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ABSTRACT

With the advent of Bitcoin, the first real-world and practical blockchain system, researchers and practitioners
have turned their eyes and started developing new cryptocurrencies and blockchains. There are two types of
blockchains: Permissioned and Permissionless. Public or permissionless blockchains are highly decentralized
so that replicas in the system can join and leave anytime, and they are computation-intensive. Permissioned
or private blockchains require a set of known replicas, and they are communication-intensive. Blockchain
applications have use cases in various fields such as food supply, medical records, healthcare, supply chain,
trade finance, manufacturing [14, 116, 163, 85, 192].

Every blockchain system maintains an immutable ledger of transactions and works in a trustless environ-
ment to process and replicate transactions among a set of replicas. In permissioned blockchains, replicas and
identities are known, and yet they could act Byzantine (behave maliciously). At the core of each blockchain
system, there is a consensus protocol, which is the main focus of our work. Due to the nature of these con-
sensus protocols (being communication-intensive), they are poorly scalable, especially when participants of
this distributed system are far apart geographically.

In the first part of our work, we introduce GEOBFT [97], a global-scale resilient permissioned blockchain
system. GEOBFT scales Byzantine Fault-Tolerant (BFT) protocols in the WAN environment when the sys-
tem’s nodes are in different continents in the world and far apart. It uses the notation of clustering by grouping
replicas in different geographical locations and requires all nodes to maintain the full ledger.

Limitations of a fully replicated ledger in a WAN environment led us to step into the Sharding world. So
many researchers and works have tried to use sharding to scale BFT protocols [202, 58, 187, 8]. In the second
part of this work, we present RINGBFT a high throughput resilient sharding protocol. RINGBFT introduces
a topology of a Ring among clusters of replicas to reduce the communication and prevent deadlocks.

While designing a performant BFT protocol is crucial, implementing and building a real system that
uses the protocol is even more important. A poorly build fabric can mask all the advantages of a creatively
designed BFT protocol. As the third part of our work, we present a permissioned blockchain fabric called
ResilientDB [160]. We have fully designed and implemented a well-crafted fabric to show the inherent ability
and limitations of all BFT protocols.

As we explored deeply in the permissioned environment, we project to step into the permissionless world
as our next step, and we propose our idea for Hybrid-Blockchains and BFT with Trusted Components in the
last chapter.

Keywords: Permissioned Blockchain, Consensus, BFT, Byzantine Fault-Tolerant, Resilient, Distributed
Transaction Processing
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1 Introduction

In recent years, there has been considerable development and progress in design and scaling permis-
sioned blockchain systems [15, 30, 39, 44, 52, 93, 101, 115, 139, 142, 155, 190]. To digest these permis-
sioned blockchains, we need to understand their core elements and properties, such as consensus, agreement,
open/closed-membership, threat model, and attacks. We first investigate the differences between permission-
less and permissioned blockchains; then basic components of them and how they work. Next, we provide a
summary of consensus and agreement. Finally, we will explain Practical Byzantine Fault Tolerance (PBFT),
which is the basis of our work.

1.1 Permissioned vs. Permissionless Blockchains

Bitcoin is the first real-world blockchain that is widely used. Satoshi Nakamoto presented the bitcoin as an
immutable tamper-proof ledger distributed among anonymous nodes in the public network [139]. The ledger
consists of blocks containing a list of transactions for coin exchange among anonymous users in the system.
Everyone can join the network using a private and public key, and the ledger is also publicly available. The
identities are not known since everything is based on public keys. The first block is called Genesis Block.

When you want to submit a transaction, you simply create and sign it and broadcast it to the system.
Everyone can trace whether your transaction is valid or not based on your transaction history in the ledger.
For your transaction to get accepted, it needs to be included in a block and added to the ledger by a consensus
mechanism called Proof of Work (PoW)[139].

Everyone can gather a set of transactions that have been broadcasted into the network and create a block.
By solving a mathematical puzzle, which is highly expensive, they can add their block to the ledger. The
new block will be chained to the hash of the previous block to provide immutability. This process is called
Mining that has rewards (coin creation) as an incentive for the system to keep working. Mining and PoW is
a way of achieving consensus among nodes in the system to agree on a sequence of blocks. And since the
puzzle is difficult to solve and easy to validate, divergence rarely happens, and they will reach a consensus by
accepting the new block. Forks can happen, but they are short-lived and will be removed based on the longest
chain rule [139].

Permissionless Blockchains: They mostly offer crypto and financial applications. They are slower than
permissioned ones in terms of throughput and latency. A summary of their characteristics is as follows:

• Everyone can join and leave the network (open membership)
• They mostly use PoW as a consensus protocol
• They are computation-intensive
• Identities of participants are not known
• They are fully decentralized

Permissioned Blockchains In these systems, the identities of nodes are hidden, so they are less cen-
tralized than the permissionless systems. Consider a use-case of a supply-chain among a set of companies.
Participants, such as retailers, warehouses, and manufacturing are all known to the system; hence they are
called closed membership. As the closed-membership property implies, permissioned blockchains are not
as decentralized as the permissionless ones. The number of participants and users is constant as opposed to
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the permissionless systems. All nodes have their own copy of the ledger, and they could act Byzantine or
maliciously.

Unlike permissionless blockchains that use computation-intensive proof (PoW) to reach consensus, per-
missioned ones seek agreement and ordering through a communication-intensive protocol. Using Byzantine
Fault-Tolerant (BFT) protocols and voting mechanisms instead of solving a difficult puzzle makes permis-
sioned blockchains faster than public ones. Traditional BFT protocols usually implement a primary-backup
model, which relies on a primary or leader node to run the consensus.

1.2 Crash-Fault Tolerance

A fundamental problem in distributed computing is to provide a reliable and available system. This usually
happens through the replication of processes or data. Replication requires agreement or consensus. The
consensus is defined when there is a set of nodes, and they want to agree on a single value in the presence of
different types of failure. Paxos [124] is a well-established consensus protocol, and most of the subsequent
protocols are based on or improvement of Paxos. Availability is one of the crucial aspects of any distributed
system in the presence of faults. Paxos can be used to implement replicated state machines which is a solution
for providing a reliable and fault-tolerant system.

Replicated state machines They are usually implemented using a replicated log. Each replica in the
system keeps a copy of every transition in the state machine. The goal is to agree on every single step among
non-faulty replicas. Providing fault-tolerance requires replicas and servers to be physically separated and the
failures to be independent and the execution of each step needs to be deterministic
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Figure 1: A demonstration of replicated state machine. A client request asks for a transition (Z = 4) and
using an instance of consensus the log in all replicas gets updated and they transit to a new state

Raft [147] is a restructured replicated state machine based on Paxos and provides a better foundation for
building practical systems. It also contains recovery protocols and leader election mechanisms. It works in
a primary-backup manner. It only tolerates crash-fault or benign faults, and the leader election is based on
timeouts. The role of the leader in Raft is to order and coordinate state transitions. The leader is equivalent
to the proposer in Paxos.
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1.3 Byzantine Fault Tolerance

PBFT [41] was the first practical consensus protocol that tolerates Byzantine faults. Similar to Paxos, it
follows a primary-backup manner. PBFT is state machine replication of client transactions in the presence of
malicious nodes. It is the responsibility of the primary node to order transactions and run a commit protocol
among replicas. The primary can be malicious, and PBFT provides a sub-protocol called View Change
to replace malicious primary. PBFT provides safety on a bounded number of faulty replicas and provides
liveness in partial synchronous networks.

System and Threat Model: PBFT can tolerate up to one-third of replicas in the system. If the system
has n nodes, f of them could be faulty or malicious where f < bn−1

3 c. These faulty nodes can act Byzantine
or malicious, meaning they may prevent sending messages, delay, or duplicate them. But they cannot forge
digital signatures and break message encryption. PBFT assumes that the communication is authenticated. It
supports both digital signatures and Message Authentication Code (MAC). For digital signatures, all replicas
need to have a public and private key, and for MAC, each pair of nodes in the system has a common key. It
assumes that node failures are independent, but the faulty nodes can collude with each other to disrupt the
protocol.

Algorithm: PBFT is three-phase protocol. To reach a consensus on a request, first, the client sends a
signed request 〈T 〉c to the primary P. Then primary initiates the replication of this request by proposing it
to all replicas via a PREPREPARE message. When a backup replica receives a PREPREPARE message from
the primary, it agrees to participate in a two-phase Byzantine commit protocol. This commit protocol can
succeed if at least n−2f non-faulty replicas receive the same PREPREPARE message.

In the first phase of the Byzantine commit protocol, each replica R responds to the PREPREPARE message
m by broadcasting a PREPARE message in support of m. After broadcasting the PREPARE message, R waits
until it receives n− f PREPARE messages in support of m (indicating that at least n− 2f non-faulty replicas
support m).

Finally, after receiving these messages, R enters the second phase of the Byzantine commit protocol and
broadcasts a COMMIT message in support of m. Once a replica R receives n− f COMMIT messages in support
of m, it has the guarantee that eventually all replicas will commit to 〈T 〉c. Figure 2 shows the flow of protocol
for a system with 4 nodes.

R3

R2

R1

P

c
〈T 〉c

Pre-Prepare Prepare Commit Client Reply

Figure 2: The flow of PBFT when the second replica (R2) is faulty and not sending any message
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In this thesis, we investigate and explore various ways to improve permissioned blockchain from multi-
ple perspectives. In the second chapter, we introduced GeoBFT, which improves the scalability of permis-
sioned blockchains in wide-area networks [97]. In the third chapter, we focused on the sharded permissioned
blockchains and presented a new Byzantine fault-tolerant sharding consensus [161]. In the fourth chapter,
we introduced a serverless architecture using a blockchain shim to scale the execution of blockchains trans-
parently [98]. In the last chapter, we designed and implemented a real-world permissioned blockchain and
dissected the implementation’s challenges [100].
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2 Global Scale Byznatine Fault Tolerance

Recent interest in blockchain technology has renewed development of distributed Byzantine fault-tolerant
(BFT) systems that can deal with failures and malicious attacks of some participants [15, 30, 39, 44, 52,
93, 101, 115, 139, 142, 155, 190]. Although these systems are safe, they attain low throughput, especially
when the nodes are spread across a wide-area network (or geographically large distances). We believe
this contradicts the central promises of blockchain technology: decentralization and democracy, in which
arbitrary replicas at arbitrary distances can participate [65, 90, 101].

At the core of any blockchain system is a BFT consensus protocol that helps participating replicas to
achieve resilience. Existing blockchain database systems and data-processing frameworks typically use per-
missioned blockchain designs that rely on traditional BFT consensus [91, 95, 109, 184, 148, 182]. These
permissioned blockchains employ a fully-replicated design in which all replicas are known and each replica
holds a full copy of the data (the blockchain).

2.1 Challenges for Geo-scale Blockchains

To enable geo-scale deployment of a permissioned blockchain system, we believe that the underlying con-
sensus protocol must distinguish between local and global communication. This belief is easily supported
in practice. For example, in Table 1 we illustrate the ping round-trip time and bandwidth measurements.
These measurements show that global message latencies are at least 33–270 times higher than local latencies,
while the maximum throughput is 10–151 times lower, both implying that communication between regions
is several orders of magnitude more costly than communication within regions. Hence, a blockchain system
needs to recognize and minimize global communication if it is to attain high performance in a geo-scale
deployment.

Ping round-trip times (ms) Bandwidth (Mbit/s)
O I M B T S O I M B T S

Oregon (O) ≤ 1 38 65 136 118 161 7998 669 371 194 188 136
Iowa (I) ≤ 1 33 98 153 172 10004 752 243 144 120
Montreal (M) ≤ 1 82 186 202 7977 283 111 102
Belgium (B) ≤ 1 252 270 9728 79 66
Taiwan (T) ≤ 1 137 7998 160
Sydney (S) ≤ 1 7977

Table 1: Real-world inter- and intra-cluster communication costs in terms of the ping round-trip times
(which determines latency) and bandwidth (which determines throughput). These measurements are taken

in Google Cloud using clusters of n1 machines (replicas) that are deployed in six different regions.

In the design of geo-scale aware consensus protocols, this translates to two important properties. First,
a geo-scale aware consensus protocol needs to be aware of the network topology. This can be achieved by
clustering replicas in a region together and favoring communication within such clusters over global inter-
cluster communication. Second, a geo-scale aware consensus protocol needs to be decentralized: no single
replica or cluster should be responsible for coordinating all consensus decisions, as such a centralized design
limits the throughput to the outgoing global bandwidth and latency of this single replica or cluster.

Existing state-of-the-art consensus protocols do not share these two properties. The influential Practical
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Byzantine Fault Tolerance consensus protocol (PBFT) [40, 41] is centralized, as it relies on a single primary
replica to coordinate all consensus decisions, and requires a vast amount of global communication (between
all pairs of replicas). Protocols such as ZYZZYVA improve on this by reducing communication costs in the
optimal case [17, 121, 122]. However, these protocols still have a highly centralized design and do not favor
local communication. Furthermore, ZYZZYVA provides high throughput only if there are no failures and
requires reliable clients [3, 48]. The recently introduced HOTSTUFF improves on PBFT by simplifying the
recovery process on primary failure [200]. This allows HOTSTUFF to efficiently switch primaries for every
consensus decision, providing the potential of decentralization. However, the design of HOTSTUFF does
not favor local communication, and the usage of threshold signatures strongly centralizes all communication
for a single consensus decision to the primary of that round. Another recent protocol POE provides better
throughput than both PBFT and ZYZZYVA in the presence of failures, this without employing threshold sig-
natures [91]. Unfortunately, also POE has a centralized design that depends on a single primary. Finally, the
geo-aware consensus protocol STEWARD promises to do better [6], as it recognizes local clusters and tries to
minimize inter-cluster communication. However, due to its centralized design and reliance on cryptographic
primitives with high computational costs, STEWARD is unable to benefit from its topological knowledge of
the network.

2.2 GeoBFT: Towards Geo-scale Consensus

In this work, we improve on the state-of-the-art by introducing GEOBFT, a topology-aware and decentralized
consensus protocol. In GEOBFT, we group replicas in a region into clusters, and we let each cluster make
consensus decisions independently. These consensus decisions are then shared via an optimistic low-cost
communication protocol with the other clusters, in this way assuring that all replicas in all clusters are able
to learn the same sequence of consensus decisions: if we have two clusters C1 and C2 with n replicas each,
then our optimistic communication protocol requires only dn/3e messages to be sent from C1 to C2 when C1

needs to share local consensus decisions with C2. In specific, we make the following contributions:

1. We introduce the GEOBFT consensus protocol, a novel consensus protocol that performs a topological-
aware grouping of replicas into local clusters to minimize global communication. GEOBFT also de-
centralizes consensus by allowing each cluster to make consensus decisions independently.

2. To reduce global communication, we introduce a novel global sharing protocol that optimistically per-
forms minimal inter-cluster communication, while still enabling reliable detection of communication
failure.

3. The optimistic global sharing protocol is supported by a novel remote view-change protocol that deals
with any malicious behavior and any failures.

4. We prove that GEOBFT guarantees safety: it achieves a unique sequence of consensus decisions among
all replicas and ensures that clients can reliably detect when their transactions are executed, this inde-
pendent of any malicious behavior by any replicas.

5. We show that GEOBFT guarantees liveness: whenever the network provides reliable communication,
GEOBFT continues successful operation, this independent of any malicious behavior by any replicas.

6. We also implemented other state-of-the-art BFT protocols in ResilientDB (ZYZZYVA, PBFT, HOT-
STUFF, and STEWARD), and evaluate GEOBFT against these BFT protocols using the YCSB bench-
mark [53]. We show that GEOBFT achieves up-to-six times more throughput than existing BFT proto-
cols.
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Each cluster runs PBFT to
select, locally replicate, and

certify a client request.

Primaries at each cluster
share the certified client

request with other clusters.

Order the certified requests,
execute them, and inform

local clients.

Local replication Inter-cluster sharing Ordering and execution

Figure 3: Steps in a round of the GEOBFT protocol.

In Table 2, we provide a summary of the complexity of the normal-case operations of GEOBFT and
compare this to the complexity of other popular BFT protocols.

Protocol Decisions Communication Centralized
(Local) (Global)

GEOBFT (our protocol) z O(2zn2) O(fz2) No�

single decision 1 O(4n2) O(fz) No
STEWARD 1 O(2zn2) O(z2) Yes
ZYZZYVA 1 O(zn) Yes
PBFT 1 O(2(zn)2) Yes
POE 1 O((zn)2) Yes
HOTSTUFF 1 O(8(zn)) Partly

Table 2: The normal-case metrics of BFT consensus protocols in a system with z clusters, each with n
replicas of which at most f, n > 3f, are Byzantine. GEOBFT provides the lowest global communication cost

per consensus decision (transaction) and operates decentralized.

2.3 Geo-Scale Consensus

We now present our Geo-Scale Byzantine Fault-Tolerant consensus protocol (GEOBFT) that uses topological
information to group all replicas in a single region into a single cluster. Likewise, GEOBFT assigns each
client to a single cluster. This clustering helps in attaining high throughput and scalability in geo-scale
deployments. GEOBFT operates in rounds, and in each round, every cluster will be able to propose a single
client request for execution. Next, we sketch the high-level working of such a round of GEOBFT. Each round
consists of the three steps sketched in Figure 3: local replication, global sharing, and ordering and execution,
which we further detail next.

1. At the start of each round, each cluster chooses a single transaction of a local client. Next, each cluster
locally replicates its chosen transaction in a Byzantine fault-tolerant manner using PBFT. At the end
of successful local replication, PBFT guarantees that each non-faulty replica can prove successful local
replication via a commit certificate.

2. Next, each cluster shares the locally-replicated transaction along with its commit certificate with all
other clusters. To minimize inter-cluster communication, we use a novel optimistic global sharing
protocol. Our optimistic global sharing protocol has a global phase in which clusters exchange locally-
replicated transactions, followed by a local phase in which clusters distribute any received transactions
locally among all local replicas. To deal with failures, the global sharing protocol utilizes a novel
remote view-change protocol.

8



3. Finally, after receiving all transactions that are locally-replicated in other clusters, each replica in each
cluster can deterministically order all these transactions and proceed with their execution. After exe-
cution, the replicas in each cluster inform only local clients of the outcome of the execution of their
transactions (e.g., confirm execution or return any execution results).

In Figure 4, we sketch a single round of GEOBFT in a setting of two clusters with four replicas each.
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Figure 4: Representation of the normal-case algorithm of GEOBFT running on two clusters. Clients ci,
i ∈ {1,2}, request transactions Ti from their local cluster Ci. The primary PCi ∈ Ci replicates this transaction
to all local replicas using PBFT. At the end of local replication, the primary can produce a cluster certificate

for Ti. These are shared with other clusters via inter-cluster communication, after which all replicas in all
clusters can execute Ti and Ci can inform ci.

2.3.1 Preliminaries

To present GEOBFT in detail, we first introduce the system model we use and the relevant notations.

Let R be a set of replicas. We model a topological-aware system as a partitioning of R into a set of
clusters S = {C1, . . . ,Cz}, in which each cluster Ci, 1 ≤ i ≤ z, is a set of |Ci| = n replicas of which at most
f are faulty and can behave in Byzantine, possibly coordinated and malicious, manners. We assume that in
each cluster n > 3f.

Remark 2.1. We assumed z clusters with n > 3f replicas each. Hence, n = 3f+ j for some j ≥ 1. We use
the same failure model as STEWARD [6], but our failure model differs from the more-general failure model
utilized by PBFT, ZYZZYVA, and HOTSTUFF [17, 40, 41, 121, 122, 200]. These protocols can each tolerate
the failure of up-to-bzn/3c = b(3fz+ z j)/3c = fz+ bz j/3c replicas, even if more than f of these failures
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happen in a single region; whereas GEOBFT and STEWARD can only tolerate fz failures, of which at most f
can happen in a single cluster. E.g., if n = 13, f = 4, and z = 7, then GEOBFT and STEWARD can tolerate
fz = 28 replica failures in total, whereas the other protocols can tolerate 30 replica failures. The failure
model we use enables the efficient geo-scale aware design of GEOBFT, this without facing well-known
communication bounds [60, 66, 67, 68, 78].

We write f(Ci) to denote the Byzantine replicas in cluster Ci and nf(Ci) = Ci \ f(Ci) to denote the non-
faulty replicas in Ci. Each replica R ∈ Ci has a unique identifier id(R), 1 ≤ id(R) ≤ n. We assume that
non-faulty replicas behave in accordance to the protocol and are deterministic: on identical inputs, all non-
faulty replicas must produce identical outputs. We do not make any assumptions on clients: all client can be
malicious without affecting GEOBFT.

Some messages in GEOBFT are forwarded (for example, the client request and commit certificates during
inter-cluster sharing). To ensure that malicious replicas do not tamper with messages while forwarding them,
we sign these messages using digital signatures [120, 137]. We write 〈m〉u to denote a message signed by
u. We assume that it is practically impossible to forge digital signatures. We also assume authenticated
communication: Byzantine replicas can impersonate each other, but no replica can impersonate another non-
faulty replica. Hence, on receipt of a message m from replica R ∈ Ci, one can determine that R did send
m if R /∈ f(Ci); and one can only determine that m was sent by a non-faulty replica if R ∈ nf(Ci). In the
permissioned setting, authenticated communication is a minimal requirement to deal with Byzantine behavior,
as otherwise Byzantine replicas can impersonate all non-faulty replicas (which would lead to so-called Sybil
attacks) [70]. For messages that are forwarded, authenticated communication is already provided via digital
signatures. For all other messages, we use less-costly message authentication codes [120, 137]. Replicas will
discard any messages that are not well-formed, have invalid message authentication codes (if applicable), or
have invalid signatures (if applicable).

Next, we define the consensus provided by GEOBFT.

Definition 2.2. Let S be a system over R. A single run of any consensus protocol should satisfy the following
two requirements:

Termination Each non-faulty replica in R executes a transaction.
Non-divergence All non-faulty replicas execute the same transaction.

Termination is typically referred to as liveness, whereas non-divergence is typically referred to as safety.
A single round of our GEOBFT consists of z consecutive runs of the PBFT consensus protocol. Hence, in a
single round of GEOBFT, all non-faulty replicas execute the same sequence of z transactions.

To provide safety, we do not need any other assumptions on communication or on the behavior of clients.
Due to well-known impossibility results for asynchronous consensus [32, 33, 79, 83], we can only provide
liveness in periods of reliable bounded-delay communication during which all messages sent by non-faulty
replicas will arrive at their destination within some maximum delay.

2.3.2 Local Replication

In the first step of GEOBFT, the local replication step, each cluster will independently choose a client request
to execute. Let S be a system. Each round ρ of GEOBFT starts with each cluster C ∈S replicating a client
request T of client c ∈ clients(C ). To do so, GEOBFT relies on PBFT [40, 41],1 a primary-backup protocol

1Other consensus protocols such as ZYZZYVA [17, 121, 122] and HOTSTUFF [200] promise to improve on PBFT by sharply reducing
communication. In our setting, where local communication is abundant (see Table 1), such improvements are unnecessary, and the costs
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in which one replica acts as the primary, while all the other replicas act as backups. In PBFT, the primary is
responsible for coordinating the replication of client transactions. We write PC to denote the replica in C that
is the current local primary of cluster C . The normal-case of PBFT operates in four steps which we sketch in
Figure 5. Next, we detail these steps.

First, the primary PC receives client requests of the form 〈T 〉c, transactions T signed by a local client
c ∈ clients(C ).

Then, in round ρ , PC chooses a request 〈T 〉c and initiates the replication of this request by proposing it
to all replicas via a PREPREPARE message. When a backup replica receives a PREPREPARE message from
the primary, it agrees to participate in a two-phase Byzantine commit protocol. This commit protocol can
succeed if at least n−2f non-faulty replicas receive the same PREPREPARE message.

In the first phase of the Byzantine commit protocol, each replica R responds to the PREPREPARE message
m by broadcasting a PREPARE message in support of m. After broadcasting the PREPARE message, R waits
until it receives n− f PREPARE messages in support of m (indicating that at least n− 2f non-faulty replicas
support m).

Finally, after receiving these messages, R enters the second phase of the Byzantine commit protocol and
broadcasts a COMMIT message in support of m. Once a replica R receives n− f COMMIT messages in support
of m, it has the guarantee that eventually all replicas will commit to 〈T 〉c.

This protocol exchanges sufficient information among all replicas to enable detection of malicious behav-
ior of the primary and to recover from any such behavior. Moreover, on success, each non-faulty replica R∈C

will be committed to the proposed request 〈T 〉c and will be able to construct a commit certificate [〈T 〉c,ρ]R
that proves this commitment. In GEOBFT, this commit certificate consists of the client request 〈T 〉c and
n− f > 2f identical COMMIT messages for 〈T 〉c signed by distinct replicas. Optionally, GEOBFT can use
threshold signatures to represent these n− f signatures via a single constant-sized threshold signature [175].

R3

R2

R1

PC

c
〈T 〉c

Construct
[〈T 〉c,ρ]C

PREPREPARE PREPARE COMMIT

Figure 5: The normal-case working of round ρ of PBFT within a cluster C : a client c requests transaction T ,
the primary PC proposes this request to all local replicas, which prepare and commit this proposal, and,

finally, all replicas can construct a commit certificate.

In GEOBFT, we use a PBFT implementation that only uses digital signatures for client requests and
COMMIT messages, as these are the only messages that need forwarding. In this configuration, PBFT provides
the following properties:

Lemma 2.3 (Castro et al. [40, 41]). Let S be a system and let C ∈S be a cluster with n > 3f. We have the

of ZYZZYVA (reliable clients) and HOTSTUFF (high computational complexity) can be avoided.
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following:

Termination If communication is reliable, has bounded delay, and a replica R ∈ C is able to construct a
commit certificate [〈T 〉c,ρ]R, then all non-faulty replicas R′ ∈ nf(C ) will eventually be able to construct
a commit certificate [〈T ′〉c′ ,ρ]R′ .

