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Turbulent, rapidly rotating convection has been of interest for decades, yet there
exists no generally accepted scaling law for heat transfer behaviour in this system.
Here, we develop an exact scaling law for heat transfer by geostrophic convection,
Nu = (Ra/Rac)

3 = 0.0023Ra3E4, by considering the stability of the thermal boundary
layers, where Nu, Ra and E are the Nusselt, Rayleigh and Ekman numbers,
respectively, and Rac is the critical Rayleigh number for the onset of convection.
Furthermore, we use the scaling behaviour of the thermal and Ekman boundary
layer thicknesses to quantify the necessary conditions for geostrophic convection:
Ra . E�3/2. Interestingly, the predictions of both heat flux and regime transition do
not depend on the total height of the fluid layer. We test these scaling arguments
with data from laboratory and numerical experiments. Adequate agreement is found
between theory and experiment, although there is a paucity of convection data for low
RaE3/2.
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1. Theory
1.1. Introduction

Rayleigh–Bénard convection (RBC) is a classical system used to examine turbulence.
RBC consists of a horizontal fluid layer of infinite extent that is destabilized by
an imposed adverse temperature gradient. The system’s dynamics are determined
by the Rayleigh and Prandtl numbers, Ra and Pr (see table 1 for definitions),
which characterize the strength of thermal forcing and fluid properties, respectively.
Aside from permitting the investigation of fundamental turbulent fluid dynamics, this
system also represents a simplified analogue for many geophysical and astrophysical
environments. Planetary and stellar convection systems, though, are subject to
Coriolis forces resulting from the intrinsic rotation of their host bodies. This
additional influence introduces a third parameter, a non-dimensional rotation period
called the Ekman number, E. In order to examine the influence of rotation on
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Parameter Laboratory Simulations

Ra ⌘ ↵Tg1Th3/(⌫) 106 . Ra . 1010 103 . Ra . 109

E ⌘ ⌫/(2⌦h2) 3 ⇥ 10�6 . E . 1 10�6 6 E 6 1
Pr ⌘ ⌫/ 4.5 . Pr . 11 1 6 Pr 6 100
Nu ⌘ qh/(k1T) 3 . Nu . 110 1 . Nu . 50

TABLE 1. Relevant non-dimensional parameters, and parameter ranges from laboratory
experiments and numerical simulations. Dimensional quantities are as follows: ↵T is
the fluid’s coefficient of thermal expansivity; g is gravitational acceleration; 1T is the
temperature drop across the fluid layer; h is the depth of the fluid layer; ⌫ is viscous
diffusivity;  is thermal diffusivity; ⌦ is the angular rotation rate; q is mean heat flux; and
k is thermal conductivity.

convection dynamics, we investigate the Rayleigh–Bénard configuration rotating about
a vertical axis.

1.2. Non-rotating convection
We begin our investigation of rotating convection with a brief overview of heat
transport by non-rotating RBC. Accurate descriptions of the Nusselt number, Nu,
which characterizes the efficiency of convective heat transfer, have been of interest
to the turbulence community for decades, and scalings of the type Nu / Ra↵ have
typically been sought both theoretically and experimentally (e.g. Ahlers, Grossmann
& Lohse 2009). A scaling exponent of ↵ = 1/3 was first developed by the marginal
stability boundary analysis of Malkus (1954).

This classical 1/3 scaling law can be developed through consideration of boundary
layer stability as follows. In an infinite half-space, bounded and heated from below
at rate q, a quiescent fluid will become unstable above some height � when a
locally defined Rayleigh number Ra� = ↵Tg1T��

3/(⌫) is larger than the critical value,
Rac = constant (Pellew & Southwell 1940). Here, 1T� is the temperature drop across
this marginally stable boundary layer. Thus, instability should occur when

�31T� ⇡ Rac
⌫

↵Tg
. (1.1)

Instead of an infinite half-space, let us consider a layer of finite depth h with
marginally stable thermal boundary layers adjacent to each boundary. We make the
following two assumptions to relate this local stability criterion to total heat transport.
Let us first assume that the temperature drop across the layer occurs mostly in the
boundary layers, 1T ⇡ 21T�. This permits us to rewrite (1.1) as

�/h ⇡ (Ra/Rac)
�1/3 . (1.2)

Let us also assume that heat is transferred primarily by conduction within the stable
boundary layer, 1T� ⇡ q�/k. The stability criterion therefore becomes

Nu ⇡ h/� ⇡ (Ra/Rac)
1/3 . (1.3)

Experimental studies have not been able to verify this classical theoretical scaling
unequivocally. At moderately high Rayleigh numbers (104 . Ra . 1010), and moderate
Prandtl numbers (Pr = O(1)), experimental studies typically find scaling exponents
nearer to ↵ = 2/7 (e.g. Castaing et al. 1989; Chilla et al. 1993; Glazier et al. 1999).
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As the Rayleigh number increases further, however, simulations and experiments
produce scaling exponents that approach ↵ = 1/3 (e.g. Amati et al. 2005; Niemela
& Sreenivasan 2006) – barring any possible transitions to the so-called ultimate
regime Ahlers et al. (2009). Furthermore, some measurements of thermal boundary
layer thicknesses themselves in experiments and simulations have been found to
follow a Ra�1/3 scaling (e.g. Sun, Cheung & Xia 2008; this work). This indicates
that, although the heat transfer scaling law (1.3) has not been verified exactly, the
underlying mechanism of boundary layer instability (1.2) may apply.

1.3. Rotating convection
Flows in the presence of strong rotation are often typified by a first-order force
balance between the Coriolis force and pressure gradient, which is known as
the geostrophic balance. The Coriolis force has a stabilizing effect on convection,
such that the onset of convection occurs at higher Ra for decreasing E.
Chandrasekhar (1953) predicted that the critical Rayleigh number for instability scales
as Rac / E�4/3 for rapidly rotating convection (E . 10�4). Thus, for small E, the
critical Rayleigh number can be orders of magnitude larger than that for non-rotating
fluids. This illustrates how the role of diffusive stabilization is secondary to that by
rotation as E ! 0.

