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Significance

The wide range of behaviors 
exhibited 
by Escherichia coli isolated from 
diverse environments is expected 
to be reflected in the sequence 
variation of its genome. Large-
scale multi-strain assessment of 
the E. coli genome finds that the 
coding-region is highly conserved 
and that its scant variation is 
enriched in benign mutations. 
Contrastingly, mutations 
acquired through laboratory 
evolutions are more severe and 
are rarely found in nature. The 
antagonistic roles of general 
evolutionary pressures between 
wild-type and laboratory-evolved 
strains may explain these 
differences. Our study suggests 
that natural evolution produces 
intraspecies phenotypic diversity 
primarily by modulating protein 
abundances—rather than by 
altering protein properties. In 
comparing natural and 
synthetic E. coli mutations, we 
identify “sequence space” that 
may guide future experimental 
design.
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The genomic diversity across strains of a species forms the genetic basis for differences in 
their behavior. A large-scale assessment of sequence variation has been made possible by 
the growing availability of strain-specific whole-genome sequences (WGS) and with the 
advent of large-scale databases of laboratory-acquired mutations. We define the Escherichia 
coli “alleleome” through a genome-scale assessment of amino acid (AA) sequence diversity 
in open reading frames across 2,661 WGS from wild-type strains. We observe a highly 
conserved alleleome enriched in mutations unlikely to affect protein function. In contrast, 
33,000 mutations acquired in laboratory evolution experiments result in more severe AA 
substitutions that are rarely achieved by natural selection. Large-scale assessment of the 
alleleome establishes a method for the quantification of bacterial allelic diversity, reveals 
opportunities for synthetic biology to explore novel sequence space, and offers insights into 
the constraints governing evolution.

allele | mutation | laboratory evolution | sequence | alignment

In the late 2000s, DNA sequencing costs dramatically decreased. Throughout the 2010s, 
inexpensive sequencing led to a steady increase in the number of publicly available 
sequenced genomes in strains of a bacterial species (1–5). Thus, sequence variation among 
bacterial strains can now be studied at an unprecedented scale. The first forays into the 
study of bacterial sequence variation led to the development of phylotyping, representing 
the grouping of bacterial strains into “clades” based on the presence of a select set of 
“housekeeping” genes (6–9). Such phylotyping can identify the environmental origin, the 
evolutionary lineage, and the potential pathogenicity of a given strain (10–12). More 
recently, sequence variants within the same gene (“alleles”) have been shown to affect niche 
phenotypes such as bacterial cell–host adhesion and interaction (13–19). Given the recent 
availability of whole-genome sequences (WGS), a full definition and characterization of 
the open reading frame (“ORF alleleome”)—the collection of every allele for all the genes 
in an organism—is now possible.

Concurrent with the increase of publicly available sequenced genomes of wild-type (WT) 
strains, laboratory evolution has emerged as a new approach to address biological questions 
and develop new phenotypic traits (20–24). Bacterial strains have been evolved in a variety 
of different laboratory environments, and a large number of laboratory-acquired mutations 
are now found in databases (25, 26). Ongoing since 1988, the Escherichia coli long-term 
evolution experiment (LTEE) has produced more than 10,000 unique mutations in over 
70,000 generations grown in a consistent medium (27–30). Conversely, adaptive laboratory 
evolution (ALE)—numerous short-term evolutions in response to different selection pres-
sures—has produced more than 45,000 unique mutations in E. coli strains (31–37). Thus, 
the availability of thousands of fully sequenced genomes and laboratory-acquired mutations 
allows for the detailed genome-scale comparison between the sequence variation in WT 
strains of a species and the mutations fixed in laboratory strains of the same species.

Using a collection of 2,661 fully sequenced WT strains belonging to various phy-
logroups, isolated from various hosts and geographic regions (SI Appendix, Fig. S1 and 
Dataset S1), this work establishes a unique method to quantify the intragenic natural 
sequence variation of the E. coli “alleleome” at the genome scale. We find a surprisingly 
limited diversity to be the hallmark characteristic of the ORF alleleome: variation is found 
in relatively few codon positions in the E. coli genome and is limited to a few alternate 
amino acid (AA) substitutions unlikely to affect protein function. Against this limited 
diversity, we show that laboratory-acquired mutations in ALE and LTEE evolution exper-
iments reveal a novel sequence space that falls outside of the natural sequence diversity of 
E. coli that is much more likely to yield AA substitutions predicted to have an impact on 
protein function. Taken together, this work defines the genome-scale characterization of 
the E. coli alleleome and finds that natural and laboratory evolution produces largely 
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nonoverlapping sets of mutations with significantly disjoint pref-
erences for codon selection.