Non-divergence If replicas R1,R2 ∈C are able to construct commit certificates [〈T1〉c1 ,ρ]R1 and [〈T2〉c2 ,ρ]R2 ,
respectively, then T1 = T2 and c1 = c2.

From Lemma 2.3, we conclude that all commit certificates made by replicas in C for round ρ show
commitment to the same client request 〈T 〉c. Hence, we write [〈T 〉c,ρ]C , to represent a commit certificate
from some replica in cluster C .

To guarantee the correctness of PBFT (Lemma 2.3), we need to prove that both non-divergence and
termination hold. From the normal-case working outlined above and in Figure 5, PBFT guarantees non-
divergence independent of the behavior of the primary or any malicious replicas.

To guarantee termination when communication is reliable and has bounded delay, PBFT uses view-
changes and checkpoints. If the primary is faulty and prevents any replica from making progress, then
the view-change protocol enables non-faulty replicas to reliably detect primary failure, recover a common
non-divergent state, and trigger primary replacement until a non-faulty primary is found. After a successful
view-change, progress is resumed. We refer to these PBFT-provided view-changes as local view-changes.
The checkpoint protocol enables non-faulty replicas to recover from failures and malicious behavior that do
not trigger a view-change.

2.3.3 Inter-Cluster Sharing

Once a cluster has completed local replication of a client request, it proceeds with the second step: sharing
the client request with all other clusters. Let S be a system and C ∈ S be a cluster. After C reaches
local consensus on client request 〈T 〉c in round ρ—enabling construction of the commit certificate [〈T 〉c,ρ]C
that proves local consensus—C needs to exchange this client request and the accompanying proof with all
other clusters. This exchange step requires global inter-cluster communication, which we want to minimize
while retaining the ability to reliably detect failure of the sender. However, minimizing this inter-cluster
communication is not as straightforward as it sounds, which we illustrate next:

Example 2.4. Let S be a system with two clusters C1,C2 ∈ S. Consider a simple global communication
protocol in which a message m is sent from C1 to C2 by requiring the primary PC1 to send m to the primary
PC2 (which can then disseminate m in C2). In this protocol, the replicas in C2 cannot determine what went
wrong if they do not receive any messages. To show this, we distinguish two cases:

(1) PC1 is Byzantine and behaves correctly toward every replica, except that it never sends messages to
PC2 , while PC2 is non-faulty.

(2) PC1 is non-faulty, while PC2 is Byzantine and behaves correctly toward every replica, except that it
drops all messages sent by PC1 .

In both cases, the replicas in C2 do not receive any messages from C1, while both clusters see correct
behavior of their primaries with respect to local consensus. Indeed, with this little amount of communication,
it is impossible for replicas in C2 to determine whether PC1 is faulty (and did not send any messages) or PC2

is faulty (and did not forward any received messages from C1).

In GEOBFT, we employ an optimistic approach to reduce communication among the clusters. Our opti-
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mistic approach consists of a low-cost normal-case protocol that will succeed when communication is reliable
and the primary of the sending cluster is non-faulty. To deal with any failures, we use a remote view-change
protocol that guarantees eventual normal-case behavior when communication is reliable. First, we describe
the normal-case protocol, after which we will describe in detail the remote view-change protocol.

Optimistic inter-cluster sending In the optimistic case, where participants are non-faulty, we want to
send a minimum number of messages while retaining the ability to reliably detect failure of the sender. In
Example 2.4, we already showed that sending only a single message is not sufficient. Sending f+1 messages
is sufficient, however.

Let m = (〈T 〉c, [〈T 〉c,ρ]C1) be the message that some replica in cluster C1 needs to send to some replicas
C2. Note that m includes the request replicated in C1 in round ρ , and the commit-certificate, which is the
proof that such a replication did take place. Based on the observations made above, we propose a two-phase
normal-case global sharing protocol. We sketch this normal-case sending protocol in Figure 6 and present
the detailed pseudo-code for this protocol in Figure 7.

R2,3

R2,2

R2,1

PC2

PC1

Global phase Local phase

C2

Figure 6: A schematic representation of the normal-case working of the global sharing protocol used by C1
to send m = (〈T 〉c, [〈T 〉c,ρ]C1) to C2.

The global phase (used by the primary PC1 ) :

1: Choose a set S of f+1 replicas in C2.

2: Send m to each replica in S.

The local phase (used by replicas R ∈ C2) :

3: event receive m from a replica Q ∈ C1 do
4: Broadcast m to all replicas in C2.

Figure 7: The normal-case global sharing protocol used by C1 to send m = (〈T 〉c, [〈T 〉c,ρ]C1) to C2.

In the global phase, the primary PC1 sends m to f+1 replicas in C2. In the local phase, each non-faulty
replica R ∈ nf(C2) that receives a well-formed m forwards m to all replicas in its cluster C2.

Proposition 2.5. Let S be a system, let C1,C2 ∈ S be two clusters, and let m = (〈T 〉c, [〈T 〉c,ρ]C1) be the
message C1 sends to C2 using the normal-case global sharing protocol of Figure 7. We have the following:

Receipt If the primary PC1 is non-faulty and communication is reliable, then every replica in C2 will even-
tually receive m.
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Agreement Replicas in C2 will only accept client request 〈T 〉c from C1 in round ρ .

Proof. If the primary PC1 is non-faulty and communication is reliable, then f+1 replicas in C2 will receive
m (Line 2). As at most f replicas in C2 are Byzantine, at least one of these receiving replicas is non-faulty
and will forward this message m to all replicas in C2 (Line 4), proving termination.

The commit certificate [〈T 〉c,ρ]C1 cannot be forged by faulty replicas, as it contains signed COMMIT

messages from n− f > f replicas. Hence, the integrity of any message m forwarded by replicas in C2 can
easily be verified. Furthermore, Lemma 2.3 rules out the existence of any other messages m′ = [〈T ′〉c′ ,ρ]C1 ,
proving agreement.

We notice that there are two cases in which replicas in C2 do not receive m from C1: either PC1 is faulty
and did not send m to f+ 1 replicas in C2, or communication is unreliable, and messages are delayed or
lost. In both cases, non-faulty replicas in C2 initiate remote view-change to force primary replacement in C1

(causing replacement of the primary PC1 ).

Remote view-change The normal-case global sharing protocol outlined will only succeed if communica-
tion is reliable and the primary of the sending cluster is non-faulty. To recover from any failures, we provide
a remote view-change protocol. Let S = {C1, . . . ,Cz} be a system. To simplify presentation, we focus on
the case in which the primary of cluster C1 fails to send m = (〈T 〉c, [〈T 〉c,ρ]C1) to replicas of C2. Our remote
view-change protocol consists of four phases, which we detail next.

First, non-faulty replicas in cluster C2 detect the failure of the current primary PC1 of C1 to send m. Note
that although the replicas in C2 have no information about the contents of message m, they are awaiting arrival
of a well-formed message m from C1 in round ρ . Second, the non-faulty replicas in C2 initiate agreement
on failure detection. Third, after reaching agreement, the replicas in C2 send their request for a remote view-
change to the replicas in C1 in a reliable manner. In the fourth and last phase, the non-faulty replicas in C1

trigger a local view-change, replace PC1 , and instruct the new primary to resume global sharing with C2.
Next, we explain each phase in detail.

To be able to detect failure, C2 must assume reliable communication with bounded delay. This allows the
usage of timers to detect failure. To do so, every replica R ∈ C2 sets a timer for C1 at the start of round ρ and
waits until it receives a valid message m from C1. If the timer expires before R receives such an m, then R
detects failure of C1 in round ρ . Successful detection will eventually lead to a remote view-change request.

From the perspective of C1, remote view-changes are controlled by external parties. This leads to several
challenges not faced by traditional PBFT view-changes (the local view-changes used within clusters, e.g., as
part of local replication):

(1) A remote view-change in C1 requested by C2 should only trigger at most a single local view-change
in C1, otherwise remote view-changes enable replay attacks.

(2) While replicas in C1 detect failure of PC1 and initiate local view-change, it is possible that C2 detects
failure of C1 and requests remote view-change in C1. In this case, only a single successful view-change in C1

is necessary.
(3) Likewise, several clusters C2, . . . ,Cz can simultaneously detect failure of C1 and request remote view-

change in C1. Also in this case, only a single successful view-change in C1 is necessary.

Furthermore, a remote view-change request for cluster C1 cannot depend on any information only avail-
able to C1 (e.g., the current primary PC1 of C1). Likewise, the replicas in C1 cannot determine which messages
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(for which rounds) have already been sent by previous (possibly malicious) primaries of C1: remote view-
change requests must include this information. Our remote view-change protocol addresses each of these
concerns. In Figures 8 and 9, we sketch this protocol and its pseudo-code. Next, we describe the protocol in
detail.

R2,4

R2,3

R2,2

R2,1

R1,4

R1,3

R1,2

R1,1

Detection &
view-change
in C1 (PBFT)

DRVC RVC (forward)

Detection
(in C2)

Agreement
(in C2)

Request
view-change

C2

C1

Figure 8: A schematic representation of the remote view-change protocol of GEOBFT running at a system
S over R. This protocol is triggered when a cluster C2 ∈S expects a message from C1 ∈S, but does not

receive this message in time.
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Initiation role (used by replicas R ∈ C2) :

1: v1 := 0 (number of remote view-changes in C1 requested by R).

2: event detect failure of C1 in round ρ do
3: Broadcast DRVC(C1,ρ,v1) to all replicas in C2.

4: v1 := v1 +1.

5: event R receives DRVC(C1,ρ,v1) from R′ ∈ C2 do
6: if R received (〈T 〉c, [〈T 〉c,ρ]C ) from Q ∈ C1 then
7: Send (〈T 〉c, [〈T 〉c,ρ]C ) to R′.

8: event R receives DRVC(C1,ρ,v′1) from f+1 replicas in C2 do
9: if v1 ≤ v′1 then

10: v1 := v′1.

11: Detect failure of C1 in round ρ (if not yet done so).

12: event R receives DRVC(C1,ρ,v1) from n− f replicas in C2 do
13: Send 〈RVC(C1,ρ,v1)〉R to Q ∈ C1, id(R) = id(Q).

Response role (used by replicas Q ∈ C1) :

14: event Q receives 〈RVC(C1,ρ,v)〉R from R, R ∈ (R\C1) do
15: Broadcast 〈RVC(C1,ρ,v)〉R to all replicas in C1.

16: event Q receives 〈RVC(C1,ρ,v)〉Ri , 1≤ i≤ f+1, such that:

1. {Ri | 1≤ i≤ f+1} ⊂ C ′, C ′ ∈S;

2. |{Ri | 1≤ i≤ f+1}|= f+1;

3. no recent local view-change was triggered; and

4. C ′ did not yet request a v-th remote view-change

do
17: Detect failure of PC1 (if not yet done so).

Figure 9: The remote view-change protocol of GEOBFT running at a system S over R. This protocol is
triggered when a cluster C2 ∈S expects a message from C1 ∈S, but does not receive this message in time.

Let R ∈ C2 be a replica that detects failure of C1 in round ρ and has already requested v1 remote view-
changes in C1. Once a replica R detects a failure, it initiates the process of reaching an agreement on this
failure among other replicas of its cluster C2. It does so by broadcasting message DRVC(C1,ρ,v1) to all
replicas in C2 (Line 3 of Figure 9).

Next, R waits until it receives identical DRVC(C1,ρ,v1) messages from n− f distinct replicas in C2

(Line 12 of Figure 9). This guarantees that there is agreement among the non-faulty replicas in C2 that
C1 has failed. After receiving these n− f messages, R requests a remote view-change by sending message
〈RVC(C1,ρ,v1)〉R to the replica Q ∈ C1 with id(R) = id(Q) (Line 13 of Figure 9).

In case some other replica R′ ∈C2 received m from C1, then R′ would respond with message m in response
to the message DRVC(C1,ρ,v) (Line 5 of Figure 9). This allows R to recover in cases where it could not
reach an agreement on the failure of C1. Finally, some replica R′ ∈ C2 may detect the failure of C1 later
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than R. To handle such a case, we require each replica R′ that receives identical DRVC(C1,ρ,v) messages
from f+1 distinct replicas in C2 to assume that the cluster C1 has failed. This assumption is valid as one of
these f+ 1 messages must have come from a non-faulty replica in C2, which must have detected the failure
of cluster C1 successfully (Line 8 of Figure 9).

If replica Q ∈ C1 receives a remote view-change request mRCV = 〈RVC(ρ,v)〉R from R ∈ C2, then Q
verifies whether mRCV is well-formed. If mRCV is well-formed, Q forwards mRCV to all replicas in C1 (Line 14
of Figure 9). Once Q receives f+1 messages identical to mRCV, signed by distinct replicas in C2, it concludes
that at least one of these remote view-change requests must have come from a non-faulty replica in C2. Next,
Q determines whether it will honor this remote view-change request, which Q will do when no concurrent
local view-change is in progress and when this is the first v-th remote view-change requested by C2 (the lather
prevents replay attacks). If these conditions are met, Q detects its current primary PC1 as faulty (Line 16 of
Figure 9).

When communication is reliable, the above protocol ensures that all non-faulty replicas in C1 will detect
failure of PC1 . Hence, eventually a successful local view-change will be triggered in C1. When a new primary
in C1 is elected, it takes one of the remote view-change requests it received and determines the rounds for
which it needs to send requests (using the normal-case global sharing protocol of Figure 7). As replicas in C2

do not know the exact communication delays, they use exponential back off to determine the timeouts used
while detecting subsequent failures of C1.

We are now ready to prove the main properties of remote view-changes.

Proposition 2.6. Let S be a system, let C1,C2 ∈ S be two clusters, and let m = (〈T 〉c, [〈T 〉c,ρ]C ) be the
message C1 needs to send to C2 in round ρ . If communication is reliable and has bounded delay, then either
every replica in C2 will receive m or C1 will perform a local view-change.

Proof. Consider the remote view-change protocol of Figure 9. If a non-faulty replica R′ ∈ nf(C2) receives m,
then any replica in C2 that did not receive m will receive m from R′ (Line 5). In all other cases, at least f+1
non-faulty replicas in C2 will not receive m and will timeout. Due to exponential back-off, eventually each of
these f+ 1 non-faulty replicas will initiate and agree on the same v1-th remote view-change. Consequently,
all non-faulty replicas in nf(C2) will participate in this remote view-change (Line 8). As |nf(C2)| = n− f,
each of these n− f replicas R ∈ nf(C2) will send 〈RVC(C1,ρ,v)〉R to some replica Q ∈ C1, id(R) = id(Q)

(Line 12). Let S = {Q ∈ C1 | R ∈ nf(C2)∧ id(R) = id(Q)} be the set of receivers in C1 of these messages
and let T = S∩nf(C1). We have |S|= n− f > 2f and, hence, |T |> f. Each replica Q ∈ T will broadcast the
message it receives to all replicas in C1 (Line 14). As |T |> f, this eventually triggers a local view-change in
C1 (Line 16).

Finally, we use the results of Proposition 2.5 and Proposition 2.6 to conclude

Theorem 2.7. Let S= {C1, . . . ,Cz} be a system over R. If communication is reliable and has bounded delay,
then every replica R∈R will, in round ρ , receive a set {(〈Ti〉ci , [〈Ti〉ci ,ρ]Ci) | (1≤ i≤ z)∧(ci ∈ clients(Ci))}
of z messages. These sets all contain identical client requests.

Proof. Consider cluster Ci ∈ S. If PCi behaves reliable, then Proposition 2.5 already proves the statement
with respect to (〈Ti〉ci , [〈Ti〉ci ,ρ]Ci). Otherwise, if PCi behaves Byzantine, then then Proposition 2.6 guar-
antees that either all replicas in R will receive (〈Ti〉ci , [〈Ti〉ci ,ρ]Ci) or PCi will be replaced via a local view-
change. Eventually, these local view-changes will lead to a non-faulty primary in Ci, after which Proposi-
tion 2.5 again proves the statement with respect to (〈Ti〉ci , [〈Ti〉ci ,ρ]Ci).
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2.3.4 Ordering and Execution

Once replicas of a cluster have chosen a client request for execution and have received all client requests
chosen by other clusters, they are ready for the final step: ordering and executing these client requests. In
specific, in round ρ , any non-faulty replica that has valid requests from all clusters can move ahead and
execute these requests.

Theorem 2.7 guarantees after the local replication step (Section 2.3.2) and the inter-cluster sharing step
(Section 2.3.3) each replica in R will receive the same set of z client requests in round ρ . Let Sρ = {(〈Ti〉ci |
(1≤ i≤ z)∧ (ci ∈ clients(Ci))} be this set of z client requests received by each replica.

The last step is to put these client requests in a unique order, execute them, and inform the clients of
the outcome. To do so, GEOBFT simply uses a pre-defined ordering on the clusters. For example, each
replica executes the transactions in the order [T1, . . . ,Tz]. Once the execution is complete, each replica R∈Ci,
1 ≤ i ≤ z, informs the client ci of any outcome (e.g., confirmation of execution or the result of execution).
Note that each replica R only informs its local clients. As all non-faulty replicas are expected to act deter-
ministic, execution will yield the same state and results across all non-faulty replicas. Hence, each client ci is
guaranteed to receive identical response from at least f+1 replicas. As there are at most f faulty replicas per
cluster and faulty replicas cannot impersonate non-faulty replicas, at least one of these f+1 responses must
come from a non-faulty replica. We conclude the following:

Theorem 2.8 (GEOBFT is a consensus protocol). Let S be a system over R in which every cluster satisfies
n > 3f. A single round of GEOBFT satisfies the following two requirements:

Termination If communication is reliable and has bounded delay, then GEOBFT guarantees that each non-
faulty replica in R executes z transactions.

Non-divergence GEOBFT guarantees that all non-faulty replicas execute the same z transaction.

Proof. Both termination and non-divergence are direct corollaries of Theorem 2.7.

2.3.5 Final Remarks

Until now we have presented the design of GEOBFT using a strict notion of rounds. Only during the last
step of each round of GEOBFT, which orders and executes client requests (Section 2.3.4), this strict notion
of rounds is required. All other steps can be performed out-of-order. For example, local replication and
inter-cluster sharing of client requests for future rounds can happen in parallel with ordering and execution
of client requests. In specific, the replicas of a cluster Ci, 1≤ i≤ z can replicate the requests for round ρ +2,
share the requests for round ρ + 1 with other clusters, and execute requests for round ρ in parallel. Hence,
GEOBFT needs minimal synchronization between clusters.

Additionally, we do not require that every cluster always has client requests available. When a cluster C

does not have client requests to execute in a round, the primary PC can propose a no-op-request. The primary
PC can detect the need for such a no-op request in round ρ when it starts receiving client requests for round
ρ from other clusters. As with all requests, also such no-op requests requires commit certificates obtained via
local replication.

To prevent that PC can indefinitely ignore requests from some or all clients in clients(C ), we rely on
standard PBFT techniques to detect and resolve such attacks during local replication. These techniques ef-
fectively allow clients in clients(C ) to force the cluster to process its request, ruling out the ability of faulty
primaries to indefinitely propose no-op requests when client requests are available.
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Furthermore, to simplify presentation, we have assumed that every cluster has exactly the same size and
that the set of replicas never change. These assumptions can be lifted, however. GEOBFT can easily be
extended to also work with clusters of varying size, this only requires minor tweaks on the remote view-
change protocol of Figure 9 (the conditions at Line 16 rely on the cluster sizes, see Proposition 2.6). To
deal with faulty replicas that eventually recover, we can rely on the same techniques as PBFT [40, 41]. Full
dynamic membership, in which replicas can join and leave GEOBFT via some vetted automatic procedure,
is a challenge for any permissioned blockchain and remains an open problem for future work [29, 164].

2.4 Implementation and Evaluation

GEOBFT is designed to enable geo-scale deployment of a permissioned blockchain. We will present our
ResilientDB fabric [99] in the next section. A permissioned blockchain fabric that can use GEOBFT to
provide such a geo-scale aware high-performance permissioned blockchain. ResilientDB is especially tuned
to enterprise-level blockchains in which (i) replicas can be dispersed over a wide area network; (ii) links
connecting replicas at large distances have low bandwidth; (iii) replicas are untrusted but known; and (iv) ap-
plications require high throughput and low latency. These four properties are directly motivated by practical
properties of geo-scale deployed distributed systems (see Table 1 in Section 2.1). In Figure 10, we present
the architecture of GEOBFTinside ResilientDB.
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2.4.1 Evaluation

To showcase the practical value of GEOBFT, we now use our ResilientDB fabric to evaluate GEOBFT against
four other popular state-of-the-art consensus protocols (PBFT, ZYZZYVA, HOTSTUFF, and STEWARD). We
deploy ResilientDB on the Google Cloud using N1 machines that have 8-core Intel Skylake CPUs and 16GB
of main memory. Additionally, we deploy 160k clients on eight 4-core machines having 16GB of main
memory. We equally distribute the clients across all the regions used in each experiment.

In each experiment, the workload is provided by the Yahoo Cloud Serving Benchmark (YCSB) [53]. Each
client transaction queries a YCSB table with an active set of 600k records. For our evaluation, we use write
queries, as those are typically more costly than read-only queries. Prior to the experiments, each replica is
initialized with an identical copy of the YCSB table. The client transactions generated by YCSB follow a
uniform Zipfian distribution. Clients and replicas can batch transactions to reduce the cost of consensus. In
our experiments, we use a batch size of 100 requests per batch (unless stated otherwise).

With a batch size of 100, the messages have sizes of 5.4kB (PREPREPARE), 6.4kB (commit certificates
containing seven COMMIT messages and a PREPREPARE message), 1.5kB (client responses), and 250B (other
messages). The size of a commit certificate is largely dependent on the size of the PREPREPARE message,
while the total size of the accompanying COMMIT messages is small. Hence, the inter-cluster sharing of
these certificates is not a bottleneck for GEOBFT: existing BFT protocols send PREPREPARE messages to
all replicas irrespective of their region. Further, if the size of COMMIT messages starts dominating, then
threshold signatures can be adopted to reduce their cost [175].

To perform geo-scale experiments, we deploy replicas across six different regions, namely Oregon, Iowa,
Montreal, Belgium, Taiwan, and Sydney. In Table 1, we present our measurements on the inter-region net-
work latency and bandwidth. We run each experiment for 180s: first, we allow the system to warm-up for
60s, after which we collect measurement results for the next 120s. We average the results of our experiments
over three runs.

For PBFT and ZYZZYVA, centralized protocols in which a single primary replica coordinates consensus,
we placed the primary in Oregon, as this region has the highest bandwidth to all other regions (see Table 1).
For HOTSTUFF, our implementation permits all replicas to act as both primary and non-primary at the same
time. For both GEOBFT and STEWARD, we group replicas in a single region into a single cluster. In each
of these protocols, each cluster has its own local primary. Finally, for STEWARD, a centralized protocol in
which the primary cluster coordinates the consensus, we placed the primary cluster in Oregon. We focus our
evaluation on answering the following four research questions:

(1) What is the impact of geo-scale deployment of replicas in distant clusters on the performance of
GEOBFT, as compared to other consensus protocols?

(2) What is the impact of the size of local clusters (relative to the number of clusters) on the performance
of GEOBFT, as compared to other consensus protocols?

(3) What is the impact of failures on the performance of GEOBFT, as compared to other consensus
protocols?

(4) Finally, what is the impact of request batching on the performance of GEOBFT, as compared to other
consensus protocols, and under which batch sizes can GEOBFT already provide good throughput?
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2.4.2 Impact of Geo-Scale deployment

First, we determine the impact of geo-scale deployment of replicas in distant regions on the performance
of GEOBFT and other consensus protocols. To do so, we measure the throughput and latency attained by
ResilientDB as a function of the number of regions, which we vary between 1 and 6. We use 60 replicas evenly
distributed over the regions, and we select regions in the order Oregon, Iowa, Montreal, Belgium, Taiwan,
and Sydney. E.g., if we have four regions, then each region has 15 replicas, and we have these replicas in
Oregon, Iowa, Montreal, and Belgium. The results of our measurements can be found in Figure 11.
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Figure 11: Throughput and latency as a function of the number of clusters; zn = 60 replicas.

From the measurements, we see that STEWARD is unable to benefit from its topological knowledge of
the network: in practice, we see that the high computational costs and the centralized design of STEWARD

prevent high throughput in all cases. Both PBFT and ZYZZYVA perform better than STEWARD, especially
when ran in a few well-connected regions (e.g., only the North-American regions). The performance of
these protocols falls when inter-cluster communication becomes a bottleneck, however (e.g., when regions
are spread across continents). HOTSTUFF, which is designed to reduce communication compared to PBFT,
has reasonable throughput in a geo-scale deployment, and sees only a small drop in throughput when regions
are added. The high computational costs of the protocol prevent it from reaching high throughput in any
setting, however. Additionally, HOTSTUFF has very high latencies due to its 4-phase design. As evident from
Figure 2, HOTSTUFF clients face severe delay in receiving a response for their client requests.

Finally, the results clearly show that GEOBFT scales well with an increase in regions. When running at
a single cluster, the added overhead of GEOBFT (as compared to PBFT) is high, which limits its throughput
in this case. Fortunately, GEOBFT is the only protocol that actively benefits from adding regions: adding
regions implies adding clusters, which GEOBFT uses to increase parallelism of consensus and decrease
centralized communication. This added parallelism helps offset the costs of inter-cluster communication,
even when remote regions are added. Similarly, adding remote regions only incurs a low latency on GEOBFT.
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Figure 12: Throughput and latency as a function of the number of replicas per cluster; z = 4.

