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Graphene
1
, a two-dimensional honeycomb lattice of carbon atoms, is of great 

interest in (opto)electronics
2,3

 and plasmonics
4-11

 and can be obtained by means of 

diverse fabrication techniques, among which chemical vapor deposition (CVD) is 

one of the most promising for technological applications
12

. The electronic and 

mechanical properties of CVD-grown graphene depend in large part on the 

characteristics of the grain boundaries
13-19

. However, the physical properties of 

these grain boundaries remain challenging to characterize directly and 

conveniently
15-23

. Here, we show that it is possible to visualize and investigate the 

grain boundaries in CVD-grown graphene using an infrared nano-imaging 

technique. We harness surface plasmons that are reflected and scattered by the 

graphene grain boundaries, thus causing plasmon interference. By recording and 

analyzing the interference patterns, we can map grain boundaries for a large area 

CVD-grown graphene film and probe the electronic properties of individual grain 

boundaries. Quantitative analysis reveals that grain boundaries form electronic 

barriers that obstruct both electrical transport and plasmon propagation. The 

effective width of these barriers (~10-20 nm) depends on the electronic screening 

mailto:dbasov@physics.ucsd.edu


and it is on the order of the Fermi wavelength of graphene. These results uncover a 

microscopic mechanism that is responsible for the low electron mobility observed in 

CVD-grown graphene, and suggest the possibility of using electronic barriers to 

realize tunable plasmon reflectors and phase retarders in future graphene-based 

plasmonic circuits. 

 

Our imaging technique, which we refer to as „scanning plasmon interferometery‟, is 

implemented in a setting of an antenna-based infrared (IR) nanoscope
6-8

. A schematic 

diagram of the scanning plasmon interferometry technique is shown in Fig. 1a. Infrared 

light focused on a metalized tip of an atomic force microscope (AFM) generates a strong 

localized field around the sharp tip apex, analogous to a “lightning-rod” effect
24

. This 

concentrated electric field launches circular SPs around the tip (pink circles in Fig. 1a). 

The process is controlled by two experimental parameters: the wavelength of light IR 

and the curvature radius of the tip R. In order to efficiently launch SPs on our highly 

doped graphene films, we chose IR light with IR close to 10 m and AFM tips with R ≈ 

25 nm (Methods). The experimental observable of the scanning plasmon interferometry is 

the scattering amplitude s that is collected simultaneously with AFM topography.  

Before analyzing the GBs, we first discuss a crack-type line defect with a geometric 

width of ~10 nm, thus visible in the AFM topography (blue arrows in Fig. 1b). The 

corresponding scanning plasmon interferometry image is displayed in Fig. 1c, where we 

plot the scattering amplitude s at IR = 11.3 m. The scattering signal shows bright twin 

fringes running along this line defect. In the same field of view, we also observed a 

region of double-layer graphene (blue dashed loop) and a microscopic line structure 

(green shaded region) in Fig. 1b. All these features are commonly found in CVD 

graphene
12

 (Fig. S1a). The bright circular fringes are observed near the edge of the 

double-layer region (Fig. 1c). By tuning IR from 11.3 m (Fig. 1c) to 10.5 m (Fig. 1d), 

the fringe widths of both types of fringes show evident IR-dependence, which is 

consistent with the plasmonic origin of these patterns
7,8

. Note that the scattering 

amplitude in all our scanning plasmon interferometry images is normalized to that of a 

sample region where no fringes exist (e.g. the green square in Fig. 1c).  

In previous studies
7,8

, plasmon fringes with a width of half the plasmon wavelength 

p/2 were observed close to the edge of graphene microcrystals. In order to validate the 

plasmonic origin of the fringes found here, we plot in Fig. 1f the width of the twin fringes 

(circles) as a function of IR. In the same diagram we also show a theoretical cacluation 

(see Methods for details). The agreement between the experimental data and the 

calculated curve confirms that the bright fringes at the line defects are of the plasmonic 

origin in close analogy with the oscillations of the scattering amplitude at the edges of 

graphene. In either case, the near-field signal is formed by a standing wave with the 

periodicity p/2 produced by the interference between the tip-launched and reflected 

plasmons
7,8

.  

We observed twin fringes not only close to the cracks but also near other types of 

line defects that we identified as wrinkles and grain-overlaps based on the AFM 

topography (Fig. S2). But the most prevailing line defects are grain boundaries 

(schematically illustrated in Fig. 1a with a red line). As a rule, GBs are of the atomic 



length scale thus are invisible in typical AFM scans (Fig. 2a). Yet GBs were vividly 

visualized by scanning plasmon interferometry producing characteristic twin fringes (Fig. 

2b,d). We examined the IR-dependence of the fringe width and found that it is in 

agreement with the theoretical calculation (red circles in Fig. 1f). This latter finding 

attests to the plasmonic origin of the scanning plasmon interferometry signal at GBs.  

So far we discuss mainly the fringe width that is a direct measure of p. Yet another 

important parameter is the separation between twin fringes DTF (Fig. 1e). For GBs, DTF 

can be written as ( / 2 )TF pD     , where  is the plasmon phase shift upon reflection 

off a grain boundary set to vary within [-2, 0] (Supplementary equation (S19)). 

Therefore, for a non-zero constant , the magnitude of DTF is proportional to p, which 

was indeed confirmed by our experiment (Fig. 1f). Our data indicated that DTF roughly 

equals to 1/2p for all GBs, and therefore  is close to -. Note that the parameter  is not 

solely determined by the response of our graphene samples. The AFM tip also plays an 

important role here. As detailed in Section 4 of the Supplementary Information, it is 

convenient to write  as sp+t, where sp is the plasmon phase shift without tip 

coupling to graphene, and t is a tip-dependent parameter that is around -(0.50.1) based 

on our numerical modeling (Supplementary equation (S19)).  

