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RESEARCH ARTICLE
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Abstract

Evidence suggests European American (EA) women have two- to five-fold increased odds

of having pelvic organ prolapse (POP) when compared with African American (AA) women.

However, the role of genetic ancestry in relation to POP risk is not clear. Here we evaluate

the association between genetic ancestry and POP in AA women from the Women’s Health

Initiative Hormone Therapy trial. Women with grade 1 or higher classification, and grade 2

or higher classification for uterine prolapse, cystocele or rectocele at baseline or during fol-

low-up were considered to have any POP (N = 805) and moderate/severe POP (N = 156),

respectively. Women with at least two pelvic exams with no indication for POP served as

controls (N = 344). We performed case-only, and case-control admixture-mapping analyses

using multiple logistic regression while adjusting for age, BMI, parity and global ancestry.

We evaluated the association between global ancestry and POP using multiple logistic

regression. European ancestry at the individual level was not associated with POP risk.

Case-only and case-control local ancestry analyses identified two ancestry-specific loci that

may be associated with POP. One locus (Chromosome 15q26.2) achieved empirically-esti-

mated statistical significance and was associated with decreased POP odds (considering

grade�2 POP) with each unit increase in European ancestry (OR: 0.35; 95% CI: 0.30, 0.57;

p-value = 1.48x10-5). This region includes RGMA, a potent regulator of the BMP family of
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genes. The second locus (Chromosome 1q42.1-q42.3) was associated with increased POP

odds with each unit increase in European ancestry (Odds ratio [OR]: 1.69; 95% confidence

interval [CI]: 1.28, 2.22; p-value = 1.93x10-4). Although this region did not reach statistical

significance after considering multiple comparisons, it includes potentially relevant genes

including TBCE, and ACTA1. Unique non-overlapping European and African ancestry-spe-

cific susceptibility loci may be associated with increased POP risk.

Introduction

Pelvic organ prolapse is characterized by the descent of pelvic organs including uterus, bladder

and rectum into the vaginal space due to loss of underlying support system that normally

holds these organs in their anatomic locations. POP is a common condition with up to 40% of

women having some degree of prolapse after menopause. While not all POP requires surgical

intervention or is symptomatic, it is one of the most common indications for gynecologic sur-

gery in the US after uterine fibroids and endometriosis [1]. Estimates of lifetime risk of under-

going surgery for POP range from 11% to 19% [2; 3]. Factors such as aging, family history of

POP, genetic predisposition, increasing parity, and higher body mass index (BMI) have been

associated with greater risk for POP [4–6].

Additionally, race/ethnic status has been postulated to be associated with POP, with Euro-

pean Americans (EA) having 2–5 fold increased risk for POP than African Americans (AA)

[7–11]. However, it is not clear if this disparity is due to biological/genetic differences or fac-

tors such as varying access to medical care and varying care-seeking behaviors between races/

ethnicities. Anatomic comparative studies suggest AA women to have greater pelvic muscle

mass and strength, a smaller angle in the pelvic arch/inlet due to closer attachment of the pub-

orectalis muscle and increased pelvic floor mobility after vaginal delivery, than in EA women,

providing potential reasons for elevated risk in EA women [12–14]. These evidence together

suggest a potential role for genetic differences attributed to differences in continental ancestry

in influencing POP risk.

Baseline evaluation of POP risk from the Women’s Health Initiative Hormone Therapy

(WHI-HT) trial showed that AA women had 0.63 (95% confidence interval [CI]: 0.50, 0.79),

0.50 (95% CI: 0.44, 0.58) and 0.65 (0.59, 0.73) lower odds of having uterine prolapse, rectocele

and cystocele, respectively, compared with EA women [7]. The WHI-HT is the largest multi-

ethnic study conducted to-date with uniform assessment of objectively measured POP at base-

line for all study participants and likely provides a relatively less biased assessment of the

reported disparity compared with other studies. Additionally, the availability of genome wide

association study (GWAS) data for AA women primes the WHI-HT as a unique resource to

investigate the role of genetic ancestry in relation to POP risk. To our knowledge, this is the

only existing resource available that provides information on POP and genome-wide data for

African Americans.

Recently, we conducted a GWAS of POP risk in AA and Hispanic women from the

WHI-HT, an analysis that was designed to detect common variants with similar allele frequen-

cies in these two populations [15]. Here, we designed a study with the intention of investigat-

ing highly differentiated markers (between African and European populations) to delineate

the role of local genetic ancestry in relation to POP risk in AA women from the WHI-HT.

