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ABSTRACT  

Boron-containing materials such as hexagonal boron nitride, recently shown to be active and 

selective catalysts for the oxidative dehydrogenation of propane (ODHP), have been shown to 

undergo significant surface oxyfunctionalization and restructuring. Although experimental ex situ 

studies have probed the change in chemical environment on the surface, the structural evolution 

of it under varying reaction conditions has not been established. Herein we perform global 

optimization structural search with grand canonical genetic algorithm to explore the chemical 

space of off-stoichiometric restructuring of hexagonal boron nitride (hBN) surface under ambient 

as well as ODHP relevant reaction conditions. A grand canonical ensemble representation of the 

surface is established, and the predicted 11B solid-state NMR spectra are consistent with previous 

experimental reports. In addition, we investigated the relative sliding of hBN sheets and how it 

affects the surface chemistry with ab initio molecular dynamics simulations. The B-O linkages on 

the edges are found to be significantly strained during the sliding, causing the metastable sliding 

configurations to have higher reactivity towards activation of propane and water. 
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INTRODUCTION 

The conversion of light alkanes to olefins - such as propane to propylene - is an important industrial 

process that currently requires high energy.1 Introducing more efficient and cost-effective catalysts 

for the exothermic oxidative dehydrogenation reaction can reduce energy consumption, improve 

sustainability, and lower the environmental impact of light alkene production.2 Out of a 

serendipitous discovery, a family of boron-containing compounds has been reported to show 

surprisingly high activity and selectivity for the oxidative dehydrogenation of propane (ODHP).3,4 

The most intriguing material among them is hexagonal boron nitride (h-BN), which is metal-free 

and comprised of rather inert chemical bonds. 

Experimental efforts have been made to understand the origin of h-BN’s catalytic activity. A 

common denominator amongst all boron-containing OHDP catalysts is the formation of a boron 

oxide/hydroxide layer, for instance observed by comparing the B 1s XPS or 11B NMR spectra of 

the fresh and spent catalyst.4 Moreover, the active species should consist of extended >B-O-B< 

linkages or networks, while the isolated boron sites seem inactive.5 All evidences so far points to 

the formation of a boron oxide/hydroxide layer over the catalyst surface under ODHP conditions 

being responsible for the catalysis. However, the as-formed boron oxide/hydroxide layers are 

amorphous and non-stoichiometric, making it hard to establish realistic models of the boride/oxide 

interface and to understand the exact structure of the active sites. 

The reaction system is further complicated by the possible role of metastable species only 

accessible at the reaction conditions.6 The h-BN face has been predicted to reconstruct into a large 

number of surface states under ODHP conditions, which coexist and interconvert on the timescale 

of a few picoseconds, requiring a statistical ensemble representation.7 The “hot sites”, which only 
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gain significant population under the catalytic conditions, contain uncommon structural motifs 

such as unsaturated B-B-B linkage and dangling terminal >B-O which have been experimentally 

probed as the key species in promoting a surface-initiated radical chemistry that propagates in the 

gas phase to do the majority of the turnover.8,9  

The hydroxylated edges of the h-BN, which have been probed by 11B solid state NMR (SSNMR),10 

have also been proposed as the key active species for ODHP. However, those characterizations 

were ex situ and could only inform about the local connectivity. The time-averaging nature of the 

measurements also risks overwhelming the signal of metastable states (of low population but high 

activity) by signals of the bulk or the most stable surface phase. To this date, there has been no 

systematic exploration of the stable or metastable edge restructuring configurations under ODHP-

relevant conditions. 

