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INTRODUCTION

1.1. The genetic basis of human evolutionary traits

Elucidating the genetic changes underlying the evolution of human traits remains an 

unfinished puzzle. Genetic analyses have historically relied on single-nucleotide variants 

(SNVs; see Table 1 for a complete list of acronyms) for the identification of species 

differences and selection signatures. Although complex genomic variation has long been 

recognized as a force underlying phenotypic diversity—e.g., transposable elements in 

maize (McClintock, 1931), and chromosomal inversions (Sturtevant, 1913) and duplications 

(Bridges, 1936) in Drosophila—as well as a key driver of primate evolution (Bailey & 

Eichler, 2006), methodological difficulties have limited the understanding of their functional 

and evolutionary impact. Scientists are now poised to explore this question at unprecedented 

resolution with the large-scale adoption of high-throughput sequencing technologies 

(Goodwin, McPherson, & McCombie, 2016). Together, the widespread availability of high-

quality reference genomes and population-level whole-genome sequencing datasets have 

reignited interest in studying the role of complex genomic variation in human/primate traits.

1.2. Genomic structural variation

Broadly speaking, structural variants (SVs) are defined as complex genomic differences 

larger than 50 bp (Reviewed by Alkan, Coe, & Eichler (2011)) (Figure 1). These include 

copy number variants (CNVs) that can change the dosage of a gene or genomic region, 

such as deletions and duplications. Larger (>1 kbp) duplications with high sequence identity 

(>90%) are termed segmental duplications (SDs) or low-copy repeats (Bailey et al., 2002; 

Bailey, Yavor, Massa, Trask, & Eichler, 2001). Other types of SVs include insertions, 
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which can comprise novel sequence and mobile elements such as retrotransposons (for a 

comprehensive review see Kazazian & Moran (2017)), translocations, and inversions.

1.3. Goals and outline of this review

In general, both the larger size and low-complexity content that often accompany SVs inhibit 

their reliable discovery using genomic approaches, making this class of genetic variant 

historically understudied. However, rapid advancements in both sequencing technologies 

and computational tools are dramatically improving the study of SVs. The goal of this 

review is to introduce readers to genomic SVs, describe their known importance in 

human genome structure and evolution, outline ongoing developments in SV discovery and 

characterization, and provide resources to incorporate SVs in their own research. This will 

be achieved via the following topics:

• The impact of structural variation in shaping human and related primate genomes

• How SVs are used in genetic studies today with examples of variants 

contributing to human traits and evolution as well as gene function and 

regulation

• Detail the roles that human-specific duplicated genes have played in brain 

development and evolution

• Provide tips and describe the limitations and artifacts that arise from the study of 

SVs

• Lay out ongoing genomic advancements that promise to transform our 

knowledge of the existing SV landscape, and propose how readers can prepare to 

use upcoming datasets/tools in their own research

2. HOW STRUCTURAL VARIATION HAS SHAPED HUMAN GENOMES

2.1. Hominid SDs and the “core” duplicons

Comparative genomic analyses—propelled recently by the availability of high-quality 

primate genomes (Chimpanzee Sequencing and Analysis Consortium, 2005; Gordon et al., 

2016; Kronenberg et al., 2018; Lander et al., 2001; Locke et al., 2011; Mao et al., 2021; 

Nurk et al., 2022; Prüfer et al., 2012; Scally et al., 2012; Warren et al., 2020)—can provide 

insight into genetic instances explaining distinct phenotypic characteristics (Rogers & 

Gibbs, 2014). Genomic surveys have revealed thousands of genetic variants between species 

potentially leading to phenotypic innovations across primates (Kronenberg et al., 2018; 

Prado-Martinez et al., 2013; Yousaf, Liu, Ye, & Chen, 2021). One striking result of this 

comparative approach is the observed increased rate of accumulation of SDs in great apes 

compared to other primates (Marques-Bonet, Girirajan, & Eichler, 2009; Marques-Bonet, 

Kidd, et al., 2009a; Sudmant et al., 2013) given the known potential of duplications to serve 

as a source for phenotypic innovation (Ohno, 1970). In particular, the branch leading to 

African great apes (Figure 2) has experienced a three-fold increase in duplication activity 

8–12 million years ago (mya) together with a clocklike rate of deletions and a decreased 

rate of SNVs, chromosomal rearrangements, and retrotransposition activity (Marques-Bonet, 

Kidd, et al., 2009b; Sudmant et al., 2013). As a result, SDs account for 7% (218 Mbp) of 
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the human genome, according to the sequence of the first complete telomere-to-telomere 

(T2T-CHM13) reference genome (Vollger et al., 2021).

Hominid SDs are non-randomly distributed across the genome and organized in large 

blocks (>250 kbp) that display a complex structure of duplications-within-duplications 

arranged around sequence elements known as ‘core’ or ‘seed’ duplicons (Dennis & Eichler, 

2016; Jiang et al., 2007; Marques-Bonet & Eichler, 2009). This differs from most other 

sequenced mammals—like mice, dogs, and cows—where SDs are primarily organized in 

tandem (Liu et al., 2009; Nicholas et al., 2009; She, Cheng, Zöllner, Church, & Eichler, 

2008). These regions represent the focal point from which duplications accrue, with 

younger events located farther away from the core. In the human genome, hierarchical 

clustering of 437 duplicated blocks identified 24 core duplicons of ~15 kbp in size, 

of which fourteen were confined to one chromosome and ten were mixed across non-

homologous chromosomes, mostly within subtelomeric and pericentromeric regions (Jiang 

et al., 2007). Evidence suggests that core duplicons have been reused independently and 

recurrently in different primate lineages (Cantsilieris et al., 2020; Johnson et al., 2006) 

and also exist at the breakpoints of large scale chromosomal translocation and inversions 

representing cytogenetic differences across hominids (Gagneux & Varki, 2001; Marques-

Bonet, Girirajan, et al., 2009).

The core duplicons themselves are enriched for transcribed genes. Human core duplicon 

gene families exhibit signatures of positive selection (NBPF, RGPD, PMS2P, SPATA31, 

TRIM51, GOLGA8, NPIP [i.e., Morpheus], TBC1D3) (Johnson et al., 2001; Lorente-

Galdos et al., 2013) and are among the most copy-number polymorphic gene families in 

the human genome (e.g., SPATA31, NPIP, and LRRC37A) (Redon et al., 2006; Sharp 

et al., 2005). Since their original discovery, only three of these gene families have been 

functionally characterized (TBC1D3 [detailed in Section 4.3], NBPF, and SPATA31), 

leaving the function of most core duplicon genes unknown (Bekpen & Tautz, 2019).

2.2. Molecular mechanisms contributing to structural variation

Different molecular mechanisms have been proposed to explain the origin of primate SDs. 

The enrichment of Alu short interspersed nuclear elements (SINE)—the most abundant 

interspersed repeats in the human genome—at the boundaries of interstitial (euchromatic) 

and pericentromeric SDs suggests Alu-mediated origins (Bailey & Eichler, 2006; Bailey, 

Liu, & Eichler, 2003). As such, it has been proposed that the primate-specific ‘burst’ of Alu 
retrotransposition activity that occurred 35–40 mya sensitized the ancestral primate genome 

to Alu-mediated recombination events, that later propelled duplication events via non-allelic 

homologous recombination (NAHR) and homology-directed repair. However, association 

with Alu elements significantly decreases for younger SDs and CNVs, suggesting newly-

emerging molecular mechanisms underlying structural variation formation, with newer 

events driven by other repeat classes or different molecular mechanisms such as non-

homologous end-joining (NHEJ) (Balachandran et al., 2022; Kim et al., 2008). In the case 

of the LCR16a core duplicon, which contains the rapidly-evolving primate-specific gene 

family Morpheus (NPIP), their interchromosomal and intrachromosomal expansions have 
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been linked to the hominid-specific retrotransposon SINE-R-VNTR-Alu (SVA) (Damert, 

2022).

As large stretches of homologous sequences provide a substrate for recombination, SDs 

sensitize the genome to NAHR, resulting in genomic rearrangements such as unequal 

crossing-over and interlocus gene conversion (IGC), where a donor sequence overwrites 

an acceptor sequence (Chen, Cooper, Chuzhanova, Férec, & Patrinos, 2007). Analysis of 

the 1000 Genomes Project (1KGP) dataset estimates that at least 2.7% of SNVs within 

SDs can be explained by IGC (Dumont, 2015; Genomes Project, Consortium et al., 2010), 

while a recent survey of variants identified from comparisons of whole human genome 

assemblies suggest IGC accounts for >7 Mbp of SD sequence per human haplotype 

(Vollger, DeWitt, et al., 2022). Duplicated non-functional pseudogenes can lead to disease 

by exchanging deleterious variants with functional paralogs via IGC. This is the case 

of SMN2, a nonfunctional HSD paralog of SMN1, which encodes the survival motor 

neuron protein involved in the maintenance of motor neurons (Rochette, Gilbert, & Simard, 

2001). Unidirectional variant exchange via IGC causes SMN2 to “overwrite” functional 

SMN1 leading to the most common form of spinal muscular atrophy (Larson et al., 

2015). Conversely, IGC events can also “rescue” non-functional duplicate gene paralogs 

from pseudogenization, as observed for NOTCH2NL, a gene implicated in human brain 

evolution (discussed in more detail in Section 4.3) (Fiddes et al., 2018; Suzuki et al., 2018). 