The above analysis for DTF holds true also for other types of line defects with 

geometric features much smaller than p, such as the crack shown in Fig. 1b. 

Nevertheless, for line defects such as wrinkles and grain-overlaps (Fig. S2), the twin 

fringes are strongly affected by their geometric form. As detailed in Section 2 of the 

Supplementary Information, these two types of line defects generate twin fringes with 

considerable variations of DTF governed by the details of a particular defect. A unique 

feature of GBs and grain-overlaps is that they together form a network of closed regions 

(grains) spanning over the entire graphene film (Figs. 2e & S3). In contrast, cracks and 

wrinkles are sporadic and discontinuous. From Fig. 2e, we were able to measure the 

average grain size (3-5m) of our film, in agreement with reports for graphene prepared 

under identical conditions
21

.  

In order to gain quantitative understanding of the twin fringes in our scanning 

plasmon interferometry images, we performed numerical modeling that takes into 

account all the experimental details. In our modeling, we assumed that GBs locally 

modify the plasmon wavelength p and damping rate p. Here, p is defined by the ratio 

between the imaginary and real parts of the plasmon wavevector 
2

(1 )p p

p

q i





  . We 

found that the profiles of p(x) and p(x) displayed in Fig. 2f produce an accurate fit of the 

experimental data taken at multiple IR in the range of 10.7–11.3 m (Figs. 2c, 

Supplementary Fig. S7). Details of the modeling are given in Section 5 of the 

Supplementary Information. The fact that the single set of parameters fits the totality of 

fringe profiles indicates that the choice of these parameters is quite robust. For example, 

an assumption of a dip in p(x) as opposed to a peak at the GB would almost double DTF 

(see Fig. S5a and following paragraphs). We remark that strong scattering quantified with 

p in concert with the enhancement of p at the GB is needed to reproduce the line shape 

of the twin fringes. 



We now discuss some of the implications of our modeling. According to the 

plasmon dispersion equation (Methods), p is roughly proportional to EF. In turn, EF 

scales as a square root of the carrier density n. Thus our results imply that our graphene 

film tends to be heavily doped with n  4×10
13 

cm
-2

 at the GBs, corresponding to 0.021 

holes per unit cell. This is expected since GBs are lattice defects that favor molecule 

adsorptions at ambient conditions
25,26

. The role of defects in enhancing doping due to 

molecule adsorption has been extensively studied before
27,28

. In contrast, under ultra-

high-vacuum conditions, where molecule adsorption is significantly reduced, graphene 

films are close to the charge neutrality point and GBs perturbed the electronic properties 

of graphene in a totally different way as confirmed by scanning tunnel microscopy 

studies
18

. The plasmon damping rate depends on the carrier scattering rate of graphene 
1  : p ≈ 0.05 + ()-1

 (Eq. S21). Therefore, the lineform of (x) inferred from modeling 

implies that charge carriers experience enhanced scattering close to the GBs. We 

speculate that this effect may be caused by the coulomb scattering due to the charges at 

the GBs. Furthermore, modeling indicates that GBs perturb electronic properties over a 

length scale of the order of 20 nm. A wider effective width compared to the geometric 

width is in fact an outcome of electron screening of the charged GBs
29

. Indeed, the 

charge screening length is estimated to be in the order of Fermi wavelength, roughly 10 

nm in our doping range, consistent with our experimental findings.  

Based on the p(x) and p(x) profiles in Fig. 2f, we can calculate the EF(x) and 
1( )x 

 profiles across GBs. These latter parameters allow us to infer the DC conductivity 

DC of graphene (inset of Fig. 2c) with a standard formula
11

: 
2

1

2 F
DC

Ee

h


 
 . This 

equation is obtained by assuming weak frequency dependence of 1
 that is valid when 

coulomb scattering dominates
11

. Although the increase of the EF near the GBs would 

normally boost DC, this expected trend is overwhelmed by the increase in 1
. The net 

effect for GBs is to significantly reduce the local DC of graphene. 

Finally, we wish to point out that the plasmon reflection off GBs can be described 

by a reflection coefficient rsp. By solving analytically the problem of SPs scattering by 

GBs, we were able to obtain a formula: rspiWeffqp (Eq. S14), where qp is the relative 

change of plasmon wavevector due to GBs and Weff is the effective width. Based on rsp, 

we were able to estimate both the plasmon reflection probability |rsp|
2
 and the phase shift 

sp=arg(rsp). The former is closely related to the fringe intensity, and the latter determines 

DTF as discussed above. Calculations based on the p and p profiles of the GB (Fig. 2f) 

yield |rsp|
2
≈8% and sp≈-0.6. The 8% reflectivity is remarkably high. Such a strong 

reflection is due to the extended effective width of the electronic perturbation induced by 

the GBs (Fig. 2f). A phase shift of sp≈-0.6 is an outcome of higher doping at the GB. If 

one switches the GB to a lower doping, spwill undergo a “” phase shift and become -

1.6, resulting in a dramatic increase of DTF away from the experimental value (Fig. S5a). 

The above analysis indicates that |rsp|
2
 and sp are sensitive to the doping of the plasmon 

reflector. Therefore both of these parameters governing plasmon propagation can be 

conveniently tunable by common electronic means, e.g. electrostatic gating. 



