UC Berkeley

Faculty Publications

Title
Axiomatization in the Meaning Sciences

Permalink
https://escholarship.org/uc/item/5jw0p2m2

Authors

Holliday, Wesley Halcrow
Icard, Thomas Frederick, Il

Publication Date
2017-04-01

Copyright Information

This work is made available under the terms of a Creative Commons Attribution-
NonCommercial-NoDerivatives License, availalbe at

https://creativecommons.org/licenses/by-nc-nd/4.0J

Peer reviewed

eScholarship.org Powered by the California Diqital Library

University of California


https://escholarship.org/uc/item/5jw0p2mz
https://creativecommons.org/licenses/by-nc-nd/4.0/
https://escholarship.org
http://www.cdlib.org/

Axiomatization in the Meaning Sciences

Wesley H. Holliday* and Thomas F. Icard, IIIf

* Department of Philosophy and Group in Logic and the Methodology of Science, UC Berkeley

1 Department of Philosophy and Symbolic Systems Program, Stanford University

Preprint of April 2017
Forthcoming in The Science of Meaning, eds. D. Ball and B. Rabern, Oxford University Press.

Abstract

While much of semantic theorizing is based on intuitions about logical phenomena associated with
linguistic constructions—phenomena such as consistency and entailment—it is rare to see axiomatic
treatments of linguistic fragments. Given a fragment interpreted in some class of formally specified
models, it is often possible to ask for a characterization of the reasoning patterns validated by the class
of models. Axiomatizations provide such a characterization, often in a perspicuous and efficient manner.
In this paper, we highlight some of the benefits of providing axiomatizations for the purpose of semantic

theorizing. We illustrate some of these benefits using three examples from the study of modality.

Keywords: Logic in Language, Axiomatization, Entailment, Modality

1 Introduction

One prominent way of approaching the study of meaning in natural language is to consider logical properties
of and relations between sentences. For instance, if it is possible for one sentence to be true while another is
false, this shows that the sentences have different meanings [Lewis| 1970, (Cresswell, [1982]. More generally,
a theory of meaning should at a minimum capture relations of entailment and non-entailment among the
possible sentences in the language. This is particularly central for the tradition of model-theoretic semantics,
whose goal is to interpret linguistic expressions in terms of independent mathematical structures, over which
logical notions such as validity, satisfiability, and entailment can be rigorously defined (see any textbook
on formal semantics, e.g., |Chierchia and McConnell-Ginet|[2001). A formal semantics for some fragment of
language can then be tested against entailment intuitions of ordinary speakers, either those of the theorist
if the judgments are sufficiently obvious, or, as is increasingly common, those of subjects in a controlled
experiment. To the extent that these intuitions match the account of entailment defined by the interpretation,
this weighs in favor of the account. Given this empirical interest in entailment, it is perhaps surprising that
contemporary work in model-theoretic semantics rarely considers questions of aziomatization.
Axiomatizing a fragment of language over some class of models requires proving a completeness theorem,
showing that some set of basic inference patterns suffices to derive all and only the entailments predicted by
the interpretation. Axiomatization can thus be seen as a way of systematically and perspicuously revealing
what the entailment predictions of a given formal semantics actually are. In this paper, we would like to
argue that such an activity can indeed be valuable in the search for adequate accounts of natural language

meaning. After a general discussion of the history and use of completeness theorems in the study of natural



language (§2)), we will give several examples (§3)), each involving a different modal phenomenon in English—
counterfactual conditionals, epistemic comparatives, and indicative conditionals—in order to draw some

general morals about the beneficial role that axiomatization can play in the meaning sciences.

2 Completeness in Semantics

Early work in model-theoretic semantics grew out of the model-theoretic tradition in logic |Tarski, [1936],
where questions of axiomatization were front and center. In part this was due to connections between
axiomatization and other metalogical properties of interest, such as (semi)decidability. However, it was also
taken to be of inherent interest to encapsulate potentially unwieldy notions of consequence in terms of a few,
ideally simple principles. This led to axiomatic study not just of logical and mathematical systems, but also
of empirical theories as diverse as thermodynamics and psychological theories of learning (see |Suppes|[1974
for a review of some of this work, including a short discussion of axiomatization in semantics).

Against this backdrop, in many of Montague’s foundational papers on natural language semantics, ques-
tions of axiomatization are raised as a matter of course. For instance, in “Pragmatics and Intensional Logic,”
Montague notes that “it would be desirable ... to find natural axiomatizations of” the intensional logics stud-
ied in the paper, citing completeness results on related logics in the dissertation of David Kaplan [Montaguel,
1970, p. 90]. The problem of axiomatizing Montague’s full system was left as an open question, and the
solution to the problem would later be the main contribution of Daniel Gallin’s seminal dissertation on in-
tensional higher-order logic for natural language semantics [Gallin) [1975]. At the same time, work on specific
constructions, e.g., counterfactuals |[Lewis|, |1973a], would also be accompanied by completeness results when
possible (see for more on counterfactuals).

Despite this distinguished history of axiomatics within semantics, completeness theorems have been all
but absent in work over the past decades. Exceptions include projects that are directly responding to
these earlier proposals: e.g., there have been a number of axiomatizations of alternatives to Montague-Gallin
intensional type theory by Fitting, Muskens, Zalta, and others (see Muskens||2007|for a review); and there is
work on completeness theorems for fragments of counterfactual conditional logics that differ from the Lewis-
Stalnaker style account (e.g., |Galles and Pearl 1998, Briggs| 2012, Halpern| [2013). To be sure, questions
of completeness can be raised any time one has specified a model-theoretic interpretation of a well-defined
class of expressions. Thus, many semantic analyses of language fragments would in principle be amenable
to axiomatic treatmentﬂ Yet it is rare to see any discussion of axiomatics in contemporary linguistic work.