Admixture mapping is a method that complements traditional GWAS approaches and is a

potentially powerful method of identifying causal genetic loci for diseases that vary in
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prevalence across populations. Admixture mapping differs from the traditional GWAS

approach in the following ways. The method is most optimized to detect regions of disease sus-

ceptibility which are differentially distributed across ancestral populations and well repre-

sented in admixed populations such as African Americans who have genetic contributions

from African and European subcontinents. It additionally derives greater power in detecting

associations due to reduced multiple testing burden from the fewer number of markers that

are required to cover the whole genome owing to long range ancestral linkage disequilibrium

[16;17]. Leveraging genetic ancestry to detect the determinants of POP risk, the objectives of

this study are to: 1) evaluate whether one or more genetic segments originating from African

or European sub-continents (local ancestry) are associated with pelvic organ prolapse and 2)

evaluate whether the average of the local ancestry estimates across an individual shows excess

of European or African ancestry in relation to POP in a population of AA women from the

WHI-HT.

Materials and methods

Study population

The WHI-HT trial is one arm of the WHI study, which overall enrolled over 160,000 post-

menopausal women between 50–79 years of age from 40 clinical centers across the US from

the years 1993 through 1998 to one of four clinical trials or the observational study [18]. Details

regarding the WHI and the WHI-HT have been described elsewhere [18–20]. The WHI-HT is

a large multi-ethnic clinical trial which enrolled 27,342 post-menopausal women of whom

2,739 self-identified as AA women, the target population for this analysis. De-identified data

were accessed through authorized and secure methods with approval from the Institutional

Review Board at Vanderbilt University, the Women’s Health Initiative, and the database of

Genotypes and Phenotypes (dbGaP).

POP measurement: Case and control definitions

As a part of standard baseline procedure, all women participating in the WHI-HT received a

pelvic exam conducted by a WHI-trained gynecologist, nurse or physician’s assistant. Using

centrally validated and uniform procedures, trained WHI-staff evaluated the presence of uterine

prolapse, cystocele and/or rectocele in a supine lithotomy position with or without the Valsalva

maneuver. Presence and severity of POP was determined using the WHI POP classification sys-

tem, where no prolapse was classified as grade 0, prolapse into the vagina was classified as grade

1, prolapse to the introitus was classified as grade 2 and prolapse beyond the introitus/hymen

was classified as grade 3. In addition to baseline assessment, women underwent similar pelvic

exams in one to ten yearly follow-up visits. For this sub-study women with grade 1 or higher

uterine prolapse, rectocele and/or cystocele occurring either at baseline or at subsequent follow-

up visits were considered to have any POP. To assess clinically significant POP, women were

considered to have moderate/severe POP if they had uterine prolapse, rectocele and/or cystocele

of grade 2 or higher at baseline or at any of the subsequent follow-up visits. Women were con-

sidered to be controls if they had grade 0 POP for all three types of prolapse: uterine prolapse,

rectocele and cystocele in a minimum of two WHI visits including the baseline visit, and had no

mention of POP from any other visits.

Measurement of covariates

At baseline, WHI collected information on several demographic characteristics and medical

history through standardized questionnaires, including age, self-identified race/ethnicity,
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reproductive history, and hysterectomy status. Anthropometric traits such as weight (kilo-

grams) and height (cm) were measured at baseline and at subsequent follow-up visits. In addi-

tion to age at baseline, we constructed an age variable to reflect the age at first ascertainment

within WHI visits for POP cases and the age at last visit for women who had no POP prior to

being lost-to-follow-up or study completion, whichever came first, for controls. We used the

participants’ BMI for the visit which corresponded to first ascertainment of POP at the WHI

for cases and last visit prior to being lost-to-follow-up for controls.

Genotyping and quality control (QC)

The SNP Health Association Resources (SHARe) is a study nested within the WHI and funded

by the National Health Lung and Blood Institute (NHLBI) to evaluate genetic determinants of

disease in approximately 8,420 AA and 3,587 Hispanic women who participated either in the

WHI-HT study or the WHI observational study. These samples were genotyped with the Affy-

metrix Human SNP Array 6.0 (Affymetrix1, Inc Santa Clara, CA). Standard QC procedures

were performed using PLINK and are detailed in S1 Text and S1 Fig [21].

