
UC Berkeley
UC Berkeley Electronic Theses and Dissertations

Title
Horizontal-strip LLT polynomials

Permalink
https://escholarship.org/uc/item/5jq8m70x

Author
Tom, Foster

Publication Date
2022
 
Peer reviewed|Thesis/dissertation

eScholarship.org Powered by the California Digital Library
University of California

https://escholarship.org/uc/item/5jq8m70x
https://escholarship.org
http://www.cdlib.org/


Horizontal-strip LLT polynomials

by

Foster Tom

A dissertation submitted in partial satisfaction of the

requirements for the degree of

Doctor of Philosophy

in

Mathematics

in the

Graduate Division

of the

University of California, Berkeley

Committee in charge:

Professor Mark Haiman, Chair
Professor Vera Serganova

Professor Marjorie Shapiro

Spring 2022



Horizontal-strip LLT polynomials

Copyright 2022
by

Foster Tom



1

Abstract

Horizontal-strip LLT polynomials

by

Foster Tom

Doctor of Philosophy in Mathematics

University of California, Berkeley

Professor Mark Haiman, Chair

Lascoux, Leclerc, and Thibon defined a remarkable family of symmetric functions that are
q-deformations of products of skew Schur functions. These LLT polynomials Gλ(x; q) can
be indexed by a tuple λ of skew diagrams. When each skew diagram is a row, we define a
weighted graph Π(λ). We show that a horizontal-strip LLT polynomial is determined by this
weighted graph. When Π(λ) has no triangles, we establish a combinatorial Schur expansion
of Gλ(x; q). We also explore a connection to extended chromatic symmetric functions.
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Chapter 1

Introduction

In 1997, Lascoux, Leclerc, and Thibon defined a curious family of symmetric functions called
LLT polynomials [22], which have extensive connections in algebraic combinatorics and rep-
resentation theory. Their motivation was to study the modular representation theory of the
symmetric group via a natural action of the quantum affine algebra Uq(ŝln) on the space
of symmetric functions. Horizontal-strip LLT polynomials are a generalization of Hall–
Littlewood polynomials [22], which are the Frobenius series of cohomology rings of Springer
fibers [19]. Springer fibers are subvarieties of the complete flag variety that are deeply con-
nected to representations of Weyl groups [31]. Horizontal-strip LLT polynomials appear in
the Shuffle Theorem, which is a combinatorial formula for ∆′en−1

en, the Frobenius series of
the space of diagonal harmonics [9]. The Extended Delta Theorem is a recent generaliza-
tion of this formula to an infinite LLT series expansion of ∆h`∆

′
ek
en [8]. LLT polynomials

appear in a positive combinatorial expansion of Macdonald polynomials [17], which are the
Frobenius series of the Garsia–Haiman Sn-submodules of the space of diagonal harmonics
[20], and are a simultaneous generalization of many notable families of symmetric functions
[25]. LLT polynomials are also connected to chromatic quasisymmetric functions [30] and
representations of regular semisimple Hessenberg varieties [16].

LLT polynomials will be indexed by a sequence λ of skew diagrams. When each skew
diagram of λ is a single cell, the unicellular LLT polynomial Gλ(x; q) is a generating function
for arbitrary colourings of a unit interval graph Γ(λ) associated to λ. Huh, Nam, and Yoo
[21] proved a combinatorial Schur expansion of Gλ(x; q) whenever this graph Γ(λ) is a
“melting lollipop”, namely

Gλ(x; q) =
∑

T∈SYTn

qwta(T )sshape(T ). (1.1)

Carlsson and Mellit [9] proved a plethystic relationship between a unicellular LLT polyno-
mial Gλ(x; q) and the corresponding chromatic quasisymmetric function XΓ(λ)(x; q) defined



CHAPTER 1. INTRODUCTION 2

by Shareshian and Wachs [30], specifically

XΓ(λ)(x; q) =
Gλ([x(q − 1)]; q)

(q − 1)n
, (1.2)

which in particular implies that for sequences of cells λ and µ, we have that

Gλ(x; q) = Gµ(x; q) if and only if XΓ(λ)(x; q) = XΓ(µ)(x; q). (1.3)

Therefore, unicellular LLT polynomials are intimately connected to the major open prob-
lem of classifying equalities of chromatic symmetric functions, first posed by Stanley [32] and
studied fervently thereafter [5, 6, 10, 26, 28].

In this thesis, we consider horizontal-strip LLT polynomials, meaning that each skew
diagram of λ is a single row of cells. In Chapter 2, we introduce the necessary definitions.
Lascoux, Leclerc, and Thibon [22] showed that if the rows of λ are left-justified, then the
LLT polynomial Gλ(x; q) is the transformed modified Hall–Littlewood polynomial H̃λ(x; q),
for which Lascoux and Schützenberger [24] have proved an elegant combinatorial Schur
expansion in terms of a statistic called cocharge, namely

Gλ(x; q) = H̃λ(x; q) =
∑

T∈SSYT(λ)

qcocharge(T )sshape(T ). (1.4)

Alexandersson and Uhlin [3] generalized cocharge to prove a combinatorial Schur expansion
if the rows of λ arise from a skew diagram ρ/τ with at most two cells in each column, which
we can equivalently state as

Gλ(x; q) =
∑

T∈SSYT(α)

qcochargeτ (T )sshape(T ). (1.5)

In Chapter 3, we generalize the graph Γ(λ) by defining a weighted interval graph Π(λ)
associated to λ. We prove that a horizontal-strip LLT polynomial is determined by our
weighted graph, in other words,

if Π(λ) and Π(µ) are isomorphic, then Gλ(x; q) = Gµ(x; q). (1.6)

The proof is quite technical so it is postponed to Chapter 6. In Chapter 4, we prove a
deletion-contraction relation of horizontal-strip LLT polynomials using our weighted graph
and we use it to prove a combinatorial Schur expansion of Gλ(x; q) whenever the graph Π(λ)
is triangle-free, namely

Gλ(x; q) =
∑

T∈SSYT(α)

qcochargeΠ(λ)sshape(T ). (1.7)
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This generalizes the formula (1.5), which applies in certain cases when our weighted graph
Π(λ) is a path.

In Chapter 5, we prove a plethystic relationship between a horizontal-strip LLT poly-
nomial Gλ(x; q) and the corresponding extended chromatic symmetric function XΠ(λ)(x)
defined for weighted graphs by Crew and Spirkl [11], specifically

XΠ(λ)(x) =

(
Gλ([x(q − 1)]; q)

(q − 1)n

)∣∣∣∣
q=1

, (1.8)

which in particular implies that for sequences of rows λ and µ, we have that

if Gλ(x; q) = Gµ(x; q), then XΠ(λ)(x) = XΠ(µ)(x). (1.9)

We also extend results about equalities of extended chromatic symmetric functions [4] to
analogous results about equalities of horizontal-strip LLT polynomials.
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Chapter 2

Background

2.1 Compositions, partitions, and skew diagrams

A composition is a finite sequence of positive integers α = α1 · · ·α`, which are called the
parts of α. For convenience, we will concatenate the parts rather than write (α1, . . . , α`), and
we set αi = 0 if i > `. The length of α, denoted `(α), is the number of parts of α and we say

that α has size N if
∑`(α)

i=1 αi = N . A partition ρ is a composition that is weakly decreasing,
meaning that ρ1 ≥ ρ2 ≥ · · · ≥ ρ`(ρ). For a composition α, the partition determined by α,
denoted sort(α), is that obtained by reordering the parts of α in weakly decreasing order.

For a partition ρ, we define the integer n(ρ) =
∑`(ρ)

i=1(i − 1)ρi. For partitions ρ and τ such
that ρi ≥ τi for every i, we define the corresponding skew diagram λ = ρ/τ to be the subset
of N× N given by

λ = {(i, j) ∈ N× N : i ≥ 1, τi + 1 ≤ j ≤ ρi}. (2.1)

If τ is the empty partition, we will also denote the skew diagram ρ/τ by ρ. In this way, ρ
denotes both a partition and a skew diagram, but which one should be clear from context.
The elements of λ are called cells and the content of a cell u = (i, j) ∈ λ is the integer
c(u) = j − i. We will primarily consider rows, which are skew diagrams of the form

R = a/b = {(1, j) : b+ 1 ≤ j ≤ a} (2.2)

for some a ≥ b ≥ 0. We denote by c(R) = {b, b+ 1, . . . , a− 1} the set of contents of cells in
R and by l(R) = b and r(R) = a− 1 the smallest and largest contents in c(R) respectively.
Note that l(R) is the content of the leftmost cell of R, not the length of the row R, which is
|R| = r(R)−l(R)+1 = b−a. We also denote by R+ = (a+1)/(b+1) and R− = (a−1)/(b−1)
the rows obtained by shifting R right or left by one cell respectively.

Example 2.1.1. We have that α = 21231 is a composition of length `(α) = 5 and size 9,
and it determines the partition ρ = sort(α) = 32211, for which n(ρ) = 13. We draw the skew
diagram ρ as an array of boxes as in Figure 2.1, where we draw a box of side length 1 and
upper right corner at position (i, j) in the plane for each cell (i, j) ∈ λ. The row R = 9/5
has c(R) = {5, 6, 7, 8}, l(R) = 5, r(R) = 8, and |R| = 4.
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Figure 2.1: The skew diagram λ = 32211

2.2 Tableaux, Schur functions, and symmetric

functions

Let λ be a skew diagram. A semistandard Young tableau (SSYT) of shape λ is a function
T : λ→ {1, 2, 3, . . .} that satisfies

Ti,j ≤ Ti+1,j and Ti,j < Ti,j+1 for all (i, j) ∈ λ, (2.3)

where we write Ti,j to mean T ((i, j)). In other words, an SSYT of shape λ is a filling of
the cells of λ with positive integers, called entries, that are weakly increasing from left to
right and strictly increasing from bottom to top. The weight of T is the sequence w(T ) =
(w1(T ), w2(T ), . . .), where wi(T ) = |T−1(i)| is the number of times the integer i appears as an
entry. We denote by SSYTλ the set of SSYT of shape λ and by SSYT(α) the set of SSYT of
weight α, and if T ∈ SSYTλ, we write that shape(T ) = λ. We define the skew Schur function
sλ to be the formal power series in infinitely many commuting variables x = (x1, x2, . . .) to
be [33, Definition 7.10.1]

sλ =
∑

T∈SSYTλ

xT , where xT = x
w1(T )
1 x

w2(T )
2 · · · . (2.4)

When λ is a partition ρ, we call sρ a Schur function. The function sλ is a symmetric function
[33, Theorem 7.10.2], meaning that it is invariant under any permutation of the xi variables.
More specifically, for a field F , we define the algebra of symmetric functions ΛF to be the F -
algebra of formal power series in x of bounded degree that are invariant under permutations
of the variables. Then we have the following.

Theorem 2.2.1. [33, Corollary 7.10.6] The set {sρ : ρ a partition} forms a basis for ΛQ.

For an integer n ≥ 1, the n-th homogeneous symmetric function, the n-th elementary
symmetric function, and the n-th power sum symmetric function are

hn =
∑

1≤i1≤···≤in

xi1 · · ·xin , en =
∑

1≤i1<···<in

xi1 · · ·xin , and pn =
∞∑
i=1

xni . (2.5)

For a partition ρ = ρ1 · · · ρ`(ρ), we define hρ = hρ1 · · ·hρ`(ρ) , eρ = eρ1 · · · eρ`(ρ) , and pρ =
pρ1 · · · pρ`(ρ) . Then we have the following.
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Figure 2.2: Several semistandard Young tableaux of shape λ = 32/1

1 2
1 1

2 2
1 1

1 2
1 2

2 2
1 2

3 6
2 3

2 6
2 3

s32/1 = x3
1x2 + 2x2

1x
2
2 + x1x

3
2 + · · ·+ x2x

2
3x6 + x2

2x3x6 + · · · (2.7)

= s22 + s31 = h22 − h4 = e211 − 2e31 + e4 (2.8)

=
5

24
p1111 −

1

4
p211 +

1

8
p22 −

1

3
p31 −

1

4
p4 (2.9)

Theorem 2.2.2. [33, Theorem 7.4.4, Corollary 7.6.2, Corollary 7.7.2] Each of the sets

{hρ : ρ a partition}, {eρ : ρ a partition}, and {pρ : ρ a partition}

form a basis for ΛQ. Equivalently, each of the sets {hn : n ≥ 1}, {en : n ≥ 1}, and
{pn : n ≥ 1} are algebraically independent and generate ΛQ as a Q-algebra, in other words

ΛQ = Q[h1, h2, . . .] = Q[e1, e2, . . .] = Q[p1, p2, . . .]. (2.6)

Example 2.2.3. Let λ = 32/1. We have drawn several SSYTs of shape λ in Figure 2.2
by writing the entry Ti,j in the box corresponding to cell (i, j) ∈ λ and we have given the
corresponding monomials xT of the skew Schur function sλ. We have also expanded sλ in
terms of the four bases introduced above.

2.3 Multiskew partitions and LLT polynomials

A multiskew partition is a finite sequence of skew diagrams λ = (λ(1), . . . , λ(n)). We define
the set of sequences of SSYTs

SSYTλ = {T = (T (1), . . . , T (n)) : T (i) ∈ SSYTλ(i)}. (2.10)

The weight of T is w(T ) = w(T (1)) + · · ·+w(T (n)). For 1 ≤ i < j ≤ n, we say that two cells
u ∈ λ(i) and v ∈ λ(j) attack each other if c(u) = c(v) or c(u) = c(v) + 1, we say that λ(i) and
λ(j) attack each other if there exist u ∈ λ(i) and v ∈ λ(j) that attack each other, and we say
that u and v form an inversion in T ∈ SSYTλ if either

• c(u) = c(v) and T (i)(u) > T (j)(v), or

• c(u) = c(v) + 1 and T (j)(v) > T (i)(u).
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Equivalently, let us define the adjusted content of a cell u ∈ λ(i) to be c̃(u) = c(u) + i
n

and
the content reading order of the cells tni=1λ

(i) to be the total ordering where c̃(u) is weakly
increasing and cells u and v with c̃(u) = c̃(v) increase from bottom left to top right in a skew
diagram. Then if u ∈ λ(i) precedes v ∈ λ(j) in the content reading order, we have that u and
v attack each other if 0 < c̃(v)− c̃(u) < 1, and that u and v form an inversion in T ∈ SSYTλ
if in addition T (i)(u) > T (j)(v).

We denote by inv(T ) the number of pairs of cells that form an inversion in T . For a
multiskew partition λ, we now define the LLT polynomial to be the formal power series [17,
Definition 3.2]

Gλ(x; q) =
∑

T∈SSYTλ

qinv(T )xT , (2.11)

Remark 2.3.1. Lascoux, Leclerc, and Thibon originally defined LLT polynomials differently,
in terms of objects called ribbon tableaux. Bylund and Haiman found this simpler formula-
tion, which is equivalent [18, Corollary 5.2.4].

If every λ(i) consists of a single cell, we say that λ is unicellular and that Gλ(x; q) is
a unicellular LLT polynomial. If every λ(i) is a row, then keeping with the terminology of
Alexandersson and Sulzgruber [2], we say that λ is a horizontal-strip and that Gλ(x; q) is a
horizontal-strip LLT polynomial. If λ is a horizontal-strip, we define n(λ) = n(λ), where λ
is the partition determined by the row lengths of λ.

Remark 2.3.2. A skew diagram λ that has no two cells (i, j) and (i, j′) in the same column
is also commonly called a horizontal-strip. We will not be using this meaning in this thesis.

Theorem 2.3.3. [22, Theorem 6.1] The LLT polynomial Gλ(x; q) is a symmetric function,
which in this context means that it is an element of ΛQ(q).

Example 2.3.4. The horizontal-strip λ = (4/0, 5/4, 8/5, 6/1), two sequences of SSYTs
T ,U ∈ SSYTλ with their inversions marked by dotted lines, and the corresponding mono-
mials of the LLT polynomial Gλ(x; q) are given in Figure 2.3. Because λ is a horizontal-strip,
we have drawn it so that cells of the same content are aligned vertically. The horizontal-strip
LLT polynomial Gλ(x; q) can be expanded in the Schur basis as

Gλ(x; q) = q6s5431 + q6s544 + q6s5521 + 2q6s553 + q6s6331 + 2q6s6421 + (3q6 + q5)s643

+ 2q6s6511 + (4q6 + q5)s652 + (2q6 + q5)s661 + (q6 + q5)s7321 + (q6 + 2q5)s733

+ (q6 + 2q5)s7411 + (2q6 + 5q5)s742 + (2q6 + 6q5)s751 + 4q5s76 + q5s8221

+ (2q5 + q4)s8311 + (4q5 + 2q4)s832 + (5q5 + 5q4)s841 + (3q5 + 4q4)s85 + 2q4s9211

+ 3q4s922 + (7q4 + 2q3)s931 + (5q4 + 3q3)s94 + q3s(10)111 + 6q3s(10)21

+ (6q3 + q2)s(10)3 + 3q2s(11)11 + 5q2s(11)2 + 3qs(12)1 + s(13).

In Example 2.3.4, we saw that G(4/0,5/4,8/5,6/1)(x; q) is in fact Schur-positive, meaning that
it is an N[q]-linear combination of Schur functions. In fact, this property holds in general.
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Figure 2.3: The horizontal-strip λ = (4/0, 5/4, 8/5, 6/1) and two examples of T ,U ∈ SSYTλ

λ = T =

1 2 2 3

5

1 1 3

1 4 4 4 5

U =

4 4 4 4

3

1 1 1

2 2 2 2 2

q5x4
1x

2
2x

2
3x

3
4x

2
5 q6x3

1x
5
2x3x

4
4

Theorem 2.3.5. [18, Theorem 3.1.3 for horizontal-strips], [15, Corollary 6.9 in general] The
LLT polynomial Gλ(x; q) is Schur-positive.

Theorem 2.3.5 was proven by identifying Schur coefficients as those of certain parabolic
Kazhdan–Lusztig polynomials, which are known to be positive. It is a major open problem
to find a combinatorial Schur expansion of LLT polynomials.

Problem 2.3.6. Find a combinatorial Schur expansion of LLT polynomials of the form

Gλ(x; q) =
∑
T∈S

qstat(T )spartition(T ), (2.12)

for some set S and some statistics stat(T ) and partition(T ) associated to λ.

While there are many partial results [1, 2, 3, 15, 21], Problem 2.3.6 remains a predomi-
nant open problem in algebraic combinatorics.

In fact, although some linear relations among LLT polynomials have been found [2, 12,
27], it is unknown precisely when two LLT polynomials are equal.

Problem 2.3.7. Characterize those multiskew partitions λ and µ for which we have

Gλ(x; q) = Gµ(x; q). (2.13)

2.4 Graphs and chromatic symmetric functions

Let G = (V,E) be a graph. We say that G is an interval graph if there exists a set of real
intervals [a, b] = {[a1, b1], . . . , [an, bn]} such that G is isomorphic to the graph G[a,b] whose
vertices are the intervals and whose edges join intersecting intervals. We say that G is a unit
interval graph if there exists such a sequence of intervals of unit length.
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Theorem 2.4.1. Let G be a graph.

1. [29, Theorem 2.1] G is an interval graph if and only if its vertices can be labelled
v1, . . . , vn so that if i < j < k and vi is adjacent to vk, then vj is adjacent to vk.

2. [14, Theorem 1] G is a unit interval graph if and only if its vertices can be labelled
v1, . . . , vn so that if i < j < k and vi is adjacent to vk, then vj is adjacent to vi and vk.

A colouring of G is a function κ : V → {1, 2, 3, . . .} and κ is proper if whenever two
vertices u, v ∈ V are adjacent, we have κ(u) 6= κ(v). The chromatic symmetric function of
G is the generating function of proper colourings [32, Definition 2.1]

XG(x) =
∑

κ proper

xκ, where xκ =
∏
v∈V

xκ(v). (2.14)

Given a vertex-ordering v1, . . . , vn of G, we can define the chromatic quasisymmetric
function of G to be [30, Section 4.2]

XG(x; q) =
∑

κ proper

qdes(κ)xκ, (2.15)

where des(κ) is the number of descents of κ, meaning pairs (vi, vj) with i < j and κ(i) < κ(j).
Note that setting q = 1 recovers the chromatic symmetric function of G.

Alternatively, given a weight function w : V → {1, 2, 3, . . .}, we can define the extended
chromatic symmetric function of (G,w) to be [11, Equation 1]

X(G,w)(x) =
∑

κ proper

xκ,w, where xκ,w =
∏
v∈V

x
w(v)
κ(v) . (2.16)

Note that if all vertex weights are 1, then we recover the chromatic symmetric function
of G. Also, XG(x) and X(G,w)(x) are manifestly symmetric because a permutation of the
variables can be right-composed with κ. Additionally, if G is a unit interval graph with a
vertex-ordering as described in Theorem 2.4.1, then XG(x; q) ∈ ΛQ(q) [30, Proposition 4.4].

The flexibility of this vertex weighting provides us with the following deletion-contraction
relation, which exists for the chromatic polynomial but not for the chromatic symmetric
function. Given an edge e = (v1, v2) of G, the deletion G \ e = (V,E \ e) is given by deleting
the edge e and the contraction G/e is formed by replacing the vertices v1 and v2 with a new
vertex v, adjacent to all neighbours of v1 and v2. We also set w(v) = w(v1) + w(v2). Then
we have the following relation.

Lemma 2.4.2. [11, Lemma 2] Let (G,w) be a vertex-weighted graph and let e be an edge
of G. Then

X(G,w)(x) = X(G\e,w)(x)−X(G/e,w)(x). (2.17)
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Figure 2.4: Two unicellular multiskew partitions and their corresponding graphs

λ =

1
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5
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v1

v2

v3

v4

v5

We mention the two main open problems in the study of chromatic symmetric functions.

Problem 2.4.3. [32, Section 2] Prove that the chromatic symmetric function distinguishes
trees, in other words, for trees T1 and T2, we have

XT1(x) = XT2(x) if and only if T1 and T2 are isomorphic. (2.18)

Problem 2.4.4. Let G be a unit interval graph. Prove that XG(x) is e-positive, mean-
ing that it is an N-linear combination of elementary symmetric functions [32, Conjecture
5.1]. More generally, prove that XG(x; q) is e-positive, meaning that it is an N[q]-linear
combination of elementary symmetric functions [30, Conjecture 4.9].

When λ is unicellular, we can naturally associate to λ a graph Γ(λ) whose vertices are
the cells of λ and whose edges join attacking cells. It will often be useful to label the vertices
of Γ(λ) as v1, . . . , vn in content reading order of the corresponding cells.

Example 2.4.5. The unicellular multiskew partitions λ = (2/1, 1/0, 1/0, 2/1, 2/1) and µ =
(1/0, 2/1, 2/1, 1/0, 2/1) are given in Figure 2.4 with their cells labelled in content reading
order, along with the associated unit interval graphs Γ(λ) and Γ(µ).

Remark 2.4.6. If λ = (λ(1), . . . , λ(n)) is unicellular, then the graph Γ(λ) ∼= G[a,b], where ai
is the adjusted content of the cell in λ(i) and bi = ai + 1, so it is a unit interval graph. The
labelling of the vertices in content reading order will satisfy the condition of Theorem 2.4.1.

Note that when λ is unicellular, then a sequence of tableaux T ∈ SSYTλ is precisely
a (not necessarily proper) colouring κ of λ and inversions of T are precisely descents of κ.
Therefore, we can expect a unicellular LLT polynomial Gλ(x; q) to be very closely connected
to the chromatic quasisymmetric function XΓ(λ)(x; q). Indeed, Carlsson and Mellit proved
the following relationship.
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Theorem 2.4.7. [9, Proposition 3.5] Let λ = (λ(1), . . . , λ(n)) be a unicellular multiskew
partition. Then we have

XΓ(λ)(x; q) =
Gλ([x(q − 1)]; q)

(q − 1)n
, (2.19)

where the plethystic substitution f(x) 7→ f(x[q − 1]) is the map defined by pk(x[q − 1]) =
(qk − 1)pk(x) and extending to a Q(q)-algebra homomorphism ΛQ(q) → ΛQ(q). In particular,
because this map is injective, we have for λ and µ unicellular that

Gλ(x; q) = Gµ(x; q) if and only if XΓ(λ)(x; q) = XΓ(µ)(x; q). (2.20)

Because of this connection, we can consider Problem 2.4.3 and Problem 2.4.4 in the
context of LLT polynomials.

Example 2.4.8. One can check that the graphs Γ(λ) and Γ(µ) from Example 2.4.5 have the
same chromatic quasisymmetric function and therefore, by Theorem 2.4.7, the unicellular
LLT polynomials Gλ(x; q) and Gµ(x; q) are equal as well.

2.5 Jeu de taquin and cocharge

We conclude this chapter by describing a special case in which a combinatorial Schur expan-
sion is known for a horizontal-strip LLT polynomial.

Let λ = ρ/τ be a skew diagram and T ∈ SSYTλ. An inside corner of λ is a cell u ∈ τ
such that λ ∪ {u} is a skew diagram. The jeu de taquin slide of T into an inside corner u
is the tableau obtained as follows. There is a cell v directly above or directly right of u. If
both, let v be the one with the smaller entry, and if they are equal, let v be the cell above u.
We move the entry in v to u. We then similarly consider the cells directly above and directly
to the right of v and we continue until we vacate a cell on the outer boundary of λ. The
rectification of T is the tableau obtained by successive jeu de taquin slides until the result is
of partition shape. The following classical result confirms that rectification is well-defined.

Theorem 2.5.1. [33, Theorem A1.2.4] The rectification of T does not depend on the se-
quence of choices of inside corners into which the jeu de taquin slides are performed.

Let T ∈ SSYTλ. The cocharge of T , denoted cocharge(T ), is the integer defined by the
following properties.

• Cocharge is invariant under jeu de taquin slides.

• If λ is a partition with `(λ) = 1, then cocharge(T ) = 0.

• If λ is disconnected so that T = X ∪Y with every entry of X is above and left of every
entry of Y , no entry of X is equal to i, where i is the smallest entry of T , and S is a
tableau obtained by swapping X and Y so that every entry of Y is above and left of
every entry of X, then we have cocharge(T ) = cocharge(S) + |X|.
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Figure 2.5: The Hall–Littlewood polynomial G(4/0,3/0,2/0)(x; q) = H̃432(x; q)

λ =
S =

1 1 1 1 2 3
2 2
3

cocharge(S) = 5

T =
1 1 1 1 2 2
2 3
3

cocharge(T ) = 4

Gλ(x; q) = H̃432(x; q) = q7s432 + · · ·+ (q5 + q4)s621 + · · ·+ s9 (2.22)

We can calculate cocharge(T ) by using the following process called catabolism, which
was introduced in [23, Problem 6.6.1]. If T consists of a single row, then cocharge(T ) = 0,
otherwise by applying jeu de taquin slides, we can slide the top row of T to the left to
disconnect it, swap the pieces, and rectify to produce a new tableau S of smaller cocharge.
Repeated catabolism will terminate with a single row of cocharge zero.

Example 2.5.2. Let ρ be a partition and T ∈ SSYTρ. If every entry of T is either i or j
for some i < j, then T has at most two rows and a single catabolism will produce a tableau
with one row, so cocharge(T ) = ρ2 is the number of entries in the second row. We can think
of cocharge(T ) as measuring the extent to which there are entries above others.

Example 2.5.3. Let ρ be a partition and T ∈ SSYTρ such that Ti,j = i for every (i, j) ∈ ρ.
Then cocharge(T ) = n(ρ), the maximum possible value of cocharge of a tableau in SSYTρ.

Now Lascoux, Leclerc, and Thibon proved the following combinatorial Schur expansion
for Gλ(x; q) if the rows of λ are left-justified.