SDs preferentially exist at regions of genome instability, or ‘hotspots’, prone to recurrent 

genomic rearrangements (Stankiewicz & Lupski, 2002, 2010). Core duplicons seem to 

be preferential sites for rearrangement hotspots (Dennis & Eichler, 2016). A subgroup 

of CNVs, termed microdeletions and microduplications, have been implicated in certain 

conditions—such as autism, schizophrenia, and epilepsy—at certain genomic hotspots 

(Carvalho & Lupski, 2016; Coe et al., 2014; Inoue & Lupski, 2002; Mefford & Eichler, 

2009; Perry et al., 2006; Sharp et al., 2005; Stankiewicz & Lupski, 2002, 2010; Watson, 

Marques-Bonet, Sharp, & Mefford, 2014; Zhang, Carvalho, & Lupski, 2009), including 

chromosomes 7q11.23 deletion (Williams-Beuren syndrome) and duplication (autism), 

15q11–q13 deletion (Prader-Willi and Angelman syndromes), and 1q21.1 microdeletion 

(intellectual disability, schizophrenia) and duplication (autism). Overall, these examples 

suggest that gene duplication—a well-established driver of gene innovation—has conferred 

advantages to human evolution, while also increasing genome instability and disease risk.

3. CONTRIBUTIONS OF STRUCTURAL VARIATION TO HUMAN 

EVOLUTION, ADAPTATION, AND TRAITS

3.1. Variation landscape across modern humans

The availability of high-coverage population-level short-read sequencing (SRS) data 

provided by large-scale consortia projects have shown that SVs are an important source 

of genomic diversity across great apes (Prado-Martinez et al., 2013; Sudmant et al., 2013) 

and within human populations (see Section 5.2 for a comprehensive list of available human 

datasets and studies). Based on our current knowledge of SVs, which we recognize as 

incomplete due to difficulties in their discovery with SRS (detailed in Section 5.3) (De 

Coster, Weissensteiner, & Sedlazeck, 2021), lower-bound estimates suggest that around 
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9% of the human genome is affected by insertions, deletions, and inversions alone (~279 

Mbp) (Ebert et al., 2021), while at least 7% of the human genome (Sudmant, Mallick, 

et al., 2015) and ~16% of hominid genomes (Sudmant et al., 2013) are variable because 

of CNVs. Individually, each diploid genome harbors at least 18.4 Mbp (0.6%) of SVs, 

accounting for more than five times as many affected base pairs as SNVs (~0.1%) (Sudmant, 

Rausch, et al., 2015). Focusing specifically on inversions, a more recent study estimates 

that an individual’s genome can harbor, on average, ~12 Mbp (~0.4%) of inverted sequence 

per haploid genome, affecting twice as many nucleotides as deletions and insertions and 

fourfold as many nucleotides as SNVs (1KGP Consortium et al., 2015; Ebert et al., 2021; 

Porubsky, Höps, et al., 2022). Further, NAHR between flanking SDs increases the likelihood 

of recurrent inversions, a process described as “inversion toggling” (Zody et al., 2008), with 

a majority of inversions displaying evidence of recurrence (Porubsky, Höps, et al., 2022). 

The existence of 27 inversions shared among different apes suggests inversion toggling also 

exists across species and/or as a result of incomplete lineage sorting (Porubsky et al., 2020).

Per generation, at least 4.1 kbp are associated with de novo SV events, a 90-fold increase 

with respect to de novo SNVs (Kloosterman et al., 2015). Further, preliminary comparisons 

of genome assemblies from the Human Pangenome Reference Consortium (HPRC) suggests 

that SNV mutation rates are elevated by ~60% across SDs compared to non-duplicated 

genomic regions, likely driven by IGC (Vollger, DeWitt, et al., 2022; Wang et al., 2022). 

Albeit different in genome distribution and affected sequence, polymorphism of SVs and 

SNVs share population genetic properties and global distribution patterns. Frequency-wise, 

most variants are rare and those with higher allele frequencies are shared among the five 

human continental superpopulations. All SV classes can broadly recapitulate SNV-derived 

ancestries (Sudmant, Rausch, et al., 2015), including CNVs (Jakobsson et al., 2008). In 

concordance with SNVs, individuals of African ancestry exhibit more heterozygous SVs 

than other populations (Sudmant, Rausch, et al., 2015).

SVs can also exist in linkage disequilibrium (LD) with neighboring SNVs. Alleles in LD are 

observed together at higher than expected frequencies, which can be exploited to understand 

evolutionary history and fine-mapping of gene associations with diseases and traits. We 

note that the use of LD in human evolutionary and clinical genomics has been extensively 

reviewed by others (Slatkin, 2008). When SVs and SNVs consistently exist on the same 

haplotype (or a collection of alleles on the same chromosome), we say that the SVs are in 

LD with (or “tagged” by) SNVs; therefore, if a tagging SNV exhibits association with a 

trait, the SV in LD can also be considered a possible causal variant without having to be 

directly genotyped for the trait. Likewise, tagging SNVs displaying signatures of selection 

provide information about the evolutionary relevance of associated SVs. Numerous SNV 

genotyping- (Hinds, Kloek, Jen, Chen, & Frazer, 2006; Locke et al., 2006; McCarroll et 

al., 2006) and sequencing-based (Beyter et al., 2021; Conrad et al., 2010; Hehir-Kwa et al., 

2016; Saitou, Masuda, & Gokcumen, 2021; Yan et al., 2021) studies have identified SVs in 

LD with surrounding SNVs. SVs within duplication-rich regions, however, show a weaker 

correlation with surrounding SNVs than those situated in less complex regions (Locke 

et al., 2006; Sudmant, Mallick, et al., 2015), likely due to methodological difficulties in 

SNV detection within large duplications as well as SV recurrence (e.g., the same inversion 

occurring separately in two individuals carrying different SNV haplotypes) and IGC (Saitou 
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& Gokcumen, 2019a) (Figure 3). As a result, NAHR-derived inversions also commonly lack 

LD with surrounding SNVs (Giner-Delgado et al., 2019).

Multicopy CNVs (mCNVs), also known as multiallelic CNVs, are particularly challenging 

for LD-based analyses, as the duplicated paralog might not exist at the same locus of origin. 

Microarray-based approaches have estimated that 40% of common mCNVs are in LD 

with nearby SNVs (Campbell et al., 2011), while recent studies employing whole-genome 

sequencing (see Section 5.1 for more details) estimate that 73% of CNVs (>1% allele 

frequency) are in medium to strong LD (r2 > 0.6) with nearby SNVs (Sudmant, Mallick, et 

al., 2015). Considering the importance of the underlying LD architecture for genome-wide 

association studies and population genetics analyses, the lack of linkage information has 

hindered genotype–phenotype studies and selection scans of SV-associated regions (Saitou 

& Gokcumen, 2019a).

Despite methodological difficulties, the function and disease implication of some SVs 

have been inferred based on strong LD with surrounding associated SNVs or performing 

association tests with phenotype cohorts (Aguirre, Rivas, & Priest, 2019; Beyter et al., 

2021). Linkage information, in particular, shows that SVs are 1.5 times more likely to be 

in strong LD with genome-wide association study hits than SNVs (Sudmant, Rausch, et al., 

2015).

3.2. Natural selection and human structural variation

Over evolutionary timescales, SVs can be subjects of strong selective pressures. As such, 

a majority of SV hotspots develop in gene-poor regions, evolving under relaxed negative 

selection or neutrality (Lin & Gokcumen, 2019). For example, it has been proposed 

that relaxation of negative selection allowed for extensive copy-number variation of 

olfactory receptor genes in the primate lineage, with a relatively lower proportion of protein-

encoding genes in humans and other primates versus dogs or rodents (Young et al., 2008). 

Conversely, functionally relevant sites—including coding regions and regulatory elements 

(e.g., enhancers and promoters)—are both depleted in SVs and enriched in rare SVs (Beyter 

et al., 2021), a signature consistent with purifying selection. As one might expect, selection 

against protein-truncating SVs has been shown to be stronger than in noncoding elements 

(Collins et al., 2020). Per genome, SVs are predicted to account for 17.2% of strongly 

deleterious variants, with rare SVs being 841 times more likely to be deleterious than rare 

SNVs (Abel et al., 2020). Among CNVs, deletions show stronger signatures of purifying 

selection than duplications, as they can severely impact gene functions by fully or partially 

ablating transcripts, regulatory elements, and chromatin organized units of the genomes 

(i.e., topologically-associated domains or TADs). Consequently, deletions are significantly 

depleted within functional elements in humans (Locke et al., 2006; Mills et al., 2011) and 

certain great apes (Fudenberg & Pollard, 2019; Soto et al., 2020).

Nevertheless, several examples of adaptive SVs exhibiting signatures of positive or 

balancing selection have been described in the literature, mostly implicated in local 

adaptation to dietary changes, environmental changes (e.g., pigmentation, thermoregulation, 

xenobiotic), and resistance to infectious diseases (Table 2). Here, we highlight some 

interesting examples, while also pointing the reader to recent reviews on this topic (Dennis 
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& Eichler, 2016; Hollox, Zuccherato, & Tucci, 2022; Saitou & Gokcumen, 2019a). Positive 

selection of mCNVs has been associated with gene dosage effect (Handsaker et al., 2015). 

This is the case of the β-defensin genes, where copy-number gains lead to greater protein 

expression on the mucosal surface and higher antimicrobial activity (Hollox, Armour, 

& Barber, 2003). Other immune-related loci rich in common CNVs, such as the major 

histocompatibility complex, are thought to maintain their genetic diversity through the 

action of balancing and diversifying selection (Lin & Gokcumen, 2019).

