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Abstract

Purpose

Children are at elevated risk for COVID-19 (SARS-CoV-2) infection due to their social

behaviors. The purpose of this study was to determine if usage of radiological chest X-rays

impressions can help predict whether a young adult has COVID-19 infection or not.

Methods

A total of 2572 chest impressions from 721 individuals under the age of 18 years were con-

sidered for this study. An ensemble learning method, Random Forest Classifier (RFC), was

used for classification of patients suffering from infection.

Results

Five RFC models were implemented with incremental features and the best model achieved

an F1-score of 0.79 with Area Under the ROC curve as 0.85 using all input features. Hyper

parameter tuning and cross validation was performed using grid search cross validation and

SHAP model was used to determine feature importance. The radiological features such as

pneumonia, small airways disease, and atelectasis (confounded with catheter) were found

to be highly associated with predicting the status of COVID-19 infection.

Conclusions

In this sample, radiological X-ray films can predict the status of COVID-19 infection with

good accuracy. The multivariate model including symptoms presented around the time of

COVID-19 test yielded good prediction score.
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Introduction

SARS-CoV-2 virus, also known as beta-corona virus, has impacted global health. As of 24

April 2022, over 500 million confirmed cases and over six million deaths have been reported

globally [1]. The available information on COVID-19 is constantly updated as the virus has

continued infecting. The SARS-CoV-2 virus is changing over time and several variants due to

mutations have been identified. According to the current literature, the typical pulmonary

findings were identified as ground glass opacities and bilateral lower lobes consolidation.

However, the infection is not only limited to lungs but can affect other organ disorders such as

neurological side effects, kidney malfunction, etc. as well. The symptoms associated with

COVID-19 infection include chills or fever, cough, shortness of breath, fatigue, etc.

Most of the early studies have focused on adults [2–4] since children were less infected with

Alpha and Delta variants. However, the Omicron variant has considerably affected children,

yet studies remain limited due to limited availability of data. This limitation of comprehensive

data pertains to lack of testing due to mild or asymptomatic infection [5]. This study identifies

the radiological findings of COVID-19 infection in children from all variants. We aim to inves-

tigate if there is a different radiographic pattern seen in COVID positive patients compared

with COVID negative patients with similar symptoms since the infection often presented simi-

larity to a typical cold or viral infections in children. Furthermore, we want to examine the

effects of symptoms, history of past diseases, and demographics on COVID-19 infection by

modeling them independently and in addition to radiological features. Radiological features,

demographics, symptoms presented around the date of COVID test, and history of past dis-

eases of patients younger than 18 years were collected from Epic.

Materials and methods

Data extraction

This study was approved by the Office of IRB Administration at University of California, San

Diego 800068. The datasets for this project were compiled by querying the electronic medical

record, Epic. Epic is a commercially available electronic health record software that is widely

used across the United States. It is a database that health providers use to record health data in

both discrete data such as vital signs, billing codes etc. and free text form such as physician

notes. Free form data such as notes require natural language processing to process the data

whereas discrete variables such as heartrate can be received as a single item over time. We col-

lected information on patients who had a COVID-19 test sample collected after 3/1/2020 and

had a Chest X-Ray performed within 7 days of the test sample collection date (CXR-COVID).

Patients were then split into 2 cohorts; those who tested positive at least once, and those who

tested negative (never returned a positive test). For patients with multiple X-Rays, the closest

COVID-19 test result was kept in the dataset to avoid duplicate counts. The patients who were

never tested positive were added to the negative cohort. Additionally, the X-Ray official report

was collected to gather information regarding the findings of the X-Ray. To identify any pre-

existing findings that may re-appear in the CXR-COVID, Chest X-Rays obtained within a year

prior to the COVID test were also collected to compare the impression texts. After identifying

the qualifying patients, diagnosis history (co-morbidities, problem list, and encounter diagnosis)

was collected along with their responses to the patient symptom survey (Review of Systems).