Theorem 2.5.4. [22, Theorem 6.6] Let λ = λ1 · · ·λn be a partition and let λ be the
horizontal-strip λ = (λ1/0, . . . , λn/0). Then the LLT polynomial Gλ(x; q) is the transformed
modified Hall–Littlewood polynomial H̃λ(x; q), whose Schur expansion is known [24] to be

Gλ(x; q) = H̃λ(x; q) =
∑

T∈SSYT(λ)

qcocharge(T )sshape(T ). (2.21)

Example 2.5.5. Let λ = 432, so that λ = (4/0, 3/0, 2/0) is the horizontal-strip in Figure
2.5. Then Gλ(x; q) is the Hall–Littlewood polynomial H̃432(x; q) and the coefficient of s621

is calculated from the cocharge of the two tableaux of shape 621 and weight 432.
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Chapter 3

Main results

In this chapter, we summarize the main results of our thesis. We begin by generalizing the
construction Γ(λ) to a weighted graph Π(λ) associated to a horizontal-strip λ. Recall our
conventions for rows from (2.2).

Definition 3.1.1. [34, Definition 3.1] Let R and R′ be rows. We define the integer

M(R,R′) =

{
|R ∩R′| if l(R) ≤ l(R′),

|R ∩R′+| if l(R) > l(R′).
(3.1)

Note that we must have
0 ≤M(R,R′) ≤ min{|R|, |R′|}. (3.2)

Definition 3.1.2. [34, Definition 3.2] Let λ = (R1, . . . , Rn) be a horizontal-strip. We define
a weighted graph Π(λ) whose vertices are the rows of λ. The weight of a row Ri is the number
of cells |Ri| and rows Ri and Rj with i < j are joined by an edge of weight M(Ri, Rj), where
by convention we omit edges of weight zero. We also define the integer

M(λ) =
∑

1≤i<j≤n

M(Ri, Rj) (3.3)

to be the total edge weight of Π(λ). It will often be useful to label the vertices of Π(λ) as
v1, . . . , vn in content reading order of the rightmost cell of the corresponding rows.

Definition 3.1.3. A vertex-weighted and edge-weighted graph Π is admissible if Π ∼= Π(λ)
for some horizontal-strip λ.

Example 3.1.4. The horizontal-strip λ = (4/0, 5/4, 8/5, 6/1) and the weighted graph Π(λ)
are given in Figure 3.1. We have M(R1, R4) = 3, M(R2, R4) = 1, and M(R3, R4) = 2, so
M(λ) = 6. We have labelled the rightmost cell of each row in content reading order, so
our vertex labelling is given by (v1, v2, v3, v4) = (R1, R4, R2, R3). We have also drawn the
horizontal-strip µ = (5/4, 9/5, 7/2, 3/0), whose weighted graph Π(µ) is isomorphic to Π(λ).
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Figure 3.1: Two horizontal-strips λ and µ with Π(λ) ∼= Π(µ)

λ =

R1

R2

R3

R4

1

2

3

4

4

R1

5

R4

1

R2

3

R3

3

1

2

µ =

Remark 3.1.5. If λ is unicellular, then the graph Π(λ) is simply Γ(λ) with all vertex weights
and nonzero edge weights equal to 1, so this is a generalization of Γ(λ). We can think of the
integer M(Ri, Rj) as measuring the extent to which the rows Ri and Rj attack each other.
The author proved the following result, which makes this idea precise. The proof is relatively
elementary and we will not need this result in this thesis, so we omit the proof.

Theorem 3.1.6. [34, Theorem 3.5] Let λ = (R1, . . . , Rn) be a horizontal-strip. For any
T ∈ SSYTλ, the number of inversions between cells in rows Ri and Rj for i < j is at most
M(Ri, Rj), so in particular, inv(T ) ≤M(λ). Moreover, this maximum is attained, so M(λ)
is the largest power of q in the LLT polynomial Gλ(x; q).

Remark 3.1.7. If λ = (R1, . . . , Rn) is a horizontal-strip, then the graph Π(λ) ∼= G[a,b] as
unweighted graphs, where ai = l(Ri) + i

n
is the adjusted content of the leftmost cell in Ri

and bi = ai + |Ri|, so the underlying graph of Π(λ) is an interval graph. In other words,
an admissible weighted graph must be an interval graph. The labelling of the vertices in
content reading order of the leftmost cells will satisfy the condition of Theorem 2.4.1.

We now state the three main results of this thesis. Our first main result states that a
horizontal-strip LLT polynomial is determined by our weighted graph. The proof is quite
involved so it will be deferred to Chapter 6.

Theorem 3.1.8. [35, Theorem 2.7] Let λ and µ be horizontal-strips.

If Π(λ) and Π(µ) are isomorphic, then Gλ(x; q) = Gµ(x; q). (3.4)

Theorem 3.1.8 tells us that if Π is an admissible weighted graph, then there is a well-
defined horizontal-strip LLT polynomial given by setting GΠ(x; q) = GΠ(λ)(x; q) for any
horizontal-strip λ such that Π ∼= Π(λ).

Example 3.1.9. Because the horizontal-strips λ and µ from Example 3.1.4 have isomorphic
weighted graphs, it follows from Theorem 3.1.8 that the LLT polynomials Gλ(x; q) and
Gµ(x; q) are equal.
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Our second main result gives a combinatorial Schur expansion of Gλ(x; q) whenever the
weighted graph Π(λ) is triangle-free. We first define a generalization of the cocharge statistic.

Definition 3.1.10. Let ρ be a partition and T ∈ SSYTρ with smallest entry i0. Recall that
we denote by wi0(T ) the number of entries in T equal to i0. We define the integer

f(T ) = max{t : 0 ≤ t ≤ ρ1 − ρ2, t ≤ wi0(T ), T2,j′ > T1,j′+t for all 1 ≤ j′ ≤ ρ2}. (3.5)

Now let i < j be integers. We define T |i,j to be the rectification of the skew tableau obtained
from T by restricting to the entries x with i ≤ x ≤ j, and we define the integer

cochargei,j(T ) = wi(T )− f(T |i,j). (3.6)

In Chapter 4, we will prove a deletion-contraction relation for a horizontal-strip LLT
polynomial, which will allow us to prove the following formula.

Theorem 3.1.11. [34, Theorem 4.6] Let λ = (R1, . . . , Rn) be a horizontal-strip such that
the weighted graph Π(λ) is triangle-free. Let αi = |vi| be the weight of the row labelled vi
and let Mvi,vj be the weight of the edge joining vertices vi and vj. Then we have

Gλ(x; q) =
∑

T∈SSYT(α)

qcochargeΠ(λ)sshape(T ), (3.7)

where cochargeΠ(λ)(T ) =
∑

1≤i<j≤n min{cochargei,j(T ),Mvi,vj}.

Example 3.1.12. Figure 3.2 gives an example of two tableaux S, T ∈ SSYT862 and their
restrictions S|2,4 and T |2,4. Informally, f(T ) is the maximum number of i’s that we can
remove from the bottom row of T so that no entry moves down when we rectify the resulting
skew tableau. We have f(S|2,4) = 3 and cocharge2,4(S) = 5−3 = 2, and we have f(T |2,4) = 3
because we must have t ≤ w2(T |2,4), so cocharge2,4(T ) = 3− 3 = 0.

Example 3.1.13. In the case where j = i + 1, cochargei,i+1(T ) is the number of entries in
the second row of T |i,i+1, which we saw in Example 2.5.2 is the same as cocharge(T |i,i+1).

Example 3.1.14. Let λ = (6/5, 9/6, 7/2, 4/0) be the horizontal-strip from Example 2.3.4.
Because the graph Π(λ) is triangle-free, Theorem 3.1.11 allows us to calculate the coefficient
of s733 using the three tableaux of weight α = 4153 and shape 733 in Figure 3.3. From the
values of cochargeΠ(λ), we see that the coefficient is (q6 + 2q5).

Example 3.1.15. Let λ = (R1, R2) be a horizontal-strip with exactly two rows, so that
Π(λ) consists of two vertices of weights a and b, joined by an edge of weight M , for some
a ≥ b ≥M . Then α is either ab or ba, but in either case, for each 0 ≤ k ≤ b there is a unique
tableau Tk with content α and shape (a+ b−k)k, which has cochargeΠ(λ)(Tk) = min{k,M}.
Therefore, by Theorem 3.1.11, we have

Gλ(x; q) =
b∑

k=0

qmin{k,M}s(a+b−k)k = s(a+b)+qs(a+b−1)1+· · ·+qMs(a+b−M)M+· · ·+qMsab. (3.8)
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Figure 3.2: Two tableaux S and T and their restrictions S|2,4 and T |2,4

S = 3 4
2 2 3 4 5 5
1 1 1 2 2 2 3 4

S|2,4 = 4
3 3 4
2 2 2 2 2 3 4

T = 4 5
2 2 4 4 5 5
1 1 1 2 3 3 3 3

T |2,4 =
4 4 4
2 2 2 3 3 3 3

Figure 3.3: The three tableaux of weight α and shape 733 and the values of cochargeΠ

T1 = 4 4 4
3 3 3
1 1 1 1 2 3 3

T2 = 4 4 4
2 3 3
1 1 1 1 3 3 3

T3 = 3 4 4
2 3 3
1 1 1 1 3 3 4

2 + 1 + 2 = 5 3 + 0 + 2 = 5 3 + 1 + 2 = 6

Our third main result relates a horizontal-strip LLT polynomial Gλ(x; q) to the extended
chromatic symmetric function XΠ(λ)(x) of the weighted graph Π(λ). Note the similarity to
Theorem 2.4.7.

Theorem 3.1.16. Let λ = (R1, . . . , Rn) be a horizontal-strip. Then we have

XΠ(λ)(x) =

(
Gλ([x(q − 1)]; q)

(q − 1)n

)∣∣∣∣
q=1

, (3.9)

which in particular implies that for horizontal-strips λ and µ, we have that

if Gλ(x; q) = Gµ(x; q), then XΠ(λ)(x) = XΠ(µ)(x). (3.10)

In Chapter 5, we will prove Theorem 3.1.16 and we will prove some other relations be-
tween horizontal-strip LLT polynomials, motivated by relations between extended chromatic
symmetric functions [4, Theorem 4.12, Theorem 7.3]. In particular, we will classify equalities
Gλ(x; q) = Gµ(x; q) when Π(λ) and Π(µ) are vertex-weighted paths in Corollary 5.1.17.
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Chapter 4

A combinatorial Schur expansion

In this chapter, we prove a deletion-contraction relation for horizontal-strip LLT polynomials,
which will then allow us to prove Theorem 3.1.11. We will describe some operations that we
can perform on a horizontal-strip λ while preserving both the weighted graph Π(λ) and the
LLT polynomial Gλ(x; q). We make the following definition.

Definition 4.1.1. Let λ and µ be horizontal-strips. We say that λ and µ are similar if
Π(λ) ∼= Π(µ) and Gλ(x; q) = Gµ(x; q). We denote by S(λ) the set of horizontal-strips that
are similar to λ.

Note that similarity is an equivalence relation.

Remark 4.1.2. Theorem 3.1.8 states that the first condition above implies the second, in
other words that Π(λ) ∼= Π(µ) implies Gλ(x; q) = Gµ(x; q). However, until we prove this in
Chapter 6 it will be convenient to temporarily define this notion of similarity.

Proposition 4.1.3. Let λ = (R1, . . . , Rn) be a horizontal-strip.

1. Let λ+ = (R+
1 , . . . , R

+
n ) and λ− = (R−1 , . . . , R

−
n ) denote the horizontal-strips obtained

by translating all rows right by one cell or left by one cell respectively. Then we have
λ+,λ− ∈ S(λ).

2. Define the cycle of λ to be κ(λ) = (R2, . . . , Rn, R
−
1 ). Then we have κ(λ) ∈ S(λ).

3. For a sufficiently large integer N , define the rotation of λ to be

N − λ = (N −Rn, . . . , N −R1), where N −R = {(1, N − j) : (1, j) ∈ R}. (4.1)

Then we have N − λ ∈ S(λ).

Remark 4.1.4. In (3), we take N sufficiently large only because we assume that our cells
have nonnegative content. Because of (1), the precise value of N will not matter to us.

Proof of Proposition 4.1.3.
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Figure 4.1: A cycle and a rotation

λ = κ(λ+) = 7− λ =

1. This follows directly from the definition because Π(λ) and Gλ(x; q) only depend on
the relative positions of the rows of λ.

2. This follows directly from the definition because M(R,R′) = M(R′, R−) and because
the condition for a cell u ∈ Ri for i ≥ 2 to make an inversion with a cell v = (1, j) ∈ R1

in λ is exactly the condition for u to make an inversion with the corresponding cell
v− = (1, j − 1) ∈ R−1 in κ(λ).

3. It follows directly from the definition that M(N−R′, N−R) = M(R,R′) and therefore
Π(N − λ) ∼= Π(λ). If we restrict to a finite set of variables (x1, . . . , xk), then by
associating a sequence of tableau T = (T (1), . . . , T (n)) ∈ SSYTλ with entries at most k

to −T = (−T (1), . . . ,−T (n)) ∈ SSYTN−λ defined by −T (i)
1,j = k+ 1− T (n+1−i)

1,N−j , we have

GN−λ(x1, . . . , xk; q) = Gλ(xk, . . . , x1; q), (4.2)

and it follows that GN−λ(x; q) = Gλ(x; q) because LLT polynomials are symmetric.

Example 4.1.5. Let λ = (4/0, 5/4, 8/5, 6/1). The cycle κ(λ) has a negative content, so for
convenience we will first translate right. Then the cycle κ(λ+) = (6/5, 9/6, 7/2, 4/0) and the
rotation 7− λ = (7/2, 3/0, 4/3, 7/4) are drawn in Figure 4.1.

The following definition will be justified by Lemma 4.1.14, which states that we can
switch commuting rows to obtain a similar horizontal-strip.

Definition 4.1.6. We say that two rows R and R′ commute, denoted R↔ R′, if M(R,R′) =
M(R′, R), and otherwise we write R= R′.

Proposition 4.1.7. Let R and R′ be rows and assume without loss of generality that
l(R) ≤ l(R′).
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Figure 4.2: Left: R↔ R′, Middle: R= R′, Right: R↔ R′

1. If r(R) < l(R′)− 1, then

M(R,R′) = M(R′, R) = 0, so R↔ R′. (4.3)

2. If l(R′) = l(R) or r(R′) ≤ r(R), then

M(R,R′) = M(R′, R) = min{|R|, |R′|}, so R↔ R′. (4.4)

3. Otherwise, we have l(R) < l(R′) ≤ r(R) + 1 ≤ r(R′) and

M(R,R′) = r(R)− l(R′) + 1 and M(R′, R) = r(R)− l(R′) + 2, so R= R′. (4.5)

Note that in particular, we see that

if R↔ R′, then M(R,R′) is either 0 or min{|R|, |R′|}. (4.6)

Proof. We calculate directly from the definition. If r(R) < l(R′)−1, then R∩R′ = R′∩R+ =
∅. If l(R) = l(R′), then either R ⊆ R′ or R′ ⊆ R, and if l(R) < l(R′) and r(R′) ≤ r(R), then
R′ ⊆ R and R′ ⊆ R+. Otherwise, the remaining case is when l(R) < l(R′) ≤ r(R) + 1 ≤
r(R′), in which case we have

M(R,R′) = |R ∩R′| = |{l(R′), . . . , r(R)}| = r(R)− l(R′) + 1, and (4.7)

M(R′, R) = |R′ ∩R+| = |{l(R′), . . . , r(R) + 1}| = r(R)− l(R′) + 2. (4.8)

Now all of the possibilities have been enumerated and R ↔ R′ only when M(R,R′) = 0 or
min{|R|, |R′|}, which proves (4.6).

Example 4.1.8. The three cases of Proposition 4.1.7 are illustrated in Figure 4.2. The
pairs on the left and the middle commute and the pair on the right does not. As a visual
description, we have that two rows commute if and only if they are either disjoint and
separated by at least one cell, or if one is contained in the other.

Miller [27] defined the following notion to describe local linear relations between LLT
polynomials. For our purposes, it will be enough to consider horizontal-strips. If λ =
(R1, . . . , Rn) and µ = (S1, . . . , Sm) are horizontal-strips, we denote the concatenation by
λ · µ = (R1, . . . , Rn, S1, . . . , Sm).
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Definition 4.1.9. Let λ and µ be horizontal-strips. We say that they are LLT-equivalent,
denoted λ ∼= µ, if for every horizontal-strip ν we have

Gλ·ν(x; q) = Gµ·ν(x; q). (4.9)

More generally, we have an LLT-equivalence of finite formal Q(q)-combinations of horizontal-
strips

∑
i ai(q)λi

∼=
∑

j bj(q)µj if for every horizontal-strip ν we have∑
i

ai(q)Gλi·ν(x; q) =
∑
j

bj(q)Gµj ·ν(x; q). (4.10)

Remark 4.1.10. By cycling, we have that if λ · µ, then Gν·λ·ν′(x; q) = Gν·µ·ν′(x; q) for all
horizontal-strips ν and ν ′. We can think of LLT-equivalence as a local linear relation because
we can locally replace λ by µ while preserving the LLT polynomial.

We can prove an LLT-equivalence combinatorially by rearranging to an equivalence of
N[q]-combinations of horizontal-strips and finding a bijection of tableaux. The condition
(4.13) below will ensure that any inversions involving cells of ν will be preserved.

Theorem 4.1.11. [27, Theorem 2.2.1] Two finite formal N[q]-combinations of horizontal-
strips

∑
i ai(q)λi and

∑
j bj(q)µj are LLT-equivalent if there exists a bijection

f :
⊔
i

SSYTλi →
⊔
j

SSYTµj (4.11)

such that if f maps T ∈ SSYTλi to U ∈ SSYTµj , then

inv(T ) + ai = inv(U) + bj, (4.12)

and for every c ∈ Z, the multiset of entries in cells of content c is preserved, that is

{T (u) : c(u) = c} = {U(u) : c(u) = c}. (4.13)

We now use Theorem 4.1.11 to establish three LLT-equivalence relations. These appeared
in [12, Lemma 5.2] and [2, Theorem 2.1] in terms of operators on Dyck and Schröder paths.

Lemma 4.1.12. Let R and R′ be rows such that `(R′) = r(R) + 1. Then we have the
LLT-equivalence

q(R,R′) + (R ∪R′) ∼= q(R ∪R′) + (R′, R). (4.14)

Proof. By Theorem 4.1.11, it suffices to find an appropriate bijection

f : SSYT(R,R′) t SSYT(R∪R′) → SSYT(R∪R′) t SSYT(R′,R). (4.15)

For a sequence of tableaux T ∈ SSYT(R,R′), let x and y denote the entries in the cells of
content r(R) and `(R′) respectively. We partition

SSYT(R,R′) = SSYT≤(R,R′) t SSYT>
(R,R′) (4.16)



CHAPTER 4. A COMBINATORIAL SCHUR EXPANSION 21

depending on whether x ≤ y or x > y, and we similarly partition SSYT(R′,R). We will now
assemble our bijection f as the union of the unique bijections

f1 : SSYT>
(R,R′) → SSYT>

(R′,R), (4.17)

f2 : SSYT≤(R,R′) → SSYT(R∪R′), and (4.18)

f3 : SSYT(R∪R′) → SSYT≤(R′,R) (4.19)

satisfying (4.13). It remains to check (4.12), which dictates how the factors of q correspond
to inversions. By definition, every T ∈ SSYT>

(R′,R) has the unique inversion (x, y), while all
of the other tableaux have zero inversions, so we have

inv(f1(T )) = inv(T ) + 1, inv(f2(T )) + 1 = inv(T ) + 1, and inv(f3(T )) = inv(T ),

as required by (4.12). This completes the proof.

Example 4.1.13. These bijections are illustrated in Figure 4.3. We have written q’s to
indicate how the numbers of inversions are supposed to change.

Figure 4.3: An example of the bijections in the proof of Lemma 4.1.12

f1 : q
y z

w x

7→ w x

y z

(x > y)

f2 : q
y z

w x

7→ q w x y z (x ≤ y)

f3 : w x y z 7→ w x

y z

(x ≤ y)

Our second LLT-equivalence relation justifies our terminology of commuting rows.

Lemma 4.1.14. Let R and R′ be rows such that R↔ R′. Then we have the LLT-equivalence

(R,R′) ∼= (R′, R). (4.20)
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Remark 4.1.15. Suppose that λ = (R1, . . . , Rn) and µ = (R1, . . . , Ri+1, Ri, . . . , Rn) are
horizontal-strips that differ by switching a pair of adjacent rows Ri and Ri+1. Lemma 4.1.14
tells us that

if Ri ↔ Ri+1, then Gλ(x; q) = Gµ(x; q) (4.21)

and in fact µ ∈ S(λ) because clearly Π(λ) ∼= Π(µ). Conversely, by Theorem 3.1.6, if
Gλ(x; q) = Gµ(x; q), then we must have M(λ) = M(µ) and therefore Ri ↔ Ri+1 and
Π(λ) ∼= Π(µ). Therefore, in this case, we see that equalities of LLT polynomials are precisely
characterized by our weighted graph.

Proof of Lemma 4.1.14. By Theorem 4.1.11, it suffices to find an appropriate bijection

f : SSYT(R,R′) → SSYT(R′,R). (4.22)

By (4.6), we have M(R,R′) = 0 or min{|R|, |R′|}. If M(R,R′) = 0, then by Theorem 3.1.6
no inversions are possible, so the unique bijection f satisfying (4.13) trivially satisfies (4.12),
so suppose without loss of generality that M(R,R′) = |R′|. Denote by uc and vc the cells in
R and R′ of content c and let T ∈ SSYT(R,R′). First suppose that either T (vi) < T (ui−1)
for all i ∈ c(R′) or T (vj) > T (uj+1) for all j ∈ c(R′), where by convention we set T (ui) = 0
if i < l(R) and T (ui) = ∞ if i > r(R). Define U = f(T ) ∈ SSYT(R′,R) by U(uc) = T (uc)
and U(vc) = T (vc). Then f satisfies (4.12) because inv(U) = inv(T ) = |R′| and f satisfies
(4.13), so we are done.

Now suppose otherwise and let i ∈ c(R′) be minimal with T (vi) ≥ T (ui−1) and j ∈ c(R′)
be maximal with T (vj) ≤ T (uj+1). Define U = f(T ) ∈ SSYT(R′,R) by U(uc) = T (uc)
and U(vc) = T (vc) if c < i or c > j, and U(uc) = T (vc) and U(vc) = T (uc) if i ≤ c
and c ≤ j. An example is given in Figure 4.4, where we have marked the entries of content
i and j in red. Informally, the bolded entries are fixed and the unbolded entries are switched.

By construction, U ∈ SSYT(R′,R) and f satisfies (4.13). By minimality of i, T has
inversions (T (uc),T (vc)) for l(R′) ≤ c < i and by maximality of j, T has inversions
(T (vc),T (uc+1)) for j < c ≤ r(R). Similarly, U has inversions (U(uc−1),U(vc)) for l(R′) ≤
c < i and (U(vc),U(uc)) for j < c ≤ r(R′). The four pairs

(T (vi−1),T (ui)), (T (vj),T (uj+1)), (U(ui−1),U(vi)), and (U (uj),U(vj+1))

are not inversions, and if i ≤ c and c ≤ j the cells of content c are unchanged so any
inversions are preserved. Therefore, f also satisfies (4.12). We can recover the contents i
and j from U by noting that i ∈ c(R′) is minimal with U(vi) ≥ U(ui−1) and j ∈ c(R′) is
maximal with U(vj) ≤ U (uj+1), so f is invertible.

Our third LLT-equivalence relation shows that when rows do not commute, we can still
switch them up to a factor of q and another correction term. We will see in Proposition
4.1.18 that we can think of this as a deletion-contraction relation.
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Figure 4.4: An example of the map f in the proof of Lemma 4.1.14

T = 1 1 5 5 6 8 9

1 2 3 3 4 4 6 7 7 7 8 8 9

7→ U = 1 2 3 3 4 5 5 6 7 7 8 8 9

1 1 4 6 7 8 9

Lemma 4.1.16. Let R and R′ be rows such that l(R′) < l(R) and R = R′. We have the
LLT-equivalence

(R,R′) ∼= q(R′, R)− (q − 1)(R ∪R′, R ∩R′). (4.23)

Note that by Proposition 4.1.7, the condition R= R′ implies that l(R) ≤ r(R′) + 1, so the
row R ∪R′ makes sense.

Proof. Let R1 = R′ \ R and R2 = R ∩ R′, so that R′ = R1 ∪ R2, R ∪ R1 = R ∪ R′, and
R↔ R2. Now by Lemma 4.1.12 and Lemma 4.1.14, we have

(R,R′) ∼=
q

q − 1
(R,R1, R2)− 1

q − 1
(R,R2, R1) (4.24)

∼=
q

q − 1
(q(R1, R,R2)− (q − 1)(R1 ∪R,R2))− 1

q − 1
(R2, R,R1)

∼=
q2

q − 1
(R1, R2, R)− q(R1 ∪R,R2)− 1

q − 1
(q(R2, R1, R)− (q − 1)(R2, R1 ∪R))

∼=
q2

q − 1
(R1, R2, R)− q(R1 ∪R,R2)− q

q − 1
(R2, R1, R) + (R1 ∪R,R2)

∼=
q2

q − 1
(R1, R2, R)− (q − 1)(R1 ∪R,R2)− q

q − 1
(q(R1, R2, R)− (q − 1)(R′, R))

= q(R′, R)− (q − 1)(R ∪R′, R ∩R′).

This completes the proof.

Because Lemma 4.1.16 is an essential ingredient to our proofs of all of our main re-
sults, namely Theorem 3.1.8, Theorem 3.1.11, and Theorem 3.1.16, we take a moment to
reformulate it.

Corollary 4.1.17. Let λ = (R1, . . . , Rn) be a horizontal-strip with l(Ri+1) < l(Ri) and
Ri = Ri+1. Define the horizontal-strips

λ′ = (R1, . . . , Ri+1, Ri, . . . , Rn) and (4.25)

λ′′ = (R1, . . . , Ri ∪Ri+1, Ri ∩Ri+1, . . . , Rn). (4.26)

Then we have
Gλ(x; q) = qGλ′(x; q)− (q − 1)Gλ′′(x; q). (4.27)
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We now describe the associated weighted graphs Π(λ′) and Π(λ′′).

Proposition 4.1.18. Let R1, R2, and R be rows such that R1 = R2 and l(R2) < l(R1),
and let M = M(R1, R2), M1 = M(R1, R), and M2 = M(R2, R). Then

M(R2, R1) = M − 1, (4.28)

M(R1 ∩R2, R) = min{M − 1,M1,M2}, and (4.29)

M(R1 ∪R2, R) = min{|R|,max{M1,M2,M1 +M2 − (M − 1)}}. (4.30)

In particular, if M2 = 0, then M(R1 ∩R2, R) = 0 and M(R1 ∪R2, R) = M1.

Remark 4.1.19. Proposition 4.1.18 describes exactly how to obtain the weighted graphs
Π(λ′) and Π(λ′′) from Π(λ). The graph Π(λ′) is obtained by reducing the weight of the
edge (Ri, Ri+1) by one. The graph Π(λ′′) is obtained by replacing the vertices Ri and Ri+1

by new vertices Ri ∩ Ri+1 and Ri ∪ Ri+1 of weights (M − 1) and |Ri| + |Ri+1| − (M − 1),
joined by an edge of weight (M − 1), and joined to other vertices by edges of weights given
in (4.29) and (4.30).

