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ABSTRACT OF THE DISSERTATION

Extremely Low-Delay Coding of Gaussian Sources with Side Information at the
Decoder

by

Xuechen Chen

Doctor of Philosophy, Graduate Program in Electrical Engineering
University of California, Riverside, March 2012

Dr. Ertem Tuncel , Chairperson

One of the innovations brought about by the emerging and thriving of wireless sensor

networks is Wyner-Ziv (WZ) coding, in other words, lossy source coding with side infor-

mation at the decoder. While previous work mostly focuses on using capacity-achieving

codes to approach the Wyner-Ziv bound, which naturally introduces huge block lengths

and huge delay, we study extremely low-delay Wyner-Ziv coding of Gaussian sources.

Three related but distinct problems are considered. The first involves scalar quantization

and scalar noiseless coding of the quantization indices when only decoder has access to

side information. Under high-resolution assumptions and appropriately defined decod-

ability constraints, the optimal quantization level density is conjectured to be periodic.

The performance of variable-length coding with uniform quantization is also character-

ized. The results are then incorporated in predictive Wyner-Ziv coding for Gaussian

sources with memory, and optimal prediction filters are numerically designed so as to

strike a balance between maximally exploiting both temporal and spatial correlation and

limiting the propagation of distortion due to occasional decoding errors. Finally, zero-

delay schemes are also employed in transform coding with small block lengths, where the

Gaussian source and side information are transformed separately with the premise that
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corresponding transform coefficient pairs exhibit good spatial correlation and minimal

temporal correlation. For the specific source-side information pairs studied, it is shown

that transform coding, even with a small block-length, outperforms predictive coding.

In the second part, we study the zero-delay joint source-channel coding (JSCC) prob-

lem of transmitting a Gaussian source over a Gaussian channel in Wyner-Ziv scenario.

To achieve zero-delay, after applying scalar quantization to the source, the properly

scaled analog information, namely the quantization error, is superimposed on the scaled

digital information, i.e., the quantized source, and then transmitted. At the decoder,

several decoding schemes are proposed. It is shown that all the schemes, when optimized

over all related parameters, are superior to pure analog transmission for high enough

correlation between source and side information. The robustness of one of the proposed

Hybrid Digital Analog (HDA) schemes against varying channel and side information

conditions is also compared with that of the purely analog scheme.

Since JSCC WZ problem is intimately related with JSCC without side information

but with bandwidth expansion factor 2, in the third part we investigated the mapping

method from 1-D source space to 2-D channel space which integrates HDA schemes into

spiral mapping or pure analog mapping. The performance comparison with existing

coding algorithms is also presented.
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Chapter 1

Introduction

1.1 Problem Motivation and Background

Figure 1.1: The Model of Sensor Network

Sensor research has been emerging and thriving for several decades. Wireless sensor

networks that consist of many tiny, low-power, and cheap wireless sensors, shown in

Figure 1.1, create a potential that in the near future the physical world will be seam-

lessly connected to the online world. Unlike PCs or the Internet, which are designed to
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support all types of applications, sensor networks are usually mission driven and appli-

cation specific, which include detection of toxic chemicals; measurement of temperature,

pressure, and vibration; or real-time area video surveillance. As a result, wireless sensors

must be operated under a set of constraints and requirements. For example, the energy

for the network nodes is usually not renewable. This constraint has a crucial impact on

the whole operation scheme of wireless sensor networks.

Consider a distributed camera system where cameras image a common scene inde-

pendently. These sensors transmit their highly correlated information to a central pro-

cessing unit that forms the best picture of the scene based on the information collected

by all of the nodes in the network. It is well-known that standard data compression

methods are not the most efficient for this scenario, since they ignore the (high) corre-

lation between the sensor observations. Then, there comes the problem: What could

we do to avoid transmission of any “redundant” information when inter-sensor com-

munication is not allowed because of severe power and channel bandwidth constraints?

The answer is to use distributed source coding (DSC), where correlated data sequences,

observed at different locations in space, are encoded simultaneously and separately, to

be jointly decoded by a central receiver. In contrast with the centralized source coding

regimes where multiple sources are available at a single location, e.g., in stereo coding

of audio or image signals, the correlation between the observed sequences can only be

exploited through the underlying joint statistics, but not through actual realizations of

data.

The fundamental question is, how can the sensors exploit the correlation between

their measurements without communicating to one another? The answer is best ex-

plained using a simple example involving two sensors, where it is given that the measured

(integer) temperature values at each sensor, denoted X(t) and Y (t), cannot differ by
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more than 1 degree at a given time instant. Let the second sensor transmit its data Y (t)

directly, and let the first one transmit X(t) in modulo 3, thereby expending only log2 3

bits. Using Y (t), X(t) mod 3, and the fact that |X(t)− Y (t)| ≤ 1, the central unit can

uniquely identify X(t). The systematic mapping of the actual data to a limited number

of values, as is done by the encoder of X(t) in this example, is usually referred to as

binning in distributed coding literature. The essence of binning is that the X(t)-values

placed in the same bin must constitute a “good” channel code for the fictitious channel

between X(t) and Y (t), so that given the bin index and the channel output Y (t), the

channel codeword X(t) is uniquely identified.

DSC could also be applied to single-camera video coding as was studied in, for

example, [1], where motion compensation at the decoder is an effective way to generate

reliable side information from previous frames.

If the sensors are measuring 1-D signals, such as temperature, pressure, audio, etc.,

in addition to low power and bandwidth constraints, another constraint arises: delay.

Recent methods that approach theoretical limits of DSC, namely, turbo- or LDPC-like

codes require large block lengths to approach the capacity. This, in turn, translates

into a large system delay and an increased memory requirement at the sensors even

when the employed quantizers are low-dimensional (or scalar). Therefore, it may not

be plausible to implement these methods in real-time scenarios, e.g., surveillance for

homeland security or monitoring of enemy activity, where low delay is a very crucial

requirement.

With these delay-sensitive applications in mind, we develop extremely low-delay

DSC techniques. In the next few sections, we provide the necessary background before

the description of our research in the following chapters.
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1.2 Preliminaries and Prior Work

1.2.1 Source Coding

Consider an information source that produces, every unit of time, a symbol x from

a finite set X , called the source alphabet. Let the source sequence be X∞n=1. Each sample

Xn is independent and identically distributed (i.i.d.) with Px = Pr[X = x]. Then X∞n=1

is called a discrete memoryless source (DMS) if X is a countable set.

1.2.1.1 Lossless Source Coding

Theorem 1 AEP(Asymptotic Equipartition Partition): If X1, X2, ..., are i.i.d.∼ p(x),

then

− 1

n
log p(X1, X2, ..., Xn)→ H(X) in probability

This theorem is the analog of the law of large numbers in information theory. Based on

AEP, we can define typical set as

Definition 2 The typical set Anε with respect to p(x) is the set of sequences (x1, x2, ..., xn) ∈

X n with the following property:

2−n[H(X)+ε] ≤ p(x1, x2, ..., xn) ≤ 2−n[H(X)−ε]

So all sequences in X n could be divided into two sets: the typical set Anε and its com-

plement. Typical set has several important properties including:

• For n sufficient large,

Pr[Anε ] > 1− ε.

• For any n,

|Anε | ≤ 2n[H(X)+ε], where |A| denotes the number of elements in the set A.
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• For n sufficiently large,

|Anε | ≥ (1− ε)2n[H(X)−ε].

Based on these properties, we could conclude that lossless representation of sequence

Xn can be done with nH(X) bits on the average for sufficiently large n.

Two sequences (x1, x2, ..., xn) and (y1, y2, ..., yn) are jointly typical if the pair is ε-

typical with respect to the joint distribution pXY and both (x1, x2, ..., xn) and (y1, y2, ..., yn)

are ε-typical with respect to their marginal distributions pX and pY . The set of all such

pairs of sequences is denoted by Anε (X,Y ).

1.2.1.2 Lossy Source Coding and Rate Distortion Function

We assume that a transmitted source symbol X ∈ X will be reproduced at the

destination as a symbol X̂ which is an element of another finite set X̂ , called the des-

tination alphabet. The quality of reproduction is quantified by a distortion measure

d : X ×X̂ → [0,∞). And d is usually assumed as a single-letter distortion measure, i.e.,

d(X, X̂) =
1

n

n∑
i=1

d(Xi, X̂i).

A (2nR, n) rate distortion code consists of an encoding function,

fn : X n → 1, 2, ..., 2nR,

and a decoding (reproduction) function,

gn : 1, 2, ..., 2nR → X̂ .

The rate R is the number of bits-per-symbol needed to transmit the output of the

encoder. A rate-distortion pair (R,D) is called achievable if there exists a sequence of

(2nR, n) rate distortion codes (fn, gn) with

lim
n→∞

Ed(Xn, gn(fn(Xn))) ≤ D.
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The rate distortion region for a source is the closure of the set of achievable rate distortion

pairs (R,D). The rate distortion function R(D) is the infimum of rates R such that

(R,D) is in the rate distortion region of the source for a give distortion D.

Theorem 3 The rate distortion function for a DMS is defined as

R(D) = inf
Px̂|x:Ed(X,X̂)≤D

I(X; X̂) (1.1)

Here the expression I(X, X̂) denotes the mutual information between random variables

X and X̂:

I(X; X̂) =
∑
x∈X

∑
x̂∈X̂

PxPx̂|x log
Px̂|x

Px̂
.

I(X; X̂) is a convex function of Px̂|x. If we focus on finite X and X̂ , the infimum in

(1.1) is actually a minimum. And when D = 0, from (1.1), R(0) equals to H(X), which

coincides with the conclusion of lossless source coding.

1.2.2 Wyner-Ziv Coding

Let (Xk, Yk)
∞
k=1 be a sequence of independent drawings of a pair of dependent ran-

dom variables X,Y , where, Xk ∈ X , Yk ∈ Y. Each pair of sample Xk, Yk is distributed

independently with the same distribution Px,y = Pr[X = x, Y = y]. Then Xk, Yk are

called discrete memoryless sources (DMS) if the source alphabets X and Y are both

countable sets. Wyner-Ziv coding is concerned with lossy compression of source infor-

mation X while there is side information Y at the decoder, which is shown in Fig 1.2.

But before introducing Wyner-Ziv coding, let us look at the Slepian-Wolf problem [2]

for lossless coding first:

Theorem 4 (Slepian-Wolf): For the distributed source coding problem for the source

6



encoder decoder
}{ kX

}{ kY

}ˆ{ kXR

Figure 1.2: The Model of Wyner-Ziv Coding

(X,Y ) drawn i.i.d p(x, y), the achievable rate region is given by

R1 ≥ H(X|Y )

R2 ≥ H(Y |X)

R1 +R2 ≥ H(X,Y ).

Next, we introduce the Wyner-Ziv bound.

Theorem 5 (Wyner-Ziv): The rate distortion function for X with side information Y

available only at the decoder is

RWZ(D) = min
X,Y,W,f :E[d(X,f(Y,W )]≤D

[I(X;W )− I(Y ;W )]

where W and Y are conditionally independent given X (Y −X−W is a Markov chain).

We provide a sketch of the proof of Theorem 5 for convenience:

• Codebook generation: generate w(i) ∈ Wn : i = 1, ..., 2nR1 randomly and i.i.d.

PW .

• Random binning: for each codeword, generate randomly independently with uni-

form probability an index m ∈ {1, ..., 2nR}. Let B denote all the codewords asso-

ciated to index m (we say: in the m-th bin).
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• Encoding: given Xn, find w(i) in the codebook such that (Xn, w(i)) ∈ Anε (X,W ).

If this is not found, declare error. Then, send index m of the bin containing w(i).

• Decoding: given Yk and m, find the unique w(̂i) ∈ B(m) such that (Yn, w(̂i)) ∈

Anε (Y,W ). If there is no such codeword or more than two codewords found, declare

error.

• Error Probability analysis: a codeword w(i) is found with high probability if the

codebook is not too small, i.e., if

R1 > I(X,W ) + ε

By the Markov lemma, (Yn, w(i)) are jointly typical with high probability, hence,

at least one w(i) could be found in bin B(m). To make it unique, bin should not

be too large, i.e.,

R1 −R < I(Y,W )− ε.

It follows that the error probability vanishes as n→∞ if

R > I(X;W )− I(Y ;W ) + 2ε

Figure 1.3 illustrates how binning works. From the figure, we could see that Slepian-

Wolf scheme and Wyner-Ziv scheme are intimately related with channel coding. If

we treat side information Y as output of “side information channel” while input is

source information X, then channel coding principle tells us that with access to Y at

the decoder, to reconstruct X, we only need to know the syndrome information of X

instead of the whole information. However, in order to achieve the theoretical bound,

one has to utilize capacity achieving channel codes (e.g., LDPC, Turbo, etc.), which in

turn require very large block lengths. In contrast, our work focuses on low-delay coding

8



when block length is very small. We still borrow the binning concept in encoder design.

If we denote RX|Y (D) as the rate-distortion function which results when the encoder

(as well as the decoder) has access to the side information Yk, then

RX|Y (D) = min[I(X; X̂|Y )].

Slepian-Wolf bound tells us that when D = 0, knowledge of the side information at the

encoder does not allow a reduction in the transmission rate. In contrast, in nearly all

cases it is shown that when D > 0 then RWZ(D) > RX|Y (D), which means, knowledge

of the side information at the encoder permits transmission of Xk at a given distortion

level using a smaller transmission rate. Although X and Y are assumed to be finite sets,

Theorem 5 is valid in a more general setting which includes the case of Gaussian sources.

Interestingly, when X and Y are joint Gaussians, RWZ(D) = RX|Y (D). Specifically, if

X and Y are joint Gaussian with zero mean and covariance matrix 1 ρ

ρ 1

 ,

it turns out that for all D > 0

RWZ(D) = RX|Y (D)

=


1
2 log

σ2
X(1−ρ2)
D 0 < D ≤ σ2

X(1− ρ2),

0 D ≥ σ2
X(1− ρ2).

(1.2)

1.2.3 Scalar Quantization

Quantization is the heart of analog-to-digital conversion. We define an N− point

scalar (one-dimensional) quantizer Q as a mapping Q : R → C where R is the real line
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Figure 1.3: . How Binning Works.

10



and

C = y1, y2, y3, ..., yN ∈ R

is the output set or codebook with size |C| = N . In all cases of practical interest, N is

finite so that a finite number of binary digits is sufficient to specify the output value. We

define the resolution or code rate, r, of a scalar quantizer as r = log2N which measures

the number of bits needed to uniquely specify the quantized value. The resolution

indicates the accuracy with which the original analog amplitude is described. If r is an

integer, one can assign to each yi a unique binary r−tuple. In this case a fixed rate code

is being used to specify the quantized value. Alternatively, different quantized value can

be specified with binary words of differing numbers of digits. In this case, a variable

rate code is being used and the average rate is the expected number of digits needed to

specify the quantized value.