Results

Establishing a Methodology for Quantifying Natural Sequence 
Variation. To determine natural AA sequence variation, we 
identified all sequence variants (alleles) for every gene present 
in a collection of 2,661 fully sequenced WT E. coli strains 
(SI  Appendix, Dataset S2). Alignment of each gene’s alleles 
(SI  Appendix, Dataset S3, QCQA described in SI  Appendix, 
Fig. S2) allowed us to determine the WT occurrence of every 
distinct AA residue at every AA position (Fig. 1A). Thus, we were 
able to determine the “dominant” (of highest occurrence) AA 
residue for each codon and thus characterize the full set of AA 
substitutions (nondominant, “variant” AAs) at every position 
across a gene (ORF).

The occurrence of dominant and variant AA residues in a 
given ORF can be displayed as a 3D histogram (Fig. 1B). The 

scarcity of prominent AA substitutions allowed us to describe 
the AA variation on a 3D structure of the protein (Fig. 1C). 
The dominant AA at each position was used to define a WT 
“consensus sequence” for the ORF (Fig. 1D, black). The con-
sensus sequence shows the AA positions in the ORF that are 
fully conserved, the positions that are the most variable, and 
the occurrence and location of significant variants (Fig. 1D, 
cyan). To achieve a position-independent view of sequence var-
iation in each ORF, we prepare a histogram of the dominant 
and variant AA frequencies (cdom and cvar) by normalizing to the 
total number of strains carrying the gene (0 < c ≤ 1) (Fig. 1E). 
Thus, we can quickly quantify the conservation of all AA posi-
tions, and the frequency and extent with which AA substitutions 
are found for any given ORF. The alleleome is illustrated for a 
single ORF in Fig. 1.

The E. coli Alleleome Is Highly Conserved, Is “Narrow,” and Is 
Enriched in Inconsequential Mutations. We can combine single 
ORF histograms (Fig.  1E) for all ORFs (Fig.  2A) to generate 
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Fig. 1. The natural sequence variation in one gene. (A) Alignment of all unique AA sequences (alleles) of a single gene (an ORF – in this case pdeB) present in 
the WGS of up to (SI Appendix, Fig. S2) 2,661 WT E. coli strains is used to calculate (B) the WT occurrence of every AA residue at every AA position across the ORF. 
(C) Dominant (of highest occurrence) and variant (nondominant) AAs and their respective normalized WT occurrences for select AA positions are shown on a 
protein structure. (D) The dominant AA residues are used to define the “WT consensus sequence” while deviations from this sequence describe the full set of 
AA substitutions in the ORF. (E) A position-independent and normalized view of the WT consensus sequence and AA substitutions found in an ORF are used to 
describe the alleleome of a single gene.
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a consolidated histogram reflecting the E. coli ORF alleleome 
(Fig.  2B). This alleleome represents the full natural sequence 
variation background of the 2,661 WT E. coli genome sequences 
isolated from diverse environments, which corresponds to a 
collection of 365,021 AA alleles (SI Appendix, Dataset S3) across 
4,194 ORFs containing 1.3 million AA positions. It shows the 
occurrence of the dominant AA for each codon (Fig. 2B, gray) 
and also provides a global assessment of all AA substitutions found 
in the E. coli proteome (Fig. 2B, cyan). This ORF alleleome is 
a global representation of DNA and AA sequence variation in 
a species based on the available WGS for strains in the species 
(SI Appendix, Dataset S4).

We define a “conserved” region of the alleleome that consists 
of AA positions where the dominant AA frequency is at least 90% 
(c ≥ 0.90) (Fig. 2B, green). In this conserved region of the allele-
ome, there are 910,610 AA positions (70%) for which there is 
absolutely no sequence variation (c = 1.0) among the WT strains 
(Fig. 2, green circle). There are an additional 328,034 positions 
(25%) for which the dominant AA is found at a rate of 99% or 
greater (0.99 ≤ c < 1). Finally, there are 39,358 positions (3.0%) 
where the dominant AA frequency is greater than 90% (0.90 ≤ c  
< 0.99), showing that 1.28 million AA positions (98.0%) of the 
alleleome are ≥90% conserved (SI Appendix, Fig. S3A). These 
results show that the WT E. coli alleleome is highly conserved.

Among the 1.3 million dominant AAs, the sequence diversity 
of the E. coli alleleome is defined by 503,744 unique AA variants 
(Fig. 2B and SI Appendix, Fig. S3A, cyan) distributed across 

393,580 codon positions (Fig. 2C). By calculating the sequence 
diversity captured by alternate AAs found in these positions 
(Fig. 2C), we determine that the E. coli alleleome diversity is 
extremely narrow—99% of all AA positions are characterized by 
three or fewer AAs (i.e., a dominant AA and up to two less common 
variants) (Fig. 2F and SI Appendix, Fig. S3B). These results show 
that the WT E. coli alleleome exhibits a narrow range of alternate 
residues in AA substitutions.

