in M[G]. The absoluteness of many items in section 1.6 relies
crucially on these facts.

1.5 Absoluteness

Some familiar results fail in the Solovay model N1, but many continue to hold. How can we
verify that a familiar theorem continues to hold in N1?

The brute force approach is to carefully check the proof to see whether it uses only a
fragment of choice provable from ZF + DC + ACae. It is necessary to check the proof down
to the foundations, i. e., to check also the proofs of logically preceding results. It would take
a good deal of time and care to scrutinize the material of the standard textbooks in some
subject area. Yet, after this work is complete, we will have established only the most basic
results of a single branch of mathematics. The task of scrutinizing a significant portion of
published mathematical research in this way is effectively insurmountable.

In summary: If the usual proof of a theorem uses only the choice principles DC and
ACae, then it is true in the Solovay model N1.

The better approach is to appeal to the absoluteness of many mathematical properties.
This approach demands the we scrutinize the statement rather than the proof of a familiar
mathematical theorem. The statement of Fermat’s last theorem is very simple, and we can
easily verify that it holds in the Solovay model N1 without examining its proof at all.

Absoluteness may be defined for any pair of models, but we will appeal to absoluteness
only for the pair (N1,M[G]), as they are defined in the section above. A proposition is
absolute for this pair in case it is true in N1 iff it is true in M[G]. In general, a property
of n variable objects is absolute for this pair in case for all x1, . . . , xn from N1, the given
property holds of x1, . . . , xn in N1 iff it holds of x1, . . . , xn in M[G]. We are concerned only
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with the Solovay model N1, so we use the unqualified term “absolute” to mean absolute for
the pair (N1,M[G]).

In summary: A property p of n variable objects being absolute means that for all x1, . . . , xn
in N1, these hereditary sets code objects with property p in N1 iff they code objects with
property p in M[G].

If we imagine each n-ary set-theoretic formula as a program which takes n blocks of data,
stored as hereditary sets, as input, and outputs either true or false, then we might imagine
the transitive models N1 and M[G] as computers with different capabilities. The registers
of the computer M[G] can store more data than the registers of computer N1, so a program
that asks the computer to search through blocks of data of the appropriate kind searches
through more blocks on M[G] than on N1, and so might yield a different result. Intuitively,
a property is absolute for the pair (N1,M[G]) if the corresponding program produces the
same result on either machine, for any input that can be made to both machines.

Suppose that p is an absolute proposition that is a theorem of ordinary mathematics.
It follows that the corresponding 0-ary set-theoretic formula is provable from ZFC. The
transitive model M[G] satisfies the axioms of ZFC, so p is true in M[G]. Appealing to
absoluteness, we find that p is true in the Solovay model N1. Thus, any absolute proposition
that is a theorem of ordinary mathematics is true in the Solovay model.

Suppose now that p is an absolute property of a single variable object, and that it is a
theorem of ordinary mathematics that all objects have this property. As above, it follows
that in M[G] every element codes an object with property p, and since this property is
absolute, we conclude that in N1 every element codes an object with property p. Thus, if it
is a theorem of ordinary mathematics that every object has the absolute property p, then,
in N1, every object has the property p. This reasoning generalizes easily to properties that
refer to more than one variable object.

In summary: If p is an absolute property of the variable objects O1, . . . ,On, and it is a
theorem of ordinary mathematics that all tuples of objects O1, . . . ,On have property p, then
in the Solovay model N1, all tuples of objects O1, . . . ,On have property p.

For example, we will show that the property “if O1 is a finite abelian group, then O1 is
isomorphic the direct sum of a finite set of cyclic groups” is an absolute property. Since, it is
a theorem of ordinary mathematics that this property holds of all objects, we can conclude
that, in the Solovay model N1, it holds of all objects.

1.6 Establishing absoluteness

The core of this section is a list of absolute properties that the reader can use to verify
theorems as they come up. This list is preceded by several clarifications to help orient the
reader.

1.6.1. The absoluteness of defined symbols, e. g., of defined operations, is a well established
concept in set theory; for example, see [24, section 2]. The presentation here is designed to
be applied by mathematicians not working in logic, and it proceeds further into ordinary
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mathematics than the other presentations of absoluteness known to me. The absoluteness
of a formula of the language of set theory is usually a straightforward consequence of the
following basic principles, whose meaning we do not explain:

i. Absolute formulas are closed under Boolean combination and bounded quantification.

ii. Being the initial segment Vω+1 of the set theoretic universe is absolute.

iii. Being the set of countable sequences from a given set is absolute.

iv. Being the image of a given set under an absolute functional class is absolute.

These principles are sufficient to obtain the provided list of absolute properties in the stan-
dard interpretation. Furthermore, a minority of the properties on this list is sufficient to
obtain the rest of the list without reference to the standard interpretation, because complex
mathematical objects such as C*-algebras are widely understood to be defined in terms of
basic mathematical objects such as sets, functions, and numbers.

1.6.2. For convenience, we rely on one convention of the standard interpretation: we assume
that each structure, such as a group, a metric spaces, or an operator algebra, is the tuple of
its parts, in the style of Bourbaki. For example a group is a 4-tuple (G, · , e,−1 ). This frees
us from having to state separately that, for example, being the metric of a metric space is
an absolute property.

1.6.3. Mathematical assertions are often phrased in terms of definite descriptions such as
“the set of natural numbers” or “the spectrum of a”. We enable definite descriptions by
extending the language of set theory to include terms of the form

ιx : π(x, y0, . . . , yn),

which denotes the unique x that satisfies π(x, y0, . . . , yn) for the tuple (y0, . . . , yn), provided
there exists a unique such x for all tuples (y0, . . . , yn). If there is a unique such x in both
N1 and M[G], and furthermore the formula π(x, y0, . . . , yn) is absolute, then for all values of
(y0, . . . , yn) in N1, the term ιx : π(x, y0, . . . , yn) denotes the same set in M[G] as it denotes
in N1; in this case we say that ιx : π(x, y0, . . . , yn) is absolute.

If the property p is interpreted by the formula π(x, y0, . . . , yn), then the definite descrip-
tion “the x such that p” is interpreted by the term ιx : π(x, y0, . . . , yn), and we say that this
definite description is absolute in case the term ιx : π(x, y0, . . . , yn) is absolute. In practice,
a definite description is only meaningful for certain types of parameters, e. g., “the Euler
characteristic of X” is not defined for C*-algebras X. We therefore adopt the convention
that definite descriptions denote the empty set for parameters that are not of the appropriate
type. This convention is of no practical significance, as a careful use of definite descriptions
is a basic part of natural mathematical thought.

We summarize the situation by saying that we may freely use definite descriptions, just
as we do in ordinary mathematical discourse, and that an absolute definite description is
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one that denotes the same object in both N1 and M[G]. A definite description “the x such
that p” is absolute if p is an absolute property that is a definition of x in both M[G] and
N1, and the parameters of p range over an absolute class, i. e., over all tuples satisfying a
given absolute property.

1.6.4. “The class of groups” is not a definite description in the sense above. We can express
individual classes by formulas, but we cannot encode all classes by hereditary sets; this
would lead to Russell’s paradox. We will instead say that “the class of groups” is a class
description, and that a class description “the class of x such that p” is absolute in case p
is absolute and every object x satisfying p for appropriate parameters in the Solovay model
N1 is itself in N1. Note that if the class of objects x such that p is always a set in both
M[G] and N1, then “the class of x such that p” is absolute iff “the set of x such that p” is
absolute.

We treat category descriptions in the same way, but with some sensitivity to the category-
theoretic viewpoint. A category description consists of properties that specify the class of
objects, the class of morphisms, the composition of morphisms, etc. To be termed absolute, a
category description should satisfy the following conditions: First, its constituent properties
should be absolute. Second, for all appropriate parameters from the Solovay model N1,
every morphism between objects in N1 should itself be in N1. Third, for all appropriate
parameters from N1, every object should be in N1 up to isomorphism; we do not ask that
these isomorphisms be canonical in any way. Thus the two categories need not be equal, but
they must be weakly equivalent. Note that the class description “the class of x such that
p” is absolute iff the category description “the category of x such that p with only identity
morphisms” is absolute. Thus, definite descriptions of sets can be viewed as a special case of
class descriptions, which, in turn, can be viewed as a special case of category descriptions.

We remark that, because the axiom of choice fails in the Solovay model N1, when working
with categories in the Solovay model, the appropriate notion of equivalence of categories is
anaequivalence [17].

Below, p and q denote arbitrary absolute properties, t and s denote arbitrary absolute
definite descriptions, and n denotes an arbitrary numeral. All other symbols denote variables,
and symbols in parentheses denote bound variables that do not name objects for which the
stated property holds or fails. The following are absolute:

1. s where the variable (x) has value t

2. p where the variable (x) has value t

3. not p

4. p and q

5. p or q

6. if p then q
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7. x is equal to y

8. X is a set

9. x is an element of the set X

10. the set of elements (x) of the set X such that p

11. the set X is a subset of the set Y

12. the union of sets X and Y

13. the intersection of sets X and Y

14. the set X excluding the elements of the set Y

15. the union of the sets in the set X

16. the set X is empty

17. there exists an element (x) in the set X such that p

18. for all elements (x) of the set X it is the case that p

19. f is a function

20. the domain of the function f

21. the codomain of the function f

22. the value of the function f at an element x of its domain

23. the function f is injective

24. the function f is surjective

25. the range of the function f

26. the surjective function that maps each element (x) of the set X to t

27. the inclusion function of the subset X into the set Y

28. the identity function on the set X

29. the composition of composable functions f and g

30. the inverse of invertible function f

31. the set of natural numbers
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32. the natural number n

33. the sum of natural numbers n and m

34. the product of natural number n and m

35. the natural number n is less than the natural number m

36. the set of functions from the set of natural numbers to the set X

37. the set of n-tuples of elements of the set X for the natural number n

38. the m-th element of the n-tuple −→x for the natural number m less than the natural
number n

39. the set of n-tuples whose m-th element for the natural number m less than the natural

number n, is an element of the m-th element of the n-tuple
−→
X of sets

40. the set X is finite

41. the set X is countable

42. the set of finite subsets of X

43. the set of countable subsets of X

44. the set of functions from the countable set X to the set Y

45. R is a binary relation

46. the domain of the binary relation R

47. the codomain of the binary relation R

48. the binary relation R is symmetric

49. the binary relation R is antisymmetric

50. the binary relation R is transitive

51. the binary relation R is reflexive

52. the binary relation R is an equivalence relation

53. the set of equivalence classes of the equivalence relation R

54. the function taking each element of the domain of the equivalence relation R to its
equivalence class

55. G is a group
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56. R is a ring

57. F is a field

58. A is an algebra

59. V is a vector space

60. X is a basic space, i. e., X is a set equipped with a topological basis

61. the function f from the basic space X to the basic space Y is continuous

62. the closure of the subset Y of the basic space X

63. f is a net in the set X

64. the net f in the basic space X converges to the point x

65. the basic space X is separable

66. the basic space X is Polish, i. e., it is a set equipped with a separable completely
metrizable topology

67. the set of continuous maps from the Polish space X to the Polish space Y

68. the set of open subsets of the Polish space X

69. the set of closed subsets of the Polish space X

70. the set of Borel subsets of the Polish space X

71. the set of Borel functions from the Polish space X to the Polish space Y

72. the ring of integers

73. the field of real numbers

74. the field of complex numbers

75. the function f between Euclidean spaces is smooth

76. M is a smooth manifold

77. the function f between smooth manifolds is smooth

78. the extended real line, i. e., the closed interval [−∞,+∞]

79. the Lebesgue integral as a function from Borel sets of real numbers to the extended
real line
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80. the set X of real numbers is Lebesgue measurable