Associated with every N point quantizer is a partition of the real line R into N

cells or atoms Ri, for i = 1, 2, ..., N . The ith cell is given by Ri = {x ∈ R : Q(x) =

yi} = Q−1(yi). A cell that is unbounded is called an overload cell. Each bounded cell is

called a granular cell. Together all of the overload(granular) cells are called the overload

region (granular region).

A quantizer is defined to be regular if

a) each cell Ri is an interval of the form (xi−1, xi) together with one or both of the

end points, and

b) yi ∈ (xi−1, xi).

The values xi are often called decision levels. The values yi are called reconstruction

levels. The width of cells or intervals is denoted by ∆i.

11



1.2.3.1 Measuring Quantizer Performance

We usually focus most of our attention on the statistical average of the squared

error distortion measure and refer to this as the average distortion.It is also commonly

called the mean squared error.

D = E[X −Q(X))2] =
N∑
i=1

∫
Ri

(x− yi)2fX(x)dx.

If the average distortion has value D and the input sequence is stationary and ergodic,

then the ergodic theorem implies that with probability one, the limiting time average

distortion is also given by D. In this way the more practically meaningful time average

of performance can be studied mathematically by the use of statistical averages.

Granular and Overload Noise

The granular noise is that component of the quantization error that is due to the granular

character of the quantizer for an input that lies within the bounded cells of the quantizer.

The overload noise is that quantization error that is introduced when the input lies in

an overload region of the partition, that is, in any unbounded cell. Generally, granular

noise is relatively small in amplitude and occurs to varying degrees with the quantization

of each input sample while overload noise can have very large amplitudes but for a well-

designed quantizer will occur very rarely. In other words, overload noise depends very

strongly on the signal amplitude.

High Resolution Quantization

In most applications of scalar quantization, the number of levels, N , is chosen to be very

large so that the quantized output will be a very close approximation to the original

input. We shall use the term high resolution to refer to the case of quantization when

the average distortion is much less than the input variance. Many of the most useful

analytical results on quantization require approximate methods of analysis that apply

12



only to the case of high resolution. High resolution is frequently referred to as “fine

quantization” or as “asymptotic” results as they become increasingly accurate as the

resolution approaches infinity.

Additive Noise Model of Quantization

Define the quantizer error sequence resulting from applying a quantizer Q to an input

signal Xn as εn = Xn −Q(Xn). There exists several quantizer noise approximations:

• The signal Xn and the noise εn are uncorrelated.

• The noise process εn has a uniform marginal probability distribution.

• The noise process εn is white, that is, the quantizer noise is an uncorrelated se-

quence of random variables.

If the input signal is itself stationary and memoryless, then the quantization noise will

be white.

Loading Factor

A single parameter that has an important influence on quantizer performance is the

loading factor, γ, which measures the size of the highest decision level, xN−1, relative

to the rms (root mean squared) value σ of the input signal. The loading factor is

γ =
V

σ

where V is the peak signal magnitude that can be quantized without incurring an

excessive overload error.

1.2.3.2 The Uniform Quantizer

A uniform quantizer is a regular quantizer in which (a) the boundary points are

equally spaced and (b) the output levels for granular cells are midpoints of the quantiza-

tion interval. For high resolution uniform quantization, some convenient approximation

13



can be made to obtain general performance results that are independent of the specific

input pdf. Assume the input pdf is sufficiently smooth so that the variation in amplitude

of the pdf over any interval of width ∆ is very small. Then we can approximate the pdf

as having a constant amplitude within a given cell of the partition so that the condition

pdf of the error given the input is in the cell of interest is a uniform pdf over the interval

(−∆/2,∆/2). Thus the conditional error has the variance ∆2/12 and based on the fact

that this value is independent of the specific cell, the unconditional mean squared error

is approximated by ∆2/12.

1.2.3.3 The Nonuniform Quantizer

Compressor uniform quantizer Expandor
X X̂

Figure 1.4: The Model of General Nonuniform Quantizer

Nonuniform Quantizer refers to the quantizer that uses nonuniform spacing of quan-

tization levels. A general model for any nonuniform quantizer with a finite number of

levels is shown in Figure 1.4. The input x is first compressed by a compressor which

has a small slope for large amplitude inputs and therefore compresses of large amplitude

values. After going through the uniform quantizer, the expandor reverses the process

and expands the large amplitudes. We usually use compandor to refer to both the com-

pressor and the expandor. The most important family of compandors is the logarithmic

compandors.
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1.2.3.4 High Resolution Quantization

We already know that for regular quantizers, an average distortion is given by

D =
N∑
i=1

∫ xi

xi−1

(x− yi)2fX(x)dx (1.3)

In high resolution case, since N is so large, 1.3 is not convenient for computational use.

Based on the idea that for a smooth input pdf and very high resolution quantization,

in any local interval of amplitude values, the behavior of the quantizer, is very close to

that of a uniform quantizer with a uniform pdf input.

Suppose that with probability nearly one the random variable takes on values in

a finite interval (a, b). The quantizer partition divides the finite range (a, b) into N

disjoint quantization cells. If the cells are small enough and fX(x) is smooth enough,

the pdf is roughly constant over individual cells, that is, fX(x) ≈ fi;x ∈ Ri. Then from

the fundamental theorem of calculus, Pi = Pr(X ∈ Ri) =
∫ xi
xi−1

fX(x)dx ≈ (xi−xi−1)fi.

Thus we can approximate the average distortion due to granular noise by

D =
N∑
i=1

Pi

∫ xi

xi−1

(x− yi)2

∆i
dx. (1.4)

We know that optimal decoder for a given encoder is yi = E[X|X ∈ Ri]. For high

resolution case, yi could be chosen to be the midpoint of the cell. Therefore the integral

in 1.4 is just the variance of a uniformly distributed random variable on Ri which is

∆2
i /12 and hence the approximation becomes

D ≈ 1

12

N∑
i=1

Pi∆
2
i . (1.5)

Let N(x)dx denote the number of quantization levels that lie between x and x+dx and

assume that as N →∞ we have a limiting density of reproduction levels

λ(x) = lim
N→∞

N(x)

N
.
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which we call the point density function for the sequence of quantizers. If there are

approximately Nλ(x)∆x uniformly spaced levels in a cell of length ∆x, the spacing

between the levels must be

∆i = width of cell i

=
length of interval

number of levels in the interval

=
∆x

Nλ(x)∆x
≈ 1

Nλ(yi)
.

So 1.4 can be changed to

D ≈ 1

12

N∑
i=1

Pi(Nλ(yi))
−2

≈ 1

12

N∑
i=1

fX(i)∆i(Nλ(yi))
−2

≈ 1

12

1

N2

∫ xN−1

x1

fX(y)λ(y)−2dy. (1.6)

Hölder’s inequality states that for any positive a and b with

1

a
+

1

b
= 1

the following inequality holds:(∫
u(x)v(x)dx

)
≤
(∫

u(x)adx

) 1
a
(∫

v(x)bdx

) 1
b

.

In the definition for D choose u(x) = (fX(x)
λ2(x)

)1/3, v(x) = λ(x)2/3 and a = 3, b = 3/2.

Then, Hölder’s inequality yields∫
fX(x)

λ2(x)

1
3

[λ(x)]
2
3dx ≤

[∫
fX(x)

λ2(x)
dx

] 1
3
[∫

λ(x)dx

] 2
3

.

Combined with (1.6), we have the bound that

D ≤ 1

12

1

N2

(∫ V+

V−

fX(x)1/3dx

)3

with equality only if the point density satisfies

λ(x) =
fX(x)1/3∫
fX(y)1/3dy

.
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1.2.3.5 Quantization and Variable-Length Scalar Noiseless Coding

A variable length scalar noiseless code consists of an encoder f , which maps a single

input symbol x into a binary vector f(x) of length l(x), and a decoder g, which maps

binary vector f(x) into an output g(f(x)) = x. The goal is to keep the average number

of bits transmitted for each source symbol as small as possible. For a variable code to

be useful, it must be uniquely decodable in the sense that if the decoder receives a valid

encoded sequence of finite length, there is only one possible input sequence that could

have produced the encoded sequence. A more restrictive approach is to require that the

code satisfy a prefix condition in the sense that no codeword be a prefix of any other

codeword.

The most important fundamental property of a uniquely decodable noiseless source

code is given by the Kraft inequality described in the following theorem.

Theorem 6 A necessary and sufficient condition for unique decodability of a noiseless

source code with input alphabet S = s0, ..., sM−1, encoder f , and codeword lengths lk =

l(sk), k = 0, 1, ...,M − 1, is
M−1∑
k=0

2−lk ≤ 1

From the Kraft inequality we have the average length of uniquely decodable code is

l̄(s) =
∑
s∈S

p(s)l(s)

= −
∑
s∈S

p(s) log 2−l(s)

≥ −
∑
s∈S

p(s) log
2−l(s)∑

s′∈S
2−l(s′)

.
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When the equality holds, l̄(s) =
∑
s∈S

p(s) log 1
q(s) where q(s) = 2−l(s)∑

s′∈S
2−l(s′) . Since

∑
s∈S

p(s) log
1

p(s)
−
∑
s∈S

p(s) log
1

q(s)
≤ log

∑
s∈S

p(s)
q(s)

p(s)
(1.7)

= log
∑
s∈S

q(s)

= 0

where (1.7) follows from Jensen’s inequality; p(s) and q(s) are two pmf with a common

alphabet S, theorem 7 immediately comes out.

Theorem 7 Given a uniquely decodable scalar noiseless variable length code, the aver-

age length of the code can not be smaller than the entropy of the marginal pmf.

l̄(s) ≥ H(p).

Moreover, equality holds if and only if p(s) = 2−l(s) for all s ∈ S.

Here comes the basic idea of one of the main type of entropy coding. These entropy en-

coders compress data by replacing each fixed-length input symbol by the corresponding

variable-length prefix-free output codeword. The length of each codeword is propor-

tional to the negative logarithm of the probability. Two of the most common entropy

encoding techniques are Huffman coding and arithmetic coding.

The output of the quantizer is one of the most common discrete alphabet sources

for variable length coding. Assume a regular quantizer Q with quantization cells and

reconstruction levels Ri, yi; i = 1, ..., N = 2R, where R is the resolution of the quantizer.

If the input is a stationary and ergodic process Xn, then the resulting quantized process

Q(Xn) is also stationary and ergodic. We should be able to construct a noiseless code

for each quantized symbol so that the average bits per sample required is not too much

larger than the marginal entropy of the quantized process defined by

HQ = −
2R∑
i=1

P (Ri) logP (Ri).
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In high resolution regime, Pi = P (Ri) ≈ fX(yi)∆i ≈ fX(yi)
Nλ(yi)

. So

HQ = −
N∑
i=1

∆ifX(yi) log fX(yi)−
N∑
i=1

∆ifX(yi) log
1

Nλ(yi)

≈ −
∫
fX(y) log fX(y)dy −

∫
fX(y) log

1

Nλ(y)
dy

= h(X)− E
[
log

1

Nλ(X)

]
≥ h(X)− 1

2
log 12D, (1.8)

where h(X) is the differential entropy defined by

h(X) = −
∫
fX(x) log fX(x)dx

and where (1.8) is due to the fact that

D ≈ 1

12

1

N2

∫
fX(y)λ(y)−2dy =

1

12
E

(
1

(Nλ(X))2

)
.

Equality is achieved in (1.8) if and only if λ(X) is a constant, which means quantizer is

uniform. Thus we have shown that a uniform quantizer achieves the minimum average

distortion

D ≈ 1

12
2−2(HQ−h(X)) (1.9)

for a constrained output entropy.

1.2.4 Predictive Quantization

The purpose of data compression is to reduce redundancy. Quantization takes care

of the spatial redundancy, and prediction attacks temporal redundancy.

Closed-Loop Predictive Quantization

The model of closed-loop predictive quantizer is shown in Figure(1.5). The difference

en between Xn and X̃n is quantized, and then the same sequence X̃n is added to the

quantized value ên = Q(en). Here, X̃n is actually an estimate of Xn as a ”prediction”
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from the previously reproduced values according to

X̃n = −
m∑
i=1

aiX̂n−i

Simply redraw Figure(1.5), we could find that predictive quantizer has familiar appear-

ance of DPCM (differential pulse code modulation).
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




P

Figure 1.5: The Model of Predictive Quantizer

Theorem 8 (Fundamental Theorem of Predictive Quantization): The overall

mean square reproduction error in predictive encoding is equal to the mean squared error

in quantizing the difference signal presented to the quantizer.

E[(X(n)− X̂(n))2] = E[(e(n)− ê(n))2]

1.2.5 Bit Allocation and Transform Coding

Suppose that we have a block of consecutive samples of a stationary random pro-

cess. Let X denote the sample vector X = (X1, X2, ..., Xk)
t. Performing a suitable

linear transformation on the input vector X, we can obtain a new vector, Y , also with k

components, often called transform coefficients. Figure(1.6) illustrates the structure of
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transform coding where T is a k× k invertible matrix that performs the linear transfor-

mation. A distinct quantizer is applied to each transform coefficient. A bit allocation

strategy is also required for assigning a quota of B bits for the entire vector X under

the distortion constraint.

One important case of the linear transformation is orthogonal transformation T

which satisfies T t = T−1. The superscript t denotes transpose. The length of a vector

is preserved by an orthogonal transformation. This implies that the sum of the squared

quantization errors for the k quantizers will be equal to the overall distortion.

E[(X(n)− X̂(n))2] = E[(Y (n)− Ŷ (n))2]

Karhunen-Loeve Transform

Karhunen-Loeve transform is one kind of orthogonal transform which will make Y = TX

have pairwise uncorrelated components. Let Rx = E[XXt] denote the autocorrelation

matrix of the input vector X. Let ui denote the eigenvectors of RX . The Karhunen-

Loeve transform matrix is then defined as T = U t, where U = [u1u2...uk].

V
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Figure 1.6: The Model of Transform Quantization
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1.2.6 Joint Source Channel Coding

Shannon [3] introduced the concept of channel capacity and proved that as long

as the transmission rate is below the channel’s capacity, reliable communication with a

non-zero, but arbitrarily small error rate is possible. He further presented a theorem

stating that a source with entropy R can be reliably transmitted over a channel with

capacity C as long as R ≤ C. The theorem could be elaborated after the definitions as

below.

Definition 9 Channel capacity: given the channel’s input alphabet AX and the output

alphabet AY ; for each X = (x1, ..., xn) ∈ AnX , b(X) is the cost of sending x. Channel

statistics allow us to compute the distribution of the output Y. For each positive integer

n and β ≥ 0, define Cn(β) by

Cn(β) = sup I(X;Y) : E[b(X)] ≤ nβ,

then the channel capacity is defined as

C(β) = sup
1

n
Cn(β) : n = 1, 2, ....