Some deletions have been maintained within populations by the action of balancing 

selection for thousands of years (Aqil, Speidel, Pavlidis, & Gokcumen, 2022), even before 

the divergence of modern humans and Neanderthals, estimated to have occurred ~800 kya 

(Gómez-Robles, 2019). A well-known example of this phenomenon is a common 32-kbp 

deletion impacting genes LCE3B and LCE3C associated with psoriasis. This deletion 

emerged in a common ancestor with Neanderthals and was maintained through balancing 

selection, likely due to increased effectiveness of the acquired immune system, albeit higher 

susceptibility to autoimmune disorders (Pajic, Lin, Xu, & Gokcumen, 2016). Interestingly, 

CNVs impacting GSTM1 and UGT2B17 are polymorphic in humans and chimpanzees, 

suggesting inter-species balancing selection. However, further analyses revealed that 

deletions of GSTM1 arose separately in both lineages (Saitou, Satta, & Gokcumen, 2018; 

Saitou, Satta, Gokcumen, & Ishida, 2018), while the evolutionary history of UGT2B17 
remains unknown.

Inversions have also played significant roles in the evolution of great apes, representing a 

common large-scale rearrangement differentiating species (Catacchio et al., 2018; Locke et 

al., 2003; Nickerson & Nelson, 1998; Yunis, Sawyer, & Dunham, 1980; Yunis & Prakash, 

1982), including nine pericentric inversions that distinguish humans and chimpanzees (Gross 

et al., 2006). Generally, inversions are strong candidates for speciation and selection because 

suppressed recombination allows for the accumulation of mutations between the derived 

and ancestral state (Fuller, Koury, Phadnis, & Schaeffer, 2019; Kirkpatrick & Barton, 

2006; Noor, Grams, Bertucci, & Reiland, 2001). Further, they have the capacity to disrupt 

three-dimensional genome architecture, alter gene expression, and, in humans, exhibit a 

close relationship with disease-associated genomic hotspots (Koolen et al., 2006; Lakich, 

Kazazian, Antonarakis, & Gitschier, 1993; Lupiáñez et al., 2015; Osborne et al., 2001; Puig, 

Casillas, Villatoro, & Cáceres, 2015; Sturtevant, 1917). The chromosome 17q21.31 900-kbp 

inversion polymorphism represents an example of an SV exhibiting positive selection. The 

locus harbors two main distinct haplogroups, H1 (direct) and H2 (inverted), with little 

evidence of recombination for the last ~3 million years (Stefansson et al., 2005). The 

H2 haplogroup is rare in Africans and Asians while prevalent among Europeans (~20%) 

indicative of positive selection possibly due to its association with increased fertility in 

females (Stefansson et al., 2005). Both H1 and H2 haplogroups have evolved independently 

and experienced complex rearrangements, with recurrent partial duplications of KANSL1 
(Boettger, Handsaker, Zody, & McCarroll, 2012; Steinberg et al., 2012), a gene for which 

haploinsufficiency causes the chromosome 17q21.31 microdeletion syndrome (also known 

as Koolen-De Vries syndrome) (Moreno-Igoa et al., 2015).
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SVs involved in local adaptation—the genetic changes experienced by a population to adapt 

to local environmental conditions (Rees, Castellano, & Andrés, 2020)—are prime targets 

of positive selection. The identification of many adaptive SVs has relied on genome-wide 

scans of population stratification (Conrad et al., 2010; Redon et al., 2006; Saitou et al., 2021; 

Sudmant et al., 2010; Yan et al., 2021), as allele frequency differences between populations 

are robust to haplotype-disruptive recurrence and IGC. Population-stratified SNVs are 

frequently identified using the fixation index (FST). For mCNVs, the statistic VST (Redon 

et al., 2006) has been adapted from FST to account for multiple copy numbers. One of the 

most well-studied adaptive CNVs in humans impact the amylase genes, involved in starch 

digestion in mammals. The copy number of the salivary amylase gene, AMY1, has been 

found to be positively correlated with dietary starch consumption in humans (Perry et al., 

2007) and several starch-consuming mammals such as dogs (Pajic et al., 2019), evidencing 

positive selection. Although AMY1 copy number has a dosage effect on salivary amylase 

production, it accounts for a small portion of the variability observed among individuals 

(Carpenter, Mitchell, & Armour, 2017). Interestingly, population-scale Vst analyses have led 

to the discovery of adaptive SVs in out-of-Africa populations that have introgressed from 

archaic genomes (Hsieh et al., 2019; Yan et al., 2021). Among Melanesians, for example, 

19 positively-selected CNVs at chromosomes 16p11.2 and 8p21.3 likely introgressed from 

Denisovans and Neanderthals, respectively (Hsieh et al., 2019).

Some adaptive CNVs display a unique expansion pattern, where unusually high copy 

numbers are seen in one population, remaining low in the rest, a pattern termed ‘runaway 

duplications’ (Almarri et al., 2020; Handsaker et al., 2015). This is the case of HPR, 

encoding the haptoglobin-related protein which confers defense against trypanosome 

infection, that shows a copy-number increase in African populations consistent with the 

geographic distribution of the infection (Almarri et al., 2020; Handsaker et al., 2015; 

Hardwick et al., 2014). Other identified runaway duplications include the expansion 

of ORM1 in Europeans (Handsaker et al., 2015), a private expansion downstream of 

TNFRSF1B in the Biaka group, an expansion upstream of the olfactory receptor OR7D2 
in individuals with East Asian ancestry, and expansions in medically-relevant genes HCAR2 
in the Kalash group and SULT1A1 in Oceanians (Almarri et al., 2020).

3.3. Gene regulation

SVs impact not only genes but also their regulatory elements. The vast majority (>98%) 

of the human genome is noncoding, with changes to regulatory regions thought to be 

better tolerated than changes to protein-coding sequences. Enhancers possess cell-type 

specificity, so regulatory mutations tend to be modular, impacting the quantity, location, or 

developmental time of gene expression while leaving the genes themselves intact (Arnone & 

Davidson, 1997). Accordingly, gene regulation is a major contributor to variation within 

and between species (Fay & Wittkopp, 2008; Fraser, 2013; Wray et al., 2003). This 

was suspected even before the genomic era (Ohno, 1972), as comparison of human and 

chimpanzee sequences suggested that coding differences were insufficient to explain the 

phenotypic divergence between the species, and that most changes were likely regulatory 

(King & Wilson, 1975). Given that SVs constitute a major component of intra- and 

interspecific variation, they may underlie much of this regulatory divergence, and indeed 
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contribute to regulatory differences within humans and between primate species (Iskow et 

al., 2012; McLean et al., 2011; Stranger et al., 2007). At the same time, proper development 

relies on finely tuned spatiotemporal expression patterns, and many disease etiologies result 

from aberrant cis-regulatory activity of promoters and enhancers. Strikingly, many are also 

caused by structural rearrangements (Kleinjan & Coutinho, 2009).

Compared to SNVs, SVs are more likely to contribute to regulatory changes, since their 

large size allows them to alter the copy number and genomic context of genes and regulatory 

elements. CNVs of coding regions can directly impact gene dosage, while SVs of noncoding 

regions can cause indirect expression changes by deleting, duplicating, or rearranging 

regulatory elements rather than genes. Genome-wide, it is estimated that 3–7% of expression 

quantitative trait loci (eQTLs)—or variants associated with gene expression variation—are 

driven by SVs, with rare variants also associated with outlier expression levels (Chiang, 

2019). Similarly, SVs are ~50 times more likely than SNVs to be the lead cause of eQTL 

signals, with large SVs having greater effect sizes. Further, estimates based on expression 

data representing diverse tissue types collected post mortem from 613 individuals from the 

Genotype-Tissue Expression (GTEx) project predict that common SVs are causal of 2.66% 

of eQTLs, which represents a 10.5-fold enrichment compared to SNVs, considering their 

relative abundance in the genome (Scott, Chiang, & Hall, 2021). Beyond simply altering 

mRNA levels, individual regulatory SVs can have marked phenotypic effects. For example, 

deletion or duplication of enhancers upstream of SOX9 causes XX and XY sex reversal, and 

a human-specific loss of a conserved GDF6 enhancer results in shortened hindlimb digits in 

mouse models (Croft et al., 2018; Indjeian et al., 2016).

The molecular mechanisms of SV-mediated non-coding changes have been well-studied 

in the context of promoter-enhancer “rewiring”, in which a variant alters endogenous 

regulatory contacts, leading to aberrant gene expression as enhancers interact with non-

target genes. Functional dissection of the WNT6/IHH/EPHA4/PAX2 locus in humans 

and mice demonstrated that rearrangements relative to insulating elements allowed Epha4 
enhancers to interact with other promoters in the locus, driving ectopic expression in 

the limb buds and causing digit malformation phenotypes (Lupiáñez et al., 2015). This 

mechanism has been implicated in other disease contexts, including “enhancer hijacking” in 

cancer (Franke et al., 2022; Northcott et al., 2014; Yang et al., 2020). It is likely that similar 

mechanisms are at work in typical human variation; for instance, different haplotypes of the 

aforementioned chromosome 17q21.31 inversion exhibiting signatures of positive selection 

in Europeans are associated with up- and down-regulation of multiple genes (de Jong et al., 

2012; Stefansson et al., 2005).

More broadly speaking, comparison of great ape genome assemblies has identified hundreds 

of species-specific SVs putatively altering gene expression, though most of these have not 

been functionally investigated (Kronenberg et al., 2018). In particular, breakpoints of large 

inversions (>100 kbp) tend to colocalize at human TAD boundaries, with those disrupting 

boundaries associated with differential expression of genes across primates (Porubsky et 

al., 2020). Similar studies comparing inversions differentiating human with chimpanzee 

and rhesus also show significant depletions of inversion breakpoints at TAD boundaries, 

which could suggest selection against such events (Maggiolini et al., 2020; Soto et al., 
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2020). Examining diversity within species, an analysis of 42 common human polymorphic 

inversions identified 11 to be in strong LD with previously reported eQTLs from GTEx, 

impacting 62 genes (Giner-Delgado et al., 2019). One inversion in particular (HsInv0201) 

at chromosome 5q32 exhibited signatures of balancing selection and was associated with 

decreased expression of SPINK6, a gene known to play a role in immune response to 

Salmonella (Alasoo et al., 2018; Nédélec et al., 2016). In all, SVs are inextricably linked 

with the gene regulatory landscape.