In this work, we present grand canonical genetic algorithm (GCGA), a global optimization strategy 

specialized for off-stoichiometric restructuring surfaces, and apply it to study the armchair and 

zigzag edges of h-BN under relevant conditions to ODHP. The sampling results are used to 

construct statistical grand canonical ensemble representations and surface phase diagrams of the 

edges. The ensemble representations help interpret the shift and trend of key signals of 11B SSNMR 

in previous report. The data of diverse structures generated during the GCGA can naturally serve 

as the training set for machine learning models, enabling low-cost and accurate prediction of 11B 

chemical shift, atomic charges, and formation energy. We also investigated the dynamics of sheet 

sliding and how it influences the chemistry on the restructured edges of h-BN.  
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COMPUTATIONAL METHODS 

1. Model set-up 

The armchair edge of h-BN is modeled by a 5-atomic-layer 2×2 slab with cell dimension of 6.69 

Å × 8.69 Å. The bottom of the slab is capped by H to saturate the dangling bonds. The bottom 4 

atomic layers are constrained as the bulk region, and everything else is allowed to relax as the 

interface region. The zigzag edge of h-BN is modeled by a 6-atomic-layer 2×2 slab with cell 

dimension of 7.53 Å × 6.69 Å. The bottom of the slab is capped by H to saturate the dangling 

bonds. The bottom 5 atomic layers are constrained as the bulk region, and everything else is 

allowed to relax as the interface region. A vacuum slab of 15 Å thickness is added to all asymmetric 

slab models in Z direction to avoid spurious interactions between periodic images. 

 

2. Density functional theory calculations 

The local optimizations and energy evaluations are performed with the PBE functional11 and 

PBE_PAW pseudopotentials12 using the VASP program (version 5.4.4).13–16 The D3 correction is 

added to improve the description of dispersion interactions. Spin polarization is used for all DFT 

calculations throughout the global optimization process with an initial magnetic moment of 1 for 

each atom, which we assume to yield the correct ground state for each sampled configuration. The 

dipole correction is added to eliminate dipole effects caused by the asymmetric slab. The 

convergence criteria for electronic and force minimization are set to 10-5 eV and 0.02 eV/Å during 

the global optimization. Due to the large amount of sampling needed, only the Γ k-point is sampled 
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in the reciprocal space of the Brillouin zone throughout, and the cutoff energy for the kinetic 

energy of the plane-waves is set to 400 eV. 

The transition states (TS) are located using climbing image nudged elastic band (CI-NEB) 

method17 with image dependent pair potential (IDPP) interpolation.18 Each TS geometry has been 

confirmed to have only one imaginary mode. All electronic structure analyses are performed based 

on converged charge density or wavefunction. The Bader charges are calculated from the charge 

densities using Bader Charge Analysis program.19 The chemical shifts tensors are calculated by 

VASP with a more accurate setting (PREC=Accurate) based on the locally optimized geometries 

(see Figure S3 for the benchmarking). 

The ab initio molecular dynamics simulations are performed on minima structures with the same 

DFT setting as the geometry optimization using the VASP program. The simulation is performed 

in the NVT (canonical) ensemble at 300 K with the Nose-Hoover thermostat. The time step is set 

to 1 fs, and a 10 ps trajectory after the equilibration of the system is collected for analysis. 

Clustering analysis is performed using the Python module, GOCIA. 

 

3. Grand canonical genetic algorithm global optimization 

To explore the vast chemical space of amorphous and off-stoichiometric restructuring of extended 

surfaces and to obtain the global minimum (GM) and all relevant local minima (LM), we perform 

global optimization minima search using the grand canonical genetic algorithm implemented in 

our open-source Python module, GOCIA. With this approach, we do not need to grid-search every 
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possible stoichiometry, and we can relax the composition of the system with the search target being 

the grand canonical free energy: 

Ω = 𝐸$∗ B!O"H#) − + 𝜇$𝑁$

%,',(

$

 

Here, 𝐸$∗ B!O"H#) is the DFT-calculated energy of a surface state with an overlayer of the 

composition, BxOyHz. The 𝜇’s are chemical potentials of B, O, and H in the reservoir which can 

exchange atoms with the sampling region of the system during the search. The 𝑁’s are numbers 

of B, O, or H atoms in the sampling region. The choice of 𝜇, which is a function of the energetics 

of key species and experimental conditions (temperature, partial pressure, etc.), are detailed in the 

Supplementary Note 1.  