81. the extended complex plane

82. the function f is holomorphic

83. the function f is entire

84. X is a metric space

85. the basic space obtained from the metric space X, i. e., the set of points of the metric
space X equipped with the topological basis of open balls

86. the metric space X is complete

87. X is a Banach space

88. the dual space of the separable Banach space X

89. X is a Banach algebra

90. H is a Hilbert space

91. the subset X of the Hilbert space H is an orthonormal basis

92. x is a bounded operator on the Hilbert space H

93. A is a concrete C*-algebra of operators on a Hilbert space H

94. the space of ultraweakly continuous functionals on the concrete C*-algebra A

95. A is an abstract C*-algebra

96. µ is a state on the abstract C*-algebra A

97. π is a ∗-homomorphism from the abstract C*-algebra A to the abstract C*-algebra B

98. ρ is a ∗-homomorphic action of the abstract C*-algebra A on the Hilbert space H

99. H is a separable Hilbert space

100. the set of all separable concrete C*-algebras on the separable Hilbert space H

101. the set of all von Neumann algebras on the separable Hilbert space H

102. the state space of the separable C*-algebra A

103. the C*-algebra A is approximately finite dimensional
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104. the von Neumann algebra M on a separable Hilbert space H is approximately finite
dimensional

105. the separable C*-algebra A is type I

106. the von Neumann algebra M on the separable Hilbert space H is type I

107. the von Neumann algebra M on the separable Hilbert space H is type II

108. the von Neumann algebra M on the separable Hilbert space H is type III

109. the factor M on the separable Hilbert space H is type In for the natural number n

110. the factor M on the separable Hilbert space H is type I∞

111. the factor M on the separable Hilbert space H is type II1

112. the factor M on the separable Hilbert space H is type II∞

113. the factor M on the separable Hilbert space H is type IIIλ for the real number λ

114. the category of countable graphs and graph morphisms

115. the category of countable groups and group homomorphisms

116. the category of second countable locally compact Hausdorff spaces and continuous
maps

117. the category of second countable locally compact groups and continuous group homo-
morphisms

118. the category of second countable compact Hausdorff spaces and continuous maps

119. the category of complete separable metric spaces and contractive maps

120. the category of Polish spaces and continuous maps

121. the category of standard Borel spaces and measurable functions

122. the category of separable Banach spaces and bounded linear maps

123. the category of separable Hilbert spaces and bounded linear maps

124. the category of separable C*-algebras and bounded linear maps

125. the category of separable C*-algebras and ∗-homomorphisms

126. the category of separable C*-algebras and C*-morphisms
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127. the category of von Neumann algebras on separable Hilbert spaces and ultraweakly
continuous linear maps

128. the category of von Neumann algebras on separable Hilbert spaces and ultraweakly
continuous unital ∗-homomorphisms

129. the category of Borel equivalence relations on Polish spaces and Borel reductions

130. the class of ordinals

131. the ordinal α is less than the ordinal β

132. the set of countable ordinals

133. the smallest uncountable ordinal

Example 1.6.5 (terms and equations). We begin with item 22: “the value of the function f
at an element x of its domain” is an absolute definite description; symbolically, “f(x)” is
absolute. Item 1 explains that substitution preserves absoluteness, so nested terms such as
“f(g(h(x)))” are absolute. Next, we can deduce that being the m-th element of a pair, or any
n-tuple is absolute, so “the pair whose first element is x0 and whose second element is x1” is
an absolute definite description; symbolically “(x0, x1)” is absolute, and similarly for all n-
tuples. We now combine these observations to deduce that arbitrary terms formed of nested
function symbols of arbitrary arity, e. g., “f(g(x, y), h(y))”, are absolute. Finally, since
the substitution of absolute definite descriptions into an absolute property yields another
absolute property, we deduce that any equation is absolute.

Example 1.6.6 (Associativity of addition). The example above shows that the equation (n+
m) + k = n + (m + k) is absolute, so we might be tempted to jump to the conclusion that
addition of natural numbers is associative in the Solovay model N1, because it is associative
normally, but we have said nothing about the variables n, m, k and +! However, the property
“if + is the addition of natural numbers and n is a natural number and m is a natural number
and k is a natural number, then (n+m) + k = n+ (m+ k)” is absolute; since it holds for all
objects in M[G], it holds for all objects in N1. Thus, the associativity of addition is verified
in the Solovay model N1.

Example 1.6.7 (quantification). Consider the equation “x ·x ·x = 2”. It is absolute, together
with the specifications that x denotes a real number, that · denotes muliplication, and that
2 denotes the number two. This equation has a solution in the Solovay model N1, just as
it does normally, because “there exists an element x of the set of real numbers such that
x · x · x = 2” is absolute. We may similarly verify the solution of x · x · x = 2 is unique in
the Solovay model N1, and thereby establish that the definite description “the cube root of
two” is absolute.

It is crucial that we quantify over a set! The property “X is a nonmeasurable set of real
numbers” is absolute, but “there exists an X such that X is a nonmeasurable set of real
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numbers” is certainly not. The property “there exists an element of the set of sets of real
numbers X such that X is a nonmeasurable set of real numbers” quantifies over the set of
sets of real numbers, but it is not absolute because the definite description “the set of sets
of real numbers” is not absolute.

Example 1.6.8 (Fermat’s last theorem). In order to show that the inequality “an + bn 6=
cn”, together with its usual specifications, is absolute, we need only to show that “the
exponentiation of natural numbers” is an absolute definite description. The property “exp
is a function, and the domain of exp is the Cartesian square of the set of natural numbers,
and the codomain of exp is the set of natural numbers, and for all natural numbers n,
exp(n, 0) = 1, and for all natural numbers n and m, exp(n,m + 1) = exp(n,m) · n” is
absolute, so we can verify that there is a unique such object in the Solovay model N1 by
quantifying over “the set of functions from the Cartesian square of the set of natural numbers
to the set of natural numbers”; this is an absolute definite description by item 44. Therefore,
“if n is greater than two, then an + bn 6= cn” is absolute, so we have verified that Fermat’s
last theorem holds in the Solovay model N1.

Example 1.6.9 (Fuglede’s theorem: If x and y are bounded operators on a (possibly nonsep-
arable) Hilbert space H and y is normal, then xy = yx implies that xy∗ = y∗x). We deduce
that the following are absolute:

• H is a Hilbert space

• x and y are bounded operators on H

• yy∗ = y∗y

• xy = yx implies that xy∗ = y∗x

• if x and y are bounded operators on the Hilbert spaceH, and y is normal, then xy = yx
implies that xy∗ = y∗x

Example 1.6.10 (Kaplansky’s density theorem: If A ⊆ B(H) is a concrete C*-algebra, then
the unit ball of A is strongly dense in the unit ball of the strong closure of A). We deduce
that the following are absolute:

• A is a concrete C*-algebra on the Hilbert space H

• x is a contraction on the Hilbert space H

• a is in the unit ball of A

• ξ is in H and ‖(a− x)ξ‖ ≤ 1

• T is a finite subset of H such that there exists an element a of the concrete C*-algebra
A on the Hilbert space H such that for all ξ in T it is the case that ‖(a− x)ξ‖ ≤ 1
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• T is a finite subset of H such that there exists an element a of the unit ball of the
concrete C*-algebra A on the Hilbert space H such that for all ξ in T it is the case
that ‖(a− x)ξ‖ ≤ 1

• if A is a concrete C*-algebra on the Hilbert space H, and x is a contraction on H with
the property that every SOT neighborhood of x contains an element of A, then every
SOT neighborhood of X contains an element of the unit ball of A

Example 1.6.11 (Gelfand duality for separable commutative C*-algebras: If A is a separable
commutative C*-algebra then A ∼= C0(Â)). We deduce that the following are absolute:

• A is a separable commutative C*-algebra

• the space of homomorphic states of the separable commutative C*-algebra A

(The space of homomorphic states of an arbitrary commutative C*-algebra is not an ab-
solute definite description; see example 1.9.1.) We verify that the spectrum of a separable
commutative C*-algebra is a Polish space. We deduce that the following are absolute:

• the set of continuous functions from the space of homomorphic states on the separable
commutative C*-algebra A to the set of complex numbers that vanish at infinity

• if A is a separable commutative C*-algebra, then C0(Â) is a C*-algebra

We verify that if A is a separable commutative C*-algebra, then C0(Â) is separable and
complete. We deduce that the following are absolute:

• the set of ∗-isomorphisms from the separable commutative C*-algebra A to C0(Â)

• the separable commutative C*-algebra A is isomorphic to C0(Â)

Example 1.6.12 (If V is a closed subspace of the Hilbert space H, then there exists an
orthogonal projection operator p such that pH = V ). We deduce that the following are
absolute:

• V is a closed subspace of the Hilbert space H

• there exists an element of the closed subspace V of the Hilbert space H closest to the
element ξ of H

We verify that if V is a closed subspace of H, and ξ is an element of H, then there exists a
unique element of V closest to ξ. We deduce that the following are absolute:

• the element of the closed subspace V of the Hilbert space H closest to the element ξ
of H

• the function taking each element of the Hilbert space H to the closest element of the
closed subspace V
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• the function taking each element of the Hilbert space H to the closest element of the
closed subspace V is an orthogonal projection operator on H whose image is V

We verify that if V is a closed subspace of the Hilbert space H, then the function p taking
each element of H to the closest element of V is an orthogonal projection operator on H
such that pH = V ; thus, such an orthogonal projection operator exists.

1.7 Cheat sheet

This section lists theorems in the theory of operator algebras that hold in the Solovay model
N1. A theorem that is verifiable by a straightforward absoluteness argument is terminated
with a period. A theorem whose verification requires the scrutiny of a substantial part of
its usual proof for applications of the axiom of choice is terminated with two periods.. A
theorem whose verification requires a proof different from its usual proof is terminated with
three periods... A theorem which fails ordinarily, but which holds in the Solovay model N1

is punctuated with a exclamation mark! Theorems punctuated in these last two ways are
addressed in appendix C.

The following theorems hold in the Solovay model N1:

Let X be a metric space.

1.7.1. The metric space X has a completion..

1.7.2. If X is complete, then the intersection of a countable family of dense open sets is
dense.

Let X be a complete separable metric space.

1.7.3 (cf. [13] theorem 15.6). If X is uncountable, then there is a bijection from I to X such
that the preimage any Borel set is Borel, and the image of any Borel set is Borel.

1.7.4 (cf. [13] theorem 17.41). If m is an atomless Borel probability measure on X, then
there is a bijection from I to X such that the preimage of any Borel set is Borel, the image
of any Borel set is Borel, and the pushforward of Lebesgue measure on the unit interval is
m.

1.7.5. If m is a Borel probability measure on X, then for every subset S ⊆ X, there are
Borel subsets B0, B1 ⊆ X such that B0 ⊆ S ⊆ B1 and m(B0) = m(B1)!

Let m, m0, and m1 be (totally defined) probability measures on sets T , T0, and T1, respec-
tively, with each set injectable into R.

1.7.6. The measure m is a pushforward of Lebesgue measure on I, i. e., there is a function
f : I→ T such that m(X) is equal to the Lebesgue measure of f−1(X) for each X ⊆ T !

1.7.7. If f : T0 × T1 → C is a function such that

1.
∫
t0∈T0

∫
t1∈T1 |f(t0, t1)| dm1 dm0 <∞,
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2.
∫
(t0,t1)∈T0×T1 |f(t0, t1)| d(m0 ×m1) <∞, or

3.
∫
t1∈T1

∫
t0∈T0 |f(t0, t1)| dm0 dm1 <∞,

then ∫
t0∈T0

∫
t1∈T1

f(t0, t1) dm1 dm0 =

∫
(t0,t1)∈T0×T1

f(t0, t1) d(m0 ×m1)

=

∫
t1∈T1

∫
t0∈T0

f(t0, t1) dm0 dm1!