Recall that GEOBFT sends only f+1 messages between any two clusters. Hence, a total of O(zf) inter-cluster
messages are sent, which is much less than the number of messages communicated across clusters by other
protocols (see Figure 2). As the cost of communication between remote clusters is high (see Figure 1),
this explains why other protocols have lower throughput and higher latencies than GEOBFT. Indeed, when
operating on several regions, GEOBFT is able to outperform PBFT by a factor of up-to-3.1× and outperform
HOTSTUFF by a factor of up-to-1.3×.

2.4.3 Impact of Local Cluster Size

Next, we determine the impact of the number of replicas per region on the performance of GEOBFT and
other consensus protocols. To do so, we measure the throughput and latency attained by ResilientDB as a
function of the number of replicas per region, which we vary between 4 and 15. We have replicas in four
regions (Oregon, Iowa, Montreal, and Belgium). The results of our measurements can be found in Figure 12.

The measurements show that increasing the number of replicas only has minimal negative influence on
the throughput and latency of PBFT, ZYZZYVA, and STEWARD. As seen in the previous Section, the inter-
cluster communication cost for the primary to contact individual replicas in other regions (and continents) is
the main bottleneck. Consequently, the number of replicas used only has minimal influence. For HOTSTUFF,
which does not have such a bottleneck, adding replicas does affect throughput and—especially—latency, this
due to the strong dependence between latency and the number of replicas in the design of HOTSTUFF.

The design of GEOBFT is particularly tuned toward a large number of regions (clusters), and not toward
a large number of replicas per region. We observe that increasing the replicas per cluster also allows each
cluster to tolerate more failures (increasing f). Due to this, the performance drop-off for GEOBFT when
increasing the replicas per region is twofold: first, the size of the certificates exchanged between clusters is
a function of f; second, each cluster sends their certificates to f+ 1 replicas in each other cluster. Still, the
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parallelism incurred by running in four clusters allows GEOBFT to outperform all other protocols, even when
scaling up to fifteen replicas per region, in which case it is still 2.9× faster than PBFT and 1.2× faster than
HOTSTUFF.

2.4.4 Impact of Failures

In our third experiment, we determine the impact of replica failures on the performance of GEOBFT and
other consensus protocols. To do so, we measure the throughput attained by ResilientDB as a function of
the number of replicas, which we vary between 4 and 12. We perform the measurements under three failure
scenarios: a single non-primary replica failure, up to f simultaneous non-primary replica failures per region,
and a single primary failure. As in the previous experiment, we have replicas in four regions (Oregon, Iowa,
Montreal, and Belgium). The results of our measurements can be found in Figure 13.
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Figure 13: Throughput as a function of the number of replicas per cluster; z = 4. Left, throughput with one
non-primary failure. Middle, throughput with f non-primary failures. Right, throughput with a single

primary failure.

Single non-primary replica failure The measurements for this case show that the failure of a single non-
primary replica has only a small impact on the throughput of most protocols. The only exception being
ZYZZYVA, for which the throughput plummets to zero, as ZYZZYVA is optimized for the optimal non-failure
case. The inability of ZYZZYVA to effectively operate under any failures is consistent with prior analysis of
the protocol [3, 48].

f non-primary replica failures per cluster In this experiment, we measure the performance of GEOBFT
in the worst case scenario it is designed for: the simultaneous failure of f replicas in each cluster (fz replicas
in total). This is also the worst case STEWARD can deal with, and is close to the worst case the other protocols
can deal with (see Remark 2.1).

The measurements show that the failures have a moderate impact on the performance of all protocols
(except for ZYZZYVA which, as in the single-failure case, sees its throughput plummet to zero). The reduc-
tion in throughput is a direct consequence of the inner working of the consensus protocols. Consider, e.g.,
GEOBFT. In GEOBFT, replicas in each cluster first choose a local client request and replicate this request lo-
cally using PBFT (see Section 2.3.2). In each such local replication step, each replica will have two phases in
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which it needs to receive n− f identical messages before proceeding to the next phase (namely, PREPARE and
COMMIT messages). If there are no failures, then each replica only must wait for the n− f fastest messages
and can proceed to the next phase as soon as these messages are received (ignoring any delayed messages).
However, if there are f failures, then each replica must wait for all messages of the remaining non-failed
replicas to arrive before proceeding, including the slowest arriving messages. Consequently, the impact of
temporary disturbances causing random message delays at individual replicas increases with the number of
failed replicas, which negatively impacts performance. Similar arguments also hold for PBFT, STEWARD,
and HOTSTUFF.

Single primary failure In this experiment, we measure the performance of GEOBFT if a single primary
fails (in one of the four regions). We compare the performance of GEOBFT with PBFT under failure of a
single primary, which will cause primary replacement via a view-change. For PBFT, we require checkpoints
to be generated and transmitted after every 600 client transactions. Further, we perform the primary failure
after 900 client transactions have been ordered.

For GEOBFT, we fail the primary of the cluster in Oregon once each cluster has ordered 900 transactions.
Similarly, each cluster exchanges checkpoints periodically, after locally replicating every 600 transactions.
In this experiment, we have excluded ZYZZYVA, as it already fails to deal with non-primary failures, HOT-
STUFF, as it utilizes rotating primaries and does not have a notion of a fixed primary, and STEWARD, as
it does not provide a readily-usable and complete view-change implementation. As expected, the measure-
ments show that recovery from failure incurs a small reduction in overall throughput in both protocols, as
both protocols are able to recover to normal-case operations after failure.

2.4.5 Impact of Request Batching

We now determine the impact of the batch size—the number of client transactions processed by the consensus
protocols in a single consensus decision—on the performance of various consensus protocols. To do so, we
measure the throughput attained by ResilientDB as a function of the batch size, which we vary between 10
and 300. For this experiment, we have replicas in four regions (Oregon, Iowa, Montreal, and Belgium), and
each region has seven replicas. The results of our measurements can be found in Figure 14.

The measurements show a clear distinction between, on the one hand, PBFT, ZYZZYVA, and STEWARD,
and, on the other hand, GEOBFT and HOTSTUFF. Note that in PBFT, ZYZZYVA, and STEWARD a single
primary residing in a single region coordinates all consensus. This highly centralized communication limits
throughput, as it is bottlenecked by the bandwidth of the single primary. GEOBFT—which has primaries
in each region—and HOTSTUFF—which rotates primaries—both distribute consensus over several replicas
in several regions, removing bottlenecks due to the bandwidth of any single replica. Hence, these protocols
have sufficient bandwidth to support larger batch sizes (and increase throughput). Due to this, GEOBFT is
able to outperform PBFT by up-to-6.0×. Additionally, as the design of GEOBFT is optimized to minimize
global bandwidth usage, GEOBFT is even able to outperform HOTSTUFF by up-to-1.6×.
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Figure 14: Throughput as a function of the batch size; z = 4 and n = 7.
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3 RingBFT: High Throughput Resilient Sharding

Recent works have illustrated a growing interest in federated data management [173, 35, 61, 188, 186, 76].
In a federated system, a common database is maintained by several parties. These parties need to reach
a consensus on the fate of every transaction that is committed to database. Such a database managed by
multiple parties raises concerns for data-privacy, data-quality, resistance against adversaries, and database
availability and consistency [102, 162, 130].

To facilitate secure multi-party data-management, prior works have proposed the use of blockchain tech-
nology [102, 130, 11, 129]. Blockchain technology employs age-old database principles to facilitate a demo-
cratic and failure-resilient consensus among several participants. Such a democratic system allows all parties
to maintain a copy of the common database–act as a replica–and cast a vote on the fate of any transaction.
Hence, at the core of any federated data management system is a Byzantine-Fault Tolerant (BFT) consensus
protocol that aims to order all the client transactions in the same manner across all the replicas, this despite
of any malicious attacks. Once a transaction is ordered, it is recorded in a block, and this block is linked to
the previous block, essentially making this ever-growing chain of blocks as immutable–blockchain.

At a closer look, BFT consensus protocols are resilient counterparts of the Two-phase commit and Three-
phase commit protocols [87, 177, 103]. Commit protocols robustly handle failure of few participants but
block under delay or loss of communicating messages. To eliminate these limitations, prior works have
employed crash-fault tolerant protocols such as Paxos and Raft [124, 147]. Although these crash-fault tolerant
protocols ensure that replicas reach a safe consensus under crash failures, they are unable to shield the system
against byzantine attacks. In federated systems, byzantine attacks are common as malicious participants may
wish: (i) to exclude transactions of some clients, (ii) to make system unavailable to clients, and (iii) to make
replicas inconsistent. Hence, the use of a BFT protocol is order.

In this chapter, we present a novel BFT protocol RINGBFT that aims to be secure against byzantine at-
tacks, achieves high throughputs, and incurs low latencies. Our RINGBFT protocol explores the landscape
of sharded-replicated databases, and helps to scale permissioned blockchains. RINGBFT aims to make con-
sensus inexpensive even when transactions require access to multiple shards. In the rest of this section, we
motivate the need for our design choices.

3.1 Challenges for Efficient BFT Consensus

Over the past two decades, BFT protocols have also gone through a series of modifications to guarantee
resilience against byzantine attacks, while ensuring high throughputs and low latency. The seminal work
by Castro and Liskov [40, 41] led to the design of first practical BFT protocol, PBFT, which advocates a
primary-backup paradigm where primary initiates the consensus and all the backups follow primary’s lead.
PBFT achieves consensus among the replicas in three phases, of which two require quadratic communication
complexity. Since PBFT’s inception, several exciting primary-backup protocols, such as ZYZZYVA [122],
SBFT [84], and POE [91], have been proposed. Prior works [6, 97] have illustrated that these single primary
protocols are essentially centralized and prevent scaling the system to a large number of replicas. Further, if
the replicas are separated by geographically large distances, then these protocols incur low throughput and
high latencies due to low bandwidth and high round-trip time.

These challenges with single primary protocols led to the introduction of modern consensus protocols,
such as Proof-of-Work [113, 72], Proof-of-Stake [24, 23], and Proof-of-Capacity [73, 16], which are employed
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by permissionless blockchain applications. As the name suggest, permissionless applications allow any par-
ticipant to act as a replica without disclosing its identity to other replicas. Hence, the protocols employed
by these applications are either compute-expensive or permit state of the replicas to diverge2 until recovery.
Hence, in this work, we focus on permissioned blockchain applications where identity of the participating
replicas are known prior to the start of the consensus.

An alternate solution in permissioned spaced is to employ multi-primary protocols like RCC [94, 95] that
permit all replicas to act as primaries by running multiple consensuses concurrently. However, multi-primary
protocols also face scalability limitations as despite concurrent consensuses, each transaction requires com-
munication between all the replicas. This had led to the design of topology-aware protocols, such as STEW-
ARD [6] and GEOBFT [97], which cluster replicas based on their geographical distances. GEOBFT expects
each cluster to first locally order its client transactions by running the PBFT protocol, and then exchange
this ordered transaction with all the other clusters. Although GEOBFT is highly scalable, it necessitates total
replication, which forces communicating large messages among geographically distant replicas.

3.2 The Landscape for Sharding

To mitigate the costs associated with replicated databases, a common strategy is to employ sharded-replicated
paradigm [149]. In a sharded-replicated database, the data is distributed across a set of shards where each
shard manages a unique partition of the data. Further, each shard replicates its partition of data to ensure
availability under failures. If each transaction accesses only one shard, then these sharded systems can fetch
high throughputs as consensus is restricted to a subset of replicas.

AHL [58] was the first permissioned blockchain system to employ principles of sharding. AHL’s seminal
design helps to scale blockchain systems to hundreds of replicas across the globe and achieve high through-
puts for single-shard transactions. To tackle cross-shard transactions that require access to data in multiple
shards, AHL designates a set of replicas as a reference committee, which globally orders all such transactions.
Following AHL’s design, SHARPER [8] presents a sharding protocol that eliminates the need for a reference
committee by necessitating global communication among all the participating shards.

Decades of research in database community has illustrated that cross-shard transactions are common [63,
54, 203, 183, 105, 140]. In fact, heavy presence of these cross-shard transactions has led to development of
several concurrency control [25, 26, 105] and commit protocols [87, 177, 103]. Hence, in this chapter, we
present our RINGBFT protocol that significantly reduces the costs associated with cross-shard transactions.

RINGBFT envisions each shard participating in multiple circular flows, simultaneously. For each cross-
shard transaction, RINGBFT follows the principle of process and forward. This implies that each shard
performs consensus on the transaction and forwards it to the next shard. This flow continues until each shard
is aware of the fate of the transaction. However, the real challenge with cross-shard transactions is to manage
conflicts and to prevent deadlocks, which RINGBFT achieves by storing multiple sequences.

3.2.1 Cross-Shard Dilemma

For any sharding system, ordering a single-shard is trivial. As a single-shard transaction requires access to
only one shard, ordering such a transaction across all the replicas of the shard requires running a standard

2In blockchain terminology, such divergence is stated as a fork in the chain where two or more replicas become temporarily incon-
sistent
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BFT protocol. Further, single-shard transactions support parallelism as each shard can order its transaction
in parallel, this without any communication between shards.

On the other hand, cross-shard transactions are complex. Not only do they require communication be-
tween shards but also their fate depends on the consent of each of the involved shards. Further, two or more
cross-shard transactions can conflict if they require access to same data. Such conflicts can cause one or more
transactions to abort or worse can create a deadlock. Hence, we need an efficient protocol to order these
cross-shard transactions, which ensures that the system is both safe and live.

Designated Committee. One of the ways to order cross-shard transactions is to designate a set of replicas
with this task. AHL [58] defines a reference committee that assigns an order to each cross-shard transaction,
which requires running PBFT protocol among all the members of the reference committee. Next, reference
committee members run the Two-phase commit (2PC) protocol with all the replicas of involved shard. No-
tice that the 2PC protocol requires: (1) each shard to send a vote to the reference committee, (2) reference
committee collects these votes and takes a decision (abort or commit), and (3) each shard implements the
decision. Firstly, this solution requires each shard to run the PBFT protocol to decide on the vote. Secondly,
reference committee needs to again run PBFT to reach a common decision. Finally, not only there are multiple
phases of communication between geo-distributed shards, but also quadratic communication as each member
of reference committee is transmitting messages to all the replicas of each shard.

3.3 System Model

To explain our RINGBFT protocol in detail, we first lay down some notations and assumptions. Our system
comprises of a set S of shards where each shard S provides a replicated service. In specific, each shard S
manages a unique partition of the data, which is replicated by a set RS of replicas.

In each shard S, there are f(⊆)RS byzantine replicas, of which nf(=)RS \ f() are non-faulty replicas.
We expect non-faulty replicas to follow the protocol and act deterministic, that is, on identical inputs, all
non-faulty replicas must produce identical outputs. We write z = |S| to denote the total number of shards and
n = |RS|, f = |f(|), and nf = |nf(|) to denote the number of replicas, faulty replicas, and non-faulty replicas,
respectively, in each shard.

Fault-Tolerance Requirement. Traditional, BFT protocols such as PBFT, ZYZZYVA, and SBFT expect a
total replicated system where the total number of byzantine replicas are less than one-third of the total replicas
in the system. In our sharded-replicated model, we adopt a slightly weaker setting where at each shard the
total number of byzantine replicas are less than one-third of the total replicas in that shard. In specific, at each
shard S, we have n ≥ 3f+1. Notice that this requirement is in accordance with existing works in byzantine
sharding space [58, 8, 187, 202].

Cross-Shard Transactions. Each shard S ∈ S can receive a single-shard or cross-shard transaction. A
single-shard transaction for S leads to intra-shard communication, that is, all the messages necessary to order
this transaction are exchanged among the replicas of S. Each cross-shard transaction requires access to data
from a subset of shards (henceforth we use the abbreviation CST to refer to a cross-shard transaction). We
denote this subset of shards as I where I ⊆ S, and refer to it as involved shards. Each CST can be termed
as simple or complex. A simple CST is a collection of fragments where each shard can independently run
consensus and execute its fragment. On the other hand, a complex CST includes dependencies, that is, an
involved shard may require access to data from other involved shards to execute its fragment.

Ring Order. We assumes shards in set S are logically arranged in a ring topology. In specific, each shard
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S ∈ S has a position in the ring, which we denote by id(S), 1 ≤ id(S) ≤ |S|. RINGBFT employs these
identifiers to specify the flow of a CST or ring order. For instance, a simple ring policy can be that each CST

is processed by the involved shards in the increasing order of their identifiers. RINGBFT can also adopt other
complex permutations of these identifiers for determining the flow across the ring.

Authenticated Communication. We assume that each message exchanged among clients and replicas
is authenticated. Further, we assume that byzantine replicas are unable to impersonate non-faulty replicas.
Notice that authenticated communication is a minimal requirement to deal with Byzantine behavior. For
intra-shard communication, we employ cheap message authentication codes (MACs), while for cross-shard
communication we employ digital signatures (DS) to achieve authenticated communication. MACs are a
form of symmetric cryptography where each pair of communicating nodes shares a secret key. We expect
non-faulty replicas to keep their secret keys hidden. DS follow asymmetric cryptography. In specific, prior to
signing a message, each replica generates a pair of public-key and private-key. The signer keeps the private-
key hidden and uses it to sign a message. Each receiver authenticates the message using the corresponding
public-key.

In the rest of this manuscript, if a message m is signed by a replica Rr using DS, we represent it as 〈Rr〉m
to explicitly identify replica Rr. Otherwise, we assume that the message employs MAC.

To ensure message integrity, we employ a collision-resistant cryptographic hash function D(·) that maps
an arbitrary value v to a constant-sized digest D(v) [120]. We assume that there is a negligible probability
to find another value v′, v 6= v′, such that D(v) = D(v′). Further, we refer to a message as well-formed if a
non-faulty receiver can validate the DS or MAC, verify the integrity of message digest, and determine that
the sender of the message is also the creator.

3.4 RingBFT Consensus Protocol

To achieve efficient consensus in sharded-replicated databases, we employ our RINGBFT protocol. While
designing our RINGBFT protocol, we set following goals:

(G1) Inexpensive consensus of single-shard transactions.
(G2) Flexibility of employing different existing consensus protocols for intra-shard consensus.
(G3) Efficient consensus of cross-shard transactions.
(G4) Cheap communication between globally-distributed shards.

Next, we define the safety and liveness guarantees provided by our RINGBFT protocol.

Definition 3.1. Let S be a system of shards and RS be a set of replicas in some shard S ∈S. Each run of a
consensus protocol in this system should satisfy the following two requirements:

Involvement Each S ∈S only processes a transaction if S ∈ I.
Termination Each non-faulty replica in RS executes a transaction.
Non-divergence All non-faulty replicas in RS execute the same transaction.
Consistence Each non-faulty replica in S executes a conflicting transaction in same order.

In traditional replicated systems, non-divergence implies safety, while termination implies liveness. For
a sharded-replicated system like RINGBFT, we need stronger guarantees. If a transaction requires access
to only one shard, safety is provided by involvement and non-divergence, while termination sufficiently
guarantees liveness. For a cross-shard transaction, to guarantee safety, we also need consistence apart from
involvement and non-divergence, while liveness is provided using involvement and termination.
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Figure 15: An illustration of how RINGBFT manages single-shard transactions. Each of the three shards S,
U, and V receive transactions T1, T2, and T3 from their respective clients C1, C2, and C3 to execute. Each

shard independently run PBFT consensus, and sends responses to respective clients.

RINGBFT guarantees safety in asynchronous setting. In such a setting, messages may get lost, delayed
or duplicated, and up to f replicas may act byzantine. However, RINGBFT can only provide liveness during
periods of synchrony. Notice that these assumptions are no harder than those required by existing proto-
cols [40, 58, 8].

3.4.1 Consensus of Single-Shard Transactions

To order and execute single-shard transactions is trivial. For this task, RINGBFT employs one of the many
available primary-backup consensus protocols and runs them at each shard. In the rest of this section, for the
sake of explanation, we assume that RINGBFT employs the PBFT consensus protocol to order single-shard
transactions. We use the following example to explain RINGBFT’s single-shard consensus.

Example 3.2. Assume a system that comprises of three shards S, U, and V. Say client C1 sends T1 to S,
C2 sends T2 to U, and client C3 sends T3 to V. On receiving the client transaction, the primary of each
shard initiates the PBFT consensus protocol among its replicas. Once each replica successfully orders the
transaction, it sends a response to the client. Such a flow is depicted in Figure 15.

It is evident from Example 3.2 that there is no communication among the shards. This is the case be-
cause each transaction requires access to data available inside only one shard. Hence, ordering single-shard
transactions for shard S requires running the PBFT protocol among the replicas of S without any synchro-
nization with other shards. For the sake of completeness, we present the single-shard consensus based on
PBFT protocol in brief next.

Request. When client C wants to execute a transaction T, it creates a 〈C〉T and sends it to the primary P

of shard S that has access to corresponding data.

Pre-prepare. When P receives message m := 〈C〉T from the client, it checks if the message is well-formed.
If this is the case, P creates a message PREPREPARE(m,∆,k) and broadcasts it to all the replicas of shard .
This PREPREPARE message includes: (1) sequence number k that specifies the order for this transaction, and
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Figure 16: An illustration of how RINGBFT employs the principle of Process and Forward to order two
cross-shard transactions TS,U,V and TU,V,W across four shards.

(2) digest ∆ = D(〈C〉T) of the client transaction which will be used in future communication to reduce data
communicated across network.

Prepare. When a replica R of shard S receives a PREPREPARE message from its primary, it checks if
the message is well-formed. If this is the case, the replica R agrees to support P’s order for m by sending
PREPARE(∆,k) to all the replicas of S.

Commit. When R receives identical PREPARE messages (and are also well-formed) from at least nf
replicas of S, it achieves a weak guarantee that majority of non-faulty replicas have also agreed to support
P’s order for m. Hence, it marks this request as prepared, creates a COMMIT(∆,k) message, and broadcasts
this message.

Reply. When R receives identical COMMIT messages (and are also well-formed) from at least nf replicas
of S, it achieves a strong guarantee that majority of non-faulty replicas have also prepared this request. Hence,
it executes transaction TT , after all the (k−1)-th transactions have been executed and replies to the client C.

We use the following lemma to illustrate the safety of the above protocol for ordering single-shard trans-
actions:

Proposition 3.3. Let Ri, i ∈ {1,2}, be two non-faulty replicas in shard S that committed to 〈Ci〉Ti as the k-th
transaction sent by P. If n > 3f, then 〈C1〉T1 = 〈C2〉T2 .

Proof. Replica Ri only committed to 〈Ci〉T after Ri received identical COMMIT(∆,k) messages from nf dis-
tinct replicas in S. Let Xi be the set of such nf replicas and Yi = Xi \ f() be the non-faulty replicas in Xi. As
|f(|) = f, so |Yi| ≥ nf− f. We know that each non-faulty replica only supports one transaction from primary
P as the k-th transaction, and it will send only one PREPARE message. This implies that sets Y1 and Y2 must
not overlap. Hence, |X1∪X2| ≥ 2(nf− f). As |X1∪X2|= nf, the above inequality simplifies to 3f≥ n, which
contradicts n > 3f. Thus, we conclude 〈C1〉T1 = 〈C2〉T2 .

3.4.2 Consensus of Cross-Shard Transactions: Process and Forward

In this section, we illustrate how RINGBFT guarantees efficient consensus of cross-shard transactions. An
efficient solution to cross-shard transactions not only helps us to meet the key goal for this work, but also
permits scaling a sharded-replicated system across wide-area network. In principle, RINGBFT introduces a
process-and-forward paradigm to order cross-shard transactions. We use the following example to illustrate
RINGBFT’s cross-shard consensus.
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Example 3.4. Assume a system that comprises of four shards S, U, V, and W. Say client C1 wants to process
a transaction TS,U,V that requires access to data from shards S, U, and V. Similarly, Say client C2 wants
to process a transaction TU,V,W that requires access to data from shards U, V, and W. In this case, client
C1 sends its transaction to primary of shard S while C2 sends its transaction to primary of U. On receiving
TS,U,V, replicas of S process the transaction and forward it to replicas of U. Next, replicas of U process
TS,U,V and forward it to replicas of V. Finally, replicas of V process TS,U,V and send it back to replicas of
S, which reply to client C1. Similar flow takes place while ordering transaction TU,V,W. We illustrate these
flows in Figure 16.

Although Example 3.4 illustrates RINGBFT’s process-and-forward paradigm, it raises following impor-
tant questions:

(Q1) Can a shard concurrently order multiple cross-shard transactions?
(Q2) How does RINGBFT handle conflicting transactions?
(Q3) Can shards running RINGBFT protocol deadlock?
(Q4) How much communication is required between two shards?

To answer these questions, we explain RINGBFT’s process-and-forward paradigm next.

Cross-shard Transactional Flow RINGBFT assumes shards are arranged in a logical ring. For the sake of
explanation, we assume the ring order of lowest to highest identifier. We denote the first shard in a ring order
as the initiator shard, which is responsible for starting consensus on the client transaction. To safely execute
a cross-shard transaction (CST), each shard may have to perform the tasks of process-and-forward multiple
times. This implies that each CST may require one or more rotations across the ring. If a CST is simple, then
a single rotation is sufficient to ensure each involved shard S ∈ I safely executes its fragment. Otherwise, a
CST may require at least two rotations across the ring.