And after elaboration of Theorem 3,

Definition 10 for each source sequence U = (u1, ..., uk) ∈ AkU and corresponding re-

constructed sequence V = (v1, ..., vk) ∈ AkV , the rate distortion function is defined as

R(D) = inf I(U,V) : E[d(U,V) ≤ D].

Define β̄ = 1
nE[b(X)], D̄ = 1

kE[d(U,V)],

Theorem 11 For a given source and channel, the parameters β̄, D̄ and r̄ = k
n must

satisfy

r̄ ≤ C(β̄)

R(D̄)
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This could be done by firstly applying a source coder to reduce the rate of the source

down to the minimum R (remove the redundancy), then applying a channel coder to

make the impact of the channel noise on the source as small as possible. In the receiver,

the channel decoder, with no idea about the source, outputs the most probable code

word to the source decoder. At the final stage, the source decoder reconstructs the source

without any knowledge of the channel statistics. This is well known as the separation

theorem.

There are some shortcomings with the separate coding scheme. First of all, it usually

brings in infinite complexity and delay. The hope that it may offer a more favorable

performance-delay trade-off is one of the motivations for adopting a joint source-channel

coding. Secondly, the “separation principle” is known to fail in certain situations when

the source and the channel are nonstationary, as well as in multi-terminal networks.

Gastpar et al.[24] gave examples of single-letter codes for single-source systems that

perform optimally in the rate-distortion sense. They gave a criterion for determining

whether a single-letter code performs optimally for a source-channel pair. We could see

the potentiality of omitting channel codes from the article. Thirdly, such systems tend to

break down completely when the channel quality falls under a certain threshold, and the

channel code is no longer capable of correcting the errors which is known as “threshold

effect”; on the other hand, if the channel condition is in fact better, the system can not

provide any performance improvement which is known as “leveling-off effect”. In other

words, the separation system is not strongly robust with respect to changing channel

qualities.

Zahir Azami [5] gave a brief overview of the most prominent JSCC techniques known

at that time. It covers unequal error protection, index assignment, multiresolution mod-

ulation, co-optimized vector quantizing and direct modulation organising schemes. Ex-
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amples of the latter are modulation organized vector quantization which mapped the

codewords directly into the modulation plane. In paper [6], the author generalizes sev-

eral JSCC(Joint Source-Channel Coding) Schemes including digital one, hybrid digital-

analogue(HDA) and “Near-Analogue” JSCC Techniques.

For point to point communication with side information at the decoder, the simple

analog scale-and-transmit scheme which is well known for its simplicity and optimal-

ity when Gaussian source transmitted over an additive white Gaussian noise (AWGN)

channel [9], is no longer optimal. Separation principle still works, though, [10]. [7] and

[8] both propose one kind of JSCC scheme to achieve optimal mean-squared error (MSE)

distortion for the joint Wyner-Ziv and dirty-paper coding. (If the channel interference

is set to zero, the problem reduces to Wyner-Ziv coding which we are focusing on.) In

the former one, Kochman et al. used high-dimensional modulo-lattice modulation to

quantize the source X, and then mapped the analog signal X − Q(X) (Q(X) is the

output of quantizer) onto the channel. Wilson et al. [8], proposed with random coding

arguments instead of lattice whereby the analog source is integrated into the random

codeword.

1.3 Outline of Our Work

In chapter 2, with the motivation of delay-sensitive sensor networks in mind, we

study zero-delay coding where both the quantization and the noiseless coding of the

quantization indices are to be done in a scalar fashion. We employ both non-uniform

and uniform quantization followed by fixed- and variable-length coding of indices, re-

spectively. Most existing work on distributed source coding focused on memoryless

sources. To exploit the temporal correlation typically found in many sources, we extend
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our results to sources with memory by applying prediction filters to both the source

and the side information in order to improve efficiency. We then turn to transform cod-

ing, where we transform both the source and the side information blocks (of relatively

short length) and treat each corresponding transform coefficient pair as a separate scalar

Wyner-Ziv coding problem. The justification for this approach is that if the source and

the side information are highly correlated spatially, then the resultant coefficient pairs

will be almost uncorrelated temporally.

In chapter 3, we study the extreme of zero-delay hybrid digital/analog (HDA)

schemes for the Wyner-Ziv setup, i.e., the joint source channel coding is to be done

in a scalar fashion. One of the motivations for applying hybrid digital/analog (HDA) is

that we could possibly mitigate the problem bringing by applying pure digital and pure

analog systems, which includes that the performance of analog methods would change

gradually with channel CSNR and the “threshold”, “leveling-off” effects of digital mod-

ulation method. HDA transmission could help us achieve not only low delay, but also

robustness to channel mismatch when CSI(channel state information) is unknown at the

transmitter.

The JSCC WZ problem is intimately related with JSCC without side information

but with bandwidth expansion factor 2. In chapter 4, we will discuss the scheme that

integrates our zero-delay HDA encoder into channel bandwidth expansion problem es-

pecially when expansion factor equals to 2. Some other interesting JSCC mappings for

1 to 2 channel expansion problem include inverse spiral mapping [32],[33] and tent-map

mapping [31]. We make a comparison between the performance of our scheme and the

one of inverse spiral mapping.

[34] proposed an iterative algorithm to obtain the optimal map between the k−dimensional

source space and n− dimensional channel space. We have collaborated with them by
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rendering our encoder as initial encoder for their iterative algorithm. The detailed de-

scription would be described in Chapter 5.
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Chapter 2

Low-Delay Prediction- and

Transform-Based Wyner-Ziv

Coding

This chapter studies low-delay Wyner-Ziv coding, i.e., lossy source coding with

side information at the decoder, with emphasis on the extreme of zero-delay coding.

To achieve zero-delay, a scalar quantizer is followed by scalar coding of quantization

indices. In the fixed-length coding scenario, under high-resolution assumptions and ap-

propriately defined decodability constraints, the optimal quantization level density is

conjectured to be periodic. This conjecture, which is provable when the correlation is

high, allows for a precise analysis of the rate-distortion tradeoff. The performance of

variable-length coding with uniform quantization is also characterized. The results are

then incorporated in predictive Wyner-Ziv coding for Gaussian sources with memory,

and optimal prediction filters are numerically designed so as to strike a balance between

maximally exploiting both temporal and spatial correlation and limiting the propaga-

tion of distortion due to occasional decoding errors. Finally, the zero-delay schemes are
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also employed in transform coding with small block lengths, where the Gaussian source

and side information are transformed separately with the premise that corresponding

transform coefficient pairs exhibit good spatial correlation and minimal temporal corre-

lation. For the specific source-side information pairs studied, it is shown that transform

coding, even with a small block-length, outperforms predictive coding. Performances of

both predictive and transform coding are compared with the asymptotic rate-distortion

bounds.

2.1 Introduction

The Wyner-Ziv coding scenario, where a source is to be transmitted in a lossy fashion

to a receiver with side information unknown to the sender [4], has received considerable

attention over the past decade. Among the most notable contributions is the work

of Zamir et al. [11, 12], where the authors proposed a structured algebraic binning

scheme based on a pair of nested linear/lattice codes for Wyner-Ziv coding of binary

symmetric/quadratic Gaussian sources, where the fine code in the nested pair plays the

role of source coding while the coarse code plays that of channel coding. It is shown

in [12] that the Wyner-Ziv rate-distortion (RD) function in the quadratic Gaussian

case is asymptotically achievable as the dimensionality goes to infinity. Motivated by

this, recent research focused on nested lattice codes with fixed-length coding. However,

high-dimensional lattice codes are difficult to implement in practice. One approach

to mitigate that difficulty is to use trellis-based codes [13]. Another approach is to

use low-dimensional lattices (i.e., 1-D or 2-D) followed by ideal Slepian-Wolf coding.

Liu et al. [14] proved that, for any finite dimension n and at a fixed high rate R,

the performance loss of Wyner-Ziv coding of quadratic Gaussian sources with nested

lattice quantization is independent of the source correlation ρ, and observed that the

performance loss increases with increasing R for any fixed ρ. They also showed that if

ideal Slepian-Wolf coding is assumed for coding of low-dimensional quantization indices,
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nested lattice codes come close to Wyner-Ziv RD function for binary symmetric and

jointly Gaussian source-side information pairs. Similar approaches were taken in [15,

16, 17]. However, in order to achieve the theoretical Slepian-Wolf rates, one has to

utilize capacity achieving channel codes (e.g., LDPC, Turbo, etc.), which in turn require

very large block lengths. Though this approach is acceptable for applications such as

video coding, it is problematic for sensor network applications, which tend to be delay

sensitive.

In this work, with the motivation of delay-sensitive sensor networks in mind, we

study zero-delay coding where both the quantization and the noiseless coding of the

quantization indices are to be done in a scalar fashion. We employ both non-uniform

and uniform quantization followed by fixed- and variable-length coding of indices, re-

spectively. In the regime of high resolution, we conjecture that the optimal quantization

level density is periodic under the requirement that for every interval of a certain width

2∆, the number of quantization levels is upper bounded by a given number W . This is

a reasonable requirement that makes both the rate and the decoding error probability

tractable. We also present the necessary and sufficient condition for the conjecture to

hold. Although it proves hard to show the condition is always satisfied, we verify it in

two extreme situations: (i) ρ→ 1, (ii) ρ→ 0. Based on the conjecture, the optimal dis-

tributed quantization level density in one period can be computed by solving the usual

(non-distributed) quantization level density problem for a new source. The overall RD

tradeoff is then obtained by considering all (∆,W ) pairs.

For variable-length coding, we look only at the case where the level density is pe-

riodic, as the analysis becomes extremely difficult otherwise. Under the periodicity as-

sumption, the optimal quantizer becomes uniform as in non-distributed variable-length

coding.

The periodic characteristic of optimal quantizer was previously postulated in [18],

although the authors did not consider the high resolution case. They transformed the

original pdf of the source, by periodizing and truncating. They performed Lloyd quanti-
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zation on the new pdf and then “periodize” the quantizer without proof of optimality of

periodicity. Servetto [19] also explored periodic non-uniform quantization, and claimed

that for Gaussian sources, when ρ→ 1, the performance loss with respect to Wyner-Ziv

RD stays constant as the rate R increases. We compare the performance of our scheme

with that in [19], and observe that not only does our scheme outperform Servetto’s,

but the performance gap between the two schemes widen as R → ∞, and so does that

between either scheme and the Wyner-Ziv RD curve (as expected due to [14]). This

contrasts with the claim in [19], which is possibly caused by the author’s erroneous

analysis of non-uniform quantization.

Most existing work on distributed source coding focused on memoryless sources. To

exploit the temporal correlation typically found in many sources, we extend our results

to sources with memory by applying prediction filters to both the source and the side

information in order to improve efficiency. Previously, [20] exploited memory in source

coding by applying predictive lattice quantization and Wyner-Ziv DPCM. The author

used the prediction filter at the decoder to treat memory as “side information”. Gen-

eralizing the technique of asymptotic closed-loop predictive quantization to distributed

source coding, [21] proposed on iterative algorithm, whereby, binning is included in

the loop. In contrast, we place binning after the prediction loop and minimize the

combination of the resultant “overload” distortion and the granular distortion obtained

prior to binning. After a high-resolution analysis, we arrive at the same conclusion

reached immaturely in [22], i.e., that optimal prediction in the Wyner-Ziv regime is

fundamentally different from that in non-distributed coding in both fixed-length and

variable-length scenarios. The difference stems from two factors: (i) the prediction fil-

ters must strike the optimal balance between reducing temporal redundancy and keeping

spatial redundancy to maximize coding efficiency, and (ii) at the same time, the pre-

diction filter of the source must suppress the propagation of decoding errors to prevent

catastrophic distortion. Our analysis reveals that at low rates, the optimal action is to

allow more decoding errors but prevent their propagation aggressively using a very low
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prediction coefficient for the source. As the rate increases, it is more advantageous to

allow less decoding errors and an increased prediction coefficient. Unfortunately, as was

also shown in [23] for zero-delay Wyner-Ziv coding of memoryless sources, our analy-

sis shows that at very high rates, predictive Wyner-Ziv coding has no advantage over

its non-distributed counterpart. Fortunately, simulations agree with the high-resolution

analysis even at moderate (i.e., practically useful) rates where there is still significant

advantage over non-distributed coding. Comparing fixed- and variable-length scenarios,

we also observed that (i) in the low rate regime, the performance of the two schemes is al-

most identical, (ii) at high rates, although the latter shows significant performance gain

over the former, both RD curves converge to their non-distributed counterparts, and

finally, (iii) the RD performance of variable-length distributed coding is approximately

the same as the upper envelope of those of fixed-length distributed and variable-length

non-distributed coding schemes.

We then turn to transform coding, where we transform both the source and the side

information blocks (of relatively short length) and treat each corresponding transform

coefficient pair as a separate scalar Wyner-Ziv coding problem. The justification for this

approach is that if the source and the side information are highly correlated spatially,

then the resultant coefficient pairs will be almost uncorrelated temporally. In fact, if

the joint structure of the source X(n) and the side information Y (n) is such that

X(n) = T (n) + U(n)

Y (n) = T (n) + V (n)

where T (n) is a stationary Gaussian source and U(n) and V (n) are i.i.d. zero-mean

Gaussians independent of each other, then this decorrelation is exact. More specifically,

if we apply the (ordinary) Karhunen-Loeve transform (KLT) designed for T (n) to both

X(n) and Y (n), the corresponding transform coefficient pairs will be independent. It

should be noted that in this case, although the resultant KLT coincides with the “con-

ditional KLT” for X(n) given Y (n) as introduced by Gastpar et al. [24], the subsequent
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bit allocation and coding is different because in [24], transform coefficients from a large

number of consecutive blocks are assumed to be jointly encoded in an asymptotically

RD-optimal manner. Our approach is also different from that in [25, 26], where the

authors studied high-rate scalar quantization of transform coefficients, because ideal

Slepian-Wolf coding was assumed for the quantization indices, which still implies very

large block lengths.

Our numerical results show that the gap between transform distributed and nondis-

tributed coding is larger than that between predictive distributed and nondistributed

coding. Interestingly, when T (n) is a first-order Gauss-Markov process, distributed

transform coding even with a small block length performs better than first-order dis-

tributed predictive coding. This performance gap is more prominent in fixed-length

coding than in variable-length coding. In contrast, for nondistributed coding, the per-

formance of transform coding could catch up with that of predictive coding only after

a block length of approximately 50, because first-order prediction of such a source is

already very successful in eliminating the temporal redundancy.