Upon QC completion, there were 344 control participants for whom two or more pelvic

exams were available to confirm absence of uterine prolapse, cystocele and rectocele. There

were 805 AA women who had prolapse of any severity for any of the three types of prolapse

either at baseline or follow-up visits; 156 of these were moderate/severe POP cases.

Ancestry estimation

We used the software Local Ancestry in admixed Populations Ancestry (LAMP-ANC) with

proxy ancestral allele frequency (Phase 3 1000 Genomes reference panels) [22] inputs for SNPs

for Europeans and Africans to infer local ancestry across the genome for a total of 777,060

markers available in our post-QC dataset [23]. Local ancestry inference was performed using

the following assumptions based on uncorrelated markers, seven generations since admixture

began, recombination rate = 1x10-8, and average African and European admixture estimates of

0.8 and 0.2, respectively. Additionally, proportion of overlap between windows of ancestry

inference was set to 0.2 and the r-squared threshold for LD-pruning was set to 0.1. Local ances-

try was then coded as the number of European alleles at each marker (0, 1 or 2 European

ancestry calls per marker). We then estimated the proportion of European ancestry for each

individual (global ancestry) by summing the number of local European ancestry calls across all

markers per person and then dividing by the total number of markers per person. Since the

power of an admixture mapping study depends on ancestry informative markers, we limited

our evaluation of ancestry calls to markers that were found to have an absolute difference in

allele frequency, Δ of�0.4 between EUR and AFR populations in the 1000 Genomes. In the

present dataset, 39,546 markers had a Δ of 0.4 or higher and were utilized for testing the associ-

ation between local ancestry and POP.

Statistical analyses

We used multiple logistic regression using StataIC, version 12 (StataCorp, College Station, TX,

USA) to evaluate the association between global ancestry (% European ancestry) and POP

(any POP and moderate/severe POP), adjusting for age at ascertainment (continuous), parity

(continuous) and body mass index (BMI, continuous). The associations between local ancestry

and POP (any POP and moderate/severe POP) were tested using two methods: 1) case-only

and 2) case-control. Briefly, a case-only design compares the deviation in the frequency of esti-

mated ancestry at each marker compared with the genome-wide average in cases, which

makes it a highly sensitive test, but may also be prone to detecting false-positive signals in the
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absence of a proper comparator group and due to its inability to adjust for other correlated fac-

tors [16]. We computed a Z-statistic ((Local ancestry frequency at marker-i−global ancestry

frequency)/standard error of local ancestry frequency at marker-i) for each locus and calcu-

lated two-sided p-values. We conducted the case-control admixture mapping analyses with

logistic regression using PLINK, where we regressed POP (any POP and moderate/severe

POP) onto local ancestry, adjusting for aforementioned variables and two multi-dimensional

scaling (MDS) components representing continuous axes of genetic ancestry. The motivation

behind conducting two different types of tests (case-only and case-control study) was based on

the intuition that overlapping signals from both tests in a given region provides greater likeli-

hood of identifying a true positive, while weeding out false-positive signals. Therefore, regions

from admixture mapping analyses which showed overlaps between case-only and case-control

methods with suggestive peak p-values (<1x10-3), within two integers on the–log10p-value

scale to the left and right of the strongest case-control peak for a given region were warranted

further attention. Statistical significance for admixture mapping analyses was established

empirically with 10,000 case-control permutation tests at p-value = 1.82x10-5, implying

approximately 2,747 independent ancestry markers.

Significant or suggestive peaks from admixture mapping analyses were further assessed for

evidence of single SNP association with POP using genotyped and imputed variants as second-

ary analyses. Genotype data for broad regions (10 to 20 Mb regions) below suggestive/signifi-

cant peaks were imputed using the 1000 genomes cosmopolitan reference panels using

IMPUTE2 [24]. Association between SNPs and POP (any POP and moderate/severe POP)

were performed using multiple logistic regression adjusting for age at ascertainment, BMI,

parity and the two MDS components to represent continuous axes of genetic ancestry using

SNPTEST [25]. Then, to evaluate if any of the SNPs investigated in the regions of interest

explained the admixture mapping peaks, we performed logistic regression between local ances-

try and POP conditioning on the most-statistically significant SNPs contained within the

region of interest.

Results

Women with any POP and moderate/severe POP were more likely to have higher parity on

average, compared with controls. At the WHI baseline visit, women without POP were slightly

younger (mean age: 60.1) than women with any POP (mean age: 61.8) and women with mod-

erate/severe POP (mean age: 62.8) (Table 1). However, controls were more likely to be older

when considering age at ascertainment than cases since women were only considered controls

in this sub-study because we recorded their age at last visit without POP prior to being lost to

follow up or study’s end. Of the 805 any POP cases, 292 women developed POP during follow-

up visits. Similarly, of the 156 women who had moderate/severe POP in our study, 98 women

developed moderate/severe POP during follow-up visits.