Proof. Recall that by Proposition 4.1.7, we must have l(R1)−1 ≤ r(R2). The equation (4.28)
follows from Proposition 4.1.7, Part 3. We now consider several cases. If l(R) ≥ l(R1), then

M(R1 ∩R2, R) = M(R2, R) = M2 ≤M − 1 ≤M(R1 ∪R2, R) = M(R1, R) = M1. (4.31)

Similarly, if r(R) < r(R2)− 1, then

M(R1 ∩R2, R) = M(R1, R) = M1 ≤M − 1 ≤M(R1 ∪R2, R) = M(R2, R) = M2. (4.32)

Now suppose that l(R) ≤ l(R1)−1 ≤ r(R2) ≤ r(R), so thatR1∩R2 ⊆ R andM(R1∩R2, R) =
|R1 ∩R2| = M − 1 ≤M1,M2. If l(R) < l(R2), then

M(R1∪R2, R) = |R1∩R+|+ |R2∩R+|−|R1∩R2∩R+| = M1 +M2− (M−1) ≤ |R|. (4.33)

Similarly, if l(R) ≥ l(R2), then

M(R1 ∪R2, R) = |R1 ∩R|+ |R2 ∩R| − |R1 ∩R2 ∩R| = |R1 ∩R|+M2 − (M − 1). (4.34)

At this point, if r(R) ≥ r(R1), then |R1 ∩R| = M1 and again

M(R1 ∪R2, R) = M1 +M2 − (M − 1) ≤ |R|, (4.35)

while if r(R) < r(R1), then |R1 ∩R| = M1 − 1 and R ⊆ R1 ∪R2, so

M(R1 ∪R2, R) = |R| = (M1 − 1) +M2 − (M − 1) < M1 +M2 − (M − 1). (4.36)

This completes the proof.
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Figure 4.5: A deletion and a contraction

λ = λ′ = λ′′ =

4 5

1

3
3

1

2
4 5

1

3
3

1

1
4 7

1

1
3

1

1

Example 4.1.20. Let λ = (4/0, 5/4, 8/5, 6/1) and note that l(R4) < l(R3) and R3 = R4.
Therefore, letting λ′ = (4/0, 5/4, 6/1, 8/5) and λ′′ = (4/0, 5/4, 8/1, 6/5), we have that

Gλ(x; q) = qGλ′(x; q)− (q − 1)Gλ′′(x; q). (4.37)

The horizontal-strips λ, λ′, and λ′′, and their weighted graphs Π(λ), Π(λ′), and Π(λ′′) are
given in Figure 4.5. We can think of Π(λ′) and Π(λ′′) as a deletion and contraction of Π(λ).

We now describe an admissible triangle-free weighted graph. We show that if λ is a
horizontal-strip such that Π(λ) is triangle-free, then Π(λ) must be a union of “caterpillars”,
which are trees whose non-leaf vertices lie on a single path. For the remainder of this chapter,
we will label the vertices of Π(λ) as v1, . . . , vn in content reading order of the rightmost cells
of the corresponding rows. We will denote by |v| the weight of vertex v and by Mvi,vj the
weight of the edge (vi, vj).

Proposition 4.1.21. Let λ be a horizontal-strip such that the weighted graph Π(λ) is
triangle-free.

1. If i < j < k and vi is adjacent to vk, then Mvj ,vk = |vj|.

2. Every vertex vi has at most one neighbour vj for which i < j.

3. Let C = (V,E) be a connected component of Π(λ). Then C is a tree and we can
partition the vertices V = P t L so that the induced subgraph C[P ] is a path, every
v ∈ L has degree one, and if vj ∈ L has neighbour vk, then Mvj ,vk = |vj|.
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4. If the neighbours of vi are {vjt}rt=1, then

|vi|+ 1 ≥
r∑
t=1

Mvi,vjt
. (4.38)

Example 4.1.22. Figure 4.6 shows an example of a horizontal-strip λ for which the weighted
graph Π(λ) is triangle-free. Note that Π(λ) is a caterpillar with P = {v1, v4, v5, v6} and that
8 + 1 ≥ 3 + 2 + 2 + 2 and 4 + 1 ≥ 2 + 3.

Figure 4.6: A horizontal-strip λ and its corresponding caterpillar graph

6

v1

8

v4

4

v5

2

v2

2

v3

3

v6

3 2

2 2
3

Proof of Proposition 4.1.21. Let λ = (R1, . . . , Rn).

1. Let Ri′ , Rj′ , and Rk′ be the rows of λ corresponding to the vertices vi, vj, and vk
respectively. By Proposition 4.1.3, Part 2, we may assume without loss of generality
that i′ = 1. Because i < j < k, we have r(Ri′) ≤ r(Rj′) ≤ r(Rk′), and because vi is
adjacent to vk, we must have l(Rk′) ≤ r(Ri′), so r(Rj′) ∈ c(Rk′) and vj is adjacent to
vk. Now using that Π(λ) is triangle-free, vi is not adjacent to vj, so r(Ri′) < `(Rj′),
Rj′ ⊆ Rk′ , and Mj,k = |vj|.

2. If vi is adjacent to both vj and vk with i < j and i < k, then vj and vk are adjacent
by Part 1, creating a triangle in Π(λ).

3. We first note that Π(λ) is acyclic because if vertices {vit}rt=1 form a cycle with r ≥ 3
and i1 < · · · < ir, then the vertex vi1 is adjacent to two vertices vit , vit′ with i1 < it, it′ ,
contradicting Part 2, so C must be a tree. By Part 1, we must have V = {vi :
i1 ≤ i ≤ ir} for some i1, ir. Because C is connected, there must be a path P =
(vi1 , vi2 , . . . , vir−1 , vir) from vi1 to vir , by Part 2, we must have i1 < i2 < · · · < ir−1 < ir,
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and by Part 1, if it < j < it+1, then vj must be adjacent to vit+1 . Because C is a tree,
this accounts for all of the edges of C so indeed letting L = V \ P , each v ∈ L has
degree one, and by Part 1 again, if vj ∈ L is adjacent to vk, then Mvj ,vk = |vj|.

4. Let Ri′ and Rj′t
be the rows of λ corresponding to vertices vi and vjt respectively, and

again by cycling, we may assume that i′ = 1. Because Π(λ) is triangle-free, we have
Mvjt ,vjt′

= 0 for t 6= t′ so assuming without loss of generality that j1 < · · · < jr, we have

l(Rj′t+1
) ≥ r(Rj′t

) + 1 for every t. If l(Rj′t
), `(Rj′

t′
) < `(R1) or if r(Rj′t

), r(Rj′
t′

) ≥ r(R1),

then vt and vt′ are adjacent, so we must have l(Rj′t
) ≥ l(R1) for every t ≥ 2 and

r(Rj′t
) ≤ r(R1)− 1 for every t ≤ r − 1. Therefore

Mvi,vj1
≤ r(Rj′1

)− `(R1) + 2, (4.39)

Mvi,vj2
= |Rj′2

| = r(Rj′2
)− l(Rj′1

) + 1 ≤ r(Rj′2
)− r(Rj′1

), (4.40)

...

Mvi,vjr−1
= |Rj′r−1

| = r(Rj′r−1
)− `(Rj′r−2

) + 1 ≤ r(Rj′r−1
)− r(Rj′r−2

), (4.41)

Mvi,vjr
≤ r(R1)− l(Rj′r) + 1 ≤ r(R1)− r(Rj′r−1

), (4.42)

and by summing these up, we get

r∑
t=1

Mvi,vjt
≤ r(R1)− l(R1) + 2 = |R1|+ 1 = |vi|+ 1. (4.43)

This completes the proof.

We now discuss how we can use cycling and commuting to rewrite a horizontal-strip λ
in order to apply our deletion-contraction relation. The following idea will be applied more
generally later on in Lemma 6.1.7 and Lemma 6.1.16.

Lemma 4.1.23. Let λ = (R1, . . . , Rn) be a horizontal-strip such that Π(λ) is triangle-free
and suppose that the vertex v1 is adjacent to some vertex vj. Let Ri′ and Rj′ be the rows of λ
corresponding to vertices v1 and vj. Then there is a horizontal-strip µ = (S1, . . . , Sn) ∈ S(λ)
and an isomorphism of weighted graphs ϕ : Π(λ) → Π(µ) such that ϕ(Ri′) = Sk+1 and
ϕ(Rj′) = Sk for some k and we have l(Sk+1) < l(Sk) and Sk = Sk+1.

Proof. First note that by cycling, we may assume that i′ > j′, and then r(Ri′) < r(Rj′) by
definition of our vertex labelling. Because v1 can only be adjacent to vj by Proposition 4.1.21,
Part 2, we have for 1 ≤ t < i′ with t 6= j′ that M(Rt, Ri′) = 0 and therefore r(Ri′) < l(Rt)−1
and Ri′ ↔ Rt by Proposition 4.1.7, Part 1. Therefore, by commuting, we may now move
row Ri′ down to assume that i′ = j′ + 1. Now if Ri′ = Rj′ , we have established our claim.
Otherwise, if Ri′ ↔ Rj′ , we can continue to move the row Ri′ down, then cycle to the top,
decreasing l(Ri′) by one, and commute again to assume that i′ = j′ + 1. If R−i′ = Rj′ then
again we are done, otherwise by continuing this process and decreasing l(Ri′) by one each
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time, we will eventually have l(Ri′) < l(Rj′), at which point Ri′ = Rj′ by Proposition 4.1.7,
Part 3. This completes the proof.

Let us also recall the Littlewood–Richardson rule, which gives a combinatorial formula
for the product of two Schur functions.

Theorem 4.1.24. [13, Section 5.1, Corollary 2 and Corollary 3] Let λ, µ, and ν be partitions
and fix a tableau U ∈ SSYTµ. Denote by cλµ,ν the number of tableaux in SSYTλ/ν whose
rectification is U . Then the product of Schur functions sµ and sν is given by

sµsν =
∑
ν

cλµ,νsν . (4.44)

With all of these preliminaries in place, proving Theorem 3.1.11 essentially amounts
to verifying that our generalized cocharge formula (3.7) satisfies our deletion-contraction
relation (4.27).

Proof of Theorem 3.1.11. Let λ = (R1, . . . , Rn) and let Ri′ be the row corresponding to
the vertex v1. We use induction on n. If n = 1, then both sides of (3.7) are sα1 , so we may
assume that n ≥ 2.

We first consider the case where the vertex v1 has no neighbour. Let α̃ = (0, α2, . . . , αn)
and note that we can associate a tableau T̃ ∈ SSYTλ/(α1)(α̃) with a tableau T ∈ SSYTλ(α)

by placing α1 1’s underneath T̃ . Because cochargeΠ(λ) is defined by restricting to the appro-
priate entries and rectifying, we have cochargeΠ(λ)(T ) = cochargeΠ(λ)(T |2,n). Now using our
induction hypothesis and the Littlewood–Richardson rule, we have

Gλ(x; q) = G(Ri′ )
(x; q)G(R1,...,Ri′−1,Ri′+1,...,Rn)(x; q) (4.45)

=
∑

U∈SSYT(α̃)

qcochargeΠ(λ)(U)sshape(U)sα1 (4.46)

=
∑

U∈SSYT(α̃)

∑
T∈SSYT(α)
T |2,n=U

qcochargeΠ(λ)(T )sshape(T ) (4.47)

=
∑

T∈SSYT(α)

qcochargeΠ(λ)(T )sshape(T). (4.48)

Now suppose that the vertex v1 has a neighbour vj corresponding to some row Rj′ . Recall
that by Proposition 4.1.21, Part 2, this neighbour is unique, and also the vertex vj has at
most one neighbour vk for which j < k. We also use induction on M(λ). If M(λ) = 0,
then the vertex v1 has no neighbour, so we may assume that M(λ) ≥ 1. By Lemma 4.1.23,
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we may replace λ by a similar horizontal-strip as necessary to assume that i′ = j′ + 1,
l(Ri′) < l(Rj′), and Ri′ = Rj′ . Now defining

λ′ = (R1, . . . , Ri′+1, Ri′ , . . . , Rn) and (4.49)

λ′′ = (R1, . . . , Ri′ ∪Ri′+1, Ri′ ∩Ri′+1, . . . , Rn), (4.50)

we have by Corollary 4.1.17 that

Gλ(x; q) = qGλ′(x; q)− (q − 1)Gλ′′(x; q). (4.51)

By Proposition 4.1.18, the graphs Π = Π(λ), Π′ = Π(λ′), and Π′′ = Π(λ′′) are as in Figure
4.7, where M = M1,j and c = α1 + αj − (M − 1).

Figure 4.7: The graphs Π, Π′, and Π′′ in the proof of Theorem 3.1.11
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· · ·
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· · ·
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Let β = (M − 1, α2, . . . , αj−1, c, αj+1, . . . , αn) and let t = α1− (M − 1). We define a map

ϕ : SSYT(β)→ {U ∈ SSYT(α) : cocharge1,j(U) ≤M − 1} (4.52)

as follows. For T ∈ SSYT(β), let ϕ(T ) = U be the tableau of the same shape given by

Ui′,j′ =


1 if i′ = 1 and j′ ≤ t,

U1,j′−t if i′ = 1 and t < j′ ≤ j1,

Ui′,j′ otherwise,

(4.53)

where j1 is the column of the rightmost j in T . Figure 4.8 gives two examples of this map.
Informally, we change the two bolded 3’s on the bottom row into 1’s.

We first show that ϕ(T ) is in the codomain. Let nj denote the number of j’s in T that
are not on the bottom row. Because the columns of T are strictly increasing, nj is at most
the number of entries in T less than j, so by Proposition 4.1.21, Part 4, we have

nj ≤ (M − 1) + α2 + · · ·+ αj−1 ≤ αj, (4.54)
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Figure 4.8: Two tableaux T1 and T2 and their images under the map ϕ

T1 = 3 4 5 5 5
2 3 3 4 4 5
1 1 1 2 3 3 3 3 3 3 5

ϕ(T1) = U1 = 3 4 5 5 5
2 3 3 4 4 5
1 1 1 1 1 2 3 3 3 3 5

T2 = 3 5 5
2 3 3 4 4 5 5 5
1 1 1 2 3 3 3 3 3 3 5

ϕ(T2) = U2 = 3 5 5
2 3 3 4 4 5 5 5
1 1 1 1 1 2 3 3 3 3 5

so T has at least c− αj = t j’s on the bottom row and indeed t j’s have been replaced by t
1’s and ϕ(T ) ∈ SSYT(α). Furthermore, by construction, f(U) = f(T ) + t ≥ t, so

cocharge1,j(U) = cocharge1,j(T ) ≤ α1 − t = M − 1. (4.55)

Now we show that ϕ is a bijection. Given U ∈ SSYT(β) such that cocharge1,j(U) ≤M − 1,
then f(U) ≥ t and we can define T = ϕ−1(U) ∈ SSYT(α) by

Ti′,j′ =


U1,j′+t if i′ = 1 and j′ ≤ j1 − t,
j if i′ = 1 and j1 − t < j′ ≤ j1,

Ui′,j′ otherwise.

(4.56)

We now claim that cochargeΠ′′(T ) = cochargeΠ′(U). We have already shown that f(U) =
f(T )+t and therefore cocharge1,j(T ) = cocharge1,j(U). For 2 ≤ i ≤ j−1, the tableau T |i,j is
simply U |i,j with t j’s appended to the right of the first row, and therefore f(T |i,j) = f(U |i,j)
and cochargei,j(T ) = cochargei,j(U). It remains to consider cochargej,k. In fact, it could
happen that cochargej,k(T ) 6= cochargej,k(U). However, we claim that this is only possible
when both integers are at least Mj,k, so that we always have

min{Mj,k, cochargej,k(T )} = min{Mj,k, cochargej,k(U)}. (4.57)

We restrict T and U to entries x with j ≤ x ≤ k and we consider how the entries move when
we rectify these tableaux. By Theorem 2.5.1, the rectification does not depend on the order
of choices of inside corners, so let us begin by performing jeu de taquin slides into all inside
corners that are not on the first row to produce tableaux T ′ and U ′. Because T and U differ
only in their first row, that is Ti′,j′ = Ui′,j′ for all i′ ≥ 2, we also have T ′i′,j′ = U ′i′,j′ for all
i′ ≥ 2. Also note that the nj j’s of T ′ and U ′ that are not on the first row must now be on
the second row, or in other words T ′2,j′ = U ′2,j′ = j for 1 ≤ j′ ≤ nj.
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We now perform jeu de taquin slides into inside corners on the first row on T ′ until we
obtain a skew tableau T ′′ of shape σ/(nj) for some σ and we similarly obtain U ′′. Let t0
be the number of jeu de taquin slides performed on T ′ to produce T ′′, so that t + t0 is the
number of slides performed on U ′ to produce U ′′. We have two cases to consider.

If U ′2,t′ > U ′1,t′+t+t0 for all nj < t′ ≤ σ2, then no entry of U ′ moves down in this step, and
because U ′2,t′ = T ′2,t′ and U ′1,t′+t+t0 = T ′1,t′+t0 , no entry of T ′ moves down either. Now because
T ′′2,nj = U ′′2,nj = j, when we perform the final nj jeu de taquin slides, the entries of the first
rows of T ′′ and U ′′ do not move, and because T ′′i′,j′ = U ′′i′,j′ for all i′ ≥ 2, we now have

(T |j,k)i′,j′ =


j if i′ = 1 and j′ ≤ t,

(U |j,k)1,j′−t if i′ = 1 and j′ > t,

(U |j,k)i′,j′ otherwise.

(4.58)

In particular, we have f(T |j,k) = f(U |j,k) + t and cochargej,k(T ) = cochargej,k(U). In-
formally, the skew tableaux T ′ and U ′ look very similar at every stage in their rectifications.
As an illustration, for j = 3 and k = 5, these stages in the rectification of the tableaux T ′1
and U ′1 are shown in Figure 4.9.

Figure 4.9: Tableaux arising in the rectifications of T1 and U1

T1 = 3 4 5 5 5
2 3 3 4 4 5
1 1 1 2 3 3 3 3 3 3 5

U1 = 3 4 5 5 5
2 3 3 4 4 5
1 1 1 1 1 2 3 3 3 3 5

T ′1 = 4 5 5 5
3 3 3 4 4 5

3 3 3 3 3 3 5

U ′1 = 4 5 5 5
3 3 3 4 4 5

3 3 3 3 5

T ′′1 = 4 5 5 5
3 3 3 4 4 5

3 3 3 3 3 3 5

U ′′1 = 4 5 5 5
3 3 3 4 4 5

3 3 3 3 5

T1|3,5 = 5 5
4 4 4 5 5
3 3 3 3 3 3 3 3 3 5

U1|3,5 = 5 5
4 4 4 5 5
3 3 3 3 3 3 3 5

Now suppose that U ′2,t′ ≤ U ′1,t′+t+t0 for some t′ with nj < t′ ≤ σ2. Then when we perform
jeu de taquin slides to produce U ′′, an entry x > j of the second row must move down
on some slide. On subsequent slides, because the second row of U ′ was weakly increasing,
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entries of the second row will continue to move down, and we will have j < U ′′2,t′ ≤ U ′′1,t′+1

for some t′ > nj. Meanwhile, we must have j < T ′′2,t′ ≤ T ′′2,t′+t for some t′ > nj because if we
delete t j’s on the first row of T ′′ and then perform t jeu de taquin slides, we would obtain
U ′′ so some entry of the second row must move down.

When we perform the final nj jeu de taquin slides, the entries of the first rows of T ′′ and
U ′′ do not move, the nj j’s in the second rows of T ′′ and U ′′ each move one cell down, and
the remaining entries in the second rows move at most nj cells to the left. Therefore, we
now have f(U |j,k) ≤ nj and f(T |j,k) ≤ nj + t. By Proposition 4.1.21, Part 4, we have

nj ≤ (M − 1) + α2 + · · ·+ αj−1 ≤ αj −Mj,k, (4.59)

and therefore cochargej,k(T ) ≥Mj,k and cochargej,k(U) ≥Mj,k.

As an illustration, for j = 3 and k = 5, these stages in the rectification of T2 and U2

are shown in Figure 4.10. When we rectify U ′2, a 5 moves down from the second row so the
second rows of T ′′2 and U ′′2 will be different. However, when we rectify T ′′2 and U ′′2 , these 5’s
move at most three cells to the left, so f(T2|3,5) ≤ 5 and f(U2|3,5) ≤ 3, which means that
cocharge3,5(T ), cocharge3,5(U) ≥ 4. Informally, the only way that cochargej,k(T ) could differ
from cochargej,k(U) is if a cell in the second row of U moves down prematurely, but if this
happens, then f(U |j,k) will be small enough to make cochargej,k(U) ≥Mj,k.

Figure 4.10: Tableaux arising in the rectifications of T2 and U2

T2 = 3 5 5
2 3 3 4 4 5 5 5
1 1 1 2 3 3 3 3 3 3 5

U2 = 3 5 5
2 3 3 4 4 5 5 5
1 1 1 1 1 2 3 3 3 3 5

T ′2 = 5 5
3 3 3 4 4 5 5 5

3 3 3 3 3 3 5

U ′2 = 5 5
3 3 3 4 4 5 5 5

3 3 3 3 5

T ′′2 = 5 5
3 3 3 4 4 5 5 5

3 3 3 3 3 3 5

U ′′2 = 5 5
3 3 3 4 4 5 5

3 3 3 3 5 5

T2|3,5 = 5 5
4 4 5 5 5
3 3 3 3 3 3 3 3 3 5

U2|3,5 = 5 5
4 4 5 5
3 3 3 3 3 3 3 5 5
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In summary, the map ϕ is a bijection and it satisfies cochargeΠ′′(T ) = cochargeΠ′(ϕ(T )).
Also note that by definition we have

cochargeΠ(T ) =

{
cochargeΠ′(T ) if cocharge1,j(T ) ≤M − 1,

cochargeΠ′(T ) + 1 if cocharge1,j(T ) ≥M.
(4.60)

Therefore, using our induction hypothesis, we have

Gλ(x; q) = qGλ′(x; q)− (q − 1)Gλ′′(x; q) (4.61)

= q
∑

T∈SSYT(α)

qcochargeΠ′ (T )sshape(T ) − (q − 1)
∑

T∈SSYT(β)

qcochargeΠ′′ (T )sshape(T )

= q
∑

T∈SSYT(α)
cocharge1,j(T )≥M

qcochargeΠ′ (T )sshape(T ) + q
∑

T∈SSYT(α)
cocharge1,j(T )≤M−1

qcochargeΠ′ (T )sshape(T )

− (q − 1)
∑

U∈SSYT(α)
cocharge1,j(U)≤M−1

qcochargeΠ′ (U)sshape(U)

=
∑

T∈SSYT(α)
cocharge1,j(T )≥M

qcochargeΠ′ (T )+1sshape(T ) +
∑

T∈SSYT(α)
cocharge1,j(T )≤M−1

qcochargeΠ′ (T )sshape(T )

=
∑

T∈SSYT(α)

qcochargeΠ(T )sshape(T ).

This completes the proof.

We hope to be able to further extend cocharge to more general weighted graphs Π(λ).
If we can guess a suitable generalization of cocharge, the proof would again be a matter
of verifying that our combinatorial formula satisfies our deletion-contraction relation (4.27).
More specifically, if we can define an injection of tableaux

ϕt : SSYT(β)→ SSYT(α) (4.62)

that changes t i’s to j’s as in the proof of Theorem 3.1.11, then by setting

cochargei,j(T ) = max{t : T ∈ image(ϕt)}, (4.63)

it would remain to check that cochargeΠ′′(ϕt(T )) = cochargeΠ′(T ).

Some challenges can arise if the weighted graph Π(λ) has triangles. Our argument in
Lemma 4.1.23 requires some revision. There may be multiple vertices adjacent to v1 and
we will be able to apply the deletion-contraction relation to some edge incident to v1, but
it is not easy to identify which edge. A second complication is that the edge weights of the
contracted graph Π(λ′′) change according to (4.29) and (4.30), which can be difficult to get a
handle on. Nevertheless, we are hopeful that the techniques we presented will be applicable
toward a general solution to Problem 2.3.6.
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Chapter 5

A chromatic connection

In this chapter, we show that for a horizontal-strip λ, the LLT polynomial Gλ(x; q) and
the extended chromatic symmetric function XΠ(λ)(x) of the weighted graph Π(λ) share
many similar properties. We begin by proving the following plethystic formula, from which
Theorem 3.1.16 follows.

Theorem 5.1.1. Let λ = (R1, . . . , Rn) be a horizontal-strip with N cells. We will say that
T ∈ SSYTλ is proper if attacking cells have distinct entries, and we will denote by mi(T )
the number of distinct entries in row Ri of T . Then we have

Gλ([x(q − 1)]; q)

(q − 1)n
=

∑
T∈SSYTλ
T proper

qinv(T )qN−
∑
imi(T )(q − 1)

∑
i(mi(T )−1)xT . (5.1)

Example 5.1.2. The horizontal-strip λ = (4/0, 5/4, 8/5, 6/1), two proper sequences of
SSYTs T ,U ∈ SSYTλ, and the corresponding terms of the sum (5.1) are given in Figure
5.1. We have m1(T ) = 3, m2(T ) = 1, m3(T ) = 2, m4(T ) = 3, and every mi(U) = 1.

Figure 5.1: The horizontal-strip λ = (4/0, 5/4, 8/5, 6/1) and two proper T ,U ∈ SSYTλ

λ = T =

1 2 2 3

5

1 1 3

1 4 4 4 5

U =

4 4 4 4

3

1 1 1

2 2 2 2 2

q5q4(q − 1)5x4
1x

2
2x

2
3x

3
4x

2
5 q6q9x3

1x
5
2x3x

4
4
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Remark 5.1.3. We can prove Theorem 5.1.1 by using standardization to write the LLT poly-
nomial Gλ(x; q) in terms of Gessel’s fundamental quasisymmetric functions Fα(x), applying
a result of Haglund–Haiman–Loehr–Remmel–Ulyanov [18, Corollary 2.4.3] that interprets
plethysms of the form Fα[x + y] in terms of “superized tableaux”, and applying two sign-
reversing involutions whose fixed points are the proper T ∈ SSYTλ. These ideas are dis-
cussed in [17, Section 4]. In order to keep our arguments elementary, we will instead prove
Theorem 5.1.1 by verifying that the sum (5.1) satisfies our deletion-contraction relation
(4.27). Our argument will be very similar to our proof of Lemma 4.1.12.

Proof. We will use induction on k = N − n =
∑

i(|Ri| − 1). If k = 0, then every |Ri| = 1,
every mi(T ) = 1, the graph Π(λ) is simply Γ(λ) with all vertex weights and (nonzero) edge
weights equal to one, a proper T ∈ SSYTλ is precisely a proper colouring κ of Γ(λ), and
an inversion of T is precisely a descent of κ, so the right hand side of (5.1) is the chromatic
quasisymmetric function XΓ(λ)(x; q) and the result follows from Theorem 2.4.7.

Now suppose that k ≥ 1, meaning that there is some row Ri with |Ri| ≥ 2. Decompose
this row as Ri = R t R′, where R and R′ are nonempty rows with l(R′) = r(R) + 1, and
define the horizontal-strips with (n+ 1) rows

λ↗ = (R1, . . . , Ri−1, R,R
′, Ri+1, . . . , Rn) and (5.2)

λ↘ = (R1, . . . , Ri−1, R
′, R,Ri+1, . . . , Rn). (5.3)

For a proper sequence of tableaux T ∈ SSYTλ, let x and y denote the entries in the cells of
Ri of content r(R) and l(R′) respectively, partition the proper sequences of tableaux

SSYTλ,proper = SSYT<
λ,proper t SSYT=

λ,proper t SSYT>
λ,proper (5.4)

according to whether x < y, x = y, or x > y, and partition SSYTλ↗,proper and SSYTλ↘,proper

similarly. Note that SSYT>
λ,proper is empty because we must have x ≤ y and SSYT=

λ↘,proper

is empty because attacking cells must have distinct entries. Let us also define

wtq(T ) = qinv(T )qN−
∑
imi(T )(q − 1)

∑
i(mi(T )−1)xT . (5.5)

We now claim that∑
T∈SSYT<λ,proper

wtq(T ) = q
∑

T ′∈SSYT<
λ↗,proper

wtq(T
′)−

∑
T ′′∈SSYT<

λ↘,proper

wtq(T
′′), (5.6)

∑
T∈SSYT=

λ,proper

wtq(T ) = q
∑

T ′∈SSYT=
λ↗,proper

wtq(T
′)−

∑
T ′′∈SSYT=

λ↘,proper

wtq(T
′′), and (5.7)

∑
T∈SSYT>λ,proper

wtq(T ) = q
∑

T ′∈SSYT>
λ↗,proper

wtq(T
′)−

∑
T ′′∈SSYT>

λ↘,proper

wtq(T
′′). (5.8)
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To prove (5.6), we associate a proper sequence of tableaux T ∈ SSYT<
λ,proper with T ′ ∈

SSYT<
λ↗,proper and T ′′ ∈ SSYT<

λ↘,proper by fixing the entries in rows Rj for 1 ≤ j ≤ n, j 6= i,
and otherwise preserving the entries in cells of each content. We now have

wtq(T ) = (q − 1)wtq(T
′) and wtq(T

′) = wtq(T
′′) (5.9)

because there are no inversions between cells in rows R and R′, any other inversions must
be preserved because the entries in cells of each content are preserved, λ has one fewer row
than λ↗ and λ↘, and we have

n∑
i=1

mi(T ) =
n+1∑
i=1

mi(T
′) =

n+1∑
i=1

mi(T
′′). (5.10)

This proves (5.6). Similarly, to prove (5.7), noting that SSYT=
λ↘,proper is empty, we now

associate T ∈ SSYT=
λ,proper with T ′ ∈ SSYT=

λ↗,proper as before and note that
∑

imi(T ) =∑
imi(T

′) + 1 because the entries x in rows R and R′ of λ↗ contribute twice to
∑

imi(T )
but only once to

∑
i(T

′). Finally, to prove (5.8), noting that SSYT>
λ,proper is empty, we now

associate T ′ ∈ SSYT>
λ↗,proper with T ′′ ∈ SSYT>

λ↘,proper as before and note that inv(T ′′) =
inv(T ′) + 1 because T ′′ has the additional inversion between the cells with entries x and y.
Now using our induction hypothesis, and rearranging (4.27), we have

Gλ([x(q − 1)]; q)

(q − 1)n
=

q
q−1

Gλ↗([x(q − 1)]; q)− 1
q−1

Gλ↘([x(q − 1)]; q)

(q − 1)n
(5.11)

= q
Gλ↗([x(q − 1)]; q)

(q − 1)n+1
− Gλ↘([x(q − 1)]; q)

(q − 1)n+1
(5.12)

= q
∑

T ′∈SSYT
λ↗,proper

wtq(T
′)−

∑
T ′′∈SSYT

λ↘,proper

wtq(T
′′) (5.13)

=
∑

T∈SSYTλ,proper

wtq(T ). (5.14)

This completes the proof.