Prior to presenting the RINGBFT’s consensus protocol that safely orders each CST, we sketch the flow of
a CST in Figure 18. In this figure, we assume a system of four shards: S, U, V, and W where id(S)< id(U)<

id(V)< id(W). The client creates a transaction TS,U,W that requires access to data in shards S, U, and W and
sends this transaction to the primary PS of S. On receiving this transaction, PS initiates the PBFT consensus
protocol (local replication) among its replicas. If the local replication is successful, then all the replicas of S
lock the corresponding data. This locking of data-items is the key to preventing deadlocks. Next, replicas of
S forward the transaction to replicas of shard U. Notice that only linear communication takes place between
replicas of S and U. Hence, to handle any failures, replicas of U share this message among themselves. Next,
replicas of U also follow similar steps and forward transaction to W. As W is the last shard in the ring of
involved shards, it goes ahead and executes the CST if all the dependencies are met. Finally, replicas of shards
S and U also execute the transaction and replicas of S send the result of execution to the client.
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Initialization:
// kmax :=0 (maximum sequence number in shard S)
// ΣI := /0 (set of data-fragments of each shard)
// π := /0 (list of pending transactions at a replica)

Client-role (used by client C to request transaction TI) :
1: Sends 〈C〉TI to the primary PS of shard S.
2: Awaits receipt of messages RESPONSE(〈C〉TI ,k,r) from f+1 replicas of S.
3: Considers TI executed, with result r, as the k-th transaction.

Primary-role (running at the primary PS of shard S) :
4: event PS receives 〈C〉TI do
5: if S ∈ I ∧ id(S) = FIRSTINRINGORDER(I) then
6: Calculate digest ∆ := D(〈C〉T ).
7: Broadcast PREPREPARE(〈C〉TI ,∆,k) in shard S (order at sequence k).
8: else
9: Forward to primary PU of shard U, U ∈S∧ id(U) = FIRSTINRINGORDER(I)

Non-Primary Replica-role (running at the replica R of shard S) :
10: event R receives PREPREPARE(〈C〉TI ,∆,k) from PS such that:

1. message is well-formed; and
2. R did not accept a k-th proposal from PS .

do
11: Broadcast PREPARE(∆,k) to replicas in RS.

Replica-role (running at the replica R of shard S) :
12: event R receives nf message PREPARE(∆,k) such that:

1. each message is well-formed and is sent by a distinct replica, Q ∈RS.
do

13: Broadcast 〈R〉COMMIT(∆,k) to replicas in RS.

14: event R receives nf m := 〈Q〉COMMIT(∆,k) messages such that:
1. each message m is well-formed and is sent by a distinct replica Q ∈RS.

do
15: U be the shard to forward such that id(U) = NEXTINRINGORDER(I).
16: A := set of DS of these nf messages.
17: if k = kmax +1 // Forward to next shard then
18: Lock data-fragment corresponding to 〈C〉TI .
19: Send 〈R〉FORWARD(〈C 〉TI

,A,m,∆,) to replica O, where O ∈RU ∧ id(R) = id(O)

20: else
21: Store 〈R〉FORWARD(〈C 〉TI

,A,m,∆,) in π .

22: while π! = /0 // Pop out waiting transaction. do
23: Extract transaction at kmax +1 from π (if any).
24: if Corresponding data-fragment is not locked then
25: kmax = kmax +1
26: Follow lines 18 and 19.
27: else
28: Store transaction at kmax in π .
29: Exit the loop.

// Locally share any message from previous shard.
30: event R receives message m := 〈Q〉MESSAGE-TYPE such that:

1. m is well-formed and sent by replica Q, where
id(U) = PREVINRINGORDER(I), Q ∈RU ∧ id(R) = id(Q)

do
31: Broadcast m to all replicas in S.

// FORWARD message from previous shard.
32: event R receives f+1 m′ := 〈Q〉FORWARD(〈C 〉TI

,A,m,∆) such that:

1. m′ is well-formed.
2. set A includes valid DS from nf replicas corresponding to m.

do
33: if Data-fragment corresponding to 〈C〉TI is locked // Second Rotation then
34: Execute data-fragment of 〈C〉TI and add to log.
35: Push result to set ΣI.
36: Release the locks from corresponding data-fragment.
37: V be the shard to forward such that id(V) = NEXTINRINGORDER(I).
38: Send 〈R〉EXECUTE(∆,ΣI)

to replica O, where O ∈RV ∧ id(R) = id(O).
39: else if R = PS // Primary initiates consensus then
40: Broadcast PREPREPARE(〈C〉TI ,∆,k′) in shard S (order at sequence k′).

41: event R receives m′ := 〈Q〉EXECUTE(∆,ΣI)
such that:

1. m′ is sent by replica Q, where Q ∈RU ∧ id(R) = id(Q)
do

42: if Already executed 〈C〉TI // Reply to client then
43: Send client C the result r.
44: else
45: Follow lines 34 to 38.

Figure 17: The normal-case algorithm of RINGBFT.
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3.4.3 Cross-Shard Consensus Algorithm

We use Figure 17 to present RINGBFT’s algorithm for ordering cross-shard transactions. Next, we discuss
these steps in detail.

Client Request When a client C wants to process a cross-shard transaction TI, it creates a 〈C〉TI
message

and sends it to the primary of the first shard in ring order. As part of this transaction, the client C specifies
the information regarding all the involved shards (I), such as their identifiers and the necessary read-write
sets of each shard.

Client Request Reception When the primary PS of shard S receives a client request TI, it first checks if
the message is well-formed. If this is the case, then the primary S checks if among the set of involved shards
I, S is the first shard in ring order. If this condition is met, then P assigns this request a linearly increasing
sequence number k, calculates the digest ∆, and broadcasts a PREPREPARE message to all the replicas RS of
its shard. In the case when S is not the first shard in the ring order, PS forwards the transaction to the primary
of the appropriate shard.

Pre-prepare Phase When a replica R ∈ RS receives the PREPREPARE message from PS, it checks if the
request is well-formed. If this is the case and if R has not agreed to support any other request from PS as the
k-th request, then it broadcasts a PREPARE message in its shard S.

Prepare Phase When a replica R receives identical PREPARE messages from nf distinct replicas, it gets
an assurance that a majority of non-faulty replicas are supporting this request. At this point, each replica R

broadcasts a COMMIT message to all the replicas in S. Once a transaction passes this phase, the replica R

marks it prepared.

Commit and Data Locking When a replica R receives well-formed identical COMMIT messages from nf
distinct replicas in S, it checks if it also prepared this transaction at same sequence number. If this is the case,
RINGBFT requires each replica R to lock all the read-write sets that transaction TI needs to access in shard
S.

In RINGBFT, we allow replicas to process and broadcast PREPARE and COMMIT messages out-of-order,
but require each replica to acquire locks on data in transactional sequence order. This out-of-ordering helps
replicas to continuously perform useful work by concurrently participating in consensus of several transac-
tions. To achieve these tasks, each replica R tracks the maximum sequence number (kmax), which indicates
the sequence number of the last transaction to lock data. If sequence number k for a transaction TI is greater
than kmax + 1, we store the transaction in a list π until transaction at kmax + 1 has acquired the locks. Once
the k-th transaction has acquired locks, we gradually release transactions in π until there is a transaction that
wishes to lock already locked data-fragments. We illustrate this through the following example.

Example 3.5. Assume we use the following notations to represent four transactions and the data-fragments
they access at shard S: T1,a, T2,b, T3,a, and T4,c. For instance T1,a implies that transaction at sequence 1
requires access to data-item a. Next, due to out-of-order message processing, assume a replica R in S receives
nf COMMIT messages for T2,b, T3,a, and T4,c before T1,a. Hence, π = {T2,b,T3,a,T4,c}. Once R locks data-
item a for transaction T1,a, it extracts T2,b from π . As T2,b wishes to lock a distinct data-item, so R continues
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processing T2,b. Next, R moves to T3,a but it cannot process T3,a due to lock-conflicts. Hence, it places back
T3,a in π and stops processing transactions in π until lock is available for T3,a.

Forward to next Shard via Linear Communication Once the data corresponding to transaction TI is
locked, each R in S sends a FORWARD message to some replica Q of the next shard in ring order. Notice that
one of the key goals of RINGBFT is to ensure that this communication between two shards is linear. Hence,
we design a communication primitive that builds on top of the optimal bound for communication between
two shards [106, 97].

RINGBFT’s cross-shard communication primitive can be stated as follows: if each replicas from shard
S communicates with a distinct replica in shard U, then at least f+ 1 non-faulty replicas from S will com-
municate with f+ 1 non-faulty replicas in U. How does this help? This communication primitive requires
exchanging a total of n messages (linear) between two shards. Further, it guarantees message delivery to at
least f+1 non-faulty replicas, which helps receiving replicas to determine the fate of the transaction.

In specific, we require each of the n replicas of S to initiate communication with the replicas of U having
the same identifier. Hence, replica R of shard S sends a FORWARD message to replica Q in shard U such that
id(R) = id(Q). By transmitting a FORWARD message, R is requesting Q to initiate consensus on 〈C〉TI

. For Q

to support such a request, it needs a proof that 〈C〉TI
was successfully ordered in shard S. Hence, R includes

the DS on COMMIT messages from nf distinct replicas (Figure 17, Line 16).

Execution and Next Rotation Once a client request has been ordered on all the involved shards, we call
it one complete rotation around the ring. This is a significant event because it implies that all the necessary
data-fragments have been locked by each of the involved shards. In such a case, if the first shard in ring
order (S) receives a FORWARD message, replicas of S will attempt to execute parts of transaction, which are
a responsibility of S. On successful completion of the execution, replicas in S send EXECUTE messages to
replicas in the next shard using the optimal communication primitive. This message includes the updated
write sets (ΣI), which can help in resolving any dependencies during execution.

Once the execution is completed across all the shards, the first shard in ring order may again receive an
EXECUTE message. At this point, the replicas of S reply to the client with identical responses.
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Figure 18: Representation of the normal-case flow of RINGBFT in a system of four shards where client
sends a cross-shard transaction TS,U,W that requires access to data in three shards: S, U, and W.

Unified Single and Cross-Shard Consensus Until now, we have presented RINGBFT protocols for han-
dling single-shard and cross-shard transactions, respectively. However, any sharded-replicated system is
expected to serve a mixture of transactions, which may include both single-shard and cross-shard transac-
tions. Hence, by making minor modifications to Figure 17, we can provide a unified protocol to handle either
type of transactions.

In specific, for a single-shard transaction T, when a replica R receives identical COMMIT messages from
nf distinct replicas in its shard, it attempts to acquire the locks. This only happens if its sequence number k is
equal to kmax +1, otherwise T is stored in π . When k = kmax +1, then R executes T and replies to the client.
Following this, the loop at Figure 17, Line 22 is run to extract any pending transactions.

The consensus provided by our RINGBFT protocol helps to achieve following guarantees:

Lemma 3.6. In a system S of shards, if at most f replicas out of n in each shard S ∈S are byzantine, then
each replica R ∈RS will execute each transaction TI in the same order if S ∈ I.

Lemma 3.7. In a system S of shards, during periods of synchrony, if at most f replicas out of n in each shard
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S ∈ S are byzantine then each replica R ∈ RS will continue to make progress. In specific, requests from a
good client will be processed by R if S ∈ I.

Lemma 3.8. No two replicas R ∈ S and Q ∈ U, S 6= U that order two conflicting transactions TI1 and TI2

such that R,Q ∈ I1∩I2 will execute TI1 and TI2 in different orders.

Lemma 3.6 and Lemma 3.7 state the safety and liveness guarantees provided by RINGBFT, respectively.
Further, we use Lemma 3.8 to illustrate the no deadlock assurance of RINGBFT.

3.5 RINGBFT Evaluation

To evaluate and compare our RINGBFT protocol against various modern sharding protocols, we deployed
implementation of RINGBFT in ResilientDB on Google Clout Platform (GPC) in 15 different regions as it is
shown in table 3.

Table 3: Regions

Country/City Region
0 oregon us-west1
1 iowa us-central1
2 montreal northamerica-northeast1
3 netherland europe-west4
4 taiwan asia-east1
5 sydney australia-southeast1
6 singapore asia-southeast1
7 south-carolina us-east1
8 north-virginia us-east4
9 los angeles us-west2
10 las vegas us-west4
11 london europe-west2
12 belgium europe-west1
13 tokyo asia-northeast1
14 hong-kong asia-east2

In experiments with less than 15 shards for we used the first n shard from this table. We used 16-core N1
machines with 32GB of RAM for the replicas and 4-core N1 machines with 16GB of RAM for the clients.
These machines have Intel Broadwell CPUs with a 2.2GHz clock. We equally distributed clients in regions
and shards based on the number of clients and shards.

In each experiment, the workload is provided by the Yahoo Cloud Serving Benchmark (YCSB) [53]. Each
client transaction queries a YCSB table with an active set of 600k records. For our evaluation, we use write
queries, as those are typically more costly than read-only queries. Prior to the experiments, each replica is
initialized with an identical copy of the YCSB table. The client transactions generated by YCSB follow a
uniform Zipfian distribution. Clients and replicas can batch transactions to reduce the cost of consensus. In
our experiments, we use a batch size of 100 requests per batch (unless stated otherwise).

Since the experiments and evaluation are in a geo-scaled WAN environment in different countries, the
bottleneck for all protocols is inter-region communication in bandwidth and round-trip time. For RINGBFT,
the inter-region communication is sending commit-certificates and final commit messages to the next shard
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in the ring using the reliable inter-cluster communication protocol. Table 4 shows the size of messages when
we are using 100 transactions per batch and one operation per transaction.

Table 4: Message Sizes

Message Size in Bytes
Pre-Prepare 5408
Prepare 216
Commit 269
Commit Certificate 6147
Checkpoint 164
Final Commit 1732

For AHL and Sharper, the proximity of shards in their order doesn’t matter; however, for RingBFT, since
the pattern of communication is a ring, it is crucial how close is the next shard. In order to have a fair
comparison, we shuffled the regions to remove the advantage of RingBFT, although, in a real-world setting,
RingBFT can benefit from the orientation of shards. According to Table 3 the first shard is always in Oregon,
the second one in Iowa, and so on.

We didn’t compare RINGBFT with all modern BFT protocols. The main reason for that is the per-
formance gap between sharding and full replicated systems. We have implemented several BFT modern
protocols such as RCC[95], SBFT[84], HotStuff[200], Steward[6], POE[91], Zyzzyva[121], and PBFT[40].
We had a brief comparison of these protocols against RINGBFT. The gap was so large, so we skipped hav-
ing these protocols in the evaluation part and assumed AHL and Sharper, Which are cutting edge sharding
protocols, would suffice. The scaling comparison of mentioned protocols is shown in figure 19.
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Figure 19: Evaluating Non-Sharding Protocols throughput and average latency

In this section, we will focus on the effect of different setup parameters on throughput and latency;
including:

1. Number of shards.
2. Number of replicas per shard.
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3. Percentage of coss-shard transactions.
4. Number of involved shards in cross-shard transactions.
5. Batch Size.
6. Number of simultaneous clients (Max Transactions Inflight).

The values of parameters described above used in our experiments are summarized in Table 5. Max
Transaction Inflight’s value is fine-tuned to prevent overwhelming the system by adding artificial queue time
in replicas.

Table 5: Experiments

Number of
Shards

Number of
Nodes

Cross Shard % Batch size Involved
shard

MAX INF

3, 5, 7, 9, 11, 15 28 30 100 All Fine-Tuned
15 10, 16, 22, 28 30 100 All Fine-Tuned
15 28 0, 5, 10, 15, 30, 60, 100 100 All Fine-Tuned
15 28 30 10, 50, 100, .5k, 1k, 5k All Fine-Tuned
15 28 30 100 1, 3, 6, 9, 15 Fine-Tuned
15 28 30 100 All 5K, 10K, 15K, 20K

3.5.1 Impact of Increasing Number of Shards

In this experiment, we fix the replication level, which is the number of nodes in each shard. We ran this
experiment with 28 replicas in each shard and scale from 3 shards to 15 shards in different geo distant
regions.

The impact of adding shards on AHL’s performance would be drastic in AHL since the reference commit-
tee needs to send all the messages for the 2PC protocol, including vote-request and global commit to every
node in all involved shards, and this number is scaling from 56(2* 28) to 392(14 * 28). Processing these
messages will affect AHL’s throughput severely as it scales to 15 shards. AHL’s latency will also increase
because of the dense communication of a single point, which is the reference committee. However, Sharper
will perform better because there is no single point of communication and message processing like the AHL’s
reference committee. The throughput in sharper decreases by increasing the number of shards because, for
cross-shard transactions in Sharper, two rounds of quadratic communication between involved shards’ nodes
are required. Adding shard increases this communication both in terms of network and message processing
(signing, validating).

Unlike Sharper and AHL, adding shards will not affect the amount of communication in RingBFT. The
only change in RingBFT is the ring’s length in the chain of shards in the RingBFT protocol. Because the
communication pattern won’t change in RingBFT, the throughput will not decrease by adding shards, and the
latency will rise because it will take more time to go around the ring and reach consensus in all shards. As
you can see in Figure 20 RingBFT is amazingly scalable compare to AHL and Sharper.
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Figure 20: Impact of Increasing Number of Shards

3.5.2 Impact of Number Nodes in each Shard

In this experiment, we will focus on the effect of increasing the replication level in each shard by fixing the
number of shards to 15 and 30% cross-shard workload and increasing the number of nodes in shards from 10
to 28.

The performance of AHL is already dropped because of having 15 shards and a 30% cross-shard work-
load. Increasing the number of nodes in shards again will put pressure on the reference committee, and
getting at most 16K throughput with ten nodes in each shard does not give AHL room to fall by increasing
the replication level. The performance of Sharper and RingBFT in non-cross-shard transactions is closely
dependent on the replication level because they both use PBFT like consensus protocol with two rounds of
quadratic communication, and increasing the number of replicas in each shard directly increases the com-
munication and computation in replicas. The decrease in performance of RingBFT is because of increased
communication local consensus and larger commit-certificates for inter-shard communication. In addition to
local consensus cost in Sharper for cross-shard transactions, more communication and message processing is
needed because of all-to-all communication between involved shards replicas. Figure 21 shows the result of
this experiment. RinigBFT gained 4x TP in comparison to sharper and 16x compared to AHL. RingBFT is
2.3x faster than Sharper and 10.23x better than AHL.
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Figure 21: Impact of Number Nodes in each Shard

3.5.3 Impact of the Cross-Shard Workload

In this experiment, we measure the effect of the cross-shard workload rate, which is the number of transactions
that touch data in all shards. Tweaking this rate has different impacts on different protocols. When the cross-
shard rate is zero, all transactions are processed locally; therefore, the throughput and latency would be nearly
the same because all three of them are doing a PBFT-like consensus in local shards. AHL, RingBFT, and
Sharper achieve tremendously high performance in zero cross-shard workloads (A million transactions per
second) because there is no inter-shard/region communication. As soon as we add a 5 percent cross-shard
workload, the throughput drops significantly, and latency doubles, as shown in Figure X.

The performance drop in AHL is more severe than RingBFT and Sharper, and it is all because of the
reference committee; while other replicas in AHL doesn’t have so much to do, the reference committee is
getting saturated in even small cross-shard workloads, and in 100 percent cross-shard workload its throughput
falls down to 2000 transaction per second. The trend in RingBFT and Sharper is also the same, but the drop
is lighter than AHL so that sharper is twice better than AHL in most cases, and RingBFT is four times
better than Sharper after 15% cross-workload. One interesting observation in this experiment is that cross-
shard throughput becomes constant after some point. It happens to AHL and sharper after five and RingBFT
after 15. It shows that communication is the bottleneck here for all protocols, and based on the amount of
communication, these protocols are performing differently. With our setup capacity in 15 regions, RingBFT
can do 22K, Sharper 7K, and AHL 2K cross-shard transactions per second at most. The question is that why
the non-cross-shard throughput is going down after coss-shard throughput becomes constant? The answer is
that when the clients send more cross-shard transactions, processing and doing consensus for them will take
more of the pipeline in the system and less room for non-cross ones; hence the non-cross throughput decreases
too. Figure 22 shows total throughput, cross-throughout, and latency for different cross-shard workload rate.
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Figure 22: Impact of the Cross-Shard Workload

3.5.4 Impact of the Batch Size

Batch size is the number of transactions that a single instance of consensus contains, and replicas agree on
the whole batch. It has upsides and downsides. Using large batches reduces the number of consensuses but
increases the size of the messages. Large batch sizes also increase the latency because all transactions in a
batch need to get done before sending client responses.

We analyze this experiment in terms of latency and throughput separately. Starting from the batch size
of one, by increasing batch size, the throughput increases because, with less communication and fewer mes-
sages, we are processing more transactions. This trend lasts until the system reaches its saturation point in
terms of communication and computation. Once the system is at filling its network bandwidth, adding more
transactions to the batch won’t increase the throughput because it cannot process more, and sending those
batches will be a bottleneck for the system. Ideally, it should get constant after some point but because of
implementation details and queuing; it drops slightly after some time.

Talking about latency starting from a batch size of one, increasing the batch size will decrease the /textb-
fAvarage Latency. For example, with x number of the round trip time, we were doing one transaction, now
with the same number of round-trip times, we are doing ten transactions. This decrease in latency doesn’t last
long because of two reasons: First, in large batch size, all transactions should get finished to send client re-
sponses. Second, once the system reaches its saturation point of the network and computation, as we describe
in the throughput part, adding transactions to batch will only increase the wait time behind the bottleneck,
and latency starts to rise. Figure 23 shows the results of this experiment for throughput and latency.
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Figure 23: Impact of the Batch Size

3.5.5 Impact of Involved Shards

In this experiment, we fixed the cross-shard rate to 30 percent in 15 shards and varied the number of involved
shards in the transactions. Since we shuffled the regions, they don’t have proximity based on their shard id
for each involved shard value; we create a window around each and include them in the transactions. For
example, when we set the value of involved shards to three. the pattern of involved shards for transaction in
shard x would be: (x-2,x-1,x), (x-1,x,x+1), (x,x+1,x+2).

As figure 24 shows, all three protocols observe a drop in performance by increasing the involved shards.
The reason for the drop in performance is like previous experiments. RingBFT and Sharper perform around
the same with three shards involved, but as soon as we go to 6 involved shards, the Sharper becomes half of
RingBFT. At the same time, AHL doesn’t perform well in comparison to the rest.

RINGBFT SHARPER AHL

1 3 6 9 15

10K

50K

200K

1M

Involved Shards

To
ta

lT
hr

ou
gh

pu
t(

tx
n/

s)

1 3 6 9 15
0.0

20.0

40.0

60.0

80.0

Involved Shards

L
at

en
cy

(s
)

RINGBFT SHARPER AHL

Figure 24: Impact of Involved Shards

3.5.6 Impact of Number of Inflight Transactions

When clients send transactions to the replicas, they should not overwhelm the system. It should be at a rea-
sonable rate. In our system, we define a parameter called MAX INF: it is the number of ongoing transactions
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for each client. A client sends MAX INF transactions and waits to get a response. Once it receives the re-
sponse for some of them, it will again fill up the MAX INF ongoing transactions. This value parameter is
sensitive and depends on the performance of each protocol.

Figure 25 shows the performance of three protocols with different MAX INF values. The throughput
trend for all protocols is the same. They increase and become constant after some time. The reason is that
having a small MAX INF will not fill the pipeline, so the system is not fully utilized. After some number, it
reaches a saturation point, and throughput becomes constant. On the other hand, latency always increases by
increasing MAX INF because when the pipeline is filled, by increasing the MAX INF, you are just making
the queues longer and more wait time for the transactions to get processed.
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Figure 25: Impact of Number of Inflight Transactions
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4 Reliable Transactions in Serverless-Edge Co-design

Modern edge applications demand novel solutions where edge applications do not have to rely on a single
cloud provider (which cannot be in the vicinity of every edge device) or dedicated edge servers (which cannot
scale as clouds) for processing compute-intensive tasks. A recent computing philosophy, Sky computing
[179, 42], proposes giving each user ability to select between available cloud providers.

In this chapter, we present our serverless-edge co-design, which extends the Sky computing vision. In our
serverless-edge co-design, we expect edge devices to collaborate and spawn required number of serverless
functions. This raises several key challenges: (1) how will this collaboration take place, (2) what if some
edge devices are compromised, and (3) what if a selected cloud provider is malicious. Hence, we design
SERVERLESSBFT, the first protocol to guarantee Byzantine fault-tolerant (BFT) transactional flow between
edge devices and serverless functions. We present an exhaustive list of attacks and their solutions on our
serverless-edge co-design. Further, we extensively benchmark our architecture on a variety of parameters.

4.1 Challenges for Serverless-Edge Co-design

We introduces SERVERLESSBFT, the first protocol to guarantee Byzantine fault-tolerant (BFT) transactional
flow between edge devices and serverless functions. The design of SERVERLESSBFT is motivated from the
recent introduction of Sky Computing, which envisages utility computing in a multi-cloud environment [179,
42]. Sky computing propounds the design of an inter-cloud broker that takes as input a client program and
output specifications and selects the best cloud providers to execute the client program. Such a broker is
extremely desirable for the edge and Internet of Things (IoT) applications, which run on edge devices, such
as smart devices, sensors, UAVs, and phones, that have limited compute power and memory [46].

On the one hand, existing edge applications expect response latency in the order of tens of millisec-
onds [151, 123, 43, 145]. On the other hand, they are forced to delegate compute-intensive tasks to a specific
third-party cloud provider such as AWS and Azure [150, 169, 180]. A recent way to solve this dilemma is
to install dedicated edge-servers that are closer to the edge devices [28, 193, 13]. These edge servers are in-
stalled and maintained by the enterprise behind the application [28, 134, 80]. If any server hardware crashes,
then the enterprise may need to purchase new hardware.

Moreover, with ever-growing application needs, these servers are unlikely to scale seamlessly as third-
party clouds.

SERVERLESSBFT realizes the Sky computing vision in edge computing by giving the edge applications
flexibility to select any of the available cloud providers. As a result, the edge application can select different
cloud providers based on the location of its users.3 However, moving data across cloud providers degrades
system performance and is expensive. So, we take a step further and permit edge applications to make use of
serverless technology, which (i) decouples storage, compute, and network, (ii) supports pay-as-you-go model
where the enterprise pays only for the resources used, and (iii) supports auto-scaling policies [178, 20, 194].
We refer to this interaction as serverless-edge co-design as it promotes light-weight tasks at the edge while
compute-intensive tasks are done at the serverless cloud. Our serverless-edge co-design targets low latency
by allowing edge devices to spawn serverless functions at the nearest cloud.