Recently, Moss [2010] has issued a forceful call encouraging interest in completeness theorems. He writes:

One motivation for semantics found in textbooks is that it should be the study of inference
in language: just as syntax has grammaticality judgments to account for, semantics has infer-
ence judgments. Now I happen to be mainly a logician, and this point resonates with me as a
motivation for semantics. But the semantics literature, it almost never gives a full account of
any inferences whatsoever. It is seriously concerned with truth conditions and figuring out how
semantics should work in a general way. But it rarely goes back and figures out, for various

fragments, what the overall complete stock of inferences should be. (pp. 84-85)

While semanticists do routinely provide well-defined model-theoretic interpretations of linguistic fragments,

and then test judgments about some of the entailment claims predicted by these interpretations, no attempt

LOf course, as is well known, there is no guarantee that a semantically defined logic will be (recursively) axiomatizable. Our
points in this paper are about the value of axiomatizations when they are available.



is made to characterize the full range of entailment predictions, except implicitly by the usual model-theoretic
definition. This definition, which goes back to |Tarski| [1936] (and arguably back even further to Bolzano),
says that a sentence ¢ is a consequence of a set I" of premises iff every model (in some relevant class of models)
making all the premises in I' true also makes ¢ true. Some authors have suggested that this semantic notion
of consequence renders deductive, or axiomatic, treatments of consequence “superfluous” to the study of
linguistic meaning (Dowty et al.|/1981, p. 53). Even Lewis, who proved several important completeness

theorems himself, was unsure of their usefulness [Lewis, [1973a]:

I am not sure how much completeness proofs really add to our understanding, but I here provide
them for those readers who do find them helpful and for those—like myself—who find them

interesting in their own right. Readers of other persuasions have no reason to read on. ... (p. 118)

Exactly what advantages could be gained by explicit axiomatization of a consequence relation? While our
focus here will be on one specific use—number (IV) below—we first list several additional potential benefits.

(I) In proposing a particular axiomatic system for a fragment of language, one might optimistically take
the system to capture important patterns in how people in fact reason with language. There is much work
in psychology of reasoning suggesting that people may reason according to psychologically basic deductive
steps |Rips, [1994]. For instance, within linguistics, Dowty [1994] has claimed that deduction provides a more

plausible account of how people make inferences in language:

It is ...a truism that humans do not carry anything analogous to infinite sets of possible worlds
or situations around in their heads, so the study of deduction—inferential relations based on
syntactic properties of some kind of “representations” of denotations—are potentially of relevance
to the psychology of language and to computational processing of meaning in a way that model-

theoretic semantics alone is not. (p. 114)

These claims about the psychological relevance, not to mention centrality, of deduction are of course highly
controversial. At the same time, some approaches to the psychology of reasoning based on “mental models”
have become so precise about algorithms defined over algebraically structured mental representations that
the very distinction between applying proof rules and model-checking is not so clear. For instance, [Koralus
and Mascarenhas| [2013]| develop an algorithmic analysis of deductive reasoning based on mental models (the
so called Erotetic Theory of Reasoning) and in fact establish a completeness result for a special case of their
derivation system with respect to “classical” logical semantics.

As Dowty suggests in the quotation above, explicit deduction may also be relevant in computational
applications, and indeed theorem provers play an important role in some of the most extensively developed
approaches to automated natural language understanding [Blackburn and Bos|, [2005]. In these applications,
just as in the psychological applications, a completeness result would show that some class of reasoning
patterns does in fact capture everything sanctioned by the model-theoretic analysis.

(IT) Partly in connection with (I), it is often useful to study very small fragments of language, restricted
in expressive power, even when we know these fragments sit inside of larger, well-understood systems. For
example, Pratt-Hartmann and Moss have considered formal languages inspired by English that can be seen
as fragments of first-order logic, as well as languages whose expressive power is incomparable with that of
first-order logic (see [Pratt-Hartmann and Moss|2009)). Completeness theorems help identify how strong these
fragments actually are in terms of their inferential capacity. Similarly, one can consider syntactically rich

fragments of language, but for which the semantic interpretation is given in a more coarse-grained manner.



For instance, in the context of full higher-order logical syntax, one can restrict attention to distinctive
reasoning patterns pertaining to identifiable semantic features such as monotonicity [van Benthem) 1986,
Dowtyl [1994]. Here, too, axiomatization can help isolate these reasoning patterns in a perspicuous way and
show just how much can be derived from assumptions in such restricted settings [Icard and Moss| [2013]
2014]. In both of these cases, we already have well-understood axiom systems for the most general languages
(those of first- and higher-order logic), and axiomatizing the weaker fragments allows direct comparison.

(ITI) Related to points (I) and (II), completeness theorems may help reveal information about the com-
plexity of some fragment of language or of a specific construction or set of reasoning patterns. The primary
aim of work by McAllester and Givan| [1992] and [Pratt-Hartmann and Moss| [2009], for example, is to find
logical fragments whose syntax more closely resembles that of natural language, but whose complexity is
(in ideal cases, significantly) less than that of first-order logic. This may be particularly important if one
has psychological or computational motivations in mind. In a more theoretical vein, the axiomatizations of
intensional higher-order logic mentioned above effectively showed that these fragments, when interpreted in
a certain way (with so-called general or Henkin models), would have no worse complexity than first-order
logic, the set of validities being computably enumerable.

(IV) A fourth motivation for investigating completeness, arguably independent of (I)-(III), but perhaps
closest to the actual practice of linguistic semantics, is to make clear and precise for the theorist what
exactly the entailment predictions of a given model-theoretic account are. The point is that if among the
primary semantic data are intuitions about logical properties such as entailment, then we may not fully
understand the predictions of a semantic account until we have an intuitive, complete proof system. On
the one hand, there may be predictions that were not initially obvious by simply looking at the model-
theoretic interpretation, and completeness theorems can draw attention to them. This could either vindicate
an account in cases where the prediction is distinctive but empirically accurate, or it could show the account
is problematic in cases where the prediction is shown incorrect. (In one example we consider below, on
epistemic comparatives, the problematic pattern emerges as the central axiom in a complete proof system.)
On the other hand, proving completeness greatly reduces the chance that there are spurious entailment
patterns that simply escaped the attention of the semanticist. In general, one may not be able to rule out
the possibility that some combination of axioms and rules could lead to repugnant conclusions. But as long
as the axioms and rules are themselves intuitively compelling, such doubt can at least be tempered. This
fourth motivation is also seen in the broader theory of measurement, where, just as in semantics, a theory
is intended to have empirical consequences (see, e.g., the discussion in Chapter 1 of Krantz et al|[1971).
Axiomatizations can summarize those consequences in an intuitive, accessible manner. In some cases, the
point of this exercise is to show simply that two semantic proposals give rise to the exact same entailment

predictions. We will see several examples of these points in what follows.