A population size of 30 and a mutation rate of 30% are chosen for the GCGA sampling. The pool 

of initial candidates is generated using the bond length distribution algorithm (BLDA) which is a 

random structure generation method based on the covalent radii of the atoms.20 A pre-optimization 

with Hookean potential is performed to produce reasonable starting geometries before they are fed 

to electronic structure codes for local optimization and energy evaluation. Mating between the 

alive candidates to create offspring by the Split-and-splice operation,21 in which the parent slabs 

are cut along a random plane and then spliced together. Fitness factor is assigned to each candidate 

based the grand canonical free energy. An over-mating penalty factor of (1 + 𝑁)*+,)-./0, where  

𝑁)*+, is the mating counts, is multiplied to the fitness factor. Candidates with higher fitness are 

more probable to mate. Similarity checks against the current population are performed before 

adding any new candidate to remove duplicates. Adopted mutation operations include: (1) adding 

or removing an atom, (2) rattling the surface atoms along random vectors drawn from a normal 
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distribution, (3) translating the buffer slab along x or y axis by one half of the cell length, (4) 

permuting a random half of buffer slab. If an offspring is too similar to its parent, its mutation rate 

is raised to 100% to avoid recalculating the same structure. Upon the addition of each offspring to 

the population, the candidate with the lowest fitness is archived to maintain the population size.  

The nature of GCGA search makes Its resulting ensemble a naturally diverse (in structure and 

composition) dataset, which is suitable for training machine learning models. We made random 

forest models using the scikit-learn Python module for prediction of surface energy, Bader charge, 

and 11B chemical shift.22 The dataset is randomly divided into training set (2/3) and testing set 

(1/3) for validation purposes. Details of the model and features are discussed in Supplementary 

Note 2.  
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RESULT AND DISCUSSION 

The oxidation and hydroxylation of h-BN terminations span a vast chemical space rich in local 

minima regions. To obtain all the ODHP-relevant minima efficiently, we use the grand canonical 

genetic algorithm (GCGA) to search minima of armchair and zigzag edges of h-BN under four 

sets of conditions corresponding to pre/post-reaction and with/without propane. 

 

Figure 1. Sampling distributions of the GCGA searches. (a) A comparison of the sampling 

efficiencies of GCGA and random sampling by DLBA. (b) The evolution of the population 

Start

End

a b

c d
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averaged in the compositional space during a GCGA search. Projections of the GCGA sampling 

density plot in the (c) plane defined by number of B and O and (d) plane defined by number of O 

and H, with the samples from two searches at different sets of chemical potential overlapped. 

 

In total, 5862 and 4726 unique structures are obtained for the armchair and zigzag edges, 

respectively. The GCGA sampling shows a superior sampling efficiency in locating the low-

energy minima as compared to the one-shot random sampling by the bond-length distribution 

algorithm (BLDA), as is shown by the distribution of samples in Figure 1a. During the GCGA 

search, the population updates its search direction in the compositional space adaptively according 

to the fitness of the alive candidates, making its way toward the global minimum region while 

sampling relevant compositions along the way (Figure 1b), with weak dependence on the initial 

population. The efficient sampling leads to a rather wide distribution of compositions in the final 

ensemble, with significant sampling density in the range of B1-7O3-12H0-7 (Figure 1c-d). When the 

reference chemical potentials are changed, the sampling distribution also shifts accordingly to 

cover a different range of compositions. By merging the samples from the two extreme conditions, 

the fresh B-rich condition and the catalytic oxidative condition, the resulting ensemble would well 

cover all stoichiometries relevant to the interpolated regions between the two sampled conditions. 
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Figure 2. Surface phase diagram of h-BN armchair edge. (a) The surface phase diagram of only 

the global minimum states, as a function of 𝜇% and 𝜇'. (b) The top views of corresponding 

structures, with white, pink, and red spheres representing H, B, and O, respectively. (c) The 

surface phase diagram showing the number of “hot” surface states, i.e., the ones that only gain a 

>5% population when heated above 763 K, as a function of 𝜇% and 𝜇'. 

