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Abstract

Recent work in our laboratories has demonstrated that an opioid-independent form of stress-induced analgesia (SIA) is mediated by endog-
enous cannabinoids [Hohmann et al., 2005. Nature 435, 1108]. Non-opioid SIA, induced by a 3-min continuous foot shock, is characterized by
the mobilization of two endocannabinoid lipidsd2-arachidonoylglycerol (2-AG) and anandamidedin the midbrain periaqueductal gray (PAG).
The present studies were conducted to examine the contributions of spinal endocannabinoids to nonopioid SIA. Time-dependent increases in
levels of 2-AG, but not anandamide, were observed in lumbar spinal cord extracts derived from shocked relative to non-shocked rats. Notably,
2-AG accumulation was of smaller magnitude than that observed previously in the dorsal midbrain following foot shock. 2-AG is preferentially
degraded by monoacylglycerol lipase (MGL), whereas anandamide is hydrolyzed primarily by fatty-acid amide hydrolase (FAAH). This met-
abolic segregation enabled us to manipulate endocannabinoid tone at the spinal level to further evaluate the roles of 2-AG and anandamide in
nonopioid SIA. Intrathecal administration of the competitive CB1 antagonist SR141716A (rimonabant) failed to suppress nonopioid SIA, sug-
gesting that supraspinal rather than spinal CB1 receptor activation plays a pivotal role in endocannabinoid-mediated SIA. By contrast, spinal
inhibition of MGL using URB602, which selectively inhibits 2-AG hydrolysis in the PAG, enhanced SIA through a CB1-selective mechanism.
Spinal inhibition of FAAH, with either URB597 or arachidonoyl serotonin (AA-5-HT), also enhanced SIA through a CB1-mediated mechanism,
presumably by increasing accumulation of tonically released anandamide. Our results suggest that endocannabinoids in the spinal cord regulate,
but do not mediate, nonopioid SIA.
� 2005 Elsevier Ltd. All rights reserved.

Keywords: Anandamide; Endocannabinoid; 2-Arachidonoylglycerol; Periaqueductal gray; Rostral ventromedial medulla; Stress antinociception; Fatty-acid amide

hydrolase; Monoacylglycerol lipase; Dorsal horn
1. Introduction

Stress-induced analgesia (SIA) is mediated by the activa-
tion of endogenous pain inhibitory systems. Both opioid-
dependent and opioid-independent forms of SIA have been
identified (see Akil et al., 1986 for review). These mechanisms
are differentially activated according to stressor parameters
and duration (Lewis et al., 1980a,b). SIA elicited by

* Corresponding author. Tel.: þ1 706 542 2252; fax: þ1 706 542 3275.
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0028-3908/$ - see front matter � 2005 Elsevier Ltd. All rights reserved.
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intermittent foot shock is blocked by opioid antagonists
(Lewis et al., 1980a), whereas SIA elicited by continuous
foot shock (3 min) is blocked by cannabinoid antagonists
(Hohmann et al., 2005). We recently demonstrated that this
nonopioid form of SIA is mediated by mobilization of two en-
docannabinoids, 2-arachidonoylglycerol (2-AG) and ananda-
mide, in the dorsal midbrain (Hohmann et al., 2005).

Opioid and nonopioid SIA share similar neuroanatomical
substrates. For example, opioid and cannabinoid receptors
populate brain regions regulating nociceptive responding,
such as the periaqueductal gray (PAG) (Martin et al., 1995;
Lichtman et al., 1996) and the raphe nuclei of the medulla

mailto:ahohmann@uga.edu
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(Herkenham et al., 1991). Like opioids, cannabinoids modu-
late distinct circuits within the midbrain PAG (Vaughan
et al., 2000) and the brainstem rostral ventromedial medulla
(RVM) (Meng et al., 1998). The competitive CB1 antagonist/
inverse agonist SR141716A (rimonabant) microinjected into
either the dorsolateral PAG (dPAG)(Hohmann et al., 2005)
or RVM (Suplita et al., in press) also attenuates SIA. By con-
trast, inhibition of endocannabinoid hydrolysis at these sites
enhances SIA (Hohmann et al., 2005; Suplita et al., in press).
These data support the existence of supraspinal sites of endo-
cannabinoid analgesic action.