As was done above for non-rotating convection, so can we develop a heat transfer
scaling law based on boundary layer stability for rapidly rotating flows as follows.
Consider again an infinite half-space bounded and heated from below at a flux rate q,
but this time also rotating at rate ⌦ . Above height �, the quiescent (in the rotating
reference frame) fluid becomes buoyantly unstable due to the adverse temperature
gradient. Assuming that the stabilizing effect of the Coriolis force dominates that of
diffusion, the local stability criterion is Ra�/Ra�

c > 1, where Ra�
c = AE�4/3

� , A is a
constant and E� = ⌫/(2⌦�2). We can write this boundary layer stability criterion in
terms of the boundary layer thickness and temperature drop as

�1/31T� ⇡ A
⌫

↵Tg

✓
2⌦

⌫

◆4/3

. (1.4)

If we assume that this boundary layer stability applies to layers of finite thickness
h, we can again treat the fluid volume as two opposed half-spaces, with a stable
thermal boundary layer adjacent to each boundary. We must also make the same two
assumptions made for the non-rotating case: (a) the temperature drop across the layer
occurs predominantly in the boundary layers, 1T ⇡ 21T�; and (b) heat is transferred
primarily by conduction within the stable boundary layer, 1T� ⇡ q�/k. We should note
here that the quality of these assumptions is far less certain for rotating convection
than for the non-rotating case (and we test these assumptions in § 3). The rotating
convection boundary layer stability criterion (1.4) therefore becomes

Nu ⇡ (Ra/Rac)
3 ⇡ 0.0023Ra3E4, (1.5)

using Rac = 7.6E�4/3 (Chandrasekhar 1953).
The scaling exponent ↵ = 3 is, to our knowledge, larger than any empirical law

proposed from heat transfer measurements in rotating systems (e.g. Liu & Ecke
1997, 2009; Christensen & Aubert 2006; Aurnou 2007; King et al. 2009, 2010),
which typically fall in the range between ↵ ⇡ 2/7 (Julien et al. 1996) and ↵ ⇡ 2
(Sprague et al. 2006). This prediction is, however, similar to the theoretical scalings
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derived for Pr = 1 by Chan (1974) and Riahi (1977) using upper-bound variational
methods, and separately by the turbulence model of Canuto & Dubovikov (1998).

1.4. Regime transition
In order to test (1.5) systematically, the relative values of Ra and E necessary to
maintain the dominance of the Coriolis force must first be quantified. That is, in
order to predict the range of Ra at a given E for which convection is geostrophic,
the transition between geostrophic and weakly rotating convection regimes must be
determined. We argue here that the transition between geostrophic and non-rotating
heat transfer behaviour is determined by the relative thicknesses of the thermal
boundary layer and the Ekman boundary layer.

The Ekman layer is a mechanical boundary layer that develops in rapidly rotating
flows in order to rectify the interior flow with the constant angular momentum
of the boundary. Ekman layers have characteristic thickness �E ⇠ (⌫/⌦)1/2 ⇠ E1/2h
(Greenspan 1968). Although the Coriolis force dominates the interior fluid, viscous
forces are important within the thin Ekman layer. The geostrophic boundary layer
stability analysis presented above assumes that the stabilizing force in the thermal
boundary layer, �, is the Coriolis force. Once � < �E, however, viscous stabilization
of convection becomes important within this marginally stable thermal boundary layer.
In this case (� < �E), the local critical Rayleigh number should revert to the constant
value relevant for non-rotating, viscously stabilized fluids. Boundary layer stability
therefore predicts that the transition from geostrophic to non-rotating heat transfer
behaviour occurs when the thermal boundary layer becomes thinner than the Ekman
layer. This transition argument provides a mechanism for the boundary layer transition
hypothesis of King et al. (2009).

The transition between these regimes can be estimated by the intersection of scaling
laws for the thicknesses of the Ekman layer and the non-rotating, thermal boundary
layer. King et al. (2009) assume that the non-rotating thermal boundary layer scales
as �/h ⇠ Nu�1 ⇠ Ra�2/7. The thermal boundary layer should therefore cross the Ekman
layer (�E/h ⇠ E1/2) when Ra ⇠ E�7/4. Boundary layer stability analysis, however,
suggests that we should instead scale the thermal boundary layer as �/h ⇠ Ra�1/3

(1.2). Furthermore, this 1/3 scaling for the thermal boundary layer thickness is more
likely to apply to asymptotically high-Ra convection than a 2/7 law, which has a
limited range of applicability (e.g. Ahlers et al. 2009). Assuming this non-rotating
thermal boundary layer thickness scaling, we predict that the transition should occur
when �/�E ⇠ Ra�1/3E�1/2 = O(1), and therefore when

RaE3/2 = O(1). (1.6)

Essentially, this scaling predicts that the geostrophic style of heat transfer will break
down when the Ekman boundary layer becomes thermally unstable. Interestingly,
the predicted transition does not explicitly depend on the nature of the mechanical
boundary conditions (cf. Schmitz & Tilgner 2009). Furthermore, this transition
parameter scaling is similar to upper bounds for geostrophic convection predicted
by other means (Chan 1974; Sakai 1997; Canuto & Dubovikov 1998).

Our hypotheses are the following: (i) geostrophic convection occurs in the range
Rac (= 7.6E�4/3) . Ra . E�3/2; and (ii) convection in this regime transports heat
according to the scaling law (1.5). Below, we argue that laboratory and numerical
data support the use of the RaE3/2 regime transition parameter. We then use this
transition parameter to distinguish and collapse geostrophic heat transfer data in order
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to test the proposed scaling (1.5) with heat transfer data predominantly from numerical
simulations.

2. Methods
We test the scalings presented in § 1 using a suite of 84 numerical simulations and

117 laboratory experiments of rotating convection. Below, we describe the simulations
that constitute the majority of our geostrophic convection data, and briefly describe
the laboratory experiments, further details of which can be found in the supplementary
material available at journals.cambridge.org/flm. Parameter ranges are given in table 1.

2.1. Numerical simulations
Direct numerical simulations are carried out by solving the Boussinesq momentum
equation, continuity equation and energy equation in a Cartesian box. The domain
has periodic sidewalls in order to approximate a horizontal layer of infinite extent.
Top and bottom boundaries are rigid, no-slip and isothermal, with an imposed adverse
temperature difference of 1T , width-to-height aspect ratios 1 6 � 6 4 and resolutions
of up to 576 ⇥ 576 ⇥ 513.

The code has been validated through comparison with results from linear theory
and previously reported convection simulations, as well as through checks of internal
consistency. First, we accurately reproduce the critical Rayleigh numbers and growth
rates predicted by Chandrasekhar (1961). Results obtained with the present code are
found to be in good agreement with simulation data produced by the independent
finite volume code used in Stellmach & Hansen (2004). We also compare our
results against those of Kunnen, Geurts & Clercx (2006), who report that, for
E = 4.714 ⇥ 10�4, Pr = 1 and Ra = 2.53 ⇥ 106, the time-averaged root mean square
(r.m.s.) vertical velocity and temperature fluctuations at the mid-plane are 174.97 and
0.0793. We find values of 173.37 and 0.0789 for identical parameters, which agree to
within 1 %. Finally, we compare our results for non-rotating convection against values
for the Nusselt number, as well as toroidal and poloidal energies, given by Hartlep
(2004), again finding agreement to within 1 %.