 

Thereby, we could construct the surface phase diagram, completely from first principles, based on 

the obtained samples, by reweighing the states according to their grand canonical free energy at 

each set of chemical potentials by Boltzmann statistics. Figure 2a shows the phase diagram based 

on the most thermodynamically stable surface states of the armchair edge in the ODHP-relevant 

a b

c
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ranges of 𝜇% and 𝜇', with the top view of each notable surface phase shown in Figure 2b. The 𝜇% 

depends on the amount of excess B precursor left on the terminations from the synthesis, and the 

𝜇' reflects how oxidative the reaction condition is. At ambient conditions, the h-BN armchair edge 

regions with low excess B (phase 1 - B1O4H7) tend to be capped by H to form N-H and B-H 

terminals, with a small amount of O to form the BO3 motif bridging between the adjacent h-BN 

sheets; in regions with high excess B, the edge (phase 10 – B6O8H2) would be mildly oxidized, 

with B-O bonds closing the hexagons at the direct h-BN/oxide interface and reductive B-H 

terminals sticking out on the top surface. Under an oxidizing condition, the armchair edge regions 

with low excess B (phase 3 – B4O8H4) tend to grow BO2(OH) motifs along the plane of the h-BN 

sheet; however, the regions with high excess B (phase 11 – B8H11H0) would form a thick B2O3-

like overlayer. Since the B2O3 overlayer can partially screen the direct h-BN surface from the gas 

phase, and the majority of the terminations have a moderate amount of excess B, the effective 𝜇' 

and 𝜇%  would fall in the middle region enclosed by the extrema, mostly forming partial 

oxide/hydroxide layers bridging between adjacent sheets. Note that there is not just one phase 

under each specified condition, but multiple phases. Each phase behaves like a hyperplane in the 

phase space, with multiple phases overlaying and intersecting each other over the whole range of 

relevant chemical potentials. As temperature increases to the reaction temperature, 763 K, the 

population distribution of surface states broadens, and some low-energy metastable states would 

gain a significant population and become accessible, which we dub as “hot” states. Figure 2c shows 

the number of “hot” states (population gain cutoff: >5%) as a function of reaction conditions. The 

number of “hot” states is larger at the inter-phase boundaries, especially, the regions of moderate 

𝜇' and 𝜇%, which corresponds to the local environment of the majority of the edge, have up to 9 

coexisting “hot” states. 
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The scenario is similar on the zigzag edge (Figure S3), but with less tendency to form bridging 

BO3 between adjacent h-BN sheets, likely due to the mismatch in height of the terminal B atoms 

on adjacent sheets (from the AB stacking pattern) and the stabilization of in-plane terminal B-OH 

groups by hydrogen bond interactions (e.g., phase 3, 4, and 7 in Figure S3). 

  

Figure 3. Ensemble-based simulation of 11B SSNMR spectra for h-BN armchair edge. (a) The 

evolution of population of accessible surface phases as a function of 𝜇'. The BxOyHx#n denotes 

the n-th local minima (zeroth is the global minimum) of the surface stoichiometry of BxOyHz. (b) 

The evolution of 11B SSNMR spectra as a function of 𝜇'. The experimental data from ref 23 are 

also shown in the lower panel for comparison. Adapted from ref 23. Copyright 2019 American 

Chemical Society. 

 

One can take a slice of the surface phase diagram and look at the evolution of state populations as 

a function of varying conditions. Figure 3a shows the evolution of surface phase populations on 

Oxidizing

a b

Exp.