Example 5.1.4. Figure 5.2 illustrates the idea of the proofs of (5.6), (5.7), and (5.8).

Now Theorem 3.1.16 is a straightforward consequence of Theorem 5.1.1.

Proof of Theorem 3.1.16. Setting q = 1 in (5.1), the only nonzero terms are where mi(T ) =
1 for every i, meaning every cell of Ri is filled by the same integer ai, which correspond
to proper colourings κ of the weighted graph Π(λ) by setting κ(Ri) = ai, and we have
(wtq(T ))|q=1 = xT = xκ,w. As an illustration, in Example 5.1.2, the sequence of SSYT U
contributes a nonzero summand to (5.1).
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Figure 5.2: An example of the calculations in the proof of Theorem 5.1.1.

w x y z = q
y z

w x

− w x

y z

(x < y)

(q − 1)3 = q(q − 1)2 − (q − 1)2

w x x z = q x z

w x

− ∅

q(q − 1)2 = q(q − 1)2 − 0

∅ = q
y z

w x

− w x

y z

(x > y)

0 = q(q − 1)2 − q(q − 1)2

We see that by Theorem 3.1.16, if two horizontal-strip LLT polynomials Gλ(x; q) and
Gµ(x; q) are equal, then the extended chromatic symmetric functions of the corresponding
weighted graphs XΠ(λ)(x) and XΠ(µ)(x) are also equal. We cannot in general hope for
the converse to hold because the LLT polynomial Gλ(x; q) depends on the edge weights
of Π(λ), for example, by Theorem 3.1.6, while the extended chromatic symmetric function
XΠ(λ) does not. However, we will show that in certain cases, equalities of horizontal-strip
LLT polynomials are equivalent to equalities of extended chromatic symmetric functions
that were found by Aliniaeifard, Wang, and van Willigenburg [4]. We first introduce some
operations on compositions.

Definition 5.1.5. Let α = α1 · · ·αn and β = β1 · · · βm be compositions. The reverse of α is
αrev = αn · · ·α1. The concatenation and near-concatenation of α and β are

α · β = α1 · · ·αnβ1 · · · βm and α� β = α1 · · ·αn−1(αn + β1)β2 · · · βm. (5.15)

The composition of α and β is [7, Section 3]

α ◦ β = β�α1 · · · β�αn , (5.16)
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where β�k denotes the k-fold near-concatenation of β. Note that all of these operations are
associative. We say that β is a coarsening of α, denoted α ≺ β, if β can be obtained from α
by summing some collections of contiguous parts. Alternatively, we can think of a coarsening
β of α as a composition of the form

β = α1 ∗ · · · ∗ αn, where each ∗ is · or � . (5.17)

We also define the multiset
M(α) = {sort(β) : α ≺ β}, (5.18)

where sort(β) denotes the partition determined by reordering the parts of β in weakly de-
creasing order.

There is a bijection between the set CN of compositions α with sum N and subsets of
{1, . . . , N − 1} given by taking the partial sums of α, other than 0 and N . By this bijection,
a coarsening corresponds to a subset so the partially ordered set (CN ,≺) is (anti-)isomorphic
to the boolean lattice BN−1. In particular, by Möbius inversion, if A is an abelian group and
f, g : CN → A, then

f(α) =
∑
α≺β

g(β) if and only if g(α) =
∑
α≺β

(−1)`(α)−`(β)f(β). (5.19)

Example 5.1.6. Consider the compositions α = 21231, β = 23121, δ = 12, and γ = 21. We
have that δrev = γ,

δ ◦ γ = γ�1 · γ�2 = γ · (γ � γ) = 21 · (21� 21) = 21 · 231 = 21231 = α, and (5.20)

γ ◦ γ = γ�2 · γ�1 = (γ � γ) · γ = (21� 21) · 21 = 231 · 21 = 23121 = β. (5.21)

Some coarsenings of α include 3231, obtained by summing the first two parts, and 54,
obtained by summing the first three parts and the last two parts. We have that

M(α) = {32211, 5211, 4221, 3321, 3321, 621, 621, 531, 531, 432, 432, 81, 72, 63, 54, 9} =M(β).
(5.22)

The compositions α and β correspond to the subsets {2, 3, 5, 8} and {2, 5, 6, 8} of {1, . . . , 8}.

Billera, Thomas, and van Willigenburg characterized when M(α) = M(β) in terms of
compositions of compositions.

Theorem 5.1.7. [7, Theorem 4.1] Let α and β be compositions. We have M(α) = M(β)
if and only if there are factorizations

α = δ(1) ◦ · · · ◦ δ(k) and β = γ(1) ◦ · · · ◦ γ(k) (5.23)

so that every γ(i) is either δ(i) or δ(i)rev.
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Example 5.1.8. We saw that the compositions α and β from Example 2.1.1 can be factorized
as α = δ ◦ γ and β = δrev ◦ γ, so it follows from Theorem 5.1.7 that M(α) =M(β).

Their motivation was to classify equalities of certain skew Schur functions indexed by
compositions. It will be worthwhile to study their proof because we will employ a similar
argument when we investigate equalities of LLT polynomials.

Definition 5.1.9. Let α be a composition. The ribbon Schur function rα(x) is the skew
Schur function indexed by the skew shape whose i-th row has αi cells and whose adjacent
rows overlap in exactly one column.

Note that when α has a single part n, then rn(x) = sn(x) = hn(x), the n-th homogeneous
symmetric function.

Theorem 5.1.10. [7, Equation 2.2, Proposition 2.1, Theorem 2.6] The ribbon Schur func-
tions satisfy the relation

rα(x)rβ(x) = rα·β(x) + rα�β(x). (5.24)

By iterating (5.24), we have that

hsort(α)(x) = rα1(x) · · · rα`(x) =
∑
α≺β

rβ(x) (5.25)

and therefore, by (5.19), we have that

rα(x) =
∑
α≺β

(−1)`(α)−`(β)hsort(β)(x) =
∑

ρ∈M(α)

(−1)`(α)−`(ρ)hρ(x). (5.26)

In particular, because the hρ(x) are linearly independent, we have that rα(x) = rβ(x) if and
only if M(α) =M(β).

Aliniaeifard, Wang, and van Willigenburg defined similar operations for graphs in order
to investigate equalities of extended chromatic symmetric functions.

Definition 5.1.11. [4, Definition 7.1] Let G and H be vertex-weighted graphs with distin-
guished (not necessarily distinct) vertices aG, zG ∈ V (G) and aH , zH ∈ V (H). The concate-
nation of G and H, denoted G · H, is the disjoint union of G and H, with an extra edge
(of weight one) joining zG and aH . The near-concatenation of G and H, denoted G�H, is
the contraction of G · H by the edge (zG, aH). If α = α1 · · ·αn is a composition, then the
composition of α and G is the graph

α ◦G = G�α1 · · ·G�αn , (5.27)

where G�k denotes the k-fold near-concatenation of G.
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Figure 5.3: The graphs 12 ◦ P121 and 21 ◦ P121
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Note that it follows from the definition that

(α · β) ◦G = (α ◦G) · (β ◦G) and (α� β) ◦G = (α ◦G)� (β ◦G). (5.28)

Example 5.1.12. For a composition α = α1 · · ·αn, denote by Pα the weighted path graph
with vertices {v1, . . . , vn} of weights w(vi) = αi and with edges (vi, vi+1) of weight one for
1 ≤ i ≤ n− 1. Then Pα ∼= α ◦ P1.

Example 5.1.13. For G = P121 with a = v1 and z = v2, the graphs 12 ◦ G and 21 ◦ G are
given in Figure 5.3.

We now state the following result of Aliniaeifard, Wang, and van Willigenburg on equal-
ities of extended chromatic symmetric functions.

Theorem 5.1.14. [4, Theorem 7.3] Let G be a vertex-weighted graph with distinguished
vertices a and z. If M(α) =M(β), then Xα◦G(x) = Xβ◦G(x). Moreover, if G is connected,
then the converse holds.

We now consider an analogous statement for horizontal-strip LLT polynomials. For a
horizontal-strip λ, our distinguished vertices a and z of the weighted graph Π(λ) will be
those rows containing the first and last cells of λ in content reading order. We will say
that an admissible weighted graph with distinguished vertices is a weighted graph of the form
Π ∼= Π(λ) with distinguished vertices a and z that arise from λ as described above. By
Theorem 3.1.8 there is a well-defined horizontal-strip LLT polynomial GΠ(x; q).

Lemma 5.1.15. Let Π1 = Π(λ) and Π2 = Π(µ) be admissible weighted graphs with distin-
guished vertices. Then Π1 · Π2 and Π1 � Π2 are admissible and we have

GΠ1(x; q)GΠ2(x; q) =
1

q
GΠ1·Π2(x; q) +

q − 1

q
GΠ1�Π2(x; q). (5.29)

Proof. By cycling and translating, we may assume that λ = (R1, . . . , Rn) has a unique cell
u ∈ R1 of some maximum content N −1 and that µ = (S1, . . . , Sm) has a unique cell v ∈ Sm
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of minimum content 0. Define the horizontal-strips

ν = (N + S1, . . . , N + Sm−1, N + Sm, R1, R2, . . . , Rn), (5.30)

ν ′ = (N + S1, . . . , N + Sm−1, R1, N + Sm, R2, . . . , Rn), and (5.31)

ν ′′ = (N + S1, . . . , N + Sm−1, (N + Sm) ∪R1, (N + Sm) ∩R1, R2, . . . , Rn). (5.32)

Because l(R1) = N −1 and l(Ri) < N −1 otherwise and r(N +Sm) = N and r(N +Sj) > N
otherwise, we have M(N + Sj, Ri) = 1 if (i, j) = (1,m) and 0 otherwise, and therefore
Π(ν) ∼= Π1 ·Π2. By Proposition 4.1.18, we see that Π(ν ′) is obtained by deleting the weight
of the edge (N + Sm, R1) by one, and is therefore the disjoint union Π(ν ′) ∼= Π1 tΠ2, while
Π(ν ′′) is obtained by contracting the edge (N +Sm, R1), and is therefore the weighted graph
Π1 � Π2. Therefore, Π1 · Π2 and Π1 � Π2 are admissible, and (5.29) follows by rearranging
(4.27).

We now state our horizontal-strip LLT polynomial analogue of Theorem 5.1.14.

Theorem 5.1.16. Let Π be an admissible weighted graph with distinguished vertices. If
M(α) = M(β), then Gα◦Π(x; q) = Gβ◦Π(x; q). Moreover, if Π is connected, then the
converse holds.

Proof. By iterating (5.29), we have that

GΠ�α1 (x; q) · · ·GΠ�α` (x; q) =
∑
α≺β

(q − 1)`(α)−`(β)

q`(α)−1
Gβ◦Π(x; q) (5.33)

and rearranging, we have that

q`(α)−1(q − 1)−`(α)
∏̀
i=1

GΠ�αi (x; q) =
∑
α≺β

(q − 1)−`(β)Gβ◦Π(x; q). (5.34)

Therefore, by (5.19), we have that

(q − 1)−`(α)Gα◦Π(x; q) =
∑
α≺β

q`(β)−1(q − 1)−`(β)
∏̀
i=1

GΠ�βi (x; q) (5.35)

and rearranging again, we have that

Gα◦Π(x; q) =
∑
α≺β

q`(β)−1(q − 1)`(α)−`(β)
∏̀
i=1

GΠ�βi (x; q) (5.36)

=
∑

ρ∈M(α)

q`(ρ)−1(q − 1)`(α)−`(ρ)
∏̀
i=1

GΠ�ρi (x; q). (5.37)

In particular, if M(α) =M(β), then Gα◦Π(x; q) = Gβ◦Π(x; q). Moreover, if Π is connected
and Gα◦Π(x; q) = Gβ◦Π(x; q), then by Theorem 3.1.16 we have Xα◦Π(x) = Xβ◦Π(x) and by
Theorem 5.1.14 we have M(α) =M(β), so the converse holds.
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Corollary 5.1.17. Let α be a composition. The weighted path graph Pα is admissible and
we have

GPα(x; q) =
∑

ρ∈M(α)

q`(ρ)−1(q − 1)`(α)−`(ρ)hρ(x). (5.38)

In particular, for compositions α and β, we have that GPα(x; q) = GPβ(x; q) if and only if
M(α) =M(β).

Proof. This follows from Theorem 5.1.16 and (5.37) because Pα = α ◦ P1, P1 is connected,
GP�k1

(x; q) = GPk(x; q) = sk(x) = hk(x), and the hρ(x) are linearly independent.

We mention another connection between extended chromatic symmetric functions and
horizontal-strip LLT polynomials.

Theorem 5.1.18. [4, Theorem 5.5] For each partition ρ, let Hρ be any weighted graph whose
multiset of vertex weights are the parts of ρ. Then the set {X(Hρ,w)(x) : ρ a partition} forms
a basis for ΛQ.

Theorem 5.1.19. For each partition ρ, let Πρ be an admissible weighted graph whose
multiset of vertex weights are the parts of ρ. Then the set {GΠρ(x; q) : ρ a partition} forms
a Q(q)-basis for ΛQ(q).

Proof. It suffices to show that for every n ≥ 1, the set {GΠρ(x; q) : ρ a partition of n} forms
a Q(q)-basis for Λn

Q(q), the space of symmetric functions of degree n, and because this space
has dimension equal to the number of partitions of n, it suffices to show that this set is
linearly independent. Suppose that aρ(q) ∈ Q(q) are rational functions not all 0 such that∑

ρ a partition of n

aρ(q)GΠρ(x; q) = 0. (5.39)

By clearing denominators, we may assume that the aρ(q) are polynomials and that they do
not all share a common factor. By setting q = 1, we now have∑

ρ a partition of n

aρ(1)hρ(x) = 0, (5.40)

and because the hρ(x) are linearly independent, this means that every aρ(1) = 0 and therefore
aρ(q) is a multiple of (q − 1), contradicting that they do not all share a common factor.

Remark 5.1.20. We can alternatively prove Theorem 5.1.19 by applying the injective map
f(x) 7→ f(x[q − 1]) and applying Theorem 3.1.16 and Theorem 5.1.18.

It would be interesting to continue proving analogous results of extended chromatic sym-
metric functions for horizontal-strip LLT polynomials. For example, Crew and Spirkl proved
results about acyclic orientations [11, Theorem 8] and connected partitions [11, Lemma 11].
It might be possible to deduce such results by finding a more direct relationship between
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these objects. Theorem 3.1.16 and Theorem 5.1.1 suggest that given an admissible weighted
graph Π with n vertices and total vertex weight N , we might reasonably define the “extended
chromatic quasisymmetric function” of Π to be

XΠ(x; q) =
Gλ([x(q − 1)]; q)

(q − 1)n
=

∑
T∈SSYTλ
T proper

qinv(T )qN−
∑
imi(T )(q − 1)

∑
i(mi(T )−1)xT , (5.41)

where λ is any horizontal-strip such that Π ∼= Π(λ). Note that this is well-defined by
Theorem 3.1.8. In particular, this construction would generalize both the extended chromatic
symmetric function and the chromatic quasisymmetric function of an unweighted graph. We
can think of T ∈ SSYTλ as an “extended colouring” of the weighted graph Π(λ), where a
vertex v is assigned a multiset of w(v) colours, although it is unclear how to interpret the
factor qinv(T ) in this context. We conclude this chapter by posing the following problem.

Problem 5.1.21. Let (G,w) be a vertex-weighted, vertex-ordered, and edge-weighted graph.
Define an extended chromatic quasisymmetric function X(G,w)(x; q) such that the following
properties hold.

1. X(G,w)(x; q) is easily seen to be quasisymmetric from our definition.

2. When all vertex weights and nonzero edge weights are 1, then we recover the chromatic
quasisymmetric function XG(x; q).

3. When q = 1, then we recover the extended chromatic symmetric function X(G,w)(x).

4. If G is the disjoint union of graphs G1 and G2, then

X(G,w)(x; q) = X(G1,w|G1
)(x; q)X(G2,w|G2

)(x; q). (5.42)

5. If G has an edge, then for some (possibly different) edge e, we have the deletion-
contraction relation

X(G,w)(x; q) = qX(G\e,w)(x; q)−X(G/e,w)(x; q). (5.43)

6. If (G,w) ∼= Π(λ) for some horizontal-strip λ, then (5.41) holds.

Note that for graphs of the form (G,w) ∼= Π(λ), then the expression (5.41) satisfies all of
these conditions. If we are able to solve Problem 5.1.21 for such weighted graphs by finding
a definition that depends only on Π(λ) and not on λ, then this would immediately give a
constructive proof of Theorem 3.1.8. Note that (5.41) could in theory depend on λ because
of the qinv(T ) factor, although by Theorem 3.1.8, it turns out to only depend on Π(λ). If we
are able to solve Problem 5.1.21 in general, then the deletion-contraction relation and the
flexibility of our parameter q may be key innovations toward Problem 2.4.3 and Problem
2.4.4.
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Chapter 6

Proof of Theorem 3.1.8

In this chapter, we prove Theorem 3.1.8. The general idea will be to use rotating, cycling, and
commuting to arrange the rows of λ so that we can apply our deletion-contraction relation
(4.27) and use induction. One possible obstruction to our approach will be a noncommuting
path, which is a concept we will introduce in Definition 6.1.15. However, Lemma 6.1.26 and
Lemma 6.1.28 will describe the structure of a minimal noncommuting path very precisely,
and in such a case we can apply a delicate induction in Lemma 6.1.53 and a series of local
rotations, which we introduce in Lemma 6.1.50. We begin by making the following definition,
which will be useful to describe relationships between rows within a fixed horizontal-strip.

Definition 6.1.1. Let λ = (R1, . . . , Rn) be a horizontal-strip and 1 ≤ i, j ≤ n with i 6= j.
We define Mi,j(λ) to be the weight of the edge in Π(λ) joining Ri and Rj, that is

Mi,j(λ) =

{
M(Ri, Rj) if i < j,

M(Rj, Ri) if i > j.
(6.1)

We abbreviate Mi,j(λ) as Mi,j if the context is clear. Note that

0 ≤Mi,j ≤ min{|Ri|, |Rj|}. (6.2)

Definition 6.1.2. Let λ = (R1, . . . , Rn) and µ = (S1, . . . , Sn) be horizontal-strips and let
ϕ : Π(λ) → Π(µ) be an isomorphism of weighted graphs. We denote this by ϕ : Π(λ)

∼−→
Π(µ). We will also denote by ϕ the underlying bijection

ϕ : {1, . . . , n} → {1, . . . , n}, (6.3)

which must satisfy |Ri| = |Sϕi| and Mi,j(λ) = Mϕi,ϕj(µ) for all i, j.

Example 6.1.3. In Example 3.1.4, we have an isomorphism ϕ : Π(λ)
∼−→ Π(µ) with under-

lying bijection given by ϕ1 = 2, ϕ2 = 1, ϕ3 = 4, and ϕ4 = 3.

Let us also recall Proposition 4.1.7 from Chapter 4, because we will be using it extensively
in this chapter. We restate it slightly, in terms of a fixed horizontal-strip.
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Proposition 6.1.4. Let λ = (R1, . . . , Rn) be a horizontal-strip and let 1 ≤ i, j ≤ n.
Without loss of generality, assume that l(Ri) ≤ l(Rj).

1. If r(Ri) < l(Rj)− 1, then M(Ri, Rj) = M(Rj, Ri) = 0, so Ri ↔ Rj.

2. If l(Ri) = l(Rj) or r(Rj) ≤ r(Ri), then M(Ri, Rj) = M(Rj, Ri) = min{|Ri|, |Rj|}, so
Ri ↔ Rj.

3. Otherwise, we have l(Ri) < l(Rj) ≤ r(Ri) + 1 ≤ r(Rj), and

M(Ri, Rj) = r(Ri)− l(Rj) + 1 and M(Rj, Ri) = r(Ri)− l(Rj) + 2, so Ri = Rj. (6.4)

In particular, we have

Mi,j = r(Ri)− l(Rj) + 1 + χ(i > j), (6.5)

where χ(i > j) = 1 if i > j and 0 otherwise.

Note that in particular, we see that

if Ri ↔ Rj, then Mi,j is either 0 or min{|Ri|, |Rj|}. (6.6)

Corollary 6.1.5. Let λ = (R1, . . . , Rn) be a horizontal-strip.

1. If Ri = Rj, then we either have l(Ri) < l(Rj) and r(Ri) < r(Rj), or we have l(Ri) >
l(Rj) and r(Ri) > r(Rj). In other words, the integers l(Ri)− l(Rj) and r(Ri)− r(Rj)
are nonzero and have the same sign.

2. Suppose that i < j and Ri = Rj. If Mi,j = 0, then l(Rj) = r(Ri) + 1, so in particular
l(Ri) < l(Rj). If Mi,j = |Ri|, then r(Rj) = r(Ri) − 1, while if Mi,j = |Rj|, then
l(Rj) = l(Ri)− 1, so in particular we have l(Rj) < l(Ri) in both cases.

Proof.

1. Assuming without loss of generality that l(Ri) ≤ l(Rj), then all of the possibilities are
enumerated in Proposition 6.1.4 and we have Ri = Rj only when l(Ri) < l(Rj) and
l(Rj) ≤ r(Ri) + 1 ≤ r(Rj), so in particular r(Ri) < r(Rj).

2. By (6.4), if Mi,j = M(Ri, Rj) = 0, then if l(Rj) < l(Ri) we would have M(Rj, Ri) =
M(Ri, Rj) − 1 = −1, contradicting (6.2), so we must have l(Ri) < l(Rj) and Mi,j =
0 = r(Ri)− l(Rj) + 1. Similarly, by (6.4), if Mi,j = M(Ri, Rj) = min{|Ri|, |Rj|}, then
if l(Ri) < l(Rj) we would have M(Rj, Ri) = min{|Ri|, |Rj|} + 1, contradicting (6.2),
so we must have l(Rj) < l(Ri) and Mi,j = r(Rj) − l(Ri) + 2. The result now follows
by noting that |Ri| = r(Ri)− l(Ri) + 1 and |Rj| = r(Rj)− l(Rj) + 1.
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Figure 6.1: Left: M(Ri, Rj) = 0, but Ri = Rj, Middle and Right: M(Ri, Rj) =
min{|Ri|, |Rj|}, but Ri = Rj

Remark 6.1.6. Note that the converse to (6.6) does not hold. It is possible to have rows Ri

and Rj with M(Ri, Rj) = 0 or M(Ri, Rj) = min{|Ri|, |Rj|}, but Ri = Rj as in Figure 6.1.
However, Part 2 tells us that if this occurs, then Ri must be on a particular side of Rj.

We now show how we can use cycling and commuting to prove Theorem 3.1.8 in the
special case of Hall–Littlewood polynomials. Recall that if λ = (R1, . . . , Rn), then we have

M(λ) =
∑

1≤i<j≤n

M(Ri, Rj) ≤
∑

1≤i<j≤n

min{|Ri|, |Rj|} = n(λ). (6.7)

Lemma 6.1.7. Theorem 3.1.8 holds if M(λ) = n(λ).

Proof. Let λ = (R1, . . . , Rn). By (6.7), we have that if M(λ) = n(λ), then M(Ri, Rj) =
min{|Ri|, |Rj|} for all 1 ≤ i < j ≤ n. Recall that we denote by λ the partition determined by
the row lengths of λ. We now show that the horizontal-stripH(λ) = (λ1/0, . . . , λn/0) is sim-
ilar to λ, meaning that the LLT polynomial Gλ(x; q) only depends on λ and therefore only
on the weighted graph Π(λ). By translating, we may assume without loss of generality that
min{l(Ri) : 1 ≤ i ≤ n} = 0, and suppose that l(Ra) = 0. Because Mi,j = min{|Ri|, |Rj|} for
every i, j, we have by Proposition 6.1.4, Part 2 an upper bound l(Rj) ≤ r(Ra) + 1 = |Ra|, so
let us further assume that λ has

∑n
i=1 l(Ri) minimal among all horizontal-strips similar to λ.

We now claim that l(Ri) = 0 for every 1 ≤ i ≤ n. If not, let j be such that l(Rj) ≥ 1
is maximal. By Corollary 6.1.5, Part 3, if i < j and Ri = Rj, then because Mi,j =
min{|Ri|, |Rj|}, we must have l(Rj) < l(Ri), contradicting maximality of l(Rj), so we must
have Ri ↔ Rj for every i < j. By Proposition 4.1.3, we can now commute and cycle to find
that (R1, . . . , Rn, R

−
j ) ∈ S(λ), contradicting minimality of

∑n
i=1 l(Ri). Therefore, we indeed

have l(Ri) = 0 for every 1 ≤ i ≤ n, so by Proposition 6.1.4, Part 2, we have Ri ↔ Rj for
every 1 ≤ i, j ≤ n and by commuting once again we have H(λ) ∈ S(λ). This completes the
proof.

Example 6.1.8. Figure 6.2 illustrates the idea of the proof of Lemma 6.1.7. The row R3,
which has l(R3) maximal, commutes with all rows below, so by commuting and cycling, we
can move it to the left. Continuing in this way, the horizontal-strip λ is shown to be similar
to H(4432) on the right.
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Figure 6.2: An example of using commuting and cycling to show that H(λ) ∈ S(λ)

λ =

R1

R2

R3

R4

H(4432) =

Our general strategy will be to apply a similar sequence of transformations to replace λ
with a similar horizontal-strip to which we can apply our deletion-contraction relation (4.27)
and induction. We will take an unusual approach in that the base case of our induction will
be when M(λ) is the maximum possible value n(λ), from which we will deduce Theorem
3.1.8 for smaller values of M(λ). Rather than delete an edge and contract, we will add an
edge and contract. This seemed to give us the right induction hypothesis. We make the
following definition.

Definition 6.1.9. Let λ and µ be horizontal-strips with Π(λ) ∼= Π(µ). A good substitute
for (λ,µ) is a pair of horizontal-strips (λ′,µ′), where λ′ = (R1, . . . , Rn) ∈ S(λ) and µ′ =
(S1, . . . , Sn) ∈ S(µ) satisfy

l(R1) < l(R2), R1 = R2, l(S1) < l(S2), S1 = S2, (6.8)

and ϕ1 = 1 and ϕ2 = 2, where ϕ : Π(λ′)
∼−→ Π(µ′). A single horizontal-strip λ is good if for

any horizontal-strip µ such that Π(λ) ∼= Π(µ), there is a good substitute for (λ,µ).