Since the alleleome provides a global assessment of all ORF 
sequence variation for E. coli, we next characterize the likely effects 
of the observed mutations on protein function. When we order 
these mutations by their global occurrence in the alleleome, we 
find that the vast majority of sequence variation occurs at the 
codon level (SI Appendix, Fig. S3 C and D), and the resulting 
mutations are synonymous (Fig. 3A, dark blue, SI Appendix, 
Dataset S6).

The Grantham score (GS)—a measure of physiochemical dif-
ferences between two AA residues—can be used to assess the 
severity of each AA substitution (38). A GS below 50 reflects a “con-
servative” mutation, while a GS above 150 describes a “radical” 
mutation.

For 17.9 million observed nonsynonymous mutations, we find 
that the resulting AA substitutions are enriched in lower numerical 
values of the GS (μ = 62, a “moderately conservative” mutation) 
(Fig. 3A). We find only a small minority (2.7%) of AA substitu-
tions with radical (>150) GSs (Fig. 3B, red). A summary of the 
WT mutations and AA substitutions analyzed is found in Table 1.
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To determine whether the enrichment of predictably “benign” 
AA substitutions holds true for all AAs, we develop a simple math-
ematical model (SI Appendix, Fig. S4) to calculate the expected 
GS from a given starting AA. We find that the observed GSs fall 
below their expected values for 85% of starting AAs. Only muta-
tions in three AAs (alanine, threonine, and phenylalanine) were 
marginally (+0.2%, +3.7%, and +6.0%, respectively) above their 
expected severity (Fig. 3C).

These results show that the AA substitutions observed in the 
alleleome (Fig. 2, cyan) are enriched in substitutions that are not 
likely to affect protein function. This characteristic makes the ORF 
alleleome effectively narrower than suggested by considering only 
DNA sequence variation.

Laboratory Evolutions Produce E. coli Mutants Rarely Found in 
Nature. ALE is an experimental approach for biological inquiry 
and a method for developing phenotypic traits (20). Cultures of 
bacteria are serially passaged in a defined environment until their 
growth rate does not notably change with subsequent passages, 
and one or more strains from the end point population are selected 
for genome sequencing. A collection of the mutations acquired 
during ALE has been assembled in a publicly available database 
(ALEdb.org), which has grown exponentially since its inception 
in 2019 (25). Presently, ALEdb contains 22,045 publicly available 

mutations obtained from 1,864 bacterial isolates from 108 ALE 
experiments under a wide range of environments (i.e., nonglucose 
medium, oxidative stress, temperature stress, etc.). Our analysis 
is based on 45,413 unique ALE mutations (QCQA described 
in SI Appendix, Fig. S5), many of which have not yet appeared 
in peer-reviewed publications or in ALEdb. The ALE mutations 
analyzed in this study, including those previously unpublished, can 
be found in Table 1 and in SI Appendix, Dataset S5A.

We can assess the genetic differences between laboratory 
(“synthetic”) evolution and natural evolution by comparing the 
WT alleleome and mutations found in ALEdb. We begin by 
looking at the mutations fixed during ALE in the pdeB gene 
(Fig. 4A) and display them on the WT AA occurrence diagram 
(i.e., Fig. 1D). The result, graphed in Fig. 4B, reveals three types 
of nonsynonymous mutations: first, there are seven distinct 
mutations occurring in conserved positions where the AA sub-
stitution falls outside of the WT alleleome (shown in red); sec-
ond, an AA substitution resulting in a switch from an AA of 
lower occurrence (a nondominant WT variant) to the AA of 
dominant occurrence (D42N, shown in green) that can be 
thought of as being a “revertant” to consensus; and third, there 
is an AA substitution from a dominant occurrence to one of a 
lower occurrence (N136S, shown in orange). Seven of the nine 
nonsynonymous ALE mutations found in pdeB fall outside of 
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Table 1. Summary of the mutations and sequence variation analyzed in this study
Data 
source Mutation type

Unique 
mutations

Genome posi-
tions (%) Figure(s) analyzing data directly Data

WT Invariant (DNA) N/A 443,357 (34%) SI Appendix, Fig. S3 SI Appendix, Dataset S4

WT Invariant (AA) 910,610 (70%) Fig. 2 and SI Appendix, Fig. S3

WT Nonsynonymous* 478,749* 358,324* (27%) Figs. 2*
cyan, 3, 6 C–G, and 7 

and SI Appendix, Fig. S3
SI Appendix, Datasets S4* 

and S6
WT Synonymous 847,951 671,872 (52%) Figs. 3A and 7 and SI Appendix, Fig. S3

ALE Nonsynonymous* 25,470* 9,459* (0.7%) Figs. 5*–7 SI Appendix, Datasets 
S5* and S6ALE Synonymous 19,943 8,041 (0.6%) Figs. 5, 6A, and 7