We did not observe any meaningful associations between global ancestry and POP (Table 2).

Compared with African ancestry, adjusted odds ratio (OR) for European ancestry was 0.82 (95%

CI: 0.31, 2.16) considering any POP; similar effect sizes were observed for moderate/severe POP.

In analyses assessing local ancestry, both case-only and case-control approaches detected statisti-

cally significant associations with local ancestry at chromosome 15 (90 to 100 mega-bases [Mb])

for moderate/severe POP (Fig 1), and suggestive signals at chromosome 1 (220–240 Mb) for any

POP (Fig 2). The strongest admixture mapping signal in case-control analyses was observed in the

chromosome 15q26.3 region, where each unit increase in European ancestry was associated with

decreased odds of moderate/severe POP (OR: 0.35; 95% CI: 0.23, 0.57; p: 1.48x10-5) (Table 3).

Evaluation of the same association in any POP showed an attenuated association that was yet in
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the same direction as the association from moderate/severe POP analysis (Table 3). Sensitivity

analyses of our main finding for the top ancestry locus separating incident and prevalent cases

showed greatest agreement with incident cases for moderate/severe POP (S1 Table).

We then evaluated the association between imputed SNPs in the region below the admix-

ture mapping peak to identify potential SNPs which may be associated with POP. Admixture

mapping peaks (-log10(p-values)) from case-control analyses and SNP associations (log10(p-

values)) are juxtaposed in Fig 3 for chromosome 15. Imputed SNP rs4777810 was the most sta-

tistically significant SNP under the peak (Fig 3; Table 4). Compared with the reference allele

(A), the effect allele (G) was associated with decreased POP risk (OR: 0.37; 95% CI: 0.23, 0.50;

p: 5.58x10-5). Additional adjustment for rs4777810 severely attenuated the admixture mapping

signal (Fig 3) and decreased the magnitude of ancestral odds ratio from 0.35 to 0.50) (Table 5).

The effect allele for rs4777810 (risk decreasing allele) is found in higher frequency in the Euro-

pean reference population (57%) than in the African reference population (3%).

The second strongest admixture mapping signal from case-control analyses was

observed in the chromosome 1q42.1–42.3 region, where each unit increase in European

ancestry was associated with increased odds of any POP (OR: 1.69; 95% CI: 1.28, 1.22; p:

1.93x10-4) (Table 3). Evaluation of the same association in moderate/severe POP for com-

parison showed that the effect estimate was stronger in the moderate/severe POP analysis

than in the any POP analysis, however with a larger p-value due to smaller sample size

(Table 3). We then evaluated the association between imputed SNPs in the region below

the admixture mapping peak in relation to any POP. In analyses of imputed SNPs, SNP

Table 1. Characteristics of African American POP cases and controls.

Variable Controls (N = 344) Any POP (N = 805) Grade 2–3 POP (N = 156)

Mean (SD) Mean (SD) Mean (SD)

Age at baseline 60.11 (6.68) 61.77 (6.96) 62.79 (6.77)

Age at ascertainment 65.20 (6.80) 62.75 (7.02) 64.85 (6.98)

Body mass index (kg/m2) 31.19 (6.59) 31.71 (6.19) 31.71 (6.07)

Parity (# child births) 2.26 (1.59) 2.85 (1.64) 3.28 (1.60)

Hysterectomy at baseline (%) 23.20% 42.20% 34.80%

European Genetic Ancestry (%) 24.30% 23.15% 23.05%

POP Type - N (%) a N (%) a

Cystocele - 737 (91.5%) 134 (85.9%)

Rectocele - 372 (46.2%) 46 (29.5%)

Uterine Prolapse - 189 (23.5%) 10 (6.4%)

POP: pelvic organ prolapse.

a Numbers do not add up to total N and percentages do not add up to 100% as these are not mutually exclusive conditions; cases may have one or more

type of prolapse.

https://doi.org/10.1371/journal.pone.0178839.t001

Table 2. Association between European-ancestry percent in relation to POP in African American women.