To test resolution requirements, we systematically varied the grid size for selected
parameter values. Care needs to be taken in order to resolve the thin Ekman boundary
layers. As an example, figure 1 shows time series of Nusselt numbers computed at
various spatial resolutions for the special case E = 10�5, Ra = 7 ⇥ 107 and Pr = 7.
Mean values for the most important diagnostic parameters used in the main part of
this paper are compiled in table 2. For grids exceeding 96 ⇥ 96 ⇥ 65 points, the
computed values are fairly accurate. The Chebyshev basis functions used for vertical
discretization naturally provide high resolution close to the boundaries and are thus
well suited for resolving thin boundary layers. In the simulations used for our study,
care has been taken to ensure that at least seven vertical grid levels are present within
the Ekman layers.

A further consistency check is provided by the energy balance. If temperature is
scaled by 1T , length by h and velocity by /h, the top, bottom and volume-averaged
Nusselt numbers are defined as

Nut := �
⌧

@T

@z

�����
z=1

, Nub := �
⌧

@T

@z

�����
z=0

, Nuv :=
⌧

uzT � @T

@z

�

V

, (2.1)

respectively, where h· · ·iV denotes a volume average. Viscous dissipation is defined as

Dvisc := Pr h(r ⇥ u)2iV . (2.2)

journals.cambridge.org/flm
journals.cambridge.org/flm
journals.cambridge.org/flm
journals.cambridge.org/flm
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FIGURE 1. (Colour online available at journals.cambridge.org/flm) Nusselt number versus
time for E = 10�5, Pr = 7, Ra = 7 ⇥ 107 and an aspect ratio of unity for different resolutions
ranging from 96 ⇥ 96 ⇥ 48 to 576 ⇥ 576 ⇥ 513 grid points. All runs were started from a
static, isothermal state superposed with small random perturbations. Time is normalized by
the thermal diffusion time scale, h2/ .

Nx Ny Nz (1T)av Nu urms �E �

96 96 49 0.221 9.86 415.6 1.06 ⇥ 10�2 3.71 ⇥ 10�2

96 96 65 0.362 9.84 414.8 1.00 ⇥ 10�2 3.73 ⇥ 10�2

192 192 65 0.169 9.83 415.0 1.00 ⇥ 10�2 3.74 ⇥ 10�2

288 288 128 0.108 9.85 415.4 1.00 ⇥ 10�2 3.74 ⇥ 10�2

288 288 256 0.100 9.84 415.1 1.00 ⇥ 10�2 3.76 ⇥ 10�2

576 576 513 0.040 9.83 414.9 1.00 ⇥ 10�2 3.77 ⇥ 10�2

TABLE 2. Resolution test for the case E = 10�5, Pr = 7 and Ra = 7 ⇥ 107. All runs were
started from a stationary, isothermal state onto which small random thermal perturbations
have been superimposed. After an initial transient, a statistically stationary state is reached.
The reported Nusselt numbers Nu and the r.m.s. velocities urms are values obtained by
averaging the time series over a time interval (1T)av . The Ekman layer thickness �E is
defined by the location of the maximum of the r.m.s. horizontal velocity. The edge of the
thermal boundary layer thickness � is defined by the location at which the variance of the
temperature fluctuations attains its maximum.

Conservation of energy requires that

Nu := Nut = Nub = Nuv (2.3)

and

Dvisc = Pr Ra (Nu � 1), (2.4)

http://journals.cambridge.org/flm
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FIGURE 2. (Colour online) Consistency checks for the performed simulations, where the
conditions (2.3) and (2.4) are compared with simulation data in (a) and (b), respectively. The
notation ENu = max(|Nub �Nut|, |Nub �Nuv|, |Nut �Nuv|)/(Nuv � 1) is used for brevity. The
solid horizontal lines indicate the 1 % error level. Note that there is a trend for the error to
decrease with increasing length of the averaging interval measured in terms of turnover times.

where the overbar denotes a temporal average (Siggia 1994). Note that these
relations formally hold if the temporal average is taken over an infinite time
interval. Figure 2 shows that, for the finite time series computed for this study,
the errors in the above relations are below 1 %, with the exception of one case
(E = 10�6, Pr = 7, Ra = 2.1 ⇥ 108), which has a maximum Nusselt number error of
1.1 %. These low errors indicate that a statistically stationary state has been reached
and that the solutions are in thermal and energetic equilibrium. Also, as expected, the
error tends to decrease with the length of the simulated time series. Since energy is
not discretely conserved by the chosen Chebyshev discretization, the results shown in
figure 2 provide a useful check for our simulations.

2.2. Laboratory experiments
Laboratory experiments are carried out in a 20 cm diameter cylindrical tank of water
(4.5 . Pr . 7) or sucrose solution (6 . Pr . 11) that is heated from below and rotated
about a vertical axis. The tank height (h) varies from 3.2 to 20 cm, permitting a broad
range of accessible Ra and E. The temperature drop across the fluid layer (1T) is
measured by two arrays of six thermistors within the top and bottom tank endwalls.
Heat flux (q) is measured as the electrical power supplied to the resistance heating
element divided by its area, and is compared with measurements of heat absorbed by a
heat exchanger above the tank. Input heat flux is limited to q > 300 W m�2, such that
estimated errors in Nu measurements are never more than 30 %. The entire tank set-up
is insulated with 20 cm of closed-cell foam and is rotated up to 50 times per minute.