Organization of the rest of this paper is as follows. We begin in the next section with

optimal fixed-length scalar quantization, and continue with optimal periodic variable-

length quantization in Section 2.3. We then incorporate the results in predictive and

transform coding in Sections 2.4 and 2.5, respectively. In Appendix A, we briefly dis-

cuss the asymptotic Wyner-Ziv rate-distortion function for a certain class of stationary

Gaussian sources. Finally, the paper is concluded in Section 2.6.

2.2 High-Resolution Fixed-length WZ Scalar Quantization

We assume that the source-side information pair (X,Y ) ∈ R× R has a probability

density function (pdf) that satisfies pXY (x, y) > 0 everywhere. Further, the conditional

pdf pX|Y (x|y) is a smooth function peaking around E[X|Y = y]. A fixed-length code
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consists of an encoder-decoder pair

φfl : R→ {0, 1}R

ψfl : {0, 1}R × R→ R (2.1)

with {0, 1}R denoting all binary strings of length R, where the rate R is assumed to be

integer. The resultant average distortion with respect to the squared-error distortion

measure d(x, x̂) = (x− x̂)2 is given by

D = E[d(X,ψfl(φfl(X), Y ))] .

2.2.1 Encoder-Decoder Scheme

As shown in Fig. 2.1, we use encoders of the form φfl = ISW ◦Q, where

1. The quantizer Q : R→ Z is a nearest neighbor partition with reconstruction levels

x̃j . We use the notation X̃ = Q(X), and sometimes abuse the notation by using

Q−1(j) instead of x̃j .

2. The Slepian-Wolf (SW) mapping ISW : Z→ {0, ...,W − 1} maps quantizer indices

to transmission indices (i.e., “bins”). The corresponding rate becomes R = log2W .

We denote by X̂ the decoder output, i.e., X̂ = ψfl(φfl(X), Y ).

Given the side information Y = y and i = φfl(X), the optimal decoder would

compute

ψfl(i, y) = E[X|Y = y, φfl(X) = i] . (2.2)

However, it would be difficult to optimize the end-to-end distortion with respect to the

quantizer (and later on, with respect to the prediction filters and transforms) if we use

(2.2) and make no further assumptions about the structure of ISW. To that end, we use

the simple binning scheme

ISW(j) = j mod W
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and the decoding function

ψ(i, y) = arg min
x̃j :ISW(j)=i

|x̃j − E[X|Y = y]| . (2.3)

Indeed, when the quantizer is of high resolution, it is true that

φ−1
fl (i)

∆
= {x : ISW(Q(x)) = i} ≈ {x̃j : ISW(j) = i} .

Therefore, if the reconstruction levels x̃j with ISW(j) = i are sufficiently far apart, (2.3)

approximately behaves as the maximum a posteriori estimator for X, thus becoming

a competitive alternative to the mean-square estimator (2.2). The special structure of

ISW above enforces maximum such separation uniformly for all the bins. Further, to

ensure X̂ = X̃ with high probability, we enforce that for some large enough ∆ > 0,

there are at most W reconstruction levels in any interval of length 2∆ on the real axis.

Based on (2.3), X̃ = x̃j is then correctly decoded when

|x̃j − E[X|Y = y]| < ∆

or since x ≈ x̃j , approximately when

|X − E[X|Y = y]| < ∆ . (2.4)

When (X,Y ) is a pair of zero-mean jointly Gaussian random variables whose covariance

matrix is  σ2
X ρσXσY

ρσXσY σ2
Y


the conditional pdf pX|Y (x|y) is also Gaussian with mean

E[X|Y = y] =
ρσX
σY

y (2.5)

and variance

VAR[X|Y = y] = σ2
X(1− ρ2) . (2.6)
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It can be seen from (2.4), (2.5), and (2.6) that to achieve a high probability of correct

decoding of X̃, one needs to set

∆ = βσX
√

1− ρ2

with some appropriate large β > 0, resulting in

Pr[X̃ = X̂] = erf

(
β√
2

)
.

We refer to β as the loading factor of the quantizer, as it plays the same role as that of

a quantizer in non-distributed source coding.

X
Q

X̃
ISW

φ(X)
ψ

Y

X̂

Figure 2.1: The basic encoder-decoder model.

2.2.2 Distortion Analysis

As is well known (see, for example, [29]), the quantizer design problem at high

resolution for a given rate R can be formulated in terms of the density of quantization

levels λ(x). Since the number of levels can be infinite, let this be the “raw” density

corresponding to the actual numbers of levels1. The density must satisfy∫ x+∆

x−∆
λ(x′)dx′ ≤W, ∀x ∈ R . (2.7)

Letting Z = X − X̃, the distortion incurred on X is then given by:

D = E[
(
X̂ −X

)2
]

= E[
(
X̂ − X̃ + X̃ −X

)2
]

= E[Z2] + E[
(
X̂ − X̃

)2
] + 2E[

(
X̂ − X̃

)
Z]

1That is, λ(x) = lim
N→∞

N(x) instead of the more commonly used λ(x) = lim
N→∞

N(x)
N

, where N(x)dx is

the number of quantization levels in the interval (x, x+ dx].

35



where

Dg = E
[
Z2
]
≈
∫ ∞
−∞

pX(x)

12λ(x)2
dx (2.8)

is the granular distortion correspond to correct decoding of X̃, and

Do = E[
(
X̂ − X̃

)2
]

is the overload distortion resulting from a possible decoding error due to binning. The

cross-term 2E[
(
X̂ − X̃

)
Z] is negligible compared to Do, because

∣∣∣E[
(
X̂ − X̃

)
Z]
∣∣∣ ≤ E

[
|X̂ − X̃| · |Z|

]
= E

[
|X̂ − X̃| · |Z|

∣∣∣X̂ − X̃ 6= 0
]

Pr[X̂ − X̃ 6= 0]

� E
[(
X̂ − X̃

)2∣∣∣X̂ − X̃ 6= 0
]

Pr[X̂ − X̃ 6= 0]

= E[
(
X̂ − X̃

)2
] .

That, in turn, is because for large ∆, the decoding error X̂ − X̃ is much larger than the

high-resolution quantization error Z in magnitude. Therefore,

D ≈ Dg +Do . (2.9)

2.2.2.1 Analysis of the Granular Distortion Dg

Even in the simplified framework of (2.9), choosing the optimal λ(x) minimizing

Dg +Do is a tedious task. Instead, we strive to choose λ(x) so as to minimize Dg only.

To that end, we start with a conjecture.

Conjecture 12 The optimal λ∗(x) which minimizes (2.8) subject to the constraint (2.7)

is periodic with period 2∆.
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In both [18] and [19], the authors also assumed a periodic quantizer. When λ(x) is

periodic, we have

Dg =
∑
k∈Z

∫ ∆+2k∆

−∆+2k∆

pX(x)

12λ(x)2
dx

=

∫ ∆

−∆

∑
k∈Z

pX(x′ + 2k∆)

12λ(x′ + 2k∆)2
dx′

=

∫ ∆

−∆

∑
k∈Z

pX(x′ + 2k∆)

12λ(x′)2
dx′

using which we can prove the following lemma:

Lemma 13 The optimal periodic quantizer with period 2∆ is given by

λ∗(x) =
W

CX,∆

(∑
k∈Z

pX(x+ 2k∆)

)1/3

(2.10)

with

CX,∆ =

∫ ∆

−∆

(∑
k∈Z

pX(x+ 2k∆)

)1/3

dx

which, using W = 2R, results in

Dg(R) =
(CX,∆)3

12
2−2R . (2.11)

Proof. Define

qX(x) =
∑
k∈Z

pX(x+ 2k∆)

and a corresponding random variable X̌ such that

pX̌(x) =


qX(x) −∆ ≤ x ≤ ∆

0 otherwise.

The granular distortion can then be rewritten as

Dg =

∫ ∆

−∆

qX(x)

12λ(x)2
dx =

∫ ∆

−∆

pX̌(x)

12λ(x)2
dx

It then follows from [29, Section 6.3] and the periodicity of the quantizer that

λ∗(x) = W
qX(x)1/3∫ ∆

−∆ qX(x′)1/3dx′

37



where the extraW appears because λ∗(x) is the raw density, and must therefore integrate

to W over the interval [−∆,∆].

For general (i.e., possibly non-periodic) λ(x), one can observe using well-known

techniques in calculus of variations that the necessary and sufficient conditions for any

λ(x) to minimize (2.8) subject to the constraint (2.7) is given by∫ ∞
−∞

pX(x)(
λ(x) + εµ(x)

)2dx ≥ ∫ ∞
−∞

pX(x)

λ(x)2
dx

for arbitrary ε ≥ 0 and µ(x) satisfying∫ x+∆

x−∆

(
λ(x′) + εµ(x′)

)
dx′ ≤W, ∀x ∈ R .

This translates to

d

dε

∫ ∞
−∞

pX(x)(
λ(x) + εµ(x)

)2dx
∣∣∣∣∣
ε=0

≥ 0

or, taking the derivative, ∫ ∞
−∞

pX(x)

λ(x)3
µ(x)dx ≤ 0 (2.12)

for any µ(x) satisfying ∫ x+∆

x−∆
µ(x′)dx′ ≤ 0, ∀x ∈ R . (2.13)

Now, substituting (2.10) into (2.12), the necessary and sufficient condition for λ∗(x)

to be the optimal density function becomes∫ ∞
−∞

pX(x)

qX(x)
µ(x)dx ≤ 0 (2.14)

for any µ(x) satisfying (2.13). It is easy to observe that if equality in (2.13) holds, which

implies µ(x) is periodic with period 2∆, then equality in (2.14) would automatically be

satisfied.

Although it proved difficult to show (2.14), we could verify it in two extreme situa-

tions:

1. When ∆ → ∞, we are effectively performing non-distributed coding. If (2.13)

holds, (2.14) would naturally be true, because

lim
∆→∞

pX(x)

qX(x)
= 1
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−3∆ −∆ ∆ 3∆

X̂ X̃

S

ρσX

σY

Y

Figure 2.2: A decoding error example. The correct quantized value X̃ is missed because
the optimal estimate of X is closer to X̃ − 2∆. The overload error is −Q2∆(S) = −2∆.
The triangles represent all the reconstruction levels X̃j with ISW(j) = i, where i is the
transmission index

.

uniformly for all x.

2. When ∆ → 0, (2.13) implies that µ(x) ≤ 0 for all x ∈ R. Hence (2.14) is auto-

matically satisfied. The significance of this extreme case is that it corresonds to

ρ→ 1.

2.2.2.2 Analysis of the Overload Distortion Do

Defining

S = X̃ − ρσX
σY

Y

the overload distortion can be written as

Do ≈ 4∆2
∑

k∈Z,k 6=0

k2 Pr[(2k − 1)∆ ≤ S ≤ (2k + 1)∆] (2.15)

which follows from X̂ − X̃ = −Q2∆(S), where Q2∆ is the uniform quantizer rounding

to the nearest integer multiple of 2∆. This is due to the periodic property of quantizer

as we discussed above. See Fig. 2.2 for an illustration.
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Figure 2.3: Behavior of the total distortion as β varies when ρ→ 1. Optimal values of
β for various R are also shown.

2.2.2.3 Comparison with Related Work

In [19], Servetto defined a scaling factor s, which plays the same role as ∆ here, and

argued that for Gaussians it should satisfy:

lim
ρ→1

s(ρ) = 0 (2.16)

lim
ρ→1

s(ρ)

σX
√

1− ρ2
= ∞ . (2.17)

Our method is different in several aspects. First, we control ∆ using β for any ρ,

whereas [19] fixes s(ρ). Second, (2.17) implies that s(ρ) shrinks with a rate less than

that of σX|Y , whereas in our case, the shrinking rate is controlled by the optimum β.

Finally, [19] focuses on ρ→ 1, while we target all values of ρ. Nevertheless, in the special

case of ρ→ 1, both granular and overload distortion becomes more tractable analytically

in our framework as well. In particular, as ρ→ 1, it is clear that ∆→ 0, in which case

pX̌(x) can be approximated as the uniform distribution. That, in turn, implies that

λ∗(x) is constant, i.e., the optimal quantizer is uniform, and the corresponding granular

distortion can be found as

Dg =
∆2

3
2−2R .
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Assuming a large enough β, Do can also be approximated as

Do = E{(X̂ − X̃)2} ≈ (2∆)2

[
1− erf

(
β√
2

)]
.

Adding the two distortion values together, we obtain

D = 4σ2
X(1− ρ2)β2

[
2−2R

12
+ 1− erf

(
β√
2

)]
. (2.18)

The behavior of (2.18) as β varies is shown in Fig. 2.3. The optimal β values shown on

Fig. 2.3 coincide with what we observed experimentally for very large ρ, thus validating

(2.18).

Turning back to general ρ, we see that our λ∗(x) differs from the choice of [19],

which, although periodic, was given by

λ(x) = W
pX|Y (x|0)1/3∫ ∆

−∆ pX|Y (x′|0)1/3dx′

in the interval [−∆,∆].

In Fig. 2.4, we compare the performance of our scheme with that in [19]. First of

all, as can be seen from the figure, not only is our scheme better, but the performance

gap between the two schemes widens as R increases. The second observation is that the

gap between the Wyner-Ziv RD curve and the achieved performance of either scheme

diverges as R → ∞. Observe that this contrasts with the claim in [19] that the latter

gap converges to G12πe as ρ → 1, where G1 is a constant satisfying 1
12 ≤ G1 ≤ 1

2 .

We note here that this discrepancy is probably because the expression for distortion

derived for uniform quantization in [19, Section III-B] was erroneously applied in [19,

Section III-C] for non-uniform quantization.

2.3 High Resolution Variable-Length WZ Scalar Quanti-

zation

For variable length coding, on top of the fixed-length encoder ISW ◦Q, with Q : R→

Z and ISW(j) = j mod W , we also employ a prefix-free mapping ivl : [0, 1, ...,W − 1]→
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Figure 2.4: Comparison of the performances of our scheme and Servetto’s scheme [19]
for different values of ρ.
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{0, 1}∗. At the receiver, the variable length codeword is first decoded ignoring the side-

information to give the transmission index. The rest of the decoding proceeds as in

fixed-length coding.

Since the rate with variable-length coding is a complicated function of the quantizer

level density, minimizing the granular distortion for a fixed rate seems to be extremely

difficult. Instead, motivated by Conjecture 12, we only look at the case where the level

density is periodic. A by-product of this is that the overload distortion is still given by

(2.15). The optimal granular distortion is derived in the next lemma.

Lemma 14 The optimal periodic level density for entropy coded WZ quantization is

uniform and the resulting granular distortion is

Dg(R) =
22h(X̌)

12
2−2R (2.19)

where

h(X̌) = −
∫ ∆

−∆
pX̌(x) log pX̌(x)dx .