LTEE Nonsynonymous* 7,788* 7,753* (0.6%) Figs. 6 and 7 and SI Appendix, Fig. S6* SI Appendix, Datasets S5* 
and S6LTEE Synonymous 2,785 2,783 (0.2%) Figs. 6B and 7 and SI Appendix, Fig. S6

*A minor fraction of indels is included in the calculations of some figures and datasets (SI Appendix, Fig. S3).
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the WT alleleome, while the remaining two are found in two 
variable positions in the protein (Fig. 4C). Thus, ALE can pro-
vide a selection pressure that selects for a nondominant WT 
AA. The frequency and type of AAs where substitution takes 

place are detailed in Fig. 4D, and with such few mutations in 
pdeB, they can be viewed on the 3D protein structure (Fig. 4E).

As for the WT alleleome (Fig. 2 A and B), the representation 
of mutational data from ALE can be scaled up from one ORF 
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(Fig. 4C) to all the 3,891 ORFs with ALE-acquired mutations. 
The results give us a global view of all the acquired ALE muta-
tions relative to the WT alleleome (Fig. 5A). To assess the muta-
tions in ALEdb, we identify two features of each mutation: first, 
the frequency with which the AA in the starting ALE strain 
(i.e., MG1655) is found in the WT alleleome (i.e., is the orig-
inal residue the WT consensus residue, or a WT variant resi-
due), and second, the frequency with which the AA substitution 
in the ALE end point is found in the WT alleleome (i.e., is the 
mutant novel, rare, a WT variant, or a reversion to the WT 
consensus). The change in WT frequency of the starting and 
final AA residue for each mutant is shown in Fig. 5B. Of the 
observed nonsynonymous mutations in ALEdb, 98.0% occur 
in consensus positions of the WT alleleome and the majority 
of the resulting AA substitutions are novel (c = 0, 88.3%) or 
rarely found (0 < c ≤ 0.01, 8.4%) in the WT sequence variation 
(Fig. 5C).

Since the majority of ALE mutations occur in highly conserved 
consensus regions of the WT alleleome and result in AA residues that 
are not found in the natural sequence variation, it is likely that lab-
oratory and natural selection pressures are largely disjoint. This diver-
gence thus suggests that serial passaging may subject laboratory strains 
to significantly different evolutionary pressures than those experi-
enced by WT strains. In fact, we find that on a per-gene basis, muta-
tions found in WT strains are predominantly driven by a purifying 
selection pressure whereas the broad range of laboratory conditions 
used in ALE experiments to drive evolution often creates a diversi-
fying selection pressure on laboratory-evolved strains (see Fig. 7).

In positions where ALE-acquired AA substitutions occur, the 
7,412 variants found only in the WT sequence variation reveal an 
additional sequence space yet to be explored by laboratory evolutions 
(Fig. 5D). We find similar results in the analyses of synonymous 
mutations found in ALEdb (Fig. 5 E–H) and for 10,574 unique 
mutations across 211 isolates acquired in the LTEE (of multidecade 
duration) pioneered by Lenski (27–30) (SI Appendix, Fig. S6). The 
LTEE mutations analyzed in this study can be found in Table 1 and 
in SI Appendix, Dataset S5B.

Consequential Mutations Are More Frequently Acquired in 
Laboratory-Evolved E. coli Strains. A more detailed analysis of the 
mutations found in ALE and the LTEE (of multidecade duration) 
reveals that laboratory mutations are more likely to produce 
mutations that result in changes in protein properties. As for the 
WT variants (Fig. 3), the Granthan score (GS) is used to predict 
possible consequences of each laboratory-acquired mutation. We 
find the global average GS for nonsynonymous mutations found 
in laboratory evolutions to be 77 (in ALE and 78 in LTEE)—a 
15-point increase in expected severity observed in WT mutants 
(Fig.  6 A and B  and SI  Appendix, Dataset S6). Compared to 
WT variants, we observe a more than threefold increase in AA 
substitutions characterized by severe changes in chemical properties 
(GS > 150) and a 1.5-fold increase in moderately severe AA 
substitutions (150 > GS > 100) in laboratory-evolved strains (Fig. 6 
C and D).

The Grantham “space”—the set of all GSs that can be achieved—
at a given genomic position depends on the original (premutation) 
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AA. For example, only three AA substitutions result in GSs greater 
than 200: Cys ↔ Lys (GS 202), Cys ↔ Phe (GS 205), and Cys ↔ 
Trp (GS = 215). Thus, a mutation in genomic positions originally 
containing a cysteine residue is three times more likely to yield a GS 
greater than 200 than in those containing lysine, phenylalanine, or 
tryptophan. The Grantham space is further constrained by codon 
selection. For example, the change of a glycine (small and aliphatic) 
AA for a tryptophan (large aromatic) AA is quite severe (GS 184). 
Four codons (GGU, GGC, GGA, and GGG) encode glycine, while 
only one (UGG) encodes tryptophan. One point mutation in the 
first position is sufficient to change the GGG-glycine codon into 
the UGG-tryptophan codon, whereas a minimum of two sequential 
point mutations are required for GGU-Gly, GGC-Gly, and 
GGA-Gly codons to become UGG-Tyr. Thus, to determine differ-
ences between the predicted severity of mutations in WT and 
laboratory-evolved strains, the original codon and AA for each muta-
tion must be taken into account.