We define RBC as convection in a horizontal layer of infinite extent, but
experimental practice requires that the container be bounded by sidewalls. In rotating
convection experiments, subcritical convection modes are observed to emerge near
the tank sidewalls (Liu & Ecke 1999). These sidewall modes can contribute to
heat transport even beyond the onset of bulk convection, complicating the use of
simple scalings intended for bulk modes alone. Although no general treatment of
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FIGURE 3. (Colour online) Nusselt number plotted versus Rayleigh number. Seven different
Ekman numbers are explored, indicated by various symbol shapes. Solid symbols indicate
measurements from laboratory experiments. Open symbols indicate results from numerical
simulations, with symbol size corresponding to Pr . The Ekman number values are
approximate for laboratory experiments, which vary due to changes in fluid viscosity. Data
from Rossby (1969) are also shown for comparison for non-rotating (+) and E ⇡ 10�3 (⇥)
cases. The dashed black line represents the non-rotating scaling Nu = 0.16Ra2/7. The solid
line illustrates the rapidly rotating scaling (1.5) for E = 10�5.

the contribution of such modes to fully developed convective heat transport exists,
previous experimental surveys find that evidence of sidewall modes in heat transport
is limited to Nu . 3 (e.g. Rossby 1969; Zhong, Ecke & Steinberg 1993). Our
rotating convection experiments have Nu > 3.5. Furthermore, the minimum Nusselt
number that we access increases sharply as we move to tanks with smaller aspect
ratio, in which significant sidewall modes are more likely (Liu & Ecke 1999):
for � . 4, Nu & 4.5; for � . 2, Nu & 18; and for � ⇡ 1, Nu & 21. We do
not, then, anticipate that sidewall modes contribute significantly to heat transport in
our experiments. Furthermore, where they overlap, our experimental and numerical
data are generally in agreement. Because sidewall modes are not possible in the
simulations, this agreement indicates that such modes are not of paramount importance
in the present experimental measurements.

Additional information on laboratory experiments is given in the supplementary
material.

3. Results
Figure 3 shows heat transfer behaviour, Nu versus Ra, for various E. We first

examine non-rotating (E = 1) heat transfer to provide a baseline for rotating
convection. Combining data from the present study with that from Rossby (1969),
we have 84 non-rotating convection cases in the range 104 < Ra < 1010, which yield
a best-fit scaling law of Nu = 0.162(±0.006)Ra0.284(±0.002). This relationship is in close
agreement with heat transfer scalings found at similar parameters in previous work
(Chilla et al. 1993; Cioni, Ciliberto & Sommeria 1997; Liu & Ecke 1997). This
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FIGURE 4. (Colour online) (a) Thermal boundary layer thicknesses, �, versus Ra from
numerical simulations of non-rotating convection. The line shows the best-fit scaling
� = 5.7Ra0.33. (b) Velocity boundary layer thickness calculations versus E from numerical
simulations of rotating convection. The line shows the scaling �E = 3E1/2. (c) The ratio
of thermal to Ekman boundary layer thickness, �/�E, from rotating convection simulations
plotted versus the predicted transition parameter, RaE3/2. The vertical dotted line shows the
crossing prediction from the intersection of the scalings in (a) and (b). Symbols carry the
same meaning as in figure 3.

scaling can be approximated as Nu = 0.16Ra2/7, which is indicated by the dashed
black line in figure 3.

Rotating convection heat transfer data exhibit first-order characteristics similar to
those seen in previous studies (e.g. Rossby 1969). First, the onset of convection occurs
at higher Rayleigh numbers for decreasing Ekman numbers. Beyond this critical
Rayleigh number, heat transfer grows increasingly convective, yet remains suppressed
below the Nusselt numbers found in non-rotating convection. Above a transitional
Rayleigh number, the heat transfer data for each Ekman number briefly overshoot
(e.g. Liu & Ecke 2009; Zhong, Stevens & Clercx 2009) and then roughly conform to
the non-rotating behaviour, where the E dependence is weak. Where laboratory and
numerical data overlap, they are typically in good agreement. The steep, solid line in
figure 3 shows the predicted geostrophic scaling law (1.5) for E = 10�5.

In figure 4, we examine calculations of boundary layer thicknesses from numerical
simulations. Ekman (thermal) boundary layer thicknesses are calculated as the mean
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FIGURE 5. (Colour online) (a) Selected experimental heat transfer data normalized by the
non-rotating scaling Ra2/7 plotted versus Ra to determine transition locations. Symbols are
the same as in figure 3. The horizontal, dashed black line shows the empirical non-rotating
scaling law, Nu = 0.16Ra2/7. (b) Transition locations from (a) plotted in Ekman–Rayleigh
space. The dotted line shows the best-fit power law, Rat = 10E�3/2. Symbols carry the same
meaning as in figure 3.

vertical distances of the first local maximum of the horizontally averaged velocity
(temperature) variance interior to the top and bottom domain boundaries (Belmonte,
Tilgner & Libchaber 1994). Figure 4(a) shows the thicknesses of thermal boundary
layers versus Ra from simulations of non-rotating convection. A best-fit scaling yields
�/h = 5.7(±0.7)Ra�0.33(±0.01), in agreement with the prediction from marginal boundary
layer stability analysis (1.2). Figure 4(b) shows calculations of Ekman boundary layer
thicknesses versus E from rotating convection simulations. The solid line shows
�E/h = 3E1/2 (Greenspan 1968), which fits the data to within 8 % on average for
E 6 10�4. Equating the scalings for each boundary layer, we expect that they cross
when Ra ⇡ 8E�3/2, in agreement with the prediction (1.6). The ratio of thermal
to Ekman boundary layer thickness is shown in figure 4(c) versus RaE3/2 for all
rotating RBC simulations, and the predicted crossing is indicated by the dotted vertical
line. The boundary layers are, in fact, observed to cross somewhere in the range
6 . RaE3/2 . 20.

In figure 5, we test the applicability of the regime transition prediction (1.6) to the
heat transfer data. Figure 5(a) shows convective heat transfer data from laboratory
experiments normalized by the empirical non-rotating scaling, NuRa�2/7, plotted
versus the Rayleigh number. Two data points from each of six different data sets for
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10�3 . E . 3 ⇥ 10�6 are selected to quantify the regime transitions. Laboratory data
are used exclusively because of their higher density in Ra space within this parameter
range. The data points chosen from each set are the closest two cases on either
side of the transition, as defined by the first crossing of the non-rotating scaling law,
Nu = 0.16Ra2/7 (dashed line). (Two pairs are shown for E ⇡ 10�4, which represent
data from two separate convection tanks, and with slightly different E values.) The
transition is approximated by the intersection of the non-rotating scaling (dashed line)
with the line connecting the two data points from each pair in semi-log space (dotted
lines).

Figure 5(b) shows the transition locations in Ra–E space. Error bounds
illustrate the location of the data points on either side of the transition. A
best-fit power-law regression yields a transitional Ekman number scaling of Et =
4.7(+2.5

�1.5)Ra
0.67(±0.02). Equivalently, this gives a transitional Rayleigh number scaling

of Rat = 10(+10
�4 )E1.50(±0.06), which is in agreement with the boundary layer transition

prediction (1.6) and thickness measurements (figure 4). Thus, the heat transfer regime
transitions are well described by the swapping of the nested thermal and Ekman
boundary layers, and both occur near RaE3/2 ⇡ 10.