Our serverless-edge co-design also presents several research challenges, which we present next.

3At present, switching cloud providers is common for most applications due to geo-political reasons and government regula-
tions [146].
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4.1.1 Task distribution between edge and serverless.

Our SERVERLESSBFT protocol requires an edge application to push its compute-intensive task to the cloud
by spawning serverless functions (for simplicity, we refer to these functions as executors). To do so, we need
to design a compatibility layer. We build this compatibility layer on top of edge devices and refer to it as a
shim. At shim, the edge devices collaborate and spawn serverless executors for executing compute-intensive
client requests.

4.1.2 Lack of Trust at Shim.

As edge devices may belong to different parties, which may not trust each other, it is hard for these devices
to collaborate. Hence, our SERVERLESSBFT protocol runs a traditional BFT protocol to allow these edge
devices reach a consensus [40, 97]. This consensus decides which edge device will spawn the desired number
of executors and the order in which client requests are processed. For consensus, we opt for BFT protocols
as they are resilient to malicious attacks. Further, depending on the location and nature of edge devices,
SERVERLESSBFT permits various shim designs: a single shim of all devices running PBFT [40] consensus,
multiple dependent shims of devices spread globally, running GeoBFT [97], and multiple independent shims
running AHL [58], Sharper [8], or RingBFT [161]. For simplicity, in this work, we assume a single shim of
3f+1 devices where up to f devices can act malicious.

4.1.3 Lack of Trust at Serverless cloud.

Depending on the application requirement, shim may spawn serverless executors at one or more available
cloud providers in the vicinity. Hence, there is again a lack of trust: some cloud providers may have mal-
intent or may have poor QoS (crashed or failed executors) [47, 110]. As a result, SERVERLESSBFT requires
the shim to spawn 2f+ 1 executors and permits up to f of them to fail. This extra spawning is not new;
Yahoo’s Hadoop also executes the same code multiple times to reduce latency due to stragglers [176].

4.1.4 Private Data access and retrieval.

Recent reports illustrate that around 90% of the industries are not only sticking with their existing on-premise
servers, but also scaling them up [119, 74]. For at least 65% of these industries, the key reason for maintaing
on-premise servers is to protect their consumer data from data-breaches and attacks [119]. In our serverless-
edge co-design, we adhere to this design choice and assume that all the client data is stored in an on-premise
storage at the enterprise. As a result, the enterprise can control access to the data. Hence, edge devices
or executors lack rights to update the storage, but may request read access to the same. For updates to the
storage, we write a lightweight wrapper (verifier) around the storage that collects execution results, updates
the data-store, and forwards the results to the clients.

Furthermore, we observe several other new challenges with our architecture: (i) Byzantine shim devices
may spawn fewer executors, for which we need to hold them accountable. (ii) During execution, executors
may need to read data from the storage. (iii) If the client transactions are conflicting and their read-write sets
are unknown until execution, we may have to abort such transactions.

We envision our serverless-edge architecture to seamlessly integrate with existing edge applications. To
realize this goal experimentally, we design a shim of nodes and require them to spawn AWS Lambda func-
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tions as executors. On each shim node, we install ResilientDB’s light-weight and multi-threaded consensus
framework [97, 96, 100]. We evaluate our SERVERLESSBFT protocol on eight distinct parameters. Our re-
sults illustrate that SERVERLESSBFT can facilitate shims of up to 128 devices in 11 global regions. Further,
in our experiments, we are easily able to spawn 21 executors in parallel (could not scale further due to limits
by cloud provider), and the peak throughput achieved by our SERVERLESSBFT protocol is 240 k txns/s while
the minimum latency incurred is 30 ms.

We make the following contributions:

• We design of a novel serverless-edge co-design that meets the vision of Sky computing and helps design
low latency reliable edge applications where edge devices can select cloud providers based on desired output
specifications.

• In our serverless-edge architecture, we neither trust the edge devices nor the serverless executors.
Hence, we introduce a novel protocol SERVERLESSBFT that manages the flow of a client request in our
serverless-edge architecture and shields the system against arbitrary results and malicious attacks.

• We enlist possible attacks in our serverless-edge architecture and present solutions to recover the sys-
tem.

• Our SERVERLESSBFT protocol presents algorithms to handle conflicting transactions with or without
the knowledge of read-write available to shim nodes prior to execution.

4.2 Motivation and Use Case

The motivations behind our serverless-edge co-design are the emerging use cases of edge-computing, such as
AR/VR video-streaming and Unmanned Aerial Vehicles (UAVs). These applications require massive data-
processing as they need to run ML models to train data on-flight or provide the user useful insights. The key
challenge these applications face is the rapidly changing user characteristics.

We consider a real-world use case of UAVs as a motivating example for this work [5]. In recent years,
UAVs have been adopted by e-commerce industries, such as Amazon and Walmart, for product deliveries.
These UAVs help to securely and quickly transport user goods in a cost-efficient manner. During the delivery
process, each UAV travels over multiple geographical locations and performs an array of tasks, such as
navigation, image recognition, and live video-streaming.

In Figure 26(b), we illustrate the traditional way of computing for UAVs, where each UAV offloads all the
collected data to the dedicated edge servers for processing. In this model, UAVs are forced to communicate
with dedicated servers. When the server is in the vicinity, the communication round-trip costs are low;
otherwise, they are high. Each edge server executes the requests from various UAVs in an ordered-fashion.
Moreover, these servers need to be continuously scaled, new software needs to be installed, and OS needs to
be updated, which makes them a financially expensive choice.

In Figure 26(a), we reimagine the UAV delivery operation in our serverless-edge co-design. Switching
to our serverless-edge model, allows UAVs in the vicinity to interact with each other and act as a shim
that spawns serverless executors to process collected data. To alleviate concerns regarding round-trip costs,
the shim is permitted to opt for services from local cloud providers. In fact, shim can spawn executors at
multiple clouds and wait for whichever responds earliest. As there is a lack of trust among shim devices
and executors, we have our SERVERLESSBFT protocol to manage all the transactional flow in a byzantine
fault-tolerant manner.

Byzantine failures in the wild. Do real-world systems face more than just crash failures? Unfortunately,
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Figure 26: Illustration of (a) Serverless-Edge architecture employing the SERVERLESSBFT protocol and (b)
architecture prevalent in existing edge applications.

yes. Existing systems suffer from omission failures where nodes can crash [54], and arbitrary failures where
nodes can act in an unexpected manner [47]. Almost all real-world applications handle omission failures us-
ing protocols based on Paxos-family [124, 147]. However, the true challenge is to bulwark the system system
against often overlooked arbitrary failures: Google’s UpRight [47] provides fault-tolerance against byzantine
failures, Google has also observed corrupt execution errors [110], and Cloudflare observed a misbehaving
switch sending incorrect messages [50]. Hence, it is better to guard system against these failures.

4.3 Preliminaries

We make standard assumptions as made by any BFT system [40, 97, 8, 96]. We represent our serverless-
edge architecture A through a quintuple, A = {clients(,)R,E ,S ,V }, where we use clients() to denote the
set of clients, R to denote the shim of edge devices or nodes, E to denote the serverless executors, V and
S to denote the verifier and data-store. As described in Section 4.1, we assume an on-premise data-store
maintained by the enterprise, while the verifier is a lightweight wrapper around the data-store. Hence, both
verifier and storage are assumed to be honest and trusted.

Fault-Tolerance Requirement at Shim. We use the notation nR = |R| to represent total number of edge
nodes in A . At most fR of these nodes are byzantine and can crash-fail or act arbitrarily; nR ≥ 3fR+ 1.
The remaining 2fR+1 nodes are honest and follow the protocol.

Authenticated Communication. To exchange messages among different components, we employ Digital
Signatures (DS) and Message Authentication Codes (MAC) [120]. To represent a message m signed by a
component R using DS, we use the notation 〈R〉m. Anyone who has the signer’s public-key can verify this
signature. One of the common ways to exchange public-keys is through a public-key certificates [38]. For
MACs, signer and verifier use a common key, which is kept secret. We use Diffie-Hellman key exchange
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for securely sharing secret keys. In rest of the text, any message m that does not indicate the identity of
the signer implies the use of MAC. Although MACs offer higher throughput than DS, DS guarantee non-
repudiation [40, 102]. We also employ a collision-resistant hash function D(·) to map a value v to a constant-
sized digest D(v). We use a function id() to assign an identifier to each node R ∈R and each executor E ∈ E .
We assume that byzantine components can neither impersonate honest components, nor subvert cryptographic
constructs. We do not make any assumptions on the behavior of the clients. We term a message as well-formed
if it passes all the cryptographic and other necessary checks.

4.3.1 Serverless Cloud Assumptions

We expect access to one or more serverless clouds such as AWS Lambda and Google Functions. These
serverless cloud should permit edge nodes to seamlessly upload the desirable code or transactions for pro-
cessing as per the application specifications. For simplicity, in rest of the text, we assume that the shim nodes
access only one cloud provider for spawning executors to execute client transactions. However, there is no
free food as these serverless clouds follow a pay-per-use model where whoever spawns executors also pays
for their use [114]. We expect these clouds to meet the following:

• Fault-Tolerance: To handle arbitrary faults at the serverless cloud, we spawn nE ≥ 2fE +1 executors,
and assume that at most fE are byzantine. Prior works have shown that 2fE +1 executors guarantee successful
execution of a transaction in the byzantine setting [199]. This leads us to observe the following:

1. The values for fE and fR may or may not be same.
2. In Section 4.6, we illustrate that if the transactions are conflicting, then we need an additional fE

executors to prevent an indistinguishable byzantine attack.

• Identity: We expect each spawned executor to be assigned a unique pair of public-private key, which
it uses to digitally sign a message.

• Accountability: Each executor is spawned by some shim node that pays for this service. Hence, we
expect that no executor can spawn more executors. Further, the expected number of executors to be spawned
by shim nodes is known to all the components of our architecture.

• Payment. As executors are spawned by shim nodes, it implies that the spawner will be billed by the
cloud provider. Hence, post successful consensus of a transaction, the edge application’s enterprise pays the
spawner a fixed amount to cover its expenses.

4.4 Architecture

We now discuss in detail the BFT transactional flow guaranteed by our SERVERLESSBFT protocol in the
serverless-edge co-design. In Figure 27, we schematically present this flow; the shim consists of nR = 4
edge nodes and nE = 3 executors are spawned per transaction. For understandability, we will periodically
refer to the UAV use case of Section 4.2.

As stated earlier, shim can have different abstractions and can run any BFT protocol. In this work, we
assume a single shim of 3fR+1 and require shim nodes to run the PBFT [40] protocol. PBFT is considered as
a representative BFT protocol as all the other protocols follow its design. PBFT protocol works in views. For
each view, one node is designated as the primary and is responsible for successful completion of consensuses
in that view. If the primary acts malicious, the view is changed and the primary is replaced.
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Figure 27: Schematic representation of the transactional flow in SERVERLESSBFT protocol. Given a client
transaction T , the nodes of the shim work together to order this transaction, following which the primary P
invokes the executors at the serverless cloud to execute T . Post execution, the executors send their results to

the verifier, which replies to the client.

4.4.1 Client Request and Response

Any user that accesses the edge application becomes a client in our system. E.g., each UAV that requires
data-processing from the cloud acts as a client and packages its request as a transaction. A client c send a
message 〈c〉T to the primary node P4 of the current view v of the shim when it wants to process a transaction
T . Notice that c employs DS to sign this message (refer to Figure 28, Line 1). The client c marks 〈c〉T as
processed when it receives a RESPONSE message from the verifier V . As c knows that V is a trusted entity
in our infrastructure, it readily accepts the response (Line 3).

4.4.2 Shim Ordering

SERVERLESSBFT assigns each shim node (e.g. UAV) an identifier, 0,1,2, ...,nR. Initially, the shim node
with identifier 0 is designated as the primary P of the shim. On receiving a client request 〈c〉T , P checks if
〈c〉T is well-formed. If this is the case, P initiates the PBFT protocol as follows.

• Pre-prepare. The primary P assigns a sequence number k to the well-formed client message m := 〈c〉T
and sends it as a PREPREPARE message to all the nodes of the shim. This PREPREPARE message also includes
a digest ∆ = D(m), which is used in future communication to save space. Notice that the primary signs this
message using MAC, which provide sufficient guarantees for this phase. When a node R ∈ R receives a
PREPREPARE message from the primary P of view v, it runs the message through a series of checks. If the
checks are successful, then R agrees to support the order k for this client request by broadcasting a PREPARE

message.

• Prepare. When a node R receives identical PREPARE messages from 2fR+1 distinct nodes (can include
its own message to reach the count), it marks the request m as prepared and broadcasts a COMMIT message.
We require each node R to use DS to sign the COMMIT message.

• Commit. When R receives identical COMMIT messages from 2fR+1 nodes, it marks m as committed.

Remark. PBFT requires two phases of quadratic communication complexity. Instead, shim can employ
BFT protocols like POE [91] and SBFT [84] that guarantee linear communication with the help of advanced
cryptographic schemes like threshold signatures. Note: in our architecture, the edge devices are acting as
both clients and shim nodes.

4Some BFT protocols require a client request to be sent to all the nodes.
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4.4.3 Serverless Optimistic Execution

Once P commits a request, SERVERLESSBFT requires P to connect with the serverless cloud and spawn nE

executors. P sends each of these executors an EXECUTE message (Line 9), which includes a certificate C;
a set of signatures of 2fR+ 1 distinct shim nodes and proves that these nodes agreed to order this request
(Line 8). Prior to executing the transaction T , each executor E ∈ E checks if the certificate C is valid.

During execution, E may need to access the value of read-write sets (rw). Hence, it connects with the
storage S and fetches the required data (Lines 17-18). However, executors do not write to the storage. Any
intermediate results are stored locally. Further, these executors do not communicate with each other. Post
execution, each executor E sends a VERIFY message to the verifier V , which includes the computed result r,
certificate C, and accessed read-write sets rw.

Remark. We allow shim to spawn either stateless or stateful executors [114, 136]. Stateful executors
have memory and remember the results of last execution. By definition, severless executors are “fleeting”
and return after execution; a common way to assign these executors memory is by having a layer that stores
computed results [178]. To employ stateful executors in our model, we would need BFT guarantees on the
additional layer. Hence, we focus on stateless executors. Including C in the EXECUTE and VERIFY messages
helps to detect byzantine attacks (§ 4.6.2). Further, by employing threshold signatures, we can reduce the
size of the certificate. Threshold signatures allow combining 2fR+1 signatures into a single signature.

4.4.4 Verifier and Concurrency Control

The verifier V is a lightweight wrapper around the data-store S and is assumed to be correct and trusted.
The verifier collects well-formed VERIFY messages from the executors (in set V) and once it has a quorum of
matching results that do not violate the concurrency control constraints, it updates the data-store. It performs
these tasks in the following order:

1. If set V has at least fE +1 matching VERIFY messages, V marks the transaction as matched. Follow-
ing this, V ignores any other VERIFY message for 〈c〉T (Line 23).

2. If k is the sequence number for 〈c〉T and kmax is the sequence number of last validated request, then if
kmax 6= k, V places the k-th request in the list π (Line 29).

3. If kmax = k, V checks if the value of the read-write sets rw of the k-th request is same as that in the data-
store S (Lines 31-32). If the read sets match, V sends the client and the shim primary RESPONSE messages
and updates the write sets at the storage in accordance with the result r (Lines 33-34). Note: matching
read-write sets is only required when the transactions are conflicting. We discuss this in Section 4.6.

4. Next, V increments kmax and checks if π includes the transaction with sequence number kmax. If so,
it removes the kmax-th transaction from π and runs steps in Lines 26-27. These concurrency control checks
ensure that consistent updates are written to the storage.
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Initialization:
// kmax := sequence number of the next request to be verified by V .
// π := /0 (list of requests marked matched at verifier)

Client-role (used by client c to request transaction T ) :
1: Sends 〈c〉T to the primary P.
2: Awaits receipt of message RESPONSE(〈c〉T ,k,r) from V .
3: Considers T executed, with result r, as the k-th transaction.

Primary-role (running at the primary node P) :
4: event P receives 〈c〉T do
5: Calculate digest ∆ := D(〈c〉T ).
6: Broadcast PREPREPARE(〈c〉T ,∆,k) to all nodes (order at sequence k).

7: event P receives nfR m := 〈R〉COMMIT(∆,k) messages such that:
1. each message m is well-formed and is sent by a distinct node R ∈R.

do
8: C := set of DS of these nfR messages. // Certificate
9: Send 〈P〉EXECUTE(〈c〉T ,C,m,∆) to all executors E ∈ E . // Serverless access

Non-Primary role (running at a node R ∈R) :
10: event R receives PREPREPARE(〈c〉T ,∆,k) from P such that:

1. message is well-formed, and R did not accept a k-th proposal from P.
do

11: Broadcast PREPARE(∆,k) to all nodes in R.

All nodes role (running at the node R) :
12: event R receives PREPARE(∆,k) messages from nfR nodes such that:

1. each message is well-formed and is sent by a distinct node, R∗ ∈R.
do

13: Broadcast 〈R〉COMMIT(∆,k) to all nodes in R.

Executor-role (running at the executor E ∈ E ) :
14: event E receives 〈P〉EXECUTE(〈c〉T ,C,m,∆) from P such that:

1. message is well-formed,
2. m := COMMIT(∆,k), and
3. Certificate C includes nfR distinct DS on m.

do
15: while T not executed do
16: rw := Read-write sets for T .
17: if Need the current state of rw // Storage access then
18: Fetch rw state (values) from storage S
19: r := Result of executing T
20: Send VERIFY(〈c〉T ,C,m,rw,r) to verifier V . // Communication with verifier

Verifier-role (running at the verifier V ) :
21: event V receives m′ := VERIFY(〈c〉T ,A,m,rw,r) message from an executors such that:

1. m′ is well-formed and is sent by a distinct executor E ∈ E , and
2. m := COMMIT(∆,k).

do
22: Add m′ to V.

23: event Set V has fE +1 identical m′ :=VERIFY(〈c〉T ,A,m,rw,r) messages do
24: if k = kmax // Next request in order. then
25: Run function ccheck(π)
26: while kmax-th transaction is in π // Other requests do
27: Run function ccheck(π)
28: else
29: Store m′ in π .

30: function ccheck (list: π)
31: rw′ := Current state of rw fetched from storage S .
32: if rw′ = rw // Concurrency control check then
33: Send 〈V 〉RESPONSE(∆,r) to the client c and primary P. // Reply to client.
34: Update corresponding rw with r at the storage S .
35: kmax = kmax +1.

Figure 28: Byzantine Fault-Tolerant transaction processing by SERVERLESSBFT protocol in the
serverless-edge architecture.

4.4.5 System Guarantees

We now state the guarantees offered by our different components of our serverless-edge architecture.
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Shim Consistency. If an honest node commits a transaction T , then all the honest nodes commit T .
Shim Non-Divergence. If two honest nodes order a transaction T at sequence number k and k′, then k = k′.
Shim Termination. If an honest client sends a transaction T , then an honest node will eventually commit T .
Executor Termination. If an honest primary sends an EXECUTE message for transaction T , then an honest

executor will execute T .
Verifier Non-Divergence. If the shim commits a transaction T at sequence k, then the verifier will eventually

update the corresponding result at the storage at order k.

Together, shim consistency, shim non-divergence, and verifier non-divergence imply safety, while shim
termination and executor termination imply liveness. Our SERVERLESSBFT protocol guarantees safety in an
asynchronous environment where the messages can get lost, delayed, or duplicated, and byzantine compo-
nents can collude or act arbitrarily. To guarantee liveness, our SERVERLESSBFT protocol expects periods of
synchrony. Note: our SERVERLESSBFT offers standard safety and liveness guarantees, also offered by other
systems [40, 91, 97, 58, 8].

4.5 Tackling Byzantine Attacks

In our architecture, at most fR shim nodes and fE serverless executors can act byzantine. If the primary
of shim is honest, then byzantine nodes cannot affect the ongoing transactional flow. Similarly, byzantine
executors can either provide incorrect result or ignore execution, but as there are at least fE + 1 honest
executors, EXECUTE messages sent by honest primaries will be processed. Hence, following is an exhaustive
list of attacks on our design.

(i) Request Suppression. If the primary of shim is byzantine, it can try to prevent consensus on some
client requests.

(ii) Nodes in Dark. If shim’s primary is byzantine, it can keep up to fR honest shim nodes in dark by not
involving them in consensuses.

(iii) Verifier Flooding. Byzantine components can flood the verifier with requests that have been already
verified.

Next, we present algorithms to recover from these attacks.

4.5.1 Request Suppression

In the serverless-edge architecture, byzantine components can work together to deny service to one or more
clients. This request suppression attack can take three different forms:

(i) Request Ignorance. If the shim’s primary node P is byzantine, it can willfully drop a request m from
a client c, or indefinitely delay consensus on m.

(ii) Unsuccessful Consensus. A byzantine primary P may involve less than 2fR+1 nodes in consensus
on a client request m. As a result, these nodes will not reach consensus on m.

(iii) Less Executors. A byzantine primary P may permit consensus on a client request m, but disallow
its execution by spawning less than nE serverless executors. In such a case, the verifier V will not receive
fE +1 matching execution results.

To detect these attacks, we setup three distinct timers at various components of our architecture.

• Client timer. Our SERVERLESSBFT protocol requires each client c to start a timer τm prior to sending
its request m to the primary P. When c receives a RESPONSE message for m from the verifier V , it stops τm.
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• Node timer. Our SERVERLESSBFT protocol requires each node R ∈ R to start a timer τm when it
receives a well-formed PREPREPARE message for a client request m from the primary P. When R marks m
as committed, it stops τm.

• Node re-transmission timer. If a non-primary node R ∈R receives an ERROR message from the verifier
V (see Section 4.5.1) then R forwards the ERROR message to the primary P and starts the re-transmission
timer ϒ. When R receives a corresponding ACK message from V , it stops ϒ.

In the case the timers of c or R expire, the respective component detects a request suspension attack and
initiates the following mechanisms for recovery from this attack.

Client-role (running at the client c) :
1: event c’s timer τm for request m := 〈c〉T timeouts do
2: Sends 〈c〉T to the verifier V .
3: Restarts τm.
4: if Figure 28, Lines 2 and 3 are successful // Receives fR+1 matching responses then
5: Cancel τm

Verifier-role (running at the verifier V ) :
6: event V receives a well-formed request m := 〈c〉T from client c do
7: if Previously sent RESPONSE for m then
8: Resends message 〈V 〉RESPONSE(∆,r) to c.
9: else if m exists in list π // Waiting for consensus of kmax-th request then

10: Broadcasts 〈V 〉ERROR(kmax) to all shim nodes.
11: else if Did not receive any VERIFY message for 〈c〉T then
12: Broadcasts 〈V 〉ERROR(〈c〉T ) to all shim nodes. // Missing Request
13: else
14: Broadcasts 〈V 〉REPLACE(〈c〉T ) to all shim nodes. // Byzantine Primary

Node-role (running at the node R) :
15: event R receives 〈V 〉ERROR(〈c〉T ) or 〈V 〉ERROR(kmax) from V do
16: Start a timer ϒ.
17: Forward the ERROR message to the primary P.

18: event R’s timer τm or ϒm timeout or R receives 〈V 〉REPLACE(〈c〉T ) from V do
19: Run the view-change protocol to replace P

Figure 29: Actions performed by various participants of the serverless-edge infrastructure in response to a
request suppression attack.

Client action on timeout If a client c’s timer τm timeouts, then c forwards its request to the verifier V and
restarts its timer (refer to Figure 29). In specific, each time c’s timer expires, after some exponential backoff,
it re-sends its request to V until it receives a RESPONSE message from V .

Verifier action on receiving client request When the verifier V receives a request m := 〈c〉T from client
c, it first determines if it has seen 〈c〉T till now or not. If V has not received any VERIFY messages for 〈c〉T ,
it sends 〈V 〉ERROR(〈c〉T ) message to all the nodes in the shim. Otherwise, there can be only three cases:

(i) V did send a RESPONSE message for 〈c〉T , so it simply resends the RESPONSE message.
(ii) 〈c〉T resides in π . Further, assume that it was ordered by shim at some sequence number k. So

kmax < k, and V is waiting for the request with sequence number kmax. Unless the kmax-th request is validated
by V , succeeding requests cannot be processed. So, V needs to notify shim nodes about the missing request
at sequence kmax, and it does so by sending 〈V 〉ERROR(kmax) to all the shim nodes. Note: this gap between kmax

and k could have been created by byzantine primary.
(iii) V did not receive fE +1 matching VERIFY messages for 〈c〉T . This can only occur if the primary is

byzantine. So, V sends 〈V 〉REPLACE(〈c〉T ) to all the shim nodes.
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Once V successfully verifies the request at sequence number kmax or 〈c〉T , V creates a corresponding
〈V 〉ACK(kmax) or 〈V 〉ACK(〈c〉T ) message and broadcasts it to shim.

Node action on ERROR message When a shim node R ∈R receives an ERROR message from the verifier,
it can only conclude the following:

• R received 〈V 〉ERROR(kmax) message and has either committed or not committed the request at sequence
number kmax.

• R received 〈V 〉ERROR(〈c〉T ) message and has either committed or not committed the request 〈c〉T .

Irrespective of these cases, the node R starts a re-transmit timer ϒ to track the behavior of the primary.
Next, it forwards the received ERROR message to the primary. If the timer ϒ expires before R receives a
corresponding acknowledgment message (〈V 〉ACK(kmax) or 〈V 〉ACK(〈c〉T )) from the verifier V , R concludes
that the primary is byzantine and requests a view-change. Hence, the onus is on the primary to guarantee
consensus and execution.