3 Case Study: Modality

Modality is one of the most captivating topics in natural language semantics, in part because it concerns the
distinctively human tendency to think and communicate about alternative ways things could have been or
might be. This makes reasoning about modality particularly intriguing and subtle. In this section, we will

present case studies of axiomatization involving three flavors of modality:

e counterfactuals (§3.3), e.g., If Kangaroos had no tails, they would topple over.



e epistemic comparatives (§3.4)), e.g., It’s more likely that you’ll be struck by lightning than win the lottery.

e indicative conditionals and epistemic modals (§3.5)), e.g., If Miss Scarlet isn’t the culprit, then Professor

Plum is and might be in cahoots with Colonel Mustard.

In each case, we will consider a formal semantics that has been proposed for such constructions and then
present an axiomatization of the entailments predicted by that formal semantics for the relevant fragment
of language. The point is not to argue in favor of or against any of these formal semantics, but rather to
give clear examples of the methodology of axiomatization.

Considerations of entailment also figure prominently in semantic studies of other flavors of modality, such
as deontic modality (see, e.g., Kolodny and MacFarlane|2010, |Cariani|[2013] 2017)), where axiomatization can
also be fruitfully applied (see, e.g., [Van De Putte||2016)). In the interest of space, however, we hope the

bulleted examples above are enough to illustrate our methodological points in this paper.

3.1 Logical Preliminaries

For the purposes of what follows, it will be convenient to stipulate an abstract definition of a “logic” for a
formal language. Given a formal language £ extending the language of propositional logic, by a logic for L
we mean a set L of formulas of £ that meets at least the following conditions: L contains all formulas in the
language £ that have the form of classical propositional tautologies; L is closed under modus ponens, i.e., if
p€Land ¢ - ¥ €L, then ¢ € L; and L is closed under replacement of equivalents, i.e., if ¢ <> 1) € L and
a € L, then o € L where o is the result of replacing some occurrences of ¢ in a by . From Montague
onward, formalizations of fragments of English have typically given rise to logics in this sense. One might be
motivated to relax these conditions to accommodate non-classicality or hyperintensionality—and one could
still seek completeness theorems in such a context—but all of our case studies in this paper will fit the
classical template. By a normal logic we mean a logic that also satisfies the following further conditions:
L is closed under uniform substitution, i.e., if ¢ € L and 1 is obtained from ¢ by uniformly substituting
formulas for proposition letters, then ¥ € L; and if the language £ contains a modal operator [J, then L
contains the formula O(p A ¢) <> (Op A Og) and is such that if ¢ € L, then Oy € L, and if ¢ <> ¢ € L,
then Oy «» [ € L. Uniform substitution is often built in to the definition of a logic in the first place.
Finally, while the conditions on [J considerably restrict the range of modals that could be formalized in this
way—for example, the modal probably cannot be formalized as such a [J, because the right-to-left direction

of distribution over conjunction fails for probably—again our case studies will fit the normal template.

3.2 Over-generation and Under-generation

When it comes to comparing the entailment predictions of a formal semantics with intuitive judgments about

entailments, there are two questions to consider:
e Over-generation question: does the formal semantics count as valid what are intuitively non-entailments?
e Under-generation question: does the formal semantics count as invalid what are intuitively entailments?

As for the over-generation question, failure on the part of the theorist to find examples provides some evidence
that the semantics does not over-generate. However, much stronger evidence against over-generation in the
relevant fragment of language would come from a complete axiomatization in that language that draws only

upon intuitively valid patterns. Given such a complete axiomatization, the only way the semantics could



over-generate entailments in the relevant fragment is if intuitively valid entailments could be strung together
to arrive at a conclusion that intuitively does not follow from the original premises. If we understand the
conclusion and judge that it can be false while all the premises are true, despite the string of intuitively valid
entailments leading from premises to conclusion, we would have a paradoxﬂ Of course, such entailments
could be strung together to arrive a conclusion so complicated that no one can understand it, but this is a
relatively benign form of over-generation common to all formal semantics.

Thus, a complete axiomatization using only intuitively valid patterns provides strong evidence against
the kind of over-generation problems for which a formal semantics can be rejected in favor of another
formal semantics. In addition, we may easily catch cases of over-generation by trying to find a complete
axiomatization for a given semantics. We will give examples of these points in the case studies to follow.

As for the under-generation question, completeness theorems by themselves provide no guarantee that
a semantics is not missing some intuitive entailment predictions. In some special cases, it may be possible
to have assurance against under-generation by showing that the logic associated with one’s semantics is
such that any stronger logic would have to contain some intuitively invalid patterns. To take one famous
example, classical propositional logic has the special property (“Post-completeness”) that the only stronger
normal propositional logic as in is the inconsistent logic containing p A —p. For another example from a
philosophical rather than linguistic context, many philosophers have held that the modal logic S5 captures
the correct principles for reasoning about what could have been the case and what must have been the case. It
can be proved that any normal logic extending S5 contains a principle of a very specific form, which is not an
intuitively valid principle for reasoning about what could have been the case (see [Williamson|2013, p. 111).
It is a curious question, which we will not investigate here, whether results of this kind about stronger logics
can be used to address the under-generation question in a case from natural language semantics. Another
curious question is whether a complete axiomatization of the invalid inferences according to a semantics, by
means of “refutation axioms” and “refutation rules” as in [FLukasiewicz [1957 and [Goranko|[1994, could shed
light on whether a semantics over-generates invalidities, or equivalently, under-generates validitiesﬂ

It is not clear how problematic it is for a semantics to under-generate entailments relative to what speakers
would accept. Other things equal, perhaps a semantics that makes those additional predictions should be
preferred. Yet even if a semantics is shown to under-generate in this sense, one might argue that it is still
on the right track—that it has the “right form” for the truth conditions, though further assumptions about
models are needed to issue in further intuitive entailment predictions. Moreover, how much of what speakers
judge to be true should be built into the semantics of the language has been a matter of some controversy.
One particularly austere view has it that semantics is only concerned with a very strict notion of logical form,
a view expressed early on by Wheeler| [1972]: “It is certainly a worthwhile project, when semantics is done, to
state some truths using the predicates the semantics has arrived at, but this is to do science, not semantics. . . .
The tendency we oppose is the tendency to turn high-level truths into analytic truths” (p. 319). We are not
endorsing this view, but we mention it to suggest that purported under-generation problems might be more
controversial than over-generation problems. (For a detailed discussion of the relation between logical form
and lexical semantics, see |Glanzberg||2017in this volume.)

An additional complication concerning under-generation is the fact that many of our intuitions about

2Perhaps there are such paradoxes (e.g., the Sorites?), so we do not claim that a complete axiomatization drawing only upon
intuitively valid patterns is decisive evidence against over-generation. Moreover, the intuitive validity of the inference patterns
may be sensitive to what we know about what can be derived by these patterns. Discovering a counter-intuitive consequence
of the patterns may disturb our intuitive acceptance of the patterns themselves.