Calc.
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armchair edge of h-BN as the condition becomes more oxidizing (geometries of mentioned surface 

phases are in Figure S4). Experimentally this would correspond to running the reaction from 

oxygen lean to rich, or high oxygen consumption at the outlet of a flow reactor to low oxygen 

conversion at the inlet of the reactor. Multiple surface phases of different stoichiometries can 

coexist, and there are several metastable phases with significant populations. The grand canonical 

ensemble representation enables simulation of ensemble-averaged spectra of a specific spatial 

region under varying conditions. Figure 3b shows the ensemble-averaged 11B SSNMR spectra of 

the top surface only, as the condition becomes more oxidizing. In the beginning, the major peak is 

at ca. 30 ppm, corresponding to B-N linkages on h-BN edges that are not oxyfunctionalized. At 

mild oxidative conditions, the B-N signals decrease, and a shoulder peak forms at ca. 19 ppm, 

corresponding to B-O linkages. At more oxidative conditions, the B-N signals on the surface layer 

are completely gone, and the 19 ppm peak dominates as the edge gets further oxyfunctionalized 

and hydroxylated, and a ca. 10 ppm shoulder peak corresponding to boron oxide is formed. The 

scenario is similar for the zigzag edge (Figure S5-6), with only a minor difference in the peak 

shape (corresponding to the ratio of different motifs with similar chemical shifts). The simulated 

11B SSNMR spectra and the trend under varying conditions agree well with previous experimental 

reports,23 and provide detailed structural insights of the surface-only region which are derived 

completely from first principles. It is noteworthy that the armchair edge is more easily oxidized 

than the zigzag edge, as is characterized by the onset 𝜇' beyond which oxidation begins (ca. -9.6 

eV for armchair edge and ca. -8.7 eV for zigzag edge), due to the different reactivity of their 

terminal motifs. Other more complex terminations of h-BN may also have slightly different 

oxidizability, resulting in a step-wise activation stage of the h-BN before all its surface regions 

transform to catalytic phases towards ODHP. 
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Figure 4. Accuracy of predictive machine learning models trained on the GCGA samples. Parity 

plots of (a) Bader charge prediction for B, O, and H, (b) 11B chemical shift prediction, and (c) 

surface energy prediction using the trained random forest models. 

 

The ensemble constructed from GCGA samplings has been shown to contain a wide variety of 

structural motifs that are relevant to ODHP conditions. This makes a large and diverse dataset 

spanning the whole chemical subspace of interest, which is naturally suitable as a training set for 

machine learning (ML) models. Here we train random forest (RF) models, with the structural 

descriptors proposed by ref 24, on the ensembles to predict the Bader charge, SSNMR chemical 

shift, and formation energy of off-stoichiometric restructured h-BN edges (Figure 4). The accuracy 

of Bader charge prediction for B, O, and H is high, with R2 of 0.99997 and RMSE of only 0.011 

|e|. The prediction of 11B chemical shift is also accurate, with R2 of 0.944 and RMSE of 0.715 ppm, 

likely due to higher sensitivity of the shielding to local structural patterns. The surface energy 

prediction is less satisfactory, with R2 of 0.857 and RMSE of 0.592 meV/Å2, but it can still serve 

as a low-cost filter during global optimization search.  

R2=0 . 856777
RMSE= 0.592

a b c Surface energy (meV/Å 2)

R2=0.999966
RMSE= 0.011

R2=0.944043
RMSE= 0.715

Bader charge of B/O/H (|e) 11B chemical shift (ppm)
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Figure 5. Sliding dynamics of h-BN sheets. (a) The energy barriers of sheet sliding in different 

directions, calculated from h-BN bulk structure. (b) The root-mean-square deviation of a free h-

BN sheet during the AIMD simulation, decomposed into in-plane and out-of-plane movements. 

(c) The sliding path of a free h-BN sheet during the AIMD simulation, with red and green dots 

marking the start and end points, respectively. (d) The evolution of Bader charge of B and O in 

the bridging linkage during the AIMD simulation. The curve of free and fixed sheets are plotted 

as dashed and solid lines, respectively. 