Model N-Controls/N-Cases OR (95% CI) P

Grade 0 vs. Grade 1–3 POP 341/794

European Ancestry 0.82 (0.31, 2.16) 0.71

Grade 0 vs Grade 2–3 POP 341/155

European Ancestry 0.81 (0.19, 3.39) 0.77

OR = odds ratio; CI = confidence interval; Models were adjusted for age at ascertainment, body mass index and parity.

https://doi.org/10.1371/journal.pone.0178839.t002
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rs78992478 was directly below the admixture mapping peak (Fig 4) and compared with the

reference allele T, the effect allele C was associated with increased risk for any POP (OR:

3.15; 95% CI: 1.93, 5.14; p: 4.23x10-6) (Table 4).

The second most significant SNP in the admixture mapping peak in chromosome 1 was

rs2501094, for which effect allele C was associated with increased risk for POP (OR: 1.63; 95%

CI: 1.32, 2.02; p: 5.47x10-6) (Table 4 and Fig 4). In models evaluating the association between

local ancestry and any POP, additionally adjusting for SNP rs78992478 and/or rs2501094

decreased the admixture mapping signal (Fig 4) and also decreased the odds ratio for ancestry

from 1.69 to 1.37 (Table 5). The largest drop in admixture mapping signal was seen with

adjustment for rs2501094 (Table 5). The effect allele for rs2501094 (risk increasing allele in

this case) is found in higher frequency in the European reference population (99%) than in the

African reference population (50%).

Secondary to the results mentioned above, we compared results from our case-only and

case-control admixture mapping signals with SNPs or regions reported in previously reported

studies evaluating genetic regions with respect to POP. We observed patterns of association

for case-only signals (Fig 5) in chromosome 10q21 and 10q24 (Z-score:-7.46; p: 8.5x10-14)

regions that were strikingly similar to linkage peaks reported by Allen-Brady and colleagues

[26].

Discussion

As the first study to evaluate the association between genetic ancestry and POP, our results

suggest presence of two unique ancestry-specific susceptibility loci, where in one region

Fig 1. Admixture mapping peaks for chromosome 15 from case-only and case-control designs

considering moderate/severe POP (grades 2–3) in African Americans. Blue horizontal line: suggestive p-

value threshold; Red horizontal line: permutation based p-value threshold.

https://doi.org/10.1371/journal.pone.0178839.g001
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European ancestry was associated with increased risk for POP, and in another region African

ancestry was associated with increased risk for POP. Contrary to epidemiological evidence

that show of higher prevalence of POP in EAs than in AAs, our evaluation of genetically

inferred European ancestry proportion per person was not associated with POP. There was

not sufficient evidence in this study to support the idea that POP disparity between EA and

AA is attributable to differences in genetic ancestry averaged over the entire genome. While

EA women in the WHI were more likely to have POP at baseline than AA women, POP was

common in both populations (40.2% in EA vs. 29.4% in AA) [7]. For such a highly prevalent

complex condition, it is plausible that women from European or African ancestries may have

shared susceptibility loci and there may be distinct ancestry-specific susceptibility loci which

Fig 2. Admixture mapping peaks for chromosome 1 from case-only and case-control designs

considering any POP (grades 1–3) in African Americans. Blue horizontal line: suggestive p-value threshold;

Red horizontal line: permutation based p-value threshold.

https://doi.org/10.1371/journal.pone.0178839.g002

Table 3. Associations between local European ancestry and POP in top regions.

Region Nearby Genes Classification Ancestry OR (95% CI) Pcase-control Pcase-only
c

15q26.2 RGMA, CHD2 Grade 0 vs. 2/3 0.35 (0.22, 0.57) a 1.48x10-5 7.95x10-5

Grade 0 vs. 1–3 0.77 (0.59, 0.99) b 0.049 -

1q42.1–42.3 ARID4B, TBCE, ACTN2, PGBD5, ACTA1 Grade 0 vs. 1–3 1.69 (1.28, 2.22) b 1.93x10-4 6.7x10-4

Grade 0 vs. 2/3 1.86 (1.26, 2.76) a 2.00x10-3 -

OR: Odds Ratio; CI: Confidence Interval.

a Modeled against local European ancestry adjusted for covariates (age at ascertainment, BMI, parity and continuous axes of MDS components)

b Modeled against local European ancestry adjusted for covariates (age at ascertainment, BMI, parity and continuous axes of MDS components)

c Case-only p-values were used along with case-control p-values to find overlapping regions.

https://doi.org/10.1371/journal.pone.0178839.t003
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are associated with increased or decreased risk for POP, as has been shown for prostate cancer