3If both the set of validities and its complement, the set of invalidities, are axiomatizable, then of course the logic is decidable.
It is noteworthy that all of the logics discussed in our case studies in §@-@ are decidable.



entailment presumably derive neither from semantic knowledge nor from general world knowledge, but rather
from situational pragmatic reasoning. Axiomatizing aspects of pragmatic reasoning could also be of interest,
but one might not want to criticize a semantic theory for failing to capture entailment intuitions that
evidently fall outside the scope of semantics. Of course, negotiating this demarcation between semantics and

pragmatics is notoriously difficult (see, e.g., the essays collected in [Szabo|[2005)).

3.3 Counterfactuals

The first of our cases studies is the most famous of the three: the semantics of counterfactual conditionals.
To fix a simple formal language with which to present a semantics, let the counterfactual language be the
language of propositional logic plus a new binary sentential connective D—>E| The intended reading of ¢ O— ¥
is “if it were the case that ¢, then it would be the case that .”

We will consider a semantics for the counterfactual language that is essentially due to Lewis [1971}
19734}, 1973b| and Stalnaker [1968] (also see |Stalnaker and Thomason|[1970). An ordering model for the
counterfactual language consists of a set W of worlds, an assignment of subsets of W to proposition letters,
and for each world w € W, a reflexive and transitive binary relation >,, on WE| In these models, the Boolean

connectives are interpreted in the standard way, and the counterfactual conditional is interpreted as follows:
[ y]Y=1 if Vee[y]Iyelel:yvr=werand Vz =y y: 2 € [¢] implies z € [¢],

where [¢] = {v e W | [¢]” = 1}. As usual, a formula ¢ is a semantic consequence of a set I' of formulas over
a class of models iff for every model in the class and world in the model, if the world makes all the formulas
in I true, then it makes ¢ true as well.

As is well known, one way of explaining the above semantics is that the relation >, is a relation of
comparative similarity: x >,, y indicates that world x is at least as similar to world w as world y is. The
basic idea behind the truth condition is that a counterfactual ¢ O— v is true at a world w iff among the
worlds that make ¢ true, those that are most similar to w all make i true. But in case there does not
exist among the p-worlds any that are most similar to w—either because there is an infinite sequence of
more and more similar-to-w worlds that make ¢ true, or because there are worlds that make ¢ true but are
incomparable in similarity to w—the more careful statement is that ¢ O— v is true at w iff for any p-world x
there is a p-world y that is at least as similar to w and such that all at least as similar ¢-worlds are 1-worlds.

As we discussed in §2]and §3:2] one way to evaluate such a semantics is according to how well it predicts
entailments between sentences of the relevant language fragment. Consider the over-generation question:
are there intuitively invalid inference patterns between counterfactual sentences that are counted as valid
consequences according to the comparative similarity semantics? Fortunately, a complete finite axiomatiza-
tion is available for this semantics, which provides information of great value concerning the over-generation
question. Let the basic counterfactual logic be the smallest normal logic for the counterfactual language that
contains the axioms of Figure [l We say that ¢ is derivable from T" in the minimal counterfactual logic iff
there are v1,...,7v, € I' such that (41 A--- Av,) = ¢ belongs to this logic.

After the rather trivial axioms A0 and A1, one can think of the rest as corresponding to interesting

4This is not the only way of treating the syntax of counterfactuals. For an alternative “restrictor view” of conditionals, see
Kratzer|[1986.

5A more general definition takes >, to be a reflexive and transitive binary relation on some subset W,, of W, but for
simplicity we do not consider this more general definition here. Also note that we have decided to flip Lewis’s notation, writing
‘x = Yy’ where Lewis would write ‘x <, v’.



A0 (T 1)
Al po-p

A2 (poo (gAr)) = (pO-q)

A3 (po-q) A pD—>r) p O q/\r)

(( (
A4 (pl:l—>r qD—)r) (p\/q I:Hr)
(( ((

A5 (po-q) A pD—>r) pAQq) I:Hr)

Figure 1: Axioms of the basic counterfactual logic.

inference patterns. Think of each of A2-A5 as saying that the antecedent of the material conditional entails
the consequent. For example, according to A2, something of the form If it were that p, then it would be that
q and r entails If it were that p, then it would be that q. According to A3, If it were that p, it would be that
q and If it were that p, it would be that r together entail If it were that p, it would be that ¢ and r. If one
thinks that these patterns are intuitively valid and that the rules of §3.1] preserve intuitive validity, then the

following completeness theorem provides strong evidence that the semantics does not over-generate.
Theorem 3.1 (Burgess||[1981). For any finite set " of formulas and formula ¢, the following are equivalent:
1. ¢ is a consequence of I" over the class of all ordering models;
2. ¢ is derivable from T" in the basic counterfactual logiCEI

As noted in §3:2] a completeness theorem such as Theorem [3.1] does not resolve the under-generation
question. In fact, according to Lewis [1971] [1973a] and Stalnaker [1968|, the above semantics does under-

generate. According to Lewis, the following should be valid:

(rAq) — (po-q);
(poq) = (-pVa).

According to Stalnaker, the following should also be valid:

(po—>q)V(po> ).

None of these three principles is valid according to the basic comparative similarity semantics above, as one
can check by constructing simple counter-models. However, the semantics has two parts: the class of models
and the truth condition for O—. Simply by restricting the class of models, while keeping the truth condition
for O— the same, one can obtain a semantics for which the basic counterfactual logic plus Lewis’s two axioms
above is sound and complete, or for which the basic logic plus Stalnaker’s axiom is sound and complete. Let
a centered ordering model be one in which for every distinct w,v € W, we have w >=,, v but v ¥, w, i.e.,
every world is more similar to itself than any other world is. Let a linear ordering model be one in which for

every w,x,y € W, we have x =, y or y =, =, and if x =, y and y >, x, then = = y.

6 A similar result is proved in the dissertation of Veltman [1985, Theorem I1.82, p. 132], which contains a wealth of further
information about conditional logic and semantics, motivated by natural language (non-)inferences.



Theorem 3.2 (Burgess||1981). For any finite set I' of formulas and formula ¢:

1. ¢ is a consequence of I' over the class of centered ordering models iff ¢ is derivable from I' in the

counterfactual logic extending the basic logic with Lewis’s two axioms above.