4. FUNCTIONAL DUPLICATED GENES DRIVING HUMAN BRAIN 

EVOLUTION

4.1. Human brain evolution

Small canine teeth, reduced hair cover, elongated thumbs, language, bipedalism, and 

advanced tool usage represent example anatomical, social, physiological, and behavioral 

traits that distinguish humans from their closest primate relatives (Carroll, 2003; Pääbo, 

2014; Varki & Altheide, 2005). Some of the most intriguing yet unanswered questions about 

distinct human characteristics involve the evolution of the human brain, given the enhanced 

cognitive capacity present in modern humans compared to other species (Defelipe, 2011; 

Pääbo, 2014). Since the divergence between humans and chimpanzees, estimated ~6 mya 

(Besenbacher, Hvilsom, Marques-Bonet, Mailund, & Schierup, 2019), a hallmark of the 

encephalization process in humans has been a rapid and continuous expansion [with the 

exception of a recent reduction in size observed in the last 3,000 years (DeSilva, Traniello, 

Claxton, & Fannin, 2021)]. As a result, modern human brains are almost three times the 

volume of modern chimpanzees (Defelipe, 2011; DeSilva et al., 2021; Molnár et al., 2019a). 

In particular, the neocortex represents a key driver of human brain evolution given its 

distinct anatomical and cellular characteristics (Geschwind & Rakic, 2013; Mora-Bermúdez 

et al., 2016; Rakic, 2009), including increases in neuronal density and connectivity 

(particularly in cortico-basal circuits), lengthening of prometaphase-metaphase stages in 

proliferating neuronal progenitors, and prolonged corticogenesis (Boyd et al., 2015; Enard 

et al., 2009; Herculano-Houzel, 2016; Liu, Hansen, & Kriegstein, 2011; Mora-Bermúdez et 

al., 2016). Collectively, these features are believed to play a key role in the development 

of higher cognitive abilities, such as language and perception (Molnár & Pollen, 2014). 

Importantly, these same characteristics are likely to also have contributed to a surge in 

neurodevelopmental conditions in modern humans, such as epilepsy (Tóth et al., 2018) and 

autism (Stoner et al., 2014).

4.2. Human-specific duplicated genes

Variants found exclusively in all humans are candidates for evolutionary-relevant changes 

underlying unique species traits (O’Bleness, Searles, Varki, Gagneux, & Sikela, 2012). 

Striking examples include frameshift mutations in MYH that led to its inactivity and a 

reduction in masticatory muscles (Stedman et al., 2004), regulatory changes in HACNS1 
that produced a human-specific enhancer gain of function in limb development (Prabhakar 

et al., 2008), and the loss of penile spines due to a 60-kbp deletion near the androgen 

receptor (AR) gene (McLean et al., 2011). In the case of SVs, gene loss caused by fixation 
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of lineage-specific deletions has been proposed as a common and rapid local adaptation 

mechanism, often associated with immune response and pathogen resistance (Olson, 1999). 

The Great Ape Genome Project identified 13.54 Mbp of human fixed deletions, containing 

86 putative gene losses, 40 of which were human-specific, including known lost genes 

SIGLEC13 and CLECM4 (Sudmant et al., 2013). Conversely, human-specific SDs (HSDs)

—large duplication events originating after the split from a common human-chimpanzees 

ancestor—and human-specific expansions (HSEs)—great ape gene duplications that reached 

higher copy numbers uniquely in humans—are also prime targets for the evolution of 

uniquely human traits (Dennis & Eichler, 2016).

Duplicated genes impact evolutionary history across the entire tree of life (Lallemand, 

Leduc, Landès, Rizzon, & Lerat, 2020; Taylor & Raes, 2004; Jianzhi Zhang, 2003), 

including notable examples of animal embryonic body patterning with the Hox genes 

(Wagner, Amemiya, & Ruddle, 2003), digestive abilities in leaf-eating monkeys with the 

ribonuclease genes (Zhang, Rosenberg, & Nei, 1998), resistance to plagues in soybean with 

the Rhg1 gene (Cook et al., 2012), and modifications to the visual system through the 

recruitment of crystallin genes (Piatigorsky, 2003). In this matter, humans are no exception 

to this trend. Through comparisons of genome assemblies and whole-genome sequences of 

hundreds of great apes, extensive progress has been made in identifying duplicated genes 

impacted uniquely in humans (Dennis et al., 2017; Fortna et al., 2004; Sudmant et al., 

2013, 2010; Sudmant, Mallick, et al., 2015; Vollger, Guitart, et al., 2022). A recent study 

surveyed sequence data from modern humans (N=236) versus non-human primates (N=86) 

identifying 218 autosomal regions uniquely duplicated in humans but not other great apes 

(Dennis et al., 2017). Due to difficulties in assembling duplicated regions, the identified loci 

were enriched at gaps in the existing human reference genome. Targeted efforts to fix the 

sequence assembly of the largest HSD loci resulted in the identification of 33 gene families 

representing 80 gene paralogs, many of which clustered at the aforementioned NAHR 

hotspots implicated in neurodevelopmental conditions. Further, previous work by Sudmant 

et al., (2010) has shown enrichment of human-specific duplicated genes implicated in the 

neural functions, suggesting a functional connection may exist between human duplicated 

genes and brain evolution.

4.3. Examples of functional human duplicated genes important in neurodevelopment

A number of HSD and HSE genes have been associated with neurodevelopment. For 

example, GPRIN2 (Chen, Gilman, and Kozasa 1999) has been implicated in neurite 

outgrowth and branching. Further, human-specific HYDIN2—emerging from an incomplete 

duplication of ancestral HYDIN—likely adopted a new promoter increasing its expression in 

neural tissue (Dougherty et al. 2017) with CNVs affecting this gene associated with micro- 

and macrocephaly (Brunetti-Pierri et al. 2008). Collectively, in vivo knockout of ancestral 

orthologs and gain-of-function studies that introduce human paralogs of genes in mice and 

cortical organoids have been instrumental in delineating functions in neurodevelopment. 

Below, we highlight four additional HSD and HSE genes with compelling connections with 

human brain development (Figure 4).
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SRGAP2C—In the search for functional human-specific duplicated genes impacting 

neurological traits, the SRGAP2 (SLIT-ROBO Rho-GTPase-activating protein 2) gene 

family has received considerable attention. SRGAP2 duplicated three independent times 

in the last ~3 million years along the human lineage resulting in the full-length 

ancestral SRGAP2 and truncated human-specific paralogs: SRGAP2B, SRGAP2C, and 

SRGAP2D (Dennis et al., 2012). SRGAP2, which encodes a homo-dimerizing protein 

comprising F-BAR, RhoGAP, and SH3 functional domains, is an important regulator 

of neuronal migration and outgrowth. Srgap2-knockdown mice generated using in utero 
electroporation of a short-hairpin RNA resulted in increased rate of neuronal migration 

and neurite outgrowth (Guerrier et al., 2009). These processes are largely driven by the 

homodimerization of Srgap2 F-BAR domains, which are widely known to participate in 

cytoskeleton remodeling (Liu, Xiong, Zhao, Yang, & Wang, 2015; Sporny et al., 2017). In 
utero electroporation of truncated SRGAP2C, encoding a truncated F-BAR domain while 

lacking RhoGAP and SH3, in mice phenocopied the Srgap2-knockdown with animals 

exhibiting neoteny during spine maturation and an increased density of dendritic spines 

(Charrier et al., 2012). Co-expression in COS7 cells revealed that SRGAP2C also interacts 

with SRGAP2A via their F-BAR domain resulting in degradation of the heterodimer 

produce in a proteasome-dependent manner (Schmidt, Kupferman, & Stackmann, 2019), 

explaining the mirroring effect between Srgap2-knockdown and SRGAP2C-injected mice. 

Moreover, SRGAP2A promotes maturation of excitatory and inhibitory synapses through 

interaction with key molecular players such as Homer, Gephyrin, and Rac1; functions that 

are inhibited in the presence of SRGAP2C, leading to delayed neuronal maturation and a 

higher density of synapses (both excitatory and inhibitory) (Fossati et al., 2016; Schmidt et 

al., 2019). Further, expression of SRGAP2C in mouse cortical pyramidal neurons resulted in 

increased long-range synaptic connectivity (Schmidt et al., 2021). SRGAP2C “humanized” 

mice also showed a higher and more selective response via whiskers stimulation, and 

evidenced a significantly increased cortical processing ability in a whisker-based texture-

discrimination task. These results combined suggest a potential impact of SRGAP2C to 

functional features of human cortical connectivity that might have played a role in the 

emergence of unique cognitive capacities.

ARHGAP11B—Extensive studies have also focused on detailing the relevance of 

ARHGAP11B (Rho-type GTPase-activating protein 11), a gene implicated in human brain 

expansion. The duplicated paralog arose as a partial duplication of ARHGAP11A ~5.3 

mya (Antonacci et al., 2014). Evaluations of multiple transcriptomic datasets of human 

fetal cell types revealed a high ARHGAP11B expression (more than 10-fold greater) in 

progenitor cells (basal glial) compared to differentiated neuronal cells (Florio et al., 2015, 

2018) resulting in increased cortical gyrification in mouse (Florio et al., 2015), ferret, 

and marmoset models (Heide et al., 2020; Kalebic et al., 2018). A single substitution 

impacting an ARHGAP11B splice-donor site results in a truncated protein encoding a 

human-specific carboxy terminus with lost RhoGAP activity (Florio, Namba, Pääbo, Hiller, 

& Huttner, 2016) but new glutaminolysis mitochondrial functions by increasing Ca+2 

concentrations (Namba et al., 2020). Mice expressing ARHGAP11B exhibit enhanced 

memory flexibility and reduced anxiety levels (Xing et al., 2021). Recent work using 

human- and chimpanzee-derived cortical organoids revealed the role of ARHGAP11B in 
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basal progenitor amplification (Fischer et al., 2022). These combined findings provide 

an exciting case of a human-specific gene gaining a novel function that impacts the 

development of features highly relevant in the evolution of the human brain.