We test the geostrophic heat transfer scaling (1.5) in figure 6. Figure 6(a)
shows Nu data normalized using the standard RBC reduction, NuRa�1/3 (Ahlers
et al. 2009), plotted versus RaE3/2. This renormalization of the axes allows us
to plot the predicted geostrophic scaling for all E using a single curve: (1.5)
becomes NuRa�1/3 = 0.0023 (RaE3/2)

8/3 (solid line). In figure 6(b), heat transfer data
normalized by the geostrophic scaling, NuRa�3E�4 are plotted versus RaE3/2. The
geostrophic prediction (1.5) is again shown by the solid line. Figure 6(c) shows an
expanded view of the region of figure 6(b) indicated by the grey box.

The most rapidly rotating data presented in figure 6 appear to conform to the
predicted geostrophic law. Indeed, the 22 convection cases with lowest RaE3/2 (<2.7)

are best fit by NuRa�3E�4 = 0.0023(±0.0002) (RaE3/2)
0(±0.1), in line with geostrophic

scaling law (1.5). Thus, our most rapidly rotating convection data, most of which come
from numerical simulations, are in good agreement with the prediction from boundary
layer stability analysis.

This agreement between theory and experiment (both computational and laboratory)
is contingent upon the quality of the assumptions on which the theory relies. The
two assumptions made to arrive at (1.5) from (1.4) – that convective heat transfer
is ineffective in the thermal boundary layer, and that the temperature drop outside
of the boundary layers is negligible – are less well tested for rotating convection
than for non-rotating convection (e.g. Boubnov & Golitsyn 1990; Belmonte, Tilgner
& Libchaber 1993; Julien et al. 1996). We can quantify the quality of these two
assumptions using results from numerical simulations. We test each assumption using
mean thermal profiles from simulations within the geostrophic regime, RaE3/2 < 10.
A test of the first assumption, 21T� = 1T , is given by 21T� = 0.7(±0.4)1T ,
indicating that total temperature drop does not always occur predominantly within
the boundary layers. Similarly, we can test the second assumption, 1T� ⇡ q�/k, finding
1T�/1T = 0.7(±0.2)�Nu/h. Thus, the temperature gradient in the boundary layers
is not observed to be purely conductive. Though these errors can be significant,
they may not be important for order-of-magnitude scaling analysis. Furthermore,
the errors in each of these assumptions offset each other to some extent, such that
� = 1.0(±0.6)h/(2Nu). It is unclear whether these assumptions hold as E ! 0.
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FIGURE 6. (Colour online) (a) The reduced Nusselt number, NuRa�1/3, plotted versus the
transition parameter, RaE3/2. Symbols are the same as in figure 3. The solid line shows the
geostrophic heat transfer scaling prediction (1.5). (b) Heat transfer data normalized by the
geostrophic scaling, NuRa�3E�4, shown versus RaE3/2. The solid, horizontal line shows the
exact scaling prediction (1.5). (c) Expanded view of the region of (b) indicated by the grey
box. Symbols carry the same meaning as in figure 3.

4. Conclusions
Following the seminal work by Malkus (1954), we develop dimensional arguments

for marginal boundary layer stability in geostrophic convection that produce a heat
transfer scaling law Nu ⇡ (Ra/Rac)

3 = 0.0023Ra3E4. We also develop a transition
parameter RaE3/2 that separates geostrophic and non-rotating styles of convective heat
transfer.

We present data from numerical simulations and laboratory experiments in support
of the geostrophic heat transfer scaling (figure 6). This scaling relationship is steeper
than those proposed by previous experimental measurements, which is probably due to
the fact that rapidly rotating convection has not been well explored. Indeed, this work
is among the first to survey rapidly rotating (E 6 10�4), geostrophic (RaE3/2 < 10)
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RBC to date (cf. Liu & Ecke 2009; Schmitz & Tilgner 2010). We have not,
however, acquired enough data at low RaE3/2 to verify or reject unequivocally
the predicted heat transfer law (1.5). In particular, it should be noted that, of the
25 data points with RaE3/2 < 2.7 used to test the geostrophic scaling, 23 come
from numerical simulations, as the laboratory experiments are limited by heat flux
considerations. Bigger, better-controlled experiments are needed to access this regime
while simultaneously minimizing the role of sidewall modes. Generally, in order to
test this prediction more conclusively, convection experiments and/or simulations must
be realized at lower Ekman numbers such that ample data become available for
RaE3/2 . 1.

The transition parameter RaE3/2 relates the relative thicknesses of the thermal
and Ekman boundary layers (figure 4) and aptly describes the transition between
geostrophic and weakly rotating convection regimes (figure 5). The development of
this parameter follows from dimensional analysis of boundary layer stability, arguing
that the transition from geostrophic to weakly rotating convection occurs when
the thermal boundary layer becomes thinner than the Ekman layer. This proposed
transition mechanism is in agreement with the boundary layer control hypothesis
proposed by King et al. (2009), and, furthermore, is not contingent upon the nature
of the mechanical boundary conditions. In King et al. (2009), however, the use of an
empirical scaling for non-rotating heat transfer gives a transition parameter of RaE7/4,
which is unlikely to hold for Rayleigh–Bénard convection with extreme Ra and E
values. Here, we show that these two boundary layers have thicknesses that scale as
� / Ra�1/3h and �E/ / E1/2h, respectively. Though based on the same premise, the
resulting transition parameter RaE3/2 differs considerably from that developed in King
et al. (2009).

Interestingly, the important dimensional quantities for which we seek scaling laws,
heat flux q, thermal boundary layer thickness � and Ekman layer thickness �E, are
all predicted to follow scalings that are independent of the total layer height, h.
Furthermore, since both boundary layer thickness scalings are depth-independent, the
regime of convective heat transfer, determined by the ratio �/�E, is also insensitive to
h. Arguments for depth-independent heat transfer behaviour in non-rotating convection
are not new (e.g. Priestley 1954; Spiegel 1971), and follow from the assumption
that RBC behaves like two opposed, infinite half-spaces. If correct, depth-independent
behaviour in turbulent, rapidly rotating RBC would help refine our understanding of
this system.
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Here, we provide supplementary material on the experimental methods for “Heat trans-
fer by rapidly rotating Rayleigh-Bénard convection”. Section 1 provides a detailed de-
scription of the laboratory experiment, and section 2 tabulates heat transfer data from
laboratory.