2. ¢ is a consequence of I' over the class of linear ordering models iff ¢ is derivable from T' in the

counterfactual logic extending the basic logic with Stalnaker’s axiom above.

3. ¢ is a consequence of I' over the class of centered linear ordering models iff ¢ is derivable from T' in

the counterfactual logic extending the basic logic with the three axioms above[]

Theorem [3.2] can be viewed in another way. If one were to start with the idea that the intended models—
that is, the models capturing some notion of what counterfactual statements are about—involve an ordering
over worlds in which every world is more similar to itself than any other world is, then a result like Theorem
[3:21] summarizes exactly the additional entailment predictions one obtains by restricting to such models.
Analogous points apply to parts 2] and [3] of Theorem

The semantics of counterfactuals continues to be a topic of lively discussion, in which alternatives to the
Lewis-Stalnaker semantics have been motivated in large part by claims of better fit with entailment data
(see, e.g., [Santorio|[2014] |2017alb, Willer||2015| and references therein). Axiomatization could be especially
helpful in a new phase of counterfactual semantics in showing exactly how the new proposals compare to

each other and to the classic similarity semantics in their predictions of entailment.

3.4 Epistemic Comparatives

Our second case study takes us from language for expressing how the world could have been different to
language for expressing how we think the world is likely to be. To fix a simple formal language, let the
comparative language be the language of propositional logic plus a new binary sentential connective >. We
read ¢ > 1 is “p is at least as likely as ©.” As an abbreviation, we define Oy := (p A =p) = —.

We will consider a semantics for the comparative language that uses the same ordering models used

in §3.3] to interpret the counterfactual language—but thought of in a different way, discussed below. To

14

interpret comparatives, the semantics lifts the ordering >,, on worlds to an ordering >,

Lewis [1973a] and Kratzer [1991] do so in the following way for A, B C W:

on propositions.

A B iff YbeB3IacA:ar,b (0)
With this lifting, comparatives can be interpreted as follows:

[ezv]*=1 iff [¢] =, [¥]

As before, a formula ¢ is a consequence of a set I' of formulas iff for every ordering model and world therein,
if the world makes all of the formulas in I" true, then it makes ¢ true.

Kratzer [2012] conceives of the relation =, as a ranking of “worlds according to how close they come to
the normal course of events in the world of evaluation, given a suitable normalcy standard” (p. 39). The

normalcy standard is given by a set of propositions—the ordering source—representing some conversational

7Cf. Theorems I1.85 (p. 133) and I1.90 (p. 138) of [Veltman|[1985| There are further logically-relevant distinctions between
classes of models, for example between weakly centered (which Veltman calls faithful) ordering models vs. centered ordering
models, but here we only hope to give a flavor of the results on counterfactual logics, not an exhaustive summary.



background. Technically, the ordering source O, is a set of subsets of W, and it induces the relative normality
relation =, as follows: y =, « iff for every P € O,,, if x € P then y € P. Thus, y is at least as normal as
x relative to w iff y makes true every proposition from O,, that  does and possibly more. Note that any
reflexive and transitive relation >=,, on W can be generated in this way, by taking O, to be the set of all
subsets U C W such that for all v,v’ € W, if v € U and v’ =, v, then v' € U. Finally, the truth condition
for > given above tells us that ¢ is at least as likely as 9 is true iff for every y-world there is a p-world that
is at least as normal according to the appropriate epistemic ordering source.

For a discussion of the advantages of this semantics, we refer the reader to [Kratzer| 1981} [1991, as well
as [Yalcin| 2010, §3.2. The point we wish to make here arises from a disadvantage of the semantics. Yalcin

[2010] and Lassiter [2010} 2015] observed that the above semantics for comparatives validates the principle

((pzP)N(p=x) = (¢= (VX))

of which the principle
(p=x) = (p2(pVx)

is a special case, obtained from the first by taking ¢ and i to be the same. To see that this principle is
problematic in the case of comparative likelihood, let ¢ stand for the coin lands heads, and let x stand for

the coin lands tails. Then the principle above implies the following:

(1) If it’s at least as likely that the coin lands heads as it is that the coin lands tails, then it’s at least as

likely that the coin lands heads as it is that the coin lands heads or the coin lands tails.

Yet any fair coin shows how the antecedent of the above conditional can be true while the consequent is
false. Thus, the principles above are not intuitively valid principles for “at least as likely as.” This problem
has come to be called the disjunction problem for this lifting semantics for epistemic comparatives.

Though it took two or three decades since the appearance of Kratzer’s papers for the above disjunction
problem to surface, the problem would have been apparent if someone had provided a completeness theorem
for an ordering semantics for comparatives like the semantics above. In fact, someone did provide such a
completeness theorem in 1973, namely Lewis [1973a]. Lewis’s class of models was somewhat different than
Kratzer’s, for instance in that Lewis assumed that >, is totalEI but these differences are orthogonal to the
disjunction problem. As suggested above, the disjunction problem can easily be spotted from an inspection
of Lewis’s completeness result. Unfortunately, Lewis relegated his completeness theorems to the appendix
of his book. Moreover, Lewis’s [1973al, p. 123] axiomatization for the comparative language contains a rule
that may be difficult to digest. Only in a footnote does Lewis [1973a), p. 124| reformulate that rule with the

help of an axiom that makes the disjunction problem quite clear:

(= (V) V(@ = (pVY)).

Applied to comparative likelihood, this principle implies the following;:

(2) Either it’s at least as likely that the coin lands heads as it is that the coin lands heads or tails, or

it’s at least as likely that the coin lands tails as it is that the coin lands heads or tails.

Thus, if one considers the axiom in Lewis’s footnote, it is quite clear that the above semantics will not work

for comparative likelihoodﬂ It is an interesting counterfactual question whether, if Lewis had not relegated

8That is, & > Yy OF y >4 « for all worlds & and y in the field of > .
9Lewis [1973al §2.5] was interested in comparative possibility rather than likelihood.
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his completeness results to his appendix, and if he had put more emphasis on understandable axioms, then
the discovery of the disjunction problem might not have been delayed by several decades.