TBC1D3—Amplifications of the core duplicon containing TBC1D3 (TBC1 Domain Family 

Member 3) produced multiple paralogs in humans (TBC1D3A-K) whilst persisting as a 

reduced copy gene in chimpanzees (Perry et al., 2008). More recent comparisons across 

primate genomes revealed independent and recurrent expansions of TBC1D3 also in gorilla, 

orangutan, and macaque at different evolutionary times, but an evidently larger expansion 

in the human lineage ~2.3 mya (using the macaque sequence as outgroup) particularly in 

two genomic regions on chromosome 17 that are highly copy number polymorphic across 

humans, ranging between 2 and 14 copies (Vollger, Guitart, et al., 2022). Initial functional 

TBC1D3 studies reported a role in cell proliferation by modulating the signaling of growth 

factors (Hodzic et al., 2006; Wainszelbaum et al., 2008). More recently, expression of 

TBC1D3 paralogs in mice resulted in the expansion of self-renewing basal progenitors due 

to increased proliferation of outer radial glial cells, promoting folding of the neocortex (Ju 

et al., 2016), a hallmark feature of the human brain evolution (Geschwind & Rakic, 2013; 

Molnár et al., 2019b).

NOTCH2NL—Partial duplication, including the first four exons of the well-characterized 

NOTCH2 (Neurogenic locus notch homolog protein 2) signaling gene (Imayoshi, 

Sakamoto, Yamaguchi, Mori, & Kageyama, 2010; Irvin, Zurcher, Nguyen, Weinmaster, 

& Kornblum, 2001), and subsequent SD expansion resulted in three truncated paralogs 

(NOTCH2NLA, NOTCH2NLB, and NOTCH2NLC) on chromosome 1q21.1 and one 

paralog (NOTCH2NLR) on chromosome 1p11.2 (Fiddes et al., 2018). While gorillas 

and chimpanzees carry pseudogenized NOTCH2NL genes, human paralogs share >99.1% 

sequence similarity and encode functional proteins likely due to human-specific IGC events 

between NOTCH2 and the NOTCH2NL genes that acted to resurrect these previously non-

functional genes. Recent studies overexpressing human-specific NOTCH2NLB in human 

embryonic stem cells and mouse cortical spheroids revealed clonal expansion of progenitors 

resulting in a higher neuronal count compared to controls (Fiddes et al., 2018; Suzuki et al., 

2018). In utero electroporation of human-specific NOTCH2NL also increased the population 

of cycling basal progenitor cells in the embryonic mouse neocortical subventricular zone 

(Florio et al., 2018; Suzuki et al., 2018). These findings point to NOTCH2NLB as a 

potential key regulator in human brain expansion.

4.4. The search for additional duplicated genes important in human brain evolution

Though the described examples showcase certain human duplicated genes and their roles in 

neurodevelopment, the functions of >100 discovered HSD genes remain to be characterized. 

Ongoing work optimizing protocols for cortical organoids promise to increase the scale 

and reproducibility necessary to globally test gene functions in neurodevelopment (Bray, 

2019). In particular, great promise exists in understanding species differences directly by 

manipulating and directly comparing the development of chimpanzee and human induced 

Pluripotent Stem Cell (iPSC)-derived organoids (Pollen et al., 2019; Romero et al., 2015; 

Song et al., 2021). Ideally, expansion of iPSC resources for additional non-human primates 
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would allow for more comprehensive comparisons (Fernandes, Klein, & Marchetto, 2021). 

Alternative to direct gene manipulations, functions of duplicated genes can also be 

delineated based on shared co-expression and protein interactions. To identify functional 

enrichments across a more comprehensive set of duplicated genes, we employ here an 

approach based on gene ontology. Using the Database for Annotation, Visualization and 

Integrated Discovery (DAVID) (Huang, Sherman, & Lempicki, 2009; Sherman et al., 2022) 

and the complete list of HSD genes identified by Dennis et al. (2017), we find significant 

enrichment for functions in nervous system development, actin cytoskeleton organization, 

and dendrite morphogenesis. Conversely, chimpanzee-specific duplicated genes identified 

by Sudmant et al (2013a) are enriched for functions in RNA secondary structure, positive 

regulation of interleukin production, and neurotransmitter secretion in muscles. The role 

of HSD genes in cytoskeleton organization is particularly interesting as actin plays a key 

role during brain development (Luo, 2002). Neuronal proliferation, migration, signaling, and 

differentiation all require considerable changes to cell morphology through coordinated actin 

cytoskeletal and membrane remodeling (Ayala, Shu, & Tsai, 2007; McKayed & Simpson, 

2013). Indeed, duplicated genes SRGAP2 and ARHGAP11A both function in the Rho/Rac/

Cdc42 pathways, key to actin cytoskeleton dynamics (Florio et al., 2015; Guerrier et al., 

2009; Tapon & Hall, 1997). We propose other discovered HSD genes may play a role 

in neural functions via membrane dynamics that could be systematically tested using cell 

assays.

Though we expect to identify additional HSD paralogs that have retained their ancestral 

paralog function, undergone subfunctionalization, or acquired a new function (known as 

neofunctionalization), most duplicated genes, after a brief period of functional redundancy 

and relaxed selection, will accrue deleterious mutations and go the road of pseudogenization 

(Lynch & Conery, 2000). One way to assess this is through cell/tissue expression 

conservation between homologous genes. A comparison of cross-tissue expression data 

from 75 HSD gene paralogs between humans and chimpanzees suggests that human-

specific paralogs broadly exhibit patterns consistent with both relaxed selection and 

neofunctionalization (Shew et al., 2021). Ancestral paralogs largely retain conserved 

expression patterns while duplicate paralogs either reduce expression in existing tissue 

and/or gain expression in novel tissues. This is consistent with long-read isoform sequencing 

of HSD genes in adult brain that found almost half of duplicate paralogs examined contained 

novel features, including exapted or truncated exons, new transcription start or end sites, or 

altered splicing (Dougherty et al., 2018).

Some of the studies highlighted above successfully identified functional duplicated genes 

important in brain development by their preferential expression in human fetal brain neural 

subtypes (Florio et al., 2015, 2018; Suzuki et al., 2018). For example, Florio et al. (2015 and 

2018) narrowed in on both ARHGAP11B and NOTCH2NL paralogs, but also 13 additional 

human-specific genes with preferential expression in cortical progenitors, including the 

FAM72 gene family that exists directly adjacent to the SRGAP2 paralogs. Further, Suzuki et 

al. (2018) performed RNA-seq of human fetal cortical tissue extracted at different stages of 

development (7 to 21 gestational weeks) to identify 35 human- and hominid-specific genes 

displaying robust fetal brain expression profiles, including NOTCH2NL paralogs and several 

core duplicon-associated genes (e.g., GOLGA6/8, LRRC37A/B, NBPF, NPIP, and PMS2).
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Employing a similar approach, for this review, we also assessed the propensity of a subset of 

HSD genes to function during critical stages of corticogenesis by re-quantifying expression 

across differentiated human embryonic stem cells (hESC)-derived cortical neurons from 

0–77 days, as previous published analysis of these data did not include most duplicated 

genes (van de Leemput et al., 2014). To account for this, we used an approach demonstrated 

to accurately quantify gene paralog expression (Patro, Duggal, Love, Irizarry, & Kingsford, 

2017; Shew et al., 2021) and detected expression of all tested HSD paralogs within one of 

the five stages of cortical neuron progression during development (Figure 5). We note high 

expression for ARHGAP11B during deep layer formation, coinciding with previous studies 

reporting its high expression in basal radial glial cells (Florio et al., 2015). NPY4RB also 

demonstrates a similarly high expression during deep layer formation and may be tested for 

impact on proliferation.

With the increasing availability of transcriptomic datasets representing human fetal brain 

development, particularly as more studies employ longer sequence reads enabling more 

accurate assessment of highly-similar duplicate paralogs, we anticipate being able to identify 

more exciting functional candidates for future study.

5. INCORPORATING STRUCTURAL VARIATION IN YOUR OWN RESEARCH

5.1. Approaches to identify structural variation

SVs can be identified using a number of genomic techniques. Classical approaches, 

reviewed extensively by Alkan, et al. (2011) and others (Gresham, Dunham, & Botstein, 

2008; Sharp, Cheng, & Eichler, 2006; Yang, 2020), use fluorescent probes targeting specific 

genomic loci coupled with DNA hybridization (e.g., fluorescent in situ hybridizations and 

SNP microarrays). More recently, with the advent of DNA sequencing and the exponential 

increase of available datasets (Section 5.2 below), current studies typically employ whole-

genome sequencing (see “Beginner’s guide to next generation sequencing” for a recent, 

easy-to-follow review by Aigrain (2021)). The most commonly-used approach—Illumina 

or SRS—requires DNA fragments less than 1 kbp in size to generate up to billions of 

highly-accurate sequence reads as large as 300 bp, often representing “paired ends” of input 

DNA fragments. A majority of genomes are available as SRS based on its affordability 

(currently ~$700 for a genome at 30× coverage) and high accuracy. Less commonly used 

but increasingly adopted is long-read sequencing (LRS), via PacBio or Oxford Nanopore 

Technologies (ONT), with theoretically no DNA length limitation (e.g., over 1 Mbp for 

ONT) but at reduced fidelity (~90% accuracy) and increased costs. Recent improvements 

in both technologies, such as PacBio high-fidelity (HiFi) sequencing resulting in >99% 

accuracy for fragments ~20 kbp in length, has resulted in significantly improved accuracy of 

data (Vollger, Logsdon, et al., 2019; Wenger et al., 2019), while improvements in throughput 

are reducing costs (discussed in more detail in Section 5.4).