Let X be a topological space, let Y ⊆ X be a subspace, and let f : X → Z be a function to
another topological space.

1.7.8 (cf. [20] proposition 1.3.6). A point belongs to the closure of the set Y iff there is a
net in Y converging to that point...

1.7.9 (cf. [20] proposition 1.4.3). The function f is continuous at x ∈ X iff for every net (xλ)
converging to X, the net (f(xλ)) converges to f(x)...

Let X and Y be Banach spaces.

1.7.10. Any linear function from X to Y is bounded!

1.7.11. A surjective linear function from X to Y is open!

1.7.12. If {Tλ} is a family of (bounded) linear functions from X to Y such that {Tλx} is
bounded for all x ∈ X, then {‖Tλ‖} is bounded.

Let X be a separable Banach space.

1.7.13. Every bounded complex-valued linear function defined on a subspace of X extends
to a linear function of the same norm on all of X .

1.7.14. The unit ball of X ∗ is Polish and compact, in the weak* topology.

1.7.15. If K ⊆ X ∗ is bounded and weak*-closed, then every element of K is in the weak*-
closed convex hull of the extreme points of K, and is the barycenter of a Borel probability
measure concentrated on the extreme points of K.

Let H be a Hilbert space. (We do not define Hilbert spaces to be separable.)

1.7.16. If ϕ is a functional on H, then there exists a vector ξ ∈ H such that ϕ(η) = 〈ξ|η〉 for
all η ∈ H.

1.7.17. If ψ is a bounded sesquilinear form on H, then there exists a bounded operator x on
H such that ψ(ξ, η) = 〈ξ|xη〉 for all ξ, η ∈ H.

1.7.18. The function p 7→ pH is a bijection between projection operators on H and its closed
subspaces.

1.7.19. Every monotonically decreasing net of positive operators on H has a greatest lower
bound, and converges to it ultrastrongly.
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Let A ⊆ B(H) be a nondegenerate concrete C*-algebra.

1.7.20. If ϕ is a vector functional on A, then there exist ξ, η ∈ H such that ‖ξ‖2 = ‖ϕ‖ = ‖η‖2
and ϕ(a) = 〈η|aξ〉 for all a ∈ A.

1.7.21. If ϕ is a vector functional on A, then there exist unique positive vector functionals
ϕ+ and ϕ− on A such that ϕ = ϕ+ − ϕ− and ‖ϕ‖ = ‖ϕ+‖+ ‖ϕ−‖.
1.7.22. If ϕ is a vector functional on A, then there exists a unique positive functional |ϕ| on
A such that ‖ |ϕ| ‖ = ‖ϕ‖ and |ϕ(a)|2 ≤ ‖ϕ‖|ϕ|(a∗a) for all a ∈ A.

1.7.23. The ultraweak closure of A is equal to its double commutant A′′..

1.7.24. If x is in the ultraweak closure of A, and ‖x‖ ≤ 1, then x is in the ultraweak closure
of the unit ball of A.

1.7.25 (cf. [19] theorem 2.4.3). If H is separable, then A is a von Neumann algebra iff it
closed under limits of ascending sequences.

1.7.26 (cf. [19] section 3.12). The centralizers of A form a C*-algebra that is isomorphic to
the C*-algebra of multipliers of A.

Let B ⊆ B(H) be a concrete C*-algebra that is closed under limits of ascending sequences,
e. g., a von Neumann algebra; see [19, section 4.5].

1.7.27. The support projection of every self-adjoint operator in B is itself in B.

1.7.28. The projections of B are closed under countable meets and joins.

1.7.29. For every operator b ∈ B, there exists a unique partial isometry u such that u∗u is
the support projection of |x| = (x∗x)

1
2 and x = u|x|.

Let A be an abstract C*-algebra.

1.7.30. The positive elements of A of norm strictly less than 1 form an approximate unit.

1.7.31. Every normal element of A has the continuous functional calculus.

1.7.32 (GNS). For each state µ on A, there exists a representation γµ : A → B(Hµ) and a
cyclic vector ξµ such that 〈ξµ|γµ(a)ξµ〉 = µ(a) for all a ∈ A..

1.7.33. If π : A → B(H) is a representation with cyclic vector η0, µ = 〈η0|π(·)η0〉, and
γµ : A→ B(Hµ) is the GNS representation for µ, then there exists a unique unitary operator
u from H to Hµ such that uη0 = ξµ and uπ(a) = γµ(a)u for all a ∈ A..

1.7.34. For each state µ on A, the GNS representation γµ : A→ B(Hµ) is irreducible iff µ is
pure..

1.7.35. The ultraweak closure of A in its universal representation is an enveloping von Neu-
mann algebra of A, i. e., every ∗-homomorphism from A into a von Neumann algebra factors
uniquely through this ultraweak closure via an ultraweakly continuous ∗-homomorphism...

Let A be a separable C*-algebra.

1.7.36. The universal representation of A is faithful.
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1.7.37. If A is commutative, then the spectrum Â is a locally compact Polish space such that
A ∼= C0(Â).

1.7.38. The convex hull of the pure states of A, together with 0, is weak* dense in the quasi-
state space of A. Every state of A is the barycenter of a Borel probability measure on its
pure state space.

1.7.39 (cf. [19] theorem 6.8.7). The following are equivalent:

(i) A is a C*-algebra of type I,

(ii) B(A) is a Borel ∗-algebra of type I.

(iv) A has a composition series in which each quotient has continuous trace.

(v) The image of every irreducible representation of A includes the compact operators.

(vi) Two irreducible representations of A are unitarily equivalent iff they have the same
kernel.

(vii) The Borel structure on Â generated by the Jacobson topology is standard.

(viii) Pedersen’s Davies Borel structure on Â is countably separated.

(ix) The Mackey Borel structure on Â is countably separated.

(x) Every factor representation of A is type I.

(xi) A has no factor representations of type II.

(xii) A has no factor representations of type III.

1.7.40 (cf. [19] proposition 6.3.2). If A is type I, then the Mackey Borel structure and
Pedersen’s Davies Borel structure coincide with the Borel structure on Â generated by the
Jacobson topology.

Let M,N ⊆ B(H) be von Neumann algebras on a separable Hilbert space.

1.7.41. Every functional on M is ultraweakly continuous!

1.7.42. If M and N are approximately finite dimensional factors, both of type In for some
n ∈ N ∪ {∞}, of type IIk for some k ∈ {1,∞}, or of type IIIλ for some λ ∈ (0, 1], then
M ∼= N .
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1.8 Cardinality

Recall that for two sets X and Y , we write X 4 Y in case there is an injection from X
into Y ; this defines a preorder on the class of all sets. The proof of the Schröder-Bernstein
theorem does not use the axiom of choice, so iff X 4 Y and Y 4 X, then X ≈ Y , i. e.,
there exists a bijection between X and Y . We write X ≺ Y if X 4 Y , but X 6≈ Y .

Example 1.8.1. If X ⊆ R, then X 4 N or X ≈ R. Indeed, if X is not countable, then it
contains a perfect subset. Every perfect subset of R is equinumerous to R, so R < X < R.

Thus, in the sense above, the continuum hypothesis holds in N1. However, R 6≈ ω1. In
the Solovay model, two sets need not be comparable.

Example 1.8.2. If every set of real numbers is Lebesgue measurable, then ω1 64 R and R 64 ω1.
Recall that ω1 denotes the least uncountable ordinal. If R 4 ω1, i. e., there exists an injection
of R into ω1, then R can be well-ordered, which implies the existence of a nonmeasurable
set, by Vitali’s theorem. Similarly, if ω1 4 R, i. e., there exists an injection of ω1 into R,
then ω1 is equinumerous to an uncountable subset of R, so ω1 ≈ R, and again R can be
well-ordered, implying the existence of a nonmeasurable set.

The behavior of quotients is perhaps the most startling aspect of the cardinality hierarchy
in the Solovay model N1. In the absence of the axiom of choice, the existence of a surjection
of X onto Y does not imply the existence of an injection of Y into X. In fact, a quotient of
a set X may be strictly larger than X itself.

Example 1.8.3. In the Solovay model, R/Q � R. If (qn) is an enumeration of the rationals,
then straightforward analysis shows that the function t 7→

∑
qn<t

1
n!

is an injection of R
into R/Q. We show that R/Q 64 R by constructing a nonprincipal ultrafilter on R/Q, and
then showing that there exist no nonprincipal ultrafilters on R. The subsets of R/Q are
in bijective correspondence with the translation invariant subsets of R. Each subset of R
is measurable, and if it is translation invariant, then it must have zero measure or infinite
measure. Thus, the subsets of R/Q that correspond to subsets of R of infinite measure
form a nonprincipal ultrafilter on R/Q. Every ultrafilter in the Solovay model is countably
complete, for otherwise we would immediately obtain a nonprincipal ultrafilter on N. In
particular, every ultrafilter on R is countably complete. For each natural number n, we can
cover R by countably many closed intervals of length 2−n, so for each natural number n
we can choose an interval In of length 2−n from the given ultrafilter. The family (In) has
the finite intersection property, so its intersection is nonempty, diameter zero, and in the
ultrafilter. Thus, the given ultrafilter is principal.

Every element of R/Q is a countable subset of R, so we have also shown that there are
more than continuum many countable sets of real numbers.
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1.9 Counterexamples

The axiom of choice is false in the Solovay model N1, so everything that is equivalent to the
axiom of choice is also false in N1, e.g., Zorn’s lemma, the well-ordering principle, Tychonoff’s
theorem [14], existence of vector space bases [3], etc.

Example 1.9.1 (Hahn-Banach theorem). The only functional on the C*-algebra `∞(N)/c0(N)
is the zero functional. Indeed, any functional on `∞(N)/c0(N) yields a functional on `∞(N)
that vanishes on all finitely supported elements of `∞(N), in contradiction to principle 8 of
section 1.4.

Example 1.9.2 (Choquet’s theorem). Let λ denote Lebesgue measure; the C*-algebra L∞(I, λ)
has at least one state, but it has no pure states. One obvious state on L∞(I, λ) is integration
against Lebesgue measure. To show that L∞(I, λ) has no pure states, suppose that µ is
such a state. As usual, µ is a unital ∗-homomorphism L∞(I, λ) → C (1.7.34). Composing
µ with the obvious quotient map `∞(I) → L∞(I, λ), we obtain a unital ∗-homomorphism
`∞(I) → C, which yields a nonprincipal ultrafilter on I. As we discuss in example 1.8.3, no
such object exists in the Solovay model N1.

Example 1.9.3 (choosing representatives). We have already seen that it is sometimes im-
possible to choose representatives for a given equivalence relation, e. g., for R modulo Q
(example 1.8.3). We now provide another example, that is closer to the material of the
second chapter. For any C*-algebra A, the spectrum Â is usually defined as the set of uni-
tary equivalence classes of irreducible representations of A ([19, remark 4.1.1] [2, remark
II.6.5.13]). This definition is evidently informal since the unitary equivalence classes of ir-
reducible representations of a nonzero C*-algebra are proper classes, which cannot be the
elements of a set. Under the axiom of choice, it is always possible to choose representative
irreducible representations from these equivalence classes; I don’t know whether this is al-
ways possible in the Solovay model N1. It is impossible to choose such representatives that
are GNS representations if the C*-algebra A is separable and not of type I, because such a
choice yields an injection from Â to S(A), which impossible (proposition 2.8.2).
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Chapter 2

The continuum-weak topology

In this chapter, working in the Solovay model N1, defined in section 1.4, we define the
continuum-weak topology and the class of V*-algebras, and we show that the enveloping
V*-algebra of a separable C*-algebra of type I is isomorphic to an `∞-direct sum of type
I factors. Our primary reference is Pedersen’s pair of books [19] [20]. I also recommend
Blackadar’s Operator Algebras [2] for a more comprehensive presentation. Some notation
and terminology is reviewed in appendix A.