 

Although experimentally, a variety of borides and boron-containing materials function as ODHP 

catalysts, h-BN remains one of the most active ones. Having established a detailed understanding 

of the off-stoichiometric restructured h-BN edges, we now further investigate what sets h-BN apart 

a b

c d
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from other borides. We note that, while metal borides are mostly structurally rigid, and some are 

super-hard, the layered h-BN structure consists of 2-dimensional sheets held together by 𝜋 − 𝜋 

stacking interactions. The material is thus prone to sheet sliding, featuring a flat potential energy 

surface (PES) and periodically distributed “sliding minima” separated by low barriers of 0.03 eV 

or 0.19 eV, depending on the sliding direction (Figure 5a). We hypothesize that this leads to the 

enhanced ODHP activity. Since the ODHP catalysis takes place at higher temperatures, we expect 

the sheets to slide dramatically and access multiple sliding minima, which can compress or stretch 

the surface boron oxide/hydroxide layer, since it is bridging the adjacent sheets. To explore the 

possible effect on the reactivity, we focus on phase 4 - B5O9H3 of the armchair edge (Figure 2b) 

in the following, and start by performing ab initio molecular dynamics (AIMD) simulation of a 4-

sheet supercell of it (2 layers fixed and 2 layers free to slide) at 763 K in the NVT ensemble. The 

RMSD of a free-to-slide sheet is shown in Figure 5b. It is obvious that the sheet does not move 

much in the out-of-plane direction but moves dramatically in the in-plane directions. By tracking 

the movement of the sheet in Figure 5c, we can see that the sheet can slide and access multiple 

sliding minima in timescale of a few picoseconds. As the sheet slides around, the bridging boron 

oxide/hydroxide linkages are strained along the way, leading to a much higher fluctuation of the 

B-O-B angle, O-B-O angle, and O-B-O-B dihedral angle of those bridging linkages (Figure S7a-

c). In addition to enhanced geometric fluctuations, there are also larger fluctuation in the electronic 

structure of the B-O linkages, as is reflected by the evolution of Bader charge of the B and O in 

the bridging linkages (Figure 5d) on the free sheet than on the fixed sheet, quantified by standard 

deviations in Figure S7d-e. 
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Figure 6. Chemical bonding analysis of the B-O bond. The isosurfaces of electron localization 

function (ELF) at isovalue of 0.825 for the phase 4 of armchair edge, (a) top and (b) side view. 

(c) The colormap showing the ELF of the cross-section plane of the B-O bond marked in the 

isosurfaces. 

The pronounced fluctuation in Bader charges solely from bending and torsion of the B-O bonds 

originates in the anisotropic nature of the B-O bond. As is shown in Figure 6, the electron 

localization function (ELF) of the B-O bond cross-section plane shows an elliptic shape, with 

suggest significant 𝜋 characteristics in the BO3 motif (as compared to the perfect circle shape of 𝜎 

bond cross-section). As the h-BN sheets slide relative to each other, the 𝜋 characteristics of the B-

O bonds changes along with the bending and torsion of the B-O linkages, leading to changes in 

the bond strength and redistribution of charge. In other words, the sliding of h-BN sheets can solely 

populate an ensemble of sliding configurations of different geometric and electronic structures, 

even for a surface phase of constant composition and connectivity. This effect is inaccessible to 

other, more rigid borides. 
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Figure 7. Influence of the sheet sliding on the reactivity of bridging linkages at the h-BN edge. 

(a) The energy diagram of a restructured h-BN armchair edge, phase 4 as in Figure 2, 

interconverting among the three sliding configurations of the lowest energy. (b) The energy 

diagram of water activation (from center to right) and propane activation (from center to left) on 

the bridging B-O of the three sliding configurations. Corresponding geometries are shown on the 

right side of each energy diagram. 

 

To further investigate how the distortion of bridging linkages from sliding influences their 

reactivity, we first locate the relevant low-energy sliding configurations by annealing from the 

AIMD trajectory. Note that there can be more accessible sliding configurations under the reaction 

LM#1

LM#2

GM

GM LM#2 LM#1

IS TS FS

C
3H

8
H
2
O

a

b

GM
LM#1
LM#2

C3H 8 H 2O

*C 3H 7
& *H

*OH
& *H

TS

TS



 21 

condition, but here we focus on the three interconverting ones to probe the sliding effects on 

reactivity. Figure 7a shows the energy diagram of interconversion and geometries of the three 

sliding configurations of the lowest energies. The presence of bridging linkage slightly reshapes 

the PES of h-BN sheet sliding, breaking the degeneracy of the energy of the sliding minima and 

raising the barriers (compared to the 0.03 eV barrier of a similar sliding direction in Figure 5a). 

