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ABSTRACT OF THE DISSERTATION  
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Diagnostic Fracture Injection Tests (DFIT) are techniques that have been widely used in 

hydraulic fracturing to estimate reservoir properties and parameters. A fully coupled 

poroelastic model is developed to simulate hydraulic fracture initiation, propagation, and 

closure using the finite element method. The pressure decline data after shut-in is analyzed 

to estimate the leak-off coefficient, in-situ stress, permeability, and pore pressure. Results 

are compared to previous DFIT techniques developed based on linear elastic fracture 

mechanics and Carter’s leak-off model.  

During the before-closure analysis, the pressure decline data is analyzed to estimate the 

leak-off coefficient and in-situ stress through a special dimensionless time function called 

G-function. With poroelastic effects taken into account, the leak-off coefficient can be 



 vi 

twice as large as the one obtained from previous DFIT techniques. Also, higher in-situ 

stress estimates are obtained in the fully coupled model. The after-closure analysis involves 

the identification of linear flow and radial flow regimes. The linear flow analysis can 

significantly overestimate reservoir permeability, while the radial flow analysis can obtain 

a reliable permeability estimate. Both the linear and radial flow analyses can provide 

accurate estimates of pore pressure.  

This study demonstrates that poroelastic effects cannot be ignored in some cases. The 

previous DFIT techniques developed based on linear elastic fracture mechanics and 

Carter’s leak-off model may result in inaccurate estimation of properties such as leak-off 

coefficient and permeability, further affecting the optimization of hydraulic fracturing 

treatment design.  
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Chapter 1 
 

Introduction 

1.1 Hydraulic fracturing 

Hydraulic fracturing is a stimulation technology that has been commonly used in the oil 

industry to improve the well productivity from formations with lower permeability. This 

technology has been exploited by the oil and gas industry to enhance hydrocarbon 

production since the 1950s. By pumping a mixture of fluid and sand into a reservoir of low 

permeability, it is possible to generate a network of fractures that connect the wellbore with 

the large volume of the reservoir. The proppant is used to prop the fractures after the 

fracturing fluid is leaked into the reservoir. The propped fractures serve as effective fluid 

channels and therefore can considerably enhance hydrocarbon production.  

Due to the difficulty of direct monitoring real fracture geometries, fracture modeling and 

simulation play an important role in hydraulic fracturing treatment design. At the earlier 

stage of development, three basic classical models, PKN model (Perkins and Kern, 1961), 

KGD model (Geertsma and de Klerk, 1969), and the penny-shaped or radial model 
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(Savitski and Detournay, 2002), were proposed for the analysis of the hydraulic fracturing 

process. These models assume that the reservoir is linear elastic solid, and the fluid flow 

between fracture surfaces follows Reynold’s equation. As shown in Figure 1.1, these 

models vary by simplifying certain fracture configurations.  

              

                                         (a)                                                                  (b)  

 

(c)  

Figure 1.1: Fracture geometries (Li, 2023): (a) PKN model; (b) KGD model; (c) Penny-

shaped model 

 

The KGD model assumes that the fracture height is constant and the fracture is at plane 

strain condition in the horizontal plane. Besides the constant height assumption, the PKN 

model also assumes that the fracture is at plane strain condition in the vertical plane and 

the fracture toughness is negligible. The KGD model is suitable for fractures whose height 
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is much larger than its length, while the PKN model is suitable for fractures whose length 

is much larger than its height. The KGD model and the PKN model were the first two 

models that took both volume balance and solid mechanics into consideration (Economides, 

2000). The penny-shaped model assumes that the fluid is injected from a point source. The 

shape of the fracture is expected to be circular when the minimum in-situ stress is 

distributed uniformly.                     

Although a variety of models have been proposed to investigate hydraulic fracturing, most 

of them were established by using Carter’s one-dimensional model to represent leak-off. 

The fluid flow from the fracture into the formation is over simplified. The fluid loss into 

the reservoir will cause an expansion of the reservoir and an increase in fluid pressure, 

which further induces the effective change in the rock matrix. The back stresses resulting 

from the dilated reservoir will tend to oppose fracture opening (Salimzadeh, 2016). 

Therefore, a fully coupled model taking poroelastic effects into consideration is required 

to predict fracture geometries and fluid pressure more realistically. 

1.2 Diagnostic fracture injection tests  

One technique that can be improved by the fully coupled model is Diagnostic Fracture 

Injection Tests (DFIT), which have been widely used to estimate reservoir properties and 

parameters, such as leak-off coefficient, in-situ stress, permeability, and pore pressure. The 

DFIT procedure involves pumping a small volume of fluid into a reservoir at a constant 

rate for a short time to create a fracture then the well is shut-in, and the pressure falloff is 

recorded and analyzed. However, existing DFIT techniques are developed based on linear 
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elastic fracture mechanics (LEFM) and Carter’s oversimplified leak-off model, which can 

result in an incorrect estimation of reservoir parameters.  

Pressure interpretation prior to fracture closure is known as before-closure analysis (BCA), 

which was pioneered by Nolte’s work (1979 and 1986) with the development of G-

function. Assuming that the fracture surface growth follows the power law, Nolte noted 

that pressure decreases linearly with the dimensionless G-function before the fracture 

closes. Analytical techniques were also provided to estimate the fluid loss coefficient, fluid 

efficiency, and time for the fracture to close.  

Barree and Mukherjee (1996) and Barree et al. (2009) proposed a method to identify 

closure pressure qualitatively using G-function and its derivatives. The closure is identified 

by the deviation of the semi-log derivative of pressure (𝐺𝑑𝑝/𝑑𝐺) versus the G-function 

from the straight line. This method is referred to as the tangent line method and has become 

the standard practice for DFIT analysis.  

Mayerhofer (1993 and 1995) introduced an alternative model to interpret the leak-off 

process instead of using Cater’s leak-off model. In this method, pressure response is 

considered from the fracture into the formation. By representing the pressure falloff data 

in a specialized plot, which is referred to as the Mayerhofer plot, the filter cake resistance 

and reservoir permeability can be estimated from the intercept and slope of the straight line 

in the Mayerhofer plot.  

McClure et al. (2016) presented the compliance method to estimate fracture closure 

pressure, which is picked up at the point where the system stiffness starts to increase. The 
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compliance method results in an earlier and higher closure pressure estimate than the 

tangent line method.  

Wang and Sharma (2017) proposed the variable compliance method to estimate minimum 

in-situ stress by averaging the G-time of the tangent line method and compliance method. 

The variable compliance method leads to a more accurate estimation of minimum in-situ 

stress without the consideration of poroelastic effects.  

Zanganeh (2017) reinterpreted the facture closure dynamics using the cohesive zone model 

for fracture initiation, propagation, and closure. A leak-off model that is pressure-

dependent and related to formation properties is used for simulation. The closure pressure 

is picked up at the start of the tip closure, which is consistent with the compliance method 

proposed by McClure. 

Pressure interpretation after fracture closure is known as after-closure analysis (ACA), 

which involves the identification of linear flow and radial flow. The boundary condition 

along the fracture changes from constant pressure to zero flux after the fracture closure. 

Nolte et al. (1997) presented the formula for pressure difference during the linear flow 

period based on the heat transfer analysis (Carslaw and Jaegar, 1959). Reservoir parameters 

such as fracture length and closure time can be estimated during the linear flow analysis. 

The radial flow analysis was developed by Gu et al. (1993), which is known as the “impulse 

fracture test”. Permeability and initial pore pressure can be obtained if a radial flow exists.  
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1.3 Dissertation outline 

The primary objective of this research is to investigate the poroelastic effects on the 

interpretation of DFIT for both the KGD model and the penny-shaped model.  

Chapter 1 provides an introduction to hydraulic fracturing and a literature review of current 

DFIT techniques. Chapter 2 presents the governing equations to model hydraulic 

fracturing, the fracture propagation criterion, and the relevant theory about BCA and ACA. 

Chapter 3 presents the finite element formulation for each governing equation and the 

validation of the current model against several analytical solutions. Chapter 4 starts with a 

leak-off comparison of different models. Then, the poroelastic effects on both BCA and 

ACA for the KGD model are studied using six sets of parameters. Chapter 5 provides the 

poroelastic effects on BCA for the penny-shaped model and the conclusion of this research.  
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Chapter 2 
 

Mathematical model of hydraulic fracturing 

2.1 Problem statement 

Fracture models have been well developed over the past few decades based on the 

following three relations: linear elastic fracture mechanics (LEFM), fluid flow in the 

fracture, and continuity equation. Instead of using Carter’s leak-off model to represent fluid 

flowing from the fracture into the formation, the formation can be modeled as porous 

medium based on the theory of poroelasticity, which was developed initially by Terzaghi 

for a one-dimensional problem. The term poroelasticity was first proposed by Geertsma in 

his 1966 paper (Wang, 2000).  Biot extended the theory to the three dimensions later.  

Figure 2.1 shows the schematic illustration of a fluid-driven fracture in the porous medium, 

which includes multiple physical processes: (i) fluid flow within the fracture, (ii) fluid flow 

in the porous medium, (iii) deformation of the porous medium, (iv) fluid leaking into the 

porous medium via the fracture surface, and (v) hydraulic fracture initiation, propagation, 

and closure.  
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Figure 2.1: Schematic illustration of a fluid-driven fracture in the porous medium 

(Monhammadnejad, 2016) 

 

Figure 2.2 shows the sketch of a hydraulic fracture in the porous medium with domain Ω 

and boundary Γ. The fracture is considered a discontinuity with two surfaces through which 

the fluid flow inside the fracture is leaked into the formation. The differential displacement 

between the two surfaces is the fracture width. The deformation of the porous medium is 

coupled with the fracture flow through the fluid pressure applied to the fracture surfaces.  

 

Figure 2.2: Sketch of a fracture with domain Ω and boundary Γ 
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2.2 Deformation of porous medium 

The porous medium is assumed to be fully saturated with a compressible fluid. Under the 

quasi-static conditions, the equilibrium equation of a representative elementary volume 

takes the form 

𝜕𝜎𝑖𝑗

𝜕𝑥𝑗
+ 𝑏𝑖 = 0                                                           (2.1) 

where 𝑏𝑖 is the body force and 𝜎𝑖𝑗 is the total stress which can be written as (Biot, 1941) 

𝜎𝑖𝑗 = 𝜎𝑖𝑗
′ − 𝛼𝑝𝛿𝑖𝑗                                                         (2.2) 

where 𝜎𝑖𝑗
′  is the effective stress, 𝑝 is the fluid pressure in the porous medium, 𝛿𝑖𝑗 is the 

Kronecker delta, which is defined as 𝛿𝑖𝑗 = 1 for 𝑖 = 𝑗 and 𝛿𝑖𝑗 = 0 for 𝑖 ≠ 𝑗, 𝛼 is the Biot 

coefficient, which is given by 

𝛼 = 1 −
𝐾

𝐾𝑠
                                                             (2.3) 

where 𝐾 is the drained bulk modulus and 𝐾𝑠 is the solid bulk modulus. The Biot coefficient 

indicates the degree of coupling between deformation and fluid flow in the porous medium. 

The relationship between total stress and strain can be expressed as  

𝜎𝑖𝑗 = (𝐾 −
2𝐺

3
) 𝜖𝛿𝑖𝑗 + 2𝐺𝜖𝑖𝑗 − 𝛼𝑝𝛿𝑖𝑗                                      (2.4) 

where 𝐺 is the shear modulus, 𝜖 is the volumetric strain which is equal to 𝜖𝑘𝑘, 𝜖𝑖𝑗 is the 

strain, which can be expressed as  

𝜖𝑖𝑗 =
1

2
(
𝜕𝑢𝑖
𝜕𝑥𝑗

+
𝜕𝑢𝑗

𝜕𝑥𝑖
)                                                     (2.5) 
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where 𝑢𝑖 is the displacement. Substituting equation (2.4) and (2.5) into equation (2.1), the 

equilibrium equation in terms of displacements and pressure becomes 

(𝐾 +
𝐺

3
)
𝜕2𝑢𝑗

𝜕𝑥𝑖𝜕𝑥𝑗
+ 𝐺

𝜕2𝑢𝑖
𝜕𝑥𝑗𝜕𝑥𝑗

− 𝛼
𝜕𝑝

𝜕𝑥𝑖
= 0                                   (2.6) 

2.3 Fluid flow in the porous medium 

By combining the mass balance equation and Darcy’s law, the fluid flow in the porous 

medium can be expressed as (Verruijt, 2016) 

𝛼
𝜕

𝜕𝑡
(
𝜕𝑢𝑗

𝜕𝑥𝑗
) + 𝑆

𝜕𝑝

𝜕𝑡
=
𝑘

𝜇
(
𝜕2𝑝

𝜕𝑥𝑗𝜕𝑥𝑗
)                                         (2.7) 

where 𝑘 is the permeability, 𝜇 is the viscosity, 𝑆 is the specific storage coefficient, which 

is given by 

𝑆 =
𝜙

𝐾𝑓
+
𝛼 − 𝜙

𝐾𝑠
                                                        (2.8) 

where 𝐾𝑓 is the fluid bulk modulus, and 𝜙 is the porosity. Equation (2.7) is denoted as the 

storage equation and is often written as (Wang, 2000) 

𝜕𝜁

𝜕𝑡
=
𝑘

𝜇
(
𝜕2𝑝

𝜕𝑥𝑗𝜕𝑥𝑗
)                                                       (2.9) 

where 𝜕𝜁/𝜕𝑡 is the change in fluid content. For the stiff materials, the first term in equation 

(2.7) can be ignored since the second term may dominate the first one. In this condition, 

equation (2.7) can reduce to  

𝑆
𝜕𝑝

𝜕𝑡
=
𝑘

𝜇
(
𝜕2𝑝

𝜕𝑥𝑗𝜕𝑥𝑗
)                                                  (2.10) 
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This decoupled form plays a vital role in reservoir engineering (Verruijt, 2016; Dake, 

1978). 

2.4 Fluid flow in the fracture 

Figure 2.3 shows the sketch of a three-dimensional hydraulic fracture. The fracture width 

𝑤 in the 𝑥3 direction is measured in millimeters and is significantly less than the fracture 

length or fracture radius, which can be tens to hundreds of meters in the 𝑥1  and 𝑥2 

direction. The lubrication theory derived from the Navier-Stokes equation can govern the 

fluid flow in such a geometry in which the dimension in one direction is much smaller than 

the dimension in the other two directions. The lubrication theory was developed based on 

the assumption of negligible body force, Newtonian laminar flow, no-slip condition, and 

constant pressure and velocity in the 𝑥3 direction. 

 

Figure 2.3: Sketch of a 3D hydraulic fracture 

 

Using the cubic law derived from the lubrication theory, the volumetric flow rate inside 

the fracture can be expressed as (Batchelor, 1967) 
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𝑞𝛽 = −
𝑤3

12𝜇

𝜕𝑝𝑓

𝜕𝑥𝛽
                                                      (2.11) 

where the subscript 𝛽 denotes the fracture propagation direction and can be 1 and 2, the 

fracture width 𝑤 is given by (𝑢𝑖
+ − 𝑢𝑖

−) 𝑛𝑖. In the latter expression, 𝑛𝑖 is the unit vector 

normal to the fracture surface. Then the mass balance equation for the fracture flow can be 

written as 

𝜕

𝜕𝑥𝛽
(
𝑤3

12𝜇

𝜕𝑝𝑓

𝜕𝑥𝛽
) =  

𝜕𝑤

𝜕𝑡
+ 𝑞𝐿                                            (2.12) 

where 𝑞𝐿  represents the leak-off flow from the fracture into the formation. By using 

Darcy’s law, 𝑞𝐿 takes the form  

𝑞𝐿 =
𝑘

𝜇

𝜕𝑝

𝜕𝑥𝑖
𝑛𝑖                                                          (2.13) 

Equation (2.12) governs the fluid flow within the fracture. For the KGD model, the 

subscript 𝛽 in equation (2.12) can be omitted for simplicity. The boundary conditions for 

the fluid flow are 

𝑞(0, 𝑡) = 𝑄0/2                                                     (2.14a) 

𝑞(𝑥 = 𝑙𝑡, 𝑡) = 0                                                   (2.14b) 

𝑤(𝑥 = 𝑙𝑡, 𝑡) = 0                                                   (2.14c) 

where 𝑙𝑡 is fracture half-length at time 𝑡. Both the flow rate and the width at the fracture 

tip are zero.  