We now state a key Lemma, from which Theorem 3.1.8 will follow.

Lemma 6.1.10. Let λ = (R1, . . . , Rn) be a horizontal-strip with n(λ)−M(λ) ≥ 1. Suppose
that λ satisfies the condition that

Theorem 3.1.8 holds for horizontal-strips λ′ and µ′ with either (6.9)

n(λ′) < n(λ), or with n(λ′) = n(λ) and M(λ′) > M(λ).

Then λ is good.

Proof of Theorem 3.1.8 assuming Lemma 6.1.10. We use induction on n(λ). If n(λ) = 0,
then λ has only one row and the result follows from Proposition 4.1.3, Part 1, so assume that
n(λ) ≥ 1 and that Theorem 3.1.8 holds for horizontal-strips λ′ and µ′ with n(λ′) < n(λ).
We also use induction on n(λ) −M(λ). If n(λ) −M(λ) = 0, then the result follows from
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Lemma 6.1.7, so assume that n(λ)−M(λ) ≥ 1 and that Theorem 3.1.8 holds for horizontal-
strips λ′ and µ′ with n(λ′) = n(λ) and n(λ′)−M(λ′) < n(λ)−M(λ). This is exactly the
condition (6.9), so assuming Lemma 6.1.10, we have that λ is good.

Now by replacing λ = (R1, . . . , Rn) and µ = (S1, . . . , Sn) by a good substitute as neces-
sary, we may assume that l(R1) < l(R2), R1 = R2, l(S1) < l(S2), S1 = S2, and ϕ1 = 1 and
ϕ2 = 2, where ϕ : Π(λ)

∼−→ Π(µ). Consider the horizontal-strips

λ′ = (R2, R1, R3, . . . , Rn) and λ′′ = (R1 ∪R2, R1 ∩R2, R3, . . . , Rn) (6.10)

and similarly define µ′ and µ′′. By Proposition 4.1.18, the graphs Π(λ′) and Π(µ′) are
constructed by increasing the weight of the edge (R1, R2) and (S1, S2) by one, and therefore
we have Π(λ′) ∼= Π(µ′). Proposition 4.1.18 also describes exactly how to construct Π(λ′′)
from Π(λ′), and therefore we have Π(λ′′) ∼= Π(µ′′). Because

M(λ′) = M(λ) + 1, n(λ′) = n(λ), and n(λ′′) < n(λ), (6.11)

our induction hypothesis implies that Gλ′(x; q) = Gµ′(x; q) and Gλ′′(x; q) = Gµ′′(x; q).
Therefore, by rearranging (4.27), we have

Gλ(x; q) =
1

q
Gλ′(x; q) +

q − 1

q
Gλ′′(x; q) =

1

q
Gµ′(x; q) +

q − 1

q
Gµ′′(x; q) = Gµ(x; q). (6.12)

This completes the proof.

Remark 6.1.11. Our notation for λ′ and λ′′ in the above proof differs from our notation in
Corollary 4.1.17 in that the roles of λ and λ′ have switched because we are adding an edge,
rather than deleting an edge. This is why we rearranged the deletion-contraction formula.

It now remains to prove Lemma 6.1.10. The following definition will describe a relation-
ship between rows that will be convenient to refer to.

Definition 6.1.12. Let λ = (R1, . . . , Rn) be a horizontal-strip. We write Ri ≺ Rj if
Mi,j = |Ri| and Ri ⊀ Rj otherwise. We also write Ri � Rj to mean that Ri ≺ Rj and
Rj ⊀ Ri.

Proposition 6.1.13. Let λ = (R1, . . . , Rn) be a horizontal-strip.

1. Suppose that i < j. Then we have Ri ≺ Rj if and only if either Ri ⊆ Rj or Ri ⊆ R+
j .

2. Suppose that i > j. Then we have Ri ≺ Rj if and only if either Ri ⊆ Rj or Ri ⊆ R−j .

3. We have Ri ≺ Rj and Ri ↔ Rj if and only if Ri ⊆ Rj.

Proof.
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Figure 6.3: We have R1 ≺ R2, R2 ≺ R1, R2 � R3, and R1 ⊀ R3

λ =

R1

R2

R3

1. If Ri ≺ Rj, then by definition we have

Mi,j = |Ri| =

{
|Ri ∩Rj| if l(Ri) ≤ l(Rj),

|Ri ∩R+
j | if l(Ri) > l(Rj),

(6.13)

and therefore we must have Ri ⊆ Rj or Ri ⊆ R+
j . Conversely, if Ri ⊆ R+

j , then
l(Ri) > l(Rj) and Mi,j = |Ri| by Proposition 6.1.4, Part 2, while if Ri * R+

j and
Ri ⊆ Rj, then l(Ri) = l(Rj) and again Mi,j = |Ri| by Proposition 6.1.4, Part 2.

2. This follows from the previous part by considering a rotation of λ.

3. If Ri ⊆ Rj, then Ri ≺ Rj by the previous parts and we have l(Rj) ≤ l(Ri) ≤ r(Ri) ≤
r(Rj), so Ri ↔ Rj by Proposition 6.1.4, Part 2. Conversely, if i < j, Ri ≺ Rj, and
Ri * Rj, then by Part 1 we have Ri ⊆ R+

j , so l(Rj) < l(Ri) ≤ r(Rj) + 1 ≤ r(Ri) and
Ri = Rj by Proposition 6.1.4, Part 3. The case where i > j follows by rotating.

Example 6.1.14. Let λ = (R1, R2, R3) = (7/4, 6/3, 5/0) as in Figure 6.3. We have
M(R1, R2) = 3 = |R1| = |R2|, so R1 ≺ R2 and R2 ≺ R1. We have M(R1, R3) = 2 < |R1|, so
R1 ⊀ R3, and we have M(R2, R3) = 3 = |R2| < |R3|, so R2 � R3. Informally, we can think
of the relation Ri ≺ Rj as being very similar to the relation Ri ⊆ Rj, except that we may
need to shift a row by one cell. Because of this possible shift, the relation ≺ is not transitive.
In this example, we have R1 ≺ R2 and R2 ≺ R3, but R1 ⊀ R3.

The following concept will be important to define the potential obstruction to our tech-
nique from the proof of Lemma 6.1.7 of using commuting to rearrange rows.

Definition 6.1.15. A sequence of n ≥ 3 rows (R1, . . . , Rn) is a noncommuting path from
R1 to Rn if Ri = Ri+1 for every 1 ≤ i ≤ n− 1. A noncommuting path is minimal if there is
no subsequence of rows (R1 = Ri1 , Ri2 , . . . , Rik = Rn) with i1 < i2 < · · · < ik and 3 ≤ k < n
that forms a noncommuting path from R1 to Rn.

In particular, if (R1, . . . , Rn) is a minimal noncommuting path, then we have Ri ↔ Rj

for every i, j with 1 < |j − i| < n − 1. Because we require a noncommuting path to have
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length at least 3, we cannot conclude that R1 ↔ Rn in a minimal noncommuting path.

Our next Lemma shows that, given two rows Ri and Rj of λ with i < j, either there is
a minimal noncommuting path in λ from Ri to Rj, or we may assume that j = i+ 1.

Lemma 6.1.16. Let λ = (R1, . . . , Rn) be a horizontal-strip and let 1 ≤ i < j ≤ n. Then
one of the following holds.

1. There is a minimal noncommuting path (Ri = Ri1 , . . . , Rik = Rj) in λ from Ri to Rj.

2. There is a horizontal-strip µ = (S1, . . . , Sn) ∈ S(λ) and an isomorphism of weighted
graphs ϕ : Π(λ)

∼−→ Π(µ) such that ϕj = ϕi + 1 and l(Sϕt) = l(Rt) for all 1 ≤ t ≤ n.

Proof. We use induction on j − i. If j − i = 1, then the second possibility holds by simply
taking λ = µ, so assume that j − i ≥ 2. If Rj ↔ Rj−1, then by commuting we have
(R1, . . . , Rj, Rj−1, . . . , Rn) ∈ S(λ) and we are done by our induction hypothesis on j − i,
so we may assume that Rj = Rj−1. Similarly, if Rj−1 ↔ Rt for every i ≤ t ≤ j − 2,
then by commuting we would have (R1, . . . , Rj−1, Ri, . . . , Rj, . . . , Rn) ∈ S(λ) and we are
again done by induction. So we may assume that Rj−1 = Rt for some i ≤ t ≤ j − 2, and
continuing in this way there must be a noncommuting path in λ from Ri to Rj. Finally, if
this noncommuting path is not minimal, then it contains a minimal one.

Examples of minimal noncommuting paths are given in Figure 6.4. Informally, our next
goal is to show that all minimal noncommuting paths look like these examples. Specifically,
our goal is to prove Lemma 6.1.26, which describes what a minimal noncommuting path may
look like, and Lemma 6.1.28, which describes the extent to which our weighted graph deter-
mines the structure of a minimal noncommuting path. This will allow us to prove Corollary
6.1.30, which proves Lemma 6.1.10 in many cases. We will first prove some elementary
Propositions.

Proposition 6.1.17. Let λ = (R1, . . . , Rn) be a horizontal-strip.

1. Suppose that Ri = Rj, Rj = Rk, Ri ↔ Rk, and that the integers l(Rj) − l(Ri) and
l(Rk)− l(Rj) have the same sign. Then Mi,k = 0.

2. Suppose that Ri = Rj, Rj = Rk, Ri ↔ Rk, and that the integers l(Rj) − l(Ri) and
l(Rk)− l(Rj) have opposite signs. Then Ri ≺ Rk or Rk ≺ Ri.

3. Suppose that Ri ↔ Rj, Ri ↔ Rk, and Rj = Rk. Then Rj ≺ Ri if and only if Rk ≺ Ri.

Note that in (1) and (2), because Ri = Rj and Rj = Rk, the integers l(Rj)− l(Ri) and
l(Rk)− l(Rj) are nonzero by Corollary 6.1.5, Part 1.

Proof of Proposition 6.1.17.
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Figure 6.4: Some examples of minimal noncommuting paths
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1. Without loss of generality, we may assume that l(Ri) < l(Rj) < l(Rk), and then
because Ri = Rj and Rj = Rk, by Corollary 6.1.5, Part 1, we must have r(Ri) <
r(Rj) < r(Rk) as well. But now we cannot have Ri ⊆ Rk or Rk ⊆ Ri, so by Proposition
6.1.13, Part 3, we cannot have Ri ≺ Rk or Rk ≺ Ri. Therefore, because Ri ↔ Rk, by
(6.6), we must have Mi,k = 0.

2. By rotating, we may assume without loss of generality that l(Ri) ≤ l(Rj) − 1 and
l(Rk) ≤ l(Rj) − 1. Because Ri = Rj and Rk = Rj, by Proposition 6.1.4, Part 1, we
have r(Ri) ≥ l(Rj)−1 and r(Rk) ≥ l(Rj)−1. But now Mi,k > 0 and because Ri ↔ Rk,
we have by (6.6) that Ri ≺ Rk or Rk ≺ Ri.

3. By symmetry, it suffices to prove that Rj ≺ Ri implies Rk ≺ Ri. Suppose that Rj ≺ Ri,
and then because Ri ↔ Rj, by Proposition 6.1.13, Part 1, we have Rj ⊆ Ri, that is
l(Ri) ≤ l(Rj) ≤ r(Rj) ≤ r(Ri). Suppose that l(Rk) < l(Ri). By Proposition 6.1.4
Parts 1 and 2, if r(Rk) < l(Ri)− 1 ≤ l(Rj)− 1, then Rj ↔ Rk, if l(Ri)− 1 ≤ r(Rk) ≤
r(Ri) − 1, then Ri = Rk, and if r(Rk) ≥ r(Ri) ≥ r(Rj), then again Rj ↔ Rk, a
contradiction in all cases, so we must have l(Rk) ≥ l(Ri). Similarly, by rotating, we
must have r(Rk) ≤ r(Ri), so we have Rk ⊆ Ri and Rk ≺ Ri.

Proposition 6.1.18. Let λ = (R1, . . . , Rn) be a minimal noncommuting path.

1. If Ri ≺ Rj and Rj ≺ Ri for some j ≥ i + 2, then we must have n = 3 or n = 4 and
j = i+ 2. In particular, if n ≥ 5, then Ri ≺ Rj implies that in fact Ri � Rj.

2. If Rj ≺ Ri for some j ≥ i + 2, then Rk ≺ Ri for every k ≥ i + 2, with the possible
exception of k = n if i = 1. Similarly, if Rj ≺ Ri for some j ≤ i− 2, then Rk ≺ Ri for
every k ≤ i− 2, with the possible exception of k = 1 if i = n.

3. Suppose that Rj � Ri for some i ≥ j + 2, that i is minimal with these two properties,
and that i 6= n if j = 1. Then either l(Ri−1) > · · · > l(Rj) and l(Ri) < l(Ri−1), or
l(Ri−1) < · · · < l(Rj) and l(Ri) > l(Ri−1).

Remark 6.1.19. Figure 6.5 shows that if n ≤ 4, then it is possible to have a minimal non-
commuting path with R1 ≺ R3 and R3 ≺ R1. If n ≥ 5, then this will not happen because
there will be some Rt = Rt′ with t′ ≥ t + 2 and (t, t′) 6= (1, n), contradicting minimality.
Informally, (2) states that if we are contained in Ri, then we must remain stuck in Ri and (3)
states that if Rj is contained in some minimal Ri, then we must move in the same direction
until Ri.

Proof of Proposition 6.1.18.

1. Because j ≥ i+2, we haveRi ↔ Rj by minimality and thereforeRi = Rj by Proposition
6.1.13. Now Ri+1 = Rj, so by minimality of the noncommuting path we must have
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Figure 6.5: A minimal noncommuting path with R1 ≺ R3 and R3 ≺ R1

j = i+2. Similarly, if i ≥ 2, then Ri−1 = Rj and so we must have i = 2 and j = n = 4,
if j ≤ n − 1, then Ri = Rj+1 and so we must have i = 1 and j = 3 = n − 1 so again
n = 4, and otherwise we have i = 1 and j = 3 = n.

2. If i+2 ≤ k ≤ n−1, Rk ≺ Ri, and k+1 6= n in the case of i = 1, then because Ri ↔ Rk,
Ri ↔ Rk+1, and Rk = Rk+1, by Proposition 6.1.17, Part 3, we have Rk ≺ Ri if and
only if Rk+1 ≺ Ri, so the first statement follows by induction on k and the second
statement follows by rotating.

3. Recall that because Rj ≺ Ri and Rj ↔ Ri, by Proposition 6.1.13 we must have l(Ri) ≤
l(Rj) and r(Ri) ≥ r(Rj). Suppose that either l(Rj+1) > l(Rj) and l(Rt+1) < l(Rt)
for some minimal j + 1 ≤ t ≤ i − 2, or l(Rj+1) < l(Rj) and l(Rt+1) > l(Rt) for some
minimal j + 1 ≤ t ≤ i − 2, so in particular, n ≥ 5. Then by Proposition 6.1.17, Part
2, we have either Rt−1 ≺ Rt+1 or Rt+1 ≺ Rt−1. If Rt−1 ≺ Rt+1, then by the previous
two parts we have Rj � Rt+1, contradicting minimality of i. If Rt+1 ≺ Rt−1, then
by the previous two parts we have Ri � Rt−1, but now by Proposition 6.1.13, Part
3, we have Rj ( Ri ( Rt−1, so Rj ↔ Rt−1, t − 1 ≥ j + 2, and Rj � Rt−1, again
contradicting minimality of i. Therefore, we must have either l(Ri−1) > · · · > l(Rj)
and l(Ri) ≤ l(Rj) < l(Ri−1), or l(Ri−1) < · · · < l(Rj) and r(Ri) ≥ r(Rj) > r(Ri−1), so
l(Ri) > l(Ri−1) by Corollary 6.1.5, Part 2.

Proposition 6.1.20. Let λ = (R1, . . . , Rn) be a horizontal-strip with R1 = R2. Let
µ = (S1, . . . , Sn) be a horizontal-strip with ϕ : Π(λ)

∼−→ Π(µ) and let i = ϕ1 and j = ϕ2. If
l(R2) > l(R1), also assume that l(Sj) > l(Si). Then

l(Sj)− l(Si) ≥ l(R2)− l(R1) with equality only if i < j. (6.14)

Remark 6.1.21. Informally, Proposition 6.1.20 states that the leftmost possible position of
Sj, given the weighted graph data, occurs when Sj is above Si and Si = Sj. Figure 6.6
demonstrates the necessity of the hypothesis that if l(R2) > l(R1), then l(Sj) > l(Si).
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Figure 6.6: An example where R1 = R2, but l(Sj)− l(Si) < 0 < l(R2)− l(R1)

λ =
R1

R2

µ =

Si

Sj

Proof of Proposition 6.1.20. We calculate directly, using (6.5) and noting that |R| = r(R)−
l(R) + 1. If l(R2) < l(R1), then the statement holds unless l(Sj) < l(Si), and because
R1 = R2, we have by Corollary 6.1.5, Part 2, that M1,2(λ) = Mi,j(µ) > 0. By Proposition
6.1.4, Parts 2 and 3, we have M1,2(λ) = r(R2) − l(R1) + 2 and we either have Mi,j(µ) =
r(Sj) − l(Si) + 1 + χ(i < j), or Mi,j(µ) = min{|Si|, |Sj|} ≤ r(Sj) − l(Si) + 1 + χ(i < j).
Therefore we have

l(Sj)− l(Si) = r(Sj)− |Sj|+ 1− l(Si) ≥Mi,j(µ)− |Sj| − χ(i < j) (6.15)

≥M1,2(λ)− |R2| − 1 = r(R2)− |R2|+ 1− l(R1) = l(R2)− l(R1),

with equality only if i < j.

Similarly, if l(R2) > l(R1), then by hypothesis we have l(Sj) > l(Si), and because
R1 = R2, we have by Corollary 6.1.5, Part 2, that Mi,j(µ) < min{|Si|, |Sj|}. By Proposition
6.1.4, Parts 1 and 3, we have M1,2(λ) = r(R1) − l(R2) + 1 and we either have Mi,j(µ) =
r(Si)− l(Sj) + 1 +χ(i < j) or Mi,j(µ) = 0 ≥ r(Si)− l(Sj) + 1 +χ(i < j). Therefore we have

l(Sj)− l(Si) = l(Sj)− r(Si)− 1 + |Si| ≥ |Si| −Mi,j(µ) + χ(i > j) (6.16)

≥ |R1| −M1,2(λ) = l(R2)− r(R1)− 1 + |R1| = l(R2)− l(R1),

with equality only if i < j.

Proposition 6.1.22. Let λ = (R1, . . . , Rn) be a horizontal-strip with l(R1) < l(R3) and
R1 = R3. Let µ = (S1, . . . , Sn) be a horizontal-strip and ϕ : Π(λ)

∼−→ Π(µ) such that
ϕ1 < ϕ3, l(Sϕ1) < l(Sϕ3), and Sϕ1 = Sϕ3 . Then if l(R2) > l(R1) and R1 = R2, then
l(Sϕ2) > l(Sϕ1). Similarly, if l(R3) > l(R2) and R2 = R3, then l(Sϕ3) > l(Sϕ2).

Remark 6.1.23. Informally, Proposition 6.1.22 describes the extent to which rows R1 and
R3 with l(R1) < l(R3) and R1 = R3, given the weighted graph data, determine the relative
horizontal position of another row R2.

Proof of Proposition 6.1.22. We first suppose for a contradiction that l(R2) > l(R1) and
R1 = R2, but l(Sϕ2) ≤ l(Sϕ1). Because l(R2) > l(R1) and R1 = R2, we have by Corol-
lary 6.1.5, Part 1, that r(R2) > r(R1), and by Part 2, that M1,2(λ) < min{|R1|, |R2|}.
Therefore, we must have Mϕ1,ϕ2(µ) < min{|Sϕ1|, |Sϕ2|} and by Proposition 6.1.4, Part 2, we
have that l(Sϕ2) < l(Sϕ1) < l(Sϕ3) and r(Sϕ2) < r(Sϕ1) < r(Sϕ3). In particular, we have
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Mϕ2,ϕ3(µ) < min{|Sϕ2|, |Sϕ3 |}, so M2,3(λ) < min{|R2|, |R3|} and l(R2) 6= l(R3).

Now if l(R2) < l(R3), then by (6.4) we have

M2,3(λ) = r(R2)− l(R3) + 1 > r(R1)− l(R3) + 1 = M1,3(λ), (6.17)

but if r(Sϕ2) < l(Sϕ3)− 1, then Mϕ2,ϕ3(µ) = 0 ≤Mϕ1,ϕ3(µ), and if r(Sϕ2) ≥ l(Sϕ3)− 1, then

Mϕ2,ϕ3(µ) = r(Sϕ2)− l(Sϕ3) + 1 + χ(ϕ2 > ϕ3) ≤ r(Sϕ1)− l(Sϕ3) + 1 = Mϕ1,ϕ3(µ), (6.18)

a contradiction in either case. Similarly, if l(R2) > l(R3), then by (6.4) we have

M2,3(λ) = r(R3)− l(R2) + 2 > r(R1)− l(R2) + 1 = M1,2(λ), (6.19)

but if r(Sϕ2) < l(Sϕ3)− 1, then Mϕ2,ϕ3(µ) = 0 ≤Mϕ1,ϕ2(µ), and if r(Sϕ2) ≥ l(Sϕ3)− 1, then

Mϕ2,ϕ3(µ) = r(Sϕ2)− l(Sϕ3) + 1 + χ(ϕ2 > ϕ3) ≤ r(Sϕ2)− l(Sϕ3) + 1 = Mϕ1,ϕ2(µ), (6.20)

a contradiction in either case. This proves the first claim and the second follows by rotating.

Proposition 6.1.24. Let λ = (R1, . . . , Rn) be a minimal noncommuting path with l(Rn) >
· · · > l(R1). Let µ = (S1, . . . , Sn) be a horizontal-strip, ϕ : Π(λ)

∼−→ Π(µ), and let i be such
that l(Si) is minimal and j be such that l(Sj) is maximal. Then

r(Sj)− l(Si) ≥ r(Rn)− l(R1) with equality only if i = 1 and j = n. (6.21)

Example 6.1.25. Proposition 6.1.24 describes a situation like the one in Figure 6.7. In-
formally, when the rows of λ move to the right, we could have Mt,t+1(λ) = 0 and the
corresponding rows could be permuted in µ. This is a crucial example to keep in mind. We
might not have `(Sϕt+1) > `(Sϕt) for every t, but we can still deduce the leftmost possible
position of the rightmost row Sj.

Proof of Proposition 6.1.24. Note that we cannot directly apply Proposition 6.1.20 because
we do not know that l(Sϕt+1) > l(Sϕt) for every t. Instead, we will reorder the rows of µ
and compute directly. By Corollary 6.1.5, Part 2, we have Mt,t+1(λ) < min{|Rt|, |Rt+1|},
so Mϕt,ϕt+1(µ) < min{|Sϕt |, |Sϕt+1|} and in particular the l(Sϕt) are distinct. Let σ be the
permutation that sorts the rows of µ so that

l(Si) = l(Sσ1) < l(Sσ2) < · · · < l(Sσn−1) < l(Sσn) = l(Sj). (6.22)
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Figure 6.7: A minimal noncommuting path λ = (R1, . . . , R5) with l(R5) > · · · > l(R1) and
a horizontal-strip µ = (S1, . . . , S5) with Π(λ) ∼= Π(µ)

λ =

R1

R2

R3

R4

R5

µ =

S1 = Sϕ1

S2 = Sϕ5

S3 = Sϕ3

S4 = Sϕ2

S5 = Sϕ4

By Proposition 6.1.17, Part 1, we have Mt,t′(λ) = 0 if |t′ − t| ≥ 2. Now by (6.5), we have

r(Sj)− l(Si) = l(Sσn)− l(Sσ1) + |Sσn| − 1 (6.23)

= l(Sσn−1)− l(Sσ1) + |Sσn|+ |Sσn−1| −Mσn−1,σn(µ)− 1 + χ(σn−1 > σn)

· · · =
n∑
t=1

|Sσt | −M(µ)− 1 +
n−1∑
t=1

χ(σt > σt+1)

≥
n∑
t=1

|Rt| −M(λ)− 1

· · · = l(Rn−1)− l(R1) + |Rn|+ |Rn−1| −Mn−1,n(λ)− 1

= r(Sn)− l(S1) + |Rn| − 1 = r(Rn)− l(R1),

with equality only if i = σ1 < · · · < σn = j, so i = 1 and j = n.

We now describe the structure of a minimal noncommuting path (R1, . . . , Rn), where
l(R1) < l(Rn) and R1 = Rn. Informally, such a minimal noncommuting path must look
loosely like one of the examples in Figure 6.4.

Lemma 6.1.26. Let λ = (R1, . . . , Rn) be a minimal noncommuting path with n ≥ 4,
l(R1) < l(Rn), and R1 = Rn.

1. Suppose that there is no i ≥ 3 for which R1 � Ri and that there is no j ≤ n − 2 for
which Rn � Rj. Then one of the following holds.

• We have l(R2) > l(R1), l(Rn−1) < · · · < l(R2), and l(Rn) > l(Rn−1).

• We have l(Rn−1) > · · · > l(R1), Rt ≺ Rn for 2 ≤ t ≤ n− 2, and l(Rn) < l(Rn−1).
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• We have l(R2) < l(R1), l(Rn) > · · · > l(R2), and Rt ≺ R1 for 3 ≤ t ≤ n− 1.

2. Now suppose that R1 � Ri for some minimal i ≥ 3, and that in fact i = n− 1. Then
l(Rn) > l(Rn−1) and one of the following holds.

• We have l(Ri−1) < · · · < l(R1) and l(Ri) > l(Ri−1).

• We have l(Ri−1) > · · · > l(R1), Rt ≺ Rn for 2 ≤ t ≤ i− 1, and l(Ri) < l(Ri−1).

• We have n = 4, l(R2) > l(R1), l(R3) < l(R2), and R4 � R2.

3. Now suppose that R1 � Ri for some minimal i ≥ 3, and that i ≤ n−2. Then Rn � Ri,
so Rn � Rj for some maximal i ≤ j ≤ n− 2. Additionally, one of the following holds.

• We have l(Ri−1) < · · · < l(R1) and l(Ri) > l(Ri−1).

• We have i = j = 3, l(R2) > l(R1), Rn � R2, and l(R3) < l(R2).

Similarly, one of the following holds.

• We have l(Rn) < · · · < l(Rj+1) and l(Rj+1) > l(Rj).

• We have i = j = n− 2, l(Rn) > l(Rn−1), R1 � Rn−1, and l(Rn−1) < l(Rn−2).

Finally, we must have either j = i, or j = i+ 1 and l(Rj) < l(Ri).

Remark 6.1.27. If the hypothesis of (1) does not hold, then R1 � Ri for some i ≥ 3 or
Rn � Rj for some j ≤ n− 2. By rotating, we may assume that R1 � Ri for some i ≥ 3, and
by Corollary 6.1.5, Part 2, we cannot have R1 ≺ Rn, so i ≤ n − 1. Therefore (2) and (3)
cover all of the cases we will need.

Proof of Lemma 6.1.26. Note that because n ≥ 4, we must have R2 ↔ Rn by minimality.