Typically, SRS is optimal for SNV detection, while LRS can span complex breakpoints 

enabling improved detections of SVs. Two recent reviews have nicely summarized existing 

bioinformatic approaches to identify SVs (Ho, Urban, & Mills, 2019; Mahmoud et al., 

2019). Standard approaches rely on identifying optimal matches of sequence reads with a 

human reference genome (“mapping”) followed by discovery of differences in a sample 
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versus the reference (Figure 6). SRS-based methods search for deviations from expectations 

of read depth as well as distance between read pairs to identify CNVs and SVs. In a simple 

scenario, a 10-kbp deletion residing on a single allele would result in half as many sequence 

reads spanning the reference region compared to the average sequence-read coverage of the 

rest of the genome (i.e., 15× across the deletion for a 30× coverage genome). That same 

deletion could also produce unexpected distances between read pairs with a majority of 

reads mapping ~500 bp apart (based on the fragment length of the sequence library), while 

paired reads spanning the deletion will map ~10 kbp apart (the length of the deletion). 

Further, both LRS- and SRS-based approaches can identify SVs when a single read maps to 

multiple locations in the reference (or “split read”). Considering our same deletion example, 

the entire 10 kbp will be missing from half of the reads and will result in no mapping to the 

deletion reference locus for these reads.

Likewise, technologies also exist capable of maintaining long-range haplotype information, 

such as Strand-seq (Falconer et al., 2012), Hi-C (Belton et al., 2012), and optical mapping 

(Das et al., 2010), that have been used to detect SVs that are less dependent on nucleotide 

sequence quality and mappability of the target region. Strand-seq, which preserves 

directionality of reads by sequencing only replicating DNA strands within single cells, 

can identify balanced genomic rearrangements—inversion and translocation—as changes 

in orientation of mapped reads (Sanders, Falconer, Hills, Spierings, & Lansdorp, 2017; 

Sanders et al., 2016). Hi-C, or high-throughput chromatin conformation capture, detects 

both balanced and unbalanced large-scale genomic rearrangements as changes in the three-

dimensional genome organization visualized in contact frequency heat maps (Harewood et 

al., 2017). Optical mapping fluorescently labels recognition sequences across single DNA 

molecules and identifies balanced and unbalanced SVs as changes in label spacing between 

the sample and a reference genome (Cao et al., 2014; Lam et al., 2012) (reviewed in Jeffet, 

Margalit, Michaeli, & Ebenstein (2021)).

5.2. Available human population datasets

A number of publicly-available sequencing datasets exist representing modern human 

populations (Table 3), enabling more comprehensive detection of SVs. Major human 

sequencing projects include the 1KGP (Byrska-Bishop et al., 2022; Sudmant, Rausch, et 

al., 2015), the Human Genome Diversity Project (HGDP) (Almarri et al., 2020; Bergström et 

al., 2020), the Genome Aggregation Database (gnomAD) (Collins et al., 2020), and the UK 

BioBank (Halldorsson et al., 2022), as well as a growing body of individuals from diverse 

backgrounds sequenced with long reads as part of the HPRC (Liao et al., 2022) and other 

projects (Aganezov et al., 2022; Audano et al., 2019; Ebert et al., 2021).

5.3. Challenges and opportunities across structurally complex genomic loci

Though we provide examples of the importance of structural variation in human evolution, 

traits, and diseases, the identification and analysis of these complex variants remain difficult. 

If you decide to ignore these loci, be aware of the technical artifacts that can arise due to 

SVs even in seemingly “simple” genomic regions. Please exercise caution and be aware of 

the limitations across complex regions in the various genomic technologies employed, which 

we will cover in this section.
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Short-read sequencing technologies tend to underperform in complex 
genomic regions—The study of structural variation has faced several methodological 

challenges caused by the complex architecture of primate SDs. SVs, including duplicated 

regions, are historically difficult to assay using SRS technologies, the most widely available 

sequencing technology with thousands of whole-genome DNA samples sequenced in the 

public domain (Table 3). Short-read lengths (~50–300 bp) pose challenges for (i) the 

assembly of large repeats and SDs, (ii) reads mapping to repeat-rich regions, (iii) resolving 

SVs, and (iv) phasing haplotypes (Alkan, Sajjadian, & Eichler, 2011; Chaisson, Wilson, & 

Eichler, 2015). Since the emergence of SRS technologies, generating de novo assemblies 

results in gaps preferentially at nearly identical SDs, satellite DNA, and other repeat-rich 

regions (Chaisson, Wilson, et al., 2015; Treangen & Salzberg, 2011), in addition to AT- and 

GC-rich regions that suffer from low sequence coverage in DNA-amplification-dependent 

Illumina sequencing (Goodwin et al., 2016). In SRS assemblies, SDs tend to be either 

collapsed (missing copies) or misassembled (Eichler, 2001). This is an important limitation 

as errors in the representation of SDs in reference genomes give rise to false positive 

heterozygous calls that confound downstream genetic analyses and lead to departure from 

Hardy-Weinberg equilibrium (Aganezov et al., 2022) (Figure 7).

However, when SDs are represented correctly, they are consistently tricky to assay using 

SRS technologies, as duplications are so similar that reads are unable to match to either 

paralog leading to ambiguous read mappings and inhibiting identification of true SNVs. 

These regions have been termed unmappable, inaccessible, “dark” or “camouflaged” (Ebbert 

et al., 2019) (Figure 8). HSD genes are particularly challenging as ancestral genes and 

their human-specific duplicate counterparts share on average ~99% sequence identity, with 

most also exhibiting varied copies in modern humans (Dennis et al., 2017; Vollger, DeWitt, 

et al., 2022). As a result, variation across HSDs are ignored in most genetic analyses 

(Hartasánchez, Brasó-Vives, Heredia-Genestar, Pybus, & Navarro, 2018; Havrilla, Pedersen, 

Layer, & Quinlan, 2019). To avoid false calls in duplicated regions when using SRS data, 

variants can be filtered according to accessibility masks, which delineate regions where 

variants can be confidently identified using base quality, mapping quality, and read-depth 

cutoffs. SRS accessibility-masks are available for several human reference genome versions, 

including GRCh38 (Zheng-Bradley et al., 2017) and T2T-CHM13 (Aganezov et al., 2022).

SRS technologies also show biases in their ability to detect different SV types. Deletions 

are often easier to discover, although not if they are embedded in SDs. Duplications and 

mCNVs can be detected using read-depth signatures (Alkan, Coe, et al., 2011), but often 

lack resolution of breakpoints, location of the insertion site of the duplicated sequence, and 

paralog specificity (Figure 6). Also, non-reference unique insertions larger than the average 

short-read length often go undetected (Almarri et al., 2020). Inversions are particularly 

challenging to identify with SRS because most are copy-number neutral, which is not 

suitable for read-depth approaches, and are enriched around repetitive DNA or flanked by 

highly-identical SDs (Porubsky, Harvey, et al., 2022; Porubsky, Höps, et al., 2022; Porubsky 

et al., 2020; Puig et al., 2020), hindering mappability and detection with discordant read-

pairs (Chaisson et al., 2019; Lucas Lledó & Cáceres, 2013).
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To leverage the hundreds of thousands of available SRS genomes while attempting to 

overcome limitations in the data, ‘ensemble’ algorithms employing a combination of tools 

(Ho et al., 2019) have been successfully used to discover SVs (Abel et al., 2020; Almarri et 

al., 2020; Byrska-Bishop et al., 2022; Collins et al., 2020).

Long-read and -range sequencing overcomes the limitations of short reads—
In recent years, LRS technologies have overcome many of the limitations of SRS (Goodwin 

et al., 2016; Kovaka, Ou, Jenike, & Schatz, 2023; Mantere, Kersten, & Hoischen, 2019; 

Sedlazeck, Lee, Darby, & Schatz, 2018). PacBio and ONT can produce reads tens to 

hundreds of kilobases long. The first wave of LRS datasets enabled high-quality de novo 

assemblies of humans (Jain et al., 2018; Seo et al., 2016; Shafin et al., 2020; Shi et al., 2016; 

Wenger et al., 2019) and other non-human primates (Gordon et al., 2016; Kronenberg et 

al., 2018; Mao et al., 2021; Warren et al., 2020). Local assembly of the haploid human cell 

line CHM1 (Taillon-Miller et al., 1997) using bacterial artificial chromosome clones (CH17) 

allowed local reconstruction of misassembled regions of the human genome (Antonacci 

et al., 2014; Chaisson, Huddleston, et al., 2015; Dennis et al., 2017; Huddleston et al., 

2014; O’Bleness et al., 2014; Steinberg et al., 2012; Vollger, Dishuck, et al., 2019; Vollger, 

Logsdon, et al., 2019).

A major achievement of LRS has been the completion of the first human genome sequence 

(T2T-CHM13), which was achieved by combining PacBio HiFi reads and ultra-long (≥100 

kbp) ONT reads (Nurk et al., 2022). The new assembly filled in the missing 8% of 

the genome corresponding to repeat-rich regions including centromeres, telomeres, and 

the petite arms of the autosomal acrocentric chromosomes (13, 14, 15, 21, and 22). 