We find differences in the original residues involved in AA 
substitutions; notably, an increased aversion of WT strains to 
mutate AAs (Gly, Arg, Tyr, Trp, and Cys) with propensities for 
severe changes in chemical properties (Fig. 6E, bars). Normalizing 
across all AA substitutions derived from the same starting AA, we 
find an increase in predicted severity for mutations acquired 
through laboratory evolution for the majority of AAs and a notable 

increase in predicted severity in substitutions in positions containing 
tyrosine, aspartate, arginine, and leucine (WTGS +59, +33, +30, 
and +28, respectively) (Fig. 6 E–G).

General Evolutionary Pressures Play Disparate Roles in WT and 
Laboratory-Evolved Strains. Mutational differences in codon 
selection can be influenced by general evolutionary selection 
pressures. Purifying (negative) selection is responsible for 
removing severe mutations out of a population. Diversifying 
(positive) selection is responsible for selecting mutants resulting 
in cellular phenotypes with improved fitness. The large-scale 
assessment of natural sequence variation and laboratory-
acquired mutations allows for the quantification of general 
selection pressures acting at the gene-level in WT and laboratory 
strains. We use the ratio of nonsynonymous to synonymous 
codon substitutions (dN/dS) in each ORF to determine the 
strength and mode of selection pressures acting upon each 
gene. Genes with dN/dS ratios greater than 1 are influenced 
by diversifying (positive) selection pressure, while dN/dS ratios 
less than 1 indicate purifying (negative) selection pressure 
(Fig.  7A). In WT strains, we find that purifying selection 
plays a dominant role in the natural sequence variation of a 
majority (4033/4335) of genes (Fig. 7B). In contrast, we find 
that the majority (2628/3891 and 2248/3058) of genes are 
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predominantly influenced by diversifying selection pressure in 
laboratory-evolved strains (ALE and LTEE, respectively) (Fig. 7 
C and D).

Discussion

The deluge of recently available bacterial WGS has allowed us to 
develop a unique method to analyze the natural sequence diversity 
among WT E. coli strains in the form of the ORF alleleome—a 
collection of the sequence variations in the 1.3 million codon posi-
tions in the coding region of the E. coli genome. We find that the 
alleleome is highly conserved: 98% of AAs positions are conserved 
in more than 90% strains. Alleleomic variation is further limited 
by a narrow range (typically one or two) of alternate AAs.

In view of the surprisingly conserved and narrow alleleome, we 
point out that a number of pangenome analyses have attributed 
differences in phenotypic traits between strains to differential gene 
counts in multiple strains of a species (39). Furthermore, ALE 
experiments suggest that regulatory mutations play a bigger role 
in adaptation than structural mutations (40) and that proteome 
allocation may be more important than changes in protein prop-
erties (41). Future studies of the intragenic diversity may thus 

reveal greater consequential sequence diversity than that found 
here in the ORF alleleome. Allele variation, however, is important 
in special cases such as antimicrobial resistance studies where 
strong selection is based on changes in a target protein (42).

Concurrently, inexpensive DNA sequencing has enabled the 
sequencing of a large number of clones from laboratory evolutions 
and finds causal mutations relative to a specific selection pressure. 
This large-scale comparison of the natural sequence variation in 
E. coli and laboratory-evolved mutants finds fundamentally diver-
gent sets of mutations, suggesting that the selection pressures that 
have been used in experimental evolutions to date may not reflect 
those found in nature.

This finding is consistent with many observations of mutations 
in experimental populations. In WT strains, nonsynonymous 
mutations that may improve a strain’s fitness in one environment 
are likely deleterious for a strain exposed to changing environments 
over an extended period of time. Thus, nonsynonymous variants 
are purified out of the WT population, selecting only (“generalist”) 
strains with improved fitness across multiple environments. In 
contrast, when exposed to a well-defined environment, laboratory 
strains may acquire nonsynonymous mutations that improve the 
strain’s fitness in a specific environment (“specialist”) at the cost 
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of decreasing the strain’s fitness when exposed to changing 
environments.