In contrast to Darcy’s law, Carter’s leak-off model can be derived from the solution of a 

one-dimensional diffusion equation with the assumption of constant pressure drop between 
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the fracture surface and boundary. According to Carter’s leak-off model, 𝑞𝐿 is given by 

(Howard and Fast, 1957) 

𝑞𝐿 =
2𝐶𝐿

√𝑡 − 𝜏(𝑥)
                                                      (2.15) 

where 𝐶𝐿  is Carter’s leak-off coefficient, 𝜏  is the time at which the fluid reaches the 

location 𝑥. The coefficient 2 accounts for the leak-off over the two fracture surfaces.  

2.5 Fracture propagation 

The stress intensity factors (SIFs) can be calculated to indicate the stress concentration 

around the fracture tip. The approaches used to calculate SIFs can be divided into two 

categories: energy methods and direct methods (Nejati, 2015). In energy methods such as 

J-integral (Rice, 1968), the energy release rate is calculated first and then converted to SIFs 

using the relationship between them. On the other hand, in the direct methods, stresses or 

displacements near the crack are calculated to obtain the SIFs. Figure 2.4 shows the 

coordinate axis with the origin at the crack tip, 𝑟 is the distance from the crack tip, and 𝜃 

is the polar angle.  

 

Figure 2.4: Coordinate axis with the origin at the crack tip 
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The stress field near the tip can be expressed as (Anderson, 2005) 

𝜎𝑖𝑗 = (
𝑑

√𝑟
) 𝑓𝑖𝑗(𝜃) + ∑ 𝐴𝑚𝑟

𝑚/2𝑔𝑖𝑗
(𝑚)(𝜃)

∞

𝑚=0

                              (2.16) 

where 𝑑 is the constant, 𝑓𝑖𝑗 is a dimensionless function of 𝜃 in the leading term, 𝐴𝑚 is the 

amplitude, and 𝑔𝑖𝑗
(𝑚)

 is a dimensionless function of 𝜃 for the 𝑚th term. While the distance 

𝑟 approaches zero, the leading term approaches infinity. 

As shown in Figure 2.5, opening (mode I), in-plane shear (mode II), and out-of-plane shear 

(mode III) are the three types of loading that can be applied to a crack.  

 

 

(a)                                                  (b)                                                  (c) 

Figure 2.5: Three types of loading that can be applied to a crack (Sun, 2012): (a) Mode I; 

(b) Mode II; (c) Mode III 

 

Fracture propagation is mode I dominated and the stress fields adjacent to the crack tip for 

mode I are given by 
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𝜎𝑥𝑥 =
𝐾𝐼

√2𝜋𝑟
cos (

𝜃

2
) [1 − sin (

𝜃

2
)  sin (

3𝜃

2
)]                          (2.17a) 

𝜎𝑦𝑦 =
𝐾𝐼

√2𝜋𝑟
cos (

𝜃

2
) [1 + sin (

𝜃

2
)  sin (

3𝜃

2
)]                          (2.17b) 

𝜏𝑥𝑦 =
𝐾𝐼

√2𝜋𝑟
cos (

𝜃

2
) sin (

𝜃

2
)  cos (

3𝜃

2
)                                      (2.17c) 

where 𝐾𝐼 is mode I stress intensity factor. The corresponding displacement fields for mode 

I are given by  

𝑢𝑥 =
𝐾𝐼
2𝐺

√
𝑟

2𝜋
cos (

𝜃

2
) [κ − 1 + 2sin

2 (
𝜃

2
)]                            (2.18a) 

𝑢𝑦 =
𝐾𝐼
2𝐺

√
𝑟

2𝜋
sin (

𝜃

2
) [κ + 1 − 2cos2 (

𝜃

2
)]                            (2.18b) 

where, κ is the Kolosov constant, which is equal to 3 − 4𝑣 for the plane strain condition. 

When 𝜃 = 𝜋, 

𝐾𝐼 = lim
𝑟→0

[√
2𝜋

𝑟

𝐺𝑢𝑦

2(1 − 𝑣)
]                                              (2.19) 

The fracture propagation criterion is  

𝐾𝐼 = 𝐾𝐼𝐶                                                              (2.20) 

where 𝐾𝐼𝐶  is the material toughness of the solid matrix.  

2.6 Before-closure analysis (BCA) 

During the before-closure analysis, the leak-off coefficient and in-situ stress can be inferred 

through a special dimensionless time function called G-function developed by Nolte. With 
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the assumption of Carter’s leak-off model, power law fracture evolution, constant fracture 

pressure on the boundary, and constant fracture surface after shut-in, the pressure decline 

after shut-in can be expressed as (Economides, 2000) 

𝑝𝑓(∆𝑡𝐷) = 𝐼𝑆𝐼𝑃 −
𝜋𝑟𝑝𝐶𝐿𝑆𝑓√𝑡𝑒

2
𝐺(∆𝑡𝐷)                                  (2.21) 

where ∆𝑡𝐷 is dimensionless time, which is defined as 

∆𝑡𝐷 =
𝑡 − 𝑡𝑒
𝑡𝑒

                                                         (2.22) 

where 𝑡 is the generic time, 𝑡𝑒 is the time at shut-in. 𝐼𝑆𝐼𝑃 is instantaneous shut-in pressure, 

𝑟𝑝 is the ratio of  fracture of area that is subject to leak-off to the total surface area, which 

is assumed to be one for simplicity, and 𝑆𝑓 is fracture stiffness. 𝑆𝑓 and 𝐶𝐿 can be calculated 

by using Table 2.1 and Table 2.2 (Valko and Economides, 1999), respectively. The 

derivation of equation (2.21) is presented in Appendix A. 

In Table 2.1 and Table 2.2, ℎ𝑓 , 𝑥𝑓 , and 𝑅𝑓  are fracture height, fracture half-length, and 

facture radius, respectively, 𝑚𝑁  is the slope of the straight line, 𝐸′  is the plane strain 

modulus, which is defined as 

𝐸′ =
𝐸

1 − 𝑣2
                                                         (2.23) 

where 𝐸 is the Young’s modulus and 𝑣 is the Poisson’s ratio. 
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Table 2.1: Proportionality constant 𝑆𝑓 for different fracture geometries 

PKN KGD Radial 

2𝐸′

𝜋ℎ𝑓
 

𝐸′

𝜋𝑥𝑓
 

3𝜋𝐸′

16𝑅𝑓
 

 

Table 2.2: Leak-off coefficient 𝐶𝐿 for different fracture geometries 

PKN KGD Radial 

𝜋ℎ𝑓

4𝑟𝑝√𝑡𝑒𝐸
′
(−𝑚𝑁) 

𝜋𝑥𝑓

2𝑟𝑝√𝑡𝑒𝐸
′
(−𝑚𝑁) 

8𝑅𝑓

3𝜋𝑟𝑝√𝑡𝑒𝐸
′
(−𝑚𝑁) 

 

The G-function is defined as 

𝐺(∆𝑡𝐷) =
4

𝜋
[𝑔(∆𝑡𝐷) − 𝑔(0)]                                          (2.24) 

where g-function is given by 

𝑔(∆𝑡𝐷) =

{
 

 

  

(1 + ∆𝑡𝐷)sin
−1(1 + ∆𝑡𝐷)

−1/2 + ∆𝑡𝐷
1/2
          for low fluid efficiency   

         
4

3
[(1 + ∆𝑡𝐷)

3/2 − ∆𝑡𝐷
3/2
]                                  for high fluid efficiency 

(2.25) 

The fluid efficiency is defined as 

𝜂 =
𝑉𝑓

𝑉𝑖
                                                              (2.26) 

where 𝑉𝑖 is the total injected volume, 𝑉𝑓 is the fracture volume at the end of the injection. 

Without the consideration of spurt, the fluid efficiency can also be estimated using the 

following formula 

𝜂 ≈
𝐺𝑐

2 + 𝐺𝑐
                                                          (2.27) 
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where 𝐺𝑐 is the value of 𝐺(∆𝑡𝐷) at closure. The analytical solution for Carter’s leak-off 

coefficient can be expressed as (Howard and Fast, 1957) 

𝐶𝐿 = (𝑝𝑓 − 𝑝𝑖)√
𝑘𝜙𝑐𝑡
𝜋𝜇

                                                (2.28) 

where 𝑝𝑖 is the initial reservoir pressure, 𝑐𝑡 is the total compressibility, which is defined as 

𝑐𝑡 = 𝑐𝑠 + 𝑐𝑓                                                          (2.29) 

where 𝑐𝑠 is the solid compressibility, which is equal to 1/𝐾𝑠 and 𝑐𝑓 is the fluid 

compressibility, which is equal to 1/𝐾𝑓. Yarushina (2013) presented another expression of 

total compressibility, which takes the form below 

𝑐𝑡 =
𝜙𝑐𝜙

1 − 𝜙
+
𝜙2𝑐𝑠
1 − 𝜙

+ 𝜙𝑐𝑓 =  𝜙𝑐̃                                       (2.30) 

where 𝑐𝜙 is the pore space compressibility, which is often considered identical to 𝑐𝑠 in the 

literature. The 𝑐̃ in equation (2.30) is equivalent to 𝑐𝑡 in equation (2.29) when porosity is 

relatively small.  

2.7 After-closure analysis (ACA) 

The after-closure analysis involves the identification of linear and radial flow regimes. As 

shown in Figure 2.6a, the parallel flow in the formation indicates the existence of the linear 

flow. In Figure 2.6b, the flow converging to the line located at the center of the wellbore 

indicates the existence of the radial flow. During the DFIT analysis, the linear flow and the 

radial flow can be identified based on the slope of the pressure derivative curve.  
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(a)  

 

(b)  

Figure 2.6: Linear flow and radial flow (Economides, 2000): (a) Linear flow to fracture; 

(b) Complete radial flow 

2.7.1 Linear flow period  

After the fracture closure, the boundary condition changes from a constant pressure 

condition to a zero flux condition, which is referred to as the mixed boundary condition or 

changed boundary condition (Nolte et al., 1997). Carslaw and Jaegar (1959) provided a 

closed form solution for this kind of mixed boundary condition in the heat transfer analysis. 

The pressure difference during the linear flow period can be expressed as (Talley et al., 

1999) 

𝑝(𝑡) − 𝑝𝑖 = 𝑚𝐿𝐹𝐿(𝑡, 𝑡𝑐)                                               (2.31) 

where 𝑚𝐿 is the slope, which is written as 

𝑚𝐿 = 𝐶𝐿√
𝜋𝜇

𝑘𝜙𝑐𝑡
                                                      (2.32) 

The linear flow time function is defined as 
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𝐹𝐿(𝑡, 𝑡𝑐) =
2

𝜋
sin−1√

𝑡𝑐
𝑡
,   t≥𝑡𝑐                                          (2.33) 

where 𝑡𝑐 is the time to fracture closure. When 𝑡 is significantly larger than 𝑡𝑐, 𝐹𝐿can be 

approximated as 

𝐹𝐿(𝑡, 𝑡𝑐) =
2

𝜋
√
𝑡𝑐
𝑡
,   t≫𝑡𝑐                                               (2.34) 

Therefore, pressure versus linear flow time is equivalent to pressure versus reciprocal 

square root of time, and pressure versus square of linear flow time is equivalent to pressure 

versus reciprocal time under these conditions (McClure, 2019).  

2.7.2 Radial flow period  

There is no relation similar to equation (2.31) that has been proposed for a fracture with a 

mixed boundary condition during the radial flow period. Gu et al. (1993) presented an after-

closure analysis based on the instantaneous line source solution to the diffusivity equation. 

The pressure difference during the radial flow period can be expressed as (Talley et al., 

1999) 

𝑝(𝑡) − 𝑝𝑖 = 𝑚𝑅𝐹𝑅(𝑡, 𝑡𝑐)                                               (2.35) 

The radial flow time function is defined as 

𝐹𝑅(𝑡, 𝑡𝑐) =
1

4
 ln (1 +

𝜒𝑡𝑐
𝑡 − 𝑡𝑐

)                                          (2.36) 

where 𝜒 is defined as 

𝜒 =
16

𝜋2
≈ 1.6                                                         (2.37) 
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For well-developed radial flow, 𝜒 is equal to unity. The permeability can be estimated by 

using the following equation 

𝑘ℎ

𝜇
= 251,000

𝑄

𝑚𝑅𝑡𝑐
                                                  (2.38) 

where permeability 𝑘 is in md, net pay thickness ℎ is in feet, viscosity 𝜇 is in cp, 𝑡𝑐 is in 

minutes, the injected volume is 𝑄 in bbls, and the slope 𝑚𝑅 is in psi. For the penny-shaped 

fracture, ℎ  is twice the size of fracture radius. The term 𝑘ℎ/𝜇  is the reservoir 

transmissibility. 
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Chapter 3 
 

Finite element formulation of hydraulic fracturing model 

3.1 Finite element formulation 

The finite element method has been used extensively to model hydraulic fracturing because 

of its ability to deal with irregular domains and heterogeneous material properties (Bao, 

2014; Salimzadeh, 2016). Other numerical methods such as the phase field method 

(Chukwudozie, 2016) and extended finite element method (Salimzadeh, 2015) have also 

been proposed to simulate hydraulic fracture in saturated porous media.  