The higher energy a sliding configuration has, the more strained its bridging linkage is, i.e., likely 

more activated. Indeed, the barriers for propane activation on the bridging B-O of those sliding 

configurations follow an inverse order from that of their energies, that is, the GM has the highest 

barrier, whereas the second LM (LM#2) has the lowest barrier (Figure 7b). In addition, the absolute 

energy of the transition state for propane activation is the lowest for LM#2 and the highest for GM, 

indicating the rate contributions to be GM < LM#1 < LM#2 (1:5:287, estimated by Arrhenius law) 

despite the lower population of LM#2 (Boltzmann population: 8.3% at 300 K and 17.4% at 800K). 

The trends in barrier and absolute energy of the transition state are similar for water activation on 

the three sliding configurations, with LM#2 being the most reactive and GM being the least. Note 

that here we aim to probe the effect of sliding dynamics on reaction barriers on only one specific 

site, and there surely can be active sites and pathways of lower barriers. Although not explicitly 

investigated herein, we believe that such promoting effects are universal to other bridging linkages, 

as the sliding coordinate is orthogonal to the reaction coordinate in the conventional view. Hence, 

the above discussion of sliding effects on bonding and reactivity should still hold true regardless 

of the detailed structure of the active site or the activated complex, as long as the reactive site can 

be strained by sliding dynamics. 

The above analysis assumes that the sliding configuration stays the same during the course of the 

reaction. However, the reality can be far more complicated: the sliding can take place in a similar 
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or shorter timescale than the ODHP reaction steps. In that case, the reaction coordinates of sliding 

and ODHP would weave into a 2-dimensional free energy landscape where the two events can be 

step-wise (L-shaped path) for some initial configurations and coupled (diagonal path) for others. 

Those coupled pathways, if accessible, could have even lower barriers, resulting in a higher overall 

activity. Either way, we expect the exceptional OHDP activity of h-BN to stem from its flexible 

B-N skeleton and mobile layered structures, as compared to the metal borides whose bulk structure 

is rigid and not capable of similar sliding dynamics. 

 
CONCLUSIONS 
 

In this work, we developed a grand canonical genetic algorithm workflow for efficient minima 

search of off-stoichiometric restructuring surface structures at DFT level. The method is used to 

construct a grand canonical ensemble representation of the h-BN armchair and zigzag edges under 

ODHP conditions. Based on the ensemble representation, we explore the evolution of surface 

phases under varying conditions, from ambient to oxidation environments. Our simulated 

ensemble-averaged 11B SSNMR spectra are in excellent agreement with previous experimental 

reports and provide a detailed atomistic understanding of the chemical transformations during the 

catalyst activation process. In addition, we show that the samples from grand canonical global 

optimization can serve as a structurally diverse dataset for training data-driven models for 

predictive tasks. We probe the sliding dynamics of h-BN sheets under reaction temperature by 

AIMD simulations, which turned out to be rather mobile and able to slide on the time scale of a 

few picoseconds. The sliding dynamics is found to populate an extended ensemble of sliding 

configurations for each surface phase, causing a strain the boron oxide/hydroxide surface layer. 

The distortion of the bridging B-O linkages is apparently able to activate them for propane and 
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water activations, with the metastable sliding configurations showing higher activity than the most 

stable configuration. We hypothesize such sliding-enhanced reactivity to be the origin of the 

exceptional ODHP activity of h-BN as compared to metal borides. 
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The Supporting Information is available free of charge at xxx. 

Details of the computational models and global optimization methods; Benchmarking of the 11B 

NMR simulations by DFT; Surface phase diagram of h-BN zigzag edge; Geometries of the 

accessible surface phases of restructured h-BN edges; Ensemble-based simulation of 11B SSNMR 
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