Differing adaptive fitness strategies have been observed in various 
ALE experiments. When E. coli was grown in alternating sugar 
substrates, some populations developed a generalist strain that per-
sisted across multiple substrates, while other populations developed 
two specialist subpopulations that alternated dominance between 
environmental conditions (34). This multi-scale adaptive behavior 
of E. coli strains may be explained by the antagonistic pleiotropic 
effects of specific mutations. For example, ALE-acquired 
single-mutation variants of rpoB were shown to grow faster in glu-
cose but required a longer diauxic shift to support growth on acetate 
when compared to the WT strain (43), suggesting an inability to 
quickly shift proteome allocation in response to a changing envi-
ronment. Antagonistic pleiotropy and adaptation trade-offs have 
been studied in great detail for E. coli in the LTEE (44–48), and 
these effects have been observed in other organisms (49, 50).

In this study, we confirm opposing general selection pressures 
between WT and laboratory strains that are consistent with the 
differences in environmental constancy and evolutionary time 
scales expected between natural and laboratory evolution. As ALE 
has been shown to be useful in generating desirable bioprocess 
phenotypes—such as those exhibiting increased tolerance for end 
product toxicity and improved substrate readiness (31, 34)—the 
uniqueness of the vast majority of experimental evolution muta-
tions is advantageous from a synthetic biology point of view.

Remarkably, a subset of mutations in ALE were observed to 
switch between the WT dominant and secondary AAs (Fig. 5 
green & yellow, respectively), suggesting that well-defined selec-
tion pressures can identify naturally occurring “toggle-switches” 
in the E. coli sequence space. This observation may guide the 
generation of future ALE experimental design. For instance, ALE 
mutants that revert to the WT consensus in one experiment can 
be subjected to a range of selection pressures until the mutant 
returns to the original AA in the first experiment. Identifying the 
selection pressures that can wobble specific AAs between WT 
consensus residues and variants may help identify specific posi-
tions across the genome that reflect generalist or specialist adap-
tation strategies and may offer insights into divergence in evolution 
between natural “WT” strains and laboratory strains.

Genome-scale comparison of WT variants and mutations 
acquired through laboratory evolution also offers insights into the 
differential propensity of certain AAs to become mutated. 
Compared against the WT alleleome, we show that both ALE and 
the LTEE yield mutations which are more likely to impact protein 
function. Among WT strains, we also find an increased avoidance 
of fixing mutations in positions with AAs whose Grantham space 
has a propensity for severe mutations, supporting the causality of 
these severe mutations when they occur in laboratory-evolved 
strains. Future studies may benefit from a gene-by-gene level deter-
mination if these mutations fall within key regions of the protein 
(e.g., active sites, protein–protein interfaces, etc.). This cumulative 
experience shows that there is useful sequence space to be explored 
for biological design purposes which may be nonobvious and thus 
advantageous from a discovery standpoint.

Materials and Methods

Procurement of a Diverse Set of E. coli Genome Sequences and Identification 
of ORFs. WGS of 2,661 E. coli strains were downloaded from the Pathosystems 
Resource Integration Center (PATRIC) (51). The PATRIC metadata included the host 
and geographic information for each strain. To demonstrate the diversity of our strains, 
phylogrouping the strain collection was completed using EzClermont (52). The genomic 
distances were calculated with Mashtree (53) and visualized using Interactive Tree of Life 

(54) (SI Appendix, Fig. S1 and Dataset S1). The bidirectional best blast hit tool from Rapid 
Annotation using Subsytems Technology (RAST) (55) (https://rast.nmpdr.org) was used 
to match annotated loci from E. coli K-12 MG1655 (Blattner Numbers) (in PATRIC) to 
orthologs in the genomes of WT strains. For 4,349 genes, each unique nucleic acid (NA) 
sequence match from the WT strains was assigned a NA allele ID (SI Appendix, Dataset 
S2). The WT occurrence and NA sequence for each allele were recorded (SI Appendix, 
Dataset S3).

Quality Control and Analysis of Nucleic Acid Allele Sequences. Each NA 
allele was read three nucleobases at a time until the first stop codon to deter-
mine the codon sequence of the gene. NA alleles with early truncations resulting 
in a gene loss greater than 20% of the gene length were removed. The codon 
sequence was translated into an AA (AA) sequence. The distribution of AA allele 
sequence lengths for each gene was calculated. AA alleles found to be more than 
two SDs shorter than the mean AA sequence length were removed. The genes with 
remaining alleles represented in less than 133 (5% of) WT strains were removed. 
This QCQA analysis yielded 729,212 NA alleles and 365,021 AA alleles distributed 
across 4,194 genes (SI Appendix, Fig. S2 and Dataset S3).

Defining the WT Alleleome for 4,194 ORFs. For each gene, Multiple Sequence 
Comparison by Log-Expectation (MUSCLE) (56) was used to align the AA sequences 
of its alleles. For each AA position in the alignment, the occurrence (number of 
strains) of all AA variants was calculated. The WT dominant AA—the AA of highest 
occurrence—at each position was used to define a WT consensus sequence. In 
the case of the dominant AA being a “deletion” (e.g., an insertion is found in 
a nonmajority of strains), this residue position was removed from the overall 
WT consensus sequence. The occurrence of nondominant AA residues (variants) 
was also determined. The WT occurrence of nondominant in-frame deletions is 
counted as AA variants in the WT alleleome (Figs. 2 and 5) but not in the GS 
analyses (Figs. 3 and 6).