2.1 Basic definitions

2.1.1. A continuum in a set X is a function I→ X.

Definition 2.1.2. Let H be a Hilbert space. The continuum-weak topology on B(H) is
given by functionals of the form

x 7→
∫ 1

0

〈ηt|xξt〉 dt (I)

for families (ηt ∈ H) and (ξt ∈ H) such that the functions (‖ηt‖2 : t ∈ I) and (‖ξt‖2 : t ∈ I)
are integrable with respect to Lebesgue measure.

2.1.3. When working with bounded operators, we will always use the closure line (·) to denote
closure in the continuum-weak topology.

2.1.4. Every probability measure on a set T 4 R is a pushforward of Lebesgue measure on
the unit interval; see 1.7.6. It follows that whenever (ηt) and (ξt) are families of vectors such
that the functions (‖ηt‖2) and (‖ξt‖2) are integrable with respect to a probability measure
m on some set T 4 R, the functional x 7→

∫
t∈T 〈ηt|xξt〉 dm is of the form (I). Clearly, the

same is also true of any finite measure m on a set T 4 R. It follows that functionals of
the form (I) are closed under addition and scalar multiplication, so every continuum-weakly
continuous functional is of the form (I).
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2.1.5. The continuum-weak topology is finer than the ultraweak topology, but coarser than
the norm topology. We will see in section 2.4 that the continuum-weak topology coincides
with the ultraweak topology for separable Hilbert spaces H. It follows that in general the
continuum-weak topology is incomparable with the strong operator topology. Furthermore,
it is in general incomparable with the ultrastrong topology; for example, if H = `2(R), then
the net of projection operators corresponding to finite subsets of R converges to the identity
in the ultrastrong topology, but diverges in the continuum-weak topology. By analogy with
the ultrastrong topology, we can also define the continuum-strong topology as the topology

given by seminorms x 7→
√∫ 1

0
‖xξt‖2 dt for (‖ξt‖2) integrable with respect to Lebesgue

measure. In the usual way, one can show that the continuum-strong topology is finer than
both the ultrastrong topology and the continuum-weak topology.

2.1.6. The adjoint operation is continuum-weakly continuous, operator addition is jointly
continuum-weakly continuous, and operator multiplication is continuum-weakly continuous
in each variable.

Definition 2.1.7. A concrete C*-algebra E ⊆ B(H) is a V*-algebra in case it is closed in
the continuum-weak topology.

2.1.8. Every von Neumann algebra is a V*-algebra.

2.2 Continuum amplification

2.2.1. Let E ⊆ B(H) be a V*-algebra. Clearly, a functional ϕ : E → C is continuum-
weakly continuous iff it is a vector functional in the canonical representation of E on the
Hilbert space L2(I,H). Note that, in general, the isometry u : L2(I) ⊗H → L2(I,H) given
by u(f ⊗ ξ)(t) = f(t)ξ is not surjective; for example, if H = `2(I) then the function taking
every real number in I to the corresponding orthonormal basis element is square-integrable,
but it is orthogonal to the image of u.

Proposition 2.2.2. If (ϕs) is an indexed family of continuum-weakly continuous functionals

on E such that (‖ϕs‖ : s ∈ I) is integrable, then the functional ϕ : x 7→
∫ 1

0
ϕs(x) ds is also

continuum-weakly continuous.

Proof. Each continuum-weakly continuous functional is a vector functional for the canonical
representation π : E → B(L2(I,H)). Therefore, we can apply ACae to choose, for almost
all s ∈ I, vectors ξs = [ξst : t ∈ I] and ηs = [ηst : t ∈ I] in L2(I,H), such that ‖ξs‖2 = ‖ϕs‖ =
‖ηs‖2, and ϕs : x 7→ 〈ηs|π(x)ξs〉, i. e.,∫ 1

0

‖ξst ‖2 dt = ‖ϕs‖ =

∫ 1

0

‖ηst‖2 dt

and

ϕs(x) =

∫ 1

0

〈ηst |xξst 〉 dt.
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Applying Tonelli’s theorem, we find that the function (s, t) 7→ ‖ξst ‖2 is integrable on I × I,
as is (s, t) 7→ ‖ηst‖2, so by Fubini’s theorem,∫ 1

0

ϕs(x) ds =

∫ 1

0

(∫ 1

0

〈ηst |xξst 〉 dt
)
ds =

∫
(s,t)∈I×I

〈ηst |xξst 〉 d(s, t)

for all x ∈ E. Thus, ϕ : x 7→
∫ 1

0
ϕs(x) ds is continuum-weakly continuous by remark 2.1.4.

Lemma 2.2.3. Let (ϕn) be a norm-convergent sequence of functionals on E converging to
ϕ. If ϕn is continuum-weakly continuous for each n, then so is ϕ.

Proof. Without loss of generality, we can assume that for all n, ‖ϕn+1−ϕn‖ ≤ 2−n. Writing
ψn = ϕn+1 − ϕn, we have that ‖ψn‖ ≤ 2−n, so

∑
n ‖ψn‖ ≤ 2. Applying proposition 2.2.2,

and the fact that, by 1.7.6, every probability measure on a countable set is a pushforward of
Lebesgue measure on I, we find that ϕ =

∑
n ψn is continuum-weakly continuous.

Lemma 2.2.4. Each self-adjoint continuum-weakly continuous functional ϕ on E has a Jor-
dan decomposition ϕ = ϕ+−ϕ−, where ϕ+ and ϕ− are positive continuum-weakly continuous
functionals, and ‖ϕ‖ = ‖ϕ+‖ + ‖ϕ−‖. Thus, every continuum-weakly continuous function
on E is a linear combination of continuum-weakly continuous states.

Proof. Each self-adjoint continuum-weakly continuous functional ϕ is a vector functional
for the canonical representation of E on L2(I,H). Every self-adjoint vector functional on a
concrete C*-algebra has a Jordan decomposition into vector functionals (1.7.21).

Lemma 2.2.5. Let µ be a continuum-weakly continuous state on E. There exists a family
(ξt) ∈ L2(I,H) such that µ : x 7→

∫ 1

0
〈ξt|xξt〉dt, and

∫ 1

0
‖ξt‖2 dt = 1

Proof. The state µ is a vector functional for the canonical representation of E on L2(I,H).

Lemma 2.2.6. Let E ⊆ B(H) and F ⊆ B(K) be V*-algebras. A (bounded) linear function
π : E → F is continuum-weakly continuous iff the pullback of every vector state is continuum-
weakly continuous.

Proof. The forward direction is trivial. Therefore, it remains to show that if the pullback of
every vector state is continuum-weakly continuous, then the pullback of every continuum-
weakly continuous functional is continuum-weakly continuous. Each such functional is a
linear combination of continuum-weakly continuous states, and each such state is an integral
of vector states, so proposition 2.2.2 is sufficient to establish the claim.

Lemma 2.2.7. Let M ⊆ B(H) and N ⊆ B(K) be von Neumann algebras. An ultraweakly
continuous linear function π : M → N is continuum-weakly continuous.

Proof. This is a corollary of the preceding lemma.
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Proposition 2.2.8. Let E ⊆ B(H) be a V*-algebra, and let ρ : E → B(L2(I,H)) be
its canonical representation on L2(I,H). Then, ρ is a continuum-weakly homeomorphic
∗-isomorphism of E onto ρ(E), which is itself a V*-algebra.

Proof. Without loss of generality, assume that E = B(H). Fix f ∈ L2(I) of norm 1, and let
uf : H → L2(I,H) be the isometry defined by ufξ = [f(t)ξ : t ∈ I]. Thus, π : x 7→ u∗fxuf is a
continuum-weakly continuous map B(I,H)→ B(H) such that π ◦ ρ is the identity on B(H).
The canonical representation ρ is itself continuum-weakly continuous because the pullback
of every vector functional is trivially continuum-weakly continuous. The rest of the proof is
elementary general topology.

2.3 Projections in a V*-algebra

Lemma 2.3.1. Let H be a Hilbert space. If (xn) is a sequence in B(H) that converges to x
in the ultraweak topology, then it converges to x in the continuum-weak topology.

Proof. The set {‖xn‖} is bounded by some positive real number C, by an application of the
uniform boundedness principle, since B(H) is isometrically isomorphic to the dual of B1(H),
the Banach space of trace class operators on H. It follows that for all families (ξt ∈ H : t ∈ I)
and (ηt ∈ H : t ∈ I) in L2(I,H),∫

〈ηt|xnξt〉 dt→
∫
〈ηt|xξt〉 dt,

by an application of the dominated convergence theorem, since |〈ηt|xnξt〉| ≤ C ·‖ξt‖·‖ηt‖.

Lemma 2.3.2. Let E and F be V*-algebras, and let ψ : E → F be a continuum-weakly
continuous positive map. Then, ψ is sequentially normal, in the sense that if (xn ∈ E : n ∈ N)
is a descending sequence of positive operators in E converging ultraweakly to 0, then (ψ(xn))
is a descending sequence of positive operators in F converging ultraweakly to 0.

Proof. The various modes of convergence coincide for monotone sequences of positive oper-
ators (1.7.19) [2, corollary I.3.2.6]. In particular, if the greatest lower bound of (xn) is 0,
then xn → 0 ultraweakly, and therefore continuum-weakly, by lemma 2.3.1. By assumption,
it follows that ψ(xn)→ ψ(0) = 0 continuum-weakly, and therefore ultraweakly.

Lemma 2.3.3. Let E ⊆ B(H) be a V*-algebra. If x ∈ E is positive, then its support
projection [x] is also in E.

Proof.

[x] =
uw

lim
n→∞

x
1
n

Proposition 2.3.4. The projections of E are closed under countable meets and joins.
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Proof. The projections of E are closed under binary meets because

p ∧ q =
uw

lim
n→∞

(pq)n.

They are closed under binary joins because p ∨ q = [p + q]. It follows that the projections
of E are closed under countably infinite meets and joins because E is closed under limits of
ascending and descending sequences.

Lemma 2.3.5. The projections of E are an approximate unit for E, for the norm topology.

Proof. Recall (1.7.30) [2, proposition II.4.1.3] that for any C*-algebra, its positive elements of
norm strictly less than 1 form an approximate unit. It follows that in E, the positive elements
r satisfying r2 = αr for α ∈ (0, 1) form an approximate unit. It is then straightforward to
show that the projections themselves form an approximate unit.

Lemma 2.3.6. If E is nondegenerate, then for all ξ ∈ H, there is a projection p ∈ E such
that pξ = ξ. (Example 2.3.9 shows that the identity operator need not be in E.)

Proof. By lemma 2.3.5 above, the projections of E converge to the identity onH in the strong
operator topology, and in particular limp↗1 ‖ξ − pξ‖ = 0. Using the axiom of dependent
choices, we can obtain an increasing sequence (pn : n ∈ N) of projections in E such that
limn→∞ ‖ξ−pnξ‖ = 0. The ascending sequence (pn) converges ultraweakly to some projection
p, which is therefore in E. Therefore, limn→∞ ‖pξ − pnξ‖ = 0. We conclude that that
pξ = ξ.

Proposition 2.3.7. Let E be a V*-algebra, and let ϕ : E → C be a continuum-weakly
continuous functional. There exist projections p, q ∈ E such that ϕ(pxq) = ϕ(x) for all
x ∈ E.

Proof. By proposition 2.2.8, we may assume that ϕ is a vector functional, so the existence
of p and q then follow by lemma 2.3.6, above.