A completeness theorem for exactly the semantics for comparatives above (without Lewis’s totality as-
sumption) was given by Halpern [1997] 2003|. Strikingly, the disjunction problem manifests itself in the key
axiom in the axiomatization—providing more evidence for the thesis that over-generation problems like the
disjunction problem can be brought to light by completeness theorems. For Halpern’s completeness result,
let the simple comparative logic be the smallest normal logic for the comparative language that contains the
axioms of Figure 2] The disjunction problem is represented by axiom C4. Given a set I' of formulas and
a formula ¢, we say that ¢ is derivable from I' in the simple comparative logic iff there are ~v1,...,v, € T

such that (71 A -+ A7,) — ¢ belongs to the simple comparative logic.
Ci1 (p=p)
C2 DOp—q—(a2p)
C3 ((p=

r))—=(p=r)

Q) NA(g=T))
C4 (pzagAp=z7r)—(@P=(qVvr)

Figure 2: Axioms of the simple comparative logic.

Theorem 3.3 (Halpern|2003). For any finite set I" of formulas and formula ¢, the following are equivalent:
1. ¢ is a consequence of I according to the Lewis-Kratzer lifting semantics using @D;
2. ¢ is derivable from I" in the simple comparative logic.

Based in part on the problematic entailment predictions of the ordering semantics above, Yalcin [2010)
and Lassiter [2010, [2015] have proposed semantics for epistemic comparatives based on probability models.
Instead of using qualitative orderings =, over possible worlds, such models use finitely additive probability

measures i, assigning probability values in [0, 1] to propositions. The semantic clause for > becomes

[e =] =1 it pu(lel) = puw([¥])-

Several examples of differences in entailment predictions between the qualitative ordering semantics and this
numerical probability semantics are given in [Yalcin| 2010k

In fact, the entailment predictions of semantics based on probability measures (as well as many other kinds
of measures) can be, and indeed have been, completely axiomatized as well |Segerberg, 1971}, |Gardenfors|,
1975]. Omne noteworthy principle validated by probability models is the principle of comparability, stating

that any two propositions are comparable in likelihood:

(p=P) V(=)

A number of authors in the literature on foundations of probability, famously including Keynes [1921], §3],
have questioned this assumption (see Fine|1973| p. 18), and it is not obvious that ordinary speakers of English

would judge that every two propositions ought to be comparable in “probability” or “likelihood” either.
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Instead of considering models based on a single probability measure, one can consider models based on
sets of probability measures (as suggested in 2011, p. 81), with a truth condition of the form

[p>]" =1 iff forall pe P u(le]) > u(lv]):

An axiomatization for this class of models can be obtained from a suitable axiomatization of single-probability-

measure models by simply dropping the axiom of comparability |Alon and Heifetz, |2014”E|

A natural question is whether there could be a qualitative semantics—for example, in the spirit of
Kratzer’s semantics—that validates the same principles as the probability measure or set-of-measures se-
mantics. As Yalcin [2010] asks, “Is there some better way of extending a preorder over worlds to a preorder
over propositions, one which will get the inference patterns right?” (p. 923). In fact, there is a way of
modifying the Lewis-Kratzer lifting, introduced in [Holliday and Icard|2013], so that it validates exactly the

same inference patterns in the comparative language as the set-of-measures semantics. Observe that the

Lewis-Kratzer lifting in (@ can equivalently be defined by
A tfu B iff there is an inflationary function f: B — A,

where inflationary means that f(x) =, = for all z € B. The source of the disjunction problem is that even
if there are many more ways that B could come true, as long as there is one way that A could come true
that is at least as highly ranked by =, as each of the ways B could come true, the above lifting says that A
is at least as likely as B. A natural idea for fixing this problem is to require that for each distinct way that
B could come true, there is a distinct way that A could come true that is at least as highly ranked by =,,.
That is, the function f should be injective: if x # y, then f(z) # f(y). This leads to the following modified
lifting:

Ax" B iff there is an inflationary injection f: B — A. (m)

Now the interpretation of ¢ > v is exactly as in Kratzer’s semantics, but using =" instead of tfv In
addition, we now take as our models Noetherian ordering models in which there is no infinite sequence
w1y, Wa, W3, ... of distinct worlds such that wy =<, ws =<, ws.... These are models in which each world
ordered by =, is assumed to have some likelihood, so that if there were such an infinite sequence, then
we would have an infinite sequence {w;}, {wy,wa}, {wy,we,ws},... of propositions each more likely than
the previous one by some nondecreasing increment—whereas there should be some maximum likelihood
that a proposition may have. Similarly, in probabilistic semantics, there cannot be an infinite sequence
w1, Wa, ws, ... of distinct worlds such that 0 # pu({w1}) < p({we}) < pw({ws})..., for then the sequence of
probabilities p({w1}), p({w1,wa}), p({w1, we,ws}),... would grow without bound.

It is shown in [Harrison-Trainor et al.[2017| that the injective lifting semantics above has exactly the same

logic as the set-of-measures semantics[™]

10This is only true for a suitable axiomatization of single-probability-measure models. It is not the case that the axiomatization
for sets-of-measure semantics can be obtained from that of single-measure semantics found in [Segerberg[1971] and [Gardenfors|
simply by dropping the axiom of comparability. One must drop comparability and then strengthen the “cancellation”
axiom used in and to the generalized cancellation axiom in [Rios Insual[1992] [Alon and Lehrer]
[2014] and [ATon and Heifetz|[2014l For further explanation, see [Harrison-Trainor et al|[2016]}

More precisely, in the models of [Holliday and Icard [2013] =, is a relation on a distinguished set R(w) of epistemic
possibilities, and the lifted =" is a relation on p(R(w)), so the semantic clause is [ > ¢]* = 1 iff [o] N R(w) =7 [¢] N R(w).

12Tn [Holliday and Icard|2013, we stated that the logic obtained from that of Segerberg|1971|and |Gérdenfors|1975| by dropping
the axiom of comparability is sound with respect to ordering models with the injective lifting of , and we left completeness
as an open question. In fact, as suggested in footnote that logic is not complete with respect to the semantics, since when
one drops the comparability axiom one must also strengthen the “cancellation” axiom.
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Theorem 3.4. For any finite set ' of formulas and formula ¢, the following are equivalent:
1. ¢ is a consequence of I' according to the set-of-measures semantics;
2. p is a consequence of I' according to the injective lifting semantics using .

At this point one could raise a number of methodological questions about the choice between probabilistic
vs. qualitative semantics for “at least as likely as.” For such a discussion, we refer to Holliday and Icard|2013
and |Lassiter|[2017. Our focus here is rather on general themes about the value of axiomatizations. Theorem
[3:4] is not itself an axiomatization result, but its proof takes advantage of one. As noted above, the logic
of set-of-measures models has been completely axiomatized |Alon and Heifetz, |2014]. The implication from
to [2 in Theorem can therefore be established by proving that the complete logic of set-of-measures
models is sound with respect to ordering models with the injective lifting (again see |[Harrison-Trainor et al.
2017)@ This shows another way in which completeness theorems can be useful—this time in establishing
that two semantics are equivalent in terms of their entailment predictions.