Cannabinoids produce antinociception through spinal as
well as supraspinal mechanisms (for review, see Hohmann
and Suplita, 2004). The antinociceptive (Lichtman and Martin,
1991) and electrophysiological (Hohmann et al., 1999c) ef-
fects of cannabinoids are attenuated following spinal transec-
tion. Nonetheless, a long-lasting residual antinociception
remains in spinally transected mice (Smith and Martin,
1992), suggesting the existence of spinal sites of endocannabi-
noid analgesic action. These data are consistent with the pres-
ence of CB1 receptors in the spinal dorsal horn (Tsou et al.,
1998a; Hohmann et al., 1999a; Farquhar-Smith et al., 2000).
Intrathecally-administered cannabinoids also produce antino-
ciception (Yaksh, 1981; Smith and Martin, 1992; Welch and
Stevens, 1992; Welch et al., 1995; Martin et al., 1999) and
suppress noxious stimulus-evoked neuronal activity in spinal
nociceptive neurons (Hohmann et al., 1998, 1999b; Drew
et al., 2000; Kelly and Chapman, 2001), suggesting a function-
al role for spinal cannabinoid receptors in modulating
nociceptive processing. Intrathecal administration of either
rimonabant or CB1 antisense oligonucleotides also elicits
hyperalgesia (Richardson et al., 1998), suggesting that endo-
cannabinoids may act tonically to suppress nociceptive
responding. However, a physiological role for endocannabi-
noids at the spinal level has not been identified.

Both 2-AG and anandamide fully qualify as endocannabi-
noids (see Piomelli, 2003 for review). These lipids are synthe-
sized and released on-demand, activate cannabinoid CB1

receptors with high affinity, and are metabolized in vivo by
distinct hydrolytic pathways. Within the CNS, 2-AG is present
in quantities 170e1000 times greater those of anandamide
(Sugiura et al., 1995; Stella et al., 1997). 2-AG serves as
a full agonist at CB1 and CB2 (Sugiura et al., 1999, 2000;
Gonsiorek et al., 2000; Savinainen et al., 2001), whereas anan-
damide is less efficacious (Sugiura et al., 1995; Stella et al.,
1997; Savinainen et al., 2001).

2-AG is preferentially degraded by monoacylglycerol li-
pase (MGL) (Dinh et al., 2002a,b, 2004), whereas anandamide
is preferentially hydrolyzed by fatty-acid amide hydrolase
(FAAH) (Cravatt et al., 1996). Mutant mice lacking the
FAAH gene (FAAH�/�) are impaired in their ability to de-
grade anandamide and display reduced pain sensation that is
reversed by the CB1 antagonist rimonabant (Cravatt et al.,
1996; Lichtman et al., 2002). Immunocytochemical studies
have revealed a heterogeneous distribution of FAAH through-
out the brain and moderate staining of FAAH-positive cells in
the superficial dorsal horn of the spinal cord (Tsou et al.,
1998b). In brain, the regional distribution of MGL partially
overlaps with that of the CB1 receptor (Dinh et al., 2002a,b).
Inhibition of MGL in the midbrain PAG increases 2-AG accu-
mulation and enhances SIA in a CB1-dependent manner
(Hohmann et al., 2005), supporting a physiological role for
2-AG in neural signaling. Thus, the anatomical distributions
of FAAH and MGL are consistent with a role for these
enzymes in terminating the activity of endocannabinoids.

The present studies were conducted to investigate the con-
tribution of endocannabinoids acting at spinal CB1 receptors to
nonopioid SIA. We used high-performance liquid chromatog-
raphy/mass spectrometry (LC/MS) to examine the contribu-
tion of 2-AG and anandamide at the spinal level to SIA. We
examined the time-course of changes in endocannabinoid lev-
els in the lumbar spinal cord of control rats and rats subjected
to foot shock stress. Moreover, we used selective inhibitors of
MGL (URB602; Hohmann et al., 2005) and FAAH (URB597;
Kathuria et al., 2003) to further elucidate the roles of these en-
docannabinoids in SIA. We additionally evaluated effects of
intrathecal administration of arachidonoylserotonin (AA-5-
HT; Bisogno et al., 1998), a FAAH inhibitor that is inactive
at phospholipase A2 and CB1 receptors, on SIA. We hypothe-
sized that intrathecal administration of these inhibitors would
potentiate nonopioid SIA via a CB1 mechanism. Preliminary
results have been reported (Hohmann et al., 2005).