Study design and population

In this study, we used 1266 Chest X-Ray impressions (CXRis) from 721 unique COVID-19

positive patients. Ten percent of these impressions (126 in count) from 121 unique patients
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had a past impression available within one year of the COVID-19 test. These patients tested

positive between 4/1/2020 to 1/17/2021. The remaining 1140 impressions from 600 unique

patients were tested positive between 3/31/2020 to 1/20/2021 and did not have an impression

from the prior year. Impressions from 1306 unique patients who tested negative for COVID-

19 were used as a control. None of the COVID-19 positive patients were added to the negative

cohort set. Patients that had multiple negative tests but had a CXRi along with a positive test

were added to the positive group. CXRis associated with a positive test were used to investigate

radiological manifestations of COVID-19 in children. All 2572 impressions were broadly

divided into three categories–Normal, Stable, and New finding. All impressions were pre-pro-

cessed to remove special characters, dates, etc., and converted into lower case.

Fig 1 shows the flow chart for the breakdown of pre-processed impressions into different

categories. Chest X-ray scans from 2572 patients were taken along with COVID-19 tests. Each

pre-processed impression was categorized as normal or abnormal based on the absence or

presence of terms defined in the blacklist respectively. This is indicated in the first decision

box of the flow chart which checks for two conditions. The first condition checks if the pre-

processed scan has a length of less than six words since most “normal” reports consisted of 6

words or less and a second condition to check for the absence of blacklisted terms. The scan

that meets either of these criterions is categorized as a normal scan. Blacklist terms included

chest abnormalities such as “edema”, “nonspecific infiltrates”, “lobe pneumonia”, etc. S3

Table in S1 Data shows the terms present in different lists used for categorization of chest X-

ray scans. Abnormal impressions were categorized as new findings if a past impression from

the same patient was previously normal. An abnormal impression is categorized as stable if the

past impression showed similar findings. In cases when a past impression is not available, it is

categorized as “Stable” (or pre-existing) or “New finding” depending upon the presence and

absence of terms belonging to the stable list, respectively. This list included terms such as “Sta-

ble chest”, “lungs clear”, “no significant change”, etc. S1 Table in S1 Data shows the examples

of impressions for “Normal”, “Stable”, and “New finding” categories.

Feature selection

CXRis identified as new findings were further sub-divided into specific radiographic charac-

teristic findings. A set of 16 radiographic findings were chosen from a vocabulary of 1381

words, collective body of words from all impressions in our dataset, that were more indicative

of COVID-19 infection [6, 7]. All unique terms were manually reviewed by a clinician with

more than ten years of experience and findings that were linguistically different but had the

same interpretation were combined. This was done to avoid redundancy since these findings

will serve as features of the classifier model. It is also important to identify if these findings had

any preceding and/or following negations. This was achieved by following a three-step process.

In the first step, clinical terms present in the scan were identified using spaCy’s stanza en-clini-

cal library [8]. In the next step, Chapman’s NegEx algorithm was applied to determine the

presence of negation in each of these clinical terms. NegEx has a specificity of 94.5%, PPV

(Positive Predictive Value) of 84.5%, and sensitivity of 77.8% [9]. In the last step, the presence

of findings in these clinical terms was identified along with its negation as True or False. S2

Table in S1 Data shows an example of feature identification for an impression from a patient

categorized as New finding and was COVID-19 positive.

Along with Chest X-Ray impressions, Review of System (RoS) data was obtained around

the time of the COVID-19 test. The data included the presence or absence of symptoms such

as fever, chills, shortness of breath, etc. Although these symptoms values were categorical, they

were regrouped based on their system and assigned with a sum of their values. E.g., fever and
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chills belong to constitutional, shortness of breath belongs to respiratory, etc. For variant

based stratification, the date of COVID test was considered. Patients tested for COVID from

December 20, 2020, to April 10, 2021 were categorized as Alpha, from April 11, 2021, to

November 13, 2021 were categorized as Delta, and Omicron patients were tested from Novem-

ber 14, 2021, to March 12, 2022.