1. Laboratory Experiments
1.1. Experimental Apparatus

Laboratory experiments are carried out in cylindrical tanks of water or sucrose solution
using the rotating magnetoconvection device (RoMag) at UCLA (King 2009). The ex-
perimental convection setup is shown in figure 1, and consists of a cylindrical convection
tank that sits atop a rotating pedestal. The convection tank is 20 cm in diameter, and has
variable height, from 3.2 cm to 20 cm such that the diameter to height aspect ratio is in
the range 1  �  6.25. Increasing the tank’s height increases Ra (as h3) and decreases
E (as h�2).

The tank is heated from below by an electrical heating element and cooled from above
by a thermstated heat exchanger. The bottom thermal boundary condition is therefore
one of constant heat flux, rather than of constant temperature, as in the numerical simu-
lations. This means that, experimentally, we fix flux-Rayleigh numbers, Rf = RaNu,
instead of the traditional Rayleigh numbers that are fixed in the numerical simula-
tions. Despite this di↵erence in boundary conditions, mean convective behavior does
not strongly vary between the two types of thermal boundary conditions (e.g., Johnston
& Doering 2009; King et al. 2009).

Convection experiments are carried out near room temperature and the apparatus is
surrounded by roughly 20 cm of closed cell foam insulation to minimize ambient ther-
mal interaction. The cylinder sidewalls are polycarbonate, and the top and bottom tank
endwalls are thin layers of either copper or aluminum, designed to minimize thermal het-
erogeneity within the boundaries. The importance of finite conductivity is characterized
by the Biot number, Bi = Nu k

fluid

H
fluid

H
boundary

k
boundary

, where k is thermal conductivity and H is
layer thickness. For the experiments presented here, Bi < 0.1, such that the influence of
finite conductivity boundaries is small (Verzicco 2004).

Figure 2 shows a schematic of the heat delivery and removal system to the experimental
apparatus. The heat required to drive convection is accomplished by a 16 Ohm mica
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Figure 1. The convection tank setup of the rotating magnetoconvection device (RoMag). From
bottom to top are the rotating pedestal, leveling platform, insulator, heater, bottom endwall,
sidewall, top endwall, cooling block, and expansion tank.

resistance element. A direct current is passed through the heater by way of a 0-5 kW
power supply, and is transmitted to the rotating frame by a system of 50 Amp solid-
state slip rings. The heat produced below the convection tank is removed above the tank
by a heat exchanging unit, referred to as the cooling block. Water is forced through the
cooling block by a lab chiller that maintains a reservoir of treated water at a thermostated
temperature. The chilled water is delivered into the rotating frame via a two-channel fluid
rotary union. The cooling block is an aluminum (T6061) cylinder into which has been
cut two double-wound spiral flow channels, such that the temperature distribution is
roughly uniform. The heat absorbed by the lab chiller is removed by recirculation from
an air-cooled industrial rooftop chiller.

The convection tank setup is rotated by a brushless (for rotation rate uniformity)
servomotor. A lower table supporting the diagnostic instrumentation co-rotates such
that sensitive signals need not be transmitted through noise inducing slip rings. The
rotation rate is limited to 50 rotations per minute, such that the maximum strength
of centrifugation within the convection container is never more than 30% gravitational
acceleration (Lopez & Marques 2009).

1.2. Fluid Properties

Working fluids are water and sucrose solution, whose typical thermophysical properties
are listed in Table 1, and the temperature dependence thereof is given below.

The properties of water, in SI units (given in table 1), are (Lide 2000):

⇢ = 999.8 + 0.1041T � 9.718⇥ 10�3T 2 + 5.184⇥ 10�5T 3 (1.1)
↵T = �6.82⇥ 10�5 + 1.70⇥ 10�5T � 1.82⇥ 10�7T 2 + 1.05⇥ 10�9T 3 (1.2)

 = 1.31210�7 + 6.97210�10T � 5.63110�12T 2 + 2.63310�14T 3 (1.3)
k = 0.5529 + 2.66210�3T � 2.37410�5T 2 + 1.10810�7T 3 (1.4)

CP =
k

⇢
, (1.5)
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Figure 2. A schematic of RoMag’s experimental thermal circulation system.

Property Symbol Units Water Sucrose Solution

density ⇢ kg/m3 1000 1050
thermal expansivity ↵T K�1 2⇥ 10�4 2⇥ 10�4

viscous di↵usivity ⌫ m2/s 10�6 1.5⇥ 10�6

thermal di↵usivity  m2/s 1.4⇥ 10�7 1.4⇥ 10�7

Prandtl number Pr = ⌫/ — 7 11
specific heat Cp J/kg K 4180 3815
thermal conductivity k J/m s K 0.6 0.6

Table 1. Thermophysical properties of water (20�C) (Lide 2000) and sucrose solution (14.4%
sugar by mass, 20�C) (Hirst & Cox 1976).
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where T is the temperature of the fluid in �C.
In some convection cases, sugar is added to water to create a denser solution, which

permits polystyrene micro-particles to remain in suspension for use with acoustic Doppler
velocimetry. The properties of sucrose solution are essentially that of water with the
added dependency of the concentration of sugar. By mass, the percentage of sugar to
water in the solution is referred to as degrees Brix, �BX. The density of the solution
is measured prior to conducting experiments, and variations about that density with
temperature are assumed to be determined by the thermal expansivity of pure water
given above. The remaining fluid properties of sucrose solution are (Hirst & Cox 1976):

⌫ = (6.581/(((61.5 + T )� (1 + 0.011 T ) �BX)2))/⇢ (1.6)

 =
k

⇢CP
(1.7)

k = 0.5758 + 1.360⇥ 10�3 T � 3.006⇥ 10�3 �BX� 2.511⇥ 10�6 �BX T (1.8)
�3.341⇥ 10�6 �BX2 � 1.182⇥ 10�7 �BX2 T

Cp = [1� (0.632� 0.001 T ) �BX/100]4184. (1.9)

1.3. Experimental Diagnostics

Six thermistors are situated within each of the top and bottom boundaries, 2 mm from
the fluid interface, at two-thirds the tank’s radius. The probes are equally spaced in
azimuth, forming six vertically aligned pairs. These thermistors measure the temperature
di↵erence across the fluid layer, �T . The heat flux, q, is measured as the power input
to the resistor, and is compared, for accuracy, with the heating rate of coolant cycling
through a thermostated bath atop the convection tank.