[27]. The presence of opposing effect-estimates in ancestry-specific loci could have potentially

diluted the association between global ancestry and POP as it is merely a representation of

average ancestry along the genome. Alternatively, if there is an excess of disease susceptibility

loci in European Americans with meaningful but small allele frequency differences, these

would have been missed in our study as we focused on variants with large differences; we were

only powered to detect these. However, due to lack of availability of well characterized cohorts

Fig 3. Signals from moderate/severe case-control admixture mapping and imputed SNPs for chromosome

15q26.2 region. Blue horizontal line: suggestive p-value threshold; Red horizontal line: permutation based p-value

threshold. Solid black line represents admixture mapping signal prior to conditional analysis. Red dots represents

log10(p-values) for genotyped and imputed SNPs within the admixture mapping peak. Blue dot represents SNP

rs4777810, the most significant SNP directly below the admixture mapping peak. Dashed blue line represents

admixture mapping signal after adjustment for SNP rs4777810.

https://doi.org/10.1371/journal.pone.0178839.g003

Table 4. Associations between genetic markers and POP in top regions identified from admixture mapping.

Classification SNP Region BP SNP OR (95% CI) P EA/RA EAF EAF- YRI/ASW/CEU

Grade 0 vs. 2/3 rs4777810 15q26.2 93825164 0.37 (0.23, 0.50) a 5.58x10-5 G/A 0.19 0.03/0.17/0.57

Grade 0 vs. 1–3 rs78992478 1q42.1–42.3 235397083 3.15 (1.93, 5.14) b 4.23x10-6 C/T 0.92 0.98/0.94/1.00

rs2501094 1q42.1–42.3 225095329 1.63 (1.32, 1.64) b 5.47x10-6 C/A 0.55 0.50/0.63/0.99

SNP: Single Nucleotide Polymorphism; BP: Base Pair; P: P-value; OR: Odds Ratio; CI: Confidence Interval; EA: Effect Allele; RA: Reference Allele; EAF:

Effect Allele Frequency.

a Modeled against SNP, adjusted for covariates (age at ascertainment, BMI, parity and continuous axes of MDS components).

b Modeled against SNP, adjusted for covariates (age at ascertainment, BMI, parity and continuous axes of MDS components).

https://doi.org/10.1371/journal.pone.0178839.t004
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such as the WHI, we were not able to test these associations in an independent African Ameri-

can population for who data on POP and genetics are simultaneously available and should

therefore be interpreted with care.

Table 5. Associations between local ancestry and POP with and without adjustment for genetic markers in top regions.

Classification Region Adjusted for SNP Ancestry OR (95% CI) a P

Grade 0 vs. 2/3 15q26.2 No 0.35 (0.22, 0.57) 1.48x10-5

rs4777810 0.50 (0.30, 0.85) 0.01

Grade 0 vs. 2/3 1q42.1–42.3 No 1.69 (1.28, 2.22) 1.93x10-4

rs78992478 1.56 (1.18, 2.06) 1.75x10-3

rs2501094 1.48 (1.11, 1.97) 6.80x10-3

rs78992478 + rs2501094 1.37 (1.03, 1.32) 0.03

SNP: Single Nucleotide Polymorphism; OR: Odds Ratio; CI: Confidence Interval; P: P-value

a Modeled against local European ancestry adjusted for covariates (age at ascertainment, BMI, parity and continuous axes of MDS components), with and

with and without adjustment for top imputed/genotyped marker(s) at region of interest.

https://doi.org/10.1371/journal.pone.0178839.t005

Fig 4. Signals from any-POP case-control admixture mapping and imputed SNPs for chromosome

1q42.1–42.3 region. Blue horizontal line: suggestive p-value threshold; Red horizontal line: permutation based

p-value threshold. Solid black line represents admixture mapping signal prior to conditional analysis. Red dots

represents log10(p-values) for genotyped and imputed SNPs within the admixture mapping peak. Blue dot

represents SNP rs78992478, the most significant SNP directly below the admixture mapping peak. Green dot

represents SNP rs2501094, the second-most significant SNP directly below the admixture mapping peak.