Proposition 2.3.8. Let X be a set. Then

F = {f ∈ `∞(X) : supp(f) 6< I}

is a V*-algebra in its canonical representation on `2(X).

Proof. It is easy to see that F is a ∗-algebra. The continuum-weak closure of F is a V*-
algebra F ⊆ `∞(X). Suppose that F 6= F . It follows that there is a positive function
f∞ ∈ F \ F . By definition of F , supp(f∞) < I, i. e., there is an injection i : I → supp(f∞).
We now define a continuum-weakly continuous functional on `∞(X) by

ϕ : h 7→
∫ 1

0

〈ei(t)|hei(t)〉 dt =

∫ 1

0

h(t) dt.
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Our choice of i guarantees that ϕ(f∞) > 0. However, for all f ∈ F , we have that i(I) ∩
supp(f) 6< I, but i(I)∩supp(f) 4 I because i is an injection. So, by PSP, i(I)∩supp(f) 4 N.
It follows that ϕ(f) = 0 for all f ∈ F , contradicting our assumption that f∞ ∈ F .

Example 2.3.9. In particular, {f ∈ `∞(R) : supp(f) 4 N} is a V*-algebra on `2(R), so a
V*-algebra need not be unital.

2.4 Separable Hilbert spaces

2.4.1. Let H be a separable Hilbert space. Every continuum-weakly continuous functional
on B(H) is ultraweakly continuous, by 1.7.41 and lemma 2.2.4, so the ultraweak topology
and the continuum-weak topology coincide on B(H).

Proposition 2.4.2. Every nondegenerate V*-algebra on a separable Hilbert space is a von
Neumann algebra.

Proof. This is a corollary of remark 2.4.1, above.

2.4.3. We will need the disintegration of ultraweakly continuous states on a direct integral of
von Neumann algebras on separable Hilbert spaces. Rather than asking the reader to review
Borel fields of Hilbert spaces, we will reprove these results, in part, in order to demonstrate
the simplicity of the direct integral in the Solovay model N1. We will work with a probability
measure m on an index set T 4 R.

2.4.4. Let (Ht : t ∈ T ) be a family of separable infinite-dimensional Hilbert spaces. We
define the direct integral Hilbert space

∫ ⊕Ht dm to consist of equivalence classes of square-
integrable functions (ξt ∈ Ht : t ∈ T ). Applying ACae, we can choose isomorphisms Ht

∼=
`2(N) for almost every t ∈ T , so

∫ ⊕Ht dm ∼= L2(T, `2(N)) ∼= `2(N). This shows that∫ ⊕Ht dm is separable and complete.

2.4.5. Let (Mt ⊆ B(Ht) : t ∈ T ) be a family of von Neumann algebras. We define the direct
integral von Neumann algebra

∫ ⊕
Mt dm to consists of equivalence classes of essentially

bounded functions (xt ∈Mt : t ∈ T ). It is straightforward to show that the canonical action
of
∫ ⊕

Mt dm on the direct integral Hilbert space
∫ ⊕Ht dm is well-defined and faithful. It is

then straightforward to show that
∫ ⊕

Mt dm is closed under limits of monotone countable
sequences, and is therefore a von Neumann algebra; see 1.7.25.

Lemma 2.4.6. Let ϕ :
∫ ⊕

Mt dm→ C be an ultraweakly continuous functional. There exists
an integrable family of ultraweakly continuous functionals (ϕt ∈ (Mt)∗ : t ∈ T ) such that

ϕ : [xt ∈Mt : t ∈ T ] 7→
∫
t∈T

ϕt(xt) dm.
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Proof. Since ϕ is ultraweakly continuous, there exist two square-summable sequences of
vectors in

∫
t
Ht dm, which may be written as ([ξnt : t ∈ H] : n ∈ N) and ([ηnt : t ∈ H] : n ∈ N),

such that

ϕ : [xt : t ∈ T ] 7→
∑
n

∫
t

〈ξnt |xtηnt 〉 dm

The square-summability of the two sequences means that
∑

n

∫
t
‖ξnt ‖2 dm <∞ and

∑
n

∫
t
‖ηnt ‖2 dm <

∞. It follows by Tonelli’s theorem that (ξnt : n ∈ N) and (ηnt : n ∈ N) are square-summable
for almost every t ∈ T . Furthermore, since the elements of

∫ ⊕
Mtdm are essentially bounded

by definition, Fubini-Tonelli implies that

ϕ : [xt : t ∈ T ] 7→
∫
t

∑
n

〈ξnt |xtηnt 〉 dm.

Lemma 2.4.7. Every continuum-weakly continuous functional ϕ on the von Neumann al-
gebra

⊕
tMt is of the form

(xt : t ∈ T ) 7→
∫
t

ϕt(xt) dm

for some integrable family (ϕt ∈ (Mt)∗ : t ∈ T ) of ultraweakly continuous functionals, and
some probability measure m on T .

Proof. The functional ϕ is a vector functional for the continuum amplification of the V*-
algebra

⊕
tMt (proposition 2.2.8), so there exists a unique positive functional |ϕ| such that

‖ |ϕ| ‖ = ‖ϕ‖, and |ϕ(x)|2 ≤ ‖ϕ‖ · |ϕ|(x∗x) for all x ∈
⊕

tMt (1.7.22). The restriction of
|ϕ| to `∞(T ) ⊆

⊕
tMt satisfies |ϕ|(

∑
n pn) =

∑
n |ϕ|(pn) for all countable families (pn) of

pairwise disjoint projections in `∞(T ), for otherwise we would obtain a state on `∞(N) that
is not ultraweakly continuous. Thus, writing pA for the projection in `∞(T ) corresponding
to a subset A ⊆ T , we find that m : A 7→ |ϕ|(pA) · ‖ϕ‖−1 is a probability measure on T . It is
straightforward to show that if (xt) ∈

⊕
tMt vanishes almost everywhere, then ϕ : (xt) 7→ 0;

thus, ϕ factors through the canonical map (xt) 7→ [xt]:⊕
tMt

∫
t
Mt dm

C

ϕ
ϕ′

Since
∫
t
Mt dm is a von Neumann algebra on the separable Hilbert space

∫
t
Ht dm, the

functional ϕ′ is automatically (1.7.41) ultraweakly continuous, and lemma 2.4.6 yields the
desired family (ϕt ∈ (Mt)∗ : t ∈ T ).
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2.5 Canonical continuum predual

2.5.1. If M ⊆ B(H) is a von Neumann algebra, then the canonical predual M∗ of M consists
of all ultraweakly continuous functionals M → C. It is a predual of M in the sense that (M∗)

∗

is canonically isomorphic to M , but I don’t know if it is unique up to isometric isomorphism,
because the usual proof of this result relies on the axiom of choice. Of course, the predual
is unique if H is separable.

Definition 2.5.2. If E ⊆ B(H) is a V*-algebra, then the canonical continuum predual E•
of E consists of all continuum-weakly continuous functionals E → C.

Proposition 2.5.3. Let E ⊆ B(H) be a V*-algebra. The function ι : E → (E•)
∗ defined

by x 7→ (ϕ 7→ ϕ(x)) is an isometry onto the continuum-linear functionals, i. e., functionals
f ∈ (E•)

∗ such that

f

(∫ 1

0

ϕt dt

)
=

∫ 1

0

f(ϕt) dt

for all integrable families (ϕt ∈ E• : t ∈ I).

Proof. Without loss of generality, E is nondegenerate. By Kaplansky’s density theorem,
each ultraweakly continuous functional on E ′′ restricts to a continuum-weakly continuous
functional on E of the same norm, so (E ′′)∗ ⊆ E•. This implies that ι is an isometry, since
certainly ι(x)(ϕ) ≤ ‖x‖ · ‖ϕ‖. The continuum-linearity of ι(x) for each x ∈ E is trivial by
definition of integration of continuum-weakly continuous functionals; see proposition 2.2.2.

It remains to show that every continuum-linear functional f : E• → C is in the image of ι.
Suppose otherwise, and consider the restriction of f to (E ′′)∗ ⊆ E•. Since E ′′ is canonically
isomorphic to the dual ((E ′′)∗)

∗, we obtain an operator x0 ∈ E ′′ such that ϕ(x0) = f(ϕ)
for all ϕ ∈ (E ′′)∗. If x0 6∈ E, then there is a continuum-weakly continuous functional

x 7→
∫ 1

0
〈ηt|xξt〉 dt that vanishes on E, but not on x0. The former property can be phrased

as the equation
∫ 1

0
〈ηt| · |ξt〉 dt = 0 in E•. Applying the continuum-linearity of f , we find that∫ 1

0

〈ηt|x0ξt〉 dt =

∫ 1

0

f(〈ηt| · |ξt〉) dt = f

(∫ 1

0

〈ηt| · |ξt〉 dt
)

= 0.

This contradicts our choice of (ξt) and (ηt).

Lemma 2.5.4. Let E ⊆ B(H) be a unital V*-algebra, and let S• ⊆ E• be its space of
continuum-weakly continuous states. For each x ∈ Esa, we define x̂ : S• → R by x̂(µ) = µ(x).
Then, x 7→ x̂ is a bijective isometric correspondence between the self-adjoint elements of E,
and functions S• → R that are continuum-affine, i. e., that satisfy

f

(∫ 1

0

µt dt

)
=

∫ 1

0

f(µt) dt

for all families (µt ∈ S• : t ∈ I).
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Proof. We observe that x̂ = ι(x)|S• , so x̂ is continuum-affine. Furthermore, the function
x 7→ x̂ is isometric, because the norm of a self-adjoint operator can be computed as a
supremum over vector states.

If f : S• → R is continuum-affine, then it is affine in the usual sense; therefore, f extends
uniquely to a linear function f̃ : E• → C, by lemma 2.2.4. The canonical continuum predual
E• is a Banach space by lemma 2.2.3, so f̃ is automatically bounded. By proposition 2.5.3,
to show that f = x̂ for some x ∈ E, it is sufficient to show that f̃ is continuum-linear, i. e.,

f̃

(∫ 1

0

ϕt dt

)
=

∫ 1

0

f̃(ϕt) dt

for each integrable family (ϕt ∈ E• : t ∈ I). By lemma 2.2.4, we may assume that each

ϕt is positive, and that ‖
∫ 1

0
ϕt dt‖ =

∫ 1

0
ϕt(1) dt = 1. The assignment A 7→

∫
t∈A ‖ϕt‖ dt

is a probability measure m on I. If we define ϕ̂t = ‖ϕt‖−1ϕt for nonzero ϕt, and ϕ̂t = ψ
otherwise, for some fixed ψ ∈ E•, then it remains to show

f̃

(∫
t∈T

ϕ̂t dm

)
=

∫
t∈T

f̃(ϕ̂t) dm,

which is just the condition that f is continuum-affine on S•, because m is a pushforward of
Lebesgue measure on I.

2.6 The enveloping V*-algebra

Definition 2.6.1. If A is a C*-algebra, then its enveloping V*-algebra is V ∗(A) = γS(A),
where γS : A→ B(

⊕
µ∈S(A)Hµ) is the universal representation.

Lemma 2.6.2. Every continuum-weakly continuous state on V ∗(A) is a vector state, so we
have isometric isomorphisms:

S(A) S(γS(A)) S•(V ∗(A)) S∗(W ∗(A))

µ 〈ξµ| · ξµ〉 〈ξµ| · ξµ〉 〈ξµ| · ξµ〉

∼= ∼= ∼=

Proof. By construction every state of A factors through the universal representation γS via
a vector state. Each vector state is ultraweakly continuous, and therefore extends uniquely
to an ultraweakly continuous state on the ultraweak closure W ∗(A), and also to a unique
continuum-weakly continuous state on the continuum-weak closure V ∗(A).