The standard Galerkin method and the finite difference techniques are applied for spatial 

and time discretization in this study, respectively. The finite element formulation for the 

two-dimensional model is presented in this section. The finite element formulation for the 

three-dimensional model can be obtained using the same approach (See Appendix B).  
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3.1.1 The equilibrium equation  

By multiplying the equilibrium equation (2.1) with the weight function 𝓌 and integrating 

over the domain, the weak form of the equilibrium equation can be written as 

∫ 𝓌
𝜕𝜎𝑖𝑗

𝜕𝑥𝑗
𝑑Ω

Ω

= 0                                                        (3.1) 

The body force was ignored in equation (3.1). Integrating by parts of equation (3.1) results 

in  

−∫
𝜕𝓌

𝜕𝑥𝑗
𝜎𝑖𝑗 𝑑Ω +

Ω

∫
𝜕(𝓌𝜎𝑖𝑗)

𝜕𝑥𝑗
𝑑Ω

Ω

= 0                                     (3.2) 

Using the Gauss divergence theorem, equation (3.2) becomes 

∫
𝜕𝓌

𝜕𝑥𝑗
𝜎𝑖𝑗 𝑑Ω

Ω

= ∫𝓌𝜎𝑖𝑗𝑛𝑗𝑑Γ
Γ

                                            (3.3) 

Substituting the formula of total stress into equation (3.3) results in 

∫
𝜕𝓌

𝜕𝑥𝑗
(𝜎𝑖𝑗

′ − 𝛼𝑝𝛿𝑖𝑗) 𝑑Ω
Ω

= ∫ 𝓌𝜎𝑖𝑗𝑛𝑗𝑑Γ
Γ𝑡

+∫ 𝓌𝑝𝑛𝑖𝑑Γ
Γ𝑐

                    (3.4) 

For the first term on the right side of equation (3.4), 𝜎𝑖𝑗𝑛𝑗  represents the traction applied at 

the outer boundary, which is denoted as 𝑇𝑖. The second term on the right side of equation 

(3.4) represents the fluid pressure within the fracture applied at the fracture surfaces. By 

writing the effective stress in terms of the fourth order elasticity tensor 𝑐𝑖𝑗𝑘𝑙  and 

displacement, equation (3.4) becomes 

∫
𝜕𝓌

𝜕𝑥𝑗
𝑐𝑖𝑗𝑘𝑙

𝜕𝑢𝑘
𝜕𝑥𝑙

𝑑Ω
Ω

−∫ 𝛼
𝜕𝓌

𝜕𝑥𝑖
𝑝 𝑑Ω

Ω

−∫ 𝓌𝜎𝑖𝑗𝑛𝑗𝑑Γ
Γ𝑡

−∫ 𝓌𝑝𝑛𝑖𝑑Γ
Γ𝑐

= 0     (3.5) 

The fourth order elasticity tensor 𝑐𝑖𝑗𝑘𝑙 can also be expressed as 
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𝑐𝑖𝑗𝑘𝑙 =
2𝐺𝑣

1 − 2𝑣
𝛿𝑖𝑗𝛿𝑘𝑙 + 𝐺(𝛿𝑖𝑘𝛿𝑗𝑙 + 𝛿𝑖𝑙𝛿𝑗𝑘)                                  (3.6) 

Substituting equation (3.6) into equation (3.5) results in 

∫
𝜕𝓌

𝜕𝑥𝑗

2𝐺𝑣

1 − 2𝑣
𝛿𝑖𝑗𝛿𝑘𝑙

𝜕𝑢𝑘
𝜕𝑥𝑙

𝑑Ω
Ω

+∫
𝜕𝓌

𝜕𝑥𝑗
𝐺(𝛿𝑖𝑘𝛿𝑗𝑙 + 𝛿𝑖𝑙𝛿𝑗𝑘)

𝜕𝑢𝑘
𝜕𝑥𝑙

𝑑Ω 
Ω

 

−∫ 𝛼
𝜕𝓌

𝜕𝑥𝑖
𝑝 𝑑Ω

Ω

−∫ 𝓌𝑝𝑛𝑖𝑑Γ
Γ𝑐

= ∫ 𝓌𝜎𝑖𝑗𝑛𝑗𝑑Γ
Γ𝑡

                                           (3.7) 

The first term of equation (3.7) can be written as 

∫
𝜕𝓌

𝜕𝑥𝑗

2𝐺𝑣

1 − 2𝑣
𝛿𝑖𝑗𝛿𝑘𝑙

𝜕𝑢𝑘
𝜕𝑥𝑙

𝑑Ω
Ω

= ∫
2𝐺𝑣

1 − 2𝑣

𝜕𝓌

𝜕𝑥𝑖

𝜕𝑢𝑗

𝜕𝑥𝑗
𝑑Ω

Ω

                    (3.8) 

The second term of equation (3.7) can be written as 

∫
𝜕𝓌

𝜕𝑥𝑗
𝐺(𝛿𝑖𝑘𝛿𝑗𝑙 + 𝛿𝑖𝑙𝛿𝑗𝑘)

𝜕𝑢𝑘
𝜕𝑥𝑙

𝑑Ω 
Ω

 

= ∫
𝜕𝓌

𝜕𝑥𝑗
𝐺𝛿𝑖𝑘𝛿𝑗𝑙

𝜕𝑢𝑘
𝜕𝑥𝑙

𝑑Ω 
Ω

+∫
𝜕𝓌

𝜕𝑥𝑗
𝐺𝛿𝑖𝑙𝛿𝑗𝑘

𝜕𝑢𝑘
𝜕𝑥𝑙

𝑑Ω 
Ω

                   

= ∫ 𝐺
𝜕𝓌

𝜕𝑥𝑗

𝜕𝑢𝑖
𝜕𝑥𝑗

𝑑Ω 
Ω

+ 𝐺∫
𝜕𝓌

𝜕𝑥𝑗

𝜕𝑢𝑗

𝜕𝑥𝑖
𝑑Ω 

Ω

                              (3.9) 

Hence, equation (3.7) becomes 

∫
2𝐺𝑣

1 − 2𝑣

𝜕𝓌

𝜕𝑥𝑖

𝜕𝑢𝑗

𝜕𝑥𝑗
𝑑Ω

Ω

+∫ 𝐺
𝜕𝓌

𝜕𝑥𝑗

𝜕𝑢𝑖
𝜕𝑥𝑗

𝑑Ω 
Ω

+ 𝐺∫
𝜕𝓌

𝜕𝑥𝑗

𝜕𝑢𝑗

𝜕𝑥𝑖
𝑑Ω 

Ω

 

−∫ 𝛼
𝜕𝓌

𝜕𝑥𝑖
𝑝 𝑑Ω

Ω

−∫ 𝓌𝑝𝑛𝑖𝑑Γ
Γ𝑐

= ∫ 𝓌𝜎𝑖𝑗𝑛𝑗𝑑Γ
Γ𝑡

                                      (3.10) 

Displacements, pressure, and weight function can be approximated over a finite element 

by the expressions  

𝑢𝑖 ≈ 𝑢𝑖
𝑒 = 𝑢𝑖𝑏

𝑒 𝑁𝑏
𝑒, 𝑢𝑗 ≈ 𝑢𝑗

𝑒 = 𝑢𝑗𝑏
𝑒 𝑁𝑏

𝑒, 𝑝 ≈ 𝑝𝑒 = 𝑝𝑏
𝑒𝑁𝑏

𝑒, 𝓌 ≈ 𝑁𝑎
𝑒         (3.11) 
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where 𝑢𝑖𝑏
𝑒 , 𝑢𝑗𝑏

𝑒 , and 𝑝𝑏
𝑒  are the values of 𝑢𝑖

𝑒 , 𝑢𝑗
𝑒 , and 𝑝𝑒at the bth node of the element, 

respectively, 𝑁𝑎
𝑒 and 𝑁𝑏

𝑒 are shape functions. The summation sign is omitted because of 

the repeated indices. Substituting equation (3.11) into equation (3.10) can obtain 

∫
2𝐺𝑣

1 − 2𝑣

𝜕𝑁𝑎
𝑒  

𝜕𝑥𝑖

𝜕𝑁𝑏
𝑒 

𝜕𝑥𝑗
𝑑Ω𝑢𝑗𝑏

𝑒

Ω

+∫ 𝐺
𝜕𝑁𝑎

𝑒

𝜕𝑥𝑗

𝜕𝑁𝑏
𝑒

𝜕𝑥𝑗
𝑑Ω𝑢𝑖𝑏

𝑒  
Ω

+∫ 𝐺
𝜕𝑁𝑎

𝑒

𝜕𝑥𝑗

𝜕𝑁𝑏
𝑒

𝜕𝑥𝑖
𝑑Ω𝑢𝑗𝑏

𝑒  
Ω

 

−∫ 𝛼
𝜕𝑁𝑎

𝑒

𝜕𝑥𝑖
𝑁𝑏
𝑒 𝑑Ω𝑝𝑏

𝑒

Ω

−∫ 𝑁𝑎
𝑒𝑁𝑏

𝑒𝑛𝑖𝑑Γ𝑝𝑏
𝑒

Γ𝑐

= ∫ 𝑁𝑎
𝑒𝜎𝑖𝑗𝑛𝑗𝑑Γ

Γ𝑡

                                 (3.12) 

where the subscript 𝑒 stands for a typical finite element. From equation (3.12), the finite 

element model of the equilibrium equation in the x direction takes the form 

(𝐾11)𝑎𝑏
𝑒 𝑢1𝑏

𝑒 + (𝐾12)𝑎𝑏
𝑒 𝑢2𝑏

𝑒 − (𝐶𝑚1)𝑎𝑏
𝑒 𝑝𝑏

𝑒 − (𝐶𝑓1)𝑎𝑏
𝑒
𝑝𝑏
𝑒 = (𝑇1)𝑎𝑏

𝑒            (3.13) 

The coefficient matrices in equation (3.13) are given by 

(𝐾11)𝑎𝑏
𝑒 = ∫ [

2𝐺(1 − 𝑣)

1 − 2𝑣

𝜕𝑁𝑎
𝑒  

𝜕𝑥1

𝜕𝑁𝑏
𝑒 

𝜕𝑥1
+ 𝐺

𝜕𝑁𝑎
𝑒 

𝜕𝑥2

𝜕𝑁𝑏
𝑒 

𝜕𝑥2
]

Ω

𝑑Ω                (3.14a) 

(𝐾12)𝑎𝑏
𝑒 = ∫ [

2𝐺𝑣

1 − 2𝑣

𝜕𝑁𝑎
𝑒  

𝜕𝑥1

𝜕𝑁𝑏
𝑒 

𝜕𝑥2
+ 𝐺

𝜕𝑁𝑎
𝑒  

𝜕𝑥2

𝜕𝑁𝑏
𝑒 

𝜕𝑥1
]

Ω

𝑑Ω                       (3.14b) 

(𝐶𝑚1)𝑎𝑏
𝑒 = ∫ 𝛼

𝜕𝑁𝑎
𝑒 

𝜕𝑥1
𝑁𝑏
𝑒

Ω

𝑑Ω                                                                    (3.14c) 

(𝐶𝑓1)𝑎𝑏
𝑒
= ∫ 𝑁𝑎

𝑒𝑁𝑏
𝑒𝑛1𝑑Γ

Γ𝑐

                                                                         (3.14d) 

(𝑇1)𝑎𝑏
𝑒 = ∫ 𝑁𝑎

𝑒𝑡1𝑑Γ
Γ𝑡

                                                                                  (3.14e) 

Similarly, the finite element model of the equilibrium equation in the y direction takes the 

form 
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(𝐾21)𝑎𝑏
𝑒 𝑢1𝑏

𝑒 + (𝐾22)𝑎𝑏
𝑒 𝑢2𝑏

𝑒 − (𝐶𝑚2)𝑎𝑏
𝑒 𝑝𝑏

𝑒 − (𝐶𝑓2)𝑎𝑏
𝑒
𝑝𝑏
𝑒 = (𝑇2)𝑎𝑏

𝑒                 (3.15) 

where 

(𝐾21)𝑎𝑏
𝑒 = ∫ [

2𝐺𝑣

1 − 2𝑣

𝜕𝑁𝑎
𝑒  

𝜕𝑥2

𝜕𝑁𝑏
𝑒 

𝜕𝑥1
+ 𝐺

𝜕𝑁𝑎
𝑒  

𝜕𝑥1

𝜕𝑁𝑏
𝑒 

𝜕𝑥2
]

Ω

𝑑Ω                       (3.16a) 

(𝐾22)𝑎𝑏
𝑒 = ∫ [𝐺

𝜕𝑁𝑎
𝑒  

𝜕𝑥1

𝜕𝑁𝑏
𝑒 

𝜕𝑥1
+
2𝐺(1 − 𝑣)

1 − 2𝑣

𝜕𝑁𝑎
𝑒 

𝜕𝑥2

𝜕𝑁𝑏
𝑒 

𝜕𝑥2
]

Ω

𝑑Ω                (3.16b) 

(𝐶𝑚2)𝑎𝑏
𝑒 = ∫ 𝛼

𝜕𝑁𝑎
𝑒 

𝜕𝑥2
𝑁𝑏
𝑒

Ω

𝑑Ω                                                                    (3.16c) 

(𝐶𝑓2)𝑎𝑏
𝑒
= ∫ 𝑁𝑎

𝑒𝑁𝑏
𝑒𝑛2𝑑Γ

Γ𝑐

                                                                         (3.16d) 

(𝑇2)𝑎𝑏
𝑒 = ∫ 𝑁𝑎

𝑒𝑡2𝑑Γ
Γ𝑡

                                                                                  (3.16e) 

The coefficient matrices (𝐾11)𝑎𝑏
𝑒 , (𝐾12)𝑎𝑏

𝑒 , (𝐾21)𝑎𝑏
𝑒 , and (𝐾22)𝑎𝑏

𝑒  can also be expressed in 

terms of 𝐾 and 𝐺 using the following relations 

2𝐺(1 − 𝑣)

1 − 2𝑣
= 𝐾 +

4

3
𝐺                                               (3.17a) 

2𝐺𝑣

1 − 2𝑣
= 𝐾 −

2

3
𝐺                                                     (3.17b) 

3.1.2 The storage equation 

Multiplying equation (2.7) by the weighing function, 𝓌, and integrating over the domain 

results in 
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𝛼∫ 𝓌
𝜕

𝜕𝑡
(
𝜕𝑢𝑖
𝜕𝑥𝑖

) 𝑑Ω
Ω

+ 𝑆∫ 𝓌
𝜕𝑝

𝜕𝑡Ω

𝑑Ω −
𝑘

𝜇
∫ 𝓌(

𝜕2𝑝

𝜕𝑥𝑖𝜕𝑥𝑖
)

Ω

 𝑑Ω = 0 ⇒  

𝛼∫ 𝓌
𝜕

𝜕𝑡
(
𝜕𝑢𝑖
𝜕𝑥𝑖

) 𝑑Ω
Ω

+ 𝑆∫ 𝓌
𝜕𝑝

𝜕𝑡Ω

𝑑Ω +
𝑘

𝜇
∫
𝜕𝓌

𝜕𝑥𝑖

𝜕𝑝

𝜕𝑥𝑖
𝑑Ω

Ω

                         

−
𝑘

𝜇
∫𝓌

𝜕𝑝

𝜕𝑥𝑖
𝑛𝑖𝑑Γ

Γ

= 0                                                                                          (3.18) 

Substituting 𝑢𝑖 ≈ 𝑢𝑖𝑏
𝑒 𝑁𝑏

𝑒, 𝑝 ≈ 𝑝𝑏
𝑒𝑁𝑏

𝑒, and 𝓌 ≈ 𝑁𝑎
𝑒  into equation (3.18) 

𝛼∫ 𝑁𝑎
𝑒
𝜕

𝜕𝑡
(
𝜕𝑁𝑏

𝑒

𝜕𝑥𝑖
)𝑑Ω𝑢𝑖𝑏

𝑒

Ω

+ 𝑆∫ 𝑁𝑎
𝑒
𝜕𝑁𝑏

𝑒

𝜕𝑡Ω

𝑑Ω𝑝𝑏
𝑒 +

𝑘

𝜇
∫
𝜕𝑁𝑎

𝑒

𝜕𝑥𝑖

𝜕𝑁𝑏
𝑒

𝜕𝑥𝑖
𝑑Ω𝑝𝑏

𝑒

Ω

 

−
𝑘

𝜇
∫ 𝑁𝑎

𝑒
𝜕𝑁𝑏

𝑒

𝜕𝑥𝑖
𝑛𝑖𝑑Γ𝑝𝑏

𝑒

Γ

= 0                                                                                 (3.19) 

From equation (3.19), the finite element model of the storage equation takes the form 

(𝐶𝑚1
𝑇 )𝑎𝑏

𝑒
𝜕

𝜕𝑡
(𝑢1𝑏

𝑒 ) + (𝐶𝑚2
𝑇 )𝑎𝑏

𝑒
𝜕

𝜕𝑡
(𝑢2𝑏

𝑒 ) + (𝑀𝑚)𝑎𝑏
𝑒
𝜕

𝜕𝑡
(𝑝𝑏

𝑒) + (𝐻𝑚)𝑎𝑏
𝑒 𝑝𝑏

𝑒 − (𝐿)𝑎𝑏
𝑒 𝑝𝑏

𝑒 = 0  

(3.20) 

where  

(𝐶𝑚1
𝑇 )𝑎𝑏

𝑒 = 𝛼∫ 𝑁𝑎
𝑒
𝜕𝑁𝑏

𝑒  

𝜕𝑥1Ω

𝑑Ω                                                        (3.21a) 

(𝐶𝑚2
𝑇 )𝑎𝑏

𝑒 = 𝛼∫ 𝑁𝑎
𝑒
𝜕𝑁𝑏

𝑒  

𝜕𝑥2Ω

𝑑Ω                                                        (3.21b) 

(𝑀𝑚)𝑎𝑏
𝑒 = 𝑆∫𝑁𝑎

𝑒 𝑁𝑏
𝑒 

Ω

𝑑Ω                                                             (3.21c) 

(𝐻𝑚)𝑎𝑏
𝑒 =

𝑘

𝜇
∫ [

𝜕𝑁𝑎
𝑒 

𝜕𝑥1

𝜕𝑁𝑏
𝑒  

𝜕𝑥1
+
𝜕𝑁𝑎

𝑒 

𝜕𝑥2

𝜕𝑁𝑏
𝑒  

𝜕𝑥2
] 𝑑Ω

Ω

                         (3.21d) 

(𝐿)𝑎𝑏
𝑒 =

𝑘

𝜇
∫ [𝑁𝑎

𝑒
𝜕𝑁𝑏

𝑒 

𝜕𝑥1
𝑛1 + 𝑁𝑎

𝑒
𝜕𝑁𝑏

𝑒 

𝜕𝑥2
𝑛2]

Γ

𝑑Γ                           (3.21e) 
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where the superscript 𝑇 represents transpose.  