Random forest classifier

Random Forest Classifier (RFC) [10] is a widely used ensemble learning method for supervised

classification [11]. The classifier is fast in operation and has proven phenomenally successful

in several domains. Each decision tree is built by using the whole training dataset. At each

node, the model chooses a feature that allows it to split the dataset into groups as diverse as

Fig 1. Flow chart used to divide Chest X-Ray impressions into three categories. The scans were preprocessed and

then given as an input for categorization. These categories include Normal, Stable, and New findings.

https://doi.org/10.1371/journal.pone.0281666.g001
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possible from each other. Many uncorrelated trees are created by bagging and bootstrapping

the data. This achieves a performance as close as a boosting algorithm with a classifier that is

simple to train and tune. Such diverse trees operating together as a model outperform any of

the individual decision trees. The model fits several decision trees and averages them to avoid

over fitting as well as to improve accuracy.

There are several ways to compute and plot feature importance for an RFC–Gini impor-

tance or mean decrease accuracy, computation with permutation method, and computation

with SHapley Additive exPlanations (SHAP) interpretation [12]. We chose Gini impurity and

SHAP in our work. Gini impurity is a way of computing feature importance built-in the Ran-

dom Forest algorithm. Each decision tree in a RFC is made up of internal nodes and leaf

nodes. The internal node feature is chosen in a way that both the split nodes of the dataset

have similarity within. This means that the scans categorized on one branch of main node are

more similar to each other and are different than the other branch of the main node [13]. We

can measure how the algorithm improves with each feature split and then average it over all

trees which provides the importance score for that feature. On the other hand, SHAP is a

model-agnostic interpretation. The core concept behind the SHAP interpretation is to gener-

ate partial dependence plots to compute the feature importance from Random Forest. This

estimates the contribution score of each feature to the model prediction.

Results

Pre-analysis of input data was done to determine the statistical significance of the variables

examined. We used Chi-Squared test to check the dependency between categorical variables

i.e., COVID-19 status and scan categories shown in Table 1, and demographic features shown

in Table 2.

Population characteristics and baseline radiological findings

Table 1 shows the count of patients belonging to three categories. It is evident from the table

that the count of New finding is high in COVID-19 positive patients and the count of Normal

is high for COVID-19 Negative patients. For further analysis, patients belonging to normal

and pre-existing categories were merged into one group since they both indicated the absence

of COVID-19 specific radiographic findings. Since there is a comparison between two categor-

ical variables, a Chi-Squared test was used to determine if there was a significant difference

between the proportion of “New findings” and “Normal + Stable”. This difference was

observed to be significant with χ2 = 9.54, p-value = 0.002. The Odds Ratio (OR) was observed

to be 1.27 with a 95% confidence interval of (1.09, 1.49).

Table 2 summarizes the sex, race, ethnicity, and age of COVID positive and negative

groups. For races, we created five major categories, from 16 different races [14], as shown in

Table 1. COVID-19 positive and negative patients belonging to “New finding”, “Stable”, and “Normal”

categories�.

COVID-19 pos COVID-19 neg Total

New findings 613 554 1167

Stable + Normal 653 752 1405

Total 1266 1306 2572

� Chi-squared value for New findings vs Normal + Stable was found to be 9.54 with a p-value of 0.002 and Odds

Ratio of 1.27.

https://doi.org/10.1371/journal.pone.0281666.t001
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the race column of Table 2. Each of these characteristics were then analyzed for statistical sig-

nificance using Chi-Squared test. We found all characteristics to be statistically significant and

hence added them to the model. Sex and ethnicity were also included in the model. For race,

each category was represented as a binary feature. For age, we dichotomized the data and con-

verted it into a binary feature by computing the average value of mean value of ages of

COVID-19 positive and negative groups, 8.12 years. Once the datatypes were categorical, fea-

tures were placed into the classification model.

Random forest classifier modeling

Fig 2 shows the cumulative frequencies of each feature in COVID-19 positive and negative

patients in our dataset. The top three features in COVID-19 positive patients are pneumonia,

catheter, and atelectasis. Five different RFC models were used to identify if patients have an

infection or not: (1) a model based solely on the keywords from X-rays, (2) a model based on

keywords from X-rays and RoS, (3) a model based on all other features i.e demographics, RoS,

medical history etc. excluding the keywords from X-rays, (4) a model based on all the features

i.e. X-ray keywords, RoS, demographics, and pre-existing conditions and (5) a model based

solely on keywords from X-rays, where half of the data is randomly assigned a positive COVID

test and half as negative COVID test (to be used as a baseline). We used GridSearchCV for

hyperparameter tuning with five-fold cross validation to determine the optimal values for all

models. The four parameters tuned for various values are n_estimators, max_depth,

Table 2. Distribution of COVID-19 positive and negative patients according to demographics (includes sex, race, ethnicity, and age) along with its statistical signifi-

cance. These patients have CXRi, RoS, and history of past diseases which were considered for our final model �.