Finally, we would like to mention one other kind of semantics for the comparative language, in which
the gap between inference patterns and semantics is much smaller. Each of the semantics discussed above
generates an ordering on propositions from something considered to be more basic: an ordering on worlds
or a (set of) probability measure(s). Another approach would be to take as a model for the comparative
language a set W of worlds together with a collection of orderings =, on the powerset of W, required to

satisfy certain properties, with which comparatives are interpreted by

[e =] =1 iff  [o] Zw [¢].

Lewis [1973a, pp. 54-55] considers this approach to the semantics of comparative possibility (his “comparative
possibility systems”), and in Holliday and Icard| 2013, we considered this approach to the semantics of
comparative likelihood (our “event ordering models”). On such an approach, the inference patterns that are
valid for the comparative operator > come directly from the properties assumed for the orderings -, of

propositions. For example, if we require that each =, satisfies the transitivity property
if Az, Band B, C, then A =, C,
then the semantics validates the principle
(e =) AW 2 X)) = (¢ 2 x)-
If we require that each =, satisfies the “qualitative additivity” property
Ar, Bift A\B~,, B\ A,
then the semantics validates the principle

(e =) & (pAY) = (Y A-p)).

13For the implication fromto it can be shown that any set-of-measures model that serves as a counterexample to ¢ being
a consequence of I can be transformed into an ordering model with the injective lifting that serves as a counterexample to ¢
being a consequence of I' (see [Harrison-Trainor et al.[2017, Lemma 5).
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Assuming the above two properties (plus some obvious properties like A =, © and § 7, W) gives a
semantics that makes entailment predictions for the fragment of language in question that may be very
difficult to distinguish empirically from those of the probabilistic semantics discussed above (see Holliday
and Icard|2013)). However, one has the feeling that this “semantics” is more like a direct algebraic encoding of
the inference patterns we want to be valid—that it is merely axiomatics in disguise (cf. [van Benthem|[2001}
p. 358). As a result, completeness theorems for such semantics are not very surprising: the valid principles
are just what we built in when defining the models. By contrast, the ordering models and probabilistic
models discussed above are much farther from direct encodings of desired entailments. Thus, completeness

theorems for these kinds of models can be much more illuminating.

3.5 Indicative Conditionals

Our third and final case study involves language for expressing uncertainty without explicit talk of likelihood.
For our formal language, let the modal-indicative language be the language of propositional logic plus a new
unary sentential operator ¢ and a new binary sentential connective =. The intended readings of ¢y and
@ = 1 are “It might be that ¢” and “if ¢, then ¥, respectively. We define Ly := =0—p.

We will discuss a semantics for the modal-indicative language due to Yalcin [2012]. This is a simplified
version of the semantics proposed in [Yalcin|[2007, which has a more subtle semantic clause for indicative
conditionals, in order to deal with epistemic modals in the antecedents of such conditionals. For non-modal
antecedents, the two semantics for the indicative conditional are equivalent. We refer the reader to [Holliday
and Icard|[2017| for discussion of semantics designed to handle modal antecedents in indicative conditionals
(especially one due to |[Kolodny and MacFarlane|2010)).

A domain model for the modal-indicative language is simply a set W of worlds together with an assignment
of subsets of W to proposition letters. But now formulas are evaluated with respect to both a world w € W

and an information state i C W, with these key clauses:

[Ov]“' =1 iff in[y]' #o
o= ¢]™ =1 iff i+eC ],

where []" = {w € W | [¢]*! =1} and i + ¢ = i N [¢]’. Intuitively, it might be that ¢ is true relative to an
information state ¢ just in case ¢ contains some @-possibility; and if p, then 1 is true just in case updating ¢
with the information ¢ yields an information state in which ¢ is true throughout. For the dual O of ¢, note
that we have [Oy]*“¢ = 1 iff i C [o]?, and [ = ] = [O]i .

Concerning the notion of semantic consequence for this language, we now deviate from the standard
definition of consequence used in the previous two case studies. Following Yalcin [2012] p. 1019], we say that
a formula ¢ is an informational consequence of a set ' of formulas iff for every model W and information
state i« C W, if i C [y]* (“i accepts 7”) for every v € T, then i C [p]® (“i accepts ). An argument
from [Yalcin/[2007] in favor of this definition of consequence for a language with epistemic modals is that it
predicts the defectiveness of sentences like “It is raining and it might not be raining”, formalized as p A O—p.
According to the informational consequence relation, p A O—p is contradictory, in the sense that p A —p is
an informational consequence of p A O—p. For the only way that an information state ¢ can be such that
i C [[p A O-p]* is for i to be empty, because if O—p is true at w relative to i, then there is a —p-world in i,
while i C [p A O—p]? requires that all worlds in i are p-worlds; but if i is empty, then i C [p A —p]°.

The semantics above, with its information shifting clause for the conditional and its modified notion of
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consequence, looks quite different than traditional semantics for classical logic. Does this pose any obstacle
to axiomatization? Fortunately, it does not. In the field of dynamic epistemic logic [van Ditmarsch et al.
2008, [van Benthem), 2011], such information shifting semantic clauses are standard, and axiomatizations for
such semantics abound. Moreover, the notion of informational consequence is familiar from the notion of
global consequence in modal logic (Blackburn et al.[[2001, §1.5, Kracht|[1999, §3.1). Using these connections,
we can completely axiomatize the informational consequence relation for the modal-indicative language, as
in Theorem below, using standard techniques from dynamic epistemic logic and modal logicE

Let the Yalcin logic be the smallest logic (in the sense of for the modal-indicative language that
contains the axioms of Figure [3] Given a set I' of formulas and a formula ¢, we say that ¢ is derivable from
I in the Yalcin logic iff there are 71,...,7, € I' such that (Ovy; A --- AOv,) — O belongs to the Yalcin
logic. Note that this differs from the definition of derivability in the previous sections, in a way that matches

the difference between informational and classical consequence.
D Op—=0p 4 O00p—=0p 5 Op—Up
I1 (¢= =)« O(p — ) for 7 nonmodal
12 (¢=(anp)) e (¢=a)A(p=75)
B (p=a)=(p=(aVp))
I4 (p=a)—(p=Ua)
5 ((p=(avOB)A-(p=p)) = (¢=a)
I6 ((p= (aVOB)A(p=B)) = (p=a)

I7 —(p=B8) = (= 0-8)

Figure 3: Axioms of the Yalcin logic.