Figure 3 shows an example of temperature time series measurements from RoMag.
Panels a) and b) show raw thermistor measurements from the top and bottom boundaries,
respectively. These temperature measurements are denoted T top

i (t) and T bottom

i (t), where
i = 1, ..., 6 corresponding to azimuthal location. From these measurements are calculated,
for example, the mean fluid temperature, Tfluid (panel c)), and temperature drop, �T
(panel d)). The mean temperature of the convecting fluid is calculated as

T
fluid

=
1
12

*
6X

i=1

T top

i (t) +
6X

i=1

T bottom

i (t)

+

t

, (1.10)

where h·it represents time averaging. The mean temperature drop across the fluid layer
is calculated as:

�T =
1
6

*
6X

i=1

T bottom

i (t)�
6X

i=1

T top

i (t)

+

t

. (1.11)

2. Laboratory Data
Here, we provide a table of heat transfer data from laboratory experiments. The col-

umn headings have the following meaning: h is the height of the convection tank in
meters; RPM is the rotation rate of the tank in rotations per minute; Power is the elec-
trical power supplied to the heater in watts; Pr is the Prandtl number of the fluid; E
is the Ekman number; Ra is the Rayleigh number; and Nu is the Nusselt number. Non-
dimensional parameters are defined as Pr = ⌫/, E = ⌫/2⌦h2, Ra = ↵T g�Th3/⌫,
and Nu = qh/k�T , where ⌫ is the fluid’s kinematic viscosity,  is the fluid’s thermal
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Figure 3. Sample temperature time series measurements from non-rotating convection in a
5 cm tank of water with 100 W heat power applied. a) and b) are temperature time se-
ries measurements from the top and, bottom thermistors, respectively, T top

i (t) and T bottom

i (t).
c): The thermistor measurements from a) and b) are averaged to calculate a time series

measurement of the mean fluid temperature, T
fluid

(t) = 1

12

P
6

i=1

`
T top

i (t) +
P

6

i=1

T bottom

i (t)
´
.

d): The di↵erence between mean top and bottom temperatures gives the temperature drop,

�T (t) = 1

6

`P
6

i=1

T bottom

i (t)�
P

6

i=1

T top

i (t)
´
. These measurements are then averaged in time

for each convection case, and used to calculate fluid properties and nondimensional parameters.

di↵usivity, ⌦ is angular rotation rate, h is the height of the container, ↵T is the fluid’s
thermal expansivity, g is gravitational acceleration, �T is the temperature drop across
the convection tank, q is heat flux, and k is the fluid’s thermal conductivity. Water is
the working fluid for all cases but those with h = 9.8 cm, in which sucrose solution was
used.
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h (m) RPM Power (W) Pr E Ra Nu

0.032 0 10.82 6.946 1 1.071⇥106 8.189
0.032 0 30.48 6.957 1 2.352⇥106 10.47
0.032 0 50.59 6.989 1 3.479⇥106 11.62
0.032 0 100.4 7.051 1 5.835⇥106 13.44
0.032 0 149.6 6.951 1 8.237⇥106 14.7
0.032 0 199.9 6.459 1 1.183⇥107 16.18
0.032 0 299.5 5.786 1 1.953⇥107 18.44
0.032 4.66 10.85 6.933 9.941⇥10�4 9.545⇥105 9.251
0.032 4.66 50.65 7.098 1.015⇥10�3 3.026⇥106 12.86
0.032 4.66 100.6 6.416 9.284⇥10�4 6.259⇥106 15.61
0.032 4.66 200.2 6.812 9.787⇥10�4 9.836⇥106 17.28
0.032 46.63 10.82 6.767 9.724⇥10�5 2.703⇥106 3.451
0.032 46.63 30.48 6.851 9.83⇥10�5 4.083⇥106 6.253
0.032 46.63 50.6 6.738 9.687⇥10�5 5.275⇥106 8.351
0.032 46.63 100.6 7.081 1.012⇥10�4 6.842⇥106 11.37
0.032 46.63 200.3 6.654 9.581⇥10�5 1.126⇥107 15.94
0.032 46.63 299.9 5.916 8.636⇥10�5 1.757⇥107 19.64
0.0472 0 10.81 6.75 1 3.843⇥106 11.54
0.0472 0 30.47 6.736 1 8.567⇥106 14.67
0.0472 0 50.59 6.84 1 1.251⇥107 16.09
0.0472 0 75.06 6.829 1 1.704⇥107 17.6
0.0472 0 100.3 6.808 1 2.14⇥107 18.85
0.0472 0 200.4 6.349 1 4.183⇥107 22.54
0.0472 0 299.2 5.446 1 7.318⇥107 26.12
0.0472 0 398.9 4.824 1 1.123⇥108 28.2
0.0472 1.91 10.85 6.738 1.087⇥10�3 3.439⇥106 13.01
0.0472 1.91 50.35 6.789 1.094⇥10�3 1.157⇥107 17.63
0.0472 1.91 101.1 6.907 1.111⇥10�3 1.969⇥107 19.96
0.0472 1.91 300.6 5.68 9.348⇥10�4 6.595⇥107 26.88
0.0472 19.1 10.49 6.841 1.102⇥10�4 4.22⇥106 9.895
0.0472 19.1 30.8 6.888 1.108⇥10�4 7.597⇥106 15.87
0.0472 19.1 50.27 6.967 1.12⇥10�4 1.029⇥107 18.6
0.0472 19.1 75.21 6.973 1.12⇥10�4 1.372⇥107 20.84
0.0472 19.1 101 6.98 1.121⇥10�4 1.709⇥107 22.42
0.0472 19.1 200.2 6.823 1.099⇥10�4 3.043⇥107 26.34
0.0472 19.1 300.6 5.873 9.628⇥10�5 5.46⇥107 30.42
0.0472 19.1 400.6 5.173 8.607⇥10�5 8.416⇥107 33.42
0.0472 47.7 10.5 6.806 4.392⇥10�5 9.41⇥106 4.493
0.0472 47.7 30.53 6.782 4.378⇥10�5 1.443⇥107 8.59
0.0472 47.7 50.7 6.833 4.407⇥10�5 1.786⇥107 11.32
0.0472 47.7 75.76 6.84 4.411⇥10�5 2.159⇥107 13.97

continued on next page
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h (m) RPM Power (W) Pr E Ra Nu