3.1.3 The fracture flow equation 

Multiplying equation (2.12) by the weighing function, 𝓌, and integrating over the domain 

results in 

   ∫ 𝓌
𝜕

𝜕𝑥𝛽
(
𝑤3

12𝜇

𝜕𝑝𝑓

𝜕𝑥𝛽
)

Ω

 𝑑Ω = ∫ 𝓌
𝜕𝑤

𝜕𝑡Ω

 𝑑Ω + ∫𝓌𝑞𝐿
Ω

 𝑑Ω ⟹ 

−
𝑤3

12𝜇
∫
𝜕𝓌

𝜕𝑥𝛽

𝜕𝑝

𝜕𝑥𝛽
𝑑Ω

Ω

+
𝑤3

12𝜇
∫𝓌

𝜕𝑝

𝜕𝑥𝛽
𝑛𝛽𝑑Γ − ∫ 𝓌

𝜕𝑤

𝜕𝑡Ω

 𝑑Ω + ∫ 𝓌
𝑘

𝜇

𝜕𝑝

𝜕𝑥𝑖
𝑛𝑖

Ω

𝑑Ω
Γ

= 0 

(3.22) 

For the two-dimensional model, the subscript 𝛽  in equation (2.3) can be omitted for 

simplicity. Substituting 𝑤 = (𝑢𝑖
+ − 𝑢𝑖

−) 𝑛𝑖 , 𝑢𝑖 ≈ 𝑢𝑖𝑏
𝑒 𝑁𝑏

𝑒 , 𝑝 ≈ 𝑝𝑏
𝑒𝑁𝑏

𝑒 , and 𝓌 ≈ 𝑁𝑎
𝑒  into 

equation (3.22) 

∫𝑁𝑎
𝑒
𝜕𝑁𝑏

𝑒𝑛1
𝜕𝑡Γ

𝑑Γ𝑢1𝑏
𝑒 +∫𝑁𝑎

𝑒
𝜕𝑁𝑏

𝑒𝑛2
𝜕𝑡Γ

𝑑Γ𝑢2𝑏
𝑒 +

𝑤3

12𝜇
∫
𝜕𝑁𝑎

𝑒

𝜕𝑥

𝜕𝑁𝑏
𝑒

𝜕𝑥Γ

𝑑Γ𝑝𝑏
𝑒 

−
𝑘

𝜇
∫ [𝑁𝑎

𝑒
𝜕𝑁𝑏

𝑒  

𝜕𝑥1
𝑛1 + 𝑁𝑎

𝑒
𝜕𝑁𝑏

𝑒 

𝜕𝑥2
𝑛2]

Γ

𝑑Γ𝑝𝑏
𝑒 = 𝑄𝑒                                               (3.23) 

For the two-dimensional model, the finite element model of fracture flow equation can be 

written as 

(𝐶𝑓1
𝑇 )

𝑎𝑏

𝑒 𝜕

𝜕𝑡
(𝑢1𝑏

𝑒 ) + (𝐶𝑓2
𝑇 )

𝑎𝑏

𝑒 𝜕

𝜕𝑡
(𝑢2𝑏

𝑒 ) + (𝐻𝑓)𝑎𝑏
𝑒
𝑝𝑏
𝑒 − (𝐿)𝑎𝑏

𝑒 𝑝𝑏
𝑒 = 𝑄𝑒         (3.24) 

where 
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(𝐶𝑓1
𝑇 )

𝑎𝑏

𝑒
= ∫𝑁𝑎

𝑒𝑁𝑏
𝑒𝑛1

Γ

𝑑Γ                                                            (3.25a) 

(𝐶𝑓2
𝑇 )

𝑎𝑏

𝑒
= ∫𝑁𝑎

𝑒𝑁𝑏
𝑒𝑛2

Γ

𝑑Γ                                                            (3.25b) 

(𝐻𝑓)𝑎𝑏
𝑒
=
𝑤3

12𝜇
∫
𝜕𝑁𝑎

𝑒

𝜕𝑥

𝜕𝑁𝑏
𝑒

𝜕𝑥Γ

𝑑Γ                                                   (3.25c) 

(𝐿)𝑎𝑏
𝑒 =

𝑘

𝜇
∫ [𝑁𝑎

𝑒
𝜕𝑁𝑏

𝑒  

𝜕𝑥1
𝑛1 + 𝑁𝑎

𝑒
𝜕𝑁𝑏

𝑒  

𝜕𝑥2
𝑛2]

Γ

𝑑Γ                         (3.25d) 

Equation (3.13), (3.15), (3.20), and (3.24) can be written in the matrix form, both the 

superscript and the subscript are omitted for simplicity.  

[

[0] [0] [0]
[0] [0] [0]

𝐶𝑚1
𝑇 + 𝐶𝑓1

𝑇 𝐶𝑚2
𝑇 + 𝐶𝑓2

𝑇 𝑀𝑚

]
𝜕

𝜕𝑡
[

𝑢1
𝑢2
𝑝
] + [

𝐾11 𝐾12 −𝐶𝑚1 − 𝐶𝑓1
𝐾21 𝐾22 −𝐶𝑚2 − 𝐶𝑓2
[0] [0] 𝐻𝑚 + 𝐻𝑓 − 𝐿

] [

𝑢1
𝑢2
𝑝
] = [

𝑇1
𝑇2
𝑄
] 

(3.26) 

Figure 3.1 shows the spatial discretization of porous medium and fracture for the KGD 

model. The porous medium is discretized using black triangular elements and the fracture 

is discretized using red linear elements. The linear elements are matched with the sides of 

triangular elements that are connected to the fracture. They share the same nodes that are 

represented by the blue points in the figure. Therefore, by extending the coefficient 

matrices for the fracture flow equation with zeros so that all coefficient matrices have the 

same dimensions, the coefficient matrices for the fracture flow equation can be added to 

the corresponding coefficient matrices for the storage equation. In the fully coupled model, 

the fracture flow equation is combined with the storage equation to serve as a constraint.  
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Figure 3.1: Spatial discretization of porous medium and fracture for the KGD model 

 

Similarly, for the penny-shaped model, the porous medium is discretized using eight-node 

brick elements, and the fracture surface is discretized using rectangular elements. The 

rectangular elements are matched with the faces of brick elements that are connected to the 

fracture surface. 

For both the two-dimensional and three-dimensional models, the local coordinate system 

is used for the purpose of numerical integration. The element in a local coordinate system 

is called master element. The integration limits of the integrals transform to the limits of 

the local coordinates, which is from -1 to 1. In addition, for the three-dimensional model, 

the integration over master rectangular element and master brick element can be 

numerically evaluated through the Gauss-Legendre quadrature formulas.  
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3.1.4 Time discretization 

Equation (3.26) contains the first-time derivative of displacement and pressure. The 

weighted average of time derivatives at two consecutive time steps is used for time 

discretization, which takes the form (Reddy, 2019)  

(1 − 𝜓)𝜆̇𝑠 + 𝜓𝜆̇𝑠+1 =
λ𝑠+1 − λ𝑠
∆𝑡𝑠+1

,    0 ≤ 𝜓 ≤ 1                           (3.27) 

where λ𝑠 is the value of 𝜆(𝑡) at time 𝑡 = 𝑡𝑠 = ∑ ∆𝑡𝑖
𝑠
𝑖=1 , ∆𝑡𝑠 = 𝑡𝑠 − 𝑡𝑠−1is the sth time step. 

When 𝜓 = 0, equation (3.27) can reduce to  

𝜆̇𝑠 =
λ𝑠+1 − λ𝑠
∆𝑡𝑠+1

                                                       (3.28) 

Equation (3.28) is known as the forward difference approximation since the value of the 

function in the following step is used. When 𝜓 = 1, equation (3.27) can reduce to  

𝜆̇𝑠+1 =
λ𝑠+1 − λ𝑠
∆𝑡𝑠+1

→ 𝜆̇𝑠 =
λ𝑠 − λ𝑠−1
∆𝑡𝑠

                                    (3.29) 

Therefore, equation (3.29) is known as the backward difference approximation. The 

backward difference approximation is chosen in this study because of its high stability, 

then the time derivative of displacement and pressure can be expressed as 

𝑑𝑢𝑖
𝑑𝑡

=
𝑢𝑖
𝑠 − 𝑢𝑖

𝑠−1

∆𝑡𝑠
,    
𝑑𝑝

𝑑𝑡
=
𝑝𝑠 − 𝑝𝑠−1

∆𝑡𝑠
                                   (3.30) 

The global matrix can be obtained by substituting equation (3.30) into equation (3.26) 
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[

𝐾11 𝐾12 −𝐶𝑚1 − 𝐶𝑓1
𝐾21 𝐾22 −𝐶𝑚2 − 𝐶𝑓2

𝐶𝑚1
𝑇 + 𝐶𝑓1

𝑇 𝐶𝑚2
𝑇 + 𝐶𝑓2

𝑇 𝑀𝑚 + (𝐻𝑚 + 𝐻𝑓 − 𝐿)∆𝑡

] [

𝑢1
𝑠

𝑢2
𝑠

𝑝𝑠
] 

= [

[0] [0] [0]
[0] [0] [0]

𝐶𝑚1
𝑇 + 𝐶𝑓1

𝑇 𝐶𝑚2
𝑇 + 𝐶𝑓2

𝑇 𝑀𝑚

] [

𝑢1
𝑠−1

𝑢2
𝑠−1

𝑝𝑠−1
] + [

𝑇1
𝑇2
𝑄∆𝑡𝑠

]                           (3.31) 

In the global matrix above, 𝐾  is the mechanical stiffness matrix, 𝐶𝑚  is the poroelastic 

coupling matrix, and 𝐶𝑓 is the hydro-mechanical coupling matrix. 

3.2 Validation of the model 

3.2.1 Line fracture 

The first benchmark is the deformation of a line crack under the action of internal pressure. 

As shown in Figure 3.2, a thin crack with a length of 2𝑙 is located at the center of an infinite 

two-dimensional medium and a uniform pressure 𝑝0 is applied to the crack.  

 

Figure 3.2: Line crack under uniform pressure 
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The displacement along the crack in the y direction is given by [Sneddon, 1946]      

𝑤(𝑥) =
2(1 − 𝑣2)𝑝0

𝐸
√𝑙2 − 𝑥2                                         (3.32) 

Figure 3.3 shows the opening profile of a line crack under a uniform pressure of 1 MPa, 

the Young’s modulus and the Poisson’s ratio are set to 37.5 GPa and 0.25, respectively.  

 

Figure 3.3: Line crack opening profile 

 

3.2.2 Mandel’s problem 

Mandel’s problem is a canonical example of linear poroelasticity, which is often used to 

validate the computational model. Mandel’s problem is illustrated in Figure 3.4, which 

shows a poroelastic medium that is located between two rigid and impermeable plates. A 

uniformly distributed force is instantly applied to these plates at time zero and then held 

constant. Free drainage is allowed in two lateral directions.   



 34 

 

Figure 3.4: The setup of Mandel’s problem 

 

Because of the symmetry, one-quarter of the domain is selected as the computational 

domain and is spatially discretized using 5,000 uniform triangular elements. The analytical 

solutions of horizontal displacement, vertical displacement, and pore pressure are as 

follows (Cheng and Detournay, 1988) 

𝑢 = [
𝐹𝑣

2𝐺𝑎
−
𝐹𝑣𝑢
𝐺𝑎

∑
sin 𝛼𝑖 cos 𝛼𝑖

𝛼𝑖 − sin𝛼𝑖 cos 𝛼𝑖
exp (−

𝛼𝑖
2𝑐

𝑎2
𝑡)

∞

𝑖=1

] 𝑥                                                       

+
𝐹

𝐺
∑

cos 𝛼𝑖
𝛼𝑖 − sin𝛼𝑖 cos 𝛼𝑖

sin
𝛼𝑖𝑥

𝑎
exp (−

𝛼𝑖
2𝑐

𝑎2
𝑡)

∞

𝑖=1

                                                  (3.33a) 

𝑣 = [−
𝐹(1 − 𝑣)

2𝐺𝑎
+
𝐹(1 − 𝑣𝑢)

𝐺𝑎
∑

sin 𝛼𝑖 cos 𝛼𝑖
𝛼𝑖 − sin 𝛼𝑖 cos 𝛼𝑖

exp(−
𝛼𝑖
2𝑐

𝑎2
𝑡)

∞

𝑖=1

] 𝑦              (3.33b) 

𝑝 =
2𝐹𝐵(1 + 𝑣𝑢)

3𝑎
∑

sin𝛼𝑖
𝛼𝑖 − sin𝛼𝑖 cos 𝛼𝑖

(cos
𝛼𝑖𝑥

𝑎
− cos 𝛼𝑖) exp (−

𝛼𝑖
2𝑐

𝑎2
𝑡)      

∞

𝑖=1

(3.33c) 

where 𝛼𝑖 are the solutions to the equation 

tan 𝛼𝑖 =
1 − 𝑣

𝑣𝑢 − 𝑣
𝛼𝑖                                                     (3.34) 
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and where 𝐵 is Skempton’s parameter, 𝑣 is the drained Poisson’s ratio, 𝑣𝑢 is the undrained 

Poisson’s ratio and 𝑐 is the hydraulic diffusivity, which is defined as 

𝑐 =
2(𝑘/𝜇)𝐵2𝐺(1 − 𝑣)(1 + 𝑣𝑢)

2

9(1 − 𝑣𝑢)(𝑣𝑢 − 𝑣)
                                      (3.35) 

The Biot coefficient and the specific storage coefficient can be obtained using the equations 

below 

𝛼 =
3(𝑣𝑢 − 𝑣)

𝐵(1 − 2𝑣)(1 + 𝑣𝑢)
                                            (3.36a) 

𝑆 =
𝛼2(1 − 2𝑣𝑢)(1 − 2𝑣)

2𝐺(𝑣𝑢 − 𝑣)
                                       (3.36b) 

The relevant parameters for Mandel’s problem are listed in Table 3.1: 

 

Table 3.1: Input parameters for Mandel’s problem 

Parameter Definition Magnitude Units 

G Shear Modulus 20 GPa 

𝑣 Drained Poisson’s ratio 0.2 - 

𝑣𝑢 Undrained Poisson’s ratio 0.4 - 

𝐵 Skempton’s coefficient 0.8 - 

𝑘 Permeability 1 × 10−19 m2 

𝜇 Viscosity 0.001 Pa∙s 

𝑎 Length 0.1 m 

𝑏 Width 0.1 m 

𝐹 Force 3 × 106 N/m 

 

Figure 3.5 shows the numerical and analytical solutions of horizontal displacement, vertical 

displacement, and pore pressure at t = 1 s, 125 s, 500 s, and 1000 s. The analytical solutions 

are presented with dotted lines, and the numerical solutions are presented with solid lines.  
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(a) 

 

(b) 

 

(c) 

Figure 3.5: Horizontal displacement (a), vertical displacement (b), and pore pressure (c) 

at different times for Mandel’s problem 
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It should be noted that the pore pressure goes up in the center of the domain at earlier stages 

before it starts to fall. This phenomenon is known as the Mandel-Cryer Effect, which has 

been proved by the laboratory experiment (Verruijt, 2016). Figure 3.6 shows the surface 

plots of horizontal displacement, vertical displacement, and pore pressure at time t = 500 

s. 