Lemma 2.6.3. The continuum-weak topology on V ∗(A) coincides with the ultraweak topol-
ogy.
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Proof. This is a corollary of lemma 2.2.4 and lemma 2.6.2.

Proposition 2.6.4. If A is unital, and x ∈ W ∗(A) is self-adjoint, then x ∈ V ∗(A) iff the
function x̂ : S(A)→ R defined by x̂ : µ 7→ 〈ξµ|xξµ〉 satisfies

x̂

(∫
µt dt

)
=

∫
x̂(µt) dt

for all indexed families (µt ∈ S(A) : t ∈ I).

Proof. The isomorphism S(A) ∼= S•(V ∗(A)) in lemma 2.6.2 respects integration in the sense

that µ(a) =
∫ 1

0
µt(a) dt for all a ∈ A iff 〈ξµ|x|ξµ〉 =

∫ 1

0
〈ξµt |xξµt〉 dt for all x ∈ V ∗(A), whenever

(µt : t ∈ I) is a family of states, because the functional x 7→ 〈ξµ|xξµ〉 −
∫ 1

0
〈ξµt |xξµt〉 dt

is continuum-weakly continuous. Thus, identifying S(A) with S•(V ∗(A)), we can apply
lemma 2.5.4 to find that x 7→ x̂ is an isometric isomorphism of V ∗(A)sa onto the continuum-
affine functions S(A) → R. Of course, x 7→ x̂ is isometric on W ∗(A)sa, so the proposition
follows.

2.6.5. If A is a unital separable C*-algebra, then a 7→ â is an isometric isomorphism between
Asa and the space of continuous affine functions on S(A). Furthermore, since S(A) 4 R,
every probability measure on S(A) is a pushforward of Lebesgue measure on I, so x ∈ V ∗(A)
iff x̂ is strongly affine [16, section 2].

2.6.6. In proposition 2.6.4, we insist that A be unital because the state space of a nonunital
C*-algebra need not be closed under integration. For example, the state space of c0(I) is
not closed under integration because the integral of its homomorphic states over Lebesgue
measure is zero.

Theorem 2.6.7. Let A be a C*-algebra, let E be a V*-algebra, and let ρ : A → E be
a ∗-homomorphism. There exists a unique continuum-weakly continuous ∗-homomorphism
π : V ∗(A)→ E such that π ◦ γS = ρ:

A V ∗(A)

E

γS

ρ !π

Proof. The universal property of the enveloping von Neumann algebra W ∗(A) = γS(A)′′

yields an ultraweakly continuous ∗-homomorphism π : W ∗(A) → E ′′ such that π ◦ γS = ρ.
By lemma 2.2.7, π is also continuum-weakly continuous, which implies that π(V ∗(A)) ⊆ E;
thus π makes the above diagram commute. The uniqueness of π is trivial.

2.6.8. It follows from lemma 2.3.1 that every V*-algebra is closed under limits of ultraweakly
convergent sequences. Therefore, V ∗(A) includes Davies’s σ-envelope A∼ [6], and Pedersen’s
enveloping Borel ∗-algebra B(A) [18].



CHAPTER 2. THE CONTINUUM-WEAK TOPOLOGY 37

2.7 The atomic representation

2.7.1. In the Solovay model N1, a C*-algebra may fail to have a pure state even if it has a
faithful state. For example, Lebesgue measure λ yields a faithful state on the von Neumann
algebra L∞(I, λ), but it is easy to show that this C*-algebra has no pure states (exam-
ple 1.9.2).

2.7.2. If A is a separable C*-algebra, then every state µ ∈ S(A) is a mixture of pure states,
in the sense that there is a probability measure m on the pure state space ∂S(A) such
that µ(a) =

∫
ν∈∂S ν(a) dm for all a ∈ A. This is a consequence of Choquet’s theorem,

which yields such a Borel probability measure on ∂S(A), which of course extends uniquely
to a totally defined probability measure, since ∂S(A) is Polish; see 1.7.38, 1.7.5, and [19]
proposition 4.3.2. We remark that Choquet’s theorem has a constructive proof [21]. Clearly
∂S(A) 4 S(A) 4 I, so every state on A is the integral of a continuum of pure states, in the

sense that there is a function t 7→ ϕt ∈ ∂S(A) such that µ(a) =
∫ 1

0
ϕt(a) dt for all a ∈ A.

2.7.3. Let A be a C*-algebra. The atomic representation γ∂ = γ∂S(A) is the direct sum of all
GNS representations γµ of A for µ ∈ ∂S(A), i. e, γ∂ : a 7→

⊕
µ∈∂S(A) γµ(a). It follows from

remark 2.7.2 that if A is separable, then the atomic representation if faithful. On the other
hand, the atomic representation of L∞(R, λ) is evidently trivial (remark 2.7.1).

Lemma 2.7.4. Let A be a C*-algebra such that every state µ ∈ S(A) is the integral of a
continuum of states in ∂S(A). Then the continuum-weakly continuous states on γ∂(A) are
in bijective correspondence with the states of A via the assignment ϕ 7→ ϕ ◦ γ∂.

Proof. The assignment is injective because γ∂(A) is trivially dense in γ∂(A). The assignment
is surjective because each state of A is the integral of a continuum of pure states, each of
which is canonically a vector state of the representation γ∂.

Lemma 2.7.5. Let E be a V*-algebra, and let µ : E → C be a continuum-weakly continuous
state with GNS representation (γµ,Hµ, ξµ). The map γµ is continuum-weakly continuous.

Furthermore, if A ⊆ E is a continuum-weakly dense C*-subalgebra, then γµ(A)ξµ = Hµ.

Proof. Let ϕ : B(Hµ) → C be a vector functional, i. e., ϕ : y 7→ 〈ζ|yη〉 for some η, ζ ∈ Hµ.
Since ξµ is a cyclic vector, there are sequences (en) and (fn) from E such that γµ(en)ξµ → η
and γµ(fn)ξµ → ζ. By elementary functional analysis,

〈γµ(fn)ξµ| · |γµ(en)ξµ〉 → 〈ζ| · |η〉,

in the norm topology, and therefore

〈γµ(fn)ξµ|γµ(·)γµ(en)ξµ〉 → 〈ζ|γµ(·)η〉

in the norm topology. For each n, the functional x 7→ 〈γµ(fn)ξµ|γµ(x)γµ(en)ξµ〉 = µ(f ∗nxen)
is continuum-weakly continuous. Thus, 〈ζ|γµ(·)η〉 is the limit of a sequence of continuum-
weakly continuous functionals in the norm topology, and is therefore itself continuum-weakly
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continuous, by lemma 2.2.3. We have shown that the pullback of every vector functional
along γµ is continuum-weakly continuous; by lemma 2.2.6, γµ is itself continuum-weakly
continuous.

Suppose that A ⊆ E is a continuum-weakly dense C*-subalgebra, and η ∈ Hµ is a vector
such that 〈η|γµ(a)ξµ〉 = 0 for all a ∈ A. We have already established that the functional
x 7→ 〈η|γµ(x)ξµ〉 is continuum-weakly continuous so it vanishes for all x ∈ E. We conclude

that η = 0. Therefore, γµ(a)ξµ = Hµ.

Proposition 2.7.6 (cf. theorem 2.6.7). Let A be a C*-algebra such that every state µ ∈ S(A)
is the integral of a continuum of states in ∂S(A), e. g., a separable C*-algebra. Then γ∂
factors uniquely through γS via a continuum-weakly homeomorphic ∗-isomorphism:

A V ∗(A)

γ∂(A)

γS

γ∂ !∼=

Proof. The enveloping V*-algebra is defined by its universal property, up to canonical iso-
morphism; this is established by a straightforward category-theoretic argument. In order to
adapt this argument, we need only to prove the two claims diagramed below:

1.

A γ∂(A)

γ∂(A)

γ∂

γ∂ !id

2.

A γ∂(A)

V ∗(A)

γ∂

γS !

The first claim, that γ∂ factors through itself uniquely, via the identity, is trivial. To prove
the second claim, that γS factors through γ∂ uniquely, we work with the universal continuum-
weakly continuous representation of γ∂(A), i. e.,

γ• : x 7→
⊕
µ∈S•

γµ(x),

where S• denotes the space of continuum-weakly continuous states γ∂(A)→ C. Lemma 2.7.4
and lemma 2.7.5, above, now imply that the following diagram commutes:

A γ∂(A)

⊕
µ∈S B(Hµ)

⊕
µ∈S• B(Hµ)

γ∂

γS γ•

∼=
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Of course, γ•(γ∂(A)) ⊆ γ•(γ∂(A)), so taking continuum-weak closures of images we find that
the following diagram commutes:

A γ∂(A)

γS(A) γ•(γ∂(A))

γ∂

γS γ•

∼=

Thus γS : A → γS(A) = V ∗(A) factors through γ∂ via a continuum-weakly continuous ∗-
homomorphism. The uniqueness of the factorization is trivial.

Lemma 2.7.7. Let T be a locally compact Polish space. The continuum-weak closure of
C0(T ) ⊆ B(`2(T )) is `∞(T ).

Proof. Clearly, C0(T ) ⊆ C0(T )′′ = `∞(T ). Let B(T ) ⊆ `∞(T ) denote the algebra of bounded
Borel functions, i. e., of bounded Baire functions; these algebras are equal on any second
countable locally compact Hausdorff space; see [20] proposition 6.2.9. We have the inclusion
B(T ) ⊆ C0(T ), because V*-algebras are closed under limits of monotone sequences, by
lemma 2.3.1. If C0(T ) 6= `∞(T ), then B(T ) 6= `∞(T ), so there is a continuum-weakly
continuous function ϕ : `∞(T )→ C such that ϕ(B(T )) = 0, but ϕ(p) 6= 0 for some projection
p ∈ `∞(T ).

By lemma 2.4.7, there is a probability measure m and an integrable function h : T → C
such that ϕ(f) =

∫
t∈T f(t)h(t) dm for all f ∈ `∞(T ). By LM (1.7.5), there is a Borel

projection b ∈ B(T ) such that b(t) = p(t) for almost every t ∈ T . It follows that ϕ(p) =∫
p(t)h(t) dm =

∫
b(t)h(t) dm = ϕ(b) = 0, contradicting our choice of p.

Proposition 2.7.8 (cf. theorem 2.6.7). Let X be a second countable locally compact Haus-
dorff space. Then V ∗(C0(X)) ∼= `∞(X):

C0(X) V ∗(C0(X))

`∞(X)

γS

!∼=

Proof. A second countable locally compact Hausdorff space is Polish, because it is an open
subset of its one-point compactification, which is second countable and therefore Polish. We
recall that a locally compact Hausdorff space X is second countable iff C0(X) is separable,
and then we apply proposition 2.7.6 and lemma 2.7.7, above.

2.8 Separable C*-algebras of type I

2.8.1. Let A be a C*-algebra. There are many equivalent definitions of Â, the spectrum of
A. The elements of Â may be thought of as equivalence classes of pure states under unitary
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equivalence, or as equivalence classes of irreducible representations under unitary equivalence,
or as equivalence classes of type I factor representations under quasiequivalence. Recall that
a nondegenerate representation ρ : A→ B(H) is a (type I) factor representation iff ρ(A)′′ is a
factor (of type I) [19, remark 3.8.13], and that representations ρ0 and ρ1 are quasiequivalent
iff there is an ultraweakly homeomorphic ∗-isomorphism π : ρ0(A)′′ → ρ1(A)′′ such that
π ◦ ρ0 = ρ1 [19, remark 3.3.6].