0.0472 47.7 101.1 6.97 4.485⇥10�5 2.42⇥107 15.9
0.0472 47.7 200.3 6.462 4.195⇥10�5 3.999⇥107 22.67
0.0472 47.7 301.4 5.72 3.767⇥10�5 6.255⇥107 28.03
0.0472 47.7 400.5 5.122 3.417⇥10�5 8.868⇥107 32.28
0.098 0 20.69 10.59 1 4.329⇥107 26.52
0.098 0 50.65 10.03 1 9.851⇥107 32.45
0.098 0 100.4 9.623 1 1.82⇥108 38.19
0.098 0 200.1 8.803 1 3.599⇥108 46.29
0.098 0 299.6 7.518 1 6.298⇥108 52.92
0.098 0 496.4 5.986 1 1.358⇥109 58.32
0.098 0.5 20.69 10.92 1.512⇥10�3 3.982⇥107 26.69
0.098 0.5 50.65 10.86 1.505⇥10�3 8.197⇥107 32.14
0.098 0.5 101 10.6 1.472⇥10�3 1.517⇥108 36.81
0.098 0.5 249.9 8.578 1.211⇥10�3 4.543⇥108 48.16
0.098 5 20.46 10.68 1.483⇥10�4 3.735⇥107 29.72
0.098 5 51.04 10.93 1.514⇥10�4 7.547⇥107 34.61
0.098 5 101.5 10.75 1.491⇥10�4 1.361⇥108 39.87
0.098 5 201.7 9.353 1.312⇥10�4 3.212⇥108 46.2
0.098 5 497.2 6.158 8.953⇥10�5 1.22⇥109 62.37
0.098 25 21.02 10.62 2.949⇥10�5 4.121⇥107 28.07
0.098 25 50.84 11.01 3.049⇥10�5 6.864⇥107 37.17
0.098 25 100.8 10.69 2.966⇥10�5 1.218⇥108 44.87
0.098 25 199.7 9.808 2.74⇥10�5 2.472⇥108 53.64
0.098 25 497.9 6.458 1.87⇥10�5 1.008⇥109 70.34
0.098 50 20.87 10.6 1.472⇥10�5 6.278⇥107 18.38
0.098 50 31.03 10.73 1.488⇥10�5 7.574⇥107 22
0.098 50 50.91 10.64 1.477⇥10�5 1.006⇥108 27.75
0.098 50 75.95 10.86 1.505⇥10�5 1.214⇥108 32.56
0.098 50 100.8 10.87 1.506⇥10�5 1.425⇥108 36.78
0.098 50 150.8 10.45 1.452⇥10�5 1.97⇥108 43.86
0.098 50 201.2 9.655 1.351⇥10�5 2.751⇥108 50.27
0.098 50 251.2 8.971 1.262⇥10�5 3.625⇥108 55.57
0.098 50 301 8.403 1.189⇥10�5 4.528⇥108 60.53
0.098 50 400 7.382 1.056⇥10�5 6.82⇥108 67.29
0.098 50 499.5 6.55 9.469⇥10�6 9.522⇥108 73.04
0.098 50 599 5.855 8.552⇥10�6 1.281⇥109 77.12
0.197 0 10.82 6.852 1 2.989⇥108 43.54
0.197 0 30.73 6.723 1 6.819⇥108 56.64
0.197 0 50.58 6.889 1 9.764⇥108 61.51
0.197 0 100.8 6.816 1 1.688⇥109 72.73
0.197 0 199.8 6.2 1 3.371⇥109 89
0.197 0 299.3 5.474 1 5.578⇥109 103

continued on next page
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h (m) RPM Power (W) Pr E Ra Nu

0.197 0 401 4.509 1 1.099⇥1010 98.6
0.197 0.123 10.84 6.937 9.943⇥10�4 2.916⇥108 43.41
0.197 0.123 50.67 6.89 9.883⇥10�4 9.691⇥108 62.06
0.197 0.123 101 6.842 9.822⇥10�4 1.676⇥109 72.74
0.197 0.123 200.1 6.336 9.177⇥10�4 3.26⇥109 88
0.197 1.23 10.86 6.898 9.893⇥10�5 2.771⇥108 46.38
0.197 1.23 30.83 6.912 9.911⇥10�5 6.299⇥108 57.66
0.197 1.23 50.78 6.909 9.907⇥10�5 9.386⇥108 63.79
0.197 1.23 101.2 6.873 9.861⇥10�5 1.623⇥109 74.44
0.197 1.23 200.2 6.353 9.2⇥10�5 3.216⇥109 88.73
0.197 3.075 10.84 6.964 3.991⇥10�5 2.624⇥108 47.82
0.197 3.075 30.84 6.947 3.982⇥10�5 5.938⇥108 60.45
0.197 3.075 50.7 6.95 3.984⇥10�5 8.831⇥108 66.74
0.197 3.075 101.1 6.921 3.969⇥10�5 1.548⇥109 76.7
0.197 3.075 200.2 6.416 3.712⇥10�5 3.054⇥109 91.47
0.197 12.3 10.85 6.935 9.938⇥10�6 2.762⇥108 45.9
0.197 12.3 30.83 6.942 9.946⇥10�6 5.737⇥108 62.66
0.197 12.3 50.69 6.967 9.978⇥10�6 8.353⇥108 70.14
0.197 12.3 100.6 6.976 9.99⇥10�6 1.442⇥109 80.37
0.197 12.3 150.6 6.948 9.953⇥10�6 2.015⇥109 86.95
0.197 12.3 201 6.444 9.314⇥10�6 2.936⇥109 94.63
0.197 12.3 299.9 5.509 8.109⇥10�6 5.221⇥109 109
0.197 41.01 10.33 6.84 2.945⇥10�6 6.037⇥108 20.66
0.197 41.01 14.94 6.823 2.939⇥10�6 7.139⇥108 25.41
0.197 41.01 19.96 6.819 2.937⇥10�6 8.006⇥108 30.32
0.197 41.01 24.7 6.91 2.972⇥10�6 8.634⇥108 33.73
0.197 41.01 29.94 6.992 3.003⇥10�6 9.316⇥108 36.83
0.197 41.01 40.09 7.012 3.01⇥10�6 1.06⇥109 43.04
0.197 41.01 50.04 7.037 3.02⇥10�6 1.178⇥109 47.91
0.197 41.01 74.76 7.009 3.009⇥10�6 1.481⇥109 57.49
0.197 41.01 101.2 6.991 3.002⇥10�6 1.783⇥109 65.08
0.197 41.01 150.6 6.814 2.935⇥10�6 2.436⇥109 75.31
0.197 41.01 201 6.418 2.784⇥10�6 3.017⇥109 92.88
0.197 41.01 192.2 6.242 2.717⇥10�6 3.496⇥109 81.33
0.197 41.01 299.8 5.451 2.41⇥10�6 5.515⇥109 105.2
0.197 41.01 284.9 5.297 2.35⇥10�6 6.422⇥109 90.52
0.197 41.01 400.2 4.539 2.051⇥10�6 1.063⇥1010 100.6
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Heat transfer by rotating convection
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