     

                                  (a)                                                                       (b) 

 
(c) 

Figure 3.6: Surface plots of horizontal displacement (a), vertical displacement (b), and 

pore pressure (c) at time t = 500 s for Mandel’s problem 
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3.2.3 KGD model 

According to the two competing energy dissipation mechanisms and the two competing 

fluid storage mechanisms, the fracture propagation process can be divided into four 

regimes under limiting conditions (Bunger, 2005). As shown in Figure 3.7, the bottom edge 

is the storage-dominated regime, which is associated with the fluid storage within the 

fracture. The top edge is the leak-off dominated regime which is associated with the leak-

off of fluid into the formation. The left edge is the viscosity-dominated regime which 

corresponds to the flow of viscous fluid. The right edge is the toughness-dominated regime, 

which corresponds to the creation of a surface area in the solid material.  

 

Figure 3.7: Propagation regimes of hydraulic fractures (after Bunger, 2005) 

 

Using the scaling technique, analytical solutions of fracture opening 𝑤, net pressure 𝑝, and 

fracture length 𝑙 for the KGD model can be expressed as (Detournay, 2004) 
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𝑤(𝑥, 𝑡) = 𝜀(𝑡)𝐿(𝑡)𝛺[𝜉, 𝒫(𝑡)]                                        (3.37a) 

𝑝(𝑥, 𝑡) = 𝜀(𝑡)𝐸′𝛱[𝜉, 𝒫(𝑡)]                                            (3.37b) 

𝑙(𝑡) = 𝛾[𝒫(𝑡)]𝐿(𝑡)                                                           (3.37c) 

where 𝜉  is the scaled coordinate and is equal to 𝑥/𝑙 , 𝛺 , 𝛱 , and 𝛾  are dimensionless 

quantities that represent opening, net pressure, and length, respectively, 𝐿 denotes a length 

scale of the same order of fracture length 𝑙, 𝒫(𝑡) is the dimensionless evolution parameter 

and 𝛾[𝒫(𝑡)] is the dimensionless fracture length that depends on 𝑡.  

In the toughness-dominated regime, 𝜀(𝑡) and 𝐿(𝑡) take the form 

𝜀𝑘 = (
𝐾′4

𝐸′4𝑄0𝑡
)

1/3

,    𝐿𝑘 = (
𝐸′𝑄0𝑡

𝐾′
)

2/3

                                 (3.38) 

where 𝐾′ is defined as 

𝐾′ = 4(
2

𝜋
)
1/2

𝐾𝐼𝐶                                                      (3.39) 

The zero viscosity solution for the KGD model is  

𝛺̅𝑘0 =
𝜋1/3

2
(1 − 𝜉2)1/2,    𝛱𝑘0 =

𝜋1/3

8
,    𝛾𝑘0 =

2

𝜋2/3
                     (3.40) 

where 𝛺̅𝑘0 is equal to Ω𝑘0/𝛾𝑘0.  

In the viscosity-dominated regime, 𝜀(𝑡) and 𝐿(𝑡) take the form 

𝜀𝑚 = (
𝜇′

𝐸′𝑡
)

1/3

,    𝐿𝑚 = (
𝐸′𝑄0

3𝑡4

𝜇′
)

1/6

                                  (3.41) 

where 𝜇′ is defined as 

𝜇′ = 12𝜇                                                             (3.42) 
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The fracture propagation regime can be distinguished by the dimensionless toughness ϰ, 

which is defined as 

ϰ =
𝐾′ 

(𝐸′3𝜇′𝑄0)1/4
                                                    (3.43) 

For the KGD model, the fracture propagation regime is considered as toughness-dominated 

when ϰ is larger than 4 and viscosity-dominated when ϰ is smaller than 1. The first order 

approximation of zero toughness solution is (Garagash, 2005) 

Ω̅𝑚0  = 𝑎01(1 − 𝜉
2)2/3 + 𝑎02(1 − 𝜉

2)5/3 + 𝑎03 [2√1 − 𝜉2 + 𝜉
2 ln |

1 − √1 − 𝜉2

1 + √1 + 𝜉2
|] 

                                                           (3.44a) 

𝛱𝑚0  = 𝑏01  2𝐹1 (−
1

6
, 1;
1

2
; 𝜉2) + 𝑏02  2𝐹1 (−

7

6
, 1;
1

2
; 𝜉2) + 𝑏03(2 − 𝜋|𝜉|)       (3.44b) 

where Ω̅𝑚0  is equal to Ω𝑚0/𝛾𝑚0 , 𝑎01 ≃ 1.73205 , 𝑎02 ≃ −0.15601 , 𝑎03 ≃ 0.13264 ,  

𝑏01 ≃ 0.475449 , 𝑏02 ≃ −0.061178 , 𝑏03 ≃ 0.066322 , and 2 1F is the hypergeometric 

function.  

The parameters used to validate the KGD model are listed in Table 3.2.  

Table 3.2: Parameters used to validate the KGD model 

Parameter Definition Toughness-dominated Viscosity-dominated 

𝐺 (GPa) Shear modulus 15 15 

𝐾 (GPa) 
 Drained bulk 

modulus 
25 25 

𝜇 (Pa∙s) Viscosity 0.001 0.2 

𝑡 (s) Injection time 100 100 

𝐾𝐼𝐶  (MPa∙m0.5) Fracture toughness 8 0.2 

𝑞 (m3/s) Injection rate 5 × 10−4 5 × 10−4 
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Figure 3.8 shows the finite element mesh for the KGD model. A domain with a size of 

200×200 m is chosen to model the problem. Because of the symmetry of the problem, one-

quarter of the domain with a size of 100×100 m is selected as the computational domain 

and is spatially discretized using 6,472 triangles. The fracture represented by the red line 

is discretized using linear elements. 

 

Figure 3.8: Finite element mesh for the KGD model 

 

Figure 3.9 and Figure 3.10 show the fracture opening, wellbore pressure, and fracture 

length versus injection time for a toughness-dominated case and a viscosity-dominated 

case, respectively. The dimensionless toughness ϰ  is 5.77 for the toughness-dominated 

case and is 0.038 for the viscosity-dominated case. With the same injection rate and time, 

the viscosity-dominated case yields higher fracture width and lower fracture length.  
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Figure 3.9: Fracture opening, wellbore pressure, and fracture length versus injection time 

for toughness-dominated case 

 

 

Figure 3.10: Fracture opening, wellbore pressure, and fracture length versus injection 

time for viscosity-dominated case 

 

Bunger (2005) presented the analytical solution for a toughness-dominated regime with 

leak-off, which can be expressed as 

𝑤 = 𝜀𝐿𝛺(𝜉, 𝜏̅),    𝑝 = 𝜀𝐸′𝛱(𝜉, 𝜏̅),    𝑙 = 𝛾(𝜏̅)𝐿                            (3.45) 

where  

𝑡 = 𝑡∗𝜏̅,    𝑥 = 𝑙(𝑡)𝜉                                                   (3.46) 



 43 

where the timescale 𝑡∗ is given by 

𝑡∗ =
𝐾′4𝑄0

2

𝐸′4𝐶′6
                                                          (3.47) 

where 

𝐶′ = 2𝐶𝐿                                                             (3.48) 

For a toughness-dominated regime with leak-off, the small parameter and the lengthscale 

can be expressed as 

𝜀 =
𝐶′2

𝑄0
,    𝐿 = (

𝐾′𝑄0
𝐸′𝐶′2

)

2

                                              (3.49) 

For small value of 𝜏̅, the fracture opening and pressure can be written as  

𝛺 = 2−1/2𝛾1/2(1 − 𝜉2)1/2,    𝛱 = 2−5/2𝛾−1/2                           (3.50) 

where   

𝛾(𝜏̅) = 𝜏̅𝛽∑𝛾𝑘𝑖𝜏̅
𝑖𝛼,

𝑛

𝑖=0

    𝜏 ≪ 1                                          (3.51) 

where 𝛽 = 2/3 and 𝛼 = 1/6 for the KGD model. The first five coefficients of 𝛾𝑘𝑖 for the 

small time asymptotic solutions (equation 3.51) are 𝛾𝑘0 = 0.9324, 𝛾𝑘1 = −1.714, 𝛾𝑘2 =

2.196, 𝛾𝑘3 = −1.863, and 𝛾𝑘4 = 0.7093.  

Figure 3.11 shows the comparison between total injected volume and fracture volume. The 

leak-off coefficient 𝐶𝐿  is set to 7 × 10−5 m/√s in this simulation, other parameters are 

same as those listed in Table 3.2 for the toughness-dominated case. A fluid efficiency of 

33.3% can be obtained using equation (2.26). Figure 3.12 shows the fracture opening, 

wellbore pressure, and fracture length versus injection time for a toughness-dominated case 

with leak-off. 
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Figure 3.11: Fracture volume versus injected volume 

 

 

Figure 3.12: Fracture opening, wellbore pressure, and fracture length versus injection 

time for toughness-dominated case with leak-off 

 

3.2.4 Penny-shaped model 

Similarly, analytical solutions of fracture opening 𝑤, net pressure 𝑝, and fracture radius 𝑅 

for the penny-shaped model can be expressed as (Savitski and Detournay, 2002) 
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𝑤(𝑟, 𝑡) = 𝜀(𝑡)𝐿(𝑡)Ω[𝜌, 𝒫(𝑡)]                                        (3.52a) 

𝑝(𝑟, 𝑡) = 𝜀(𝑡)𝐸′𝛱[𝜌,𝒫(𝑡)]                                            (3.52b) 

𝑅(𝑡) = 𝛾[𝒫(𝑡)]𝐿(𝑡)                                                         (3.52c) 

In the toughness-dominated regime, 𝜀(𝑡) and 𝐿(𝑡)  are written as 

𝜀𝑘 = (
𝐾′6

𝐸′6𝑄0𝑡
)

1/5

,    𝐿𝑘 = (
𝑄0
2𝐸′2𝑡2

𝐾′2
)

1/5

                               (3.53) 

The zero viscosity solution for the penny-shaped model is 

𝛺𝑘0 = (
3

8𝜋
)
1/5

(1 − 𝜌2)1/2,    𝛱𝑘0 =
𝜋

8
(
𝜋

12
)
1/5

,    𝛾𝑘0 = (
3

𝜋21/2
)
2/5

       (3.54) 

The fracture propagation regime is distinguished by dimensionless toughness ϰ, which is 

defined as  

ϰ = 𝐾′ (
𝑡2

𝜇′5𝑄0
3𝐸′13

)

1/18

                                              (3.55) 

Unlike the KGD model, the dimensionless toughness in the penny-shaped model also 

depends on time. The value of ϰ will change from the viscosity-dominated regime to the 

toughness-dominated regime. The fracture propagation regime is considered as toughness-

dominated when ϰ is larger than 3.5 and viscosity-dominated when ϰ is less than 1.   

Figure 3.13 shows the finite element mesh for the penny-shaped model, one eighth of the 

domain is selected and spatially discretized using 6,048 eight-node brick elements.  
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Figure 3.13: Finite element mesh for the penny-shaped model 

 

Figure 3.14 shows the fracture opening, wellbore pressure, and fracture radius versus 

injection time for toughness-dominated case. The fluid is injected into the facture with a 

constant rate of 1 × 10−2 m3/s, other parameters are as same as those listed in Table 3.2.   

 

Figure 3.14: Fracture opening, wellbore pressure, and fracture radius versus injection 

time for toughness-dominated case 
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The general consistency between the analytical and numerical solutions for both KGD 

model and penny-shaped model demonstrates that current model can deal with the 

hydromechanical coupling process in fracture propagation. 
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Chapter 4 
 

Poroelastic effects on DFIT analysis in the KGD model 

4.1 Leak-off comparison  

Most current DFIT techniques were developed based on Carter’s leak-off model. 

Poroelastic effects are usually not considered due to the reservoir's low permeability. Leak-

off calculated with and without the consideration of poroelastic effects is studied in this 

section.  

Figure 4.1 shows the schematic diagram of one-dimensional leak-off. A constant pressure 

of 35 MPa is applied to the left boundary and lasts for 100 hours. The solid bulk modulus 

and the fluid bulk modulus are 45.4 GPa and 2.25 GPa, respectively. Shear modulus, 

drained bulk modulus, and viscosity are listed in Table 3.2. With permeability ranging from 

4 × 10−19 m2  to 4 × 10−17 m2  and porosity ranging from 0.01 to 0.1, four hundred 

combinations of permeability and porosity are chosen for simulation by holding other 

parameters constant. Biot coefficient is also set to zero and denoted by the “Decoupled 

Model” to compare with the fully coupled model.  
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Figure 4.1: Schematic diagram of one-dimensional leak-off 
 

Figure 4.2a shows the fluid loss per unit length calculated using the analytical solution of 

Carter’s leak-off model for different combinations of permeability and porosity. By 

employing Darcy’s law, the fluid loss in the coupled model is shown in Figure 4.2b. Figure 

4.2c shows the relative difference between Carter’s model and the coupled model. The 

coupled model yields a higher leak-off in general. When porosity is smaller than 0.03, the 

difference for most corresponding combinations falls within the range of 35% to 105%. 

Similarly, Figure 4.2d and Figure 4.2e show the leak-off in the decoupled model and the 

difference between Carter’s model and the decoupled model, respectively. The decoupled 

model leads to a slightly lower leak-off for most combinations, which falls within the range 

of negative 4% to 12%.  

Figure 4.3 shows the leak-off comparison of different models at t = 1000 hours.  As shown 

in Figure 4.3c, compared with Carter’s model, leak-off is underestimated when porosity is 

smaller than 0.03, which is consistent with the conclusions obtained from Figure 4.2.  
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(a)  

              

                                   (b)                                                                (c)  

               

                                   (d)                                                                (e)  

Figure 4.2: Leak-off comparison at t = 100 hours: (a) Leak-off calculated using Carter’s 

model; (b) Leak-off calculated using the coupled model; (c) Difference between Carter’s 

model and coupled model; (d) Leak-off calculated using the decoupled model; (e) 

Difference between Carter’s model and decoupled model 
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(a)  

              

                                   (b)                                                                (c)  

             

                                   (d)                                                                (e)  

Figure 4.3: Leak-off comparison at t = 1000 hours: (a) Leak-off calculated using Carter’s 

model; (b) Leak-off calculated using the coupled model; (c) Difference between Carter’s 

model and coupled model; (d) Leak-off calculated using the decoupled model; (e) 

Difference between Carter’s model and decoupled model 
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4.2 Poroelastic effects on BCA in the KGD model 

In this section, the poroelastic effects on BCA are studied through 6 cases defined in Table 

4.1. Case C1 is considered as the base model, and the poroelastic constants in C1 are 

selected from Cheng (2016). The well is injected for 100 seconds at a rate of 

5 × 10−4 m3/s. For each case, the Biot coefficient is also set to zero to eliminate the 

poroelastic effects for comparison, which is denoted by “Decoupled”. In addition, the 

permeability in the x direction is set to zero in the decoupled model since Carter’s model 

assumes that leak-off occurs only in the direction that is normal to the fracture surface.  

 

Table 4.1: Simulation settings for different cases 

Parameter C1 C2 C3 C4 C5 C6 

𝐺 (GPa) 15 15 15 15 15 15 

𝐾 (GPa) 25 25 25 25 20 25 

𝐾𝑠  (GPa) 45.4 45.4 45.4 45.4 70 45.4 

𝐾𝑓  (GPa) 2.25 2.25 2.25 2.25 2.25 2.25 

𝜙 0.01 0.1 0.01 0.1 0.01 0.01 

 𝑘 (m2) 4 × 10−19 4 × 10−19 4 × 10−17 4 × 10−17 4 × 10−19 4 × 10−19 

𝜇 (Pa∙s) 0.001 0.001 0.001 0.001 0.001 0.001 

𝐾𝐼𝐶  (MPa∙m0.5) 8 8 8 8 8 8 

𝜎in-situ(MPa) 35 35 35 35 35 35 

𝑝𝑖  (MPa) 20 20 20 20 20 30 

 

4.2.1 BCA for case 1 

Figure 4.4 shows the wellbore pressure response in the fracture injection and falloff test 

for the base model. The initial pore pressure is 20 MPa and the in-situ stress is 35 MPa. 
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The fracture closure occurs at about 1.74 days, followed by the linear flow at 1.80 days. 