Node action on timeout When the timer τm for a node R ∈R expires, R concludes that the shim’s primary
for view v is byzantine, and it requests primary replacement by broadcasting a VIEWCHANGE message. We
employ PBFT’s view-change protocol to replace a byzantine primary. A node R’s request for change of view
from v to v+ 1 is only successful if it receives support of at least 2fR+ 1 nodes, that is, at least 2fR+ 1
shim nodes must broadcast VIEWCHANGE messages. Replacing the current primary requires designating
another shim node as the next primary. Like PBFT, we assume nodes have a pre-decided order of becoming
the primary. As a result, when the replica designated as the primary for view v+1 receives VIEWCHANGE

requests from at least 2fR+1 nodes, it assumes the role of the primary and broadcasts a NEWVIEW message
to bring all the nodes to the same state. Similarly, when a node R receives a REPLACE message from the
verifier V , it initiates the view-change protocol to replace the primary P to view v. We defer the details for
the exact view-change protocol to the original PBFT paper [40].

4.5.2 Shim Nodes in Dark

If the primary P is byzantine, it may attempt to only include 2fR+ 1 nodes in consensus as only 2fR+ 1
nodes are needed to mark any request as prepared and committed. As a result, the remaining fR nodes will
be in dark. Next, we explain what we mean by being in dark.

(i) Node Exclusion. A byzantine primary P can exclude up to fR honest nodes from consensuses by not
sending them the PREPREPARE messages for client requests.

(ii) Equivocation. A byzantine primary P can equivocate by associating two client requests with the
same sequence number k. If P is clever, it will ensure that one of these client requests is committed by at least
fR+1 honest nodes while the remaining fR honest nodes do not commit any request at sequence number k.

The key challenge to resolving the attack (i) is that it is impossible to detect. In this attack, the byzantine
primary P is clever and does not want to risk replacement. Hence, P facilitates continuous consensus on
incoming client requests by at least fR+1 honest nodes. As a result, the remaining fR nodes are unable to
trigger view-change by themselves.

Lemma 4.1. If at most fR shim nodes are in dark, then it is impossible to detect such an attack and replace
the primary.
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Proof. Let D be the set of shim nodes in dark, such that |D| ≤ fR. We start with the assumption that the nodes
in D are able to prove that they are under an attack by the byzantine primary P and ensure P’s replacement
by convincing a majority of nodes to participate in the view-change protocol.

For a view-change to take place at least 2fR+ 1 nodes need to support such an event. As P is clever, it
ensures that at least U ≥ fR+1 honest nodes continuously participate in consensus. Clearly, U > D, which
implies that a majority of honest nodes will not request view-change. The remaining nR−U−D = fR nodes
are byzantine and will support the primary in this attack. Moreover, the nodes in set U cannot distinguish
between the nodes in set D and the up to fR actual byzantine nodes, as the byzantine nodes can always
request a view-change in an attempt to derail the system progress by replacing an honest primary. Hence, the
view-change request by nodes in D will never be successful.

Featherweight Checkpoints. To recover from nodes in dark attacks, we design a featherweight variant
of existing checkpoint protocols [40, 121]. Existing BFT protocols require nodes to periodically construct
and exchange CHECKPOINT messages, but these messages are expensive as they include all the client re-
quests and the proof that they are committed (COMMIT messages from 2fR+1 distinct nodes) since the last
checkpoint. As our shim nodes neither execute client requests nor store any data, during our featherweight
checkpoint protocol, these nodes only send the signed proofs (certificates) for each committed request since
last checkpoint.

Remark. The nodes in dark attacks do not make the system unsafe but put it at the mercy of the byzantine
nodes, which can stop responding after several consensuses have passed; the system suffers from massive
communication during recovery.

4.5.3 Verifier Flooding

As the verifier manages all updates to the data-store, it is a desirable target by byzantine components. Specif-
ically, byzantine components can try the following ways to disrupt the system by flooding the verifier with
redundant requests.

(i) Duplicate Spawning by Primary. If the shim’s primary node is byzantine, it can spawn more executors
than necessary.

(ii) Duplicate Spawning by Non-primary. A byzantine non-primary node that was once the primary node
of shim has access to old certificates and EXECUTE messages. It can use these messages to spawn new
executors at the serverless cloud.

(iii) Duplicate Messages by Executors. A byzantine executor can send duplicate VERIFY messages to
the verifier.

Although flooding attacks seem trivial to perform, they have monetary impacts on the byzantine com-
ponents. Spawning each serverless executor requires the spawner to pay a fixed amount of money. As a
result, any flooding attack performed by a byzantine component will be self-penalizing. For example, in our
architecture, each primary is paid a fixed amount per consensus by the edge application organization. Hence,
a rational byzantine component will avoid this attack.

Moreover, all of these attacks are trying to flood the verifier with the VERIFY messages. To mitigate the
impact of these flooding attacks: we require the verifier V to ignore any VERIFY message for a client request
m, once it has received matching VERIFY messages for m from fE + 1 executors. Finally, it is a common
practice to connect different entities on the network via sockets. If flooding attacks take place, the verifier
can block communication from such connections.
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4.6 Transactional Conflicts

Two client transactions T and T ′ are termed as conflicting if T and T ′ require access to a common data-item
x and at least one of these operations writes to x [149]. In our SERVERLESSBFT protocol, transactional
conflicts arise from the following set of transactions: two transactions T and T ′ ordered at sequences k and
k′, respectively, and k < k′ and T writes to x, which T ′ reads.

Example 4.2. For ensuing discussions, we assume two conflicting transactions T and T ′. Let the sequence
number for T be 3 and sequence number for T ′ be 4. Further, assume T needs to write to data-item x and T ′

needs to read x.

4.6.1 Concurrent Spawning

On a close inspection of Figure 28, one can observe that the primary P does not wait for consensus of the k-th
request to finish before initiating consensus for the (k+1)-th request. This process of concurrently invoking
multiple consensuses has been employed by prior works to increase the system throughput as it reduces the
idle times for nodes [97, 143].

To further boost the throughput, we permit the primary to spawn the nE executors for the (k + 1)-th
request prior to spawning executors for k-th request. We term this as concurrent spawning. If the client
requests are non-conflicting, concurrent spawning helps to parallelize execution.

In the case transactions are conflicting, like T and T ′ of Example 4.2, we can have two cases: the read-
write sets a transaction accesses are either known or unknown to the shim nodes prior to execution. Depending
on the knowledge of read-write sets, transactions may or may not abort in our architecture. A naive way would
be to ask the shim primary to sequentially spawn executors for each client request, but that will significantly
reduce the throughput attained by our SERVERLESSBFT protocol. Hence, we design algorithms to handle
either cases, which we discuss next.

4.6.2 Unknown Read-Write Sets

If the shim nodes cannot determine the read-write sets of a transaction during consensus, we require the
shim nodes to continue following the algorithm in Figure 28. The only change is that the shim’s primary
should spawn an additional fE executors; the shim primary now spawns nE ≥ 3fE +1 executors instead of
nE ≥ 2fE +1 as stated earlier. We prove the need for these additional executors later.

However, due to the conflicting transactions like T and T ′ of Example 4.2, the verifier V may observe the
following: (i) it did not receive fE +1 matching VERIFY messages for T ′, or (ii) the read sets of T ′ are stale.
In such cases, the verifier would have to abort transaction T ′.

Byzantine Aborts and Decentralized Spawning. A big challenge to permitting the verifier to abort trans-
actions is a byzantine primary that can intentionally delay spawning executors for some of the committed
transactions to get them aborted. Moreover, this attack is impossible to detect by other shim nodes or the
verifier. Prior works have shown that there are no easy solutions to prevent byzantine aborts for conflicting
transactions with unknown read-write sets [181]. One way to prevent this attack in our serverless-edge archi-
tecture is to require each node of the shim to spawn some executors at the serverless cloud. In specific, once
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a node R ∈R commits a client request m, it spawns e executors.

e =


1, if nE ≤ nR⌈

nE

2fR+1

⌉
, otherwise

(1)

If nE is less than nR, then each node R ∈R needs to spawn only one executor. This will guarantee that of

all the spawned executors at least fE + 1 are honest. Otherwise, each node R needs to spawn
⌈

nE

2fR+1

⌉
executors. Why? Because up to fR nodes are byzantine and may avoid spawning any executors. Hence,
the remaining 2fR+ 1 honest nodes need to spawn nE executors. Clearly, the total number of spawned
executors (e× nR) is much larger than the required number of executors nE . This is a trade-off we need
to pay if we want to decentralize the spawning of serverless executors. Another major trade-off of this
decentralized spawning is that if the read-write sets are known, then each node needs to sequentially spawn
executors. Hence, like primary (refer to Section 4.6.3), each node has to track the dependencies. Moreover,
the proposed value of e is only valid if each honest node commits the client request. If up to fR honest nodes
are in dark, then e changes as follows:

e =


1, if nE ≤ nR⌈

nE

fR+1

⌉
, otherwise

(2)

Conservatively, we can set e = nE , but that will lead to spawning nE ×nR executors in the worst case.

Verifier Abort Detection. With the addition of byzantine aborts, the verifier needs to determine when to
abort a transaction T ′ and if possible, the cause for abort. As a result, the verifier needs to wait for fE + 1
matching VERIFY messages for T ′.

For this purpose, our SERVERLESSBFT protocol requires the verifier V to start a timer τm when it receives
the first VERIFY message for the transaction m := T ′. V stops τm when it receives fE +1 matching VERIFY

messages, or it receives VERIFY messages from all the 3fE +1 executors.

Like in Figure 28, say the verifier collects all the incoming VERIFY messages for m in a set V. If the
verifier’s timer expires while waiting, it takes one of the following actions:

• |V| < 2fE + 1 : This case implies that the verifier V received less than 2fE + 1 VERIFY messages
for transaction T ′. As a result, V concludes that the primary P is byzantine and it creates and broadcasts
a REPLACE message to the shim nodes. Receiving less than 2fE + 1 VERIFY messages implies that either
the primary P spawned less than nE executors or some messages got dropped; at most fE executors can act
byzantine and can decide to not send VERIFY messages to V , In either case, it is safe to conservatively blame
the primary. Note: even existing BFT protocols decide to blame the primary if messages get dropped [40, 84,
121].

• nE > |V| ≥ 2fE +1 : This case implies that the verifier V received more than 2fE +1 VERIFY mes-
sages for transaction T ′. As a result, the verifier V cannot conclude that the shim’s primary is byzantine as
V has received VERIFY message from at least 2fE +1 distinct executors. Observing responses from at least
2fE + 1 executors is a guarantee that at least fE + 1 honest executors tried to execute T ′ to the best of their
ability. Hence, even if the shim’s primary is byzantine and intentionally delays spawning executors for T ′,
there is no way that the verifier can prove this (due to concurrent spawning).
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This forces the verifier to abort this transaction. Assume k is the sequence number for T ′. If kmax = k,
then V sends the client an 〈V 〉ABORT(T ′) message. Otherwise, V adds T ′ to the list π , but tags it as abort.
Later, when T ′ is extracted from the list π , the verifier V aborts it.

We now describe the indistinguishable attack, which forces us to require primary to spawn nE ≥ 3fE +1.

Theorem 4.3. If client transactions are conflicting and the primary P spawns nE < 3fE +1 executors, then
the SERVERLESSBFT protocol faces an indistinguishable attack.

Proof. Assume that P spawns only 2fE + 1 executors. We know that up to fE of these executors can act
byzantine. As a result, for any client request, the verifier V may receive only fE + 1 VERIFY messages.
Further, due to transactional conflicts, these fE +1 VERIFY messages may not match. Eventually, V ’s timer
will expire and it needs to take some action. V can decide to abort this transaction, but this would lead to
a new problem—a byzantine primary P may never spawn more than fE +1 executors and up to fE of those
executors may be byzantine. Hence, all subsequent conflicting transactions may abort.

Alternatively, V can blame the primary for receiving less than fE + 1 matching VERIFY messages, but
such a decision could be wrong as P may not be byzantine and the lack of sufficient matching messages could
be a result of conflicts and byzantine executors.

4.6.3 Best Effort Conflict Avoidance

In database literature, several works have employed the concept of deterministic databases for efficient con-
flict resolution [183, 105, 157]. In these databases, the order in which transactions are applied to the database
is determined prior to its execution, which is only possible if the read-write sets of the transactions are known
to the participating nodes.

In our SERVERLESSBFT protocol, we learn from these databases. If the primary has any knowledge
of the read-write sets, it uses the queuing strategy of these databases, to create plans that allow running
non-conflicting transactions in parallel [183, 105, 158, 157, 118]. Such a strategy would require us to make
straightforward modifications to the algorithm presented in Figure 28. We would need the shim primary to
maintain a logical map of all data-items. This map does not store any values of the data-items, but helps the
primary to locally lock different data-items. Further, the primary can no longer concurrently spawn executors
for a transaction until it has determined its conflicts. Next, we list the steps.

1. The primary P adds the k′-th transaction to the execution queue after it has added (or spawned execu-
tors for) all the k-th transactions in the queue, where k < k′.

2. If the k′-th transaction does not conflict with any k-th transaction (k < k′), P spawns serverless ex-
ecutors for the k′-th transaction after it has logically locked all the data-items that are written by the k′-th
transaction.

3. Next, P dequeues a non-conflicting transaction at the head of some queue and repeats Step 2.
4. When P is notified by the verifier V that T has been executed, it unlocks the data-items accessed by

T and follows Step 3. We believe these steps can help to reduce aborts.

4.7 Safety and Liveness Guarantees

We now prove that SERVERLESSBFT guarantees safety and liveness. As the shim nodes employ PBFT

protocol, we borrow the following proposition guaranteed by PBFT.

59



Proposition 4.4. Let Ri, i ∈ {1,2}, be two honest shim nodes that committed 〈ci〉Ti as the k-th transaction of
view v. If nR> 3fR, then 〈c1〉T1 = 〈c2〉T2 .

Theorem 4.5. Given an architecture A = {clients(,)R,E ,S ,V }, if the number of byzantine shim nodes
and byzantine serverless executors are bounded by fR and fE , respectively, then SERVERLESSBFT protocol
guarantees safety.

Proof. Prior to proving this, we note that as the verifier V is trusted, storage S will be updated in the order
agreed by 2fR+1 of shim nodes. We prove the rest as follows:

Non-conflicting transactions. If the primary P is honest, then from Proposition 4.4, we can conclude that
no two shim nodes will commit different transactions at the same sequence number and P will spawn 2fE +1
executors. These transactions will persist across views as in any view-change quorum of 2fR+ 1 replicas,
there will be one honest replica that has executed this request. If P is byzantine and assigns two or more
requests the same sequence number k, then from Proposition 4.4, we know that P will not be successful.
If the byzantine P sends the PREPREPARE for some T to less than 2fR+ 1 replicas, this transaction will
not commit. As a result, at least fR+ 1 replicas will timeout and a VIEWCHANGE will take place. The
new primary waits for VIEWCHANGE messages from 2fR+1 replicas, and uses these messages to create a
NEWVIEW message. This NEWVIEW message includes a list of requests for each sequence number present
in the VIEWCHANGE message. Each replica on receiving the NEWVIEW message can verify its contents and
update its state.

Conflicting transactions with unknown read-write sets. In the case of conflicting transactions, the only
additional attack a byzantine primary P can do is to get a transaction aborted by delaying spawning executors.
However, as P does not know, which transactions are conflicting, this is all based on a guess. Note: this attack
does not make the data-store unsafe.

Theorem 4.6. Given an architecture A = {clients(,)R,E ,S ,V }, if the network is reliable and the number
of byzantine shim nodes and serverless executors are bounded by fR and fE , respectively, then SERVER-
LESSBFT guarantees liveness.

Proof. Prior to proving this, we note that as the verifier V is trusted, so if it receives 2fE + 1 matching
VERIFY messages with correct read-write sets, it will send a reply to the client. We prove the rest as follows:

Non-conflicting transactions. If the primary P is honest, then every transaction will be committed by at
least 2fR+ 1 shim nodes. P will use this to create a certificate and spawn 2fE + 1 executors and V will
receive fE +1 matching responses.

If P is byzantine, it can perform one of the many types of request suspension attacks described in Sec-
tion 4.5.1. For each such attack, either the client c or the nodes in R will timeout. This will force P to either
ensure consensus of c’s transaction, or be replaced through the view-change protocol. Post view-change, if
the subsequent primary is also byzantine, then it will also be eventually replaced. This process can happen at
most fR consecutive times, after which the system will be live. In the case a byzantine primary P attempts to
keep up to fR nodes in dark, then using the featherweight checkpoint protocol these nodes will be brought to
the same state.

Conflicting transactions with unknown read-write sets. In the case of conflicting transactions, the only
additional attack a byzantine primary P can do is to spawn less than 3fE + 1. In such a case, if the verifier
V receives less than 2fE + 1 VERIFY messages, such that less than fE + 1 are matching, V ’s timer τm will
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timeout and it will send a REPLACE message to the shim nodes. For other cases, V will send the client a
RESPONSE or ABORT message depending on if it receives fE +1 matching VERIFY messages.

4.8 Implementation

To gauge the practicality of our vision of a BFT serverless-edge architecture, we implement and evaluate our
design.

Shim. As the shim nodes represent edge devices, which may have access to limited resources, we want
the shim nodes to have a lightweight BFT implementation. So, on each shim node, we install ResilientDB’s
node architecture [97, 96, 100, 91, 159, 92]. ResilientDB provides access to a multi-threaded, pipelined,
and modular architecture for designing BFT applications.5 The codebase is written in C++ and we deploy
ResilientDB’s PBFT protocol at the shim. Clients also employ C++ to create YCSB transactions (refer Sec-
tion 4.9) and use NNG [57] sockets for communication.

Invoker. At each shim node, we deploy an invoker to spawn nE executors when indicated by the node’s
consensus instance. ResilientDB provides at each node an execute-thread, which calls invoker as soon as a
request is committed. Our implementation of the invoker is written in Go [69] using the AWS SDK for Go.
Further, our invoker does not wait for the spawned executors to finish and proceeds to spawn the executors
for the next client request.

Serverless Function. Each AWS Lambda executor receives a function written in C++ that includes the
client transaction. This function instructs the executor to: (i) verify the certificate C, (ii) execute the transac-
tion, (iii) fetch necessary read-write sets from the storage database, and (iv) send the result to the verifier. We
encode the communication between the Lambda function and the verifier in a stateless HTTP request. We
use CryptoPP[51] library for digital signatures and verification and use CPR[170] to create and send HTTP
requests.

Verifier. We implement the verifier in Go and install a simple HTTP/Net webserver at the verifier for
receiving the executor responses. Further, our verifier includes a hashmap to count the matching responses
for each transaction. Post validation, the verifier uses NNG to send a response to the client.

4.9 Evaluation

Our evaluation aims to answer following questions regarding our SERVERLESSBFT protocol.

(Q1) Impact of client congestion?
(Q2) Impact of increasing the number of executors?
(Q3) Impact of batching client requests?
(Q4) Impact of expensive execution?
(Q5) Impact of spawning executors across globe?
(Q6) Impact of resource limitations at edge devices?
(Q7) Impact of conflicting transactions?
(Q8) Baseline comparison of SERVERLESSBFT?
(Q9) Impact of task offloading?

Setup. We deploy the verifier, shim nodes, and clients on the Oracle Cloud Infrastructure (OCI). These
components use VM.Standard.E3.Flex architecture with 10 GiB NICs. Each shim node has 16 cores and

5ResilientDB is open-sourced at https://resilientdb.com/.
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16 GiB RAM and the verifier has 8 cores. We use AWS Lambda Functions for spawning serverless executors
in up to 11 regions in the following order: North California, Oregon, Ohio, Canada, Frankfurt, Ireland,
London, Paris, Stockholm, Seoul, and Singapore. In our experiments, we use up to 128 shim nodes and 21
executors. We run each experiment for 180 seconds with 60 seconds warmup time and report the average
results over three runs.

Unless explicitly stated, we use the following setup. We require the primary node to spawn 3 AWS
Lambda executors, each of which is spawned in a distinct region. Further, we deploy up to 80 k clients on
4 OCI machines to concurrently issue requests. Each client waits for a response prior to sending its next
request. We also require clients and edge nodes to employ batching and run consensuses on batches of 100
client transactions. The size of each type of message communicated is: PREPREPARE (5392 B), PREPARE

(216 B), COMMIT (220 B), EXECUTE (3320 B), and RESPONSE (2270 B).

Benchmark. To evaluate our serverless-edge architecture across different parameters, for some exper-
iments, we need to fix the number of shim nodes. We learn from existing database literature, specifically
the Blockbench [65] paper, and select two configurations. SERVBFT-8: Medium size shim with 8 nodes.
SERVBFT-32: Large size shim with 32 nodes (maximum number of nodes in any Blockbench experiment).

Similarly, we adopt the popular Yahoo Cloud Serving Benchmark (YCSB) from Blockbench suite, which
has also been used by several prior works in database literature for designing transactions [97, 183, 105,
157, 65, 53, 103]. We use YCSB to create key-value transactions that access a database of 600k records.
Specifically, our transactions perform read and write operations. With regards to edge applications, these
transactions represent user transactions that require access to existing records in the storage.

A. Impact of Client Congestion. In Figure 32, we vary the number of deployed clients from 2 k to 88 k.
For the first five data-points on the graph, we double the number of clients and for succeeding points, we
increase the number of clients by 8 k. Initially, an increase in the number of clients causes an increase in
system throughput, post which the throughput saturates. This happens because each entity in our serverless-
edge architecture has to now do more work than before, which causes an increase in computational and
communication costs. As a result, the latency keeps increasing as each request spends a longer time in the
architecture. Hence, SERVBFT-8 outperforms SERVBFT-32 as fewer nodes are involved in each consensus,
which implies smaller wait time for each request. Summary: We observe that initially SERVBFT-8 attains up
to 1.6× more throughput and 1.2× less latency than SERVBFT-32. However, on increasing the number of
clients, the gap increases to 2.8× more throughput and 2.71× less latency.
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Figure 32: Comparing latency against throughput on varying the number of clients sending requests to the
shim.
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Figure 30: Benchmarking throughput attained and latency incurred by the BFT Serverless-Edge architecture
(1).
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Figure 31: Benchmarking throughput attained and latency incurred by the BFT Serverless-Edge architecture
(2).
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B. Impact of Executors. In Figure 33, we vary the number of serverless executors spawned by the
primary node: 3, 5, 11, 15, and 21. For these experiments, we spawned executors in up to seven regions
and tried to evenly split these executors across these regions. These figures illustrate that an increase in the
number of executors causes a decrease in throughput and an increase in latency. Although all the executors
process the requests in parallel, there is an increase in the task of spawning at the primary and increase in
validation at the verifier. Further, as executors are spread across distinct regions, the reduced bandwidth and
increased ping costs delays communication. Summary: At 3 executors, SERVBFT-8 attains 2.59× more
throughput and 43% less latency than SERVBFT-32, while at 15 executors, 47% more throughput and 5%
less latency.
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Figure 33: Impact of Scaling Executors

C. Impact of Batching. In Figure 34, we vary the size of batch of client requests from 10 to 8 k. With an
increase in batch size, we first observe an increase in the system throughput followed by an eventual decrease.
Although larger batches imply a corresponding decrease in the number of runs of the SERVERLESSBFT
protocol, it substantially increases the costs of communicating batches across the shim nodes and executors.
Further, larger batches are much more expensive to process for shim nodes and executors.

Summary: From batch size 10 to 5 k, SERVBFT-8 observes an increase in throughput by 11.42× and
SERVBFT-32 observes an increase in throughput by 18.5×.
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Figure 34: Impact of Batching

D. Impact of Expensive Execution. In Figure 35, we test with transactions that require large execution
time; we vary the time required for execution from few milliseconds to 8 seconds. As the time required to
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execute a transaction increases, the time required by the shim and the verifier to process this request becomes
insignificant. Prior works show that such transactions or codes, which bottleneck the system throughput
and latency are prevalent [10]. This experiment also proves that our serverless-edge architecture introduces
minimal costs to the applications that require large execution times. Summary: From execution length of few
milliseconds to 8 seconds, SERVBFT-8’s throughput reduces by 74.5% and latency increases by 21×, while
SERVBFT-32’s throughput reduces by 51% and latency increases by 13.6×.
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Figure 35: Impact of Expensive Execution

E. Impact of Spawning Executors across Globe. In Figure 36, we require the primary node to spawn 11
executors in 5, 7, 9, and 11 regions; we vary the number of regions while spawning same number of executors.
The primary node uses the round-robin protocol to spawn executors in each region. In this experiment, we
want to observe the impact of system performance on increasing the number of regions. We observe that the
throughput and latency remain constant. The primary node spawns 11 executors (fE = 5), so the verifier
needs to wait for only fE +1 = 6 matching VERIFY messages. The first 6 messages received by the verifier
(deployed at North California) are from nearby regions: North American and European.
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Figure 36: Impact of Executor Distribution

F. Impact of Computing Power. We use Figure 37 to limit the available computing resources at shim
nodes. As shim nodes represent edge devices, these devices may have limited cores and memory. So we test
the impact of this restricted hardware om SERVERLESSBFT. Unsurprisingly, as we increase the number of
available cores, the protocols achieve higher throughputs and lower latencies. This is the case because our
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shim nodes adopt the multi-threaded pipelined architecture of ResilientDB, which performs better with an
increase in available cores.