Our work provided for the first time unambiguous experimental evidence of novel 

plasmonic effects originating from plasmon reflection at GBs in CVD graphene. The 

scanning plasmon interferometry technique, aided with modeling, is a comprehensive 

method capable of mapping and probing the electronic properties of GBs. This method 

can be applied to nano-characterization of plasmonic materials beyond graphene, where 

GBs also play important roles in the plasmonic effects
30

. Moreover, our work provides 

guidelines to designing tunable electronic barriers that would realize reconfigurable 

plasmon reflectors
4
 and phase retarders: a milestone towards graphene-based plasmonic 

circuits. 

 

Methods 

Samples 

Our graphene films were grown on copper foils using a two-step low pressure CVD 

method
12

, and then transferred to silicon wafers with 300 nm SiO2 layer on top. All 

experiments were performed under ambient conditions and in an atmospheric 

environment. The graphene films were unintentionally hole-doped with a carrier density 

of about 1.0×10
13

 cm
-2

 corresponding to a Fermi energy EF of 0.37 eV. Such high doping 

is due to the SiO2 substrate, as well as molecule adsorption in the air atmosphere
26,27

. The 

doping level was inferred from our Raman and near-field gating experiments 

(Supplementary Section S1). 

 

Experimental apparatus 

The scanning plasmon interferometry experiments introduced in the main text were 

performed at UCSD using a scattering-type scanning near-field optical microscope (s-

SNOM)
24

. Our s-SNOM is a commercial system (neaspec.com) equipped with mid-IR 

quantum cascade lasers (daylightsolutions.com) and CO2 lasers (accesslaser.com) 

covering a wavelength range of 9.511.3 m. The s-SNOM equipped with a pseudo-

heterodyne interferometric detection module is based on an atomic force microscope 

(AFM) operating in the tapping mode with a tapping frequency around 270 kHz. The 

output signal of s-SNOM utilized in this work is the scattering amplitude s demodulated 

at n
th

 harmonics of the tapping frequency (n = 2 in the current work).  

In order to efficiently couple IR light to the graphene plasmons, an AFM tip with a 

radius R ≈ 25 nm was chosen as our near-field probe. This scheme allowed us to 

overcome the notorious “momentum mismatch” between plasmons and photons. As 

detailed in ref. 13, the momenta-coupling function has a bell-shaped momenta 

distribution that peaks at q ~ 1/R. For a typical CVD graphene film on the SiO2 substrate, 

the momentum of IR plasmons at ambient conditions is between 3 - 6×10
5
 cm

-1
. 

Therefore the optimum tip radius for exciting SPs of graphene in our frequency range is 

about 20-30 nm. 

 

Evaluating the plasmon dispersion in graphene 

The plasmon dispersion equation of graphene
7,11

 at the interface between air and 

SiO2 substrate with dielectric function sub() is given as 02 ( )

( )
p

i
q

  

 
 , where 

=2c/IRis the IR excitation frequency, sub( ) [1 ( )] / 2     is the effective dielectric 



function of the environment for graphene, () is the optical conductivity of graphene. 

The plasmon wavelength p of graphene can be obtained with p=2/Re(qp). The optical 

conductivity we used to calculate the plasmon wavelength (×1/2) in Fig. 1f was obtained 

from the random phase approximation method
6,7

. We find an excellent agreement 

between the experimental data and calculations of 1/2p assuming a Fermi energy EF ≈ 

0.37 eV that is in accord with our Raman measurements.  

Alternatively, one can use a Drude formula that is valid at a limit of long wavelength 

and low frequency: 
2

2 1
( ) FEe

i
i

 
   




, where e is the elementary charge,   is the 

reduced Plank constant, and -1
 is the charge scattering rate in graphene. In this case, 

plasmon wavelength p adopts an analytic form: 
2 2

F IR

2 2

0 Re
p

e E

h c




 
 .  
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Figure Captions:  

 

Figure 1 | Probing CVD graphene with scanning plasmon interferometry. a, 

Illustration of the scanning plasmon interferometry principle. The AFM tip (silver cone) 

illuminated with infrared (IR) light (purple cone) launches surface plasmon waves (pink 

circles) in graphene. These waves are partially reflected by the line defect (red line) thus 

causing interference between the launched and back-reflected plasmonic waves.  b, AFM 

topography of CVD graphene revealing a crack-type line defect (blue arrows), double-

layer graphene region (blue dashed loop), and a microscopic line structure (green shaded 

region). c, d Scanning plasmon interferometry images taken simultaneously with the 

AFM topography in b at IR wavelength IR=11.3 m and 10.5 m, respectively. e, Line 

profiles taken along the white dashed lines in c and d. Here we also illustrate, for the 11.3 

m case, a protocol to extract the fringe width (FW) and the separation between the twin 

fringes DTF.  f, Evolution of fringe width (circles) and DTF (triangles) with IR for the 

crack in Fig. 1b (blue) and the grain boundary (GB) in Fig. 2 (red). The black solid line is 

a theoretical result for the magnitude of 1/2p assuming the Fermi energy EF≈0.37eV 

(Methods). Note that p decreases rapidly for IR < 10 m: a consequence of the plasmon 

coupling to the surface optical phonon of SiO2. The data range for GBs is narrower than 

that that of the crack due to the fact that GB is a less efficient plasmon reflector compared 

to the crack. Scanning plasmon interferometry images c and d show the normalized 

amplitude s of the nano-optic signal as described in the text. Scale bars in b-d are all 200 

nm. 