Dashed blue line represents admixture mapping signal after adjustment for SNP rs78992478. Dashed green line

represents admixture mapping signal after adjustment for SNP rs2501094. Dashed grey line represents

admixture mapping signal after adjustment for both SNPs.

https://doi.org/10.1371/journal.pone.0178839.g004
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The chromosomal region 1q42.1-q42.3 showed a greater presence of excess European

ancestry in POP cases than in controls. Although the signal for this region was not statistically

significant (p: 1.93x10-4) after considering multiple comparisons (p-value threshold: 1.8x10-5),

several pieces of other evidence collectively point to the plausibility that the signal from this

region may be of interest in relation to POP. This 20 Mb region harbors several genes which

may be related to maintenance of components of the pelvic support system and may be related

to POP, including tubulin binding cofactor E (TBCE) and alpha-actin-1 (ACTA1) genes.

TBCE is a peripheral associated membrane protein which plays an essential role in polymeriz-

ing microtubules [28]. This gene has been suggested to play a major role in forming neuromus-

cular junctions [29] and mutations in the TBCE gene have shown to cause loss of microtubule

formation in distal ends axons [30;31]. Denervation of major muscles involved in the pelvic sup-

port system due to stress-related insult during labor has been hypothesized as an important con-

tributor to POP. It is plausible that altered expression of the TBCE gene may impact proper

repair of denervation sites. The ACTA1 gene product is a globular protein that is important in

thin microfilament formation including F-actin and G-actin filaments and plays an essential role

in muscular contraction [32]. A recent study that evaluated F-actin expression in vaginal fibro-

blasts reported relative F-actin expression was higher in fibroblasts from women with POP than

from women without POP [33].

However, with such a broad peak of 20 MB, it is difficult to delineate whether the region is

foretelling several signals for which the granularity has been lost or from one signal. When we

Fig 5. Admixture mapping peaks for chromosome 10 in context with previously reported linkage

peak. Blue horizontal line: suggestive p-value threshold; Red horizontal line: permutation based p-value

threshold; Black peaks: case-control admixture mapping; Green peaks: case-only admixture mapping.

https://doi.org/10.1371/journal.pone.0178839.g005
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adjusted for the most significant marker under the peak (rs78992478), it did not significantly

change the effect estimate or the peak of the admixture mapping signal. This is likely due to a

lack of correlation with the admixture mapping peak, which is also reflected by the relatively

smaller allele frequency difference across populations for this SNP. However, adjusting for a

SNP at the second most significant locus under the broad peak (approximately 10 Mb away—

rs2501094), the admixture mapping signal attenuated slightly more, with the greatest attenua-

tion when both SNPs were adjusted for. Intriguingly, our previous GWAS investigation of pel-

vic organ prolapse using African American and Hispanic women identified a common marker

across those populations near gene PGBD5 in the 1q42.1–3 region. This further suggests a

more complicated genetic architecture for pelvic organ prolapse with the possibility that if

genetic variants affect POP risk, there may be risk increasing variants that are common to and

specific to populations.

The most persuasive case-control admixture mapping peak, which remained significant

after permutation testing, is located at chromosome 15q26.2. Interestingly, European ances-

try was inversely associated with moderate/severe POP. This region harbors the repulsive

guidance molecule family member a (RGMA) gene, which is a glycosylphospatidylinositol-

anchored glycoprotein. RGMA was initially discovered for its role as an axon guidance pro-

tein in the central nervous system [34;35]. The RGM family of genes including RGMA have

been shown to be important regulators of the bone morphogenic protein (BMP) pathway

including the BMP-1 gene [36;37]. The BMP-1 gene is involved in activation of the lysl oxi-

dase (LOX) family of genes and plays a crucial role in maturation of procollagen chains

and elastin [38]. A small study evaluating the association between POP cases and controls

showed decreased expression of the BMP-1 gene in POP cases compared with controls [39].

The SNP identified for this region (rs4777810) not only explained the admixture mapping

peak suggesting a high degree of correlation with the peak, but also falls in a gene regulatory

region as predicted by the Regulome database, with a regulatory score of 2b [40]. The SNP

is located in a transcription factor binding region and is on a DNAse hypersensitivity region

as detected by DNA foot printing assay and DNase peak identification. Specifically, the SNP

lies in a region that acts as a binding site for the EZH2 gene product, a histone–lysine N-

methyltransferase enzyme that facilitates transcriptional repression. EZH2 in turn has been

shown to regulate RGMA expression [41].