2. Methods

2.1. Subjects

One hundred forty-four adult male SpragueeDawley rats (320e370 g)

were used in these experiments. All procedures were approved by the Univer-

sity of Georgia Animal Care and Use Committee and followed the guidelines

for the treatment of animals of the International Associations for the Study of

Pain (Zimmermann, 1983).

2.2. Drugs

The CB1 antagonist/inverse agonist SR141716A (rimonabant) was a gift

from NIDA. The fatty acid amide hydrolase (FAAH) inhibitors URB597 and

arachidonoyl serotonin (AA-5-HT) were purchased from Cayman (Ann Arbor,

MI). URB602 (biphenyl-3-yl carbamic acid cyclohexyl ester) was synthesized

by reacting diimidazole-1-ylmethanone with biphenyl-3-yl amine in acetoni-

trile in the presence of 4-dimethylaminopyradine and subsequently with cyclo-

hexanol as described previously (Hohmann et al., 2005).

2.3. Lipid extractions and LC/MS analyses

For ex vivo experiments, we habituated otherwise naive rats to the guillo-

tine for at least 7 days prior to the experiment and killed them either without

exposure to or at various times (2, 7, 15, and 25 min) after foot shock (0.9 mA

for 3 min; n ¼ 10 per group). The lumbar spinal cords were quickly dissected

and stored frozen (�80 �C) until lipid extraction. Lipids were extracted in

methanol/chloroform/water (1:2:0.25), and the organic phase was recovered,

evaporated to dryness, reconstituted in chloroform/methanol (1:3, 80 ml) and

subjected to LC/MS analysis as described previously (Giuffrida et al., 1999;

Hohmann et al., 2005).

2.4. Surgical procedures

Rats were anesthetized with a mixture of sodium pentobarbital and ket-

amine. Intrathecal catheters were constructed from PE10 tubing (Yaksh and
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Rudy, 1976). Catheters were implanted through an incision in the atlanto-oc-

cipital membrane to a depth of 8.5 cm. The catheter tip extended just rostral to

the lumbar enlargement. Catheters were fixed to the skull with a stainless steel

screw and dental acrylic. Animals were allowed to recover five to seven days

prior to testing.

2.5. Behavioral testing

SIA was quantified behaviorally using the tail-flick test (D’Amour and

Smith, 1941). After establishing stable baseline responses to thermal stimula-

tion of the tail (model 33A tail-flick unit, IITC Inc., Woodland Hills, CA), rats

received a single intrathecal injection of rimonabant (2 or 20 nmol), URB602

(1 nmol), URB597 (1 nmol), AA-5-HT (1 or 200 nmol) or DMSO vehicle.

Drugs were injected in a volume of 10 ml followed by an equivalent volume

of saline to flush the catheter. Tail-flick latencies were assessed three times

at 2-min intervals immediately following drug administration to assess

changes in tail-flick latency induced by the injection itself. Rats were subse-

quently subjected to continuous foot shock (0.9 mA for 3 min; Hohmann

et al., 2005). Tail-flick latencies were reassessed at 2-min intervals for

60 min and averaged for each subject in two trial blocks. A 10-s cut-off latency

was employed to prevent tissue damage. The region of the tail subjected to

thermal stimulation was slightly varied across trials to eliminate sensitization.

In previous studies we showed that tail-flick latencies remain stable throughout

the entire observation interval in the absence of the stressor (Hohmann et al.,

2005). Following sacrifice, catheter placement was verified by injection of fast

green dye followed by dissection.

2.6. Statistical analyses

Time course data were analyzed using repeated measures analysis of var-

iance (ANOVA). Post hoc comparisons were performed using Fisher’s Pro-

tected Least-Squares Difference (LSD) test to correct for inflated alpha

error, with P < 0.05 considered significant. Pearson’s correlation coefficients

were calculated to assess the relationship between spinal endocannabinoid mo-

bilization and SIA.