Demographics category Subcategory COVID positive (n = 1193) COVID negative (n = 663) Statistical Significance

Sex p-value = 0.031251

Female 593 295 OR = 1.23 (1.02, 1.49)

Male 600 368

Race p-value = 0.001

Asian 42 55

Black 101 60

Native Hawaiian/ Pacific Islander 5 6

Other (includes Hispanic/Latino/Latinx) 457 214

White 588 328

Ethnicity p-value < 0.00001

Hispanic or Latino 838 331 OR = 2.37 (1.95, 2.88)

Non-Hispanic 355 332

Age, years p-value < 0.00001

< = 5 430 344

>5 < = 10 158 98

>10 < = 15 283 111

>15 322 110

Mean (SD) 9.24(6.66) 7.00(6.22)

Dichotomize age at 8.12 (mean) Age < = 8.12 516 416 p-value < 0.00001

Age > 8.12 677 247 OR = 0.45 (0.37, 0.55)

�This required merging of several races together. Black includes people from Black or African American. White includes White and Middle Eastern/North African

population. Asian includes Vietnamese, Filipino, Chinese, Other Asian, and Asian Indian. Native Hawaiian/Pacific Islander includes Samoan, Native Hawaiian, and

Other Pacific Islander. Rest of them were counted as Other which includes Guamanian or Chamorro, Hispanic/Latino/Latinx, American Indian or Alaska Native, and

Decline to Answer.

https://doi.org/10.1371/journal.pone.0281666.t002
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max_features, and bootstrap. The best F1 score of the models are 0.77, 0.79, 0.55, 0.79, and

0.49 respectively. We can notice that all classifiers (models 1 to 4) outperformed the baseline

model 5. Model 3, which excludes the radiological features, performs a little better than the

baseline indicating the importance of Xray findings. Table 3 indicates model 1 features along

with their importance, odds ratio, and p-value. As observed, the top three key features for

COVID prediction are pneumonia, small airways disease, and catheter. The addition of RoS,

as evident by model 2 results, further strengthens the performance of classifier. Using all

Fig 2. Frequencies of each feature in COVID-19 positive and negative patients.

https://doi.org/10.1371/journal.pone.0281666.g002

Table 3. Random Forest Classifier features for model 1 in decreasing order of their importance. The feature list

shown was most prominent in Chest X-Ray impressions infected with COVID-19. The table also depicts the Odds

ratio along with a 95% confidence interval which was obtained using Fisher’s exact test since the sample size of these

features was small.

Features Importance Odds ratio

Pneumonia 0.3518 2.83 [3.602–2.221]

small airways disease 0.1593 0.23 [0.32–0.162]

Catheter 0.1542 2.07 [2.677–1.597]

Atelectasis 0.1191 1.25 [1.7–0.923]

Pneumothorax 0.0591 1.69 [3.045–0.943]

Effusion 0.0509 2.76 [4.355–1.752]

Edema 0.0275 1.06 [2.004–0.557]

pleural space 0.0275 4.73 [9.425–2.37]

Neurologic 0.0249 1.74 [2.929–1.036]

vascular congestion 0.0119 0.20 [0.722–0.058]

Congenital 0.0109 0.6 [3.611–0.1]

air trapping 0.0029 1.36 [8.154–0.226]

https://doi.org/10.1371/journal.pone.0281666.t003
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features in model 4 resulted in a similar F1 score of 0.79 as model 2 indicates that history of

past diseases does not have a significant impact on model performance. The AUC values of all

models along with their confidence intervals are shown in Fig 3.