 

Figure 2 | Grain boundaries observed in CVD graphene films. a, Topography image 

of graphene containing GBs. b, Scanning plasmon interferometry image simultaneously 

taken with a at IR=11.3 m revealing GBs. c, Experimental (black squares) and modeled 

(red curves) twin fringe profiles. The experimental profile is taken along the dashed line 

in b. The inset shows the profile of DC conductivity inferred from modeling. d, Scanning 

plasmon interferometry image of the same sample area of b taken at IR=10.7 m. e, A 

larger-area scan of a typical sample revealing multiple grains (displayed with different 

false colors) defined by the twin fringes due to GBs and grain-overlaps. Details of line 

defects arrangements in this map are given in Fig. S3. f, The profiles of plasmon 

wavelength p and damping rate p used for modeling the fringe profiles of the GB shown 

in c and Fig. S7. Scale bars in a, b, d are 200 nm, and the scale bar in e is 1 m. 
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1. CVD graphene fabrication and characterization 

Our graphene films were gown on copper foil using a two-step low pressure 

chemical vapor deposition (CVD) method as described in Ref. 1, and then transferred to 

SiO2/Si wafers. A typical image taken with optical microscope is shown in Fig. S1a, 

where one can see that our CVD graphene film is predominantly single layer graphene. In 

addition, there are sporadic dark spots (green arrow) and lines (blue arrows) dispersed 

inside the film: a common occurrence in CVD graphene films
1
. These dark spots are the 

regions of two- or three-layer graphene whereas dark lines are microscopic line structures. 

We remark that these line structures are of the microscopic length scale, orders of 

magnitude wider than the nanoscale line defects investigated in this work. The double-

layer region in Fig. 1b of the main text marked with blue dashed loop is one of these dark 
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spots, while the green shaded region in Fig. 1b of the main text is one of these 

microscopic line structures.  

   

 
Figure S1. | Optical and Raman characterization of CVD graphene. a, A typical 

optical image of our graphene film. CVD-G represents the CVD graphene film. Green 

arrow marks a dark spot and blue arrows mark a microscopic line structure, both of which 

are commonly seen in graphene films fabricated with CVD methods. Scale bar, 10 m. b, 

A typical Raman spectrum of our graphene film away from any dark spots or dark lines 

shown in a. c, Scattering amplitude s(=1150 cm
-1

) at various gate voltages Vg 

normalized to that at Vg=0V. 

 

Raman spectroscopy (Senterra, Bruker Inc.) was applied to characterize our graphene 

films. All our Raman measurements were carried out using a 532 nm excitation laser, a 

50 (NA=0.75) objective, and a grating with 1200 lines per millimeter. The laser spot 

size is roughly 1 m, and the spectral resolution is 3 cm
-1

. An accuracy of ~1 cm
-1

 can be 

achieved by band-fit when determining the peak positions for G and 2D bands. We kept 

our laser power below 2 mW to avoid heating
2
. Raman spectra were collected all across 

our graphene films to characterize our film quality and doping level. A typical spectrum 

taken away from any dark spots or dark lines (Fig. S1a) is given in Fig. S1B. A 

symmetric 2D peak verified that our film is a single layer graphene, while a vanishing D 

peak indicates that our film is of high crystalline quality. According to previous studies, 

the G peak position is sensitive to the doping level of graphene
3-5

. The average G peak 

position of Raman spectra taken at different locations is around 15951 cm
-1

 indicating 

extremely high doping in our CVD graphene film.  

To estimate the carrier polarity and density of our graphene film, we investigated the 

gating dependence of the near-field IR response by monitoring the hybrid plasmon-

phonon resonance around =1150cm
-1

. At this frequency, the scattering amplitude s 

scales monotonically with the doping level of graphene (see Ref. S8 for detailed 

information), thus offering a convenient way to estimate the doping level of graphene. As 

shown in Fig. S1c, s(=1150 cm
-1

) decreases systematically with increasing gate voltage 

Vg. The charge neutral point VCN is above Vg = 80 V and exceeds the breakdown voltage 

of the SiO2 layer in our structure. Albeit incomplete, these gating results nevertheless 

conclusively show that our graphene films are highly hole-doped at ambient conditions.  



Based on the combination of our Raman and near-field gating experiments, we 

estimated that the hole density of our CVD graphene film was around (1.0±0.3)×10
13

 

cm
-2

. The corresponding Fermi energy EF is about 0.37±0.06 eV estimated from

F FE v n , where vF  1×10
6
 m/s is the Fermi velocity. This high level of doping 

likely originates from both SiO2 substrate and molecule adsorption in air atmosphere
6,7

. 

 

2. Nomenclature of line defects 

In addition to the cracks and grain boundaries (GBs) introduced in the main text, we 

also found other types of line defects including wrinkles and grain-overlaps. In Fig. S2, 

we plot both atomic force microscopy (AFM) (Figs. S2a and S2d) and scanning plasmon 

interferometry (SPI) (Figs. S2b and S2e) images for these two types of line defects. All 

SPI images were taken at IR=11.3 m and share the same color scale. For the purpose of 

quantitative analysis, in the right panels of Fig. S2, we plot the line profiles across the 

twin fringes of these line defects.  

Wrinkles (i.e. film corrugations) in CVD graphene are formed during either post-

growth cooling or film transfer processes
1
. Here we only discuss wrinkles in the 

nanometer length scale. As shown in Fig. S2b, wrinkles also generate twin fringes similar 

to cracks and GBs indicating that they also reflect surface plasmons (SPs). Nevertheless, 

the fringe intensity and separation between the twin fringes DTF for wrinkles are different 

from position to position (Figs. S2b). Such differences are due to the variations of the 

structural morphologies
9
 of these wrinkles at different locations.  