Suppose that there is no i ≥ 3 for which R1 � Ri and that there is no j ≤ n − 2 for
which Rn � Rj. Additionally, suppose that l(R2) > l(R1). Because l(R1) < l(Rn), by
Proposition 6.1.17, Part 2, we must have R2 ≺ Rn or Rn ≺ R2, so by our hypothesis we
must have R2 ≺ Rn and by Proposition 6.1.18, Part 2, that Rt ≺ Rn for 2 ≤ t ≤ n − 2.
Note that if R2 ≺ Rk for any 4 ≤ k ≤ n − 1, then we would have R1 ≺ Rk by Proposition
6.1.18, Part 2, and because n ≥ 5, R1 � Rk by Proposition 6.1.18 Part 1, contradicting our
hypothesis. Therefore, by Proposition 6.1.18, Part 3, we have either l(Rn−1) < · · · < l(R2)
and l(Rn) > l(Rn−1) and the first possibility holds, or we have l(Rn−1) > · · · > l(R2) > l(R1)
and l(Rn) < l(Rn−1) and the second possibility holds. Now suppose that l(R2) < l(R1). If
l(Rn) > l(Rn−1), then by rotating we can reduce to the case where l(R2) > l(R1) and it fol-
lows that the third possibility holds, so it remains to consider the case where l(Rn) < l(Rn−1).
Because l(Rn−1) > l(Rn) > r(R2) ≥ l(R2), we have R2 ↔ Rn−1 and n ≥ 5, so Proposition
6.1.18, Part 1 applies. Also, we must have l(Rt+1) > l(Rt) for some minimal 2 ≤ t ≤ n− 2.
By Proposition 6.1.17, Part 2, we must have Rt−1 ≺ Rt+1 or Rt+1 ≺ Rt−1. However, by
Proposition 6.1.18, Part 2, if Rt−1 ≺ Rt+1, then R1 � Rt+1, and if Rt+1 ≺ Rt−1, then
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Rn � Rt−1, contradicting our hypothesis in both cases.

Now suppose that R1 � Ri for some minimal i ≥ 3, and that in fact i = n − 1. Then
l(Rn−1) ≤ l(R1) < l(Rn) by Proposition 6.1.13. By Proposition 6.1.18, Part 2, we must
have either l(Ri−1) < · · · < l(R1) and l(Ri) > l(Ri−1) and the first possibility holds, or we
have l(Ri−1) > · · · > l(R1) ≥ l(Ri) and l(Ri) < l(Ri−1). Then because l(Rn) > l(R1), by
Proposition 6.1.17, Part 2, we must have either R2 ≺ Rn, in which case we have Rt ≺ Rn

for 2 ≤ t ≤ n− 2 = i− 1 by Proposition 6.1.18, Part 2, and the second possibility holds, or
we have Rn � R2. In this case, we have Ri ≺ R2 and R2 ≺ Ri by Proposition 6.1.18, Part
2, so by Proposition 6.1.18, Part 1, we must have n = 4 and the third possibility holds.

Now suppose that R1 � Ri for some minimal i ≥ 3, and that i ≤ n− 2, so in particular,
n ≥ 5 and Proposition 6.1.18, Part 1 applies. Then because R1 = Rn, by Proposition 6.1.17,
Part 3, we have Rn � Ri, so Rn � Rj for some maximal i ≤ j ≤ n − 2. By Proposition
6.1.18, Part 3 we must have either l(Ri−1) < · · · < l(R1) and l(Ri) > l(Ri−1), in which case
the first possibility holds, or we have l(Ri−1) > · · · > l(R1) and l(Ri) < l(Ri−1). But in this
case, because l(Rn) > l(R1), by Proposition 6.1.17, Part 2, we have R2 ≺ Rn or Rn ≺ R2. If
R2 ≺ Rn, then by Proposition 6.1.18, Part 2, we would have Rj ≺ Rn, which is impossible
by definition of j, so we must have Rn � R2. If j ≥ 4, then we would have Rj ≺ R2 by
Proposition 6.1.18, Part 2, but because Rn ≺ Rj and R1 = Rn, by Proposition 6.1.17, Part
3, we have R1 ≺ Rj and R2 ≺ Rj by Proposition 6.1.18, Part 2 again, which is impossible
by Proposition 6.1.18, Part 1. Therefore, we must have i = j = 3 and the second possibility
holds. This proves the first claim and the second follows by rotating. Finally, if j ≥ i + 2,
then by Proposition 6.1.18, Part 2, we would have Ri ≺ Rj and Rj ≺ Ri, which is impossible
by Proposition 6.1.18, Part 1, so we must have either j = i or j = i + 1. If j = i + 1,
then by Proposition 6.1.18, Part 2, we have Ri−1 ≺ Rj and now l(Rj) ≤ l(Ri−1) < l(Ri) by
Proposition 6.1.13. This completes the proof.

We now describe the image of a minimal noncommuting path under an isomorphism of
weighted graphs.

Lemma 6.1.28. Let λ = (R1, . . . , Rn) be a minimal noncommuting path with l(R1) < l(Rn)
and R1 = Rn. Let µ = (S1, . . . , Sn) and ϕ : Π(λ)

∼−→ Π(µ) satisfy ϕ1 = 1, l(S1) < l(Sϕn),
and S1 = Sϕn . Then ϕn = n.

Example 6.1.29. Informally, Lemma 6.1.28 describes a situation like the one in Figure 6.8.
The conditions l(R1) < l(R6), R1 = R6, l(S1) < l(Sϕ6), and S1 = Sϕ6 fix the horizontal
positions of R1, R6, S1, and Sϕ6 . Then if we have a minimal noncommuting path in λ from
R1 to R6, the row Sϕ6 must be above the other rows in µ. Note that the intermediate rows
can be permuted as in this example.

Proof of Lemma 6.1.28. By translating all rows, we may assume without loss of generality
that l(R1) = l(S1), and then by (6.5) we have l(Rn) = l(Sϕn) as well. The idea is to repeat-
edly apply Proposition 6.1.20 and Proposition 6.1.24 to write the inequality l(Sϕn) ≥ l(Rn),
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Figure 6.8: The image of a minimal noncommuting path

λ =

R1

R2

R3

R4

R5

R6

µ =

S1 = Sϕ1

S2 = Sϕ5

S3 = Sϕ3

S4 = Sϕ2

S5 = Sϕ4

S6 = Sϕ6

for which equality holds only if ϕn = n. Because equality does indeed hold, we will conclude
that ϕn = n.

Case 0: We have n = 3.
By Proposition 6.1.22, if l(R2) > l(R1), then l(Sϕ2) > l(S1), so by Proposition 6.1.20 we

have l(Sϕ2) ≥ l(R2). By Proposition 6.1.22 again, if l(R3) > l(R2), then l(Sϕ3) > l(Sϕ2), so
by Proposition 6.1.20 we have l(Sϕ3) ≥ l(R3) with equality only if ϕ3 > ϕ2. Because equality
does indeed hold, we must have ϕ3 > ϕ2 and therefore ϕ3 = 3.

We may now assume that n ≥ 4, so it remains to consider the several possibilities out-
lined in Lemma 6.1.26. Cases 1a and 1b illustrate the main ideas.

Case 1: There is no i ≥ 3 for which R1 � Ri and there is no j ≤ n − 2 for which
Rn � Rj.

Case 1a: We have l(R2) > l(R1), l(Rn−1) < · · · < l(R2), and l(Rn) > l(Rn−1).
By Proposition 6.1.22, we have l(Sϕ2) > l(S1), so by Proposition 6.1.20 we have l(Sϕ2) ≥

l(R2). By Proposition 6.1.20 again, we have l(Sϕn−1) ≥ l(Rn−1) with equality only if
ϕn−1 > · · · > ϕ2. By Proposition 6.1.22, we have l(Sϕn) > l(Sϕn−1), so by Proposition
6.1.20 we have l(Sϕn) ≥ l(Rn) with equality only if we also have ϕn > ϕn−1. Because equal-
ity does indeed hold, we must have ϕn > ϕn−1 > · · · > ϕ2, so ϕn = n.

Case 1b: We have l(Rn−1) > · · · > l(R1), Rt ≺ Rn for 2 ≤ t ≤ n − 2, and l(Rn) <
l(Rn−1).

As in Case 1a, by Proposition 6.1.22, we have l(Sϕ2) > l(S1), so by Proposition 6.1.20
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we have l(Sϕ2) ≥ l(R2). However, we must now be careful because we need not have
l(Sϕn−1) > · · · > l(Sϕ2), so we take a slightly different approach. Let k ∈ {ϕt : 2 ≤ t ≤ n−1}
be such that l(Sk) is maximal. By Proposition 6.1.24, we have r(Sk) ≥ r(Rn−1) with equality
only if k = n− 1. If Rn−1 ⊀ Rn, then we must have k = ϕn−1 because Sϕt ≺ Sϕn for every
2 ≤ t ≤ n − 1 except for Sk. Now by Proposition 6.1.20, we have l(Sϕn) ≥ l(Rn) with
equality only if ϕn > ϕn−1 = k = n − 1. Because equality does indeed hold, we must have
ϕn = n. On the other hand, if Rn−1 ≺ Rn, then Sk ≺ Sϕn and by Corollary 6.1.5, Part 2,
we have r(Sϕn) ≥ r(Sk) − 1 ≥ r(Rn−1) − 1 = r(Rn) with equality only if ϕn > k = n − 1.
Because equality does indeed hold, we must have ϕn = n.

Case 1c: We have l(R2) < l(R1), l(Rn) > · · · > l(R2), and Rt ≺ R1 for 3 ≤ t ≤ n− 1.
By rotating, the conclusion follows from Case 1b.

We now assume that R1 � Ri for some minimal i ≥ 3 or Rn � Rj for some maximal
j ≤ n − 2. By rotating, we may assume that R1 � Ri for some minimal i ≥ 3. Note that
by Corollary 6.1.5, Part 2, we cannot have R1 ≺ Rn, so we have i ≤ n − 1. It remains to
consider the cases where i = n− 1 and where i ≤ n− 2.

Case 2: We have R1 � Ri for some minimal i ≥ 3, and in fact i = n− 1.

Case 2a: We have l(Ri−1) < · · · < l(R1) and l(Ri) > l(Ri−1).
By Proposition 6.1.20, we have l(Sϕi−1

) ≥ l(Ri−1) with equality only if ϕi−1 > · · · > ϕ2.
If l(Sϕi) > l(Sϕi−1

), then by Proposition 6.1.20 again, we have l(Sϕn) ≥ l(Rn) with equality
only if ϕn > ϕi > ϕi−1 > · · · > ϕ2. Because equality does indeed hold, we must have ϕn = n.

Now suppose that l(Sϕi) ≤ l(Sϕi−1
). We will show that this is narrowly possible, but µ

will be so specifically determined that we will be able to reduce to the previous case. By
Corollary 6.1.5, Part 2, we have Mi−1,i(λ) < min{|Ri−1|, |Ri|}, so we must have r(Sϕi) <
r(Sϕi−1

). Again, by Corollary 6.1.5, Part 2, we have Mt,t+1(λ) > 0 for 1 ≤ t ≤ i − 2,
and therefore Mϕt,ϕt+1(µ) > 0 and the rows S1, Sϕ2 , . . . , Sϕi−1

must overlap; to be precise,
S1 ∪ · · · ∪ Sϕi−1

must be a row. Now because r(S1) < r(Sϕn) and Mϕt,ϕn(µ) = 0 for
2 ≤ t ≤ i− 1, we must have r(Sϕi−1

) < l(Sϕn). Because S1 ≺ Sϕi , we now have

r(S1) ≤ r(Sϕi) + 1 ≤ r(Sϕi−1
) ≤ l(Sϕn)− 1 ≤ r(S1), (6.24)

so we have equality everywhere and in particular, M1,i−1(λ) = min{|R1|, |Ri−1|} > 0. Be-
causeM1,t(λ) = 0 for 3 ≤ t ≤ i−1 by Proposition 6.1.17, Part 1, this means that in fact i = 3.
Now by (6.24), we have M1,4(λ) = M3,4(λ) = 0, so r(R1) = r(R3) = l(R4)− 1 by Corollary
6.1.5, Part 2, and l(R3) < l(R1) because R1 � R3. Because M1,2(λ) = min{|R1|, |R2|},
we either have R1 ≺ R2 or R2 ≺ R1, but because l(R2) < l(R3) < l(R1), we cannot have
R2 ≺ R1 by Proposition 6.1.13, Part 2, so R1 ≺ R2 and r(R2) = r(R1)−1 by Corollary 6.1.5,
Part 2. But now |R3| − 1 = M2,3(λ) = Mϕ2,ϕ3(µ) = |Sϕ2| − 1 = |R2| − 1, so |R2| = |R3|.
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Figure 6.9: An example of Case 2a where l(Sϕi) ≤ l(Sϕi−1
)

λ =

R1

R2

R3

R4

µ =

S1

S2 = Sϕ3

S3 = Sϕ2

S4

Moreover, we have R1 ≺ R2, R1 ≺ R3, and M2,4(λ) = M3,4(λ) = 0 so in fact these two
vertices are equivalent in Π(λ), and we can swap the roles of these two vertices to reduce
to the case where l(Sϕi) > l(Sϕi−1

). This possibility is illustrated in Figure 6.9. It is barely
possible to have l(Sϕ3) ≤ l(Sϕ2), but this requires Sϕ2 and Sϕ3 to play equivalent roles in
Π(µ), so by instead considering the identity isomorphism ϕ̃ : Π(λ)

∼−→ Π(µ), we can reduce
to the previous case.

Case 2b: We have l(Ri−1) > · · · > l(R1), Rt ≺ Rn for 2 ≤ t ≤ i−1, and l(Ri) < l(Ri−1).
Let k ∈ {ϕt : 2 ≤ t ≤ i − 1} be such that l(Sk) is maximal. By Proposition 6.1.24,

we have r(Sk) ≥ r(Ri−1) with equality only if k = i − 1. If Ri−1 ⊀ Ri, then we must have
k = ϕi−1 because Sϕt ≺ Sϕi for every 2 ≤ t ≤ i−1 except for Sk. Now by Proposition 6.1.20,
we have l(Sϕn) ≥ l(Rn) with equality only if ϕn > ϕi > ϕi−1 = k = i− 1. Because equality
does indeed hold, we must have ϕn = n. On the other hand, if Ri−1 ≺ Ri, then Sk ≺ Sϕi ,
and by Corollary 6.1.5, Part 2, we have r(Sϕi) ≥ r(Sk) − 1 ≥ r(Ri−1) − 1 = r(Ri) with
equality only if ϕi > k = i − 1. Then by Proposition 6.1.20 again, we have l(Sϕn) ≥ l(Rn)
with equality only if ϕn > ϕi. Because equality does indeed hold, we must have ϕn = n.

Case 2c: We have n = 4, l(R2) > l(R1), l(R3) < l(R2), and R4 � R2.
By Proposition 6.1.22, we have l(Sϕ2) > l(S1) and l(Sϕ4) > l(Sϕ3), so by Proposition

6.1.20, we have l(Sϕ4) ≥ l(R4) with equality only if ϕ4 > ϕ3 > ϕ2. Because equality does
indeed hold, we must have ϕ4 = 4.

Case 3: We have R1 � Ri for some minimal 3 ≤ i ≤ n− 2.
We first show that l(Sϕi) ≥ l(Ri) with equality only if ϕi > ϕt for all t < i. If i = j = 3,

l(R2) > l(R1), Rn � R2, and l(R3) < l(R2), then we have l(Sϕ2) > l(S1) by Proposition
6.1.22 and the result follows as before from Proposition 6.1.20. Now suppose that l(Ri−1) <
· · · < l(R1) and l(Ri) > l(Ri−1). We show that l(Sϕi) > l(Sϕi−1

). Suppose that l(Sϕi) ≤
l(Sϕi−1

). By Corollary 6.1.5, Part 2, we have Mi−1,i(λ) < min{|Ri−1|, |Ri|}, so we must have
r(Sϕn) ≤ r(Sϕi) + 1 ≤ r(Sϕi−1

). Because Mt,n(λ) = 0 for 2 ≤ t ≤ i − 1 and Mt,t+1(λ) > 0
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for 1 ≤ t ≤ i − 2 by Corollary 6.1.5, Part 2, we must have r(Sϕi−1
) < l(Sϕn) ≤ r(Sϕn), a

contradiction, so indeed l(Sϕi) > l(Sϕi−1
). Now by Proposition 6.1.20, we have l(Sϕi) ≥ l(Ri)

with equality only if ϕi > ϕt for all t < i. Because either j = i, or j = i+1 and l(Rj) < l(Ri),
we in fact have l(Sϕj) ≥ l(Rj) with equality only if ϕj > ϕt for all t < j. Finally, by rotating
and repeating the previous argument, we have l(Sϕn) ≥ l(Rn) with equality only if ϕn > ϕt
for all t < n. Because equality does indeed hold, we must have ϕn = n. This completes the
proof.

The payoff of all our work so far is the following Corollary.

Corollary 6.1.30. Let λ = (R1, . . . , Rn) be a horizontal-strip with l(Ri) < l(Ri+1) and
Ri = Ri+1. Let µ = (S1, . . . , Sn) and ϕ : Π(λ)

∼−→ Π(µ) be such that Sϕi = Sϕi+1
. Then

there exists a good substitute for (λ,µ).

Proof. By cycling and rotating, we may assume without loss of generality that i = 1, l(Sϕ1) <
l(Sϕ2), and ϕ1 = 1. Let j = ϕ2. By applying Lemma 6.1.16 to µ, either we may replace µ
by a similar horizontal-strip to assume that j = 2, in which case we have our good substitute
and we are done, or there is a minimal noncommuting path (S1 = Sj1 , . . . , Sjk = Sj) in µ
from S1 to Sj. However, in this case, by considering the corresponding rows in λ, we would
have 2 = ϕ−1

j = ϕ−1
jk
≥ k ≥ 3 by Lemma 6.1.28, a contradiction. Therefore, there is indeed

a good substitute for (λ,µ).

Remark 6.1.31. The hypothesis that Sϕi = Sϕi+1
is essential to the proof of Corollary

6.1.30. Note that this hypothesis is not always satisfied, as Figure 6.7 shows an example
where R1 = R2, but Sϕ1 ↔ Sϕ2 . In other words, it is possible for rows not to commute in λ
but for the corresponding rows to commute in µ.

Our next goal is to extend Corollary 6.1.30 by describing properties of the weighted graph
Π(λ) that will force certain rows not to commute.

Definition 6.1.32. Let λ = (R1, . . . , Rn) be a horizontal-strip. A pair of rows (Ri, Rj) of
λ with i < j and l(Ri) < l(Rj) is strict if either

1. 0 < Mi,j < min{|Ri|, |Rj|}, or

2. Mi,j = 0 and Mi,k +Mj,k ≥ |Rk|+ 1 for some k.

Example 6.1.33. The two possibilities for strictness are given in Figure 6.10. Note that on
the right, we have Mi,k +Mj,k = 2 + 3 = |Rk|+ 1. Informally, in the second possibility where
Mi,j = 0, the weighted graph normally would not know about the relationship between Ri

and Rj. However, the presence of this row Rk glues the rows Ri and Rj together and means
that the weighted graph data forces rows Ri and Rj not to commute.

Remark 6.1.34. Because we define strictness using the weighted graph data, it is preserved
under isomorphisms. To be specific, if λ = (R1, . . . , Rn) and µ = (S1, . . . , Sn) are horizontal-
strips with ϕ : Π(λ)

∼−→ Π(µ) and the pair (Ri, Ri+1) is strict, then by rotating and cycling
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Figure 6.10: Examples of strict pairs of rows

Ri

Rj

Ri

Rj

Rk

to assume that l(Sϕi) < l(Sϕi+1
) and ϕi < ϕi+1, we have that the pair (Sϕi , Sϕi+1

) is strict
as well.

We now present the key property that motivates our definition of a strict pair.

Proposition 6.1.35. Let λ = (R1, . . . , Rn) be a horizontal-strip and suppose that the pair
of rows (Ri, Rj) is strict. Then Ri = Rj.

Proof. If 0 < Mi,j < min{|Ri|, |Rj|}, then Ri = Rj by (6.6), so suppose that Mi,j = 0
and Mi,k + Mj,k ≥ |Rk| + 1 for some k. Because l(Ri) < l(Rj) and Mi,j = 0, we have
that l(Ri) ≥ r(Rj) + 1 and because Mi,k,Mj,k ≤ |Rk|, we must have Mi,k,Mj,k > 0 so
l(Rk) ≤ r(Ri) + 1 ≤ l(Rj) ≤ r(Rk) + 1 by Proposition 6.1.4, Part 1. Now we either have
Mi,k = r(Ri)− l(Rk) + 1 +χ(i > k) or Mi,k = min{|Ri|, |Rk|} ≤ r(Ri)− l(Rk) + 1 +χ(i > k)
and similarly we have Mj,k ≤ r(Rk) − l(Rj) + 1 + χ(k > j). Because i < j, we have
χ(i > k) + χ(k > j) ≤ 1, so

|Rk|+ 1 ≤Mi,k +Mj,k ≤ |Rk|+ r(Ri)− l(Rj) + 1 + χ(i > k) + χ(k > j) ≤ |Rk|+ 1, (6.25)

so we must have equality everywhere and in particular, r(Rj)−l(Ri)+1 = 0, so Ri = Rj.

Remark 6.1.36. This proof shows that if l(Ri) < l(Rj) andMi,j = 0, then in factMi,k+Mj,k ≤
|Rk|+1 for all k, so we could replace the condition Mi,k+Mj,k ≥ |Rk|+1 with the equivalent
condition Mi,k +Mj,k = |Rk|+ 1.

Corollary 6.1.37. Let λ = (R1, . . . , Rn) be a horizontal-strip with a pair of adjacent strict
rows (Ri, Ri+1). Then λ is good.

Proof. Let µ = (S1, . . . , Sn) and ϕ : Π(λ)
∼−→ Π(µ). By definition, we have Mi,i+1(λ) <

min{|Ri|, |Ri+1|}, so Mϕi,ϕi+1
(µ) < min{|Sϕi |, |Sϕi+1

|} and l(Sϕi) 6= l(Sϕi+1
). Therefore, by

cycling and rotating, we may assume without loss of generality that l(Sϕi) < l(Sϕi+1
) and

ϕi < ϕi+1, so the pair (Sϕi , Sϕi+1
) is strict. By Proposition 6.1.35, we have Sϕi = Sϕi+1

, so
by Corollary 6.1.30, there exists a good substitute for (λ,µ).

We now investigate some useful properties of strict pairs.
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Proposition 6.1.38. Let λ = (R1, . . . , Rn) be a horizontal-strip with i < j, l(Ri) < l(Rj),
and Ri = Rj. Suppose that Ri = Rk and Rj = Rk for some k with k < i or k > j. Then
the pair (Ri, Rj) is strict.

Proof. By Corollary 6.1.5, Part 2, we cannot have Mi,j = min{|Ri|, |Rj|}, and if 0 < Mi,j <
min{|Ri|, |Rj|}, then we are done, so suppose that Mi,j = 0 and therefore l(Rj) = r(Ri) + 1
by Corollary 6.1.5, Part 2. Because Ri = Rk, by Proposition 6.1.4, Part 1 we must have
l(Rk) ≤ r(Ri) + 1 = l(Rj), and because Rj = Rk, we must have r(Rk) ≥ l(Rj)− 1 = r(Ri),
so by Corollary 6.1.5, Part 1, we in fact have l(Ri) < l(Rk) < l(Rj). Now by (6.5), we have

Mi,k +Mj,k = r(Ri)− l(Rk) + 1 +χ(i > k) + r(Rk)− l(Rj) + 1 +χ(k > j) = |Rk|+ 1, (6.26)

so the pair (Ri, Rj) is strict.

Proposition 6.1.39. Let λ = (R1, . . . , Rn) be a minimal noncommuting path and suppose
that for every 1 ≤ t′ ≤ n− 1, the pair (Rt′ , Rt′+1) is not strict. Then we have the following.

1. If l(Rt+1) > l(Rt), then Mt,t+1 = 0 and l(Rt+1) = r(Rt) + 1.

2. If l(Rt+1) > l(Rt) and l(Rt) < l(Rt−1), then Rt+1 � Rt−1.

3. If l(Rt+1) < l(Rt) and l(Rt) > l(Rt−1), then Rt−1 � Rt+1.

Proof.

1. By Corollary 6.1.5, Part 2 we cannot have Mt,t+1 = min{|Rt|, |Rt+1|}, and if 0 <
Mt,t+1 < min{|Rt|, |Rt+1|}, then the pair (Rt, Rt+1) would be strict, so we must have
Mt,t+1 = 0 and l(Rt+1) = r(Rt) + 1.

2. By the previous part, we must have Mt,t+1 = 0. By Proposition 6.1.17, Part 2, we must
have Rt−1 ≺ Rt+1 or Rt+1 ≺ Rt−1. However, if Rt−1 ≺ Rt+1, then because Mt−1,t > 0
by Corollary 6.1.5, Part 2, we would have Mt−1,t +Mt−1,t+1 ≥ |Rt−1|+ 1 and the pair
(Rt, Rt+1) would be strict, so we must have Rt+1 � Rt−1.

3. By rotating, this follows from the previous part.

Example 6.1.40. Figure 6.11 illustrates the contradictions that we deduce in the proofs of
Parts 2 and 3 of Proposition 6.1.39. If Rt−1 ≺ Rt+1 as on the left, then the pair (Rt, Rt+1)
would be strict, which is how we concluded that Rt+1 � Rt−1. If Rt+1 ≺ Rt−1 as on the
right, then the pair (Rt−1, Rt) would be strict, which is how we concluded that Rt−1 � Rt+1.

It will also be beneficial to make the following definition.
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Figure 6.11: Forbidden configurations in a minimal noncommuting path with no strict pairs
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Definition 6.1.41. Let λ = (R1, . . . , Rn) be a horizontal-strip. A strict sequence of λ is
a sequence of rows (Rj1 , . . . , Rjk) such that k ≥ 2, j1 < · · · < jk, Mjt,jt′

= 0 for every
1 ≤ t < t′ ≤ k, and there is some h with h < j1 or h > jk for which

Mjt,h > 0 for all 1 ≤ t ≤ k and Mj1,h + · · ·+Mjk,h ≥ |Rh|+ 1. (6.27)

Note that if a pair of rows (Ri, Rj) is a strict sequence, then it meets the second condition
of being a strict pair. Conversely, if a pair of rows (Ri, Rj) meets the second condition of
being a strict pair, then it is a strict sequence.

Example 6.1.42. In Figure 6.12, we have Mt,t′ = 0 for every 1 ≤ t < t′ ≤ 6, Mt,7 > 0 for
1 ≤ t ≤ 6, and M1,7 + · · · + M6,7 = 2 + 5 + 2 + 4 + 3 + 3 = 19 = |R7| + 1, so (R1, . . . , R6)
is a strict sequence. Informally, our next Proposition will show that every strict sequence
looks very much like this example. Because Mt,t′ = 0 for 1 ≤ t < t′ ≤ 6, the weighted graph
normally would not know about the relationship between these rows. However, the presence
of the row R7 glues these rows together and means that the weighted graph data forces the
adjacent rows not to commute.

Remark 6.1.43. Because we define a strict sequence using the weighted graph data, it is
preserved under isomorphisms. To be specific, if λ = (R1, . . . , Rn) and µ = (S1, . . . , Sn) are
horizontal-strips with ϕ : Π(λ)

∼−→ Π(µ), then if (Rj1 , . . . , Rjk) is a strict sequence, we can
cycle to assume that ϕh > ϕjt for every 1 ≤ t ≤ k. Because Mjt,jt′

(λ) = 0 for 1 ≤ t < t′ ≤ k,
the integers l(Sϕjt ) for 1 ≤ t ≤ k must be distinct, so we can let σ : {1, . . . , k} → {1, . . . , k}
be the permutation that sorts them in increasing order, in other words

l(Sϕjσ1
) < l(Sϕjσ2

) < · · · < l(Sϕjσk
). (6.28)

Then the sequence (Sϕjσ1
, . . . , Sϕjσk

) is strict.