Under the axiom of choice, we often work with the spectrum Â by choosing representatives
from these equivalence classes. In the Solovay model N1, this isn’t always possible. Therefore,
for each unitary equivalence class C of pure states, we define γC to be the direct sum of all
the GNS representations γµ for µ ∈ C, i. e., γC : a 7→

⊕
µ∈C γµ(a). The representation γC

is a type I factor representation in the quasiequivalence class corresponding to C. We will
sometimes write Â = {γC : C ∈ ∂S(A)/ ∼u}.

Proposition 2.8.2. Let A be a separable C*-algebra. Then, A is type I iff Â has cardinality
of at most the continuum.

Proof. It is a standard theorem that a C*-algebra is type I iff the Mackey Borel structure
on Â is standard; the Mackey Borel structure consists of sets whose preimages under the
GNS construction are Borel subsets of ∂S(A). A pair of pure states produce unitarily
equivalent irreducible representations iff they themselves are unitary equivalent. This a
Borel equivalence relation; see [7] proposition 7.

If A is type I, then Â is standard, i. e., Â equipped with the σ-algebra of Mackey Borel
sets is isomorphic, as a measurable space, to a Polish space X equipped with its σ-algebra
of Borel sets. Clearly, Â 4 R.

If Â is not type I, then the Mackey Borel structure on Â is not countably separated
(1.7.39), so unitary equivalence on ∂S(A) is not Borel reducible to the identity relation on
R. By the Glimm-Effros dichotomy [10], it follows that Â < (

∏∞
n=0 Z2/

∑∞
n=0 Z2) � R.

2.8.3. LetA be a separable C*-algebra. Pedersen has shown that the canonical map γS(A)′′ →
γ∂(A)′′ is isometric on the enveloping Borel ∗-algebra B(A) [18]. Since B(A) ⊆ V ∗(A), as
in remark 2.6.8, the canonical map V ∗(A) → γ∂(A) is also isometric on B(A). We will
sometimes abuse notation by identifying B(A) with its image, and writing B(A) ⊆ γ∂(A).

2.8.4. For all γ ∈ Â, the von Neumann algebra γ(A)′′ is a type I factor, so an operator is
in the center of

⊕
γ(A)′′ iff it is a scalar on each direct summand. In this way we obtain

a ∗-isomorphism between the center of
⊕

γ(A)′′ and the von Neumann algebra of bounded
functions Â → C. Pedersen calls such a function Davies Borel in case it corresponds to
an element of B(A) ⊆ γ∂(A) under this isomorphism; see [19] section 4.7. Of course, a
subset B ⊆ Â is said to be Davies Borel iff its indicator function is Davies Borel, i. e.,
(1 : γ ∈ B; 0 : γ ∈ Â \B) ∈ B(A).
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Theorem 2.8.5 (cf. theorem 2.6.7). Let A be a separable C*-algebra of type I. Then there
exists a unique continuum-weakly homeomorphic ∗-isomorphism V ∗(A) ∼=

⊕
γ∈Â γ(A)′′:

A V ∗(A)

⊕
γ(A)′′

γS

γ∂ !∼=

Proof. We’re proving a stronger version of proposition 2.7.6; it remains to show that γ∂(A) =⊕
γ(A)′′. Suppose that

(x∞γ : γ ∈ Â) ∈

(⊕
γ

γ(A)′′

)
\ γ∂(A)

is an operator of norm less than 1. It follows that there is a continuum-weakly continuous
functional ϕ on

⊕
γ γ(A)′′ such that ϕ(γ∂(A)) = {0}, but ϕ(x∞γ : γ) 6= 0. Each summand

γ(A)′′ is canonically representable on the separable Hilbert space of Hilbert-Schmidt opera-
tors in γ(A)′′, and the representation of

⊕
γ γ(A)′′ on the direct sum of these Hilbert spaces

yields the same continuum-weak topology as before, by an application of lemma 2.2.6. Thus,
ϕ is still continuum-weakly continuous in this new representation, so lemma 2.4.7 shows that
there is a family (ϕγ ∈ (γ(A)′′)∗) of ultraweakly continuous functionals, and a probability

measure m on Â such that

ϕ : (xγ) 7→
∫
γ

ϕγ(xγ) dm

for all (xγ) ∈
⊕

γ γ(A)′′.
Fix a sequence (an ∈ A1 : n ∈ N) that is dense in the unit ball A1 ⊆ A. By Kaplansky’s

density theorem, (γ(an) ∈ A) is dense in the unit ball of γ(A)′′ for each γ ∈ Â. Symbolically:

∀γ ∈ Â : ∃n ∈ N : |ϕγ(x∞γ − γ(an))| ≤ ε

∃f : Â −→ N : ∀aeγ ∈ Â : |ϕγ(x∞γ − γ(af(γ)))| ≤ ε

∃f : Â
Borel−→ N : ∀aeγ ∈ Â : |ϕγ(x∞γ − γ(af(γ)))| ≤ ε

The first step is a straightforward application of ACae, and the second is a straightforward
application of DC, and LM in the guise of 1.7.5; equipped with the Davies Borel structure,
Â is a standard Borel space, so each subset f−1(n) ⊆ Â differs from some Borel subset on a
set of measure zero.

For each natural number n, let pn ∈ `∞(Â) ∩B(A) ⊆ `∞(Â) ∩ γ∂(A) be the projection
corresponding to the Davies Borel set f−1(n). Trivially, the sets f−1(n) are pairwise dis-
joint, and their union is Â, so

∑
n pn = 1 in the ultraweak topology; similarly, the series
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∑
n γ∂(an)pn is ultraweakly convergent because ‖an‖ ≤ 1 for all n. Furthermore,∣∣∣∣∣ϕ

(
(x∞γ : γ)−

∑
n

γ∂(an)pn

)∣∣∣∣∣ =
∣∣∣ϕ(x∞γ − γ(af(γ)) : γ ∈ Â)

∣∣∣
=

∣∣∣∣∫
γ

ϕγ(x
∞
γ − γ(af(γ))) dm

∣∣∣∣
≤
∫
γ

|ϕγ(x∞γ − γ(af(γ)))| dm ≤
∫
γ

ε dm = ε

Thus, we can ensure that ϕ(
∑

n γ∂(an)pn) 6= 0. Of course,
∑

n γ∂(an)pn ∈ γ∂(A) since

each term is a product of elements in γ∂(A), and the series converges continuum-weakly, by
lemma 2.3.1. This contradicts our choice of ϕ.
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Appendix A

Notation and terminology

The symbol I denotes the unit interval. The symbol T denotes either the unit circle in the
complex plane, or the quotient R/Z, as appropriate to the context. A topological space is
Polish iff it is homeomorphic to a complete separable metric space.

Let f : T → S be a function. The expression (f(t) ∈ S : t ∈ T ) also denotes the function
f ; the expression {f(t) ∈ S : t ∈ T} denotes its range; and the expression [f(t) ∈ S : t ∈ T ]
denotes its equivalence class under the relevant equivalence relation. Where there is no
danger of ambiguity, we will sometimes denote these objects simply by (f(t)), {f(t)}, and
[f(t)].

Let X be a locally compact Hausdorff space. The support of a function f : X → C is
the set supp(f) = {x ∈ X : f(x) 6= 0}, and f is compactly supported iff the closure supp(f)
is compact. A function f : X → C is in `∞(X) iff it is bounded; it is in `2(X) iff it is
square-summable; it is in `1(X) iff it is absolutely summable; it is in c0(X) iff {|f(x)| ≥ ε} is
finite for all ε > 0; it is in C0(X) iff it is continuous and {|f(x)| ≥ ε} is compact for all ε > 0;
it is in Cc(X) iff it is continuous and compactly supported; and it is in B(X) iff its real
and imaginary parts can be obtained from the continuous compactly supported real-valued
functions on X by taking limits of ascending and descending sequences. A subset S ⊆ X is
Baire iff the function f : X → {0, 1} such that f−1(1) = S is in B(X) [20, remark 6.2.10].

Let T be a set. A complex-valued measure on T is a function m : {S ⊆ T} → C
that is countably additive in the sense that the series

∑
nm(Sn) converges absolutely to

m(
⋃
n Sn) for all countable families (Sn ⊆ T ) of pairwise disjoint subsets. A finite measure is

a complex-valued measure m such that m(S) ≥ 0 for all S ⊆ T ; it is a probability measure
if furthermore m(T ) = 1. If T is equipped with a finite measure m, and X is a Banach
space, then L1(T,X ) = {f : T → X :

∫
t∈T ‖f(t)‖ dm <∞} is the set of integrable functions,

L2(T,X ) = {f : T → X :
∫
t∈T ‖f(t)‖2 dm <∞} is the set of square-integrable functions, and

L∞(T,X ) = {f : T → X : infm(S)=m(T ) supt∈S ‖f(t)‖ <∞} is the set of essentially bounded
functions; and L1(T,X ), L2(T,X ), and L∞(T,X ) are the corresponding Lebesgue spaces.
The unit interval I will often be implicitly equipped with Lebesgue measure.

Let A be a C*-algebra. A functional on A is a bounded linear function A→ C. If µ is a
state on A, then γµ : A→ B(Hµ) denotes the GNS representation of A for the state µ. If T
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is a set of states, then γT denotes the direct sum representation a 7→
⊕

µ∈T γµ(a). The space
of all states of A is denoted S(A), and γS(A) is often abbreviated γS ; this is the universal
representation. The space of all pure states is denoted ∂S(A), and γ∂S(A) is often abbreviate
γ∂; this is the atomic representation. Also, W ∗(A) is the closure of γS(A) in the ultraweak
topology, and V ∗(A) is the closure of γS(A) in the continuum-weak topology, which is to be
defined.

Let A be a concrete C*-algebra on some Hilbert space H. Then, A is nondegenerate iff
AH is norm dense in H. A vector functional on A is a functional of the form a 7→ 〈ξ|aη〉 for
some ξ, η ∈ H. A vector state on A is a state that is a vector functional, or equivalently, a
state of the form a 7→ 〈ξ|aξ〉 for some ξ ∈ H. The Banach space of all ultraweakly continuous
functionals is denoted A∗; the subspace of all ultraweakly continuous states is denoted S∗(A),
and γS∗(A) is often abbreviated γ∗. The Banach space of all continuum-weakly continuous
functionals is denoted A•; the subspace of all continuum-weakly continuous states is denoted
S•(A), and γS•(A) is often abbreviated γ•. The expression A always denotes the closure of A
in the continuum-weak topology.

A V*-algebra is a concrete C*-algebra that is closed in the continuum-weak topology,
which is to be defined. The term is intended to suggest an analogy with W*-algebras, i.
e., von Neumann algebras. The term “V*-algebra” was previously used for a different class
of operator algebras [1]; our appropriation of this term might be justified by the fact that
this class of operator algebras coincides with that of C*-algebras [1, theorem 4.3]. The term
“v*-algebra” is also used in universal algebra [29].

A diagram with a dotted arrow expresses that there is a morphism which makes that
diagram commute. A diagram with an exclamation mark expresses that the morphism
making that diagram commute is unique. A diagram with neither of these features simply
expresses that that diagram commutes.

The axioms of Zermelo-Fraenkel set theory are those listed in chapter 1 of Jech’s Set The-
ory [11]. We use boldface and lightface to distinguish between properties of hereditary sets,
and the set-theoretic formulas that express them. For example, ZF is Zermelo-Fraenkel set
theory, which consists of propositions; ZF is the corresponding set of set-theoretic formulas.

The axiom of choice AC is the proposition that for any family of nonempty sets (Xt : t ∈
I) indexed by an arbitrary set I, there exists a function f : I →

⋃
t∈I Xt such that f(t) ∈ Xt

for all t ∈ I; the theory ZF + AC is abbreviated ZFC. The axiom of choices almost
everywhere ACae is the proposition that for any family of nonempty sets (Xt : t ∈ R)
indexed by the real line R, there exists a function f : R →

⋃
t∈RXt such that f(t) ∈ X(t)

for almost all t ∈ R, in the sense of Lebesgue measure. The axiom of dependent choices DC
is the proposition that in any directed graph where every vertex is the source of some edge,
there is an infinite walk starting from any given vertex.