Proof. The proof follows the same lines as in [29, Section 9.9] after observing that, as

in the fixed-length case, designing a periodic WZ quantizer for (X,Y ) is no different

than designing a non-distributed quantizer for X̌. This observation leads to

D ≈ 1

12W 2

∫ ∆

−∆

pX̌(x)

λ̌(x)2
dx =

1

12
E

[
1

(Wλ̌(X̌))2

]
and

H(X̂) ≈ h(X̌)− E
[
log

1

Wλ̌(X)

]
where λ̌(x) = λ(x)

W .
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2.4 High-Resolution Predictive WZ coding of Gaussian

Sources

2.4.1 Fixed-Length Predictive Coding

Consider two jointly Gaussian processes X(n) and Y (n). We strive for optimal

exploitation of time and space correlation by performing scalar Wyner-Ziv coding of

X(n) after passing both X(n) and Y (n) through appropriate first-order “prediction”

filters A(z) = 1 − az−1 and B(z) = 1 − bz−1, respectively, as shown in Figure 2.5.

The filters need not perform prediction in the classical sense of minimizing the variance

of the prediction error. Instead, they need to strike the optimal balance between low

time correlation and high space correlation. We denote the filter outputs by EX(n) and

EY (n).2

The conditional pdf pEX(n)|EY (n)(eX |eY ) is Gaussian with mean

E[EX(n)|EY (n) = eY ] =
ρEXEY

σEX

σEY

eY (2.20)

and variance

VAR[EX(n)|EY (n) = eY ] = σ2
EX

(
1− ρ2

EXEY

)
(2.21)

where

ρEXEY
=
REXEY

(0)

σEX
σEY

.

Similar to S defined in Section 2.2.2.2 to facilitate the analysis of the overload distortion,

we could define S(n) as

S(n)
∆
= ẼX(n)− ρEXEY

σEX

σEY

EY (n)

≈ EX(n)− ρEXEY
σEX

σEY

EY (n) . (2.22)

We adopt the same periodic quantization regime as described in the previous section,

and optimize over a, b, and β. Unfortunately, unlike in non-distributed predictive source

2In the high-resolution quantization regime, the open-loop predictor A(z) is a good approximation to
the actual closed-loop predictor.
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coding, we do not enjoy the relation

E
[(
X(n)− X̂(n)

)2
]

= E
[(
EX(n)− ẼX(n)

)2
]

even though we perform closed-loop prediction with matching prediction and reconstruc-

tion filters. That is because an encoder-decoder mismatch occurs whenever |S(n)| > ∆.

On the other hand, we can redraw the block diagram of our algorithm as in Figure 2.6,

from which it can be seen that

X̂(n) =
[
(X(n) + Z(n)) ? a(n)− Ŝ(n)

]
? a−1(n)

= X(n) + Z(n)− ˆ̂
S(n) (2.23)

where ? denotes convolution, a(n) and a−1(n) are respectively the impulse responses of

the prediction filter A(z) = 1−az−1 and the reconstruction filter A−1(z) = 1
1−az−1 , and

ˆ̂
S(n) = Ŝ(n) ? a−1(n) . (2.24)

But, (2.23) together with the high resolution assumption implies

D = E
[(
X̂(n)−X(n)

)2
]

≈ E
[
Z(n)2

]
+ E

[
ˆ̂
S(n)2

]
= Dg +Do .

where, the cross-term E[Z(n)
ˆ̂
S(n)] vanishes as before.

It is a tedious task to choose the optimal λ(eX) minimizing Dg + Do. Instead, we

choose λ(eX) so as to minimize Dg only, and as discussed above, it becomes

λ(eX) =
W

CEX ,∆

(∑
k∈Z

pEX(n)(eX + 2k∆)
)1/3

(2.25)

for any eX ∈ R, where

CEX ,∆ ,
∫ ∆

−∆

(∑
k∈Z

pEX(n)(eX + 2k∆)
)1/3

deX .
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Q2∆

ρEX EY
σEX

σEY

Figure 2.6: An equivalent block diagram in the high-resolution regime.
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The corresponding minimum granular distortion is then given by

Dg ≈
(CEX ,∆)3

12
2−2R (2.26)

We have from (2.24) that

E
[

ˆ̂
S(n)2

]
= R ˆ̂

S
ˆ̂
S

(0) =
∞∑

τ=−∞

|a|τRŜŜ(τ)

1− a2
(2.27)

where

RŜŜ(τ)=4∆2
∞∑

i=−∞

∞∑
j=−∞

ij Pr[Ŝ(n) = 2i∆, Ŝ(n− τ) = 2j∆]

which reduces to the unfiltered overload distortion in (2.15) when τ = 0, as it should.

To evaluate

Pr[Ŝ(n) = 2i∆, Ŝ(n− τ) = 2j∆]

=

∫ (2i+1)∆

(2i−1)∆

∫ (2j+1)∆

(2j−1)∆
pS(n)S(n−τ)(s1, s2)ds1ds2

we use the approximation (2.22) which makes S(n) a Gaussian process with zero-mean

and autocorrelation

RSS(τ) = REXEX
(τ) +

ρ2
EXEY

σ2
EX

σ2
EY

REY EY
(τ)

−ρEXEY
σEX

σEY

[
REXEY

(τ) +REXEY
(−τ)

]
.

It can be deduced from (2.27) that if |a| ≈ 1, (i) even occasional decoding errors will

propagate for a long time, and (ii) these errors will be amplified immensely by a factor

1
1−a2 . Conversely, if a ≈ 0, then R ˆ̂

S
ˆ̂
S

(0) ≈ RŜŜ(0), and overload distortion will be given

by (2.15), i.e., binning errors will be forgotten quickly and will not be amplified.

The choice of a, b, and β affect both Dg and RŜŜ(τ) in so complex a manner

that analytical optimization is an almost hopeless task. We instead use experimental

analysis and perform a brute-force search in the space −1 < a, b < 1 and β ≥ 2.5. In

our experiment, we use the following model. Let T (n) be a first-order Gauss-Markov

process. That is,

T (n) = ρT (n− 1) +W (n)
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where W (n) is i.i.d. zero-mean Gaussian, W (n) ⊥ T (n − 1), and σ2
W = 1 − ρ2 so that

σ2
T = 1. Also assume that T (0) has zero mean and unit variance so that the process is

stationary. Let the source X(n) observed at the encoder and the side information Y (n)

observed at the decoder be noisy observations of T (n), i.e.,

X(n) = T (n) + U(n) (2.28)

Y (n) = T (n) + V (n) (2.29)

where U(n) and V (n) are i.i.d. zero-mean Gaussians independent of each other.

Figures 2.7(a), (b), and (c) show the resultant high-resolution rate-distortion per-

formance for three sample cases in which the space correlation is high enough. Also

shown on the same figures are the high-resolution rate-distortion performances when (i)

the naive choice of filter parameters a = ρ
1+σ2

U
and b = ρ

1+σ2
V

is used3, and (ii) the side

information at the decoder is ignored. Optimal β increases without bound as we climb

up the rate-distortion curve. Thus, as R → ∞, the scalar Wyner-Ziv coder reduces to

a scalar non-distributed coder, explaining why all three curves meet at high rates, and

also why the optimal choice of a approaches the naive one. Since the high-resolution

assumption is accurate only at high rates, one may wonders whether any of our analysis

is useful. To address this, we implemented actual quantizers corresponding to λ(eX)

and simulated the coding of sequences of length 1,000,000. Fortunately, as shown also

on Figures 2.7(a), (b), and (c), the simulated performance is not only always better than

that of non-distributed source coding, but also catches the theoretical performance at

moderate rates where there is still room for Wyner-Ziv coding gain.

On the low rate side, since optimal β is also low, the decoding error probability

becomes high, resulting in the need to quickly forget the errors as discussed above. This

explains the very low values a assumes at low rates.

Finally, Figures 2.7(a), (b), and (c) also show the corresponding asymptotically opti-

mal rate-distortion performances, i.e., when arbitrarily large block-codes are allowed. We

3This choice minimizes σ2
EX

and σ2
EY

simultaneously, and corresponds to the optimal first-order
prediction filters in non-distributed source coding.
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defer the detailed computation of the asymptotic rate-distortion curve to Appendix A.

2.4.2 Variable-Length Predictive Coding

We use the same coding technique as in Figure 2.6. Therefore, the overload distor-

tion Do is the same as in fixed-length predictive coding. However, the granular distortion

E[Z2(n)] has to be reformulated. Following (2.19),

Dg = E[Z2(n)] =
22h(ĚX)

12
2−2R

where

h(ĚX) = −
∫ ∆

−∆
pĚX

(eX) log pĚX
(eX)deX (2.30)

and

pĚX
(eX) =


∑

k∈Z pEX
(eX + 2k∆) −∆ ≤ eX ≤ ∆

0 otherwise

.

Figures 2.8(a), (b), and (c) show the resultant high-resolution rate-distortion per-

formance for the same sample cases as in fixed-length predictive coding. The behavior

of optimal a and β is similar to what we observed in fixed-length coding. Also similar

are (i) how the gap between optimal distributed and non-distributed coding perfor-

mances vanish as the rate increases, and (ii) how the simulated performance is superior

to non-distribued coding even in low rates.

We also compare the performance of fixed- and variable-length scenarios in Fig-

ure 2.9 for the same three cases. In the low rate regime, the performance of fixed- and

variable-length distributed schemes is almost identical. This is expected, as in the low

rates, β (and thus ∆) tends to be low, which results in an almost uniform pĚX
. On

the other hand, at high rates, although there is a significant gap between the two, both

converge to their non-distributed counterparts as β becomes very large. It is interesting

to observe that even at medium rates, where there is potential for variable-length dis-

tributed coding to have a significant gain over both fixed-length distributed coding and
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Figure 2.7: Comparison of the rate-distortion performance of various schemes for three
sample source parameters using fixed-length predictive coding. Optimal a, b, and β are
indicated on the curves.
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Figure 2.8: Comparison of the rate-distortion performance of various schemes for three
sample source parameters using variable-length predictive coding. Optimal a, b, and β
are indicated on the curves.
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variable-length non-distributed coding, that potential is not realized. In other words,

the rate-distortion performance of variable-length distributed coding is approximately

the same as the upper envelope of those of fixed-length distributed and variable-length

non-distributed coding schemes.

2.5 High Resolution Transform WZ Coding of Gaussian

Sources

Our transform coding model is as shown in Figure 2.10. In this section, we exploit

the structure of X(n) and Y (n) as given in (2.28) and (2.29) with arbitrary stationary

Gaussian T (n) to design optimal transform matrices A and B. More specifically, the

k × k covariance matrices CXX , CY Y , and CXY can be written as

CXX = CTT + σ2
UI

CY Y = CTT + σ2
V I

CXY = CTT .

In the transform domain, the corresponding covariance matrices become

CX′X′ = ACTTA−1 + σ2
UI

CY ′Y ′ = BCTTB−1 + σ2
V I

CX′Y ′ = ACTTB−1 .

Thus, setting both A and B to the Karhunen-Loeve transform (KLT) for the vector

source T (1), T (2), . . . , T (k), one can make all three matrices diagonal. This, in turn,

implies that the transform coefficient pairs (X ′1, Y
′

1), (X ′2, Y
′

2), ..., (X ′k, Y
′
k) are indepen-

dent of each other, and therefore, should be coded separately after proper allocation of

the available bits.

It should be noted that in this case, although our transform coincides with the “con-

ditional KLT” for X(n) given Y (n) as introduced by Gastpar et al. [24], the subsequent
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Figure 2.9: Comparison of the rate-distortion performance of fixed length and variable
length predictive coding
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Figure 2.10: Transform Wyner-Ziv coding by scalar coding of corresponding transform
coefficients.

bit allocation and coding is different because in [24], transform coefficients from a large

number of consecutive blocks are assumed to be jointly encoded in an asymptotically

RD-optimal manner.

The average distortion on X(1), . . . , X(k), or equivalently on X ′1, . . . , X
′
k, can be

written as

D(b1, b2, . . . , bk) =
1

k

k∑
i=1

Di(bi)

where b1, . . . , bk are the number of bits allocated to component i so that

k∑
i=1

bi = kR

and Di(bi) is the distortion of the ith transform coefficient, which, as before, comprises

of granular and overload components:

Di(bi) = Dg,i(bi) +Do,i .

Depending on whether fixed- or variable-length coding is used, Dg,i(bi) can be calculated

as in (2.11) or (2.19), respectively, using X ′i in place of X. Similarly, Do,i is given as in
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(2.15) using

S′i = X ′i −
ρX′iY ′i σX′i
σY ′i

Y ′i

in place of S. Of course, for each integer bi, the parameter ∆ should be chosen so as to

minimize Di(bi).

We convexify Di(bi) so that D(b1, b2, . . . , bk) becomes convex as well, in which case

the bit allocation problem

Minimize

k∑
i=1

Di(bi)

subject to
k∑
i=1

bi = kR (2.31)

can alternatively be tackled by minimizing the Lagrangian

L =
k∑
i=1

[
Di(bi) + λbi

]
∆
=

k∑
i=1

Li

for every λ > 0. It is clear that the minimum is achieved by independently minimizing

each Li. That, in turn, implies that as we initialize λ as a sufficiently large number

and gradually decrease it, we can successfully track the optimal {bi}ki=1 by the following

simple algorithm.

1. Initialize with bi = 0 for all i.

2. Calculate δi = Di(bi)−Di(bi + 1).

3. Find i∗ = arg maxi δi, and increment bi∗ .

4. Repeat 2 and 3 until
∑

i bi = kR.

This algorithm is essentially the same as that given in [29, Section 16.5], where the lower

envelope of
k∑
i=1

[Di(bi) + λbi] for all possible bit assignments was treated as a piecewise

linear monotonically increasing function of λ, and singular values of λ where two line

segments meet are visited until the desired number of total bits is reached. In our

algorithm, each maximum δi corresponds to the next singular λ to be visited.
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For the same Gauss-Markov T (n) as in predictive coding, with ρ = 0.99 and σ2
U =

σ2
V = 0.005, we compare the performance of distributed transform coding to those

of predictive coding as well as non-distributed coding in Figure 2.11. Figures 2.11(a)

and (b) show how the performance of transform coding (both distributed and non-

distributed) evolves with increasing block-length for fixed- and variable-length coding,

respectively. Figures 2.11(c) and (d) compare the performance of transform coding

to that of predictive coding, again for fixed- and variable-length coding, respectively.

Finally, Figure 2.11(e) compares the performance of fixed- and variable-length predictive

and transform coding.