Once the AA sequence (and in-frame deletions) of all alleles was determined, 
the codon sequence for each allele was recreated to include any gaps detected 
by the MUSCLE alignment of AA sequences, allowing standardized position and 
codon information across all alleles. The WT alleleome was defined for 1.3 mil-
lion codon positions distributed across 4,194 genes where dominant and variant 
AA occurrences could be determined. The complete WT alleleome, codon-level 
variants and AA substitutions can be found in SI Appendix, Dataset S4. All non-
dominant variants (including in-frame deletions and insertions) are described in 
SI Appendix, Fig. S3.

Mapping Laboratory-Acquired Mutations to the WT Alleleome. We use 
a series of quality control assessments (SI  Appendix, Fig.  S5) to ensure the 
proper mapping of laboratory mutations in ALEdb (and additional unpublished 
mutants) and in the LTEE dataset (https://barricklab.org/shiny/LTEE-Ecoli/) to 
the WT alleleome (SI Appendix, Dataset S4). Each mutation mapped to the WT 
alleleome i) must be acquired in an E. coli strain (applicable only for ALEdb); ii) 
must be found within an ORF; iii) must be annotated to a gene name that can 
be mapped to a Blattner number [either directly or through a gene synonym 
confirmed by EcoCyc (57)]; iv) must have agreement between the codon found 
in the reference genome sequence (REL606/7 for LTEE, multiple for ALEdb) at 
the genome position given with the codon found at the gene location given in 
the mutation annotation; v) must NOT result in a truncation larger than 20% of 
the gene; vi) must map to a gene with sufficient alleles (i.e., is present in >5% 
of WT strains, see SI Appendix, Fig. S2); and vii) is only used once in the dataset 
(repeat mutations are removed).

After QCQA, we were able to identify 45,413 unique mutations found across 
4,181 ALE isolates from 284 ALE experiments (SI Appendix, Dataset S5A) and 
10,574 unique mutations isolated from 211 strains in the LTEE (SI Appendix, 
Dataset S5B). For each nonsynonymous mutation (including a small number of 
early truncations and in-frame deletions) in ALE strains, the WT occurrence of the 
premutation and postmutation AA (or termination) was determined (Fig. 5 A–D). 
The WT occurrence of codons involved in synonymous ALE mutations was also 
determined (Fig. 5 E–H). The analyses were repeated for mutations found in LTEE 
strains (SI Appendix, Fig. S6).

Mathematical “Null” Model for Computing Rates of Specific Mutations 
Expected in WT Strains. We calculate the expected distribution of codon var-
iants (codon2s) found in all mutations originating from the same initial codon 
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(codon1) and compare this to the observed WT distribution. We can calculate the 
GS for each specific codon change and use the expected distribution of specific 
codon changes to calculate the expected GS of a mutation originating from a 
specific codon.

A codon can be converted into any other codon by acquiring up to three sequential 
and distinct point mutations (“hops”) (e.g., a final codon that requires two point muta-
tions in the original codon is referred to as a 2-hop mutant) (SI Appendix, Fig. S4A). 
Given that a mutation occurs and the initial codon (codon1) is known, the expected 
distribution of all specific codon changes from the original codon depends on i) the 
number of sequential point mutations needed to reach the final codon (codon2) 
and the probability of reaching suitable intermediates in the mutation pathway 
(SI Appendix, Fig. S4B). Since the mutation occurs, the sum of the expected rates 
of all final codons must be equal to 1. Using these assumptions, we can write an 
equation for the sum of all expected rates of codon changes:

3
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)
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∗�=9∗�+27∗ (�) ∗
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9

)(
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27
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where k represents the number of sequential point mutations (definition of all 
terms can be found in SI Appendix, Fig. S4B). This equation allows us to solve for 
μ, the probability that a mutation results in a specific 1-hop mutant. Likewise, 
we solve for (2u^2/9) and (2u^3/81), the probability of finding a specific 
2-hop and 3-hop mutant, respectively. For each initial codon, the expected 
distribution of mutants across the codon table is calculated (SI  Appendix, 
Fig. S4D). Using this distribution, we calculate the expected average GS for 
all mutants derived from an initial codon. The deviation between the mod-
el-predicted average GS and the GSs observed in the alleleome is calculated 
for each initial codon (SI Appendix, Fig. S4E). These codon-level calculations 
can be grouped by their resulting AA residues to yield the severity of specific 
AA substitutions (as in Fig. 3).