The linear flow ends at 10.71 days, and the radial flow starts at a late time of 146.44 days.  

 

Figure 4.4: Wellbore pressure response in the base model 

 

Figure 4.5 shows the results of G-function plots for the fully coupled model and decoupled 

model in case C1. The slope of the line in the left plot is −0.0112 MPa/G with an intercept 

of 36.50 MPa. The leak-off coefficient is estimated to be 7.06 × 10−7 m/√s using the 

equation in Table 2.2 while Carter’s analytical solution (equation 2.28) yields a leak-off 

coefficient of 4.00 × 10−7 m/√s. Similarly, for the decoupled model, the slope of the line 

in the right plot is −0.0066 MPa/G with an intercept of 36.19 MPa. A leak-off coefficient 

of  4.27 × 10−7 m/√s is obtained, and the analytical value of the leak-off coefficient is 

4.02 × 10−7 m/√s.  
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Figure 4.5: G-function plots for fully coupled model and decoupled model in C1 

 

In the left plot, the tangent line method indicates that the fracture closes at a G-time of 97.2 

(Point A) and a pressure of 34.87 MPa. In the right plot, the tangent line method shows that 

the fracture closes at a G-time of 179.8 (Point B) and a pressure of 34.80 MPa. The spike 

in the derivative indicates that the fracture is fully closed.  Also, in the fully coupled model, 

the interaction between the formation and the fluid leaking into the formation is taken into 

consideration. Therefore, a higher shut-in pressure and closure pressure are obtained in the 

fully coupled model because of the poroelastic effects. 

Figure 4.6 shows the G-function plot for the decoupled model in simulation C1 with a 

permeability of 4 × 10−19 m2 in the x direction. In Figure 4.6, the tangent line method 

indicates that the fracture closes at a G-time of 161.4, which means that setting the 

permeability to 4 × 10−19 m2 in the x direction will accelerate the fracture closure. A leak-

off coefficient of 4.75 × 10−7 m/√s can be inferred in this situation, which is larger than 

the one (4.27 × 10−7 m/√s) obtained from the right plot in Figure 4.5. The difference 
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between the two leak-off coefficients is due to the assumption of one-dimensional 

diffusion.  

 
Figure 4.6: G-function plot for decoupled model in case C1 with a permeability of 

4 × 10−19 m2 in the x direction 

 

Figure 4.7 shows the fracture openings and pressure profiles along the fracture after shut-

in for the coupled model in simulation C1. In the left plot, the fracture length is about 15.56 

m at shut-in, which corresponds to a G-time of 0. The fracture opening decreases with the 

increase of G-time and facture closure starts at the tip and moves gradually toward the 

wellbore. The fracture length is about 11.56 m at the G-time of 90.  

 

Figure 4.7: Fracture openings and pressure profiles after shut-in in case C1 
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Figure 4.8 shows the pressure distribution after shut-in at the G-time of 30, 60, 90, and 120, 

respectively. The fracturing fluid is leaked into the reservoir through the fracture surface. 

Therefore, the fluid pressure near the fracture surface decreases with the increase of time. 

Figure 4.8c shows the pressure contour at the G-time of 90 at which the fracture is partially 

closed. Figure 4.8d shows the pressure contour at the G-time of 120 at which the fracture 

is fully closed. The pressure at the wellbore is 29.30 MPa currently, which is less than the 

in-situ stress. Figure 4.8d indicates that the pressure will continue to decrease after the 

fracture is fully closed.  

 
                               (a)                                                                    (b)  

 

 
                               (c)                                                                    (d)  

Figure 4.8: Pressure distribution near the fracture in case C1: (a) G-time = 30; (b) G-time 

= 60; (c) G-time = 90; (d) G-time = 120 
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4.2.2 BCA for case 2 

In simulation C2, the porosity increases from 0.01 to 0.1 so that the specific storage 

coefficient increases from 1.41 × 10−11 to 5.21 × 10−11. Compared with simulation C1, 

the second term 𝑆𝜕𝑝/𝜕𝑡 plays a more important role in the storage equation since all other 

constants are the same as those in C1. The leak-off coefficients for the coupled model and 

decoupled model are 1.14 × 10−6 m/√s  and 1.13 × 10−6 m/√s , respectively. The 

corresponding analytical values of the leak-off coefficient are 1.26 × 10−6 m/√s for both 

the coupled model and the decoupled model. Simulation C2 indicates that the poroelastic 

effects are ignorable when the second term 𝑆𝜕𝑝/𝜕𝑡  in the storage equation is large 

compared to the first term.  

 

Figure 4.9: G-function plots for fully coupled model and decoupled model in C2 

 

In the left plot, the tangent line method indicates that the closure occurs at a G-time of 62.2 

and a pressure of 34.95 MPa. In the right plot, the tangent line method shows that the 

closure occurs at  a G-time of 66.0 and a pressure of 34.60 MPa.  
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Figure 4.10 shows the G-function plot for the decoupled model in simulation C2 with a 

permeability of 4 × 10−19 m2 in the x direction. The fracture closes at a G-time of 65.4, 

which is close to the closure time observed from the right plot in Figure 4.9. The 

corresponding leaf-off coefficient is 1.14 × 10−6 m/√s, which is close to the two leak-off 

coefficients obtained from Figure 4.9. One conclusion is drawn from Figure 4.6 and 4.10 

is that the leak-off coefficient is even underestimated for the decoupled model when 

poroelastic effects cannot be ignored. 

 

Figure 4.10: G-function plot for decoupled model in case C2 with a permeability of 

4 × 10−19 m2 in the x direction 

4.2.3 BCA for case 3 

The effect of higher permeability is investigated in simulation C3. Figure 4.11 shows the 

G-function plots for fully coupled model and decoupled model in C3. A change of 

permeability does not affect the weight of the two terms in the left side of the storage 

equation. Similar to simulation C1, the leak-off coefficient (6.88 × 10−6 m/√s) in the 

coupled model is higher than that (4.18 × 10−6 m/√s) in the decoupled model. The 
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corresponding analytical solutions are 4.02 × 10−6 m/√s for both the coupled model and 

decoupled model. 

 

Figure 4.11: G-function plots for fully coupled model and decoupled model in C3 

 

The accuracy of the leak-off coefficient obtained from BCA is investigated through large 

injection time. Figure 4.12 shows the fracture volume comparison between the fully 

coupled model (poroelasticity) and the Carter’s leak-off model for simulation C3. The 

injection time increases from 100 seconds to 100 minutes. The black line represents the 

total injection volume versus time. The parameters used for the fully coupled model are 

the same as those for simulation C3. In Carter’s leak-off model, the leak-off coefficient 

(6.88 × 10−6 m/√s) that obtained from the BCA is used for simulation.  

The fluid efficiency calculated using equation (2.26) is 75.0% for the fully coupled model 

and 78.5% for the Cater’s leak-off model, which is consistent with each other in general.  

In the left plot of Figure 4.11, the fracture closure occurs at a G-time of 8.62 which results 

in a fluid efficiency of 81.2% using equation (2.27). 
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Figure 4.12: Fracture volume comparison with large injection time for C3 

 

Figure 4.13 shows the fracture opening, wellbore pressure, and fracture length comparison 

between the fully coupled model and the Carter’s leak-off model. The black line represents 

the analytical solutions of fracture opening, wellbore pressure, and fracture length for the 

toughness-dominated case without leak-off. 

 
Figure 4.13: Fracture opening, wellbore pressure, and fracture length comparison with 

large injection time for C3 
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4.2.4 BCA for case 4 

In simulation C4, the permeability is set to 4 × 10−17 m2 and the porosity is set to 0.1. A 

larger porosity makes the second term dominate the first term, which means that it is 

reasonable to ignore the poroelastic effects. As expected, the leak-off coefficient in the left 

plot is 1.24 × 10−5 m/√𝑠 and the analytical value is 1.27 × 10−5 m/√s. The leak-off 

coefficient in the right plot is 1.19 × 10−5 m/√s  and the analytical value is also 

1.27 × 10−5 m/√s. 

 

Figure 4.14: G-function plots for fully coupled model and decoupled model in C4 

 

Figure 4.15 shows the fracture volume comparison between the fully coupled model 

(poroelasticity) and the Carter’s leak-off model for simulation C4. The fluid efficiency for 

the fully coupled model and Cater’s leak-off model are 64.3% and 66.5% respectively, 

which is consistent with each other again. The fluid efficiency calculated from the G-time 

at closure is 72.8%.  
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Figure 4.15: Fracture volume comparison with large injection time for C4 

 

Figure 4.16 shows the fracture opening, wellbore pressure, and fracture length comparison 

between the fully coupled model and the Carter’s leak-off model for simulation C4. Similar 

to C3, the fully coupled model leads to a higher net pressure due to the poroelastic effects.  

 

Figure 4.16: Fracture opening, wellbore pressure, and fracture length comparison with 

large injection time for C4 
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4.2.5 BCA for case 5 

In simulation C5, the drained bulk modulus is set to 20 GPa and the solid bulk modulus is 

set to 70 GPa so that the Biot coefficient increases from 0.449 to 0.714. For the coupled 

model, the leak-off coefficient calculated using slope is 8.21 × 10−7 m/√s, which is 91.8 

percent higher than the one for the decoupled model (4.28 × 10−7 m/√s). Simulation C5 

demonstrates that an increase in Biot coefficient will further underestimate the leak-off 

coefficient.  

 

Figure 4.17: G-function plots for fully coupled model and decoupled model in C5 

 

4.2.6 BCA for case 6 

The effect of higher pore pressure is studied in simulation C6. Carter’s leak-off coefficient 

was derived based on the assumption that the fluid net pressure (𝑝𝑓 − 𝜎in-situ) is much 

smaller than the far-field effective stress (𝜎in-situ − 𝑝𝑖). Compared to previous simulations, 

the fluid net pressure at shut-in (1.34 MPa) accounts for a much larger fraction of far-field 
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effective stress (5 MPa). With a leak-off coefficient of 2.94 × 10−7 m/√s in the left plot 

and a leak-off coefficient of 1.49 × 10−7 m/√s  in the right plot, simulation C6 

demonstrates that poroelastic effects cannot be ignored for formation with a high pore 

pressure.  

 

Figure 4.18: G-function plots for fully coupled model and decoupled model in C6 

 

4.3 Poroelastic effects on ACA in the KGD Model 

This section presents the poroelastic effects on ACA in the KGD Model. In the decoupled 

model, the permeability in the x direction maintains its corresponding value in each case 

since the radial flow analysis was developed based on the two-dimensional diffusion 

equation. It should be noted that an initial estimate of pore pressure is required for both the 

linear and radial flow analyses. In addition, the slope of the pressure derivative will not be 

affected by the estimated value of pore pressure (Barree et al., 2009).  

 



 65 

4.3.1 ACA for case 1 

The left plot in Figure 4.19 shows the log-log plot of pressure difference and derivative 

versus the square of linear flow time function in simulation C1. Two characteristics can be 

observed to identify the linear flow period. One is the 1/2 slope of the derivative curve. 

The other one is that the pressure difference is twice the magnitude of the pressure 

derivative. The linear flow starts at a square of linear flow time of 0.8, which is about 43.11 

hours after shut-in.  

The right plot in Figure 4.19 shows the log-log plot of pressure versus linear flow time 

function. An extrapolation of the pressure curve gives a pressure estimation of 20.0 MPa, 

which is exactly the input value for the pore pressure. Equation (2.32) yields a permeability 

of 1.45 × 10−18 m2, which is 3.6 times higher than the input value. The discrepancy is 

mainly due to the difference between the leak-off coefficients calculated from the G-

function method and equation (2.28).  

Figure 4.20 shows the linear flow identification and analysis for the decoupled model in 

simulation C1. The permeability is determined to be 6.38 × 10−19 m2  using equation 

(2.32). The difference between the estimated permeability and the input value is mainly 

due to the pressure dissipation in the x direction. By extrapolating the pressure trend, a 

good estimate of pore pressure (19.86 MPa) can still be obtained even though the 

characteristics of linear flow in the decoupled model are not as apparent as those in the 

coupled model.  
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Figure 4.19: Linear flow identification and analysis for fully coupled model in C1 

 

 

Figure 4.20: Linear flow identification and analysis for decoupled model in C1 

 

Figure 4.21 shows the pressure distribution at the start and end of linear flow for the 

coupled model in simulation C1. The pressure contour in the left plot clearly shows that 

the fracturing fluid is dissipated into the formation in a direction that is normal to the 

fracture surface, which means that the fluid flow is parallel to each other during the linear 

flow period.  
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Figure 4.21: Pressure distribution at the start and end of linear flow for fully coupled 

model in C1 

 

The left plot in Figure 4.22 shows the log-log plot of pressure difference and derivative 

versus the radial flow time function. There are also two characteristics that can be used to 

identify the radial flow period. One is the unit slope of the pressure derivative. The other 

is the approximate overlying of pressure difference and pressure derivative curves. The 

radial flow starts at a radial flow time of 0.003, which is about 146.44 days. The right plot 

shows the log-log plot of pressure versus radial flow time function. For the coupled model, 

the fracture closure time 𝑡𝑐 is 2,516.5 minutes, and the slope 𝑚𝑅 in the plot is 25,476.8 psi, 

then a permeability of 3.74 × 10−19 m2 can be determined using equation (2.38).  

Similarly, for the decoupled model, the time to fracture closure is 6,841.7 minutes and the 

slope in the plot is 8,888.4 psi so that the estimated permeability from the radial flow 

analysis is 3.95 × 10−19 m2. Compared to the decoupled model, the poroelastic effects 

result in a shorter closure time but a larger slope. However, the multiplication of closure 

time and slope in the coupled model is close to that in the decoupled model, which leads 
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to a consistent estimate of permeability in both models. In addition, an extrapolation of the 

pressure curve gives a pressure estimation of 20.0 MPa in both models. 

 

Figure 4.22: Radial flow identification and analysis for fully coupled model in C1 

 

 

Figure 4.23: Radial flow identification and analysis for decoupled model in C1 

 

Figure 4.24 shows the pressure distribution at the start of radial flow for the fully coupled 

model in simulation C1. The flow converging to the injection point indicates that the flow 

regime is radial flow. The pressure at the injection point is about 20.53 MPa, which is close 

to the initial pore pressure.  
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Figure 4.24: Pressure distribution at the start of radial flow for coupled model in C1 

 

4.3.2 ACA for case 2 

Poroelastic effects are not significant in simulation C2 due to the high porosity.  Both the 

after-closure linear flow identification and analysis plots are almost identical for the two 

models. The linear flow starts at a square of linear flow time of 0.7 in both models. A 

permeability of 3.88 × 10−19 m2 and 3.90 × 10−19 m2  is inferred for the coupled and 

decoupled model, respectively. A pressure estimation of 20.13 MPa and 20.17 MPa is 

determined for the two models by extrapolating the pressure trend. Simulation C2 shows 

that linear flow analysis can obtain an accurate estimate of permeability and pore pressure 

when poroelastic effects are ignorable.  
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Figure 4.25: Linear flow identification and analysis for fully coupled model in C2 

 

 

Figure 4.26: Linear flow identification and analysis for decoupled model in C2 
 

Both the after-closure radial flow identification and analysis plots are also close for the two 

models. The closure time and slope for the coupled model are 1,050.2 minutes and 66,067.2 

psi, respectively. For the decoupled model, closure time and slope are 1,157.9 minutes and 

58,868.0 psi, respectively. The corresponding permeability estimates are 3.46 × 10−19 m2 

and 3.53 × 10−19 m2. The initial pore pressure estimates from the radial flow analysis are 

20.03 MPa and 20.02 MPa, respectively.  
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Figure 4.27: Radial flow identification and analysis for fully coupled model in C2 

 

 

Figure 4.28: Radial flow identification and analysis for decoupled model in C2 

 

4.3.3 ACA for case 3 

In Figure 4.29, due to the poroelastic effects, the linear flow analysis in simulation C3 

yields a permeability of  1.38 × 10−16 m2 while the input value is 4 × 10−17 m2. Pore 

pressure can still be inferred accurately based on the extrapolation of the pressure curve. 
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In Figure 4.30, the permeability estimate from the linear flow analysis is 6.34 × 10−17 m2 

and the pore pressure from the linear flow analysis is 19.86 MPa.  