Grain-overlaps are line defects formed when one grain overlaps with another, so that 

they bridge different grains
10

. Unlike GBs, grain overlaps are clearly visible in AFM 

topography. There are two grain-overlaps here in Fig. S2d (marked with OL1 and OL2), 

producing only ~1 nm variation in the AFM topography. Despite their similarity in the 

topography, OL1 and OL2 trigger totally different twin fringes (Fig. S2e). The twin 

fringes of OL1 are very close to each other, while those of the OL2 are much further 

apart. Both of them are different from the twin fringes triggered by a GB (marked with a 

red arrow in Fig. S2e). The different SPI response of the two grain-overlaps might be 

related to the stacking order of the overlapped region.  

 



 

Figure S2 | Wrinkles and grain-overlaps. a. Topography image showing wrinkles. b. 

SPI image taken simultaneously with a at IR=11.3 m. WR1 and WR2 in a and b mark 

the two wrinkles. c. The line profiles taken along the dashed lines in b. d. Topography 

image of grain-overlaps. e. SPI image taken simultaneously with d at IR=11.3 m. Red 

arrow marks a GB. OL1 and OL2 in c and d mark two different types of grain-overlaps. f. 

The line profiles taken along the dashed lines in e. In both c and f, the scattering 

amplitude s is normalized to the places far away from the line defects where no plasmons 

fringes exist (e.g. green squares in b and f). Scale bars in all panels are 200 nm. 

 

In Fig. S3, we show a larger-area scan of our CVD graphene film including various 

types of line defects. Based on the AFM topography (Fig. S3a) and SPI (Fig. S3b) images, 

we were able to sketch a map for various types of line defects (Fig. S3c). Topographic 

and SPI signatures allowing us to distinguish different types of line defects are described 

in the manuscript and the above paragraphs. Being sub-nm wide defects, GBs have no 

obvious topography features, yet they trigger clearly observable plasmonic twin fringes. 

Grain overlaps and wrinkles show up in both the AFM topography and the SPI images. 

The main difference between grain-overlaps and wrinkles is the degree of continuity and 

the intensity of the twin fringes. The wrinkles are sporadic and discontinuous with fringe 

intensity varying from position to position. The grain-overlaps are continuous (similar to 

GBs) with almost constant fringe intensities. High-resolution AFM and SPI images (like 

Figs. S1 & S2) are well suited to discriminate between all these different types of line 

defects.  

 



 

Figure S3 | Large-area scanning revealing various types of line defects. a. AFM 

topography image. b. SPI image simultaneously taken with a at IR=11.3 m. c. The map 

of various types of line defects including GBs (red), grain-overlaps (orange), and 

wrinkles (green). Scale bar width in all the panels is 1 m.  

 

3. Reflection of plasmons from a linear defect 

The observed fringes originate from interference of the plasmon waves launched by 

the AFM tip and those backscattered by a linear defect. Here we only consider line 

defects with negligible geometric width, such as a GB. Theoretical modeling of such 

waves is a challenging problem that requires solving complicated integro-differential 

equations. The problem becomes more manageable once one introduces certain 

approximations for the response functions of graphene and the tip, as described in our 

previous work
11

. However, even after these approximations the solution can be obtained 

only numerically. Before we go into details of our numerical simulations (Section 5), we 

first consider a simpler scattering problem, which can be tackled analytically.  

Instead of a complicated waveform launched by the tip, we consider a plane wave 

incident from the left on the line defect located at x = 0. We take the scalar potential of 

this wave to be ( , ) x yiq x iq y
x y e


  in the graphene plane. The system is assumed to be 

uniform along y, so that qy is conserved. The x-component of the incident plasmon 

momentum is 

2 2 ,  Im 0,x y xq q q q                         (S1) 

where ( )pq q   , function qp(x) is the local plasmon momentum, 
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(x) is the local sheet conductivity of graphene, and  is the effective dielectric constant. 

We parameterize the deviation of qp(x) from its limiting value at infinity by the 

dimensionless function g(x) such that 

1 1 ( )
.

( )p

g x

q x q


                          (S3) 

We assume that g(x) rapidly decays with x (faster than 1/x). Note that the plasmon 

wavelength discussed in the main text is defined by 1( ) 2 /p x q   with 1 Re ( )pq q x  



Our goal is to calculate the potential ( ) yiq y
x e  of the scattered wave. In particular, 

we are interested in the behavior of ( )x  at large negative x, 

( ) | | ,x spx
iq x iiq x

sp spx r e r e



 

                        (S4) 

which defines the reflection probability |rsp|
2
 and the phase shift spof graphene plasmons. 

Our starting equations are: 

( ) ( ,0) ( ),x x x                           (S5) 
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where ( )x  is the total potential, 
1

1 0( )yV K q x   is the 1D Fourier transform of the 

Coulomb potential, K0(z) is the modified Bessel function of the second kind, and the star 

denotes convolution, 

( ) ( ,0) ( ),x x x                           (S7) 

We approach Eq. (S6) using the Green's function perturbation theory method. The 

Green's function is defined by 
2 2
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The physical meaning of G is the response to the localized disturbance; ( , )x yk k is the 

2D dielectric function of graphene. Using contour-integration techniques, the Green's 

function can be split into two terms: 
2
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The first term represents the outgoing plane wave and the second term is a correction 

decaying as 
3/2( ) ~ ( )yG x q x  for 0yq   and 

2( ) ~ 2 / ( )G x q x  for 0yq  . In the latter 

case, ( )G x  can be expressed in terms of the standard special functions, the cosine-

integral Ci(z) and the sine-integral Si(z): 

( ) {Ci( )cos [Si( ) ]sin }.
2

q
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Using thus defined Green's function, Eq. (S6) can be transformed to 

2
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which is analogous to the Lippmann-Schwinger equation of the usual scattering theory. 