Several candidate gene studies, two GWAS [15;42] and three genome-wide linkage studies

have evaluated the association between genetic variants and POP with limited replication of

associations across studies.[43] In the first GWAS for POP, Allen-Brady and colleagues identi-

fied six loci (4q21, 8q24, 9q22, 15q11, 20p13, and 21q22) with genome-wide statistical signifi-

cance in a population of EA women [42]. The second GWAS, undertaken in AA and Hispanic

women from the WHI-HT [15], reported several loci with suggestive statistical significance

but found no evidence of association for previously reported loci. For complex polygenic dis-

eases such as POP, it is possible that women with European and African ancestries may have

shared and/or unique ancestry-specific susceptibility loci, especially considering the differ-

ences in POP prevalence between these populations. The most recent genome-wide linkage

study by Allen-Brady and colleagues identified statistically significant linkage peaks in chro-

mosomes 17q25 and 10q24-26 regions [26]. Post-hoc comparisons of case-only admixture

mapping signals from our study to those present in the literature revealed a conspicuous

resemblance in association peaks for the chromosome 10q24 region noted by Allen-Brady and

colleagues [26]. A notable candidate gene in this region includes another gene from the LOX

family of genes, LOX-like-4 (LOXL-4). Even though this finding is incidental, as it deviates

from our a priori criteria of considering only overlapping signals from both case-only and
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case-control admixture mapping analyses, the striking resemblance with previously reported

peaks is noteworthy.

We took measures at the design and analysis phase to ensure internal validity. We reduced

misclassification of cases and controls, when possible, to identify controls at baseline who

developed POP during follow-up. With the intention of reducing misclassification, even at the

expense of losing controls from our previously utilized control definition [15], we limited our

definition of controls to women with at least two measurements of POP at different time

points. We additionally showed that the effect estimates for candidate local ancestry regions in

relation to POP were in the same direction for moderate/severe POP and any POP (S2 Fig);

estimates were stronger for moderate/severe POP at the top markers than for any POP, at the

top regions (Table 3). To minimize false positives due to chance, that is especially likely in a

case-only approach, or bias, we only considered overlapping regions from case-only and case-

control designs with at least suggestive statistical significance. However, at the expense of mini-

mizing false positives, our study may have missed potentially true signals such as the one

observed for chromosome 10q24 in the case-only design. Since women without a uterus could

still potentially have other forms of prolapse such as cystocele and rectocele we included these

women in our study, with the understanding of potential selection bias especially if women

with a hysterectomy were more likely to be controls. However, this concern is alleviated since

similar signals were observed in case-only and case-control designs, the former of which

would not be affected by hysterectomy status. To compensate for a small sample size in our

study and to reduce multiple comparisons we limited our analysis to highly differentiated

markers in the ancestral reference populations. Additionally, we used a rigorous method, per-

mutation testing, to empirically estimate statistical significance from our primary admixture

mapping analyses. In addition to identifying broad genetic regions from admixture mapping,

we attempted to identify markers in the region that explained the admixture mapping peaks.

In conclusion, the results from our study suggest that POP is a genetically complex condi-

tion with susceptibility loci that may vary substantially in frequency between European and

African ancestry populations. We provide evidence for two novel biologically plausible loci for

POP risk and provide further evidence for a previously reported locus. Replication and fine-

mapping studies in larger and similarly well-classified independent AA populations are a pri-

ority to confirm findings from this study.

Supporting information

S1 Text. Quality control details for genotype data.

(DOCX)

S1 Fig. QC flow chart for African American cases and controls from the WHI-HT trial.

(PNG)

S2 Fig. Comparing effect estimates of any POP and moderate/severe POP admixture map-

ping analyses for candidate admixture mapping regions. Top right quadrant contains effect

estimates from local ancestry analyses in chromosome 1q42.3 region (orange dots) against any

POP or moderate/severe POP. Bottom left quadrant contains effect estimates from local ances-

try analyses in chromosome 15q26.2 region (blue dots) against any POP or moderate/severe

POP.

(PNG)

S1 Table. Admixture mapping sensitivity analyses for moderate/severe POP for the most

significant marker chromosome15q23.1 region. Models adjusted for age, BMI, parity and

average genetic ancestry. Incident cases refer to moderate/severe POP cases that developed
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during follow-up examinations. Prevalent cases refer to moderate/severe POP cases that were

present at baseline examination. All cases refer to a combination of prevalent and incident

moderate/severe POP cases. Stringent controls refer to individuals who had at least two WHI

pelvic exams during baseline and follow-up and were confirmed to be absent for POP. Con-

trols at baseline refer to individuals who did not have POP at baseline; these include individu-

als who did not develop POP during follow-up and also includes individuals who developed

POP during follow-up.

(DOCX)
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