 

Figure 4.29: Linear flow identification and analysis for fully coupled model in C3 

 

 

Figure 4.30: Linear flow identification and analysis for decoupled model in C3 

 

With a closure time of 28.2 minutes and a slope of 22,673.0 psi, permeability is determined 

to be 3.76 × 10−17 m2 for the coupled the model. For the decoupled model, the closure 

time is 79.1 minutes and the slope is 7,610.0 psi so that the permeability is 

3.99 × 10−17 m2. 
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Figure 4.31: Radial flow identification and analysis for fully coupled model in C3 

 

 

Figure 4.32: Radial flow identification and analysis for decoupled model in C3 

 

4.3.4 ACA for case 4 

Because of the larger porosity, poroelastic effects are not apparent in simulation C4 even 

though the permeability in C4 is larger than that in the base model for two orders of 

magnitude. The permeability estimates from the linear flow analysis for the two models 

are 4.50 × 10−17 m2.and 4.46 × 10−17 m2, respectively.  
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Figure 4.33: Linear flow identification and analysis for fully coupled model in C4 

 

 

Figure 4.34: Linear flow identification and analysis for decoupled model in C4 

 

Compared with previous cases, the larger porosity and permeability in simulation C4 lead 

to shorter closure times, which are 13.8 minutes and 15.2 minutes respectively. Radial flow 

analysis yields a permeability of 3.43 × 10−17 m2 for the coupled model and a 

permeability of 3.51 × 10−17 m2 for the decoupled model.  
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Figure 4.35: Radial flow identification and analysis for fully coupled model in C4 

 

 

Figure 4.36: Radial flow identification and analysis for decoupled model in C4 

 

4.3.5 ACA for case 5 

Poroelastic effects enlarge with the increase of the Biot coefficient. With a leak-off 

coefficient of 8.21 × 10−7 m/√s inferred from the G-function method, the permeability is 

determined to be 1.89 × 10−18 m2 from the linear flow analysis, which is 4.7 times higher 
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than the input value. In figure 4.38, a permeability of 6.32 × 10−19 m2 can be obtained 

from the linear flow analysis.  

 

Figure 4.37: Linear flow identification and analysis for fully coupled model in C5 

 

 

Figure 4.38: Linear flow identification and analysis for decoupled model in C5 

 

For the coupled model, given the closure time of 1901.0 minutes and the slope of 34,931.1 

psi, the radial flow analysis gives a permeability estimate of 3.62 × 10−19 m2. For the 

decoupled model, the radial flow analysis yields a permeability of 3.76 × 10−19 m2 with 

a closure time of 7428.2 minutes and a slope of 8,607.0 psi. 
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Figure 4.39: Radial flow identification and analysis for fully coupled model in C5 

 

 

Figure 4.40: Radial flow identification and analysis for decoupled model in C5 

 

4.3.6 ACA for case 6 

In Figure 4.41, the permeability is estimated to be 2.14 × 10−18 m2 and the pore pressure 

is estimated to be 30.0 MPa. As shown in Figure 4.42, the linear flow regime was not 

observed in simulation C6 for the decoupled model. 
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Figure 4.41: Linear flow identification and analysis for fully coupled model in C6 

 

 

Figure 4.42: Linear flow identification and analysis for decoupled model in C6 

 

A higher initial pore pressure will delay the closure time. The closure time for the coupled 

model is 14,420.8 minutes and the closure time for the decoupled model is 39,589.4 

minutes. The corresponding slopes are 4,342.7 psi and 1,535.4 psi, respectively. The 

permeability estimates determined from the radial flow analysis are 3.84 × 10−19 m2 and 

3.95 × 10−19 m2, respectively. 
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Figure 4.43: Radial flow identification and analysis for fully coupled model in C6 

 

 

Figure 4.44: Radial flow identification and analysis for decoupled model in C6 
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Chapter 5 
 

Poroelastic effects on DFIT analysis in the penny-shaped model 

5.1 Poroelastic effects on BCA in the penny-shaped model 

The poroelastic effects on BCA in the penny-shaped model are presented in this section. 

The conclusions obtained for the KGD model from the before-closure analysis also work 

for the penny-shaped model. Case C1 and C2 are performed to demonstrate this point. For 

the rest four cases, the conclusions drawn from each of them are analogous to those 

obtained from its corresponding case in the KGD model. The well is injected for 120 

seconds with a constant rate of 3 × 10−3 m3/s. 

5.1.1 BCA for case 1 

Figure 5.1 shows the G-function plots of simulation C1 for the penny-shaped model. In the 

left plot, the slope of the line is −0.0343 MPa/G and the shut-in pressure is 37.82 MPa. 

The leak-off coefficient calculated using the equation in Table 2.2 is 6.64 × 10−7 m/√s 

and the analytical solution is 4.34 × 10−7 m/√s. The fracture radius is about 10.0 m at 
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shut-in. In the right plot, the slope of the line is −0.0218 MPa/G and the shut-in pressure 

is 37.19 MPa . The leak-off coefficient calculated using the equation in table 2.2 is 

4.65 × 10−7 m/√s and the analytical solution is 4.19 × 10−7 m/√s. In the decoupled 

model, the facture has a radius of 11.0 m at shut-in.  

 

Figure 5.1: G-function plots for fully coupled model and decoupled model in C1 

 

Figure 5.2 shows the fracture openings and pressure profiles at different times after shut-

in. Figure 5.2a shows that the fracture is still fully open at the G-time of 35, Figure 5.2b 

shows that the fracture is partially closed at the G-time of 55, and Figure 5.2c shows that 

the fracture is fully closed at the G-time of 75. At the G-time of 75, the pressure at the 

wellbore is about 29.56 MPa, which is below the in-situ stress. The pressure will keep 

decreasing until it reaches the initial pore pressure, which is equal to 20 MPa in the 

simulation.  

 

 



 82 

 

(a)  

 
(b)  

 
(c)  

Figure 5.2: Fracture openings and pressure profiles: (a) G-time = 35; (b) G-time = 55; (c) 

G-time = 75 
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Figure 5.3 shows the G-function plot for decoupled model in simulation C1 with a 

permeability of 4 × 10−19 m2  in both x and y direction. As shown in Figure 5.3, the 

fracture closes at a G-time of 88.3 using the tangent line method. The leak-off coefficient 

is determined to be 5.28 × 10−7 m/√s  using the equation in Table 2.2. Similar to 

simulation C1 in the KGD model, the leak-off coefficient is even underestimated in the 

decoupled model because of the pressure diffusion in both x direction and y direction.  

 
 

Figure 5.3: G-function plot for decoupled model in case C1 with a permeability of 

4 × 10−19 m2 in both x and y direction 

5.1.2 BCA for case 2 

Figure 5.4 shows the G-function plots of simulation C2 in the penny-shaped model. Similar 

to simulation C2 in the KGD model, poroelastic effects are ignorable in this case. For the 

coupled model, the leak-off coefficient calculated using slope is 9.05 × 10−7 m/√s, which 

is close to the one for the decoupled model (8.97 × 10−7 m/√s). 



 84 

 

Figure 5.4: G-function plots for fully coupled model and decoupled model in C2 

 

Figure 5.5 shows the G-function plot for decoupled model in simulation C1 with a 

permeability of 4 × 10−19 m2 in both x and y direction. The leak-off coefficient calculated 

using the slope is 9.16 × 10−7 m/√s. Again, setting permeability to 4 × 10−19 m2 in both 

x and y direction does not have significant effects on estimation of leak-off coefficient 

when poroelastic effects are ignorable.  

 
Figure 5.5: G-function plot for decoupled model in case C2 with a permeability of 

4 × 10−19 m2 in both x and y direction 
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5.2 Conclusions 

By using the fully coupled hydraulic fracturing simulator, the poroelastic effects on DFIT 

analysis are studied based on the theory of poroelasticity. Conclusions drawn from the 

analysis are listed below. 

1. The poroelastic effects on DFIT analysis cannot be ignored when porosity is relatively 

small and Biot coefficient is relatively large. During the before-closure analysis, the leak-

off coefficient can be twice as large as the one without the consideration of poroelastic 

effects. 

2. Permeability estimated from the linear flow regime can be significantly overestimated, 

which is mainly due to the underestimated leak-off coefficient obtained from the before-

closure analysis. The radial flow analysis can obtain a reliable permeability estimate. 

3. Both the linear and radial flow analyses can provide accurate estimates of pore pressure.  

4. This study demonstrates that the conclusions obtained for the KGD model from the 

before-closure analysis are also applicable for the penny-shaped model. 
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Appendix A 
 

Derivation of the pressure decline equation 

The derivation of the pressure decline equation is presented in this section (Economides, 

2000). With the assumption of power law fracture growth, the fracture area 𝑎̅ at a time 𝜏 

can be related to total fracture area 𝐴 at the current time 𝑡 

𝜏

𝑡
= (

𝑎̅

𝐴
)
1/𝛼̅

                                                            (A. 1) 

where 𝛼̅ is the area exponent. In contrast to equation (2.15), the rate of fluid loss per unit 

area can be expressed in a more general form 

𝑢𝐿 =
2𝐶𝐿

(𝑡 − 𝜏)1−φ
                                                       (A. 2) 

where φ is the fluid loss exponent. Equation (A.1) can take both Newtonian filtrate and 

non-Newtonian filtrate into consideration. The leak-off volume per unit area can be 

obtained through the time integration of equation (A.2) 

𝑣𝐿 = ∫ 𝑢𝐿𝑑𝑡
𝑡

0

=
2𝐶𝐿
𝜑
(𝑡 − 𝜏)𝜑                                            (A. 3) 

Substituting equation (A.1) into equation (A.2), then the rate of fluid loss over an elemental 

leak-off area 𝑑𝑎̅ takes the form 

𝑞𝐿(𝑑𝑎̅, 𝑡) =
2𝑟𝑝𝐶𝐿

𝑡𝑒
1−𝜑

𝑑𝑎̅

(𝑡𝛼̅𝐷 − 𝜉1̅/𝛼̅)
1−φ                                       (A. 4) 
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where 

𝑡𝛼̅𝐷 =
𝑡

𝑡𝑒
                                                            (A. 5a) 

𝜉̅ =
𝑎̅

𝐴𝑓
                                                               (A. 5b) 

where 𝐴𝑓 is the fracture surface area at the end of pumping. Integrating over the fracture 

area can obtain the total rate of fluid loss 

𝑞𝐿(𝐴𝑓 , 𝑡) =
2𝑟𝑝𝐶𝐿𝐴𝑓

𝑡𝑒
1−𝜑 𝑓(𝑡𝛼̅𝐷 , 𝛼̅ , φ )                                        (A. 6) 

where 

𝑓(𝑡𝛼̅𝐷 , 𝛼̅ , φ ) = ∫
𝑑𝜉̅

(𝑡𝛼̅𝐷 − 𝜉1̅/𝛼̅)
1−φ

1

0

                                    (A. 7) 

Substituting equation (A.5a) and (A.5b) into equation (A.3) and integrating over the 

fracture area can obtain the fluid leak-off volume 𝑉𝐿,𝐶 

𝑉𝐿,𝐶 = 2𝑟𝑝𝐶𝐿𝑡𝑒
𝜑
𝐴𝑓𝑔(𝑡𝛼̅𝐷 , 𝛼̅ , φ )                                           (A. 8) 

where 

𝑔(𝑡𝛼̅𝐷 , 𝛼̅ , φ ) =
1

φ
∫ (𝑡𝛼̅𝐷 − 𝜉̅

1/𝛼̅)
φ

1

0

𝑑𝜉̅                                   (A. 9) 

Using the dimensionless time ∆𝑡𝐷, equation (A.7) and (A.9) can be written as 

𝑓(∆𝑡𝐷, 𝛼̅ , φ ) = ∫
𝑑𝜉̅

(1 + ∆𝑡𝐷 − 𝜉1̅/𝛼̅)
1−φ

1

0

                              (A. 10) 

𝑔(∆𝑡𝐷, 𝛼̅ , φ ) =
1

φ
∫ (1 + ∆𝑡𝐷 − 𝜉

1̅/𝛼̅)
φ

1

0

𝑑𝜉̅                           (A. 11) 
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By substituting the bounding values of 𝛼̅ (1/2, 1) into equation (A.10) and (A.11)  and 

integrating the resulting expressions. Equation (A.11) will be as same as equation (2.25) 

and equation (A.10) can be written as (Nolte, 1979) 

𝑓(∆𝑡𝐷) = {

  
sin−1(1 + ∆𝑡𝐷)

−1/2                 𝛼̅ = 1/2                  
         

2[(1 + ∆𝑡𝐷)
1/2 − Δ𝑡𝐷

1/2
]        𝛼̅ = 1                      

(A. 12) 

Based on the material balance, it follows that 

−
𝑑𝑉𝑓(∆𝑡)

𝑑∆𝑡
= −𝐴𝑓

𝑑𝑤̅

𝑑∆𝑡
= 𝑞𝐿                                          (A. 13) 

where 𝑤̅ is the average fracture width. From the liner elastic theory, the net pressure is 

proportional to 𝑤̅ in the form of   

𝑝𝑛𝑒𝑡 = 𝑆𝑓𝑤̅                                                          (A. 14) 

Combing equation (A.6) and (A.13) with the differentiation of (A.14) results in 

−𝐴𝑓
𝑑𝑝𝑛𝑒𝑡
𝑑∆𝑡

=
2𝑟𝑝𝐶𝐿𝑆𝑓𝐴𝑓

√𝑡𝑒
𝑓(∆𝑡𝐷)                                       (A. 15) 

Integrating equation (A.15) from ∆𝑡𝐷 = 0 to ∆𝑡𝐷 can obtain 

𝑝𝑓(∆𝑡𝐷) = 𝐼𝑆𝐼𝑃 −
𝜋𝑟𝑝𝐶𝐿𝑆𝑓√𝑡𝑒

2
𝐺(∆𝑡𝐷)                                (A. 16) 
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Appendix B 
 

Finite element formulation for the penny-shaped model 

The finite element formulation for the penny-shaped model is presented in this section. 