Additionally, T2T-CHM13 fixed euchromatic gaps and misassemblies, incorporating 51 

Mbp of SDs (Vollger et al., 2021) and resolving ~8 Mbp of collapsed SDs compared 

to the previous reference genome (GRCh38), including previously missing HSD genes 

GPRIN2B and DUSP22B (Aganezov et al., 2022; Vollger, Dishuck, et al., 2019; Vollger, 

Guitart, et al., 2022). This complete reference genome significantly improved our ability 

to discover and interpret human genomic variation, including SNVs (Aganezov et al., 

2022) and SVs (Aganezov et al., 2022; Porubsky, Harvey, et al., 2022). In particular, SV 

identification in 17 individuals sequenced with LRS showed a reduction in homozygous 

SVs observed in all the human samples assayed, indicating that T2T-CHM13 better 

represents the major structural allele. Additionally, T2T-CHM13 showed a more balanced 

ratio between deletions and insertions, fixing a bias towards insertions seen in previous 

incomplete assemblies (Aganezov et al., 2022). Similarly, T2T-CHM13 proved to increase 

inversion detection in 41 individuals sequenced with Strand-seq, enabling the discovery of 

63 inversion polymorphisms, mostly overlapping novel or structurally-different loci between 

T2T-CHM13 and the previous version of the human reference assembly GRCh38, as well as 

correcting 26 misorientations (Porubsky, Harvey, et al., 2022).

LRS technologies have dramatically increased per-sample SV discovery (Figure 6). 

Employing a combination of long-read and -range sequencing technologies—including 

PacBio, ONT, Illumina, 10X Genomics linked reads, Bionano Genomics optical mapping, 

Strand-seq, and Hi-C—enabled identification of 27,622 SVs per human genome, 

representing a seven-fold increase in SV discovery with respect to SRS ensemble methods 
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(Chaisson et al., 2019); a similar finding was obtained by ONT reads alone (22,636 SVs 

per human genome) (Beyter et al., 2021). For inversions, particularly larger ones (≥50 kbp) 

that are often flanked by highly-identical SDs, Strand-seq has shown to be the most sensitive 

platform because inversion detection does not rely on accurate mapping across repeat-rich 

regions (Chaisson et al., 2019), but it requires viable, dividing cells (Hanlon, Lansdorp, & 

Guryev, 2022).

Recently, population-scale LRS cohorts, ranging from dozens (PacBio) to thousands of 

individuals (ONT), are becoming available (reviewed in De Coster et al. (2021)). Direct 

mapping of these LRS datasets have identified >100,000 SVs in modern humans (Audano 

et al., 2019; Beyter et al., 2021; Ebert et al., 2021; Nurk et al., 2022). Importantly, initial 

discovery of these SVs via LRS has enabled subsequent genotyping across thousands of 

additional humans using existing SRS datasets to assess their functional and evolutionary 

impact (Yan et al., 2021).

An alternative approach to gather the full extent of genomic variation in human and non-

human primate genomes is using LRS to generate fully-phased genome assemblies and 

SV detection via assembly-to-reference comparisons. Theoretically, fully-phased complete 

genomes have the ability to detect SVs of any kind and size (Alkan, Coe, et al., 2011; 

Mahmoud et al., 2019). The production of complete phased genomes is an area of active 

research. The current HPRC gold standard relies on PacBio HiFi reads with parental data 

to enable haplotype phasing (Jarvis et al., 2022); however, PacBio HiFi coupled with Strand-

seq long-range information can achieve comparable results (Porubsky, Vollger, et al., 2022). 

Tools under development integrate both PacBio HiFi reads with ONT “ultralong” reads 

(>100 kbp) during the assembly process to resolve complex repeats without the need for 

manual curation (Cheng, Concepcion, Feng, Zhang, & Li, 2021; Rautiainen et al., 2022). 

These and other improvements will allow the HPRC to fulfill its promise of delivering 

350 diploid high-quality fully phased human genomes in the next decade comprising the 

first human pangenome reference (Wang et al., 2022). Further, similar efforts in non-human 

primates will allow us to more comprehensively detect putative SV drivers of species’ 

differences.

Currently, nearly a hundred fully-phased LRS human genomes are available in the public 

domain, including 88 haplotypes generated by the Human Genome Structural Variation 

Consortium (HGSVC) (Ebert et al., 2021; Ebler et al., 2022) and 94 haplotypes generated 

by the HPRC (Jarvis et al., 2022; Liao et al., 2022). These genomes have detected thousands 

of SVs per haplotype, including 107,590 insertions/deletions (Wang et al., 2022) and 316 

inversions identified in 64 haplotypes of unrelated individuals obtained by the HGSVC 

(Ebert et al., 2021), and >60,000 SVs (~17,000 per haplotype) obtained in HPRC genomes 

using a pangenome reference approach (Liao et al., 2022). Interestingly, less than 30% of the 

SVs discovered in phased genome assemblies have also been identified in SRS, highlighting 

the limitations of SRS in SV identification (Ebert et al., 2021).

Long reads have also shown improved mappability in “dark” regions of the human genome 

(Ebbert et al., 2019) (Figure 8). However, the original lower fidelity of LRS (~10–15%) 

hindered its implementation in SNV detection. Variant discovery using ONT reads in a 
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human European individual (NA12878) yielded an overall accuracy of 91.40% (Jain et al., 

2018). However, PacBio HiFi reads, averaging a base accuracy of 99.8% and variant-calling 

precision and recall over 99.4% (Wenger et al., 2019), now enables routine discovery of 

SNVs and small insertions/deletions (<50 bp) in duplicated regions.

5.4 Future directions for SV research

Despite the clear advantages in using LRS technologies to identify and characterize SVs 

across humans using both direct read mapping and phased assemblies, historical limitations 

in lower throughput and base-calling accuracy as well as higher costs versus SRS have 

limited the production of highly-accurate LRS datasets. Fortunately, biotechnological 

innovations expected in the coming year promise improvements in accuracy (“At 

NCM, Announcements Include Single-Read Accuracy of 99.1% on New Chemistry and 

Sequencing a Record 10 Tb in a Single PromethION Run,” 2020), as well as throughput 

and cost (“PacBio Announces Revio, a Revolutionary New Long Read Sequencing System 

Designed to Provide 15 Times More HiFi Data and Human Genomes at Scale for Under 

$1,000,” 2022); this suggests a near future where hundreds of thousands of LRS human 

genomes will be available for expanded population and disease studies. Increased ancestry 

representation and diversity of the samples sequenced will also aid in expanding the 

repertoire of SVs identified (Popejoy & Fullerton, 2016).

We note that, even with these impending technology improvements, LRS may not be 

feasible for certain anthropological questions. First, hundreds of thousands of human 

genomes and hundreds of primate genomes have already been sequenced with SRS (with 

many more to come) with short-read platforms likely to remain the most affordable whole-

genome sequencing approach (Kovaka et al., 2023). Some of these genomes belong to 

communities that have given restricted consent for the use of their biospecimens and 

data. Other samples might come from endangered primate species where biospecimens are 

difficult to obtain. Additionally, anthropological specimens, such as from extinct hominids, 

are not suitable for LRS library preparations, which require large amounts of high-molecular 

weight and intact (non-degraded) DNA. As such, methods aimed at integrating SV discovery 

and genotyping using both SRS and LRS will remain relevant in the study of human and 

nonhuman primate evolution and demographic history.

Ongoing efforts using short reads for the study of SVs are focused on improvements of the 

computational algorithms to maximize SV discovery (Abel et al., 2020; Byrska-Bishop et 

al., 2022; Collins et al., 2020). LRS-based SV catalogs can aid this process by acting as 

truth-sets to fine tune algorithms. Alternatively, SVs initially discovered with LRS can be 

later genotyped in SRS cohorts, a strategy that has already efficiently discovered common 

SVs across human populations (Ebert et al., 2021; Ebler et al., 2022; Yan et al., 2021). 

Together, the incoming influx of human and non-human primate genomes sequenced with 

LRS in combination with large-scale SRS datasets are ushering in a new genomics era, 

promising to unveil the functional and evolutionary impact of complex variation in human 

traits and diseases.
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Figure 1. Examples of genomic structural variation.
SVs exist as deletions and duplications (with the largest, most similar duplications termed 

segmental duplications, or SDs) that change the copy of a genomic segment (i.e., CNVs). 

Other types of SVs include insertions, translocations, inversions, as well as more complex 

events not pictured. Figure is adapted from (Alkan, Coe, et al., 2011) via “Genome 

Structural Variations” by BioRender.com (2022). Retrieved from https://app.biorender.com/

biorender-templates.
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Figure 2. Cladogram of Hominidae family.
Divergence time estimates were obtained from Sudmant et al. (2013).
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Figure 3. Difficulties appraising haplotypes between SVs and neighboring SNVs.
(A) Neighboring SNVs (orange circles) are difficult to detect when an SV (colored 

rectangle) is embedded in repeat-rich regions. (B, C) Haplotypes can be disrupted by (B) 
IGC and (C) recurrent deletions (H) and duplication (H’). (D) mCNVs can be in the same 

locus (H) or several kilobases apart (H’).
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Figure 4. Summary of human duplicated genes implicated in neurodevelopmental functions.
Partially duplicated SRGAP2C antagonizes ancestral SRGAP2A through dimerization of 

their F-BAR domains, causing its degradation and resulting in increases in the rate of 

neuronal migration, density of dendritic spines, long-range neuronal connections, and 

synapse density, as well as delayed neuronal maturation. Truncated ARHGAP11B carries 

55 distinct terminal amino acids that result in a loss of its ancestral RhoGAP activity, 

increasing calcium levels in the mitochondria that result in increased glutaminolysis and a 

higher abundance of basal progenitors that lead to presence of gyrification. HSE of TBC1D3 
located in a core duplicon has been expanded multiple times. Studies have revealed an 

increase in cortical progenitors and subsequently neurons in the presence of this gene, 

ultimately resulting in mice with gyrencephalic brains. Incomplete duplication of the N-

terminal portion of NOTCH2 and subsequent expansion gave rise to several NOTCH2NL 
paralogs that remained functional likely due to IGC events and that have been found to 
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directly increase the abundance of cortical progenitors and neurons. Figure created with 

BioRender.com.
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Figure 5. Transcriptional profiles of a subset HSD genes across corticogenesis using data from 
differentiated hESCs.
RNA-seq quantification across a time-course of 77 days to mimic developmental stages 

including: pluripotency (plur.), differentiation (diff.), cortical specification (cort. spec.), deep 

layer formation (form.) and upper layer formation (upp. lay. form.). Expression levels 

displayed as z-scores of HSD genes in relation to the complete transcriptome indicated as 

colors (red = high; blue = low expression).