Categories such as symptomatology (RoS, review of symptoms) around the COVID-19 test,

pre-existing conditions and patient demographics were analyzed to see if there were differ-

ences between COVID-19 positive and negative groups. The demographic characteristics of

patients were statistically significant (see Table 2) and were added to the model. A total of 1856

patients (1193 COVID-19 positive and 663 COVID-19 negative) were included in the CXRi

model since not all patients had RoS data. To incorporate RoS to the model, the data was sum-

marized into medical systems. A total of 12 medical systems from RoS were identified and

added as features to the classifier. We noticed that only four RoS systems namely Respiratory,

HENT (Head, Ears, Nose, Throat), Gastrointestinal, and Constitutional showed much greater

importance than others. Hence, only the 4 most important systems were included in our

Fig 3. Random forest classifier performance for identifying COVID-19 infection. The ROC curves shown above identifies the ability

of all ML models to classify pediatric patients with COVID-19 infection.

https://doi.org/10.1371/journal.pone.0281666.g003
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feature list. These four systems included 35 individual symptoms; these 35 symptoms were

then included as independent features in the model which led to an accuracy of 79.83 with an

AUC of 0.83. Preexisting conditions can often affect a disease course so patient history was

included in the model. The presence or absence of 21 diseases categories based on the ICD-10

codes was added to the model. In total, the classifier had 76 features after combining impres-

sions, demographics, RoS, and medical history. The accuracy was observed to be 80.64 with an

AUC of 0.85. Fig 3 shows the AUC plots of five different RF Classifiers after each increment in

data. All models demonstrated a robust performance and we have described model 1, 2, and 4

in detail in the discussion section.

Thus far, little has been known about infections of COVID-19 in children and most of the

studies focus on adults. In this study, we used Random Forest Classifier to identify findings

that represent COVID-19 infections. We observed that patients with symptoms related to con-

stitutional, respiratory, and gastrointestinal systems along with the presence of pneumonia

and atelectasis in CXRi contributed the most to predicting a COVID-19 infection. It is inter-

esting to notice that the only feature that was negatively related to infection was small airways

disease. To understand this better, we plotted the SHAP as shown in Fig 4. SHAP values are

obtained by retraining the model by keeping most of the feature values constant and varying a

feature value to determine its impact, but it is individually based so each patient will have dif-

ferent SHAP values.

This process is repeated by considering one feature at a time until all features are exhausted.

The figure shows the top 20 most important features. We can notice from the figure that three

out of the top five features are from the patient’s symptoms and the remaining two are

obtained from X-Ray impressions. We also applied the RFC and SHAP model to Alpha, Delta,

and Omicron patients. We included the variant subtypes because the clinical symptoms were

not the same for each variant and could potentially have some difference on CXRi.

To understand the impact of these features better, we plotted the SHAP values for two indi-

vidual patients as shown in Fig 5. The top and the bottom plot shows the absence and presence

of COVID-19 infection, respectively.

Discussion

Our results indicate that using radiological features is important to predict if a patient is

COVID-19 positive or negative with F1 score of 0.79. CXRi findings in COVID-19 infection in

children have been limited to a few studies [15–17]. Current studies have focused on adult

populations and hence pediatric study remains highly understudied [18–20]. COVID-19 has

had a tremendous impact on society and has been associated with significant morbidity and

mortality in adult patients. Hospitalization and mortality have been associated with respiratory

compromise. We investigated the impact of COVID-19 infections on children, and the respi-

ratory system by studying the changes in chest radiographs in children who had a COVID-19

test. A simple yet effective Machine learning model was used to predict if a patient had a

COVID-19 infection or not. Furthermore, two different approaches were used to analyze and

validate feature importance.