Summary: From experiments at 2 cores to 16 cores, SERVBFT-8’s throughput increases by 6× and
latency decreases by 70%, while SERVBFT-32’s throughput increases by 5× and latency decreases by 64%.
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Figure 37: Impact of Computing Power

G. Impact of Conflicting Transactions. We now vary the degree of transactional conflicts from 0 to
50% and illustrate our findings in Figure 38. As the read-write sets are unknown, the primary node cannot
logically lock these transactions, so they will get aborted at the verifier. Hence, we observe a decrease in
throughput with an increase in the rate of conflicts. However, the latency remains unchanged as the response
time for the client remains the same.

Summary: From 0% conflicting transactions to 50% conflicting, SERVBFT-8’s throughput decreases by
43%, and SERVBFT-32’s throughput decreases by 46%.
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Figure 38: Impact of Conflicting Transactions.

H. Shim Scalability. Until now, in all the experiments, we ran the PBFT protocol at the shim. So, we
create three baseline designs to compare against SERVERLESSBFT:

(a) NOSHIM– Represents the experiment where there is no shim; no BFT consensus takes place. All the
clients send their requests to a node, which instantaneously spawns executors.

(b) SERVERLESSCFT– Represents the experiment where the shim nodes employ a crash fault-tolerant
(CFT) like Paxos [124] for consensus. As CFT protocols do not protect against byzantine attacks, they do
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not require cryptographic signatures, which in turn reduces the amount of work done per consensus. Further,
unlike PBFT, Paxos is linear.

(c) PBFT– We also test our SERVERLESSBFT protocol against a BFT system (e.g. ResilientDB) running
the PBFT protocol. In this system, we assume each node is a replica and executes the request in the agreed
order post consensus [40, 97]. As a result, there are no costs associated with spawning executors and waiting
for verifier to validate the requests.

In these experiments, we also gauge how the shim scales with an increase in the number of edge devices.
For this purpose, we vary the number of shim nodes from 4 to 128. We use Figure 39 to illustrate the
throughput and latency metrics and observe the following order for throughput attained:

SERVERLESSBFT < PBFT < SERVERLESSCFT < NOSHIM

NOSHIM has a constant throughput because there is no change in the number of shim nodes. Moreover, PBFT

performs slightly better than our SERVERLESSBFT protocol. This implies that the verifier and executors do
not adversely impact the throughput of PBFT. Finally, SERVERLESSCFT outperforms PBFT, which implies
that the throughput of the serverless-edge architecture can be increased by replacing PBFT with faster con-
sensus protocols. Summary: SERVERLESSBFT and SERVERLESSCFT achieve up to 22% less throughput
and 1.25× more throughput than PBFT, respectively.
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Figure 39: Comparing SERVERLESSBFT against our three baseline designs: SERVERLESSCFT, PBFT and
NOSHIM.

I. Impact of Task Offloading. We use Figure 40 to illustrate the benefits of employing our serverless-edge
model. Specifically, we introduce compute-intensive tasks (increasing execution time) and compare the peak
throughput and monetary costs against setups where all the computations (PBFT consensus and transaction
execution) are done on the edge devices (no serverless). We make two observations: (1) If transactions can
be executed in parallel, our serverless-edge model is only bounded by the rate of consensus and the number
of executors that can be spawned in parallel. This is in contrast to setups where shim performs all tasks
and becomes resource-bounded, which adversely decreases the throughput. To further validate this resource-
boundedness, we calculate monetary costs of these experiments (in cents/ktxn) and use the precise costs
for spawning serverless executors at AWS Lambda and running machines on OCI. Resource-boundedness
increases monetary costs as machines need to be run for a larger period of time to complete the same set
of transactions. (2) Serverless clouds permit selecting optimal hardware. To illustrate this, for experiments
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where shim does all tasks, we vary the number of execution threads (ET) at shim nodes (1,8,16). If the
available hardware has few cores, then a smaller set of transactions (1 or 8) can execute in parallel, which
impacts throughput. Alternatively, an enterprise can require edge devices to have more cores (16), which may
be underutilized if there is less available parallelism.

RINGBFT SHARPER AHL

0 50 100 500 1000 1500 2000

100

1K

10K

50K

Increase in Execution Time (milliseconds)

T
hr

ou
gh

pu
t(

tx
n/

s)

0 50 100 500 1000 1500 2000

1

10

100

Increase in Execution Time (milliseconds)
C

os
t(

ce
nt

s/
kt

xn
)

Figure 40: Comparing our serverless-edge model against PBFT. Here, ET refers to number of execution
threads assigned to specific PBFT implementation.

4.10 Serverless Related Work

Edge computing is a decade old problem for which prior works have presented several interesting solu-
tions [193, 197, 206, 141, 152, 191]. These solutions aim to reduce latency for edge applications, but they
cannot handle byzantine attacks and require developers to perform managerial tasks.

In recent years, Serverless computing has also gained a lot of interest with the aim of offloading the
managerial tasks such as server provisioning and resource scaling to the cloud provider while the developer
only uploads the code required to be executed [20, 194, 114]. Prior works have presented novel solutions
in this direction: AFT [178] introduces a shim to make stateful executors consistent; PolarDB [37] presents
a serverless database; and Faasm [174] aims to design efficient stateful executors. However, neither these
works target edge applications, nor they consider byzantine attacks.

To design applications that can handle byzantine attacks, existing works have employed Byzantine Fault-
Tolerant consensus protocols in the context of blockchain technology [8, 4, 75, 204, 195, 18, 131, 165, 31,
198, 86, 128, 201, 9, 132, 205]. These applications assume that a set of nodes holding the same data run
a BFT protocol. Each committed transaction is noted in an append-only ledger, blockchain, which can be
queried in future to track transactions. EdgeChain [151] introduces a blockchain layer in the edge-compute
model, which allocates the resources to edge devices. However, it does not tackle byzantine attacks from
edge-clouds. Bajoudah et al [19] introduce a blockchain-based edge model where IOT devices maintain
the blockchain. Blockene [168] wants to allow mobile devices to participate in blockchain consensus by
delegating all the storage, computation, and communication tasks to a set of powerful servers.

ChainFaas designs a volunteer-based serverless cloud that reduces the work of existing serverless providers
by allowing existing devices to contribute to serverless computing. To securely log each transaction, Chain-
Faas maintains a blockchain network. However, ChainFass assumes that devices will be non-faulty and does
not tackle byzantine failures.
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Aslanpur et al. [12] present the vision of a serverless-edge framework. Their proposal does not assign
tasks to edge devices and delegates all jobs to the serverless cloud. Further, there is no discussion on handling
byzantine failures. Moreover, their vision is neither implemented nor does their paper present any evaluation.
Baresi et al. [21] present a similar design, but their design focusses on mobile computing. They do present a
small evaluation of their design, but neither is their code available, nor do they make use of actual serverless
cloud providers (like AWS). Their design delegates everything to the mobile edge servers (where they create
a serverless cloud) and does not handle byzantine failures. Our NoShim experiment (Figure 39) approximates
their architecture.

In comparison, our serverless-edge co-design handles byzantine attacks, permits edge devices to select
any serverless provider in vicinity, offloads compute-intensive tasks to cloud while allowing light-weight
ordering on edge devices.

4.11 Conclusions

In this chapter, we presented SERVERLESSBFT, the first protocol to guarantee Byzantine Fault-Tolerant
transactional flow among edge devices and serverless functions. SERVERLESSBFT facilitates collaboration
among edge devices, which spawn serverless executors at one or more cloud providers in their vicinity to
process compute-intensive operations. Our proposed architecture ensures that only consistent updates are
written to the database. We also present solutions to resolve various attacks on our proposed architecture.
Our extensive evaluation illustrates that our architecture is scalable and is a good fit for the emerging edge
applications.
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5 ResilientDB, Design and Implementation

Since the inception of blockchain [102, 65], the distributed systems community has renewed its interest in
the age-old design of Byzantine-Fault Tolerant (BFT) systems. At the core of any blockchain applications
is a BFT algorithm that ensures all the replicas of this blockchain application reach a consensus, that is,
agree on the order for a given client request, even if some of the replicas are byzantine [40, 121, 95, 82, 10].
Surprisingly, even after a decade of its introduction and publication of several prominent research works, the
major use-case of blockchain technology remains as a crypto-currency. This leads us to a key observation:
Why have blockchain (or BFT) applications seen such a slow adoption?

The low throughput and high latency are the key reasons why BFT algorithms are often ignored. Prior
works [103, 158, 157, 104] have shown that the traditional distributed systems can achieve throughputs of
the order 100K transactions per second while the initial blockchain applications, such as Bitcoin [139] and
Ethereum [190], have throughputs of at most ten transactions per second. Such low throughputs do not affect
the users of these applications, as the aim of these applications is to promote an alternative currency, which
is unregulated by any large corporation, that is, anyone can join, and the identities of the participants are kept
hidden (open membership). Evidently, this open-membership property has also led to several attacks on these
applications [65, 156, 71].

This led to industry-grade permissioned blockchain systems, where only a select group of users, some of
which may be untrusted, can participate [10]. However, the throughputs of current permissioned blockchain
applications are still of the order 10K transactions per second [10, 7, 58]. Several prior works blame the
low throughput and scalability of a permissioned blockchain system on to its underlying BFT consensus
algorithm [65, 121, 200, 58]. Although these claims are not false, we believe they only represent a one-sided
story.

We claim that the low throughput of a blockchain system is due to missed opportunities during its design
and implementation. Hence, we want to raise a question: can a well-crafted system-centric architecture
based on a classical BFT protocol outperform a protocol-centric architecture? Essentially, we wish to show
that even a slow-perceived classical BFT protocol, such as PBFT [40], if implemented on skillfully-optimized
blockchain fabric, can outperform a fast niche-case and optimized for fault-free consensus, BFT protocol,
such as ZYZZYVA [121]. We use Figure 41 to illustrate such a possibility. In this figure, we measure the
throughput of an optimally designed permissioned blockchain system (ResilientDB) and intentionally make
it employ the slow PBFT protocol. Next, we compare the throughput of ResilientDB against a protocol-
centric permissioned blockchain system that adopts practices suggested in BFTSmart [27] and employs the
fast ZYZZYVA protocol. We observe that the system-centric design of ResilientDB, even after employing
the three-phase PBFT protocol (two of the three phases require quadratic communication among the replicas)
outperforms the system having a single-phase linear protocol ZYZZYVA. Further, ResilientDB achieves a
throughput of 175K transactions per second, scales up to 32 replicas, and attains up to 79% more throughput.
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Figure 41: Two permissioned applications employing distinct BFT consensus protocols.

This work is aimed at illustrating that the design and architecture of the underlying system are as im-
portant as optimizing BFT consensus. Decades of academic research and industry experience has helped the
community in designing efficient distributed applications [36, 81, 144, 166]. We use these principles to illus-
trate the design of a high-throughput yielding permissioned blockchain fabric, ResilientDB. In specific, we
dissect existing permissioned blockchain systems, identify different performance bottlenecks, and illustrate
mechanisms to eliminate these bottlenecks from the design. For example, we show that even for a blockchain
system, ordering of transactions can be easily relaxed without affecting the security. Further, most of the
tasks associated with transaction ordering can be extensively parallelized and pipelined. A highlight of our
other observations:

• Optimal batching of transactions can help a system gain up to 66× throughput.
• Clever use of cryptographic signature schemes can increase throughput by 103×.
• Employing in-memory storage with blockchains can yield up to 18× throughput gains.
• Decoupling execution from the ordering of client transactions can increase throughput by 10%.
• Out-of-order processing of client transactions can help gain 60% more throughput.
• Protocols optimized for fault-free cases can result in a loss of 39× throughput under failures.

These observations allow us to perceive ResilientDB as a reliable test-bed to implement and evaluate enterprise-
grade blockchain applications. 6 We now enlist our contributions:

• We dissect a permissioned blockchain system and enlist different factors that affect its performance.
• We carefully measure the impact of these factors and present ways to mitigate the effects of these

factors.
• We design a permissioned blockchain system, ResilientDB that yields high throughput, incurs low

latency, and scales even a slow protocol like PBFT. ResilientDB includes an extensively parallelized
and deeply pipelined architecture that efficiently balances the load at a replica.

• We raise eleven questions and rigorously evaluate our ResilientDB platform in light of these questions.
6ResilientDB is available and open-sourced at https://resilientdb.com.

72



5.1 Dissecting Permissioned Blockchain

Most of the strategies we discussed in the previous section focussed at: (i) optimizing the underlying BFT

consensus algorithm, and/or (ii) restructuring the way a blockchain is maintained. We believe there is much
more to render in the design of a permissioned blockchain system beyond these strategies. Hence, we identify
several other key factors that reduce the throughput and increase the latency of a permisisoned blockchain
system or database.

Single-threaded Monolithic Design. There are ample opportunities available in the design of a permis-
sioned blockchain application to extract parallelism. Several existing permissioned systems provide minimal
to no discussion on how they can benefit from the underlying hardware or cores [7, 58, 202]. Due to the
sustained reduction in hardware cost (as a consequence of Moore’s Law [138]), it is easy for each replica
to have at least eight cores. Hence, by parallelizing the tasks across different threads and pipelining several
transactions, a blockchain application can highly benefit from the available computational power.

Successive Phases of Consensus. Several works advocate the benefits of performing consensus on one
request at a time [7, 112], while others promote aggregating client requests into large batches [10, 139]. We
believe there is a communication and computation trade-off that needs to be analyzed before reaching such a
decision. Hence, an optimal batching limit needs to discovered.

Decoupling Ordering and Execution. On receiving a client request, each replica of a permissioned
blockchain application has to order and execute that request. Although these tasks share a dependency, it is a
useful design practice to separate them at the physical or logical level. At the physical level, distinct replicas
can be used for execution. However, such an approach would incur additional communication costs. At the
logical level, distinct threads can be asked to process requests in parallel, but additional hardware cores would
be needed to facilitate such parallelism. In specific, a single entity performing both ordering and execution
loses an opportunity to gain from inherent parallelism.

Strict Ordering. Permissioned blockchain applications rely on BFT protocols, which necessitate order-
ing of client requests in accordance with linearizability [40, 108]. Although linearizability helps in guaran-
teeing a safe state across all the replicas, it is an expensive property to achieve. Hence, we need an approach
that can provide linearizability but is inexpensive. We observe that permissioned blockchain applications can
benefit from delaying the ordering of client requests until execution. This delay ensures that although several
client requests are processed in parallel, the result of their execution is in order.

Off-Memory Chain Management. Blockchain applications work on a large set of records or data.
Hence, they require access to databases to store these records. There is a clear trade-off when applications
store data in-memory or on an off-the-shelf database. Off-memory storage requires several CPU cycles to
fetch data [107]. Hence, employing in-memory storage can ensure faster access, which in turn can lead to
high system throughput.

Expensive Cryptographic Practices. Blockchain applications expect the exchange of several messages
among the participating replicas and the clients, of which some may be byzantine. Hence, each blockchain
application requires strong cryptographic constructs that allow a client or a replica to validate any message.
These cryptographic constructs find a variety of uses in a blockchain application:

• Sign a message.

• Verify an incoming message.

• Generate the digest of a client request.
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• Hash a record or data.

To sign and verify a message, a blockchain application can employ either symmetric-key cryptography or
asymmetric-key cryptography [120]. Although symmetric-key signatures, such as Message Authentication
Code (MAC), are faster to generate than asymmetric-key signatures, such as Digital Signature (DS), DSs offer
the key property of non-repudiation, which is not guaranteed by MACs [120]. Hence, several works suggest
using DSs [10, 7, 58, 202]. However, a cleverly designed permissioned blockchain system can skip using DSs
for a majority of its communication, which in turn will help increase its throughput. For generating digests or
hash, a blockchain application needs to employ standard Hash functions, such as SHA256 or SHA3, which
are secure.

5.2 ResilientDB Implementation

5.2.1 Architecture

In this section, we present the architecture and capabilities of our ResilientDB fabric. ResilientDB is written
entirely in C++ and provides a GUI to ease user interaction with the system. Further, we also provide a
Dockerized deployment that allows any user to experience and test the ResilientDB fabric (comprising of
multiple replicas and clients) on its local machine. In Figure 42, we illustrate the overall architecture, which
we describe in detail next.
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Figure 42: Architecture of the ResilientDB fabric.

• Transport Layer. Permissioned blockchains use com-munication-intensive BFT consensus protocols.
Hence, they expect an efficient transport layer to facilitate exchange of messages between replicas.7 Re-
silientDB employs Nanomsg sockets to facilitate communication among clients and replicas via TCP or UDP

7Permissionless systems are compute-intensive as they run consensus by solving a complex cryptographic puzzle.
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(depending on the choice of the developer). We also provide support for fast RDMA communication for
replicas with RDMA capabilities.

To facilitate efficient communication, ResilientDB employs multiple input/output threads with dedicated
sockets. Note that the number of input/output threads can be readily adjusted based on the network require-
ments and buffering bottlenecks. ResilientDB also provides access to distinct message queues. Depending
on the type of a message, these queues can be used by different threads to communicate with each other and
to place the message on the network.

• Crypto Layer. Blockchains typically are designed to deal with malicious adversaries. To secure com-
munication and prevent message tampering, ResilientDB employs NIST-recommended cryptographic con-
structs from the Crypto++ library. Depending on specific needs, replicas and clients can digitally sign their
messages using either (i) asymmetric-key cryptographic schemes such as ED25519 or RSA; or (ii) symmetric-
key cryptographic schemes such as CMAC and AES [120]. ResilientDB also provides message digests via
either SHA256 or SHA3 hashes.

• Parallel Pipelined Consensus Layer. At the core of any permissioned blockchain application lies a
BFT consensus protocol that safely replicates client transactions among all replicas. Decades of research
has brought forth several such protocols. No one protocol is the best-fit in all environments, however. For
example, ZYZZYVA achieves high throughput if none of the replicas are faulty, HOTSTUFF [200] works
well if latency is not critical, GEOBFT [97] scales well when replicas are geographically distant, and PBFT,
although typically-considered too slow, is most robust against failures. These characteristics of existing BFT

protocols permit us to conclude that any resilient permissioned blockchain fabric should facilitate testing and
implementation of different BFT protocols. ResilientDB’s consensus layer allows this and to support this
claim we provide implementation of all of the aforementioned protocols (among many others).

Furthermore, as we argued in previous sections, there is more to a blockchain system than just its BFT

protocol. In specific, we showed that a permissioned blockchain fabric adopting a system-centric design and
employing a slow BFT protocol outperforms a protocol-centric fabric that uses a fast protocol. To yield such
a system-centric design, ResilientDB employs transaction batching, multi-threading, pipelining, out-of-order
processing, and memory pooling.

In Figure 43, we illustrate the threaded-pipelined architecture of ResilientDB replicas. We permit increas-
ing (or decreasing) the number of threads of each type. In fact one of the key goals of this work is to study
the effect of varying these threads on a permissioned blockchain. With each replica, we associate multiple
input and output threads. In specific, we balance the tasks assigned to the input-threads, by requiring one
input-thread to solely receive client requests, while two other input-threads to collect messages sent by other
replicas. ResilientDB also balances the task of transmitting messages between the two output-threads by
assigning equal clients and replicas to each output-thread. To facilitate this division, we need to associate a
distinct queue with each output-thread.
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Figure 43: Multi-threaded deep-pipelines for the ResilientDB replicas.

Batching. Prior works have batched client transactions to reduce the cost of consensus [40, 121]. We
permit batching of transactions at both clients and replicas and developers can specify any size for such
batches. Batching reduces both communication costs and computation costs by reducing the number of
messages that are exchanged (which also reduced the number of message signatures necessary).

Transactions and Smart Contracts. ResilientDB supports YCSB transactions and customized Smart
Contracts. YCSB transactions can be used for benchmarking performance and developers can easily vary
the skew (read/write percentage) of these transaction. ResilientDB also provides APIs for designing and
testing Smart Contracts, which are similar to stored procedures in databases [64]. To demonstrate this, we
implemented Ethereum’s account-based smart contracts for banking applications [190] (see Section 5.2.2).

We associate each transaction with a transaction manager that manages the resources required for han-
dling transactions. We provide fast lookup of transaction managers via indices on transaction identifier and
batch identifier. Furthermore, transaction managers are pooled and reused to save on allocation and dealloca-
tion costs.

Order-Execute vs. Execute-Order Paradigm. Traditional permissioned blockchain systems employ the
order-execute paradigm, which states that a transaction needs to be ordered across all replicas prior to its
execution [34, 88]. This is in contrast with the execute-order paradigm proposed by Hyperledger [10], which
advocates to first execute and then order the transaction. Both of these paradigms have their pros and cons.
Our ResilientDB fabric provides support for both paradigms and allows developers to select the paradigm
that best fits their applications.

Multi-Threaded Deep Pipeline. As stated before, permissioned blockchain systems are communication-
intensive. Hence, we ensure that our ResilientDB fabric is not underutilizing hardware and will only be
limited by network capacity. To do so, we designed the consensus protocols in ResilientDB such that the crit-
ical path is as simple as possible and all other tasks are split of in their separate threads. E.g., threads to deal
with message sending, with message receiving, signing messages, verifying signatures, creating transaction
batches, performing checkpoints, and executing transactions. Users can easily adjust the number of required
threads depending on the specific needs of their applications.

• Memory Pool. Blockchain systems that process thousands of transactions, smart contracts, and mes-
sages per second require high-performance management of memory resources. For ResilientDB’s memory
management, we employ Jemalloc. Further, we minimize memory allocation and deallocation by using dis-
tinct memory pools for messages, transaction managers, and smart contracts. Depending on the size of an
allocation, each thread accesses the required pool and fetches an unallocated memory object. At the time of
garbage collection, obsolete objects are marked as released and placed back in the respective memory pool
for reuse. The best practice to overcome memory management for the transactions instances, smart contracts,
and messages is to have memory pool with efficient data structure to fetch and put back these memory units.
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Figure 44: Demo Platform Architecture.

ResilientDB provides multiple pools for the transaction workloads, messages, and smart contract to avoid
initializing and allocating memory for every instance. It is shown that memory pools improve the throughput
of whole system by 2 order of magnitude.

• Chain Storage. ResilientDB provides support for secure ledger (blockchain) management. To enable
efficient execution of client transactions, we also support efficient read and write accesses to client records. In
specific, each replica can use popular databases such as SQLite and LevelDB to achieve data persistence for
the ledger and client records under failure. ResilientDB provides several simple APIs that allow developers
to read and write to these databases and modify their schema if necessary.

5.2.2 Demonstration Scenario

During our demonstration, each user will get access to a graphical web-based interface of ResilientDB. Figure
44 illustrates the architecture of our demonstration environment. We provide a web-based UI for specifying
experiment parameters, for monitoring the real-time throughput and latency of the system, and for the analysis
of collected data.

In specific, users can specify their choice of parameters on our React Web Dashboard, which uses REST
APIs to forward these parameters to our Nginx back end. The back end compiles the code and deploys the
executables on the Google Cloud Platform (GCP). Once the executables start running, any emitted result is
continuously stored in InfluxDB. Throughout this process, our dashboard shows the user the current state of
the system. If the user wants to visualize the ongoing results, our dashboard asks the back end to fetch the data
from InfluxDB and plot the required graphs. This allows us to show the user real-time system throughput and
latency metrics. We employ React (open-source), Nginx (performance), and InfluxDB (eases management of
time-series data) for their associated advantages.

We provide our users access to two demonstration scenarios. The first demonstration scenario focuses
on making users understand the different parameters that affect the performance of a blockchain fabric. The
second demonstration scenario allows interested users to create and deploy their own smart contracts on-the-
fly. We explain these next.
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Mix-and-Match The key takeaway of the mix-and-match demonstration is to make users experiment and
observe the different parameters that affect throughput (transactions per second) and latency (time from the
client request to the response) of a permissioned blockchain application. We give users a GUI (see Figure 46)
and ask them to mix-and-match the parameters listed in Figure 45.

Parameter Options
BFT Protocol PBFT, ZYZZYVA, GEOBFT, HOTSTUFF

Transactions YCSB, Banking Smart Contracts
Requests/Txn 1, 5, 15, 50
Batch Size 1, 10, 100, 500, 1000, 4000
Message Size 0kB, 100kB, 200kB, 400kB
Pipeline Enable or Disable
Threads I/O, Worker, Execute Sign, Checkpoint
Storage In-memory, SQLite, LevelDB

Signatures Disable
Only Asymmetric ED25519, RSA
Only Symmetric CMAC, VMAC
Mix Use both

Hash Schemes SHA256, SHA3

Figure 45: ResilientDB parameters.

Figure 46: The interactive WebUI dashboard.

We first require the user to Sign-up/Sign-in to our ResilientDB portal. Next, the user can Configure
experiments of its choice. To do so, the user first selects a BFT protocol. At present, we have already
implemented four state-of-the-art protocols. Next, the user decides whether it wants clients to send YCSB
transactions or to run Banking Smart Contracts. The user can set the number of requests each client includes
in its transactions and the size of the batch (if batching is employed by replicas). To test the limit of the
network, we also provide capability to add a predefined load to messages.
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We allow our users to select whether they want to enable or disable pipelining. Enabling pipelining in
ResilientDB allows the various phases of a BFT protocol to be executed in parallel. For example, PBFT is
a three-phase preprepare-prepare-commit protocol. If we pipeline PBFT, then one transaction is prepared
while previous transactions are committed and executed. To ensure safety, the ordering is delayed until exe-
cution [40, 97]. In similar ways, the phases of other protocols can be pipelined. As stated earlier, ResilientDB
also divides tasks across threads. We allow users to choose the number of threads needed to create batches, to
sign messages, to fetch data from the network and to place output on the network. Further, we allow users to
select the type of storage for their blockchain ledger and client records. At present, we support the in-memory
databases SQLite and LevelDB for storing the ledger and client records. Finally, users can decide the type of
cryptographic constructs, signatures and digests, they want to employ. Note that a user need not specify all
parameters. In such a case, the system will proceed with the default parameters.