3. Results

3.1. Effects of foot shock stress on endocannabinoid
levels

To determine whether endocannabinoid release participates
in non-opioid SIA, we analyzed 2-AG and anandamide levels
in the lumbar spinal cords of rats killed before (non-shock) or
at various times after foot shock using LC/MS. Example chro-
matograms show the coelution of endogenous 2-AG and anan-
damide with synthetic standards (Fig. 1). ANOVA revealed
time-dependent changes in 2-AG levels derived from lumbar
spinal cord extracts of shocked rats relative to non-shocked
rats [F(4,44) ¼ 21.106, P < 0.001] (Fig. 2a). Post hoc analyses
confirmed that 2-AG levels were significantly increased in
rats killed at 2 min post shock (P < 0.001) and decreased at
subsequent time points (P < 0.05). By contrast, anandamide
levels in the lumbar spinal cords of rats subjected to foot shock
did not differ reliably from controls. Planned comparisons
failed to reveal a significant elevation in anandamide levels
at either 2 min (P ¼ 0.24) or 5 min (P ¼ 0.21) post shock
(Fig. 2a). Foot shock also failed to alter either 2-AG or anan-
damide levels in tissues derived from the occipital cortex
(Fig. 2b), an area enriched in cannabinoid CB1 receptors but
not implicated in SIA. A significant correlation was observed
between SIA and post-shock levels of 2-AG (r ¼ 0.96,
P ¼ 0.02), but not anandamide (r ¼ 0.763, P ¼ 0.237), in the
lumbar spinal cord over the same interval (Fig. 3).

3.2. Assessment of SIA

In all studies, baseline tail-flick latencies did not differ be-
tween groups prior to administration of drug or vehicle. More-
over, latencies recorded just prior to foot shock, following
injection of either drug or vehicle, did not differ between
groups. Post-shock latencies were higher than baseline meas-
ures in all studies (P < 0.0001), demonstrating that continuous
foot shock for 3 min elicited robust antinociception. Fig. 3
shows the temporal correspondence between SIA and foot
shock-induced endocannabinoid accumulation in the lumbar
spinal cord.

Fig. 1. 2-AG and anandamide are detected in the lumbar spinal cord. (a,b)

Representative LC/MS tracings for selected ions characteristic of (a) endoge-

nous 2-AG (top, mass-to-charge ratio, m/z ¼ 401.3, an adduct with Naþ,

[M þ Naþ]) and synthetic [2H8]-2-AG (bottom, m/z ¼ 409.3) and (b) endoge-

nous anandamide (top, m/z ¼ 370.3, [M þ Naþ]) and synthetic [2H4]-2-

anandamide (bottom, m/z ¼ 374.3). Synthetic [2H8]-2-AG and synthetic

[2H4]-2-anandamide were added to the samples as internal standards. The first

peak in (a) corresponds to 1(3)-AG, a 2-AG isomer produced during sample

preparation, which was summed with 2-AG for quantification purposes.
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3.3. Pharmacological inactivation of CB1 receptors

Intrathecal injection of rimonabant (2 nmol or 20 nmol)
failed to suppress post-shock tail-flick latencies relative to
vehicle-treated controls [F(2,18) ¼ 0.104,P ¼ 0.9017] (Fig. 4).

3.4. Spinal inhibition of monoacylglycerol lipase (MGL)

Intrathecal administration of the MGL inhibitor URB602
(1 nmol) increased post-shock tail-flick latencies [F(2,17) ¼
8.954, P < 0.003] relative to either vehicle controls
(P < 0.002) or animals receiving URB602 co-administered
with rimonabant (P < 0.004) (Fig. 5). Rimonabant (2 nmol)
blocked the URB602-induced potentiation of stress antinoci-
ception. Tail-flick latencies observed in animals receiving
URB602 co-administered with rimonabant did not differ
from vehicle (P ¼ 0.7529).