The first model used only CXRi. We found that the important features used for model pre-

diction were the features with remarkably high frequencies, and good Odds Ratio in COVID-19

positive and negative groups. These features were pneumonia, catheter, and small airways dis-

ease as shown in Table 3. Pneumonia was seen prominently in COVID-19 positive patients

with a feature weight of 0.35. Small airway disease and catheter both have an importance score

of 0.15 although catheter is a confounding factor. Small airway disease is commonly found in

children who have asthma or asthma-like symptoms. Like the adult COVID-19 literature [21],

PLOS ONE Using machine learning to improve our understanding of COVID-19 infection in children

PLOS ONE | https://doi.org/10.1371/journal.pone.0281666 February 15, 2023 9 / 13

https://doi.org/10.1371/journal.pone.0281666


asthma or baseline airway reactivity did not increase the probability of a COVID-19 positive

test with a feature weight of 0.15. Catheter which also had a feature weight of 0.15 included the

terms picc (percutaneous intravenous catheter) and line during the pre-processing step and

Fig 4. SHAP values for most important model features in model 5 shown in decreasing order of their importance along

the Y-axis. Features in the upper case indicate RoS data, the lower case without an underscore represents features obtained

from CXRi, and some additional demographic features. The top 20 features for the Random Forest classifier using a total of 76

features are shown using model 4. Each dot on the X-axis represents the importance value of the corresponding feature for each

patient. The location of each dot indicates whether the feature is positively or negatively associated with the output. The color of

each dot indicates whether the value is high (shown in red) or the value is low (indicated in blue).

https://doi.org/10.1371/journal.pone.0281666.g004
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hence may be a measure of illness which again did not alone substantially increase the probabil-

ity of COVID-19 infection. The feature, atelectasis, with an importance score of 0.12 helped in

predicting the COVID status of a patient. The rest of the features had a score of less than 0.05.

The second model used CXRi, symptomology report, and demographics data from all

patients. This led to an accuracy of 80.65 with AUROC as 0.83. We noted that most of the top

features were based on chest X-ray impression indicating that model can predict the infection

with a fair accuracy by only using chest impressions. It is interesting to note that sex, ethnicity,

and age played a significant role in prediction and were more predictive of the infection than

symptoms. Hispanic males with age less than 8.12 had a high the chance of the infection. In

addition, other studies have also reported a discordance of COVID-19 prevalence in Hispanic

ethnicities [22]. It is not surprising that the top few important symptoms were gastrointestinal,

fever, and congestion as literature suggests these as the common symptoms during COVID-19

infection [23]. Interestingly, sore throat was negatively associated with infection from SHAP

plots. This may have resulted because the data contained a mix of several COVID-19 variants.

To investigate, we stratified our data based on the variants by using the dates when COVID-19

test was administered as a marker of which variant was prevalent in our geographic area. Our

data presumes 554 alpha variant patients, 309 delta variant patients, and 330 omicron variant

patients by testing date for our region. The AUROC and SHAP plots are shown in S1-S3 Figs in

S1 Data. We observed that the performance of the model did not degrade much for Alpha vari-

ant model. Delta and Omicron models did not yield good F1-score and AUROC probably due

to the fact that these models were severely under powered. Nonetheless, the radiological features

remain the main predictors of the infection and symptoms corresponded to the variant.

Lastly, a history of a patient’s pre-exiting conditions was added along with the above-men-

tioned features for fourth model. No specific condition was found in the top 20 important fea-

ture list indicating that the history of past diseases does not increase the likeliness of COVID-

19 infection.

Conclusions

To summarize, we implemented five Random Forest classifiers to predict the COVID-19 infec-

tion using Chest X-Ray impressions, demographics, RoS, and history of diseases in an

Fig 5. SHAP values for two patients with absence (a) and presence (b) of COVID-19 infection. The SHAP values above indicate the impact of a particular feature with a

certain value in comparison to the prediction made if the feature took some baseline value. As observed in (a), the absence of pneumonia, atelectasis, and small airways

disease indicates the absence of COVID-19 infection and the presence of these features in (b) indicates the presence of COVID-19 infection.

https://doi.org/10.1371/journal.pone.0281666.g005
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incremental manner. Our results indicate that COVID-19 infection in children can be pre-

dicted using radiological findings. The most important radiological features observed were

pneumonia, small airways diseases, and atelectasis confounded by catheter. The addition of

symptoms present around testing and demographics such as sex, ethnicity, and age can help

strengthen the prediction. Furthermore, the history of past diseases did not play a significant

role in predicting COVID-19 infection.
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