We analyze only the GSs of nonsynonymous AA substitutions. As such, each 
initial codon will have a constrained number of codon variants counted in the 
observed data. To account for this, we constrain our model to only compute muta-
tion rates for this reduced set of codon changes (SI Appendix, Fig. S4C).

Determining the Observed Mutation Rates of Specific Codon Changes. In 
the WT alleleome, the dominant codon (codon1) at each position is determined. 
For each nondominant codon variant (codon2) at that position, the total number 
of strains represented at the position by the nondominant codon is counted as the 
number of mutations from the WT consensus sequence. The mutation counts of 
mutations that share the same specific codon change (codon1→codon2 pair) are 
combined to determine the rates of specific codon changes across the alleleome 
(SI Appendix, Dataset S6, “WT”). Codon changes are further separated by their effect 
on the AA sequence (synonymous vs. nonsynonymous AA substitution). The rates of 
specific codon changes in the ALE and LTEE strains were calculated using the metadata 
provided in SI Appendix, Datasets S5A and S5B, respectively. These mutation rates 
are recorded in SI Appendix, Dataset S6.

Identification of General Selection Pressures. The rates of synonymous and 
nonsynonymous mutations were determined (as described above) on a per-gene 
basis. The ratio of nonsynonymous mutations to synonymous mutations (dN/dS) 
was used to infer general selection pressure acting on each gene. These values 
were plotted for genes mutated in WT, ALE, and LTEE strains (Fig. 7).

Calculating the Average GS (Per Codon & AA). Each specific premutation codon 
to postmutation codon pair (Codon1→Codon2) is counted across WT and laboratory 
strains and recorded in SI Appendix, Dataset S6. The distribution of all mutations 

originating from the same codon is determined. Each mutation’s GS and weighted 
occurrence in the distribution is used to find the average GS of all nonsynonymous 
AA substitutions originating from the same codon. This GS represents the average 
severity of all mutations stemming from the same initial codon across all positions in 
the alleleome. This analysis is repeated for all (61 of 64) premutation nonterminating 
codons. The per-codon results are used to analyze differences in GS severity between 
WT and laboratory strains (Fig. 6 F and G).

The observed codon changes are also grouped by their premutation AA 
(Fig. 6E, histogram). For all 20 AAs, the distribution of all nonsynonymous AA 
substitutions that originate from the same premutation AA is used to calculate 
the average GS observed in a particular AA (Fig. 6E, lines). This GS represents the 
average severity of all mutations stemming from the same initial AA across all 
positions in the alleleome. Differences between GSs in WT and laboratory strains 
are calculated per each AA (Fig. 6 F and G).

Statistical Analysis of GS Distributions Observed in WT and Laboratory 
Strains. The distribution of GSs is determined using the mutation rates in 
SI Appendix, Dataset S6 for all nonsynonymous mutations in WT (Fig. 3B) and 
laboratory strains (Fig. 6 C and D). The mutations are grouped by premutation 
codon or by premutation AA (see above). For each nonterminating premutation 
codon (codon1), the distribution of GSs for all mutations originating from codon1 
is calculated. A Kolmogorov–Smirnov two-sample test is used to compare the 
per-codon GS distributions in WT and laboratory mutations (SI Appendix, Fig. S7 
A  and  B). This test is repeated at the AA level (SI Appendix, Fig.  S7 C  and  D). 
Statistical metrics are provided in SI Appendix, Dataset S7.

Statistical Analysis of Observed Rates of Specific Mutations in WT and 
Laboratory Strains. The observed rates of all specific mutations are recorded 
in SI Appendix, Dataset S6. The mutations are grouped by premutation codon 
or by premutation AA (see above). For each grouping, the observed mutation 
rates of all specific nonsynonymous mutations originating from codon1 can 
be determined for mutations found in WT and ALE strains. The WT rates are 
normalized and multiplied by the total number of ALE mutations in the group-
ing to calculate the expected distribution of mutations in the grouping (“WT 
exp”). Specific mutations in the grouping that are either observed (in ALE) or 
expected (based on the WT rate) to occur less than five times are removed from 
the grouping (Chi-squared test criteria, SI Appendix, Fig. S8A). The observed and 
expected mutation rates in groupings of two or more mutations were analyzed 
using a Chi-squared test (SI Appendix, Fig. S8B). Statistical metrics are provided 
in SI Appendix, Dataset S7.

This analysis is repeated for mutations in LTEE strains (SI Appendix, Fig. S8 
C and D). This analysis is repeated for groupings of mutations originating from 
the same AA (SI Appendix, Fig. S9). Statistical metrics for these analyses are also 
provided in SI Appendix, Dataset S7.

Data, Materials, and Software Availability. All Data have been deposited 
in GitHub (https://github.com/EdwardCatoiu/Alleleome.git) (58). All study data 
are included in the article and/or SI Appendix. Previously published data were 
used for this work (25, 26).
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