The Lebesgue measurability axiom LM is the proposition that every subset X ⊆ R is
Lebesgue measurable, in the sense that there exists a Gδ subset Y ⊆ R whose symmetric
difference with X can be covered by a countable family of intervals, the sum of whose lengths
can be made arbitrarily small. The Baire property axiom BP is the proposition that every
subset X ⊆ R has the Baire property, in the sense that there exists an open set U whose
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symmetric difference with X can be covered by a countable family of closed nowhere dense
sets. The perfect set property axiom PSP is the proposition that every subset X ⊆ R has
the perfect set property, in the sense that it is either countable, or contains a perfect subset
of R, i. e., a nonempty subset of R that has no isolated points in the subspace topology.



46

Appendix B

The axiom of choices almost
everywhere

Definition B.0.1. The axiom of choices almost everywhere, ACae, is the following choice
principle: for every family of nonempty sets (Xt : t ∈ R) indexed by the real numbers R,
there is a function f : R→

⋃
t∈RXt such that f(t) ∈ Xt for almost all t ∈ R, in the sense of

Lebesgue measure.

Theorem B.0.2. The axiom of choices almost everywhere is satisfied by the transitive model
N1 obtained by applying Solovay’s construction [27] to a countable transitive model M of the
axiom of constructibility.

The argument below was suggested to me by John Steel. It is possibly the same
argument as in [12, section 1], but the authors do not make their assumptions clear.

We briefly recall the situation: M[G] is a countable transitive model of set theory; M is
an inner submodel of M[G] satisfying the axiom of constructibility; κ is an ordinal that is a
strongly inaccessible cardinal in M, and that is ℵ1 in M[G]; N1 is another inner submodel
of M[G], which consists of sets that are hereditarily definable from a sequence of ordinals in
M[G]; G is an M-generic ultrafilter on the Boolean algebra densely generated [11, Theorem
14.10] by the Lev́y collapse partial order Col(ℵ0, < κ) [11, Theorem 15.22]; and M[G] is the
smallest transitive model that contains G and includes M.

proof of theorem B.0.2. We work in M[G]. Every element x of N1 is M-R definable [27,
lemma III.2.8] in the sense that there is a 3-ary set-theoretic formula φ, a set m in M,
and a real number r such that x is the unique set satisfying φ(x,m, r) [27, remark III.1.3].
The reflection principle implies that there is an ordinal α such that x is the unique set
satisfying Vα |= φ(x,m, r). On the other hand, any set that can be characterized in this
way is obviously M-R-definable since for all ordinals α, all formulae φ, and all sets m in M,
the 3-tuple {α, φ,m} is also in m. Thus a set x is M-R-definable iff there exist an ordinal
α, a set-theoretic formula φ, a set m in M, and real number r such that x is the unique
set satisfying Vα |= φ(x,m, r). For each M-R-definable x, there is a least such ordinal αx.
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Then, in the lexicographical ordering, there is a least set-theoretic formula φx such that x
is the unique set satisfying Vαx |= φx(x,m, r) for some m in M and r in R. Finally, because
constructibility is absolute [11, corollary 13.15], M consists of the constructible sets, so we
have definable well-ordering on M [11, theorem 13.18]; thus, for each M-R-definable x, there
is a least element mx of M with respect to this well-ordering, such that x is the unique set
satisfying Vαx |= φx(x,mx, r).

Now, fix a family of sets (Xt : t ∈ R) in N1. Since N1 is transitive, the elements of⋃
t∈RXt are also in N1, and in particular, are M-R-definable. For each t, let (αt, φt,mt)

be the minimum of {(αx, φx,mx) : x ∈ Xt}, ordered lexicographically from left to right,
so that there necessarily exists a real number r such that there is a unique x satisfying
Vαt |= φt(x,mt, r); let Yt be the set of all such r. Observe, that we have defined the family
(Yt) from the family (Xt), which is M-R-definable, so (Yt) is itself M-R-definable. It now
follows [27, remark III.1.12] that there is a Borel function h : R→ R such that h(t) ∈ Y (t) for
almost all t ∈ R. Therefore, we define f(t) to be the unique x such that Vαt |= φt(x,mt, h(t))
if such an x exists, as it does for almost all t, and some arbitrary fixed x0 ∈ X0, otherwise.
By construction, f(t) ∈ Xt for almost all t. Furthermore, f is M-R-definable, since h is M-
R-definable because it is Borel [27, lemma III.2.8, lemma III.2.12], and x0 is M-R-definable
because it is in N1. Each real number is definable from a sequence of ordinals, because it is
obviously definable form a sequence of bits. Each set m in M is definable from a sequence
of ordinals, because M has a definable well-ordering. Thus, f is definable from a sequence
of ordinals, and since each its domain and codomain are both hereditarily definable from a
sequence of ordinals, it follows that f is likewise hereditarily definable form a sequence of
ordinals, i. e., f is in N1.
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Appendix C

Proofs for section 1.7

Proof of 1.7.5. All countable subsets of X are Borel, so we may assume that m is atomless.
Apply 1.7.4.

Proof of 1.7.6. Without loss of generality, we assume that (T,m) is atomless. Clearly T 6≺ N,
so by PSP, T ≈ I. Thus, it is sufficient that every atomless probability measure on I is the
pushforward of Lebesgue measure on I, which follows immediately from 1.7.4 and 1.7.5.

Proof of 1.7.7. By 1.7.6, we may assume that T0, T1 = I, and m0 and m1 are Lebesgue
measure. It follows from 1.7.5 that f is measurable, and we can verify via absoluteness that
Fubini-Tonelli holds for any Lebesgue-measurable function I× I→ C.

Proof of 1.7.8. Clearly, if there is a net in Y converging to some point x, then that point is
in the closure of Y . On the other hand, if x is in the closure of Y , then the following net
in Y converges to x: the index set consists of all pairs (U, y) where U is a neighborhood of
x, and y is any point in Y ∩ U , (U0, y0) ≤ (U1, y1) iff U0 ⊆ U1, and the value of the net at
index (U, y) is y.

Proof of 1.7.9. If f is continuous at x, then by definition, the preimage of every neighborhood
of f(x) contains a neighborhood of x. Thus if (xλ) is a net in X converging to x ∈ X, then
eventually f(xλ) is in any given neighborhood of f(x). On the other hand, if f is not
continuous at X, then by definition there is a neighborhood V of f(x) whose preimage
contains no neighborhood of x; in this case, x is in the closure of the complement of this
preimage so by 1.7.8 there is a net (xλ) converging to x such that the net f(xλ) does not
converge to f(x) because it is never in V .

Proof of 1.7.10. This is a known consequence of the fact that every subset of I is Lebesgue
measurable [8].

Proof of 1.7.11. We combine the open mapping theorem, verified via absoluteness, with
1.7.10.
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Proof of 1.7.35. Without the axiom of choice, a representation is not necessarily the direct
sum of cyclic representations; thus, the usual proof does not apply. Recall that γS : A →
B(HS) denotes the universal representation of A. Fix another representation ρ : A→ B(H).

For vectors ξ, η ∈ H, let ωξ,η : γS(A) → C be given by γS(a) 7→ 〈ξ|ρ(a)η〉, which is
easily seen to be well-defined by considering the cyclic representation of A on the subspace
ρ(A)η ⊆ H. Let ω̃ξ,η be its unique ultraweak extension to W ∗(A), the ultraweak closure of
γS(A). For each operator x ∈ W ∗(A), the expression ω̃ξ,η(x) defines a sesquilinear form on
H; it is bounded:

‖ω̃ξ,η(x)‖ ≤ ‖ω̃ξ,η‖ · ‖x‖ ≤ ‖ωξ,η‖ · ‖x‖ ≤ ‖ξ‖ · ‖η‖ · ‖x‖

The second inequality follows by Kaplansky’s density theorem. We define π(x) to be the
unique bounded operator such that 〈ξ|π(x)η〉 = ω̃ξ,η(x). Since ω̃ξ,η(x) is linear in x, we obtain
a bounded linear map π : W ∗(A) → B(H). Note that π ◦ γS = ρ, since 〈ξ|π(γS(a))η〉 =
ω̃ξ,η(γS(a)) = ωξ,η(γS(a)) = 〈ξ|ρ(a)η〉 for all ξ, η ∈ H. The map π is ultraweakly continuous
since it pulls every vector functional back to a vector functional; this implies uniqueness.

It is easy to verify that π is unital and self-adjoint. For all ξ, η ∈ H,

〈ξ|π(1)η〉 = ω̃ξ,η(1) = ωξ,η(1) = 〈ξ|η〉.

Thus, π(1) = 1. If x ∈ W ∗(A) is self-adjoint, then we fix a net (bλ ∈ γS(A)sa) that
ultraweakly converges to x, and compute for all ξ, η ∈ H:

〈π(x)ξ|η〉 = 〈η|π(x)ξ〉 = ω̃η,ξ(x) = lim
λ
ωη,ξ(bλ) = lim

λ
〈ξ|ρ(bλ)η〉 = · · · = 〈ξ|π(x)η〉

We establish that π is a homomorphism in the usual way: we note that it is a homomor-
phism on γS(A), and then extend this property to W ∗(A) first on the first factor, and then
on the second. For all a0, a1 ∈ A,

π(γS(a0)γS(a1)) = π(γS(a0a1)) = ρ(a0a1) = ρ(a0)ρ(a1) = π(γS(a0))π(γS(a1))

For all x ∈ W ∗(A) and all b ∈ γS(A), there is a net (bλ ∈ γS(A)) that converges to x
ultraweakly, and therefore, for all ξ, η ∈ H,

〈ξ|π(x)π(b)η〉 = lim
λ
〈ξ|π(bλ)π(b)η〉 = lim

λ
〈ξ|π(bλb)η〉 = 〈ξ|π(xb)η〉

Finally, for all x0, x1 ∈ W ∗(A), there is a net (bλ ∈ γS(A)) that converges to x1 ultraweakly,
and therefore, for all ξ, η ∈ H,

〈ξ|π(x0)π(x1)η〉 = lim
λ
〈ξ|π(x0)π(bλ)η〉 = lim

λ
〈ξ|π(x0bλ)η〉 = 〈ξ|π(x0x1)η〉.

Proof of 1.7.41. A functional on M is ultraweakly continuous iff it is countably additive, by
[28] corollary III.3.11. A functional is countably additive iff it is countably additive on every
von Neumann subalgebra of M isomorphic to `∞(N), and BP implies that this is the case [27]
[22] [23, 29.37 and 29.38]. This proof was suggested to me by Alexandru Chirvasitu.
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[30] Martin Väth, The dual space of L∞ is L1, Indagationes Mathematica 9 (1998), 619-625.

arXiv:1502.01516
http://www.karlin.mff.cuni.cz/~spurny/doc/papers/ludvik-spurny-submission.pdf
http://www.karlin.mff.cuni.cz/~spurny/doc/papers/ludvik-spurny-submission.pdf

	Contents
	Working in Solovay's model
	The role of set theory
	The interpretation of mathematics in set theory
	Models of set theory
	Solovay's Model
	Absoluteness
	Establishing absoluteness
	Cheat sheet
	Cardinality
	Counterexamples

	The continuum-weak topology
	Basic definitions
	Continuum amplification
	Projections in a V*-algebra
	Separable Hilbert spaces
	Canonical continuum predual
	The enveloping V*-algebra
	The atomic representation
	Separable C*-algebras of type I

	Notation and terminology
	The axiom of choices almost everywhere
	Proofs for section 1.7