From equation (3.12), the finite element model of the equilibrium equation in the x 

direction can be written as 

(𝐾11)𝑎𝑏
𝑒 𝑢1𝑏

𝑒 + (𝐾12)𝑎𝑏
𝑒 𝑢2𝑏

𝑒 + (𝐾13)𝑎𝑏
𝑒 𝑢3𝑏

𝑒 − (𝐶𝑚1)𝑎𝑏
𝑒 𝑝𝑏

𝑒 − (𝐶𝑓1)𝑎𝑏
𝑒
𝑝𝑏
𝑒 = (𝑇1)𝑎𝑏

𝑒       (B. 1) 

The coefficient matrices in equation (B. 1) are given by 

(𝐾11)𝑎𝑏
𝑒 = ∫ [

2𝐺(1 − 𝑣)

1 − 2𝑣

𝜕𝑁𝑎
𝑒  

𝜕𝑥1

𝜕𝑁𝑏
𝑒 

𝜕𝑥1
+ 𝐺

𝜕𝑁𝑎
𝑒 

𝜕𝑥2

𝜕𝑁𝑏
𝑒 

𝜕𝑥2
+ 𝐺

𝜕𝑁𝑎
𝑒 

𝜕𝑥3

𝜕𝑁𝑏
𝑒  

𝜕𝑥3
]

Ω

𝑑Ω        (B. 2a) 

(𝐾12)𝑎𝑏
𝑒 = ∫ [

2𝐺𝑣

1 − 2𝑣

𝜕𝑁𝑎
𝑒 

𝜕𝑥1

𝜕𝑁𝑏
𝑒  

𝜕𝑥2
+ 𝐺

𝜕𝑁𝑎
𝑒 

𝜕𝑥2

𝜕𝑁𝑏
𝑒  

𝜕𝑥1
]

Ω

𝑑Ω                                           (B. 2b) 

(𝐾13)𝑎𝑏
𝑒 = ∫ [

2𝐺𝑣

1 − 2𝑣

𝜕𝑁𝑎
𝑒 

𝜕𝑥1

𝜕𝑁𝑏
𝑒 

𝜕𝑥3
+ 𝐺

𝜕𝑁𝑎
𝑒 

𝜕𝑥3

𝜕𝑁𝑏
𝑒 

𝜕𝑥1
]

Ω

𝑑Ω                                           (B. 2c) 

(𝐶𝑚1)𝑎𝑏
𝑒 = ∫ 𝛼

𝜕𝑁𝑎
𝑒 

𝜕𝑥1
𝑁𝑏
𝑒

Ω

𝑑Ω                                                                                       (B. 2d) 

(𝐶𝑓1)𝑎𝑏
𝑒
= ∫ 𝑁𝑎

𝑒𝑁𝑏
𝑒𝑛1𝑑Γ

Γ𝑐

                                                                                             (B. 2e) 

(𝑇1)𝑎𝑏
𝑒 = ∫ 𝑁𝑎

𝑒𝑡1𝑑Γ
Γ𝑡

                                                                                                      (B. 2f) 
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Similarly, the finite element model of the equilibrium equation in the y direction can be 

written as 

(𝐾21)𝑎𝑏
𝑒 𝑢1𝑏

𝑒 + (𝐾22)𝑎𝑏
𝑒 𝑢2𝑏

𝑒 + (𝐾23)𝑎𝑏
𝑒 𝑢3𝑏

𝑒 − (𝐶𝑚2)𝑎𝑏
𝑒 𝑝𝑏

𝑒 − (𝐶𝑓2)𝑎𝑏
𝑒
𝑝𝑏
𝑒 = (𝑇2)𝑎𝑏

𝑒       (B. 3) 

The coefficient matrices in equation (B. 3) are given by 

(𝐾21)𝑎𝑏
𝑒 = ∫ [

2𝐺𝑣

1 − 2𝑣

𝜕𝑁𝑎
𝑒 

𝜕𝑥2

𝜕𝑁𝑏
𝑒  

𝜕𝑥1
+ 𝐺

𝜕𝑁𝑎
𝑒 

𝜕𝑥1

𝜕𝑁𝑏
𝑒  

𝜕𝑥2
]

Ω

𝑑Ω                                           (B. 4a) 

(𝐾22)𝑎𝑏
𝑒 = ∫ [𝐺

𝜕𝑁𝑎
𝑒  

𝜕𝑥1

𝜕𝑁𝑏
𝑒 

𝜕𝑥1
+
2𝐺(1 − 𝑣)

1 − 2𝑣

𝜕𝑁𝑎
𝑒 

𝜕𝑥2

𝜕𝑁𝑏
𝑒 

𝜕𝑥2
+ 𝐺

𝜕𝑁𝑎
𝑒 

𝜕𝑥3

𝜕𝑁𝑏
𝑒 

𝜕𝑥3
]

Ω

𝑑Ω        (B. 4b) 

(𝐾23)𝑎𝑏
𝑒 = ∫ [

2𝐺𝑣

1 − 2𝑣

𝜕𝑁𝑎
𝑒 

𝜕𝑥2

𝜕𝑁𝑏
𝑒 

𝜕𝑥3
+ 𝐺

𝜕𝑁𝑎
𝑒 

𝜕𝑥3

𝜕𝑁𝑏
𝑒 

𝜕𝑥2
]

Ω

𝑑Ω                                            (B. 4c) 

(𝐶𝑚2)𝑎𝑏
𝑒 = ∫ 𝛼

𝜕𝑁𝑎
𝑒 

𝜕𝑥2
𝑁𝑏
𝑒

Ω

𝑑Ω                                                                                        (B. 4d) 

(𝐶𝑓2)𝑎𝑏
𝑒
= ∫ 𝑁𝑎

𝑒𝑁𝑏
𝑒𝑛2𝑑Γ

Γ𝑐

                                                                                              (B. 4e) 

(𝑇2)𝑎𝑏
𝑒 = ∫ 𝑁𝑎

𝑒𝑡2𝑑Γ
Γ𝑡

                                                                                                       (B. 4f) 

The finite element model of the equilibrium equation in the z direction can be written as 

(𝐾31)𝑎𝑏
𝑒 𝑢1𝑏

𝑒 + (𝐾32)𝑎𝑏
𝑒 𝑢2𝑏

𝑒 + (𝐾33)𝑎𝑏
𝑒 𝑢3𝑏

𝑒 − (𝐶𝑚3)𝑎𝑏
𝑒 𝑝𝑏

𝑒 − (𝐶𝑓3)𝑎𝑏
𝑒
𝑝𝑏
𝑒 = (𝑇3)𝑎𝑏

𝑒       (B. 5) 

The coefficient matrices in equation (B. 5) are given by 

(𝐾31)𝑎𝑏
𝑒 = ∫ [

2𝐺𝑣

1 − 2𝑣

𝜕𝑁𝑎
𝑒 

𝜕𝑥3

𝜕𝑁𝑏
𝑒  

𝜕𝑥1
+ 𝐺

𝜕𝑁𝑎
𝑒 

𝜕𝑥1

𝜕𝑁𝑏
𝑒  

𝜕𝑥3
]

Ω

𝑑Ω                                           (B. 6a) 

(𝐾32)𝑎𝑏
𝑒 = ∫ [

2𝐺𝑣

1 − 2𝑣

𝜕𝑁𝑎
𝑒 

𝜕𝑥3

𝜕𝑁𝑏
𝑒  

𝜕𝑥2
+ 𝐺

𝜕𝑁𝑎
𝑒 

𝜕𝑥2

𝜕𝑁𝑏
𝑒  

𝜕𝑥3
]

Ω

𝑑Ω                                           (B. 6b) 

(𝐾33)𝑎𝑏
𝑒 = ∫ [𝐺

𝜕𝑁𝑎
𝑒 

𝜕𝑥1

𝜕𝑁𝑏
𝑒  

𝜕𝑥1
+ 𝐺

𝜕𝑁𝑎
𝑒  

𝜕𝑥2

𝜕𝑁𝑏
𝑒  

𝜕𝑥2
+
2𝐺(1 − 𝑣)

1 − 2𝑣

𝜕𝑁𝑎
𝑒  

𝜕𝑥3

𝜕𝑁𝑏
𝑒  

𝜕𝑥3
]

Ω

𝑑Ω        (B. 6c) 
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(𝐶𝑚3)𝑎𝑏
𝑒 = ∫ 𝛼

𝜕𝑁𝑎
𝑒 

𝜕𝑥3
𝑁𝑏
𝑒

Ω

𝑑Ω                                                                                        (B. 6d) 

(𝐶𝑓3)𝑎𝑏
𝑒
= ∫ 𝑁𝑎

𝑒𝑁𝑏
𝑒𝑛3𝑑Γ

Γ𝑐

                                                                                             (B. 6e) 

(𝑇3)𝑎𝑏
𝑒 = ∫ 𝑁𝑎

𝑒𝑡3𝑑Γ
Γ𝑡

                                                                                                       (B. 6f) 

From equation (3.19), the finite element model of the storage equation can be written as 

(𝐶𝑚1
𝑇 )𝑎𝑏

𝑒
𝜕

𝜕𝑡
(𝑢1𝑏

𝑒 ) + (𝐶𝑚2
𝑇 )𝑎𝑏

𝑒
𝜕

𝜕𝑡
(𝑢2𝑏

𝑒 ) + (𝐶𝑚3
𝑇 )𝑎𝑏

𝑒
𝜕

𝜕𝑡
(𝑢2𝑏

𝑒 ) + (𝑀𝑚)𝑎𝑏
𝑒
𝜕

𝜕𝑡
(𝑝𝑏

𝑒) 

+(𝐻𝑚)𝑎𝑏
𝑒 𝑝𝑏

𝑒 − (𝐿)𝑎𝑏
𝑒 𝑝𝑏

𝑒 = 0                                                                                         (B. 7)  

where  

(𝐶𝑚1
𝑇 )𝑎𝑏

𝑒 = 𝛼∫ 𝑁𝑎
𝑒
𝜕𝑁𝑏

𝑒 

𝜕𝑥1Ω

𝑑Ω                                                                     (B. 8a) 

(𝐶𝑚2
𝑇 )𝑎𝑏

𝑒 = 𝛼∫ 𝑁𝑎
𝑒
𝜕𝑁𝑏

𝑒  

𝜕𝑥2Ω

𝑑Ω                                                                     (B. 8b) 

(𝐶𝑚3
𝑇 )𝑎𝑏

𝑒 = 𝛼∫ 𝑁𝑎
𝑒
𝜕𝑁𝑏

𝑒 

𝜕𝑥3Ω

𝑑Ω                                                                     (B. 8c) 

(𝑀𝑚)𝑎𝑏
𝑒 = 𝑆∫𝑁𝑎

𝑒 𝑁𝑏
𝑒  

Ω

𝑑Ω                                                                         (B. 8d) 

(𝐻𝑚)𝑎𝑏
𝑒 =

𝑘

𝜇
∫ [

𝜕𝑁𝑎
𝑒 

𝜕𝑥1

𝜕𝑁𝑏
𝑒  

𝜕𝑥1
+
𝜕𝑁𝑎

𝑒 

𝜕𝑥2

𝜕𝑁𝑏
𝑒  

𝜕𝑥2
+
𝜕𝑁𝑎

𝑒 

𝜕𝑥3

𝜕𝑁𝑏
𝑒  

𝜕𝑥3
] 𝑑Ω

Ω

             (B. 8e) 

(𝐿)𝑎𝑏
𝑒 =

𝑘

𝜇
∫ [𝑁𝑎

𝑒
𝜕𝑁𝑏

𝑒 

𝜕𝑥1
𝑛1 + 𝑁𝑎

𝑒
𝜕𝑁𝑏

𝑒  

𝜕𝑥2
𝑛2 + 𝑁𝑎

𝑒
𝜕𝑁𝑏

𝑒  

𝜕𝑥3
𝑛3]

Γ

𝑑Γ              (B. 8f) 
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For the fracture flow equation, the finite element model can be written as 

(𝐶𝑓1
𝑇 )

𝑎𝑏

𝑒 𝜕

𝜕𝑡
(𝑢1𝑏

𝑒 ) + (𝐶𝑓2
𝑇 )

𝑎𝑏

𝑒 𝜕

𝜕𝑡
(𝑢2𝑏

𝑒 ) + (𝐶𝑓3
𝑇 )

𝑎𝑏

𝑒 𝜕

𝜕𝑡
(𝑢3𝑏

𝑒 ) + (𝐻𝑓)𝑎𝑏
𝑒
𝑝𝑏
𝑒 − (𝐿)𝑎𝑏

𝑒 𝑝𝑏
𝑒 = 𝑄𝑒 

(B. 9) 

where 

(𝐶𝑓1
𝑇 )

𝑎𝑏

𝑒
= ∫𝑁𝑎

𝑒 𝑁𝑏
𝑒𝑛1𝑑Γ

Γ

                                                                           (B. 10a) 

(𝐶𝑓2
𝑇 )

𝑎𝑏

𝑒
= ∫𝑁𝑎

𝑒 𝑁𝑏
𝑒𝑛2𝑑Γ

Γ

                                                                           (B. 10b) 

(𝐶𝑓3
𝑇 )

𝑎𝑏

𝑒
= ∫𝑁𝑎

𝑒 𝑁𝑏
𝑒𝑛3𝑑Γ

Γ

                                                                           (B. 10c) 

(𝐻𝑓)𝑎𝑏
𝑒
=
𝑤3

12𝜇
∫  [

𝜕𝑁𝑎
𝑒

𝜕𝑥1

𝜕𝑁𝑏
𝑒

𝜕𝑥1
+
𝜕𝑁𝑎

𝑒

𝜕𝑥2

𝜕𝑁𝑏
𝑒

𝜕𝑥2
] 𝑑Γ

Γ

                                      (B. 10d) 

(𝐿)𝑎𝑏
𝑒 =

𝑘

𝜇
∫ [𝑁𝑎

𝑒
𝜕𝑁𝑏

𝑒 

𝜕𝑥1
𝑛1 + 𝑁𝑎

𝑒
𝜕𝑁𝑏

𝑒 

𝜕𝑥2
𝑛2 + 𝑁𝑎

𝑒
𝜕𝑁𝑏

𝑒 

𝜕𝑥3
𝑛3]

Γ

𝑑Γ              (B. 10e) 

Equation (B.1), (B.3), (B.5), (B.7), and (B.9) can be written in the matrix form below, both 

the superscript and the subscript are omitted for simplicity.  

[
 
 
 

[0]
[0]
[0]

𝐶𝑚1
𝑇 + 𝐶𝑓1

𝑇

    

[0]
[0]
[0]

𝐶𝑚2
𝑇 + 𝐶𝑓2

𝑇

    

[0]
[0]
[0]

𝐶𝑚3
𝑇 + 𝐶𝑓3

𝑇

    

[0]
[0]
[0]
𝑀𝑚]

 
 
 
𝜕

𝜕𝑡
[

𝑢1
𝑢2
𝑢3
𝑝

] 

+

[
 
 
 
 𝐾11
𝐾21
𝐾31
[0]

    

𝐾12
𝐾22
𝐾32
[0]

    

𝐾13
𝐾23
𝐾33
[0]

    

−𝐶𝑚1 − 𝐶𝑓1
−𝐶𝑚2 − 𝐶𝑓2

−𝐶𝑚3
𝑇 − 𝐶𝑓3

𝑇

𝐻𝑚 + 𝐻𝑓 − 𝐿]
 
 
 
 

[

𝑢1
𝑢2
𝑢3
𝑝

] = [

𝑇1
𝑇2
𝑇3
𝑄

]                            (B. 11) 
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By using the finite difference method for the time discretization, the global matrix for the 

three-dimensional model can be written as 

[
 
 
 
 𝐾11

𝐾21
𝐾31

𝐶𝑚1
𝑇 + 𝐶𝑓1

𝑇

    

𝐾12
𝐾22
𝐾32

𝐶𝑚2
𝑇 + 𝐶𝑓2

𝑇

    

𝐾13
𝐾23
𝐾33

𝐶𝑚3
𝑇 + 𝐶𝑓3

𝑇

    

−𝐶𝑚1 − 𝐶𝑓1
−𝐶𝑚2 − 𝐶𝑓2

−𝐶𝑚3
𝑇 − 𝐶𝑓3

𝑇

𝑀𝑚 + (𝐻𝑚 +𝐻𝑓 − 𝐿)∆𝑡]
 
 
 
 

[
 
 
 
𝑢1
𝑠

𝑢2
𝑠

𝑢3
𝑠

𝑝𝑠]
 
 
 
 

=

[
 
 
 

[0]
[0]
[0]

𝐶𝑚1
𝑇 + 𝐶𝑓1

𝑇

    

[0]
[0]
[0]

𝐶𝑚2
𝑇 + 𝐶𝑓2

𝑇

    

[0]
[0]
[0]

𝐶𝑚3
𝑇 + 𝐶𝑓3

𝑇

    

[0]
[0]
[0]
𝑀𝑚]

 
 
 

[
 
 
 
 
𝑢1
𝑠−1

𝑢2
𝑠−1

𝑢3
𝑠−1

𝑝𝑠−1]
 
 
 
 

+ [

𝑇1
𝑇2
𝑇3
𝑄∆𝑡𝑠

]               (B. 12) 

 