Soto et al. Page 42

Am J Biol Anthropol. Author manuscript; available in PMC 2024 August 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Figure 6. Short- and long-read SV discovery signals.
R: Reference. S: Sample. SRS: short-read sequencing. LRS: long-read sequencing. Dashed 

line connects two pairs from the same short-read sequencing DNA fragment. Pink shapes 

represent long reads.
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Figure 7. Genomic artifacts arising from errors in the human reference genome assembly.
False positive heterozygous SNV calls originating from missing copies in the reference due 

to identification of paralog-sequence variants due to reads mapping from multiple paralogs.
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Figure 8. Differences in mappability between short and long reads in duplicated genes.
Paralog-specific variants (PSVs) (vertical lines) can distinguish paralogs enabling detection 

of polymorphic variation (yellow dots). Reads that do not carry PSVs (dashed lines) are 

unmappable in duplicated regions. SRS: short-read sequencing. LRS: long-read sequencing.
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Table 1.

Acronyms used in this review

Abbreviation Definition

1KGP 1000 Genomes Project

AFR African ancestry

AMR American ancestry

BNG Bionanogenomics

bp basepair

CNV copy-number variant

DAVID Database for Annotation, Visualization and Integrated Discovery

EAS East asian ancestry

EUR European ancestry

eQTL expression quantitative trait locus

FST fixation index

gnomAD Genome Aggregation Database

GoNL Genome of the Netherlands

GTEx Genotype-Tissue Expression

hESC human embryonic stem cells

HGSVC Human Genome Structural Variation Consortium

Hi-C or HIC high-throughout chromatin conformation capture

HiFi high fidelity

HPRC Human Pangenome Reference Consortium

HSD human-specific segmental duplication

HSE human-specific expansion

i2QTL Integrated iPSC QTL

IGC interlocus gene conversion

IL Illumina

iPSC induced Pluripotent Stem Cell

kbp kilobasepairs

kya thousand years ago

LD linkage disequilibrium

LRS long-read sequencing

Mbp megabasepairs

mCNV multiple (multiallelic) copy-number variant

MESA Multi-Ethnic Study of Atherosclerosis

mya million years ago

NAHR non-allelic homologous recombination

NHEJ non-homologous end-joining

ONT Oxford Nanopore Technologies

PacBio or PB Pacific Biosciences
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Abbreviation Definition

PSVs paralog-specific variants

SAS South Asian ancestry

SD segmental duplication

SINE short interspersed nuclear element

SNV single-nucleotide variant

SRS short-read sequencing

SV structural variant

SVA SINE-R-VNTR-Alu

T2T Telomore-to-Telomere

TAD topologically-associated domain
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Table 2.

Examples of large-scale SVs and whole-gene CNVs exhibiting signatures of natural selection in human 

populations.

Gene/locus Region Variant Selection type Category Putative trait References

GSTM1 1p13.3 Deletion Positive (East 
Asian)

Metabolism Xenobiotic 
metabolism

(Saitou, Satta, & 
Gokcumen, 2018)

Amylase 
(AMY1 / AMY2)

1p21.1 mCNV Positive Diet Adaptation to high-
starch diet

(Pajic et al., 2019)

LCEB, LCEC 1q21.3 Deletion Balancing Immune response / 
Pigmentation

Psoriasis / Natural 
vaccination

(Pajic et al., 2016)

UGT2B17 4q13.2 Deletion Balancing 
(European); 
Positive (East 
Asian)

Metabolism Xenobiotic 
metabolism

(Xue et al., 2008)

Glycophorin 
(GYPA / GYPB / 
GYPE)

4q31.2 Complex 
duplication 
(GYPB-GYPA 
gene fusion)

Positive (East 
African)

Immune response Resistance to malaria 
infection

(Leffler et al., 2017)

TCAF1 / TCAF2 7q35 Non-duplicated 
haplogroup

Positive 
(Archaics)

Diet / 
Thermoregulation

Unknown (Hsieh et al., 2021)

ORM1 9q32 “Runaway” 
duplication

Positive 
(European)

Immune response Unknown (Handsaker et al., 
2015)

HERC2 15q13.1 Duplication Negative 
(European)

Pigmentation Unknown (Saitou & 
Gokcumen, 2019b)

BOLA2 16p11.2 mCNV Positive Diet Protection against 
iron deficiency

(Giannuzzi et al., 
2019)

α-Globin (HBA1/
HBA2)

16p13.3 Deletion Balancing (East 
African)

Immune response Resistance to malaria 
infection

(Williams et al., 
2005)

HPR 16q22.2 “Runaway” 
duplication

Positive 
(African)

Immune response Resistance to 
trypanosomiasis 
infection

(Handsaker et al., 
2015; Hardwick et 
al., 2014)

KANSL1 17q21.31 Inversion, 
duplication

Positive 
(European)

Fecundity Increased fertility (Stefansson et al., 
2005)

SIGLEC14 / 
SIGLEC5

19q13.41 Deletion (gene 
fusion)

Positive Immune response Reduced risk of 
chronic obstructive 
pulmonary disease

(Angata et al., 
2013; Yamanaka, 
Kato, Angata, & 
Narimatsu, 2009)

GSTT1 / 
GSTT1P1

22q11.23 Deletion (gene 
fusion)

Balancing 
(African)

Diet Xenobiotic 
metabolism

(Lin, Pavlidis, 
Karakoc, Ajay, & 
Gokcumen, 2015)

APOBEC3B 22q13.1 Deletion Positive Immune response Unknown (Kidd, Newman, 
Tuzun, Kaul, & 
Eichler, 2007)
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Table 3.

Population cohorts of human structural variation obtained from whole-genome sequencing data.

Reference Dataset
SV Discovery SV Genotyping

Cohort Population(s) Platform Cohort Population(s) Platform

(Sudmant, Mallick, et 
al., 2015) - 236 125 populations IL - - -

(Sudmant, Rausch, et al., 
2015)

1KGP (low-
cov) 2,504 AFR, EUR, EAS, SAS, 

AMR IL - - -

(Hehir-Kwa et al., 2016) GoNL 250 Dutch IL - - -

(Chiang et al., 2017) GTEx 147 AFR, EUR, American 
Indian, Asian IL - - -

(Chaisson et al., 2019) HGSVC 9 AFR, EAS, AMR IL, PB, ONT, 
BNG - - -

(Audano et al., 2019) - 15 AFR, EUR, EAS, SAS, 
AMR PB 440 AFR, EUR, EAS, 

SAS, AMR IL

(Jakubosky et al., 2020) i2QTL 719 AFR, EUR, EAS, SAS, 
AMR IL - - -

(Almarri et al., 2020) HGDP 911 54 populations IL - - -

(Collins et al., 2020) gnomAD 14,891 AFR, EUR, EAS, 
AMR IL - - -

(Abel et al., 2020) CCDG 17,795 AFR, EUR, AMR IL - - -

(Quan et al., 2021) - 25 EAS ONT - - -

(Ebert et al., 2021) HGSVC 32 AFR, EUR, EAS, SAS, 
AMR PB 3,202 AFR, EUR, EAS, 

SAS, AMR IL

(Beyter et al., 2021) - 3,622 Icelandics ONT - - -

(Yan et al., 2021) - - - - 2,504 AFR, EUR, EAS, 
SAS, AMR IL

(Sirén et al., 2021) - - - - 5,202 AFR, EUR, EAS, 
SAS, AMR, MESA IL

(Ebler et al., 2022) HGSVC 14 AFR, EUR, EAS, 
AMR PB 300 AFR, EUR, EAS, 

SAS, AMR IL

(Aganezov et al., 2022) - 17 AFR, EUR, EAS, SAS, 
AMR PB, ONT - - -

(Byrska-Bishop et al., 
2022)

1KGP (high-
cov) 3,202 AFR, EUR, EAS, SAS, 

AMR IL - - -

(Halldorsson et al., 
2022) UK BioBank 150,119 British Irish, AFR, 

SAS IL - - -

(Jarvis et al., 2022; Liao 
et al., 2022)

HPRC
HPRC+

29
18 AFR, EAS, AMR PB, ONT, 

BNG, HIC - - -

1KGP: 1000 Genome Project. HGDP: Human Genome Diversity Project. HGSVC: Human Genome Structural Variation Consortium. gnomAD: 
Genome Aggregation Database. i2QTL: Integrated iPSC QTL. GoNL: Genome of the Netherlands Project. GTEx: Genotype-Tissue Expression 
Project. MESA: Multi-Ethnic Study of Atherosclerosis. HPRC: Human Pangenome Reference Consortium. AFR: African. EUR: European, EAS: 
East Asian. SAS: South Asian. AMR: American. IL: Illumina short reads. PB: PacBio long-reads. ONT: Oxford Nanopore Technologies long 
reads. BNG: Bionano Genomics. HIC: Hi-C chromatin conformation capture.
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