3.5. Spinal inhibition of fatty-acid amide hydrolase
(FAAH)

Intrathecal administration of either URB597 (1 nmol) or
AA-5-HT (1 nmol or 200 nmol) increased post-shock tail-flick
latencies relative to controls [F(3,32) ¼ 20.765, P < 0.0001
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Fig. 2. Foot shock (3 min 0.9 mA) stimulates the formation of 2-AG, but not

anandamide, in the lumbar spinal cord. Non-shock (open squares) and post-

shock (filled circles) levels of 2-AG and anandamide in lumbar spinal cord

samples (a) and samples derived from the occipital cortex (b). Mean � S.E.M.;

n ¼ 10 per group. *P < 0.05 compared with non-shock controls (ANOVA,

Fisher’s PLSD test).
and F(2,14) ¼ 4.571, P < 0.03, respectively] (Fig. 6). Coad-
ministration of rimonabant (2 nmol) with either AA-5-HT or
URB597 blocked the potentiation of SIA induced by each
compound (P < 0.0001 and P < 0.04, respectively). Further-
more, both the high (200 nmol) and low (1 nmol) dose of
AA-5-HT increased post-stress tail-flick latencies relative to
controls (P < 0.0001 for either dose). Post hoc analyses re-
vealed that the 1 nmol dose of AA-5-HT was as effective as
the 200 nmol dose in potentiating stress antinociception. Ad-
ministration of either dose of AA-5-HT enhanced stress anti-
nociception from 9e60 min post foot shock.

4. Discussion

We have previously demonstrated that nonopioid SIA is
mediated by mobilization of two endocannabinoids, 2-AG
and anandamide, in the midbrain PAG (Hohmann et al.,
2005). The present results extend those findings and suggest
that endocannabinoid actions at spinal CB1 receptors modulate
SIA. Foot shock stress induced time-dependent changes in the
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levels of 2-AG, but not anandamide, in the lumbar spinal cord.
However, intrathecal administration of rimonabant failed to
attenuate nonopioid SIA. Nonetheless, selective inhibitors of
MGL and FAAH, administered via the same route, increased
both the magnitude and duration of SIA through a CB1-
dependent mechanism. A parsimonious interpretation of these
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findings is that inhibition of MGL or FAAH prevented the de-
activation of spinal 2-AG and anandamide, respectively, mag-
nifying nonopioid SIA. Thus, our findings suggest that spinal
endocannabinoids regulate, but do not mediate, nonopioid
SIA.

It is possible that the placement of chronic indwelling intra-
thecal catheters elevated anandamide levels in the behavioral
studies, and that this change in endocannabinoid tone was aug-
mented by the FAAH inhibitors. However, changes in endo-
cannabinoid tone due to catheter placement appear unlikely
because intrathecal rimonabant administration did not alter
tail-flick latencies in the presence or absence of foot shock.
Moreover, Fos immunocytochemical studies suggest that
spinal compression induced by catheter placement does not
induce appreciable neuronal activation (Hohmann et al.,
1999b).
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Electrophysiological studies have provided evidence both
for (Chapman, 1999) and against (Harris et al., 2000; Morisset
and Urban, 2001) the existence of a tonic endocannabinoid
tone at the spinal level. However, in our study, intrathecal
rimonabant administration failed to suppress either basal noci-
ceptive thresholds (determined immediately prior to the foot
shock) or nonopioid SIA. Hyperalgesic effects of spinal rimo-
nabant (Richardson et al., 1997) may reflect sensitivity of
supraspinally-organized (i.e. hot plate) relative to spinally or-
ganized (e.g. tail-flick) pain behaviors in measuring lowered
nociceptive thresholds. It is also possible that exposure to un-
controlled stress (e.g. due to handling) mobilizes endocannabi-
noids in behavioral studies (Patel et al., 2005), thereby
resulting in a CB1-dependent apparent hyperalgesia.