Finally, the user can deploy the experiment via the Run button, which initiates the script that will compile,
deploy, and run the experiment. The user is presented with a web-page that tracks the experiment progress.
The user also has an option of monitoring the results in real-time. Once the experiment completes, the user
can query the InfluxDB database holding all results.

Deploying Smart-Contract The key takeaway of the Deploying Smart-Contract demonstration is to show
how users can design their own applications in ResilientDB. We believe that demonstrating users the ease with
which they can use ResilientDB to create new applications illustrates ResilientDB’s general applicability.

Say we want to design a banking application. The transfer transaction is a key utility, as it allows move-
ment of money from one account to another. To support transfers, we create a smart contract that allows a
user Bob to transfer an amount X from his account to the account of Alice (see Figure 47). Prior to transfer-
ring X , the smart contract also needs to check if Bob (source) has at least amount X (source bal) in his
account. The smart contract needs access to the database with client records, for which we use GET and PUT
APIs.

1 / * r e t u r n : 1 f o r commit , 0 f o r a b o r t * /
2

3 i n t Transfe rMoney : : e x e c u t e ( )
4 {
5 i n t s o u r c e b a l = db−>Get ( t h i s−>s o u r c e ) ;
6 i n t d e s t b a l = db−>Get ( t h i s−>d e s t ) ;
7 i f ( t h i s−>amount <= s o u r c e ) {
8 db−>S e t ( t h i s−>sou rce , s o u r c e b a l − amount ) ;
9 db−>S e t ( t h i s−>d e s t , d e s t b a l + amount ) ;

10 r e t u r n 1 ;
11 }
12 r e t u r n 0 ;
13 }

Figure 47: Transfer Smart Contract in ResilientDB.

We provide a base class (SmartContract) that developers can inherit to define their functionalities.
Further, the client needs to provide the required parameters for the new smart contract. For example, the
client specifies the source, destination and the amount. Note that these changes do not affect the process of
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compiling, deploying, and running the code, which can still be done through our GUI. Hence, with simple
changes, users can build their own applications using our ResilientDB fabric.

5.3 Experimental Analysis

We now analyze how various parameters affect the throughput and latency of a Permissioned Blockchain
(henceforth abbreviated as PBC) system. For the purpose of this study we use our ResilientDB fabric. Al-
though ResilientDB can employ any BFT consensus protocol, we use the simple PBFT protocol to ensure the
system design remains as our key focus. To ensure a holistic evaluation, we attempt to answer the following
questions:

(Q1) Can a well-crafted system based on a classical BFT protocol outperform a modern protocol?
(Q2) How much gains in throughput (and latency) can a PBC achieve from pipelining and threading?
(Q3) Can pipelining help a PBC become more scalable?
(Q4) What impact does batching of requests has on a PBC?
(Q5) Do multi-operation requests impact the throughput and latency of a PBC?
(Q6) How increasing the message size impacts a PBC?
(Q7) What effect do different types of cryptographic signature schemes have on the throughput of a PBC?
(Q8) How does a PBC fare with in-memory storage versus a storage provided by a standard database?
(Q9) Can an increased number of clients impact the latency of a PBC, while its throughput remains unaf-

fected?
(Q10) Can a PBC sustain high throughput on a setup having fewer number of cores?
(Q11) How impactful are replica failures for a PBC?

5.3.1 Evaluation Setup

We employ Google Cloud infrastructure at Iowa region to deploy our ResilientDB. For replicas, we use c2
machines with an 8-core Intel Xeon Cascade Lake CPU running at 3.8GHz and having 16GB memory, while
for clients we use c2 4-core machines. We run each experiment for 180 seconds, and collect results over
three runs to average out any noise.

We use YCSB [65, 53] for generating workload for client requests. For creating a request, each client
indexes a YCSB table with an active set of 600K records. In our evaluation, we require client requests to
contain only write accesses, as a majority of blockchain requests are updates to the existing data. During the
initialization phase, we ensure each replica has an identical copy of the table. Each client YCSB request is
generated from a uniform Zipfian distribution.

Unless explicitly stated otherwise, we use the following setup: We invoke up to 80K clients on 4 ma-
chines and run consensus among 16 replicas. We employ batching to create batches of 100 requests. For
communication among replicas and clients we employ digital signatures based on ED25519, and for com-
munication among replicas we use a combination of CMAC and AES [120]. At each replica, we permit one
worker-thread, one execute-thread and two batch-threads

5.3.2 Effect of Threading and Pipelining

In this section, we analyze and answer questions Q1 to Q3. For this study, we vary the system parameters in
two dimensions: (i) We increase the number of replicas participating in the consensus from 4 to 32. (ii) We
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expand the pipeline and gradually balance the load among parallel threads.

We first try to gauge the upper bound performance of our system. In Figures 48a and 48b, we measure
the maximum throughput and latency a system can achieve, when there is no communication among the
replicas or any consensus protocol. We use the term No Execution to refer to the case where all the clients
send their requests to the primary replica and primary simply responds back to the client. We count every
query responded back in the system throughput. We use the term Execution to refer to the case where the
primary replica executes each query before responding back to the client. In both of these experiments, we
allowed two threads to work independently at the primary replica, that is, no ordering is maintained. Clearly,
the system can attain high throughputs (up to 500K txns/s) and has low latency (up to 0.25s).
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Figure 48: Upper bound measurements: (i) Primary responds back to the client without Execution, and (ii) executes
and then reply.

Next, we take two consensus protocols: PBFT and ZYZZYVA, and we ensure that at least 3 f +1 replicas
are participating in the consensus. We gradually move our system towards the architecture of Figure 43. In
Figures 49a and 49b, we show the effects of this gradual increase. We denote the number of execution-threads
with symbol E, and batch-threads with symbol B. For all these experiments, we used only one worker-thread.
The key intuition behind these plots is to continue expanding the stages of pipeline and the number of threads,
until system can no longer increase its throughput. In this manner, it would be easy to observe design choices
that could make even PBFT outperform ZYZZYVA, that is, benefits of a well-crafted implementation.

On close observation of Figure 49a, we can trivially highlight the benefits of a good implementation.
Further, these plots help to confirm our intuition that a multi-threaded pipelined architecture for a PBC out-
performs a single-threaded design. This is the key reason why our design of ResilientDB employs one
execution-thread andtwo batch-threads apart from a single worker-thread.

81



4 8 16 32
Number of Replicas

50

100

150

200

T
hr

ou
gh

pu
t (

K
T

xn
s/

s)

PBFT 0E 0B
PBFT 1E 0B
PBFT 1E 1B
PBFT 1E 2B
ZYZ 0E 0B
ZYZ 1E 0B
ZYZ 1E 1B
ZYZ 1E 2B

(a) System throughput.

4 8 16 32
Number of Replicas

1

2

3

4

L
at

en
cy

 (s
)

PBFT 0E 0B
PBFT 1E 0B
PBFT 1E 1B
PBFT 1E 2B
ZYZ 0E 0B
ZYZ 1E 0B
ZYZ 1E 1B
ZYZ 1E 2B

(b) Latency.

Figure 49: System throughput and latency, on varying the number of replicas participating in the consensus. Here, E
denotes number of execution-threads, while B denotes batch-threads.

Next, we explain our methodology for gradual changes. We first modified ResilientDB to ensure there are
no additional threads for execution and batching, that is, all tasks are done by one worker-thread (0E 0B). On
scaling this system we realized that this worker-thread was getting saturated. Hence, we partially divide the
load by having an execute-thread (1E 0B). However, we again observed that the worker-thread at the primary
was getting saturated. So we had an opportunity to introduce a separate thread to create batches (1E 1B).
Although worker-thread was no longer saturating, the batch-thread was overloaded with the task of creating
batches. Hence, we further divided the task of batching among multiple batch-threads (1E 2B) and ensured
none of the batch-threads were saturating. Figures 50a and 50b show the saturation level for different threads
at a replica. In this figure, we mark 100% as the maximum saturation for any thread. Using the bar for
cumulative saturation, we show a summation of the saturations for all the threads, for any experiment. Note
that for PBFT 1E 2B, the worker-thread at the backup replicas have started to saturate. But, as the architecture
at the non-primary is following our design, so we split no further.
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Figure 50: Saturation level of different threads at a replica. The mean is at 100%, which implies the thread is
completely saturated.

It can be observed that if PBFT is given benefit of ResilientDB’s standard pipeline (1E 2B), then it can
attain higher throughput than all but one ZYZZYVA implementations. The only ZYZZYVA implementation
(1E 2B) that outperforms PBFT is the one that employs ResilientDB’s standard threaded-pipeline. Further,
even the simpler implementation for PBFT (1E 1B) attains higher throughput than ZYZZYVA’s 0E 0B and 1E
0B implementations.

We have always stated that the design of ResilientDB is independent of the underlying consensus protocol.
This can be observed from the fact that when ZYZZYVA is given ResilientDB’s standard pipeline, then it
can achieve throughput of 200K txns/s. Note that in majority of the settings PBFT incurs less latency than
ZYZZYVA. This is an effect of ZYZZYVA’s algorithm, which requires the client to wait for replies from all
the n replicas, where for PBFT the client only needs f +1 responses. To summarize: (i) PBFT’s throughput
(latency) increases (reduces) by 1.39× (58.4%) on moving from 0E 0B setup to 1E 2B. (ii) ZYZZYVA’s
throughput (latency) increases (reduces) by 1.72× (63.19%) on moving from 0E 0B setup to 1E 2B. (iii)
Throughput gains up to 1.07× are possible on running PBFT on an efficient setup, in comparison to basic
setups for ZYZZYVA.
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5.3.3 Effect of Transaction Batching

We now try to answer question Q4 by studying how batching the client transactions impacts the throughput
and latency of a PBC. For this study, we increase the size of a batch from 1 to 5000.

Using Figures 51a and 51b, we observe that as the number of transactions in a batch increases, the
throughput increases until a limit (at 1000) and then starts decreasing (at 3000). At smaller batches, more con-
sensuses are taking place, and hence communication impacts the system throughput. Hence, larger batches
help reduce the consensuses. However, when the transactions in a batch are increased further, then the size of
the resulting message and the time taken to create a batch by a batch-thread, reduces the system throughput.
Hence, any PBC needs to find an optimal number of client transactions that it can batch. To summarize:
batching can increase throughput by up to 66× and reduce latency by up to 98.4%.
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Figure 51: System throughput and latency on varying number of transactions per batch. Here, 16 replicas participate in
consensus.

5.3.4 Effect of Multi-Operation Transactions

We now answer question Q5, that is, understand how multi-operation transactions affect the throughput of a
system? In Figures 52a and 52b, we increase the number of operations per transaction from 1 to 50. Further,
we increase the number of batch-threads from 2 to 5, while having one worker-thread and one execute-thread.
Although multi-operation transactions are common, prior works do not provide any discussion on such trans-
actions. Notice that these experiments are orthogonal counterparts of the experiments in the previous section.

It is evident from these figures that on increasing the number of operations per transaction, the system
throughput decreases. This decrease is a consequence of batch-threads getting saturated as they perform task
of batching and allocating resources for transaction. Hence, we ran several experiments with distinct counts
for batch-threads. An increase in the number of batch-threads helps the system to increase its throughput,
but the gap reduces significantly after the transaction becomes too large (at 50 operations). Similarly, more
batch-threads help to decrease the latency incurred by the system.

Alternatively, we also measure the total number of operations completed in each experiment. Notice that
if we base the throughput on the number of operations executed per second, then the trend has completely
reversed. Indeed, this makes sense as in fewer rounds of consensus, more operations have been executed.
To summarize: multi-operation transactions can cause a decrease of 93% in throughput and an increase of
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13.29× in latency, on the two batch-threads setup. An increase in batch-threads from two to five increases
throughputs up to 66% and reduces latencies up to 39%.
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Figure 52: System throughput and latency on varying the number of operations per transaction; B denotes the number
of batch-threads.

5.3.5 Effect of Message Size

We now try to answer question Q6 by increasing the size of the PRE-PREPARE message in each consensus.
The key intuition behind this experiment is to gauge how well a PBC system performs when the requests sent
by a client are large. Although each batch includes only 100 client transactions, individually, these requests
can be large. Hence, these experiments are aimed at exploiting a different system parameter than the plots of
Figure 51.

In Figures 53a and 53b, we study the variation in throughput and latency by increasing the size of a
PRE-PREPARE message. We do this by adding a payload to each message, which includes a set of integers
(8byte each). The cardinality of this set is kept equal to the desired message size.

It is evident from these plots that as the message size increases, there is a decrease in the system through-
put and an increase in the latency incurred by the client. This is a result of network bandwidth becoming a
limitation, due to which it takes extra time to push more data onto the network. Hence, in this experiment,
the system reaches a network bound before any thread can hit its computational bound. This leads to all the
threads being idle. To summarize: On moving from 8KB to 64KB messages, there is a 52% decrease in
throughput and 1.09× increase in latency.
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Figure 53: System throughput and latency on varying the message size. Here, 16 replicas participate in consensus.

5.3.6 Effect of Cryptographic Signatures

In this section, we answer question Q7 by studying the impact of different cryptographic signature schemes.
The key intuition behind these experiments is to determine which signing scheme helps a PBC achieve the
highest throughput while preventing byzantine attacks. For this purpose, we run four different experiments to
measure the system throughput and latency when: (i) no signature scheme is used, (ii) everyone uses digital
signatures based on ED25519, (iii) everyone uses digital signatures based on RSA, and (iv) all replicas use
CMAC+AES for signing, while clients sign their message using ED25519.

Figures 54a and 54b help us to illustrate the throughput attained and latency incurred by ResilientDB for
different configurations. It is evident that ResilientDB attains maximum throughput when no signatures are
employed. However, such a system does not fulfill the minimal requirements of a permissioned blockchain
system. Further, using just digital signatures for signing messages is not exactly the best practice. An optimal
configuration can require clients to sign their messages using digital signatures, while replicas can communi-
cate using MACs. To summarize: (i) use of cryptography reduces throughput by at least 49% and increases
latency by 33%. (ii) choosing RSA over CMAC, ED25519 combination would increase latency by 125×.
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Figure 54: System throughput and latency with different signature schemes. Here, 16 replicas participate in consensus.
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5.3.7 Effect of Memory Storage

We now try to answer question Q8 by studying the trade-off of having in-memory storage versus off-memory
storage in a PBC. For testing off-memory storage, we integrate SQLite [62] with our ResilientDB architec-
ture. We use SQLite to store and access the transactional records. As SQLite is external to our ResilientDB
fabric, so we developed API calls to read and write its tables. Note that until now, for all the experiments,
we assumed in-memory storage, that is, records are written and accessed in an in-memory key-value data-
structure.

In Figures 55a and 55b, we illustrate the impact on system throughput and latency in the two cases. For
the in-memory storage, we require the execute-thread to read/write the key-value data-structure. For SQLite,
execute-thread initiates an API call and waits for the results. It is evident from these plots that access to
off-memory storage (SQLite) is quite expensive. Further, as execute-thread is busy-waiting for a reply, it
performs no useful task. To summarize:, choosing SQLite over in-memory storage reduces throughput by
94% and increase latency by 24×.
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Figure 55: System throughput and latency for in-memory storage vs. off-memory storage. Here, 16 replicas used for
consensus.

5.3.8 Effect of Clients

We now study the impact of clients on a PBC system, and as a result, work towards answering question Q9.
We observe the changes in throughput and latency on increasing the number of clients sending requests to a
PBC from 4K to 80K.

Through Figure 56a, we conclude that on increasing the number of clients, the throughput for the sys-
tem increases to some extent (up to 32K), and then it becomes constant. This is a result of all the threads
processing at their maximum capacities, that is, the system is unable to handle any more client requests. As
the number of clients increases, an increased set of requests have to wait in the queue before they can be
processed. This wait can even cause a slight dip in throughput (on moving from 64K to 80K clients). This
delay in processing causes a linear increase in the latency incurred by the clients (as shown in Figure 56b).
To summarize: we observe that an increase in the number of clients from 16K to 80K helps the system to
gain an additional 1.44% throughput but incurs 5× more latency.
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Figure 56: System throughput and latency on varying the number of clients. Here, 16 replicas participate in consensus.

5.3.9 Effect of Hardware Cores

We now answer question Q10 by analyzing the effects of a deployed hardware on a PBC application. In
specific, we want to deploy our replicas on different Google Cloud machines having 1, 2, 4 and 8 cores.
We use Figures 57a and 57b to illustrate the throughput and latency attained by our ResilientDB system on
different machines. For all these experiments, we require 16 replicas to participate in the consensus. These
figures affirm our claim that if replicas run on a machine with fewer cores, then the overall system throughput
will be reduced (and higher latency will be incurred). As our architecture (refer to Figure 43) requires several
threads, so on a machine with fewer cores our threads face resource contention. Hence, ResilientDB attains
maximum throughput on the 8-core machines. To summarize: deploying ResilientDB replicas on an 8-core
machine, in comparison to the 1-core machines, leads to an 8.92× increase in throughput.
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Figure 57: System throughput and latency on varying the number of hardware cores. Here, 16 replicas participate in
consensus.

5.3.10 Effect of Replica Failures

We now try to answer question Q11 by analyzing whether a fast BFT consensus protocol can withstand replica
failures. This experiment also illustrates the impact of failures on a PBC. In specific, we perform a head-on
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comparison of ZYZZYVA against PBFT, while allowing some backup replicas to fail.

In Figures 58a and 58b, we illustrate the impact of failure of one replica and five replicas on the two
protocols. For this experiment we require at most 16 replicas to participate in consensus. Note that for
n = 16, the maximum number of failures a BFT system can handle are f = 5. Hence, we evaluate both the
protocols under minimum and maximum simultaneous failures.

On increasing the number of failures from one to five, there is a small dip in the throughput for both
the protocols. This dip is not visible due to the high scaling of the graph. For PBFT, in comparison to the
failure-free case, there is not a significant decrease in throughput as none of its phases require more than
2 f +1 messages. On the other hand, ZYZZYVA observes a pronounced reduction in its throughput with just
one failure. The key issue with ZYZZYVA is that its clients need responses from all the replicas. So even one
failure makes a client wait until it timeouts. This wait causes a significant reduction in its throughput. Note
that finding an optimal amount of time a client should wait is a hard problem. Hence, we approximate this by
requiring clients to wait for only a small time.
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Figure 58: System throughput and latency on failing non-primary replicas. Here, 16 replicas participate in consensus.
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6 Future Works

Until now, we have explored the scalability aspect of Fault-Tolerant protocols in a Byzantine environment.
GEOBFT scales BFT protocols in the WAN setting, and RINGBFT improves performance further, using
the sharding technique. RINGBFT scales up to 500 replicas that are located in different geographic loca-
tions. SERVERLESSBFT provides Byzantine fault-tolerant (BFT) transactional flow between edge devices
and serverless functions and allows blockchain applications to push their compute-intensive workloads to
cloud. In our future work, we will focus on Hybrid-Blockchains and blockchain with trusted components.

6.1 Hybrid Blockchains

All PBFT-based protocols are closed membership, meaning that the members of the system are known from
the creation of the genesis block. This is one of the limitations of most permissioned blockchain systems. In
a permissionless environment like Bitcoin, nodes can join and leave anytime during the consensus. In such a
setting, there should be a mechanism to prevent Sybil Attacks, and that comes with a cost which is expensive
Nakatomo Consensus (PoW). Sybil attack is defined as an attack where an attacker generates many identities
to outvote honest replicas. Using PoW to overcome Sybil attacks changes the voting method from one vote
per identity to one vote per hash-power. All PoW blockchains are still vulnerable to 51% and selfish mining
attacks, where more than half of the hash-power in the system is controlled by an adversary. Since PoW is
computation-intensive and requires a notable amount of resources, Bitcoin suffers from poor performance. It
takes 10 minutes for a transaction to be included in a block, and to get confirmed, it needs to be deep in the
chain, which makes it even slower.

The poor performance of permissionless blockchains and the closed-membership requirements of per-
missioned blockchains led us to explore blockchain systems with the following properties:

• Open membership: A system where nodes’ identities are not known as a priori. Nodes can join and
leave the system at some specific times.

• Responsiveness: We call a system responsive if it can commit its transactions at the speed of network
delay or a factor of it.

To gain responsiveness in a system with open membership, we consolidate both permissionless and
blockchains to introduce Hybrid-Blockchains. Previous works have proposed such systems. Pas and Shi
[154] proposed a hybrid consensus protocol that using PoW to agree on committee members, and this subset
acts as a permissioned blockchain to process transactions responsively. Periodically the committee members
change based on the PoW puzzle.

Ittai Abraham et al. [1] introduced a reconfigurable Byzantine consensus called Solida. They use a
modified version of PBFT among its committee to reach consensus over transactions and use a PoW puzzle
to elect new committee members. Upon receiving a solution for the PoW puzzle, The nodes inside the
committee try to reach a consensus to hand over the ledger to the new committee.

6.2 Byzantine Fault Tolerant Consensus with Trusted Components

BFT protocols tolerate a subset of participants behaving arbitrarily: a malicious actor can delay, reorder or
drop messages (omission faults); it can also send conflicting information to participants (equivocation). As a
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result, BFT consensus protocols are costly: maintaining correctness in the presence of such attacks requires
a minimum of 3f+ 1 participants, where f participants can be malicious. This is in contrast to crash-fault
tolerant protocols (CFT), where participants can fail by crashing, which require 2f+ 1 participants only for
correctness [124, 147].

To minimise this additional cost, some existing BFT protocols leverage trusted components to curb the
degree to which participants can behave arbitrarily [55, 56, 125, 172]. A trusted component provably performs
a specific computation: incrementing a counter [126, 185], appending to a log [45], or more advanced options
like executing a complex algorithm [127, 117, 167]. While there exists a large number of BFT protocols that
leverage these trusted components [45, 126, 196] (we refer to these protocol as TRUST-BFT protocols for
simplicity), they all proceed in a similar fashion: they force each replica to commit to a single order for
each request by having the trusted component sign each message it sends. In turn, each trusted component
either: (1) records the chosen order for a client request in an append-only log, or (2) binds this order for the
request with the value of a monotonically increasing counter. Committing to an order in this way allows these
protocols to remain safe with 2f+1 replicas only, bringing them in line with their CFT counterparts.

While reducing replication cost is a significant benefit, we argues that current TRUST-BFT protocols place
too much trust in trusted components. Our analysis uncovers three fundamental issues with existing TRUST-
BFT implementations that preclude most practical deployments: (i) limited responsiveness for clients, (ii)
safety concerns associated with trusted components, and (iii) inability to perform multiple consensuses in
parallel.

Responsiveness We observe that byzantine replicas can successfully prevent a client from receiving a
response for its transactions. While the transaction will still commit (consensus liveness), the system will
appear to clients as stalled and thus appear non-responsive to clients.

TRUST-BFT protocols allow a reduced quorum size of f+ 1 to commit a request. As f of those may be
Byzantine, only one honest replica is guaranteed to execute the operation. This is insufficient to guarantee
that a client will receive the necessary f+ 1 matching responses post operation execution and thus validate
that the response is indeed valid.

Loss of Safety under Rollback. Existing TRUST-BFT protocols consider an idealised model of trusted
computations. They assume that the trusted components cannot be compromised and that their data remains
persistent in the presence of a malicious host. This assumption does not yet align with current hardware
functionality. A large number of these protocols employ Intel SGX enclaves for trusted computing [59, 22,
171]. Unfortunately, SGX-based designs have been shown to suffer from rollback attacks [189, 135, 111], and
the solutions to mitigate these attacks lack practical deployments [77]. Hardware enclaves that do provably
defend against rollback attacks, such as persistent counters [55] and TPMs [89], have prohibitively high
latencies (tens of milliseconds) [133, 126, 153].

Sequential Consensus. Existing TRUST-BFT protocols are inherently sequential as they require each out-
going message to be ordered and attested by trusted components. While recent work mitigates this issue
by pipelining consensus phases [59] or running multiple independent consensus invocations [22], their per-
formance remains fundamentally limited by the RTT of each protocol phase. In fact, despite their lower
replication factor, we observe that TRUST-BFT protocols achieve lower throughput than traditional parallel
BFT protocols [41, 97, 181, 143].

We think that TRUST-BFT protocols have targeted the wrong metric: while reducing the replication factor
to 2f+ 1 may seem appealing from a resource efficiency or management overhead standpoint, it, paradoxi-
cally, comes at a significant performance cost. Nonetheless, trusted components can still bring huge benefits

91



to BFT consensus when they use 3f+1 replicas. In our future work we plan to propose a novel suite of con-
sensus algorithms (Flexible Trusted BFT (FLEXITRUST)), which address the aforementioned limitations.
These protocols are always responsive and achieve high throughput as they (1) make minimal use of trusted
components (once per client operation and at the primary replica only), and (2) support parallel consensus
invocations. Both these properties are made possible by the ability to use large quorums (of size 2f+1) when
using 3f+ 1 replicas. Our techniques can be used to convert any TRUST-BFT protocol into a FLEXITRUST

protocol. We provide as examples two such conversions: FLEXI-BFT and FLEXI-ZZ, two protocols based
on PBFT [41]/ MINBFT [185] and ZYZZYVA [121]/ MINZZ [185], respectively. FLEXI-BFT follows a
similar structure to PBFT, but requires one less communication phase. FLEXI-ZZ is, we believe, of indepen-
dent interest: the protocol achieves consensus in a single linear phase without using expensive cryptographic
constructs such as threshold signatures. Crucially, unlike the ZYZZYVA and MINZZ protocols, FLEXI-ZZ
continues to commit in a single-round even when a single participant misbehaves, thus maintaining high-
throughput [97, 47, 49]. Further, FLEXI-ZZ does not face the safety bug like ZYZZYVA [2].
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[148] M. Tamer Özsu and Patrick Valduriez. Principles of Distributed Database Systems. Springer New
York, 3th edition, 2011.
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