Following the familiar route, at x much longer than plasmon wavelengthp, we neglect 

the correction ( )G x  in ( )G x  and recover Eq. (S5) with the following reflection 

coefficient: 
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We restrict our further analysis to the case of a weak defect, i.e., small g(x). In this case 

| | 1,  ( ) xiq x

spr x e   , and the formula similar to the first Born approximation applies: 
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Notably, the reflection vanishes at the “Brewster angle” of /4 where qx=qy. However, we 

are primarily interested in the normal incidence (qy = 0). The most important for us is the 

situation where the effective electronic width of the defect is small compared to the 

plasmon wavelength: eff pW  . In this case, for qy = 0, Eq. (S13) acquires a remarkably 

simple form 

1
,  [ ( ) ] .sp eff p p p

eff

r iW q q q x q dx
W

                    (S14) 

Parameter pq  has the meaning of the average deviation of ( )pq x  inside the defect 

region from its limiting value q . In turn, the phase shift of graphene plasmons is given 

by 

arg( ).sp eff piW q                          (S15) 

For real pq ,   can take only two values: / 2sp    if 0pq  , (i.e., p inside the 

defect is higher than outside), and 3 / 2sp    otherwise. On the other hand, if pq  

also has an imaginary part, the phase shift can be arbitrary. 

 

4. Understanding the interference patterns 

Let us now apply the above results to the task of interpreting the positions of the 

interference fringes found in the experiment, i.e., the tip positions ( , )t t tx yρ  where the 

nanoscope registers the maxima of the signal ( )ts ρ . The relation between ( )ts ρ  and the 

previously discussed scalar potential ( ) ρ  is complicated and in fact tip-dependent
8
. 

However, according to our numerical simulations, the maxima of ( )ts ρ  occur roughly 

where the scalar potentials ( ) ρ  and ( ) ρ  due to, respectively, the launched and the 

scattered waves, add in phase underneath the tip. The results of the previous section can 

be straightforwardly utilized provided the tip is located far away from the linear defect. 

Assuming that is the case, let us discuss the launched wave ( ) ρ  first. Near the defect, 

which is far from the tip, ( ) ρ  behaves as an outgoing cylindrical wave: 
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The coefficient 0 ~ 1C  and the phase shift t  depend on microscopic parameters of the tip, 

graphene, and the substrate. There is no general reason for t  to be negligible. 

Next, consider the reflected wave ( ) ρ . To compute this function, one can 

decompose ( ) ρ  into Fourier harmonics with all possible qy, determine the reflected 

wave for each harmonic, and then evaluate the inverse Fourier transform at the tip 

position. It is easy to see that the reflected wave is dominated by harmonics of nearly 

normal incidence, 
1/2~| / | .y p t pq q x q This allows one to replace function r(qy) in this 

calculation by the constant r(0). In turn, it means that the method of images applies, so 

that ( ) ρ  can be approximated by a cylindrical wave of a certain amplitude radiated 



from the position (-xt, yt). This argument is the theoretical basis for the illustration shown 

in Fig. 1A of the main text. Adding together the launched and the reflected waves, we 

find the total potential at the tip position: 
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According to the earlier assumption, the interference maxima occur when 

12 | |t sp tq x    is an integer multiple of 2. They form a sequence of equidistant points 

on each side of the defect: 
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where n = 0, 1, … and {z} stands for the fractional part of z. Although Eq. (S18) was 

derived assuming n >> 1, it should not be grossly incorrect at n = 0. Therefore, the 

separation between the maxima nearest to the defect is: 
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                     (S19) 

Thus the magnitude of DTF is governed both by the plasmon phase shift sp, and by the 

tip-dependent parameter t. Based on our numerical modeling results given in Fig. S5 and 

Eqs. S15 & S19, we were able to estimate t to be –(0.50.1), which is fairly robust for 

tip radius from 10 nm to 100 nm. The estimation was done by comparing DTF inferred 

using Eq. S19 with that obtained from modeled profiles. The value of -(0.50.1) is fairly 

accurate for all the test modeling profiles. Slight deviation (less than 20%) occurs when 

g(x) or pq  is relatively big, i.e. when p
LD

 is 100 nm or 800 nm in Fig. S5a. 

 

5. Numerical modeling of twin fringes profiles 

Many elements of our numerical modeling have already been described in ref. S11. 

In short, we model our AFM tip as a metallic spheroid (Fig. S4a): the length of the 

spheroid is 2L and the radius of curvature at the tip end is R. Here, R is set to be 25 nm 

according to the manufacturer specification and L is not a sensitive parameter so long as 

it is much larger than R (L is set to be 9R in all our simulations). The scattering amplitude 

S (before demodulation) is proportional to the total radiating dipole pz of the spheroid. 

Therefore, in order to fit the line profiles perpendicular to the twin fringes due to a line 

defect, we need to calculate pz at different spatial coordinates (x, ztip). Here, x and z are 

the x- and z- coordinates of lower end of the AFM tip, respectively. In order to compute 

pz, we assume that the electric potential  outside both the tip and the sample can be 

represented as a superposition of potentials of a large number of point dipoles positioned 

inside the tip. Based on this assumption, we are able to calculate the electric potential  

and field E distribution at every given point of the space. Imposing the boundary 

condition that the component of E tangential to the tip is zero, we obtain individual 

dipole moments. The total dipole moment pz of the tip is their sum. By calculating pz at 

different z, we are able to perform „demodulation‟ of the scattering amplitude S and get 

different harmonics of the scattering signal. While calculating pz at different x allows us 

to plot the modeling scattering amplitude and phase profiles. In all our modeling and 

simulation, we assume no position dependence in the y- direction for the purpose of 



simplicity. In the current work, the scattering amplitude sis normalized to that far away 

from the line defect where no plasmon fringes exist. 