Although high doses of anandamide activate transient re-
ceptor potential vanilloid 1 (TRPV1) (for review, see van der
Stelt and Di Marzo, 2005), several observations suggest that
this mechanism is not responsible for the enhancements of
SIA observed here. First, systemic administration of the
TRPV1 antagonist capsazepine, at a dose that completely
blocks capsaicin-induced antinociception, does not alter non-
opioid SIA in our paradigm (Suplita et al., in press). Second,
CB1 and TRPV1 show minimal colocalization at the axonal
level in the spinal cord, with CB1 localized predominantly to
laminae I and II interneurons (Farquhar-Smith et al., 2000)
and TRPV1 localized primarily to nociceptive primary affer-
ent terminals (Caterina et al., 1997; Caterina and Julius,
2001). Third, anandamide activation of CB1 and TRPV1
typically induces opposing effects with distinct time courses
(see De Petrocellis and Di Marzo, 2005). However, we ob-
served only enhancementsdnot attenuationdof SIA follow-
ing intrathecal administration of FAAH inhibitors and no
change in SIA following antagonist treatment. Fourth, rimona-
bant completely blocked the potentiation of SIA induced by
intrathecal administration of inhibitors of MGL or FAAH, at
doses that were insufficient to reverse SIA when administered
alone. Together, these observations suggest that anandamide
acts through CB1 rather than TRPV1 at the spinal level to
modulate SIA.

The foot shock-induced increases in 2-AG levels were
smaller than those observed previously in the dorsal midbrain
of the same subjects (Hohmann et al., 2005). This observation
is consistent with the inability of spinally administered rimo-
nabant to block nonopioid SIA. By contrast, a tenfold lower
dose of rimonabant produced a robust suppression of SIA
when microinjected into the dorsolateral PAG. Our results col-
lectively suggest that supraspinal sites of action play a pivotal
role in endocannabinoid-mediated SIA.

Our data suggest that spinal inhibition of MGL prolongs the
duration of action of 2-AG, thereby enhancing endocannabi-
noid tone at spinal CB1 receptors to magnify SIA. This en-
hancement occurred in the absence of reliable changes in
spinal anandamide levels. Thus, the antinociceptive effects
of MGL inhibitors are not dependent upon concurrent eleva-
tions in anandamide that were induced in the midbrain PAG
following exposure to the same stressor (Hohmann et al.,
2005).
Spinal inhibition of FAAH also potentiated SIA via a CB1-
dependent mechanism. However, foot shock did not reliably
increase spinal anandamide levels. Our failure to observe en-
hancements in anandamide accumulation may reflect lower
absolute levels of anandamide relative to 2-AG and conse-
quently higher variability in these measurements. Our data
are consistent with the ability of FAAH inhibitors to selectively
enhance accumulation of anandamide, but not 2-AG (Cravatt
et al., 2001; Lichtman et al., 2002; Kathuria et al., 2003; Feg-
ley et al., 2005). FAAH may regulate both the distance endo-
cannabinoids diffuse to engage CB1 receptors and the duration
of endocannabinoid actions (Egertová et al., 2003) to increase
accumulation of tonically released anandamide. It is also pos-
sible that the extent of on-demand anandamide synthesis may
be underestimated in the present work due to the rapid metab-
olism of this lipid by FAAH. Mapping the distribution of
MGL, FAAH and CB1 in the spinal cord could further eluci-
date the anatomical and functional relationship between cells
that degrade 2-AG and those expressing CB1.

Cannabinoid receptor agonists such as D9-tetrahydrocan-
nabinol (THC) have limited therapeutic applications at present,
mainly because of their undesirable psychoactive effects.
However, pharmacological agents that protect endocannabi-
noids such as 2-AG and anandamide from inactivation may
lead to a more circumscribed spectrum of physiological re-
sponses than those produced by direct cannabinoid agonists.
Ideally, this strategy would enhance endocannabinoid activity
only at sites with on-going biosynthesis and release, thereby
averting undesirable side effects. The possible use of drugs
that inhibit endocannabinoid hydrolysis to treat pain in hu-
mans has thus propagated both hope and concern (Cravatt
and Lichtman, 2003). FAAH is widely distributed throughout
the body (Deutsch and Chin, 1993; Cravatt et al., 1996;
Matsuda et al., 1997; Watanabe et al., 1998; Maccarrone
et al., 2000) and implicated in the metabolism of a variety
of anandamide analogues (Desarnaud et al., 1995; Cravatt
et al., 1996; Bisogno et al., 1997; Lang et al., 1999a,b; Tiger
et al., 2000). Our data demonstrate that local enhancements
of endocannabinoid actions at the spinal level are sufficient
to potentiate SIA. Additional experiments will be necessary
to determine whether inhibitors of endocannabinoid degrada-
tion may find therapeutic applications in the treatment of
pain and stress-related disorders.
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