Proposition 6.1.44. Let λ = (R1, . . . , Rn) be a horizontal-strip with a sequence of rows
(Rj1 , . . . , Rjk) with k ≥ 2, j1 < · · · < jk, Mjt,jt′

= 0 for every 1 ≤ t < t′ ≤ k, and there is
some h with h < j1 or h > jk for which Mjt,h > 0 for every 1 ≤ t ≤ k. Then this sequence
is strict if and only if l(Rjt+1) = r(Rjt) + 1 for every 1 ≤ t ≤ k − 1 and

l(Rj1) + χ(j1 > h) ≤ l(Rh) ≤ r(Rh) + χ(h > jk) ≤ r(Rjk). (6.29)
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Figure 6.12: An example of a strict sequence
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Proof. By Proposition 6.1.4 Part 2, because all of the Mjt,jt′
are zero, the integers l(Rjt) for

1 ≤ t ≤ k are distinct, so let σ : {1, . . . , k} → {j1, . . . , jk} sort the rows Rjt so that l(Rjt) is
increasing. Then because the Mjt,jt′

are zero we have

l(Rσ1) < r(Rσ1)+1+χ(σ1 > σ2) ≤ l(Rσ2) < r(Rσ2)+1+χ(σ2 > σ3) ≤ · · · ≤ l(Rσk). (6.30)

Because Mσ1,h > 0, we must have l(Rh) ≤ r(Rσ1) + 1 ≤ l(Rσ2) and because Mσk,h > 0, we
must have r(Rh) ≥ l(Rσk)− 1 ≥ r(Rσk−1

). We now have that

Mσ1,h ≤ r(Rσ1)− l(Rh) + 1 + χ(σ1 > h) ≤ l(Rσ2)− l(Rh) + χ(σ1 > h)− χ(σ1 > σ2)
(6.31)

Mσ2,h = |Rσ2| = r(Rσ2)− l(Rσ2) + 1 ≤ l(Rσ3)− l(Rσ2)− χ(σ2 > σ3)

...

Mσk−1,h = |Rσk−1
| = r(Rσk−1

)− l(Rσk−1
) + 1 ≤ l(Rσk)− l(Rσk−1

)− χ(σk−1 > σk)

Mσk,h ≤ r(Rh)− l(Rσk) + 1 + χ(h > σk).

Also note that χ(σ1 > h)− χ(σ1 > σ2)− · · · − χ(σk−1 > σk) + χ(h > σk) ≤ 1 with equality
only if σ1 < · · · < σk. Therefore, by summing the above equations, we have

k∑
t=1

Mσt,h ≤ r(Rh)− l(Rh) + 1 + 1 = |Rh|+ 1, (6.32)

so the sequence is strict if and only if we have equality everywhere, meaning that σ1 < · · · <
σk, l(Rjt+1) = r(Rjt) + 1 for 1 ≤ t ≤ k − 1, and (6.29) holds.
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Remark 6.1.45. This proof shows that if l(Rj1) < · · · < l(Rjk) and the Mjt,jt′
= 0, then in fact

Mj1,h+ · · ·+Mjk,h ≤ |Rh|+1 for all h, so we could replace the condition Mj1,h+ · · ·+Mjk,h ≥
|Rh|+ 1 with the equivalent condition Mj1,h + · · ·+Mjk,h = |Rh|+ 1.

Proposition 6.1.46. Let λ = (R1, . . . , Rn) be a horizontal-strip with a strict sequence of
rows (Rj1 , . . . , Rjk). Suppose that there is some jt < x < jt+1 with l(Rx) = l(Rjt+1) and
Rjt+1 � Rx. Then one of the following holds.

1. The sequence (Rj1 , . . . , Rjt , Rx) is strict.

2. There is a shorter strict sequence of the form (Rj1 , . . . , Rjt , Rx, Rjt′
, . . . , Rjk) for some

t′ ≥ t+ 2.

3. There is a strict pair (Rx, Rjt′+1
) for some t′ ≥ t+ 1.

Example 6.1.47. Informally, Proposition 6.1.46 describes a situation like the one in Figure
6.13. The sequence (Rj1 , . . . , Rj6) is the strict sequence from Example 6.1.42. The rows Rx1 ,
Rx2 , and Rx3 illustrate the three possibilities described in Proposition 6.1.46. Informally,
because Rx1 extends past Rj6 , the sequence (Rj1 , Rj2 , Rx1) is strict. Because Rx2 = Rj3 ∪
Rj4∪Rj5 , it can replace these rows to produce the shorter strict sequence (Rj1 , Rj2 , Rx2 , Rj6).
Finally, because Rx3 ends between the rows Rj4 and Rj5 , it results in the strict pair (Rx3 , Rj5).

Proof of Proposition 6.1.46. By the definition of a strict sequence, there is some h with
h < j1 or h > jk for which Mjt,h > 0 for all 1 ≤ t ≤ k and

∑k
t=1 Mjt,h ≥ |Rh| + 1, and

by cycling we may assume without loss of generality that h > jk, so that l(Rj1) ≤ l(Rh) <
r(Rh) + 1 ≤ r(Rjk) by (6.29). Noting that Rjt+1 � Rx, let t + 1 ≤ t′ ≤ k be maximal such
that Rjt′

≺ Rx. If t′ = k, then we must have r(Rx) ≥ r(Rjk) ≥ r(Rh) + 1 by Proposition
6.1.13 and now the sequence (Rj1 , . . . , Rjt , Rx) is strict by Proposition 6.1.44, so the first
possibility holds and we may now assume that t′ ≤ k − 1. By maximality of t′, we have
that Rjt′+1

⊀ Rx. If Mx,jt′+1
= 0, then we must have r(Rx) = r(Rjt′

) = l(Rjt′+1
) − 1 and

the sequence (Rj1 , . . . , Rjt , Rx, Rjt′+1
, . . . , Rjk) is strict by Proposition 6.1.44. Also note that

because Rx ⊀ Rjt+1 , we must have t′ > t+ 1 so this strict sequence is indeed shorter and the
second possibility holds. Finally, if Mx,jt′+1

> 0, then because l(Rx) = l(Rjt+1) < l(Rjt′+1
),

we have Rx ⊀ Rjt′+1
, and by maximality of t we have Rjt′+1

⊀ Rx, so 0 < Mx,jt′+1
<

min{|Rx|, |Rjt′+1
|}, the pair (Rx, Rjt′+1

) is strict, and the third possibility holds.

We now describe the structure of a minimal noncommuting path with no strict pairs.

Proposition 6.1.48. Let λ = (R1, . . . , Rn) be a minimal noncommuting path with l(R1) <
l(Rn) and R1 = Rn and suppose that for every 1 ≤ t ≤ n − 1, the pair (Rt, Rt+1) is not
strict. Then one of the following holds.

1. One of the sequences (R1, . . . , Rn−1), (R2, . . . , Rn−1), or (R2, . . . , Rn) is strict.

2. We have n = 4, l(R2) = l(R4) = r(R1)− 1 = r(R3)− 1, R4 � R2, and R1 � R3.
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Figure 6.13: A strict sequence with a row Rx as in Proposition 6.1.46

λ =

Rj1

Rj2

Rj3

Rx1

Rx2

Rx3

Rj4

Rj5

Rj6

Rh

Figure 6.14: Some minimal noncommuting paths with no internal strict pairs

Example 6.1.49. Informally, Proposition 6.1.48 tells us that a minimal noncommuting
path with no strict pairs (other than possibly (R1, Rn)) must look like one of the examples
in Figure 6.14.

Proof of Proposition 6.1.48. We consider several cases.

Case 0: We have n = 3.
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In this case, we have R1 = R2 and R2 = R3. Because l(R1) < l(R3), we must have
either l(R1) < l(R2), in which case the pair (R1, R2) is strict by Proposition 6.1.38, or
l(R2) < l(R3), in which case the pair (R2, R3) is strict by Proposition 6.1.38, a contradiction.

We may now assume that n ≥ 4, so it remains to consider the several possibilities out-
lined in Lemma 6.1.26.

Case 1: There is no i ≥ 3 for which R1 � Ri and there is no j ≤ n − 2 for which
Rn � Rj.

Case 1a: We have l(R2) > l(R1), l(Rn−1) < · · · < l(R2), and l(Rn) > l(Rn−1).
Because l(R2) > l(R1) and l(R3) < l(R2), we have R1 � R3 by Proposition 6.1.39, con-

tradicting our hypothesis.

Case 1b: We have l(Rn−1) > · · · > l(R1), Rt ≺ Rn for 2 ≤ t ≤ n − 2, and l(Rn) <
l(Rn−1).

By Proposition 6.1.39, we must have l(Rt+1) = r(Rt) + 1 for 1 ≤ t ≤ n − 2. Now by
Proposition 6.1.44, if M1,n > 0 then the sequence (R1, . . . , Rn−1) is strict and if M1,n = 0
then the sequence (R2, . . . , Rn−1) is strict, so the first possibility holds.

Case 1c: We have l(R2) < l(R1), l(Rn) > · · · > l(R2), and Rt ≺ R1 for 3 ≤ t ≤ n− 1.
By rotating, the conclusion follows from Case 1b.

We now assume that R1 � Ri for some minimal i ≥ 3 or Rn � Rj for some maximal
j ≤ n − 2. By rotating, we may assume that R1 � Ri for some minimal i ≥ 3. Note that
by Corollary 6.1.5, Part 2, we cannot have R1 ≺ Rn, so we have i ≤ n − 1. It remains to
consider the cases where i = n− 1 and where i ≤ n− 2.

Case 2: We have R1 � Ri for some minimal i ≥ 3, and in fact i = n− 1.

Case 2a: We have l(Ri−1) < · · · < l(R1) and l(Ri) > l(Ri−1).
By Proposition 6.1.18, Part 2, we have Ri−2 ≺ Ri, but because l(Ri−1) < l(Ri−2) and

l(Ri) > l(Ri−1), we have Ri � Ri−2 by Proposition 6.1.39, a contradiction.

Case 2b: We have l(Ri−1) > · · · > l(R1), Rt ≺ Rn for 2 ≤ t ≤ i−1, and l(Ri) < l(Ri−1).
Because l(Ri) < l(Ri−1) and l(Rn) > l(Ri), by Proposition 6.1.39, Part 2 we have

Rn � Ri−1, contradicting our hypothesis that Rt ≺ Rn for 2 ≤ t ≤ i− 1.

Case 2c: We have n = 4, l(R2) > l(R1), l(R3) < l(R2), and R4 � R2.
By Proposition 6.1.13, Proposition 6.1.4, and Proposition 6.1.39, Part 1, we must have

r(R1) + 1 = l(R2) ≤ l(R4) ≤ r(R1) + 1, so l(R2) = l(R4), and we must have l(R4) − 1 =
r(R3) ≥ r(R1) = l(R2)− 1 = l(R4)− 1, so r(R3) = r(R1). In particular, we have M1,n = 0.
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By Proposition 6.1.39, Parts 2 and 3, we must have R4 � R2 and R1 � R3 and the second
possibility holds.

Case 3: We have Ri � Ri for some minimal 3 ≤ i ≤ n− 2.
If l(Ri−1) < l(Ri−2) and l(Ri) > l(Ri−1), then by Proposition 6.1.18, Part 2, we have

Ri−2 ≺ Ri, but by Proposition 6.1.39, Part 2 we have Ri � Ri−2, a contradiction. Therefore,
by Lemma 6.1.26, we must have i = j = 3, l(R2) > l(R1), Rn � R2, and l(R3) < l(R2).
Similarly, by rotating, we must have i = j = n − 2, so n = 5, l(R5) > l(R4), R1 � R4,
and l(R4) < l(R3). However, by Proposition 6.1.18, Parts 1 and 2, we have R2 ≺ R4 and
R4 ≺ R2, which is impossible because n ≥ 5.

We now describe another operation that we can perform on a horizontal-strip while
preserving similarity. We can think of it as a local rotation.

Lemma 6.1.50. Let λ = (R1, . . . , Rn) and suppose that l(Ri) = r(Ri−1) + 1 for some
2 ≤ i ≤ n. Assume that λ satisfies the inductive hypothesis (6.9) in Lemma 6.1.10. Let
I = {1, . . . , i− 2, i+ 1, . . . , n} and define the four disjoint subsets of I

A = {t ∈ I : Mi−1,t = Mi,t = 0},
B = {t ∈ I : Ri−1 ≺ Rt, Ri ≺ Rt},

Ci−1 = {t ∈ I : Rt ≺ Ri−1, Mi,t = 0, Ma,t = 0 for all a ∈ A, Rt ≺ Rb for all b ∈ B},
Ci = {t ∈ I : Rt ≺ Ri, Mi−1,t = 0, Ma,t = 0 for all a ∈ A, Rt ≺ Rb for all b ∈ B}.

Let C = Ci−1∪Ci∪{i−1, i} and suppose that A∪B∪C = {1, . . . , n}, in other words every
row of λ falls into one of these categories. Then there is a horizontal-strip µ = (S1, . . . , Sn) ∈
S(λ) and ϕ : Π(λ)

∼−→ Π(µ) with l(Sϕt) = l(Rt) for all t ∈ A ∪B and l(Sϕi) = l(Ri−1).

Example 6.1.51. Figure 6.15 illustrates a situation where we can apply Lemma 6.1.50.
The rows below λ with crosses signify rows that cannot be present because the condition
A ∪ B ∪ C = {1, . . . , n} requires that every row of λ be either disjoint from Ri−1 and Ri,
contained in Ri−1, contained in Ri, or containing both. Lemma 6.1.50 allows us to locally
rotate the six rows of C to produce the similar horizontal-strip µ. Although our proof
constructs this specific µ, we will only need that l(Sϕt) = l(Rt) for all t ∈ A ∪ B and
l(Sϕi) = l(Ri−1).

Proof of Lemma 6.1.50. Informally, we will first use commuting and cycling to bring the
rows of C together. To be specific, we first claim that if t ∈ Ci and t′ /∈ Ci with i < t′ < t,
then Rt ↔ Rt′ . Because t ∈ Ci, we have Rt ≺ Ri and Mi−1,t = 0, so by Proposition 6.1.13
we have l(Ri) ≤ l(Rt) ≤ r(Rt) ≤ r(Ri). Now if t′ ∈ A, then Mi−1,t′ = Mi,t = Mt,t′ = 0, so
either r(Rt′) < l(Ri−1)− 1 < l(Rt)− 1 and Rt ↔ Rt′ by Proposition 6.1.4, Parts 2 and 3, or
l(Rt′) > r(Ri) ≥ r(Rt) ≥ l(Rt), but now we cannot have Rt = Rt′ by Corollary 6.1.5, Part
2. If t′ ∈ B, then Rt′ ≺ Ri−1, so by Proposition 6.1.13 we have l(Rt′) ≤ l(Ri−1)− 1 < l(Rt),
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Figure 6.15: A horizontal-strip λ and a local rotation µ

λ =

Ri−1

Ri

µ =

Sϕi

Sϕi−1
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but now we cannot have Rt = Rt′ by Corollary 6.1.5, Part 2. If t′ ∈ Ci−1, then because
Rt′ ≺ Ri−1 and Mi,t′ = 0, we have r(Rt′) < l(Ri)−1 ≤ l(Rt)−1, so Rt ↔ Rt′ by Proposition
6.1.4, Part 1. This establishes our claim.

Therefore, by cycling and commuting, we may assume that Ci = {i+ 1, . . . , y} for some
y and similarly, by considering a rotation of λ, we may assume that Ci−1 = {x, . . . , i − 2}
for some x. In particular, we have l(Ri−1) ≤ l(Rt) ≤ r(Rt) ≤ r(Ri−1) for every t ∈ Ci−1 and
l(Ri) ≤ l(Rt) ≤ r(Rt) ≤ r(Ri) for every t ∈ Ci. To summarize, we have

λ = (R1, . . . , Rx−1, Rx, . . . , Ri−2, Ri−1, Ri, Ri+1, . . . , Ry, Ry+1, . . . , Rn), (6.33)

where A∪B = {1, . . . , x−1}∪{y+ 1, . . . , n}, Ci−1 = {x, . . . , i−2}, and Ci = {i+ 1, . . . , y}.

Now let N = l(Ri−1) + r(Ri) and define the horizontal-strip µ = (S1, . . . , Sn) by St = Rt

if t < x or t > y, and St = N −Rx+y−t otherwise, that is

µ = (R1, . . . , Rx−1, N −Ry, . . . , N −Ri, N −Ri−1, . . . , N −Rx, Ry+1, . . . , Rn), (6.34)

and define ϕ : {1, . . . , n} → {1, . . . , n} by ϕt = t if t < x or t > y and ϕt = x + y − t
otherwise. Indeed, we have l(Sϕt) = l(Rt) for all t ∈ A ∪ B and l(Sϕi) = `(N − Ri) =
l(Ri−1)+r(Ri)−r(Ri) = l(Ri−1). We claim that ϕ : Π(λ)

∼−→ Π(µ). We have |Rt| = |Sϕt| for
every 1 ≤ t ≤ n, so it remains to check that the edge weights are preserved. If t, t′ ∈ A ∪B,
then the relative positions of Rt and Rt′ have not changed, so indeed Mt,t′(λ) = Mϕt,ϕt′

(µ).
If t, t′ ∈ C, then this follows because M(Rt, Rt′) = M(N − Rt′ , N − Rt). Now suppose that
t ∈ A∪B and t′ ∈ C. We have either t′ < i− 1 and Rt′ ≺ Ri−1 or t′ > i and Rt′ ≺ Ri, so in
either case we have

l(Ri−1) ≤ l(Rt′) ≤ r(Rt′) ≤ r(Ri), so l(Ri−1) ≤ `(N −Rt′) ≤ r(N −Rt′) ≤ r(Ri). (6.35)

Also note that χ(t > i) = χ(t > i − 1) = χ(t > t′) = χ(t > x + y − t′). Now if t ∈ A, we
have either

l(Rt) > r(Ri) + χ(i > t) ≥ r(N −Rt′) + χ(i > x+ y − t′) or (6.36)

r(Rt) < l(Ri−1)− χ(t > i) ≤ `(N −Rt′)− χ(t > x+ y − t′), (6.37)

so in either case, we have Mϕt,ϕt′
(µ) = 0. Similarly, if t ∈ B, we have

l(Rt) ≤ l(Ri−1) + χ(i− 1 > t) ≤ `(N −Rt′) + χ(x+ y − t′ > t) and (6.38)

r(Rt) ≥ r(Ri)− χ(t > i) ≥ r(N −Rt′)− χ(t > x+ y − t′), (6.39)

so we have N −Rt′ ≺ Rt and Mϕt,ϕt′
(µ) = |Sϕt′ |.
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Finally, we show that Gλ(x; q) = Gµ(x; q). Define the horizontal-strips

λ′ = (R1, . . . , Ri, Ri−1, . . . , Rn), (6.40)

λ′′ = (R1, . . . , Ri−1 ∪Ri, Ri−1 ∩Ri, . . . , Rn), (6.41)

µ′ = (R1, . . . , N −Ry, . . . , N −Ri−1, N −Ri, . . . , N −Rx, . . . , Rn), and (6.42)

µ′′ = (R1, . . . , (N −Ri) ∪ (N −Ri−1), (N −Ri) ∩ (N −Ri−1), . . . , Rn). (6.43)

Because Proposition 4.1.18 describes exactly how to derive the weighted graphs Π(λ′) and
Π(λ′′) from Π(λ), we have that Π(λ′) ∼= Π(µ′) and Π(λ′′) ∼= Π(µ′′). We also have n(λ′′) <
n(λ), n(λ′) = n(λ), and M(λ′) > M(λ), so because λ satisfies (6.9) by hypothesis, we have
that Gλ′(x; q) = Gµ′(x; q) and Gλ′′(x; q) = Gµ′′(x; q). Finally, by (4.27), we have

Gλ(x; q) =
1

q
Gλ′(x; q) +

q − 1

q
Gλ′′(x; q) =

1

q
Gµ′(x; q) +

q − 1

q
Gµ′′(x; q) = Gµ(x; q). (6.44)

This completes the proof.

The hypothesis of Lemma 6.1.50 that A ∪ B ∪ C = {1, . . . , n} is a little technical so it
will be convenient to rephrase it as follows.

Proposition 6.1.52. Let λ = (R1, . . . , Rn) be a horizontal-strip with l(Ri) = r(Ri−1) + 1
and define the sets A, B, C, and I as in Lemma 6.1.50. If the following hold for every t ∈ I,
then we have A ∪B ∪ C = {1, . . . , n}.

1. If Mi−1,t > 0 and Mi,t > 0, then Ri−1 ≺ Rt and Ri ≺ Rt.

2. If Mi−1,t > 0 and Mi,t = 0, then Rt ≺ Ri−1.

3. If Mi−1,t = 0 and Mi,t > 0, then Rt ≺ Ri.

4. If Rt ≺ Ri−1, then Mi,t = 0, Ma,t = 0 for all a ∈ A, and Rt ≺ Rb for all b ∈ B.

5. If Rt ≺ Ri, then Mi−1,t = 0, Ma,t = 0 for all a ∈ A, and Rt ≺ Rb for all b ∈ B.

Proof. Let t ∈ I. We need to show that t ∈ A∪B ∪Ci−1 ∪Ci. The integers Mi−1,t and Mi,t

are either zero or nonzero. If Mi−1,t = Mi,t = 0, then t ∈ A. If Mi−1,t > 0 and Mi,t > 0, then
by (1) we have t ∈ B. If Mi−1,t > 0 and Mi,t = 0, then by (2) and (4) we have t ∈ Ci−1. If
Mi−1,t = 0 and Mi,t > 0, then by (3) and (5) we have t ∈ Ci.

The next Lemma is very technical but it is the key idea that uses local rotation to extend
Corollary 6.1.37 to strict sequences.

Lemma 6.1.53. Let λ = (R1, . . . , Rn) be a horizontal-strip with a sequence (Rj1 , . . . , Rjk)
with k ≥ 2, j1 < · · · < jk, l(Rjt+1) = r(Rjt) + 1 for 1 ≤ t ≤ k − 1, and suppose that there is



CHAPTER 6. PROOF OF THEOREM 3.1.8 74

Figure 6.16: An example where we can apply Lemma 6.1.53

λ =

Rj1

Rj2

Rj3

Rj4

µ =

Sϕj2

Sϕj4

Sϕj1

Sϕj3

no noncommuting path in λ from Rjt to Rjt+1 for any 1 ≤ t ≤ k−1. Assume that λ satisfies

(6.9). Let µ = (S1, . . . , Sn) and ϕ : Π(λ)
∼−→ Π(µ) be such that

for some permutation σ : {1, . . . , k} → {1, . . . , k} we have l(Sϕjσt+1
) = r(Sϕjσt ) + 1 (6.45)

for every 1 ≤ t ≤ k − 1. Then there exists a good substitute for (λ,µ).

Example 6.1.54. Figure 6.16 illustrates a situation where Lemma 6.1.53 applies. Informally,
the condition (6.45) asks that these rows in λ still link end to end in µ, although they may
be permuted. In this example, we have σ1 = 2, σ2 = 4, σ3 = 1, and σ4 = 3.

Remark 6.1.55. If (Rj1 , . . . , Rjk) is a strict sequence of λ, then k ≥ 2, j1 < · · · < jk, and by
Proposition 6.1.44, l(Rjt+1) = r(Rjt) + 1 for 1 ≤ t ≤ k − 1. Moreover, if µ = (S1, . . . , Sn)

and ϕ : Π(λ)
∼−→ Π(µ), then by Remark 6.1.43 and by cycling µ if necessary, there will

be a permutation σ : {1, . . . , k} → {1, . . . , k} with (Sϕjσ1
, . . . , Sϕjσk

) a strict sequence and

therefore l(Sϕjσt+1
) = r(Sϕjσt ) + 1 for every 1 ≤ t ≤ k − 1. Therefore, a strict sequence

satisfies the hypothesis (6.45) of Lemma 6.1.53.

Remark 6.1.56. Informally, the strategy will be to apply Lemma 6.1.50 to perform a series
of local rotations to permute the rows of λ to match those of µ. We will be able to perform
these local rotations unless some other row Rt of λ violates some condition of Proposition
6.1.52, forcing certain rows of λ to link end to end. However, in this case, these rows of λ
will be a proper subset of rows that satisfies (6.45) and we can use induction to reason about
these rows.

Proof of Lemma 6.1.53. We use induction on k. If k = 2, then because l(Rj2) = r(Rj1) + 1
and by hypothesis there is no noncommuting path in λ from Rj1 to Rj2 , we can use Lemma
6.1.16 to replace λ with a similar horizontal-strip as necessary to assume that j2 = j1+1, and
then by (6.45) we have either l(Sϕj2 ) = r(Sϕj1 ) + 1 or l(Sϕj1 ) = r(Sϕj2 ) + 1, so Sϕj1 = Sϕj2
and the result follows from Corollary 6.1.30. So we now assume that k ≥ 3 and that the
result holds for 2 ≤ k′ ≤ k−1. Note that if J ⊆ {1, . . . , k} is an interval with 2 ≤ |J | ≤ k−1
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and such that σ−1(J) = {1 ≤ t′ ≤ k : σt′ ∈ J} ⊆ {1, . . . , k} is an interval, then the sequence
of rows (Rjt : t ∈ J) satisfies (6.45) and we are done by our induction hypothesis on k. In
particular, if σ1 = 1 or σk = 1, then we can take J = {2, . . . , k}, and if σ1 = k or σk = k,
then we can take J = {1, . . . , k − 1}, so we may assume that

2 ≤ σ1, σk ≤ k − 1, (6.46)

and in particular, we may assume that k ≥ 4.

We now continue to use our induction hypothesis to make several additional simplifying
assumptions. For 1 ≤ t ≤ n such that t 6= jt′ for any 1 ≤ t′ ≤ k, consider the sets

Et = {1 ≤ t′ ≤ k : Rjt′
≺ Rt} and Ft = {1 ≤ t ≤ k : Mjt′ ,t

(λ) > 0}. (6.47)

Note that Et ⊆ Ft. Also, if t1 < t2 < t3 and t1, t3 ∈ Ft, then by Proposition 6.1.4, Parts 1
and 3, we have

l(Rt) ≤ r(Rjt1
) + 1 ≤ l(Rjt2

) ≤ r(Rjt2
) ≤ l(Rjt3

)− 1 ≤ r(Rt), (6.48)

so by Proposition 6.1.13 we have Rt2 ≺ Rt and t2 ∈ Et, so Et and Ft are intervals in {1, . . . , k}
and |Et| ≥ |Ft| − 2. Similarly, consider the sets

E ′t = {1 ≤ t′ ≤ k : Sϕjσt′
≺ Sϕt} and F ′t = {1 ≤ t′ ≤ k : Mϕjσt′

,ϕt(µ) > 0}. (6.49)

Note that E ′t ⊆ F ′t , E
′
t = σ−1(Et), F

′
t = σ−1(Ft) and as before, if t1 < t2 < t3 and t1, t3 ∈ F ′t ,

then by Proposition 6.1.4, Parts 1 and 3, we have

l(Sϕt) ≤ r(Sϕjσt1
) + 1 ≤ l(Sϕjσt2

) ≤ r(Sϕjσt2
) ≤ l(Sϕjσt3

)− 1 ≤ r(Sϕt), (6.50)

so by Proposition 6.1.13, we have Sϕjσt2
≺ Sϕt and t2 ∈ E ′t, so E ′t and F ′t are intervals

in {1, . . . , k}. Therefore, if 2 ≤ |Ft| ≤ k − 1, then taking J = Ft above we are done
by our induction hypothesis on k. Similarly, if |Ft| = k and |Et| ≤ k − 1, then because
|Et| ≥ k − 2 ≥ 2, taking J = Et above we are done by our induction hypothesis on k. This
means that we may assume that

if |Ft| ≥ 2, then Et = Ft = {1, . . . , k}. (6.51)

Now suppose that Ft = {t′}. Our goal is to show that we may assume that Rt ≺ Rjt′
,

that Ma,t(λ) = 0 for every a with Ma,jt′
(λ) = 0, and Rt ≺ Rb for every b with Rjt′

≺ Rb.

Suppose that Rt ⊀ Rjt′
. If 2 ≤ t′ ≤ k − 1, then Mjt′−1,t

(λ) = 0 and Mjt′+1,t
(λ) = 0 by

definition of Ft and by Proposition 6.1.4, Parts 1 and 3, we would have

l(Rjt′
) = r(Rjt′−1

) + 1 ≤ l(Rt) ≤ r(Rt) ≤ l(Rjt′+1
)− 1 = r(Rjt′

) (6.52)
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and therefore Rt ≺ Rjt′
by Proposition 6.1.13. This means that we must have t′ = 1 or k

and for the same reason, σt′ = 1 or k, but this contradicts our assumption (6.46). Therefore,
we must have Rt ≺ Rjt′

.