First of all, we observe that the gap between distributed and non-distributed trans-

form coding is larger than that between distributed and non-distributed predictive cod-

ing. Secondly, distributed transform coding yields better results than distributed pre-

dictive coding, contrary to the non-distributed case. This can be explained by the fact

that the source X(n) is nearly first-order Markov, and first-order prediction is thus very

powerful in non-distributed coding. In fact, we had to increase the block-length to 50

for transform coding to catch up with predictive coding. On the other hand, due to

the fact that significant temporal correlation remains after prediction in the distributed

case, the performance of predictive coding falls below that of transform coding.

2.6 Conclusion

We studied zero-delay, i.e., scalar, lossy source coding with side information at the

decoder. Instead of imposing a periodic structure on the scalar quantizer directly, we

addressed optimal quantization under the constraint that within every interval of size

2∆, there are at most W cells. We conjectured that optimal quantizers under this regime

are periodic, and proved this conjecture for the important extreme case of a very high

correlation coefficient between the source and side information.
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Figure 2.11: Transform coding results. (a) and (b) compare the performances with
various block-lengths for fixed- and variable-length coding, respectively. (c) and (d)
compare the performance of transform coding (with block-length 10) and predictive
coding (with order 1) for fixed- and variable-length coding, respectively. Finally, (e)
compares fixed- and variable-length coding for both transform and predictive coding.
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When we incorporated our zero-delay coding results into predictive coding for Gaus-

sian sources with memory, we observed that optimal prediction in the Wyner-Ziv regime

is fundamentally different from that in non-distributed coding. That is because the pre-

diction filters must not only jointly exploit the temporal and spatial redundancies, but

the prediction filter of the source must also suppress the propagation of occasional de-

coding errors. At low rates, the optimal action turns out to be to allow more decoding

errors but prevent their propagation aggressively using a very low prediction coefficient

for the source. As the rate increases, it is more advantageous to allow less decoding

errors and an increased prediction coefficient.

We also employed our scalar codes in transform coding with small block lengths

(thereby achieving a low delay), where the source and side information are transformed

separately. For the specific source-side information pairs studied, we showed that trans-

form coding, even with a small block-length, outperforms predictive coding, despite the

first-order Markov-like structure of the signals.

To keep our results in perspective, we also derived the asymptotic rate-distortion

function for the special structure of sources we studied. Because we do not use the

ideal Slepian-Wolf coding assumption anywhere in our results, the gap between the

asymptotic rate-distortion function and performance of our schemes is more significant

than usual.
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Chapter 3

Zero-Delay Joint Source-Channel

Coding for the Gaussian

Wyner-Ziv Problem

3.1 Preliminary

Let’s firstly review some fundamental estimation methods. It’s well known that

for an estimator to be unbiased we mean that on the average the estimator will yield

the true value of the unknown parameter. Mathematically, if the true value is θ, an

estimator is unbiased if E(θ̂) = θ. A natural optimality criterion for estimator is the

mean square error (MSE), defined as mse(θ̂) = E
[
(θ̂ − θ)2

]
. The Cramer-Rao Lower

Bound is one kind of method to find minimum variance unbiased (MVU) estimator. It

is defined as below:

Theorem 15 The variance of any unbiased estimator θ̂ must satisfy

var(θ̂) ≥ 1
1

E
[
∂2lnp(x;θ)

∂θ2

]
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Furthermore, if and only if

∂ln(p(x; θ)

∂θ
= I(θ)(g(x)− θ)

the estimator, which is the MVU estimator, is θ̂ = g(x), and the minimum variance is

1/I(θ).

However, MVU estimator usually is not easy to be found. In situations where the

MVU estimator does not exist or cannot be found even if it exists, we use some other

estimators to substitute. One of them is Maximum Likelihood Estimator(MLE), defined

as the value of θ that maximizes the likelihood function. It could be found by taking

the derivative of likelihood function or log-likelihood function and setting it to zero.

If we have available some prior knowledge about θ of interest, we wish to incorporate

it into our estimator. So we need to assume that θ is a random variable with a given

prior PDF. The Bayesian approach naturally allows us to make use of prior knowledge.

Bayesian is also a good alternative estimator when an MVU estimator cannot be found.

By assigning a PDF to θ we can try to find an estimator which is optimal ”on the

average” with respect to the assumed prior PDF of θ. In other words, we wish to find

an estimator θ̂ that minimizes Bayesian MSE

Bmse(θ̂) =

∫ [∫
(θ − θ̂)2p(θ|x)dθ

]
p(x)dx. (3.1)

Taking the derivative of 3.1, we have

∂

∂θ̂

∫
(θ − θ̂)2p(θ|x)dθ = −2

∫
θp(θ|x)dθ + 2θ̂

∫
p(θ|x)dθ

which when set equal to zero results in

θ̂ = E(θ|x)

So the optimal estimator in terms of minimizing the Bayesian MSE is the mean of the

posterior PDF p(θ|x). The posterior PDF refers to the PDF of θ after the data have

been observed. Maximum a Posterior Estimator (MAP) refers to the estimator which
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maximizes posterior function. In contrast, p(θ) or

p(θ) =

∫
p(x, θ)dx

may be thought of as the prior PDF of θ, indicating the PDF before the data are

observed.

To calculate Posterior PDF then is important to either MAP estimation or MMSE

estimation. Posterior PDF can be determined by Prior PDF and likelihood function

through Bayes’ rule.

p(θ|x) =
p(x|θ)p(θ)
p(x)

=
p(x|θ)p(θ)∫
p(x|θ)p(θ)dθ

Note that the Bayesian philosophy to estimation has had a long and controversial history.

3.2 Introduction

In point to point communication with side information at the decoder, the simple

analog scale-and-transmit scheme which is well known for its simplicity and optimal-

ity when Gaussian source transmitted over an additive white Gaussian noise (AWGN)

channel [9], is no longer optimal one for a Gaussian source-channel pair. Now we know

that the optimal distortion is:

Dopt =
σ2
Nσ

2
W

P + σ2
W

Danalog =
σ2
Nσ

2
W

Pσ2
N + σ2

W

> Dopt

As ρ→ 1, (i.e., σ2
N → 0),

Danalog

Dopt
=

P + σ2
W

Pσ2
N + σ2

W

→ 1 +
P

σ2
W

.

Separation principle still works, [10]. [7] and [8] both propose one kind of JSCC

scheme to achieve optimal mean-squared error (MSE) distortion for the joint Wyner-Ziv
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and dirty-paper coding. (If the channel interference is set to zero, the problem reduces

to Wyner-Ziv coding which we are focusing on.) In the former one, Kochman etc used

high-dimensional modulo-lattice modulation to quantize the source X, and then mapped

the analog signal X−Q(X) (Q(X) is the output of quantizer) onto the channel. Wilson

etc, [8], proposed with random coding arguments instead of lattice whereby the analog

source is integrated into the random codeword.

In this chapter, we study the extreme of zero-delay hybrid digital/analog (HDA)

schemes for the Wyner-Ziv setup, i.e., the joint source channel coding is to be done

in a scalar fashion. One of the motivations for applying hybrid digital/analog (HDA)

is that we could possibly mitigate the problem bringing by applying pure digital and

pure analog systems, which includes that the performance of analog methods would

change gradually with channel CSNR and the ”threshold”, ”leveling-off” effects of digital

modulation method. HDA transmission could help us achieve not only low delay, but

also robustness to channel mismatch when CSI(channel state information) is unknown

at the transmitter.

As we noticed, in [[7], Section V], the authors also discussed the low-delay scenario

briefly without further investigation. They pointed out that the distortion grows fast

in low dimensions due to the fact that enforcing a low probability of incorrect decoding

results in a high loss factor. As we mentioned in chapter I, the coding scheme they used

is actually a kind of analog mapping, (the output after applying a modulo-lattice mod-

ulation to the analog source). The channel input in our scheme is the superimposition

of properly scaled quantized value (the digital component) and the quantization error

(the analog component) after applying scalar quantization to the source.

We also numerically evaluate the robustness of two of the proposed schemes and

compare them with that of purely analog transmission. Since in point to point com-

munication, it is well known that separate source channel code is suboptimal to direct

transmission of the source when channel SNR is unknown [31], it is meaningful to eval-

uate the performance of pure analog transmission in the presence of both channel SNR
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Figure 3.2: The proposed HDA Scalar Encoder with Sequential Estimator

and/or side information mismatch for comparison.

3.3 HDA Scalar Coding Scheme

Same with chapter II, we assume that the source-side information pair (X,Y ) is

jointly Gaussian with zero mean and covariance matrix 1 ρ

ρ 1

 .

In other words, X ∼ N (0, 1) and

Y = ρX +N

with N ∼ N (0, σ2
N ) and N ⊥ X, where σ2

N = 1 − ρ2. Source X is to be mapped to

channel input U , which should satisfy the power constraint E[U2] ≤ P . U then goes

through an AWGN channel with additive noise W ∼ N (0, σ2
W ) whose output is V . The

source is to be reconstructed at the receiver which has access to both Y and V . Our

proposed HDA encoder is shown as Fig.3.1 and Fig.3.2. The digital part is used to
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Figure 3.3: The distribution of points in the (Y, V )-plane. The sawtooth function in-
dicates the channel input U = αT + βS against the “noise-free” side information ρX,
while the straight line with equation V = α

ρY is shown to emphasize the effect of α.

Circles on the latter correspond to (ρtk, αtk).

transmit the quantized value T = Q(X) produced by a regular scalar quantizer with

reconstruction levels {rk}∞k=−∞ and decision levels {dk}∞k=−∞ with dk−1 < rk < dk. In

parallel, the analog part is used to send the quantization error S = X − T . Then the

scaled combination of T and S, U = αT + βS, is sent through the AWGN channel at

the output of which V = U +W is observed.

Fig. 3.5 shows the distribution of 250, 000 (Y, V ) pairs generated independently,

as well as the sawtooth function indicating U as a function of ρX. The clearly visible

“clusters” correspond to the reconstruction levels rk, and the circles on the figure cor-

respond to points (ρrk, αrk), i.e., roughly the cluster centers, not corrupted by either

the quantization error S or the noise pair (W,N). It is apparent that the decision levels

should be far enough to ensure correct decoding of T with high enough probability. It

should also be obvious that α and β must have opposite signs, because as the sawtooth

climbs roughly along the line V = α
ρY , which has positive slope, having β also positive

would cause more overlap between the clusters. Therefore, in the rest of the paper, we

assume α ≥ 0 and β ≤ 0.
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The optimal decoder for the proposed encoder, in the minimum MSE sense, is

X̂ = E[X|Y, V ]

= E[T |Y, V ] + E[S|Y, V ] (3.1)

3.3.1 HDA Encoder with MMSE Estimator

We can calculate the two terms in the equation (3.1) respectively, and the decoder

model is shown as Fig.3.1.

r̂ = E[T |Y V ]

=
∑
k

rkPT |Y V (rk|y, v)

=

∑
k

∫ dk−rk
dk−1−rk rkPTSY V (rk, s, y, v)ds∑

k

∫ dk−rk
dk−1−rk PTSY V (rk, s, y, v)ds

=

∑
k

∫ dk−rk
dk−1−rk rkPTS(rk, s)PY V |TS(y, v|rk, s)ds∑

k

∫ dk−rk
dk−1−rk PTS(rk, s)PY V |TS(y, v|rk, s)ds

=

∑
k

∫ dk−rk
dk−1−rk rkPX(rk + s)PN (y − ρrk − ρs)PW (v − αrk − βs)ds∑

k

∫ dk−rk
dk−1−rk PX(rk + s)PN (y − ρrk − ρs)PW (v − αrk − βs)ds

Defining

σ2 =
σ2
Nσ

2
W

σ2
W + β2σ2

N

and

µk(y, v) =
ρσ2

W (y − ρrk) + βσ2
N (v − αrk)− σ2

Nσ
2
W rk

σ2
W + β2σ2

N

=
ρσ2

W y + βσ2
Nv − rk(σ2

W + αβσ2
N )

σ2
W + β2σ2

N

,

we can proceed as

r̂ =

∑
k

rk

[
erf
(
dk−rk−µk(y,v)

σ
√

2

)
− erf

(
dk−1−rk−µk(y,v)

σ
√

2

)]
· exp(A)∑

k

[
erf
(
dk−rk−µk(y,v)

σ
√

2

)
− erf

(
dk−1−rk−µk(y,v)

σ
√

2

)]
· exp(A)
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where

A = − 1

2σ2
Nσ

2
W

(
σ2
Nσ

2
W r

2
k + σ2

W (y − ρrk)2 + σ2
N (v − αrk)2

−
[
ρσ2

W y + βσ2
Nv − rk(σ2

W + αβσ2
N )
]2

σ2
W + β2σ2

N

)
And for the estimation of S, we have

Ŝ = E[S|V = v, Y = y]

=

∫ ∞
−∞

sPS|V Y (s|v, y)ds

=

∫∞
−∞ sPSV Y (s, v, y)ds

PV Y (v, y)

=

∑
k

∫ dk−rk
dk−1−rk sPX(rk + s)PN (y − ρrk − ρs)PW (v − αrk − βs)ds∑

k

∫ dk−rk
dk−1−rk PX(rk + s)PN (y − ρrk − ρs)PW (v − αrk − βs)ds

=

∑
k

exp
[
− 1

2σ2 (−µ2
k +

σ2
Nσ

2
W r2k+σ2

W (y−ρrk)2+σ2
N (v−αrk)2

σ2
W +σ2

Nβ
2 )

] [
σ2Bk + µk ×

√
2πσ
2 × Ck

]
∑
k

exp
[
− 1

2σ2 (−µ2
k +

σ2
Nσ

2
W r2k+σ2

W (y−ρrk)2+σ2
N (v−αrk)2

σ2
W +σ2

Nβ
2 )

]
×
√

2πσ
2 × Ck

where

Bk = exp

[
− 1

2σ2
(dk−1 − rk − µk)2

]
− exp

[
− 1

2σ2
(dk − rk − µk)2

]
Ck = erf

(
dk − rk − µk

σ
√

2

)
− erf

(
dk−1 − rk − µk

σ
√

2

)

3.3.2 HDA Encoder with Sequential Estimator

(3.1) is too complicated to be expressed in closed form. To simplify it, we propose

two suboptimal schemes, in each of which the decoder first estimates T using a MAP

estimator, and then optimally estimates S assuming that T̂ , the estimate of T , is correct.

The decoder scheme is illustrated in Fig.3.2. This setting creates tension between α and

β: We need large α to increase the probability of correctly decoding T , and we need

large β to estimate S accurately, while satisfying the power constraint.