 

 
Figure S4 | Modeling of the AFM tip and graphene. a. Modeling parameters of the 

AFM tip. Red dashed line marks a line defect of graphene at x=0. b. „Discontinuous‟ 

model for a line defect in graphene. c. „Gradual‟ model for a line defect in graphene. „G‟ 

and „LD‟ in both b and c stand for graphene film and line defect, respectively. The fill 

colors and the yellow dashed lines in both b and c illustrate the variation of modeling 

parameters such as p
G
 (as plotted) or p

G
. 

 

5.1 Model with discontinuous change of parameters 

As for graphene, in our previous work
11

 we used the complex plasmon wavevector 

qp (Eq. S2) as an input parameter in our modeling. Equivalently here, the plasmon 

wavelength p=2/Re(qp) and the damping rate p=Im(qp)/Re(qp) are the input parameters. 

We start with a model that assumes that graphene has a constant plasmon wavelength p
G
 

and damping rate p
G
 away from the line defect, and that a line defect with an effective 

width of Weff is characterized by its own plasmon wavelength p
LD

 and damping rate p
LD

 

as illustrated in Fig. S4b. Here and below, this model is referred to as the Discontinuous 

Model. Among the four parameters, both p
G
 and p

G
 can be estimated directly from our 

experimental data. p
G
 is set to be around 260 nm by measuring the fringe width of two 

side fringes at |x|≈230 nm. p
G
 is estimated to be around 0.15 by comparing the plasmon 

damping to that of exfoliated graphene
11

.  

To understand how p
LD

, p
LD

 and Weff affect the plasmon fringe profile, we first 

perform a series of modeling by varying only one parameter and fixing the other two 

constant. In Fig. S5, we show fours representative sets of modeling results by: 

(1) varying p
LD

 from 10 to 800 nm with p
LD

=p
G
 =0.15 and Weff 30 nm (Fig. S5a);  

(2) varying p
LD

 from 0.01 to 2.0 with p
LD

=500 nm and Weff 30 nm (Fig. S5b);  

(3) varying p
LD

 from 0.01 to 2.0 with p
LD

=100 nm and Weff 30 nm (Fig. S5b);  

(4) varying Weff from 5 to 80 nm with p
LD

=500 nm and p
LD

=0.5 (Fig. S5d).  



In all panels of Fig. S5, we plot the modeling scattering amplitude s profiles along 

with the experimental data for a GB in Fig. 2 in the main text. The scattering amplitude s 

is normalized to its value far away from the line defect, |x|≥300 nm in Fig. S5. We 

monitor the evolution of both the fringe intensity (peak height) and the separation 

between twin fringes DTF with varying p
LD

, p
LD

 or Weff. As explained above, the fringe 

intensity is related to the reflection probability |r|
2
 (Eq. S14), while DTF is determined by 

the phase shift sp (Eq. S19).  

As one can see in Fig. S5a, the further p
LD

 deviates from p
G
, the higher the fringe 

intensity is. This is consistent with Eq. S14 since larger |p
LD

-p
G
| leads to larger ∆qp and 

hence higher reflection probability |r|
2
. The separation between the twin fringes DTF also 

depends on p
LD

. Assuming p
LD

>p
G
, we can find simulation parameters that bring DTF 

close to the experimentally observed width 150 nm. Conversely, if we assume that 

p
LD

<p
G
, the magnitude of DTF becomes too large, about 260nm, nearly twice the 

observed value. This is again consistent with the analytical theory above. When p
LD

-p
G
 

switches its sign, plasmon phase shift sp=arg(iWeff∆qp) will be shifted by  (Eq. S15), 

resulting in drastic change in DTF (Eq. S19).  

Now we examine the effects of p
LD

 on the plasmon fringe profiles. In Figs. S5b and 

S5c, we show the modeling results with p
LD

 fixed at 500 nm and 100 nm, respectively. 

In both cases, the fringe profile evolves systematically with varying p
LD

, in agreement 

with Eqs. S14 & S19. Notably, in the case of p
LD

=500 nm, the scattering amplitude s at 

the line defect (x ≈ 0) shows a sensitive dependence on p
LD

. Good agreement with the 

experimental data can be achieved only if p
LD

>p
G
, i.e., if the GB is more doped than the 

rest of the film  

The modeling results for several Weff are presented in Fig. 4d, where one can see that 

the fringe intensity decreases rapidly with decreasing Weff. This is because |r| scales with 

Weff as shown in Eq. S14. At the smallest Weff≈5 nm, the twin fringes almost disappear. 

As Weff increases, the separation between the twin fringes DTF increases by about the 

same amount. 

 



 
Figure S5 | Fringe profile simulation with the Discontinuous model. a. Modeling s 

profiles with 10 nm<p
LD

<800 nm, p
LD

=p
G
=0.15 and Weff30 nm. b. Modeling s 

profiles with 0.01<p
LD

< 2, p
LD

 =500 nm and Weff 30 nm. c. Modeling s profiles with 

0.01<p
LD

< 2, p
LD

 =100 nm and Weff 30 nm. d. Modeling s profiles with 5nm< Weff < 

90 nm, p
LD

 =500 nm and p
LD

 =1.0. In all panels,p
G
=260, p

G
=0.15, the line defect is at 

x=0, and experimental data of a GB taken at 11.26 m is plotted with black hollow 

squares. Slightly asymmetry in our modeling results is due to limited resolution of our 

modeling. 