Now suppose that there is some a with Ma,jt′
(λ) = 0 but Ma,t(λ) > 0. Because Rt ≺ Rjt′

,
we have Mjt′ ,t

(λ) + Ma,t(λ) ≥ |Rt| + 1, so either jt′ < a and the pair (Rjt′
, Ra) is strict,

or a < jt′ and the pair (Ra, Rjt′
) is strict. In either case, by Proposition 6.1.35 we have

Rjt′
= Ra, and by Corollary 6.1.5, Part 3, we have either

l(Ra) = r(Rjt′
) + 1 = l(Rjt′+1

) or l(Rjt′
) = r(Ra) + 1. (6.53)

In particular, if t′ = 1, then either Fa = ∅ or {2}, if 2 ≤ t′ ≤ k− 1, then either Fa = {t′− 1}
or {t′ + 1}, and if t′ = k, then either Fa = ∅ or {k − 1}. Similarly, F ′a is either empty, in
which case σt′ = 1 or k, or F ′a and F ′t consist of consecutive singletons. Therefore, if Fa = ∅,
then this contradicts (6.46), and otherwise, taking J = Ft∪Fa we are done by our induction
hypothesis on k.

Next, let us suppose that for some b we have Rjt′
≺ Rb but Rt ⊀ Rb. If 2 ≤ t′ ≤ k − 1,

then Mjt′−1,t
(λ) = 0 and Mjt′+1,t

(λ) = 0 by definition of Ft and by Proposition 6.1.4, Parts
2 and 3, we would have

l(Rjt′
) = r(Rjt′−1

) + 1 ≤ l(Rt) ≤ r(Rt) ≤ l(Rjt′+1
)− 1 = r(Rjt′

). (6.54)

Now if Rjt′
⊆ Rb, we would have Rt ⊆ Rjt′

⊆ Rb and Rt ≺ Rb by Proposition 6.1.13,
so we must have either Rjt′

⊆ R+
b and l(Rb) ≤ l(Rjt′

) − 1 = r(Rjt′−1
), or Rjt′

⊆ R−b
and r(Rb) ≥ r(Rjt′

) + 1 = l(Rjt′+1
). However, this means that either {t′ − 1, t′} ⊆ Fb

or {t′, t′ + 1} ⊆ Fb, so by (6.51) we must have Fb = {1, . . . , k}, so Mjt′−1,t
(λ) > 0 and

Mjt′+1,t
(λ) > 0, and by Proposition 6.1.13, we have

l(Rb) ≤ r(Rjt′−1
) + 1 = l(Rjt′

) ≤ l(Rt) ≤ r(Rt) ≤ r(Rjt′
) = l(Rjt′+1

)− 1 ≤ r(Rb) (6.55)

and Rt ≺ Rb by Proposition 6.1.13 after all. Therefore, if Rjt′
≺ Rb but Rt ⊀ Rb, we must

have t′ = 1 or k and for the same reason, σt′ = 1 or k, but this contradicts our assumption
(6.46). To summarize, we may assume that

if |Ft| ≥ 2, then Et = Ft = {1, . . . , k}, and if Ft = {t′}, then Rt ≺ Rjt′
, (6.56)

Ma,t(λ) = 0 whenever Ma,jt′
(λ) = 0, and Rt ≺ Rb whenever Rjt′

≺ Rb.

Let t0 and t1 be such that t0 < t1 and {t0, t1} = {σ1, σ2}, and let x = jt0 and y = jt1 . Note
that we have x < y, l(Ry) ≥ r(Rx) + 1, and Sϕx = Sϕy . We use induction on l(Ry)− r(Rx).
If l(Ry)− r(Rx) = 1, then t1 = t0 + 1 and because there is no noncommuting path in λ from
Rx to Ry, we may use Lemma 6.1.16 to assume that y = x + 1. In this case, it now follows
from Corollary 6.1.30 that there exists a good substitute for (λ,µ). So we now assume that
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l(Ry) − r(Rx) ≥ 2, so in particular t1 ≥ t0 + 2. Because there is no noncommuting path in
λ from Rjt1−1 to Ry, we may use Lemma 6.1.16 to assume that y = jt1−1 + 1.

Our plan now is to apply Lemma 6.1.50 to the rows Ry−1 and Ry to replace λ with a
similar horizontal-strip for which l(Ry) has decreased and r(Rx) has not changed, so that we
will be done by our induction hypothesis on l(Ry)−r(Rx). It remains to check the conditions
of Proposition 6.1.52.

1. If My−1,t(λ) > 0 and My,t(λ) > 0, then |Ft| ≥ 2, so by (6.56) we have Et = {1, . . . , k},
so Ry−1 ≺ Rt and Ry ≺ Rt.

2. If My−1,t(λ) > 0 and My,t(λ) = 0, then t1 − 1 ∈ Ft and t1 /∈ Ft, so by (6.56) we must
have Ft = {t1 − 1} and then Rt ≺ Ry−1.

3. If My−1,t(λ) = 0 and My,t(λ) > 0, then t1 − 1 /∈ Ft and t1 ∈ Ft, so by (6.56) we must
have Ft = {t1} and Rt ≺ Ry.

4. If Rt ≺ Ry−1, then t1 − 1 ∈ Ft. By Proposition 6.1.4, Part 1, and because x < y, we
cannot have both Mx,t(λ) > 0 and My,t(λ) > 0 because then

l(Rt) ≤ r(Rx) + χ(x > t) and r(Rt) ≥ l(Ry)− χ(t > y), so (6.57)

|Rt| = r(Rt)− l(Rt) + 1 ≥ l(Ry)− r(Rx) + 1− χ(t > y)− χ(x > t)

= r(Ry−1) + 1− l(Ry−1) + 1 + 1− χ(t > y)− χ(x > t) > |Ry−1|,

contradicting Rt ≺ Ry−1 by Proposition 6.1.13. Therefore, either t0 /∈ Ft or t1 /∈ Ft,
so by (6.56) we must have Ft = {t1 − 1} and My,t(λ) = 0. Moreover, if a ∈ A, then
in particular Ma,y(λ) = 0, so by (6.56) we have Ma,t(λ) = 0, and if b ∈ B, then in
particular we have Ry−1 ≺ Rb, so by (6.56) we have Rt ≺ Rb as well.

5. If Rt ≺ Ry, then t1 ∈ Ft. By Proposition 6.1.13 and because x < y, we cannot have
Mx,t(λ) > 0 because then

l(Rt) ≤ r(Rx) + χ(x > t) ≤ l(Ry−1)− 1 + χ(x > t) ≤ r(Ry−1)− 1 + χ(x > t) (6.58)

= l(Ry−1)− 1− 1 + χ(x > t) ≤ l(Ry)− 1− χ(t > y) < l(Ry)− χ(t > y),

contradicting Rt ≺ Ry by Proposition 6.1.13. Therefore, t0 /∈ Ft, so by (6.56) we
must have Ft = {t1} and My−1,t(λ) = 0. Moreover, if a ∈ A, then in particular
Ma,y−1(λ) = 0, so by (6.56) we have Ma,t(λ) = 0, and if b ∈ B, then in particular we
have Ry ≺ Rb, so by (6.56) we have Rt ≺ Rb as well.

This concludes our verification of the conditions of Proposition 6.1.52. Therefore, the
result follows by Lemma 6.1.50 and our induction hypothesis on l(Ry)− r(Rx).

We now generalize Corollary 6.1.37 to the case where λ has a pair of strict rows that are
not necessarily adjacent.
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Corollary 6.1.57. Let λ = (R1, . . . , Rn) be a horizontal-strip that satisfies (6.9). If λ has a
strict sequence (Rj1 , . . . , Rjk) such that the pairs (Ri′ , Rj′) are not strict for j1 ≤ i′ < j′ ≤ jk,
then λ is good.

Proof. Because λ has a strict sequence (Rj1 , . . . , Rjk) such that the pairs (Ri′ , Rj′) are not
strict for j1 ≤ i′ < j′ ≤ jk, we may assume that (Rj1 , . . . , Rjk) is such a strict sequence with
jk− j1 minimal, and among such strict sequences, with k minimal. Now if there is a minimal
noncommuting path in λ from Rjt to Rjt+1 for any 1 ≤ t ≤ k−1, then by Proposition 6.1.48,
there is either a strict sequence between Rjt and Rjt+1 , contradicting minimality of jk − j1,
or there is some jt < x < jt+1 with l(Rx) = l(Rjt+1) and Rjt+1 � Rx, but in that case by
Proposition 6.1.46 there is either a strict sequence between nearer rows, contradicting mini-
mality of jk− j1, there is a shorter strict sequence from Rj1 to Rjk , contradicting minimality
of k, or there is a strict pair, contradicting our hypothesis. Therefore, there is no minimal
noncommuting path in λ from Rjt to Rjt+1 for any 1 ≤ t ≤ k − 1.

Now let µ = (S1, . . . , Sn) and ϕ : Π(λ)
∼−→ Π(µ). By cycling, we may assume without loss

of generality that ϕh > ϕjt for every 1 ≤ t ≤ k. Because Mjt,jt+1(λ) = 0 for 1 ≤ t ≤ k − 1,
the integers l(Sϕjt ) for 1 ≤ t ≤ k must be distinct, so let σ : {1, . . . , k} → {1, . . . , k} be the
permutation that sorts them in increasing order, in other words

l(Sϕjσ1
) < l(Sϕjσ2

) < · · · < l(Sϕjσk
). (6.59)

Now the sequence (Sϕjσ1
, . . . , Sϕjσk

) is strict, so by Lemma 6.1.53 there exists a good substi-

tute for (λ,µ).

Corollary 6.1.58. Let λ = (R1, . . . , Rn) be a horizontal-strip that satisfies (6.9). If λ has
a pair of strict rows, then λ is good.

Proof. Because λ has a pair of strict rows, we may assume that (Ri, Rj) is a strict pair with
j − i minimal, in other words the pairs (Ri′ , Rj′) are not strict for i ≤ i′ < j′ ≤ j with
j′ − i′ < j − i. Also note that if there is no minimal noncommuting path in λ from Ri to
Rj, then by Lemma 6.1.16 we may replace λ with a similar horizontal-strip as necessary to
assume that j = i + 1, in which case we are done by Corollary 6.1.37. Therefore, we may
assume that there is a minimal noncommuting path in λ from Ri to Rj. By Proposition
6.1.48, there is either a strict sequence (Rj1 , . . . , Rjk) in λ such that the pairs (Ri′ , Rj′) are
not strict for j1 ≤ i′ < j′ ≤ jk, in which case we are done by Corollary 6.1.57, or we have
Mi,j = 0 and there is i < x < j with l(Rx) = l(Rj) and Rj � Rx. However, in the latter case,
because the pair (Ri, Rj) is strict, then since Mi,j = 0 we must have Mi,k +Mj,k = |Rk|+ 1
for some k, but now Mi,k + Mx,k ≥ Mi,k + Mj,k = |Rk| + 1 so the pair (Ri, Rx) is strict,
contradicting minimality of j − i.

Corollary 6.1.59. Let λ = (R1, . . . , Rn) be a horizontal-strip that satisfies (6.9). If λ has
a strict sequence (Rj1 , . . . , Rjk), then λ is good.
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Figure 6.17: A nesting horizontal-strip

Proof. By Corollary 6.1.58, we may assume that λ has no strict pairs, after which the result
follows by Corollary 6.1.57.

By Corollary 6.1.58 and Corollary 6.1.59, we may assume in completing the proof of
Lemma 6.1.10 that there are no strict pairs or strict sequences in λ or any similar horizontal-
strip. It will be convenient to make the following definition.

Definition 6.1.60. Let λ = (R1, . . . , Rn) be a horizontal-strip. We say that λ is nesting if
for every 1 ≤ i < j ≤ n we have either Mi,j = 0, Ri ≺ Rj, or Rj ≺ Ri, and if Mi,j = 0, then
Mi,k +Mj,k ≤ |Rk| for every k.

Example 6.1.61. An example of a nesting horizontal-strip is given in Figure 6.17. Infor-
mally, every pair of rows is either disjoint or one is contained in the other, up to possibly
shifting by one cell.
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We can now summarize Corollary 6.1.58 as follows.

Corollary 6.1.62. Let λ = (R1, . . . , Rn) be a horizontal-strip that satisfies (6.9). If λ is
not nesting, then λ is good.

Proof. If λ is not nesting, then there is some 1 ≤ i < j ≤ n with either 0 < Mi,j <
min{|Ri|, |Rj|} or Mi,j = 0 and Mi,k + Mj,k ≥ |Rk| + 1 for some k. By rotating, we may
assume that l(Ri) < l(Rj) so that the pair (Ri, Rj) is strict, and then the result follows from
Corollary 6.1.58.

We now explore some properties of nesting horizontal-strips.

Proposition 6.1.63. Let λ = (R1, . . . , Rn) be a nesting horizontal-strip.

1. The pairs (Ri, Rj) are not strict for 1 ≤ i < j ≤ n.

2. If Ri ≺ Rj and Rj ≺ Rk, then Ri ≺ Rk. In other words, the relation ≺ is transitive on
the rows of λ.

3. If Ri ≺ Rj and Mj,k = 0, then Mi,k = 0.

4. We cannot have i < x < y < j with l(Rx) = l(Rj) = r(Ri)− 1 = r(Ry)− 1, Rj � Rx,
and R1 � Ry.

Proof.

1. This follows directly from the definitions of strictness and nesting.

2. Because Mi,j + Mj,k = |Ri| + |Rj| ≥ |Rj| + 1, then by definition of nesting we cannot
have Mi,k = 0, so we must have Ri ≺ Rk or Rk ≺ Ri. If Rk ≺ Ri, then by Proposition
6.1.13 we have |Rk| ≤ |Ri| ≤ |Rj| ≤ |Rk|, so |Ri| = |Rk| and in fact Ri ≺ Rk as well.

3. Because Mj,k = 0, by definition of nesting we must have Mi,j+Mi,k = |Ri|+Mi,k ≤ |Ri|,
so we must have Mi,k = 0.

4. Because the conditions Rj � Rx and R1 � Ry imply that |Rx| ≥ 2 and |Ry| ≥ 2, then
we would have Mx,y = 1 < min{|Rx|, |Ry|}, contradicting that λ is nesting.

Proposition 6.1.64. Let λ = (R1, . . . , Rn) be a nesting minimal noncommuting path with
l(R1) < l(Rn), M1,n = 0, and R1 ↔ Rn. Then we have l(Rt+1) = r(Rt) + 1 for every
1 ≤ t ≤ n− 1.

Example 6.1.65. Informally, Proposition 6.1.64 states that if λ is nesting, a minimal non-
commuting path must look like the example in Figure 6.18.
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Figure 6.18: A minimal noncommuting path in a nesting horizontal-strip

λ =

R1

Rn

Proof of Proposition 6.1.64. If l(Rn−1) > l(Rn), then because l(R1) < l(Rn), we must have
l(Rt−1) < l(Rt) for some maximal 2 ≤ t ≤ n − 1. But then we must have Rt−1 � Rt+1 by
Proposition 6.1.39 and therefore R1 ≺ Rt+1 by Proposition 6.1.18, Part 1, which is impossible
by Proposition 6.1.13 because l(R1) < l(Rn) ≤ l(Rt+1). Therefore, we must have l(Rn−1) <
l(Rn), and more specifically, because Mn−1,n < min{|Rn−1|, |Rn|} by Corollary 6.1.5, Part
2 and because λ is nesting, we must have Mn−1,n = 0 and r(Rn−1) = l(Rn) − 1 > r(R1).
Similarly, by rotating, we must have l(R2) = r(R1) + 1 < l(Rn). Note that if n = 3, then
this proves our claim, so we now use induction on n ≥ 4.

If l(R1) < l(Rn−1), then because R1 ↔ Rn−1 by minimality of the noncommuting path
and therefore M1,n−1 = 0 by Proposition 6.1.4, we have by our induction hypothesis that
l(Rt+1) = r(Rt) + 1 for every 1 ≤ t ≤ n− 2, which proves our claim. Similarly, by rotating,
we are done if r(R2) < r(Rn). Therefore, the only remaining case to consider is when
l(Rn−1) ≤ l(R1) and r(R2) ≥ r(Rn). However, we would have R1 ≺ Rn−1 and Rn ≺ R2 by
Proposition 6.1.13, and

l(Rn−1) ≤ l(R1) ≤ r(R1) + 1 = l(R2) ≤ r(Rn−1) = l(Rn)− 1 ≤ r(Rn) ≤ r(R2), (6.60)

and therefore M2,n−1 > 0 by Proposition 6.1.4 Parts 2 and 3. Because λ is nesting, we
must have either R2 ≺ Rn−1 or Rn−1 ≺ R2, but if R2 ≺ Rn−1, we have M2,n−1 + M2,n =
|R2|+|Rn| ≥ |R2|+1, and if Rn−1 ≺ R2, we have M1,n−1+M2,n−1 = |R1|+|Rn−1| ≥ |Rn−1|+1,
a contradiction in either case. This completes the proof.

We are at long last ready to prove Lemma 6.1.10, which implies Theorem 3.1.8. The
strategy is as follows. We will use commuting and cycling to rewrite λ so that the bottom two
rows are in the desired form. If the corresponding two rows Si and Sj of µ do not commute,
then we are done by Corollary 6.1.30, and if there is no minimal noncommuting path between
them, then we can again use commuting and cycling to bring them closer together until they
do not commute. If there is a minimal noncommuting path (Si = Si1 , . . . , Sik = Sj), then
because we may assume that µ is nesting, Proposition 6.1.64 specifies the structure of these
rows. In this case, we will use an argument similar to that of the proof of Lemma 6.1.53 to
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locally rotate pairs of rows (Sit−1 , Sit) of µ to again bring Sj toward Si until they do not
commute.

Proof of Lemma 6.1.10. We first note that by Corollary 6.1.59 and Corollary 6.1.62, we
may assume that λ is nesting and has no strict pairs or strict sequences. We will first show
that there is a similar horizontal-strip λ′ = (R′1, . . . , R

′
n) ∈ S(λ) with l(R′1) < l(R′2) and

R′1 = R′2. Because n(λ) −M(λ) ≥ 1, by (6.7) we have Mi,j(λ) < min{|Ri|, |Rj|} for some
1 ≤ i < j ≤ n, and because λ is nesting, we must in fact have Mi,j(λ) = 0. By rotating and
cycling, we may assume without loss of generality that i = 1 and l(R1) < l(Rj), and then
l(Rj) ≥ r(R1) + 1 by Proposition 6.1.4, Parts 2 and 3.

Suppose that l(Rj) − r(R1) = 1, so that Ri = Rj. If there is a minimal noncommuting
path in λ from R1 to Rj, then by Proposition 6.1.48, either λ has a strict sequence, contra-
dicting our assumption, or there is 1 < x < y < j with l(Rx) = l(Rj) = r(Ri)−1 = r(Ry)−1,
Rj � Rx, and R1 � Ry, contradicting that λ is nesting by Proposition 6.1.63, Part 4. There-
fore, there is no minimal noncommuting path in λ from R1 to Rj, so by Lemma 6.1.16 we
can find our desired horizontal-strip λ′. We now suppose that l(Rj) − r(R1) ≥ 2, which
means that R1 ↔ Rj by Proposition 6.1.4, Part 1, and we use induction on l(Rj)− r(Ri).

If there is a minimal noncommuting path (R1 = Ri1 , . . . , Rik = Rj) in λ from R1

to Rj, then because R1 ↔ Rj we have by Proposition 6.1.64 that l(Ri2) − r(R1) = 1
and we can repeat the above argument with the rows R1 and Ri2 . If there is no min-
imal noncommuting path in λ from R1 to Rj, then by commuting and cycling we have
(R1, . . . , Rj−1, Rj+1, . . . , Rn, R

−
j ) ∈ S(λ) and l(R−j )− r(R1) < l(Rj)− r(R1), so we are done

by our induction hypothesis on l(Rj) − r(R1). Therefore, there is indeed a horizontal-strip
λ′ = (R′1, . . . , R

′
n) ∈ S(λ) with l(R′1) < l(R′2) and R′1 = R′2.

We will now strengthen the conditions on our choice of λ′. Consider the set

S∗(λ) = {λ′ = (R′1, . . . , R
′
n) ∈ S(λ) : l(R′1) < l(R′2), R′1 = R′2} (6.61)

and for λ′ = (R′1, . . . , R
′
n) ∈ S∗(λ), define the integer

h(λ′) = |{3 ≤ t ≤ n : R′1 ≺ R′t, R
′
2 ≺ R′t}|. (6.62)

Because we have shown that the set S∗(λ) is nonempty and because we have a uniform
bound h(λ′) ≤ n− 2, we may let λ′ = (R′1, . . . , R

′
n) ∈ S∗(λ) be such that h(λ′) is maximal,

and among those, with |R′2| maximal. Let µ = (S1, . . . , Sn) and ϕ : Π(λ′)
∼−→ Π(µ), and

note that again by Corollary 6.1.59 and Corollary 6.1.62 we may assume that µ is nesting
and has no strict pairs or strict sequences.

Let i = ϕ1 and j = ϕ2, and note that by cycling and rotating we may assume that
i < j and l(Si) < l(Sj), and then because Mi,j(µ) = 0, we have l(Sj) ≥ r(Si) + 1
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by Proposition 6.1.4, Parts 2 and 3. If l(Sj) − r(Si) = 1, then Si = Sj by Proposi-
tion 6.1.4, Part 3, so there exists a good substitute for (λ,µ) by Corollary 6.1.30 and
we would be done. We now suppose that l(Sj) − r(Si) ≥ 2, which means that Si ↔ Sj
by Proposition 6.1.4, Part 1, and we use induction on l(Sj) − r(Si). If there is no min-
imal noncommuting path in µ from Si to Sj, then by commuting and cycling we have
(Si, . . . , Sj−1, Sj+1, . . . , Sn, S

−
1 , . . . , S

−
j ) ∈ S(µ) and l(S−j )− r(Si) < l(Sj)− r(Si), so we are

done by our induction hypothesis on l(Sj)− r(Si). Therefore, we may assume that there is
a minimal noncommuting path (Si = Si1 , . . . , Sik = Sj) in µ from Si to Sj. Because µ is
nesting and Si ↔ Sj, we have that l(Sit+1) = r(Sit)+1 for every 1 ≤ t ≤ k−1 by Proposition
6.1.64. Also note that if there is a minimal noncommuting path in µ from Sit to Sit+1 for any
1 ≤ t ≤ k − 1, then by Proposition 6.1.48 either µ has a strict sequence, contradicting our
assumption, or there is 1 < x < y < j with l(Sx) = l(Sj) = r(S1)− 1 = r(Sy)− 1, Sj � Sx,
and S1 � Sy, contradicting that µ is nesting by Proposition 6.1.63, Part 4. Therefore, there
is no minimal noncommuting path in µ from Sit to Sit+1 for any 1 ≤ t ≤ k − 1,

We now make the following useful observation. For every row R′t of λ′ with R′1 ≺ R′t and
R′2 ≺ R′t, we have Si ≺ Sϕt and Sj ≺ Sϕt and therefore by Proposition 6.1.13 we have

l(Sϕt) ≤ l(S1) + 1 ≤ r(S1) + 1 = l(Si2) ≤ r(Sik−1
) = l(Sj)− 1 ≤ r(Sj)− 1 ≤ r(Sϕt) (6.63)

and therefore Sit′ ≺ Sϕt for every 1 ≤ t′ ≤ k.

Now suppose that there is some t with Sik−1
� St and Mj,t(µ) = 0. We must have

r(St) ≤ l(Sj) − 1 = r(Sik−1
) and by Proposition 6.1.13, l(St) ≤ l(Sik−1

) − 1 = r(Sik−2
), so

Mik−2,t(µ) > 0. Because λ is nesting, this means that either Sik−2
≺ St or St ≺ Sik−2

, but
if St ≺ Sik−2

we would have Mik−2,t(µ) + Mik−1,t(µ) = |St| + |Sik−1
| ≥ |St| + 1 and the pair

(Sik−2
, Sik−1

) would be strict, a contradiction by Proposition 6.1.63, Part 1. Therefore, we
must have Sik−2

≺ St. Because there is no minimal noncommuting path in µ from Sik−2

to Sik−1
, we may cycle and use Lemma 6.1.16 to replace µ with a similar horizontal-strip

to assume that ik−2 = 1 and ik−1 = 2, but now we would have h(µ) > h(λ′) because St is
counted only by h(µ), contradicting maximality of h(λ′). Therefore, we may assume that

there is no t with Sik−1
� St and Mj,t(µ) = 0. (6.64)

Similarly, now suppose that there is some t with Sj � St and Mik−1,t(µ) = 0. Because there
is no minimal noncommuting path in µ from Sik−1

to Sj, we may cycle and use Lemma
6.1.16 to replace µ with a similar horizontal-strip to assume that ik−1 = 1 and j = 2.
Because Sj � St and Mik−1,t(µ) = 0, by Proposition 6.1.13, we have l(St) = l(Sj) and
|St| > |Sj|. Now if there is a minimal noncommuting path in µ from S1 to St, then as
before, by Proposition 6.1.48 either µ has a strict sequence, contradicting our assumption,
or we contradict that µ is nesting. Therefore, there is no minimal noncommuting path in µ
from S1 to St, so by Lemma 6.1.16 we may replace µ by a similar horizontal-strip to instead
assume that t = 2. We also note that for every row St′ of µ with S1 ≺ St′ and Sj ≺ St′ ,
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we must have Mt,t′(µ) > 0 and therefore either St ≺ St′ or St′ ≺ St. However, if St′ ≺ St,
then we would have M1,t′(µ) +Mt,t′(µ) = |S1|+ |St′| ≥ |St′|+ 1 and the pair (S1, St) would
be strict, a contradiction, and therefore St ≺ St′ . However, we now have h(µ) ≥ h(λ′) and
|S2| > |Sj| = |R′2|, contradicting either the maximality of h(λ′) or the maximality of |R′2|.
Therefore, we may assume that

there is no t with Sj � St and Mik−1,t(µ) = 0. (6.65)

Because there is no minimal noncommuting path in µ from Sik−1
to Sj, we may use

Lemma 6.1.16 to replace µ by a similar horizontal-strip to assume that j = ik−1 + 1 and
without changing l(Sj)−r(Si). Our plan is now to apply Lemma 6.1.50 to the rows Sj−1 and
Sj to replace µ by a similar horizontal-strip for which l(Sj) has decreased and r(Si) has not
changed, so that we will be done by our induction hypothesis on l(Sj) − r(Ri). It remains
to check the conditions of Proposition 6.1.52.

1. If Mj−1,t(µ) > 0 and Mj,t(µ) > 0, then because µ is nesting we must have Sj−1 ≺ St
or St ≺ Sj−1. If St ≺ Sj−1, then Mj−1,t(µ) + Mj,t(µ) = |St| + Mj,t(µ) ≥ |St| + 1 and
the pair (Sj−1, Sj) would be strict, contradicting that µ is nesting. Therefore, we must
have Sj−1 ≺ St and similarly we must have Sj ≺ St.

2. If Mj−1,t(µ) > 0 and Mj,t(µ) = 0, then because µ is nesting we must have Sj−1 ≺ St
or St ≺ Sj−1, but by (6.64) we cannot have Sj−1 � St, so we must have St ≺ Sj−1.

3. If Mj−1,t(µ) = 0 and Mj,t(µ) > 0, then because µ is nesting we must have Sj ≺ St or
St ≺ Sj, but by (6.65) we cannot have Sj � St, so we must have St ≺ Sj.

4. If St ≺ Sj−1, then by Proposition 6.1.63, Part 3, we must have Mj,t(µ) = 0 and
Ma,t(µ) = 0 for every a ∈ A. Moreover, if b ∈ B, then Sj−1 ≺ Sb and therefore St ≺ Sb
because by Proposition 6.1.63, Part 2, the relation ≺ is transitive.

5. If St ≺ Sj, then by Proposition 6.1.63, Part 3, we must have Mj−1,t(µ) = 0 and
Ma,t(µ) = 0 for every a ∈ A. Moreover, if b ∈ B, then Sj ≺ Sb and therefore St ≺ Sb
because by Proposition 6.1.63, Part 2, the relation ≺ is transitive.

This concludes our verification of the conditions of Proposition 6.1.52. Therefore, the
result follows by Lemma 6.1.50 and our induction hypothesis on l(Sj)−r(Si). This completes
the proof of Lemma 6.1.10, and therefore our proof of Theorem 3.1.8.
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