66



3.3.2.1 Scheme A

The MAP estimator is given by T̂ (y, v) = rk∗ where

k∗ = arg max
k

PTY V (rk, y, v)

= arg max
k

∫ dk−rk

dk−1−rk
PTSY V (rk, s, y, v)ds

= arg max
k

∫ dk−rk

dk−1−rk
PTS(rk, s)PY V |TS(y, v|rk, s)ds

= arg max
k

∫ dk−rk

dk−1−rk
PT (rk)PS|T (s|rk)PY |TS(y|rk, s)

·PV |TS(v|rk, s)ds

= arg max
k

∫ dk−rk

dk−1−rk
PX(rk + s)PN (y − ρrk − ρs)

·PW (v − αrk − βs)ds

= arg max
k

∫ dk−rk

dk−1−rk
exp

[
− 1

2σ2
Nσ

2
W

{
s2(σ2

W + β2σ2
N )

−2s
(
ρσ2

W (y − ρrk) + βσ2
N (v − αrk)− σ2

Nσ
2
W rk

)
+σ2

Nσ
2
W r

2
k + σ2

W (y − ρrk)2 + σ2
N (v − αrk)2

}]
ds .

Defining

σ2 =
σ2
Nσ

2
W

σ2
W + β2σ2

N

and

µk(y, v) =
ρσ2

W (y − ρrk) + βσ2
N (v − αrk)− σ2

Nσ
2
W rk

σ2
W + β2σ2

N

=
ρσ2

W y + βσ2
Nv − rk(σ2

W + αβσ2
N )

σ2
W + β2σ2

N

,

we can proceed as in (3.2), where in the last two steps, we used the fact that terms that

do not depend on k do not change the maximum.
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k∗ = arg max
k

∫ dk−rk

dk−1−rk
exp

[
− 1

2σ2

{(
s− µk

)2
− µ2

k

+
σ2
Nσ

2
W r

2
k + σ2

W (y − ρrk)2 + σ2
N (v − αrk)2

σ2
W + β2σ2

N

}]
ds

= arg max
k

{[
erf

(
dk − rk − µk

σ
√

2

)
− erf

(
dk−1 − rk − µk

σ
√

2

)]
· exp

[
− 1

2σ2
Nσ

2
W

{(
σ2
W + α2σ2

N −
(σ2
W + αβσ2

N )2

σ2
W + β2σ2

N

)
r2
k

−2

(
σ2
W yρ+ σ2

Nvα−
(σ2
W + αβσ2

N )(ρσ2
W y + βσ2

Nv)

σ2
W + β2σ2

N

)
rk

}]}

= arg max
k

{[
erf

(
dk − rk − µk

σ
√

2

)
− erf

(
dk−1 − rk − µk

σ
√

2

)]

· exp

[
− 1

2(σ2
W + β2σ2

N )
{v − ρβy − (α− β)rk}2

]}
(3.2)

Now, for the optimal estimation of S (conditioned on T = rk∗), we have

Ŝ = E[S|V = v, Y = y, T = rk∗ ]

=

∫ dk∗−tk∗

dk∗−1−tk∗
sPS|V Y T (s|v, y, rk∗)ds

=

∫ dk∗−tk∗

dk∗−1−tk∗
s
PS|T (s|rk∗)PV Y |ST (v, y|s, rk∗)

PV Y |T (v, y|rk∗)
ds

=

∫ dk∗−tk∗
dk∗−1−tk∗

sPS|T (s|rk∗)PV Y |ST (v, y|s, rk∗)ds∫ dk∗−tk∗
dk∗−1−tk∗

PS|T (s|rk∗)PV Y |ST (v, y|s, rk∗)ds

=

∫ dk∗−tk∗
dk∗−1−tk∗

sPX(rk∗ + s)PW (w)PN (n)ds∫ dk∗−tk∗
dk∗−1−tk∗

PX(rk∗ + s)PW (w)PN (n)ds
(3.3)

where w = v − αrk∗ − βs and n = y − ρrk∗ − ρs. Using the same algebra as before, and

canceling all the terms independent of s, (3.3) can be reduced to

Ŝ =

∫ dk∗−tk∗
dk∗−1−tk∗

s exp
[
− 1

2σ2 (s− µk∗)2
]
ds∫ dk∗−tk∗

dk∗−1−tk∗
exp

[
− 1

2σ2 (s− µk∗)2
]
ds

= µk∗ +

√
2σ2

π
·
∫ u
l 2z exp(−z2)dz

erf (u)− erf (l)
, (3.4)

where u = dk∗−rk∗−µk∗
σ
√

2
, l =

dk∗−1−rk∗−µk∗
σ
√

2
.

The distortion achieved by the proposed HDA encoder and decoder seems to be

very difficult to derive in a closed form. Instead, we obtain it by numerical simulation.
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3.3.2.2 Scheme B

Notice that the difficulty in an analytical derivation of the distortion in Scheme A

mainly stems from the first step of the decoder. It is not clear how incorrect decoding

of T affects the resultant distortion. We propose a remedy to this problem, and propose

a simplified scheme. In this scheme, at the decoder, the (Y, V ) pair is first normalized

and rotated so that Z1

Z2



=

√
σ2
Wσ

2
N

β2σ2
N + ρ2σ2

W

 −β/σW ρ/σN

−ρ/σN −β/σW


 Y/σN

V/σW



=
1√

β2σ2
N + (1− σ2

N )σ2
W

 ρV − βY

−β σNσW V − ρ
σW
σN
Y



=

 cT +N ′1

aT + bS +N ′2


where

a = − αβσ2
N + (1− σ2

N )σ2
W

σWσN

√
β2σ2

N + (1− σ2
N )σ2

W

b = −

√
β2σ2

N + (1− σ2
N )σ2

W

σWσN

c =
ρ(α− β)√

β2σ2
N + (1− σ2

N )σ2
W

N ′1 =
ρW − βN√

β2σ2
N + (1− σ2

N )σ2
W

N ′2 =
−βσ2

NW − ρσ2
WN

σWσN

√
β2σ2

N + (1− σ2
N )σ2

W

.

Note that the covariance matrix of the jointly Gaussian pair (N ′1, N
′
2) is I.
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Figure 3.4: The distribution of points in the (Z1, Z2)-plane.

At this point, we observe that if the quantizer meets the centroid condition, i.e.,

E[S|T ] = 0 ,

then Z1 is uncorrelated with S. Motivated by this, we enforce the centroid condition

(regardless of whether the decision levels are uniformly or non-uniformly spaced), and

first decode T using only Z1. Then assuming T is correctly decoded, we decode S using

only Z2 − aT̂ .

Now, decoding T using a MAP estimator yields

k∗ = arg max
k

pke
−(z1−crk)2/2

where pk = Pr[T = rk]. If we further assume that the decision boundary qk between

T = rk and T = rk+1 is always in the interval (crk, crk+1), then qk must satisfy

pke
−(qk−crk)2/2 = pk+1e

−(qk−crk+1)2/2

and thus

qk =
c(rk + rk+1)

2
+

1

c(rk+1 − rk)
ln

pk
pk+1

.

Also assume that c is high enough to ensure that if T = rk, then T̂ is either one of

rk−1, rk, or rk+1. From this assumption, E[(T − T̂ )2] can be written in closed form as
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a summation over k.

E[(T − T̂ )2]

= E[(T − T̂ )2|T 6= T̂ ]P (T 6= T̂ )

=
∑
k

[
(rk − rk−1)2PT,T̂ (t = rk, t̂ = rk−1)

+(rk − rk+1)2PT,T̂ (t = rk, t̂ = rk+1)
]

=
∑
k

(rk − rk−1)2PT (t = rk)

·
[
P
N
′
1
(n
′
1 < qk−1 − crk) + P

N
′
1
(n
′
1 > qk − crk)

]
Once T̂ is found, S is estimated in a linear fashion from Z2 − aT̂ , i.e.,

Ŝ = d(Z2 − aT̂ ) .

Ignoring decoding errors in T , the optimal linear coefficient is given by

d =
bσ2
S

b2σ2
S + 1

.

Now, the overall distortion becomes

D = E[(T + S − T̂ − Ŝ)2]

= E[(T + S − T̂ − d(Z2 − aT̂ ))2]

= E[(T + S − T̂ − d(aT + bS +N ′2 − aT̂ ))2]

= E

[(
(1− ad)(T − T̂ ) + (1− bd)S − dN ′2

)2
]

= (1− ad)2E[(T − T̂ )2] + (1− bd)2σ2
S + d2

−2(1− ad)(1− bd)E[ST̂ ]

= (1− ad)2E[(T − T̂ )2] +
σ2
S

b2σ2
S + 1

(3.5)

where, the last line follows the fact that S and T̂ are uncorrelated. That in turn is
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because

E[ST̂ ]

=
∑
k

pkE[ST̂ |T = rk]

=
∑
k

pk

∫ dk−rk

dk−1−rk

∑
l

srlpS|T (s|rk)pT̂ |ST (rl|s, rk)ds

(a)
=

∑
k

pk

∫ dk−rk

dk−1−rk

∑
l

srlpS|T (s|rk)pT̂ |T (rl|rk)ds

=
∑
k

pkE[S|T = rk]E[T̂ |T = rk]

(b)
= 0

where (a) follows from the fact that T̂ does not depend on S when T is given, and (b)

follows from the centroid condition.

3.3.3 Scheme C: HDA coding with pseudo-binning

For uniform quantization, instead of sending U = αT +βS, send U = T̃ +βS, where

T̃ = mod

[
α
T

∆
+

Σ

2
,Σ

]
− Σ

2

3.4 Simulation Results

3.4.1 Transmission Under Known Channel and Side Information Qual-

ity

A performance comparison is shown in Fig.3.7 assuming σ2
W = 0.1. Fig.3.7 (a), (b),

and (c) represent different correlation values ρ between X and Y . The following schemes

are included in the comparison:

• HDA encoder with MMSE estimator: The results shown on the figure are obtained

72



Figure 3.5: The distribution of points in the (Y, V )-plane when U now equals T̃βS.

by numerical simulation, whereby 1, 000, 000 independent (X,Y,W ) triplets are

generated.

• HDA scheme A: The results shown on the figure are obtained by numerical simu-

lation, whereby 1, 000, 000 independent (X,Y,W ) triplets are generated. Although

the centroid condition is not crucial for the derivation of the estimators here, it

will minimize the variance of S for given decision levels, and hence is still adopted.

• HDA scheme B: The results shown on the figure are obtained using the analytical

distortion formula (3.5). We also observed by numerical simulations that the

formula is accurate when the quantizer resolution is low enough, which we enforced.

• HDA scheme B with α = 0: The input of the channel is the analog signal βS. The

same decoder in scheme B is used at the receiver.

• Kochman encoder with sequential estimator B: when dimension of lattice quan-

tizer in [7] comes to 1, the encoder model could be shown as Fig. 3.6.

• Pure analog scheme: This is the classical analog scale-and-transmission scheme.

• Pure digital scheme: Using Scheme C, when β = 0 and α is submultiple of Σ.
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Figure 3.6: Kochman’s Encoder Model when dimension comes to 1.

• Iterative Mapping Scheme Proposed by Emrah when ρ = 0.9.

For the first three cases above, we varied parameters α, β, and ∆ (the uniform

spacing of decision levels) under the power constraint to find the optimal results, and

for the fourth one, we varied only β and ∆. Since α is fixed to be zero, the optimal

performance is always worse than that of HDA scheme B. In fact, the performance of this

scheme almost coincides with that of pure analog coding for low and moderate correlation

values. The HDA encoder with MMSE estimator performances best as expected. We

also observe that scheme A is superior to scheme B, as in the former, we estimate T with

jointly using Y and V , while in the latter, T is decoded using one dimensional data.

However, the gap seems to be small for all correlation levels. While ρ = 0.9, [34] gave the

SNR results by their algorithm. It could be seen in (3.7)(b), our scheme gain almost as

high as 0.5dB advantage by theirs. Compared with all the schemes except pure digital

one, the pure analog scheme yields the worst performance as expected, and the larger the

correlation, the larger the gap between the HDA scenarios and the pure analog scheme.

Pure digital one beats pure analog one only when correlation is as high as 0.99. For the

scheme with MMSE estimator and scheme B, the optimized combinations of α, β, ∆ in

different cases of ρ when CSNR = 14.7712dB are illustrated in Table 3.1 and Table 3.2

respectively. Optimal ∆ increases with the decreasing of correlation between source and

side information. In fact, we also observed that when ρ is as low as 0.8, ∆ becomes very

large, thereby reducing the HDA schemes to pure analog transmission. This explains

why the gap between the HDA schemes and analog transmission shrinks as ρ decreases.
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Figure 3.7: Comparison of the Channel SNR - Source SNR performance for various
Schemes
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Table 3.1: Optimized Parameters for the Scheme with MMSE estimator

∆ α β
ρ = 0.85 3.1778 0.6576 -2.2675
ρ = 0.90 2.5566 0.7576 -2.6345
ρ = 0.99 1.04 0.34 -5.9166

Table 3.2: Optimized Parameters for Scheme B.

∆ α β
ρ = 0.85 4.8980 1.2634 -1.7816
ρ = 0.90 3.6550 1.1831 -1.9497
ρ = 0.99 1.0424 0.5265 -5.7510

3.4.2 Transmission Under Uncertainty Conditions

We now experimentally evaluate the performance of the HDA scheme B when the

variance of the channel noise W and/or the noise power σ2
N at the side information

“channel” (equivalently the correlation ρ) mismatch the values assumed during encoder

design. Since pure analog transmission is completely robust to channel SNR mismatch

when there is no side information, we also evaluate its performance in the presence of

side information mismatch for comparison.

In our experiment, we designed our encoder for the parameters ρ = 0.99, CSNR ≈

14.77, and varied (ρ, σ2
W ) in a range around the pair (0.99, 0.1). The decoder is assumed

to know the (ρ, σ2
W ) perfectly. Fig. 3.8 compares the resultant performances of the HDA

scheme B and the purely analog scheme against the Wyner-Ziv bound. It is clear that

the HDA scheme is more sensitive to a decrease in ρ than the purely analog scheme.

That is expected, because correct decoding of T depends on a good enough spacing

(with respect to σN ) between the reconstruction values of the quantizer, and incorrect

decoding of T , though not catastrophic, would rapidly affect the distortion. On the

other hand, in the range where the mismatch of ρ is still tolerable, it seems that the

HDA scheme B continues to be superior to pure analog transmission under channel SNR

mismatch.
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Figure 3.8: Performance of schemes under mismatch.
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Chapter 4

Low Delay Coding for Channel

Bandwidth Expansion Problem

4.1 Introduction

The JSCC WZ problem is intimately related with JSCC without side information

but with bandwidth expansion factor 2. In [31], the author generalized a class of analog

codes which mapped the source message x into a sequence u[n] of length N , where

N is bandwidth expansion factor. In detail, the message x is embedded in an initial

state variable z[0], and the corresponding encoding u[0], u[1], ..., u[N −1] is obtained via

iterations of the dynamical system

z[n+ 1] = f(z[n]) z[0] = x

u[n] = g(z[n])

where f is the iteration function with dynamic system and g is appropriate observation

function corresponding to specific f . Particularly, the authors developed an efficient

JSCC code with tent mapping and a fast decoding algorithm. As we noted in the first

sentence of this paragraph, when N = 2, chen’s work could be viewed as designing JSCC
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code while transmission of u[2] viewed previous one u[1] as Wyner-Ziv side information.