 

Figure S5d illustrates how the calculated s(x) profiles change as a function of a 

single parameter of the set (p
LD, p

LD
 or Weff) while the remaining ones are kept fixed. 

Finally, in Fig. S6, we vary all the three parameters in order to get the best fit to the data. 

Such a fit is achieved with Weff close to 20 nm, which is much larger than its geometric 

width < 1 nm. Effective widths much smaller than 20 nm, e.g., Weff≈5 nm，require 

settingp
LD

 as high as 3000 nm to fit the data, corresponding to an unrealistic carrier 

density of n=1.2×10
15 

cm
-2

.  

 



 
Figure S6 | Fringe profile fitting with the Discontinuous model. Calculated s(x) 

profiles for five different effective widths Weff =5, 10, 20, 50, 90 nm. For each Weff, 

p
G
=260, p

G
=0.15 are fixed but p

LD
 and p

LD
 are adjusted to best reproduce the 

experimental data (squares) taken at 11.26m. 

 

5.2 Model with a gradual change of parameters 

So far, for the purpose of simplicity and clarity, we use the Discontinuous model 

(Fig. S2B) for calculation. Clearly, the model grasps the gross features of the 

experimental data. Nevertheless, in this model both p(x) and p(x) profiles have 

discontinuities close to the line defect (Figs. S5). We also considered a more realistic 

model that was referred to as the Gradual Model (Fig. S2B). In this model the rapid 

increase of both p and p close to the line defect is modeled by exponential functions:  
G 2| |/ G 2| |/

p p 1 p p 2( ) , ( )x B x Bx Ae x A e        .             (S20) 

Here A1, A2 and B are the new adjustable parameters. A1 and A2 determine the peak height 

of p and p at the center of the line defect, respectively (Fig. S2C), B is associated with 

the effective width of the line defect.  

    In Fig. S7, we show the best-fit results for the GB data taken at IR from 10.7 to 11.3 

m using the Gradual model. The modeling parameters are: A1=320 nm, A2=0.9, B=20 

nm, corresponding p(x) and p(x) profiles are plotted in Fig. 2e in the main text.  



 
Figure S7 | Fitting of twin fringe profiles with the Gradual model. a. Line profiles 

across twin fringes at various IR obtained from both experimental data of a GB (black 

squares) and modeling (blue dashed curve). Here, the scattering amplitude s is 

normalized to that far away from the line defect (|x|>300 nm). All line profiles are 

vertically displaced for clarity. 

 

6. Discussion 

Our modeling with both models not only fits well the experimental data, but also 

uncovers many essential properties of GBs. (1) GBs tend to have higher p compared to 

the rest of CVD film. (2) GBs tend to have higher p compared to the rest of CVD film. (3) 

GBs tend to have higher effective width (Weff~20 nm) than their geometric width (W< 

1nm).  

 

6.1 The effective electronic width of grain boundaries 

According to Eq. 1 in the main text, plasmon wavelength p of graphene is 

proportional to its Fermi energy EF (Eq. 1 in the main text). Considering that 

F FE v n (vF is the Fermi velocity, n is the carrier density of graphene), higher p 

implies an increase of the carrier densities in the vicinity of GBs. This is expected since 

GBs are lattice imperfections that favor molecule adsorptions at ambient conditions
12,13

, 

which will further enhance the hole doping in ambient
14,15

. Within the Drude 

approximation, the plasmon damping rate p in graphene can be written as
11

  



2 2 1

1 1 2

1
0.05p

q

q

 


  
     ,                  (S21) 

here 1 and 2 are the real and imaginary parts of effective dielectric constant  (Eq. 2), 

and 1 and 2 are real and imaginary parts of optical conductivity of graphene , 1/ is 

the scattering rate of the charge carriers (as labeled in Fig. S6c). Therefore, higher p 

indicates higher scattering rate 1/ close to the GBs. These additional scattering 

originates presumably from the strong structural and Coulomb disorder at the GB.  

The effective electronic width Weff ~ 20 nm of the GBs revealed by the SPI is 

comparable to the screening length in graphene and is much larger than the sub-nm 

geometric width of the grain boundaries. The relevant screening problem has been 

considered in ref. S16 within the perturbation-theory approach. A non-perturbative 

treatment in ref. S17 yields qualitatively similar results apart from logarithmic corrections.  

 

6.2 Charge transport and plasmon propagation at grain boundaries 

Starting from the EF and 1/ profiles displayed in Figs. S6b and S6c, we are able to 

calculate the DC conductivity profile across the GB using the formula obtained under 

Drude approximation: 
2

F2
,DC

Ee

h E




                          (S22) 

here 1E  

   is the scattering energy. The obtained DC(x) is given in the inset of Fig. 

2c of the main text, where one can see that the GB tends to have a lower DC conductivity 

compared to the rest of the graphene film.  

Previous transport and STM studies
18-21

 of GBs were all performed in vacuum. 

Graphene was much less doped in those studies. On the contrary, our experiments were 

carried out in ambient atmospheric conditions, thus revealing for the first time the 

transport properties of GBs in graphene films that are highly hole-doped (presumably, by 

oxygen and water molecules). We remark that the „electronic‟ nature of the GBs are the 

origin for the lower DC conductivities observed in our experiments.  
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