Now we have the following completeness theorem, proved in [Holliday and Icard|2017]
Theorem 3.5. For any finite set ' of formulas and formula ¢, the following are equivalent:

1. ¢ is an informational consequence of I over domain models;

2. ¢ is derivable from I' in the Yalcin logic.

This axiomatization result brings to light some key entailment predictions of the semantics. First, I1
tells us that if the indicative conditional has no modals in the consequent (and recall we have been using
the version of Yalcin’s semantics suitable for non-modal antecedents), then the indicative conditional is
equivalent to the strict conditional. Axioms I2 and I3 are not too surprising, but axiom I4 corresponds to

the key commitment of the semantics that a sentence like
(3) If Miss Scarlet didn’t do it, then Colonel Mustard did it.

entails

14 A quite different approach is pursued by Bledin [2014], motivated by considerations related to our point (I) from Bledin
starts with the same semantics for the modal-indicative language as above and then proposes a Fitch-style natural deduction
system for an extension of the language that includes symbols for information states and information acceptance relations.
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(4) If Miss Scarlet didn’t do it, then it must be that Colonel Mustard did it.

Axioms I5 and I6 also correspond to interesting entailment predictions. Axiom I5 suggests the prediction,

for example, that the sentence

(5) If Miss Scarlet did it, then either Colonel Mustard was her accomplice or it must be that Professor

Plum was involved.

together with

(6) It’s not the case that if Miss Scarlet did it, then Professor Plum was involved.
entails

(7) If Miss Scarlet did it, then Colonel Mustard was her accomplice.
And axiom I6 suggests the prediction, for example, that

(8) If Miss Scarlet did it, then either she used the pipe or she might have used the candlestick.
together with

(9) If Miss Scarlet did it, she didn’t use the candlestick.
entails

(10) If Miss Scarlet did it, then she used the pipe.
Finally, axiom I7 suggests the prediction that one who rejects

(11) If Miss Scarlet was in the ballroom, then Colonel Mustard is guilty
should accept

(12) If Miss Scarlet was in the ballroom, it might be that Colonel Mustard is not guilty.

Our point here is not about whether the above predictions are empirically accurate or not, but rather
that the axioms that naturally appear in a complete axiomatization for the semantics can be easily related
to empirically assessable entailment predictions of the semantics. Of course, this is not inevitable. There
can be axiomatizations containing complicated principles that are far removed from empirically assessable
entailment predictions (see, e.g., [Holliday and Icard |2013 for discussion of complicated principles in the
axiomatizations of probabilistic semantics mentioned in . However, in many cases, arguably including
all of the axiomatizations we have presented in our case studies above, there is not a great distance between
axioms of the logic and empirically assessable entailment predictions.

It is worth stepping back and realizing how desirable it would be in any scientific field to have a complete
set of axioms for some theory that are themselves close to empirically assessable predictions. From this

perspective, the availability of such axiomatizations in the science of meaning is rather remarkable.
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4 Conclusion

We have now seen several ways in which axiomatizations can be helpful in elucidating a semantically defined
consequence relation. Axiomatizations can provide assurance that a consequence relation does not over-
generate entailments by making manifest the problematic entailment predictions of a semantics; and they
can be used to determine the relative strength or equivalence of two consequence relations defined by different
semantics. In addition, we have seen that even when a semantics has a form quite different from those familiar
from classical model theory, this might not pose any obstacle to axiomatization.

In this paper, we have assumed that the models come first and the axiomatizations are then to be
discovered. Yet in some cases it may seem that the model-theoretic proposals are largely guided by the
task of delivering the right entailment predictions. Given this apparent primacy of entailment and inference
patterns, one might wonder whether the semanticist ought simply to focus attention on proof systems
themselves and eschew model theory altogether. In that case, axiomatic systems, together with a specific
deductive apparatus intended to capture natural inferential patterns, would be the main object of study.
This kind of project has of course been pursued within linguistic semantics (see, e.g., [Francez and Dyckhoff
2010, or [Szabolcsi|[2007 for an appraisal), and there is a distinguished tradition of proof theoretic semantics

within philosophy of logic and language. For instance, Prawitz [2006| characterizes the project as follows:

One very simple version of an approach of this kind is to take meaning to be determined by all
the rules for a language. Restricting oneself to deductive uses of language and thinking of proofs
as determined by a set of inference rules, meaning simply becomes determined by all the inference

rules of the language. (p. 509)

Others are less sanguine about the idea of restricting attention to inferential patterns only. For example,
Dummett [2000] writes:

No one could think that the grasp of the meaning of an arbitrary sentence consisted solely in a
knowledge of the way in which it might figure in an inference, as premiss or conclusion. ... If we
take it as the primary function of a sentence to convey information, then it is natural to view a

grasp of the meaning of a sentence as consisting in an awareness of its content. ... (p. 252)

In a classical picture, one captures content with truth conditions (as opposed to verification conditions as in
Dummett|[2000). Dowty et al. |1981] argue in favor of a truth-conditional rather proof-theoretic approach
on the grounds that:

The definition of truth with respect to a model has the advantage that it allows us to capture
the definitions of logical truth, logical entailment, and related notions and at the same time to

capture our intuitions of the essential “aboutness” of natural language. (p. 52)

Whether this “aboutness” is intended to capture actual reference, or merely some analysis of how people
think about the world (in the sense of Bach’s [1986] “natural language metaphysics”), by far the dominant
trend in the field has been to take the models to be of independent interest. Thus, model theoretic objects
including worlds, situations, possibilities, events, similarity orders, time points and intervals, mereological
sums and parts, and all the rest are typically taken to be first class citizens in the study of linguistic meaning
(see, e.g., Krifkal[1998| for lucid discussion of this view). One might conclude from this that there is a tension
between model-theoretic semantics and the study of the kinds of axiomatic systems we have been discussing

(cf. [Dowty et al[1981 who speak of “preferring the semantic method to the deductive method”). However,
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we hope to have shown that the situation is exactly the opposite. It is precisely when the model theory
becomes more intricate and more divorced from a mere “encoding” of inferential relations that axiomatization

promises to be most useful and enlightening.
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