However, the source he applied the algorithm on is distributed uniformly on [−1, 1]

instead of Gaussian source so that no matter how the dynamical system iterates, the

value of the sequence would be constrained in the interval [−1, 1].

Another interesting JSCC mapping for 1 to 2 channel expansion problem is inverse

spiral mapping [32],[33]. The detailed mapping scheme would be described in the next

section.

[34] proposed an iterative algorithm to obtain the optimal map between them−dimensional

source space and n− dimensional channel space. Since the iterative algorithm updates

encoder and decoder mappings according to necessary condition for optimality, the ini-

tial mapping is of great importance, otherwise, the search of optimal mapping could

easily stop when distortion reaches a local minimum which is far from global one.

In this chapter, we will discuss the scheme that integrates our HDA encoder into

channel bandwidth expansion problem. Specifically, when bandwidth expansion factor is

2, the source message X is mapped onto 2−dimensional channel input U1 and U2 within

power constraint E[U2
1 ] + E[U2

2 ] ≤ P . Then U1, U2 are transmitted either through

an AWGN channel sequentially or through two AWGN channel respectively. Here we

assume the case is former one. The Gaussian noise W1 and W2 with zero mean and

variance σ2
W are assumed to be independent of the signal. At the decoder part, we

could reconstruct X by mapping 2−dimensional channel output V1 = U1 + W1 and

V2 = U2 +W2 to X̂.
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4.2 Two Low-Delay Coding Scheme proposed for 1:2 Source-

Channel Space Mapping

4.2.1 HDA Encoder Combined with Inverse Spiral Mapping

Firstly, let’s review the inverse spiral mapping scheme. With inverse spiral mapping,

each source symbol x is mapped to the corresponding point on Archimedean bi-spiral

which is with rectangular coordinate values (u1, u2) or with polar coordinate values

(ρ = x, θ = x). In other words, the analog signal is modulated on a spiral in the two

dimensional plane.

u1 = x cosx

u2 =


x sinx x ≥ 0,

−x sinx x < 0.

At the decoder part, given channel outputs (V1, V2) we could find the corresponding

point V on the coordinate plane. You can see from Fig. ?? that due to the interruption

of channel noise, the point corresponding output from channel is now the red one while

the point corresponding to true value is shown as the black one.

[32] introduced M.L. estimator for inverse spiral mapping. The M.L. estimator in

a Gaussian noise is the minimum Euclidean distance estimator. The estimator tries to

find the point on the bi-spiral which is closest to the point V . [32] gave a simplified high

SNR approximation of M.L. estimator, proved its effectiveness by comparison with

CRLB and compared the performance of inverse spiral coding with tent map coding

when the source is also uniformly distributed in [−1, 1].

In [33], the authors proposed to use Archimedes’ spiral as a 2 : 1 bandwidth reducing

mapping for transmission of 2− dimensional Gaussian sources.

The spiral mapping is inherently based on the idea that we should occupy the power

space efficiently. In other words, we use less power to transmit the source message closer

to original point (for Gaussian source, i.e., the source message with higher probability)
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Figure 4.1: The Model of Scheme A

while using more power to transmit the source message further from original point (for

Gaussian source, i.e., with less probability). In chapter III, it reveals that one of the

facts that effect the performance of hybrid digital and analog mapping in the presence

of side information is the distribution of those blue lines on the Y − V plane. The

conclusions above inspire us to distribute these blue lines along the spiral.

Given gaussian source X, by a uniform scalar quantizer Q with reconstruction levels

{rk}∞k=−∞ and decision levels {dk}∞k=−∞ with rk =
dk+dk−1

2 , we obtain digital component

T = Q(X) and analog component S = X − T . Define k = T
∆ . Then channel inputs U1,

U2 are defined as  U1

U2

 = αf(T ) + g(S)

= α

 x′

y′

+ g(S)

where 1 : 2 mapping f maps T onto a point with rectangular coordinate value (x′, y′)on

the spiral. The point could be alternatively expressed by (θ, θ) in polar coordinates or

by (x′, y′) in rectangular coordinates. The mapping rule is illustrated below:

• when k = 0, θ0 = 0, i.e., x′0 = 0, y′0 = 0;

• when k = 1, θ1 should be the minimum positive value which satisfies the equation

sin θ+θ cos θ
cos θ−θ sin θ = 0, (the reason would be revealed later), then x′1 = θ1 cos θ1, y′ =

θ1 sin θ1.
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• when k = −1, θ−1 should be the maximum negative value which satisfies the

equation − sin θ+θ cos θ
cos θ−θ sin θ = 0, then x′−1 = θ−1 cos θ−1, y′ = −θ−1 sin θ−1.

• when k > 1, the points representing f(T ) are distributed on the uni-positive-spiral

with approximate equal distance along the spiral. Use parameter l to represent

the distance. Then l ≈ 1
2(θk + θk−1)(θk − θk−1). So θk =

√
θ2

1 + 2(k − 1)l, x′k =

θ1 cos θ1, y′k = θ1 sin θ1.

• when k < −1, the points representing f(T ) are distributed on the uni-negative-

spiral with approximate equal distance along the spiral. Similarly l ≈ 1
2(θk +

θk−1)(θk − θk−1). So θk = −
√
θ2
−1 − 2(k + 1)l, x′k = θ1 cos θ1, y′k = −θ1 sin θ1.

To analog component S, once k is determined by k = T
∆ ,

g(S) =

 β1kS

β2kS

 ,
where, β1k and β2k are fixed parameters for determined k. Note that for k = T

∆ , T is

mapped to point (x′, y′), then the slope of tangent line to the spiral at the point (x′, y′)

is sgn(k) sin θ+θ cos θ
cos θ−θ sin θ . Define the length of the blue line corresponding to determined k is

c, then, obviously, c = ∆
√

(β2
1k+β2

2k). Then β1k and β2k could be found by the equation

groups. The whole encoder-decoder scheme could be shown in Fig. .

β2k

β1k
= sgn(k)

sin θ + θ cos θ

cos θ − θ sin θ

c = ∆
√

(β2
1k + β2

2k)

The distribution of points in the U1 − U2 plane can be shown in Figure. .

4.2.2 HDA Encoder with “Side information”

In chapter III, we plot 2−dimensional Y −V plane, which could be naturally viewed

as 2−dimensional V1−V2 space. Hereby, Y is no longer side information but the output

of channel V1. Recall the conception of ”side information channel” that Y is generated
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Figure 4.2: The distribution of points on the (U1, U2)-plane.

by applying X as inputs to a discrete memoryless channel. Now, this ”side information

channel” is nothing but actual channel. Namely, the first transmission serves as ”side

information” to the second transmission. The conception coincides with the idea of [31]

except that we are discussing about Gaussian source. In detail, within power constraint

P , firstly, source X is mapped to 2−dimensional channel output U∗1 and U∗2 , where

U∗1 =
√
γPX, U∗2 = αT + βE and γP + var(U∗2 ) = P . Then transmit U1 and U2

(reallocated U∗1 and U∗2 ) respectively through AWGN channel with noise variance σ2
W .

To make it more clear, we use figure4.4 to show the distribution of (U∗1 , U∗2 ) pair. We

then rotate the coordinate so that all the center points of these cluster are on x axis
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Figure 4.4: The distribution of points in the (U∗1 , U
∗
2 )-plane.

while power is unchanged. See figure4.5. So U1

U2



=
1√

ρ2 + α2

 ρ α

−α ρ


 U∗1

U∗2



=
1√

ρ2 + α2

 ρ α

−α ρ


 ρ ρ

α β


 T

S


Inspired by figure4.5, we could save power by reallocating the clusters as figure4.6.
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Figure 4.5: The distribution of points in the (U1, U2)-plane.

Figure 4.6: The distribution of points in the (U1, U2)-plane after reallocation.
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Figure 4.7: Comparison of the Channel SNR - Source SNR performance for various
Schemes

4.3 Simulation Result

The simulation result is shown as 4.7. It is shown that HDA encoder combining

with analog mapping performs best in low CSNR scenario while inverse spiral mapping

with optimal decoder gains more advantage while CSNR becomes high. HDA encoder

integrated with spiral mapping doesn’t perform well as expected with highly possiblity

that ∆ is not small enough to make the segmentation of clusters not close enough. The

space for improving exists.
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Chapter 5

Conclusion and Future Work

We studied zero-delay, i.e., scalar, lossy source coding with side information at the

decoder. Three related but distinct problems were investigated.

In first part, instead of imposing a periodic structure on the scalar quantizer directly,

we addressed optimal quantization under the constraint that within every interval of size

2∆, there are at most W cells. We conjectured that optimal quantizers under this regime

are periodic, and proved this conjecture for the important extreme case of a very high

correlation coefficient between the source and side information.

When we incorporated our zero-delay coding results into predictive coding for Gaus-

sian sources with memory, we observed that optimal prediction in the Wyner-Ziv regime

is fundamentally different from that in non-distributed coding. That is because the pre-

diction filters must not only jointly exploit the temporal and spatial redundancies, but

the prediction filter of the source must also suppress the propagation of occasional de-

coding errors. At low rates, the optimal action turns out to be to allow more decoding

errors but prevent their propagation aggressively using a very low prediction coefficient

for the source. As the rate increases, it is more advantageous to allow less decoding

errors and an increased prediction coefficient.

We also employed our scalar codes in transform coding with small block lengths
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(thereby achieving a low delay), where the source and side information are transformed

separately. For the specific source-side information pairs studied, we showed that trans-

form coding, even with a small block-length, outperforms predictive coding, despite the

first-order Markov-like structure of the signals.

To keep our results in perspective, we also derived the asymptotic rate-distortion

function for the special structure of sources we studied. Because we do not use the

ideal Slepian-Wolf coding assumption anywhere in our results, the gap between the

asymptotic rate-distortion function and performance of our schemes is more significant

than usual.

In both the second and the third part, we studied the extreme of zero-delay hybrid

digital/analog (HDA) schemes for Joint Source Channel Coding (JSCC) problem. It’s

investigated in two scenarios: point to point communication with side information at

the decoder; 1 to 2 mapping with channel bandwidth expansion. To achieve zero-delay,

after applying scalar quantization to the source, the properly scaled analog information,

namely the quantization error, is superimposed on the scaled digital information, i.e.,

the quantized source, and then transmitted. At the decoder, several decoding schemes

are proposed. Performance comparison with existing schemes is also presented. And

in channel bandwidth expansion problem, we proposed two source-channel direct map-

ping scenarios: HDA combined with Analog Mapping and HDA Integrated with Spiral

Mapping.

In [?], the authors proposed necessary conditions for optimality of the encoder and

decoder mappings for a given finite block length. An iterative algorithm that updates

encoder and decoder mappings according to these optimality conditions are proposed.

We have collaborated with them by using our proposed HDA schemes as initial con-

ditions to find the possible optimal mapping case. This is one of future work lying

on.

We also would try to investigate the channel bandwidth compression scenario, for

example, 2 to 1 mapping. JSCC problem with channel bandwidth mismatch when there
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is side information at the decoder is also a open research area.
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Appendix A

The Asymptotic Rate-Distortion

Tradeoff

Theorem 16 The Wyner-Ziv rate-distortion function for the pair (X(n), Y (n)) de-

scribed in (2.28) and (2.29) for any stationary Gaussian T (n) is parameterized as

Rθ =
1

4π

∫ π

−π
max

[
0, log

A(ejω)

θ

]
dω (A.1)

and

Dθ =
1

2π

∫ π

−π
min

[
θ,A(ejω)

]
dω (A.2)

where

A(ejω) = ΦXX(ejω)− ΦXY (ejω)2

ΦY Y (ejω)

and where ΦXX(ejω), ΦY Y (ejω), and ΦXY (ejω) are the discrete-time Fourier transforms

(DTFT) of RXX(τ), RY Y (τ), and RXY (τ), respectively.

Proof. For the given source model, following the same logic as in Section 2.5, we can

deduce that by applying the same de-correlating transformation A to both sources,

i.e., obtain X′ = AX and Y′ = AY with X = [X(1) X(2) . . . X(n)]T and Y =

[Y (1) Y (2) . . . Y (n)]T , all three covariance matrices CXX, CYY, and CXY are diago-

nalized simultaneously. This, in turn, implies that transform coefficient pairs (X ′k, Y
′
k)
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are independent of each other and thus can be coded separately with optimal rate

Rθ(k) = max

[
0,

1

2
log

σ2
X′k

(1− ρ2
X′kY

′
k
)

θ

]
(A.3)

and distortion

Dθ(k) = min
[
θ, σ2

X′k
(1− ρ2

X′kY
′
k
)
]

(A.4)

for some θ > 0, where the formulas (A.3) and (A.4) follow by generalizing the op-

timal (i.e., water-filling) bit allocation discussed in [28] to Wyner-Ziv rate-distortion

function [4]. The relevant quantity σ2
X′k

(1− ρ2
X′kY

′
k
) can be expressed as

σ2
X′k

(1− ρ2
X′kY

′
k
) = λkXX

(
1− (λkXY)2

λkXXλ
k
YY

)
= λkXX −

(λkXY)2

λkYY

∆
= λk (A.5)

where λkXX, λkYY, and λkXY are the kth eigenvalues of CXX, CYY, and CXY, respec-

tively. We observe that λk is the kth eigenvalue of

C
∆
= CXX −CXY

2CYY
−1 .

This follows because A also diagonalizes C.

Now, [30, Theorem 4.2] shows that for an infinite Toeplitz matrix T with entries tk

on the top row, and for any function F that is continuous on the range of the eigenvalues

λkT of T,

lim
n→∞

1

n

n∑
k=1

F
(
λkT

)
=

1

2π

∫ π

−π
F [Φ(ω)] dω

where Φ(ω) is the DTFT of tk. Further, [30, Theorem 5.2(c)] and [30, Theorem 5.3(b)]

state that

lim
n→∞

1

n

n∑
k=1

F
(
λkT−1

)
=

1

2π

∫ π

−π
F

[
1

Φ(ω)

]
dω

and

lim
n→∞

1

n

n∑
k=1

F
(
λkT1T2

)
=

1

2π

∫ π

−π
F [Φ1(ω)Φ2(ω)] dω
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respectively, where Φi(ω), i = 1, 2, are the DTFT of the top row of Ti. Choosing

F (λk) = max
[
0, 1

2 log λk

θ

]
and F (λk) = min

[
θ, λk

]
as in (A.3) and (A.4) respectively

yield (A.1) and (A.2).
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